NASA Astrophysics Data System (ADS)
Osborne, David; Lawson, Patrick Andrew; Adams, Nigel; Dotan, Itzhak
2014-06-01
An in-depth study of the effects of functional group substitution on benzene's electron-ion dissociative recombination (e-IDR) rate constant has been conducted. The e-IDR rate constants for benzene, biphenyl, toluene, ethylbenzene, anisole, phenol, and aniline have been measured using a Flowing Afterglow equipped with an electrostatic Langmuir probe (FALP). These measurements have been made over a series of temperatures from 300 to 550 K. A relationship between the Hammett σpara values for each compound and rate constant has indicated a trend in the e-IDR rate constants and possibly in their temperature dependence data. The Hammett σpara value is a method to describe the effect a functional group substituted to a benzene ring has upon the reaction rate constant.
Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger
2013-11-21
The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.
Calculation of kinetic rate constants from thermodynamic data
NASA Technical Reports Server (NTRS)
Marek, C. John
1995-01-01
A new scheme for relating the absolute value for the kinetic rate constant k to the thermodynamic constant Kp is developed for gases. In this report the forward and reverse rate constants are individually related to the thermodynamic data. The kinetic rate constants computed from thermodynamics compare well with the current kinetic rate constants. This method is self consistent and does not have extensive rules. It is first demonstrated and calibrated by computing the HBr reaction from H2 and Br2. This method then is used on other reactions.
Assessment of rate of drug release from oil vehicle using a rotating dialysis cell.
Larsen, D H; Fredholt, K; Larsen, C
2000-09-01
The rate constants for transfer of model compounds (naproxen and lidocaine) from oily vehicle (Viscoleo) to aqueous buffer phases were determined by use of the rotating dialysis cell. Release studies were done for the partly ionized compounds at several pH values. A correlation between the overall first-order rate constant related to attainment of equilibrium, k(obs), and the pH-dependent distribution coefficient, D, determined between oil vehicle and aqueous buffer was established according to the equation: logk(obs)=-0.71 logD-0.22 (k(obs) in h(-1)). Based on this correlation it was suggested that the rate constant of a weak electrolyte at a specified D value could be considered equal to the k(obs) value for a non-electrolyte possessing a partition coefficient, P(app), the magnitude of which was equal to D. Specific rate constants k(ow) and k(wo) were calculated from the overall rate constant and the pH-dependent distribution coefficient. The rate constant representing the transport from oily vehicle to aqueous phase, k(ow), was found to be significantly influenced by the magnitude of the partition coefficient P(app) according to: logk(ow)=-0.71 logP(app)-log(P(app)+1)-0.22 (k(ow) in h(-1)).
NASA Astrophysics Data System (ADS)
Lu, Shih-Yuan; Yen, Yi-Ming
2002-02-01
A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.
1982-01-01
The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.
Magnetic-time model at off-season germination
NASA Astrophysics Data System (ADS)
Mahajan, Tarlochan Singh; Pandey, Om Prakash
2014-03-01
Effect of static magnetic field on germination of mung beans is described. Seeds of mung beans, were exposed in batches to static magnetic fields of 87 to 226 mT intensity for 100 min. Magnetic time constant - 60.743 Th (Tesla hour) was determined experimentally. High value of magnetic time constant signifies lower effect of magnetic field on germination rate as this germination was carried out at off-season (13°C). Using decay function, germination magnetic constant was calculated. There was a linear increase in germination magnetic constant with increasing intensity of magnetic field. Calculated values of mean germination time, mean germination rate, germination rate coefficient, germination magnetic constant, transition time, water uptake, indicate that the impact of applied static magnetic field improves the germination of mung beans seeds even in off-season
Reaction kinetics of resveratrol with tert-butoxyl radicals
NASA Astrophysics Data System (ADS)
Džeba, Iva; Pedzinski, Tomasz; Mihaljević, Branka
2012-09-01
The rate constant for the reaction of t-butoxyl radicals with resveratrol was studied under pseudo-first order conditions. The rate constant was determined by measuring the phenoxyl radical formation rate at 390 nm as function of resveratrol concentration in acetonitrile. The rate constant was determined to be 6.5×108 M-1s-1. This high value indicates the high reactivity consistent with the strong antioxidant activity of resveratrol.
MICROBIAL TRANSFORMATION RATE CONSTANTS OF STRUCTURALLY DIVERSE MAN-MADE CHEMICALS
To assist in estimating microbially mediated transformation rates of man-made chemicals from their chemical structures, all second order rate constants that have been measured under conditions that make the values comparable have been extracted from the literature and combined wi...
Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br
NASA Technical Reports Server (NTRS)
Hsu, K.-J.; Demore, W. B.
1994-01-01
Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.
Rate constant for the reaction of atomic chlorine with methane
NASA Technical Reports Server (NTRS)
Lin, C. L.; Leu, M. T.; Demore, W. B.
1978-01-01
The rate constant and temperature dependence of the Cl + CH4 reaction have been investigated by the techniques of competitive chlorination of CH4/C2H6 mixtures and by discharge-flow/mass spectroscopy. The objectives were to determine an accurate value for the rate constant for use in stratospheric modeling, and to clarify discrepancies in results previously obtained by different techniques. The results deduced from the competitive chlorination study are in good agreement with the absolute values measured by the mass spectrometric method, and at temperatures above 300 K are in good agreement with measurements by other techniques based on resonance fluorescence detection of atomic chlorine. However, in the 220-300 K region, the competitive experiments indicate lower rate constants than those obtained by resonance fluorescence methods, and do not reproduce the curved Arrhenius plots seen in some of those studies.
Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper
NASA Technical Reports Server (NTRS)
Kashiwagi, Takashi; Nambu, Hidesaburo
1992-01-01
Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.
NASA Astrophysics Data System (ADS)
Basant, Nikita; Gupta, Shikha
2018-03-01
The reactions of molecular ozone (O3), hydroxyl (•OH) and nitrate (NO3) radicals are among the major pathways of removal of volatile organic compounds (VOCs) in the atmospheric environment. The gas-phase kinetic rate constants (kO3, kOH, kNO3) are thus, important in assessing the ultimate fate and exposure risk of atmospheric VOCs. Experimental data for rate constants are not available for many emerging VOCs and the computational methods reported so far address a single target modeling only. In this study, we have developed a multi-target (mt) QSPR model for simultaneous prediction of multiple kinetic rate constants (kO3, kOH, kNO3) of diverse organic chemicals considering an experimental data set of VOCs for which values of all the three rate constants are available. The mt-QSPR model identified and used five descriptors related to the molecular size, degree of saturation and electron density in a molecule, which were mechanistically interpretable. These descriptors successfully predicted three rate constants simultaneously. The model yielded high correlations (R2 = 0.874-0.924) between the experimental and simultaneously predicted endpoint rate constant (kO3, kOH, kNO3) values in test arrays for all the three systems. The model also passed all the stringent statistical validation tests for external predictivity. The proposed multi-target QSPR model can be successfully used for predicting reactivity of new VOCs simultaneously for their exposure risk assessment.
The effect of ionic interactions on the oxidation of metals in natural waters
NASA Astrophysics Data System (ADS)
Millero, Frank J.
1985-02-01
The effect of ionic interactions of the major components of natural waters on the oxidation of Cu(I) and Fe(II) has been examined. The various ion pairs of these metals have been shown to have different rates of oxidation. For Fe(II), the chloride and sulfate ion pairs are not easily oxidized. The measured decrease in the rate constant at a fixed pH in chloride and sulfate solutions agrees very well with the values predicted. The effect of pH (6 to 8) on the oxidation of Fe(II) in water and seawater have been shown to follow the rate equation -d in [Fe(II)]/dt = k 1β 1α Fe/[H +] + k 2β 2α Fe/[H +] 2 where k1 and k2 are the pseudo first order rate constants, β1 and β2 are the hydrolysis constants for Fe(OH) + and Fe(OH) 0. The value of αFE is the fraction of free Fe 2+. The value of k1 (2.0 ±0.5 min-1) in water and seawater are similar within experimental error. The value of k2 (1.2 × 10 5 min -1) in seawater is 28% of its value in water in reasonable agreement with predictions using an ion pairing model. For the oxidation of Cu(I) a rate equation of the form -d ln [Cu(I)]/dt = k 0α Cu+ k 1β 1α Cu[Cl] was found where k0 (14.1 sec -1) and k1 (3.9 sec -1) are the pseudo first order rate constants for the oxidation of Cu + and CuCl 0, β1 is the formation constant for CuCl 0 and αCu is the fraction of free Cu +. Thus, unlike the results for Fe(II), Cu(I) chloride complexes have measurable rates of oxidation.
Kusano, Maggie; Caldwell, Curtis B
2014-07-01
A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.
Karakas, Filiz; Imamoglu, Ipek
2017-04-01
This study aims to estimate anaerobic debromination rate constants (k m ) of PBDE pathways using previously reported laboratory soil data. k m values of pathways are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model. Debromination activities published in the literature in terms of bromine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The range of estimated k m values is between 0.0003 and 0.0241 d -1 . The median and maximum of k m values are found to be comparable to the few available biologically confirmed rate constants published in the literature. The estimated k m values can be used as input to numerical fate and transport models for a better and more detailed investigation of the fate of individual PBDEs in contaminated sediments. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be handled in a more quantitative manner with the help of k m estimated in this study.
Zhang, Xuzhu; Poniewierski, Andrzej; Jelińska, Aldona; Zagożdżon, Anna; Wisniewska, Agnieszka; Hou, Sen; Hołyst, Robert
2016-10-04
The equilibrium and rate constants of molecular complex formation are of great interest both in the field of chemistry and biology. Here, we use fluorescence correlation spectroscopy (FCS), supplemented by dynamic light scattering (DLS) and Taylor dispersion analysis (TDA), to study the complex formation in model systems of dye-micelle interactions. In our case, dyes rhodamine 110 and ATTO-488 interact with three differently charged surfactant micelles: octaethylene glycol monododecyl ether C 12 E 8 (neutral), cetyltrimethylammonium chloride CTAC (positive) and sodium dodecyl sulfate SDS (negative). To determine the rate constants for the dye-micelle complex formation we fit the experimental data obtained by FCS with a new form of the autocorrelation function, derived in the accompanying paper. Our results show that the association rate constants for the model systems are roughly two orders of magnitude smaller than those in the case of the diffusion-controlled limit. Because the complex stability is determined by the dissociation rate constant, a two-step reaction mechanism, including the diffusion-controlled and reaction-controlled rates, is used to explain the dye-micelle interaction. In the limit of fast reaction, we apply FCS to determine the equilibrium constant from the effective diffusion coefficient of the fluorescent components. Depending on the value of the equilibrium constant, we distinguish three types of interaction in the studied systems: weak, intermediate and strong. The values of the equilibrium constant obtained from the FCS and TDA experiments are very close to each other, which supports the theoretical model used to interpret the FCS data.
Distribution Development for STORM Ingestion Input Parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, John
The Sandia-developed Transport of Radioactive Materials (STORM) code suite is used as part of the Radioisotope Power System Launch Safety (RPSLS) program to perform statistical modeling of the consequences due to release of radioactive material given a launch accident. As part of this modeling, STORM samples input parameters from probability distributions with some parameters treated as constants. This report described the work done to convert four of these constant inputs (Consumption Rate, Average Crop Yield, Cropland to Landuse Database Ratio, and Crop Uptake Factor) to sampled values. Consumption rate changed from a constant value of 557.68 kg / yr tomore » a normal distribution with a mean of 102.96 kg / yr and a standard deviation of 2.65 kg / yr. Meanwhile, Average Crop Yield changed from a constant value of 3.783 kg edible / m 2 to a normal distribution with a mean of 3.23 kg edible / m 2 and a standard deviation of 0.442 kg edible / m 2 . The Cropland to Landuse Database ratio changed from a constant value of 0.0996 (9.96%) to a normal distribution with a mean value of 0.0312 (3.12%) and a standard deviation of 0.00292 (0.29%). Finally the crop uptake factor changed from a constant value of 6.37e -4 (Bq crop /kg)/(Bq soil /kg) to a lognormal distribution with a geometric mean value of 3.38e -4 (Bq crop /kg)/(Bq soil /kg) and a standard deviation value of 3.33 (Bq crop /kg)/(Bq soil /kg)« less
Minakata, Daisuke; Crittenden, John
2011-04-15
The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.
Dynamics of Soil Water Evaporation during Soil Drying: Laboratory Experiment and Numerical Analysis
Han, Jiangbo; Zhou, Zhifang
2013-01-01
Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. PMID:24489492
Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis.
Han, Jiangbo; Zhou, Zhifang
2013-01-01
Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3.
Theoretical rate constants of super-exchange hole transfer and thermally induced hopping in DNA.
Shimazaki, Tomomi; Asai, Yoshihiro; Yamashita, Koichi
2005-01-27
Recently, the electronic properties of DNA have been extensively studied, because its conductivity is important not only to the study of fundamental biological problems, but also in the development of molecular-sized electronics and biosensors. We have studied theoretically the reorganization energies, the activation energies, the electronic coupling matrix elements, and the rate constants of hole transfer in B-form double-helix DNA in water. To accommodate the effects of DNA nuclear motions, a subset of reaction coordinates for hole transfer was extracted from classical molecular dynamics (MD) trajectories of DNA in water and then used for ab initio quantum chemical calculations of electron coupling constants based on the generalized Mulliken-Hush model. A molecular mechanics (MM) method was used to determine the nuclear Franck-Condon factor. The rate constants for two types of mechanisms of hole transfer-the thermally induced hopping (TIH) and the super-exchange mechanisms-were determined based on Marcus theory. We found that the calculated matrix elements are strongly dependent on the conformations of the nucleobase pairs of hole-transferable DNA and extend over a wide range of values for the "rise" base-step parameter but cluster around a particular value for the "twist" parameter. The calculated activation energies are in good agreement with experimental results. Whereas the rate constant for the TIH mechanism is not dependent on the number of A-T nucleobase pairs that act as a bridge, the rate constant for the super-exchange process rapidly decreases when the length of the bridge increases. These characteristic trends in the calculated rate constants effectively reproduce those in the experimental data of Giese et al. [Nature 2001, 412, 318]. The calculated rate constants were also compared with the experimental results of Lewis et al. [Nature 2000, 406, 51].
García Einschlag, Fernando S; Carlos, Luciano; Capparelli, Alberto L
2003-10-01
The rate constants for hydroxyl radical reaction toward a set of nitroaromatic substrates kS, have been measured at 25 degrees C using competition experiments in the UV/H2O2 process. For a given pair of substrates S1 and S2, the relative reactivity beta (defined as kS1/kS2) was calculated from the slope of the corresponding double logarithmic plot, i.e., of ln[S1] vs. ln[S2]. This method is more accurate and remained linear for larger conversions in comparison with the plots of ln[S1] and ln[S2] against time. The rate constants measured ranged from 0.33 to 8.6 x 10(9) M(-1)s(-1). A quantitative structure-reactivity relationship was found using the Hammett equation. Assuming sigma values to be additive, a value of -0.60 was obtained for the reaction constant rho. This value agrees with the high reactivity and the electrophilic nature of HO* radical.
Navia, R; Inostroza, X; Diez, M C; Lorber, K E
2006-05-01
An irrigation process through volcanic soil columns was evaluated for bleached Kraft mill effluent pollutants retention. The system was designed to remove color and phenolic compounds and a simple kinetic model for determining the global mass transfer coefficient and the adsorption rate constant was used. The results clearly indicate that the global mass transfer coefficient values (K(c)a) and the adsorption rate constants are higher for the irrigation processes onto acidified soil. This means that the pretreatment of washing the volcanic soil with an acid solution has a positive effect on the adsorption rate for both pollutant groups. The enhanced adsorption capacity is partially explained by the activation of the metal oxides present in the soil matrix during the acid washing process. Increasing the flow rate from 1.5 to 2.5 ml/min yielded higher (K(c)a) values and adsorption rate constants for both pollutant groups. For instance, regarding color adsorption onto acidified soil, there is an increment of 43% in the (K(c)a) value for the experiment with a flow rate of 2.5 ml/min. Increasing the porosity of the column from 0.55 to 0.59, yielded a decrease in the (K(c)a) values for color and phenolic compounds adsorption processes. Onto natural soil for example, these decreases reached 21% and 24%, respectively. Therefore, the (K(c)a) value is dependent on both the liquid-phase velocity (external resistance) and the soil fraction in the column (internal resistance); making forced convection and diffusion to be the main transport mechanisms involved in the adsorption process. Analyzing the adsorption rate constants (K(c)a)/m, phenolic compounds and color adsorption rates onto acidified soil of 2.25 x 10(-6) and 2.62 x 10(-6) l/mg min were achieved for experiment 1. These adsorption rates are comparable with other adsorption systems and adsorbent materials.
Hiratsuka, Tatsumasa; Tanaka, Hideki; Miyahara, Minoru T
2017-01-24
We find the rule of capillary condensation from the metastable state in nanoscale pores based on the transition state theory. The conventional thermodynamic theories cannot achieve it because the metastable capillary condensation inherently includes an activated process. We thus compute argon adsorption isotherms on cylindrical pore models and atomistic silica pore models mimicking the MCM-41 materials by the grand canonical Monte Carlo and the gauge cell Monte Carlo methods and evaluate the rate constant for the capillary condensation by the transition state theory. The results reveal that the rate drastically increases with a small increase in the chemical potential of the system, and the metastable capillary condensation occurs for any mesopores when the rate constant reaches a universal critical value. Furthermore, a careful comparison between experimental adsorption isotherms and the simulated ones on the atomistic silica pore models reveals that the rate constant of the real system also has a universal value. With this finding, we can successfully estimate the experimental capillary condensation pressure over a wide range of temperatures and pore sizes by simply applying the critical rate constant.
NASA Astrophysics Data System (ADS)
Majidi, Omid; Jahazi, Mohammad; Bombardier, Nicolas; Samuel, Ehab
2017-10-01
The strain rate sensitivity index, m-value, is being applied as a common tool to evaluate the impact of the strain rate on the viscoplastic behaviour of materials. The m-value, as a constant number, has been frequently taken into consideration for modeling material behaviour in the numerical simulation of superplastic forming processes. However, the impact of the testing variables on the measured m-values has not been investigated comprehensively. In this study, the m-value for a superplastic grade of an aluminum alloy (i.e., AA5083) has been investigated. The conditions and the parameters that influence the strain rate sensitivity for the material are compared with three different testing methods, i.e., monotonic uniaxial tension test, strain rate jump test and stress relaxation test. All tests were conducted at elevated temperature (470°C) and at strain rates up to 0.1 s-1. The results show that the m-value is not constant and is highly dependent on the applied strain rate, strain level and testing method.
NASA Astrophysics Data System (ADS)
Xie, Tiao; Bowman, Joel M.; Peterson, K. A.; Ramachandran, B.
2003-11-01
We report the thermal rate constant of the O(3P)+HCl→OH+Cl reaction calculated from 200 to 3200 K, using new fits to extensive ab initio calculations [B. Ramachandran and K. A. Peterson, J. Chem. Phys. 119, 9590 (2003), preceding paper]. The rate constants are obtained for both the 3A″ and 3A' surfaces using exact quantum reactive scattering calculations for selected values of the total angular momentum and the J-shifting approximation for both the 3A″ and 3A' surfaces. The results are compared with the ICVT/μOMT rate constants calculated by the POLYRATE program and all available experimental data. Other related high-energy reaction channels are also studied qualitatively for their contribution to the total thermal rate constant at high temperature.
The adsorption kinetics of metal ions onto different microalgae and siliceous earth.
Schmitt, D; Müller, A; Csögör, Z; Frimmel, F H; Posten, C
2001-03-01
In the present work the adsorption kinetics of the six metal ions aluminum, zinc, mercury, lead, copper, and cadmium onto living microalgae were measured. The freshwater green microalga Scenedesmus subspicatus, the brackish water diatom Cyclotella cryptica, the seawater diatom Phaeodactylum tricornutum, and the seawater red alga Porphyridium purpureum were the subject of investigation. In most cases the adsorption rate of the metals could be well described by using the equation of the Langmuir adsorption rate expression. Inverse parameter estimation allowed the determination of the rate constants of the adsorption process and the maximum metal content of the algae. The highest values for the rate constant were obtained for Porphyridium purpureum followed by Phaeodactylum tricornutum. High values for the maximum content were obtained for Cyclotella cryptica and Scenedesmus subspicatus. The maximum rate constant was 24.21 h-1 for the adsorption of Hg to Porphyridium purpureum whereas the maximum metal content (0.243 g g-1) was obtained for Zn on Cyclotella cryptica. A comparison of these values with those obtained for the mineral siliceous earth exhibiting low maximum content and high adsorption rates reveals that the mechanism of adsorption onto the algae is a mixture of adsorption and accumulation.
NASA Astrophysics Data System (ADS)
Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-04-01
Models of the very early universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.
NASA Astrophysics Data System (ADS)
Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-07-01
Models of the very early Universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.
Use of photovoltaic detector for photocatalytic activity estimation
NASA Astrophysics Data System (ADS)
Das, Susanta Kumar; Satapathy, Pravakar; Rao, P. Sai Shruti; Sabar, Bilu; Panda, Rudrashish; Khatua, Lizina
2018-05-01
Photocatalysis is a very important process and have numerous applications. Generally, to estimate the photocatalytic activity of newly grown material, its reaction rate constant w.r.t to some standard commercial TiO2 nanoparticles like Degussa P25 is evaluated. Here a photovoltaic detector in conjunction with laser is used to determine this rate constant. This method is tested using Zinc Orthotitanate (Zn2TiO4) nanoparticles prepared by solid state reaction and it is found that its reaction rate constant is six times higher than that of P25. The value is found to be close to the value found by a conventional system. Our proposed system is much more cost-effective than the conventional one and has the potential to do real time monitoring of the photocatalytic activity.
The Effect of Temperature on the Enzyme-Catalyzed Reaction: Insights from Thermodynamics
ERIC Educational Resources Information Center
Aledo, Juan Carlos; Jimenez-Riveres, Susana; Tena, Manuel
2010-01-01
When teaching the effect of temperature on biochemical reactions, the problem is usually oversimplified by confining the thermal effect to the catalytic constant, which is identified with the rate constant of the elementary limiting step. Therefore, only positive values for activation energies and values greater than 1 for temperature coefficients…
Ray, W J; Post, C B; Puvathingal, J M
1989-01-24
Net rate constants that define the steady-state rate through a sequence of steps and the corresponding effective energy barriers for two (PO3-)-transfer steps in the phosphoglucomutase reaction were compared as a function of metal ion, M, where M = Mg2+ and Cd2+. These steps involve the reaction of either the 1-phosphate or the 6-phosphate of glucose 1,6-bisphosphate (Glc-P2) bound to the dephosphoenzyme (ED) to produce the phosphoenzyme (EP) and the free monophosphates, glucose 1-phosphate (Glc-1-P) or glucose 6-phosphate (Glc-6-P): EP.M + Glc-1-P----ED.M.Glc-P2----EP.M.Glc-6-P6. Before this comparison was made, net rate constants for the Cd2+ enzyme, obtained at high enzyme concentration via 31P NMR saturation-transfer studies [Post, C. B., Ray, W. J., Jr., & Gorenstein, D. G. (1989) Biochemistry (preceding paper in this issue)], were appropriately scaled by using the observed constants to calculate both the expected isotope-transfer rate at equilibrium and the steady-state rate under initial velocity conditions and comparing the calculated values with those measured in dilute solution. For the Mg2+ enzyme, narrow limits on possible values of the corresponding net rate constants were imposed on the basis of initial velocity rate constants for the forward and reverse directions plus values for the equilibrium distribution of central complexes, since direct measurement is not feasible. The effective energy barriers for both the Mg2+ and Cd2+ enzymes, calculated from the respective net rate constants, together with previously values for the equilibrium distribution of complexes in both enzymic systems [Ray, W. J., Jr., & Long, J. W. (1976) Biochemistry 15, 4018-4025], show that the 100-fold decrease in the kappa cat for the Cd2+ relative to the Mg2+ enzyme is caused by two factors: the increased stability of the intermediate bisphosphate complex and the decreased ability to cope with the phosphate ester involving the 1-hydroxyl group of the glucose ring. In fact, it is unlikely that the efficiency of (PO3-) transfer to the 6-hydroxyl group of bound Glc-1-P (thermodynamically favorable direction) is reduced by more than an order of magnitude in the Cd2+ enzyme. By contrast, the efficiency of the Li+ enzyme in the same (PO3-)-transfer step is less than 4 x 10(-8) that of the Mg2+ enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)
Job, D; Dunford, H B
1976-07-15
A stopped-flow kinetic study shows that the reduction rate of horseradish peroxidase compound I by phenols and aromatic amines is greatly dependent upon the substituent effect on the benzene ring. Morever it has been possible to relate the reduction rate constants of monosubstituted substrates by a linear free-energy relationship (Hammett equation). The correlation of log (rate constants) with sigma values (Hammett equation) and the absence of correlation with sigma+ values (Okamoto-Brown equation) can be explained by a mechanism of aromatic substrate oxidations, in which the substrate gives an electron to the enzyme compound I and simultaneously loses a proton. The analogy which has been made with oxidation potentials of phenols or anilines strengthens the view that the reaction is only dependent on the relative ease of oxidation of the substrate. The rate constant obtained for p-aminophenol indicates that a value of 2.3 X 10(8) M-1 S-1 probably approaches the diffusion-controlled limit for a bimolecular reaction involving compound I and an aromatic substrate.
Inflation with a constant rate of roll
NASA Astrophysics Data System (ADS)
Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi
2015-09-01
We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.
Monte Carlo Simulations of the Kinetics of Protein Adsorption
NASA Astrophysics Data System (ADS)
Zhdanov, V. P.; Kasemo, B.
The past decade has been characterized by rapid progress in Monte Carlo simulations of protein folding in a solution. This review summarizes the main results obtained in the field, as a background to the major topic, namely corresponding advances in simulations of protein adsorption kinetics at solid-liquid interfaces. The latter occur via diffusion in the liquid towards the interface followed by actual adsorption, and subsequent irreversible conformational changes, resulting in more or less pronounced denaturation of the native protein structure. The conventional kinetic models describing these steps are based on the assumption that the denaturation transitions obey the first-order law with a single value of the denaturation rate constant kr. The validity of this assumption has been studied in recent lattice Monte Carlo simulations of denaturation of model protein-like molecules with different types of the monomer-monomer interactions. The results obtained indicate that, due to trapping in metastable states, (i) the transition of a molecule to the denatured state is usually nonexponential in time, i.e. it does not obey the first-order law, and (ii) the denaturation transitions of an ensemble of different molecules are characterized by different time scales, i.e. the denaturation process cannot be described by a single rate constant kr. One should, rather, introduce a distribution of values of this rate constant (physically, different values of kr reflect the fact that the transitions to the altered state occurs via different metastable states). The phenomenological kinetics of irreversible adsorption of proteins with and without a distribution of the denaturation rate constant values have been calculated in the limits where protein diffusion in the solution is, respectively, rapid or slow. In both cases, the adsorption kinetics with a distribution of kr are found to be close to those with a single-valued rate constant kr, provided that the average value of kr in the former case is equal to kr in the latter case. This conclusion holds even for wide distributions of kr. The consequences of this finding for the fitting of global experimental kinetics on the basis of phenomenological equations are briefly discussed.
Energy conservation and maximal entropy production in enzyme reactions.
Dobovišek, Andrej; Vitas, Marko; Brumen, Milan; Fajmut, Aleš
2017-08-01
A procedure for maximization of the density of entropy production in a single stationary two-step enzyme reaction is developed. Under the constraints of mass conservation, fixed equilibrium constant of a reaction and fixed products of forward and backward enzyme rate constants the existence of maximum in the density of entropy production is demonstrated. In the state with maximal density of entropy production the optimal enzyme rate constants, the stationary concentrations of the substrate and the product, the stationary product yield as well as the stationary reaction flux are calculated. The test, whether these calculated values of the reaction parameters are consistent with their corresponding measured values, is performed for the enzyme Glucose Isomerase. It is found that calculated and measured rate constants agree within an order of magnitude, whereas the calculated reaction flux and the product yield differ from their corresponding measured values for less than 20 % and 5 %, respectively. This indicates that the enzyme Glucose Isomerase, considered in a non-equilibrium stationary state, as found in experiments using the continuous stirred tank reactors, possibly operates close to the state with the maximum in the density of entropy production. Copyright © 2017 Elsevier B.V. All rights reserved.
Kinetic and Thermodynamics studies for Castor Oil Extraction Using Subcritical Water Technology.
Abdelmoez, Wael; Ashour, Eman; Naguib, Shahenaz M; Hilal, Amr; Al Mahdy, Dalia A; Mahrous, Engy A; Abdel-Sattar, Essam
2016-06-01
In this work both kinetic and thermodynamics of castor oil extraction from its seeds using subcritical water technique were studied. It was found that the extraction process followed two consecutive steps. In these steps, the oil was firstly extracted from inside the powder by diffusion mechanism. Then the extracted oil, due to extending the extraction time under high temperature and pressure, was subjected to a decomposition reaction following first order mechanism. The experimental data correlated well with the irreversible consecutive unimolecular-type first order mechanism. The values of both oil extraction rate constants and decomposition rate constants were calculated through non-linear fitting using DataFit software. The extraction rate constants were found to be 0.0019, 0.024, 0.098, 0.1 and 0.117 min(-1), while the decomposition rate constants were 0.057, 0.059, 0.014, 0.019 and 0.17 min(-1) at extraction temperatures of 240, 250, 260, 270 and 280°C, respectively. The thermodynamic properties of the oil extraction process were investigated using Arrhenius equation. The values of the activation energy, Ea, and the frequency factor, A, were 73 kJ mol(-1) and 946, 002 min(-1), respectively. The physicochemical properties of the extracted castor oil including the specific gravity, viscosity, acid value, pH value and calorific value were found to be 0.947, 7.487, 1.094 mg KOH/g, 6.1, and 41.5 MJ/Kg, respectively. Gas chromatography analysis showed that ricinoleic acid (83.6%) appears as the predominant fatty acid in the extracted oil followed by oleic acid (5.5%) and linoleic acid (2.3%).
Ammann, Elizabeth C. B.; Lynch, Victoria H.
1965-01-01
Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO2/O2) and O2 values during 6 months of observations. The PQ for the entire study was 0.90 ± 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O2 production (0.90 ± 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 ± 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O2 values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use. Images Fig. 1 PMID:14339260
Analysis of cholera toxin-ganglioside interactions by flow cytometry.
Lauer, Sabine; Goldstein, Byron; Nolan, Rhiannon L; Nolan, John P
2002-02-12
Cholera toxin entry into mammalian cells is mediated by binding of the pentameric B subunit (CTB) to ganglioside GM(1) in the cell membrane. We used flow cytometry to quantitatively measure in real time the interactions of fluorescently labeled pentameric cholera toxin B-subunit (FITC-CTB) with its ganglioside receptor on microsphere-supported phospholipid membranes. A model that describes the multiple steps of this mode of recognition was developed to guide our flow cytometric experiments and extract relevant equilibrium and kinetic rate constants. In contrast to previous studies, our approach takes into account receptor cross-linking, an important feature for multivalent interactions. From equilibrium measurements, we determined an equilibrium binding constant for a single subunit of FITC-CTB binding monovalently to GM(1) presented in bilayers of approximately 8 x 10(7) M(-1) while that for binding to soluble GM(1)-pentasaccharide was found to be approximately 4 x 10(6) M(-1). From kinetic measurements, we determined the rate constant for dissociation of a single site of FITC-CTB from microsphere-supported bilayers to be (3.21 +/- 0.03) x 10(-3) s(-1), and the rate of association of a site on FITC-CTB in solution to a GM(1) in the bilayer to be (2.8 +/- 0.4) x 10(4) M(-1) s(-1). These values yield a lower estimate for the equilibrium binding constant of approximately 1 x 10(7) M(-1). We determined the equilibrium surface cross-linking constant [(1.1 +/- 0.1) x 10(-12) cm(2)] and from this value and the value for the rate constant for dissociation derived a value of approximately 3.5 x 10(-15) cm(2) s(-1) for the forward rate constant for cross-linking. We also compared the interaction of the receptor binding B-subunit with that of the whole toxin (A- and B-subunits). Our results show that the whole toxin binds with approximately 100-fold higher avidity than the pentameric B-subunit alone which is most likely due to the additional interaction of the A(2)-subunit with the membrane surface. Interaction of cholera toxin B-subunit and whole cholera toxin with gangliosides other than GM(1) revealed specific binding only to GD1(b) and asialo-GM(1). These interactions, however, are marked by low avidity and require high receptor concentrations to be observed.
NASA Astrophysics Data System (ADS)
Clark, Charles R.
1997-10-01
A series of 15 stopped-flow kinetic experiments relating to the formation of iron(III)- thiocyanate at 25.0 °C and I = 1.0 M (NaClO4) is described. A methodology is given whereby solution preparation and data collection are able to be carried out within the time scale of a single laboratory period (3-4 h). Kinetic data are obtained using constant [SCN-], and at three H+ concentrations (0.10, 0.20, 0.30 M) for varying concentrations of Fe3+ (ca. 0.0025 - 0.020 M). Rate data (450 nm) are consistent with rate laws for the forward and reverse reactions: kf = (k1 + k2Ka1/[H+])[Fe3+] and kr = k-1 + k-2Ka2/[H+] respectively, with k1,k-1 corresponding to the rate constants for formation and decay of FeSCN2+, k2, k-2 to the rate constants for formation and decay of the FeSCN(OH)+ ion and Ka1,Ka2 to the acid dissociation constants (coordinated OH2 ionization) of Fe3+ and FeSCN2+. Using literature values for the latter two quantities ( Ka1 = 2.04 x 10-3 M, Ka2 = 6.5 x 10-5 M) allows values for the four rate constants to be obtained. A typical data set is analyzed to give k1 = 109(10) M-1s-1, k-1 = 0.79(0.10) s-1, k2= 8020(800) M-1s-1, k-2 = 2630(230) s-1. Absorbance change data for reaction (DeltaA) follow the expression: DeltaA = Alim.Kf.[Fe3+]/(1 + Kf.[Fe3+]), with Alim corresponding to the absorbance of fully formed FeSCN2+ (i.e. free SCN- absent) and Kf to the formation constant of this complex (value in the example 112(5) M-1, c.f. 138(29) M-1 from the kinetic data).
Gonzaga, Carla Castiglia; Cesar, Paulo Francisco; Miranda, Walter Gomes; Yoshimura, Humberto Naoyuki
2011-11-01
This study compared three methods for the determination of the slow crack growth susceptibility coefficient (n) of two veneering ceramics (VM7 and d.Sign), two glass-ceramics (Empress and Empress 2) and a glass-infiltrated alumina composite (In-Ceram Alumina). Discs (n = 10) were prepared according to manufacturers' recommendations and polished. The constant stress-rate test was performed at five constant stress rates to calculate n(d) . For the indentation fracture test to determine n(IF) , Vickers indentations were performed and the crack lengths were measured under an optical microscope. For the constant stress test (performed only for d.Sign for the determination of n(s) ) four constant stresses were applied and held constant until the specimens' fracture and the time to failure was recorded. All tests were performed in artificial saliva at 37°C. The n(d) values were 17.2 for Empress 2, followed by d.Sign (20.5), VM7 (26.5), Empress (30.2), and In-Ceram Alumina (31.1). In-Ceram Alumina and Empress 2 showed the highest n(IF) values, 66.0 and 40.2, respectively. The n(IF) values determined for Empress (25.2), d.Sign (25.6), and VM7 (20.1) were similar. The n(s) value determined for d.Sign was 31.4. It can be concluded that the n values determined for the dental ceramics evaluated were significantly influenced by the test method used. 2011 Wiley Periodicals, Inc.
Rubinson, K A
1992-01-01
The underlying principles of the kinetics and equilibrium of a solitary sodium channel in the steady state are examined. Both the open and closed kinetics are postulated to result from round-trip excursions from a transition region that separates the openable and closed forms. Exponential behavior of the kinetics can have origins different from small-molecule systems. These differences suggest that the probability density functions (PDFs) that describe the time dependences of the open and closed forms arise from a distribution of rate constants. The distribution is likely to arise from a thermal modulation of the channel structure, and this provides a physical basis for the following three-variable equation: [formula; see text] Here, A0 is a scaling term, k is the mean rate constant, and sigma quantifies the Gaussian spread for the contributions of a range of effective rate constants. The maximum contribution is made by k, with rates faster and slower contributing less. (When sigma, the standard deviation of the spread, goes to zero, then p(f) = A0 e-kt.) The equation is applied to the single-channel steady-state probability density functions for batrachotoxin-treated sodium channels (1986. Keller et al. J. Gen. Physiol. 88: 1-23). The following characteristics are found: (a) The data for both open and closed forms of the channel are fit well with the above equation, which represents a Gaussian distribution of first-order rate processes. (b) The simple relationship [formula; see text] holds for the mean effective rat constants. Or, equivalently stated, the values of P open calculated from the k values closely agree with the P open values found directly from the PDF data. (c) In agreement with the known behavior of voltage-dependent rate constants, the voltage dependences of the mean effective rate constants for the opening and closing of the channel are equal and opposite over the voltage range studied. That is, [formula; see text] "Bursts" are related to the well-known cage effect of solution chemistry. PMID:1312365
Phototransformation Rate Constants of PAHs Associated with Soot Particles
Kim, Daekyun; Young, Thomas M.; Anastasio, Cort
2013-01-01
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k0p), the effective diffusion coefficients (Deff), and the light penetration depths (z0.5) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z0.5 is more sensitive to the soot layer thickness than the k0p value. As the thickness of the soot layer increases, the z0.5 values increase, but the k0p values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k0p and z0.5 in thinner layers, Deff should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. PMID:23247292
Inflation with a constant rate of roll
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi, E-mail: motohashi@kicp.uchicago.edu, E-mail: alstar@landau.ac.ru, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp
2015-09-01
We consider an inflationary scenario where the rate of inflaton roll defined by {sup ··}φ/H φ-dot remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs formore » unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.« less
NASA Astrophysics Data System (ADS)
Chakraborty, Souvik; Mondal, Debabrata; Motalab, Mohammad
2016-07-01
In this present study, the stress-strain behavior of the Human Anterior Cruciate Ligament (ACL) is studied under uniaxial loads applied with various strain rates. Tensile testing of the human ACL samples requires state of the art test facilities. Furthermore, difficulty in finding human ligament for testing purpose results in very limited archival data. Nominal Stress vs. deformation gradient plots for different strain rates, as found in literature, is used to model the material behavior either as a hyperelastic or as a viscoelastic material. The well-known five parameter Mooney-Rivlin constitutivemodel for hyperelastic material and the Prony Series model for viscoelastic material are used and the objective of the analyses comprises of determining the model constants and their variation-trend with strain rates for the Human Anterior Cruciate Ligament (ACL) material using the non-linear curve fitting tool. The relationship between the model constants and strain rate, using the Hyperelastic Mooney-Rivlin model, has been obtained. The variation of the values of each coefficient with strain rates, obtained using Hyperelastic Mooney-Rivlin model are then plotted and variation of the values with strain rates are obtained for all the model constants. These plots are again fitted using the software package MATLAB and a power law relationship between the model constants and strain rates is obtained for each constant. The obtained material model for Human Anterior Cruciate Ligament (ACL) material can be implemented in any commercial finite element software package for stress analysis.
Saha, Abhijit; Manna, Swarup; Nandi, Arun K
2007-12-18
The riboflavin (R) and melamine (M) supramolecular complex in the mole ratio of 3:1 (RM31) produces a thermoreversible gel in aqueous medium. The gelation mechanism has been elucidated from morphological investigations using optical, electron, and atomic force microscopy together with time-dependent circular dichroism (CD) and photoluminescence (PL) spectroscopy. Optical microscopy indicates spherulitic morphology at lower gelation temperature (
Elongational flow of polymer melts at constant strain rate, constant stress and constant force
NASA Astrophysics Data System (ADS)
Wagner, Manfred H.; Rolón-Garrido, Víctor H.
2013-04-01
Characterization of polymer melts in elongational flow is typically performed at constant elongational rate or rarely at constant tensile stress conditions. One of the disadvantages of these deformation modes is that they are hampered by the onset of "necking" instabilities according to the Considère criterion. Experiments at constant tensile force have been performed even more rarely, in spite of the fact that this deformation mode is free from necking instabilities and is of considerable industrial relevance as it is the correct analogue of steady fiber spinning. It is the objective of the present contribution to present for the first time a full experimental characterization of a long-chain branched polyethylene melt in elongational flow. Experiments were performed at constant elongation rate, constant tensile stress and constant tensile force by use of a Sentmanat Extensional Rheometer (SER) in combination with an Anton Paar MCR301 rotational rheometer. The accessible experimental window and experimental limitations are discussed. The experimental data are modelled by using the Wagner I model. Predictions of the steady-start elongational viscosity in constant strain rate and creep experiments are found to be identical, albeit only by extrapolation of the experimental data to Hencky strains of the order of 6. For constant stress experiments, a minimum in the strain rate and a corresponding maximum in the elongational viscosity is found at a Hencky strain of the order of 3, which, although larger than the steady-state value, follows roughly the general trend of the steady-state elongational viscosity. The constitutive analysis also reveals that constant tensile force experiments indicate a larger strain hardening potential than seen in constant elongation rate or constant tensile stress experiments. This may be indicative of the effect of necking under constant elongation rate or constant tensile stress conditions according to the Considère criterion.
Sumiya, Yosuke; Nagahata, Yutaka; Komatsuzaki, Tamiki; Taketsugu, Tetsuya; Maeda, Satoshi
2015-12-03
The significance of kinetic analysis as a tool for understanding the reactivity and selectivity of organic reactions has recently been recognized. However, conventional simulation approaches that solve rate equations numerically are not amenable to multistep reaction profiles consisting of fast and slow elementary steps. Herein, we present an efficient and robust approach for evaluating the overall rate constants of multistep reactions via the recursive contraction of the rate equations to give the overall rate constants for the products and byproducts. This new method was applied to the Claisen rearrangement of allyl vinyl ether, as well as a substituted allyl vinyl ether. Notably, the profiles of these reactions contained 23 and 84 local minima, and 66 and 278 transition states, respectively. The overall rate constant for the Claisen rearrangement of allyl vinyl ether was consistent with the experimental value. The selectivity of the Claisen rearrangement reaction has also been assessed using a substituted allyl vinyl ether. The results of this study showed that the conformational entropy in these flexible chain molecules had a substantial impact on the overall rate constants. This new method could therefore be used to estimate the overall rate constants of various other organic reactions involving flexible molecules.
Kinetic analysis of volatile formation in milk subjected to pressure-assisted thermal treatments.
Vazquez-Landaverde, P A; Qian, M C; Torres, J A
2007-09-01
Volatile formation in milk subjected to pressure-assisted thermal processing (PATP) was investigated from a reaction kinetic analysis point of view to illustrate the advantages of this technology. The concentration of 27 volatiles of different chemical class in milk subjected to pressure, temperature, and time treatments was fitted to zero-, 1st-, and 2nd-order chemical reaction models. Temperature and pressure effects on rate constants were analyzed to obtain activation energy (E(a)) and activation volume (deltaV*) values. Hexanal, heptanal, octanal, nonanal, and decanal followed 1st-order kinetics with rate constants characterized by E(a) values decreasing with pressure reflecting negative deltaV* values. Formation of 2-methylpropanal, 2,3-butanedione, and hydrogen sulfide followed zero-order kinetics with rate constants increasing with temperature but with unclear pressure effects. E(a) values for 2-methylpropanal and 2,3-butanedione increased with pressure, that is, deltaV* > 0, whereas values for hydrogen sulfide remained constant, that is, deltaV* = 0. The concentration of all other volatiles, including methanethiol, remained unchanged in pressure-treated samples, suggesting large negative deltaV* values. The concentration of methyl ketones, including 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, 2-decanone, and 2-undecanone, was independent of pressure and pressure-holding time. PATP promoted the formation of few compounds, had no effect on some, and inhibited the formation of volatiles reported to be factors of the consumer rejection of "cooked" milk flavor. The kinetic behavior observed suggested that new reaction formation mechanisms were not likely involved in volatile formation in PATP milk. The application of the Le Chatelier principle frequently used to explain the high quality of pressure-treated foods, often with no supporting experimental evidence, was not necessary.
Ballard, Andrew; Ahmad, Hiwa O.; Narduolo, Stefania; Rosa, Lucy; Chand, Nikki; Cosgrove, David A.; Varkonyi, Peter; Asaad, Nabil; Tomasi, Simone
2017-01-01
Abstract Racemization has a large impact upon the biological properties of molecules but the chemical scope of compounds with known rate constants for racemization in aqueous conditions was hitherto limited. To address this remarkable blind spot, we have measured the kinetics for racemization of 28 compounds using circular dichroism and 1H NMR spectroscopy. We show that rate constants for racemization (measured by ourselves and others) correlate well with deprotonation energies from quantum mechanical (QM) and group contribution calculations. Such calculations thus provide predictions of the second‐order rate constants for general‐base‐catalyzed racemization that are usefully accurate. When applied to recent publications describing the stereoselective synthesis of compounds of purported biological value, the calculations reveal that racemization would be sufficiently fast to render these expensive syntheses pointless. PMID:29072355
Mechanistic Studies of Human Spermine Oxidase: Kinetic Mechanism and pH Effects†
Adachi, Maria S.; Juarez, Paul R.; Fitzpatrick, Paul F.
2009-01-01
In mammalian cells, the flavoprotein spermine oxidase (SMO) catalyzes the oxidation of spermine to spermidine and 3-aminopropanal. Mechanistic studies have been carried out with the recombinant human enzyme. The initial velocity pattern when the ratio between the concentrations of spermine and oxygen is kept constant establishes the steady-state kinetic pattern as ping-pong. Reduction of SMO by spermine in the absence of oxygen is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with a limiting value (k3) of 49 s−1 and an apparent Kd value of 48 µM at pH 8.3. The rate constant for the slow step is independent of the spermine concentration, with a value of 5.5 s−1, comparable to the kcat value of 6.6 s−1. The kinetics of the oxidative half-reaction depend on the aging time after spermine and enzyme are mixed in a double mixing experiment. At an aging time of 6 s the reaction is monophasic with a second order rate constant of 4.2 mM−1 s−1. At an aging time of 0.3 s the reaction is biphasic with two second order constants equal to 4.0 and 40 mM−1 s−1. Neither is equal to the kcat/KO2 value of 13 mM−1s−1. These results establish the existence of more than one pathway for the reaction of the reduced flavin intermediate with oxygen. The kcat/KM value for spermine exhibits a bell-shaped pH-profile, with an average pKa value of 8.3. This profile is consistent with the active form of spermine having three charged nitrogens. The pH profile for k3 shows a pKa value of 7.4 for a group that must be unprotonated. The pKi-pH profiles for the competitive inhibitors N,N’-dibenzylbutane-1,4-diamine and spermidine show that the fully protonated forms of the inhibitors and the unprotonated form of an amino acid residue with a pKa of about 7.4 in the active site are preferred for binding. PMID:20000632
Dana, Saswati; Nakakuki, Takashi; Hatakeyama, Mariko; Kimura, Shuhei; Raha, Soumyendu
2011-01-01
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. 2011 Elsevier Ireland Ltd. All rights reserved.
Bringing metabolic networks to life: convenience rate law and thermodynamic constraints
Liebermeister, Wolfram; Klipp, Edda
2006-01-01
Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases. PMID:17173669
Greskowiak, Janek; Hamann, Enrico; Burke, Victoria; Massmann, Gudrun
2017-12-01
The present study reports on biodegradation rate constants of emerging organic compounds (EOCs) in soil and groundwater available in the literature. The major aim of this compilation was to provide an assessment of the uncertainty of hydrological models with respect to the fate of EOCs. The literature search identified a total number of 82 EOCs for which 1st-order rate constants could be derived. It was found that for the majority of compounds degradation rate constants vary over more than three orders of magnitude. Correlation to factors that are well known to affect the degradation rate, such as temperature or redox condition was weak. No correlation at all was found with results from available quantitative structure-activity relationship models. This suggests that many unknown site specific or experimentally specific factors influence the degradation behavior of EOCs in the environment. Thus, local and catchment scale predictive models to estimate EOC concentration at receptors, e.g., receiving waters or drinking water wells, need to consider the large uncertainty in 1st-order rate constants. As a consequence, applying rate constants that were derived from one experiment or field site investigation to other experiments or field sites should be done with extreme caution. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Filippova, Nina V.; Glagolev, Mikhail V.
2018-03-01
The method of standard litter (tea) decomposition was implemented to compare decomposition rate constants (k) between different peatland ecosystems and coniferous forests in the middle taiga zone of West Siberia (near Khanty-Mansiysk). The standard protocol of TeaComposition initiative was used to make the data usable for comparisons among different sites and zonobiomes worldwide. This article sums up the results of short-term decomposition (3 months) on the local scale. The values of decomposition rate constants differed significantly between three ecosystem types: it was higher in forest compared to bogs, and treed bogs had lower decomposition constant compared to Sphagnum lawns. In general, the decomposition rate constants were close to ones reported earlier for similar climatic conditions and habitats.
Phototransformation rate constants of PAHs associated with soot particles.
Kim, Daekyun; Young, Thomas M; Anastasio, Cort
2013-01-15
Photodegradation is a key process governing the residence time and fate of polycyclic aromatic hydrocarbons (PAHs) in particles, both in the atmosphere and after deposition. We have measured photodegradation rate constants of PAHs in bulk deposits of soot particles illuminated with simulated sunlight. The photodegradation rate constants at the surface (k(p)(0)), the effective diffusion coefficients (D(eff)), and the light penetration depths (z(0.5)) for PAHs on soot layers of variable thickness were determined by fitting experimental data with a model of coupled photolysis and diffusion. The overall disappearance rates of irradiated low molecular weight PAHs (with 2-3 rings) on soot particles were influenced by fast photodegradation and fast diffusion kinetics, while those of high molecular weight PAHs (with 4 or more rings) were apparently controlled by either the combination of slow photodegradation and slow diffusion kinetics or by very slow diffusion kinetics alone. The value of z(0.5) is more sensitive to the soot layer thickness than the k(p)(0) value. As the thickness of the soot layer increases, the z(0.5) values increase, but the k(p)(0) values are almost constant. The effective diffusion coefficients calculated from dark experiments are generally higher than those from the model fitting method for illumination experiments. Due to the correlation between k(p)(0) and z(0.5) in thinner layers, D(eff) should be estimated by an independent method for better accuracy. Despite some limitations of the model used in this study, the fitted parameters were useful for describing empirical results of photodegradation of soot-associated PAHs. Copyright © 2012 Elsevier B.V. All rights reserved.
The Br+HO 2 reaction revisited: Absolute determination of the rate constant at 298 K
NASA Astrophysics Data System (ADS)
Laverdet, G.; Le Bras, G.; Mellouki, A.; Poulet, G.
1990-09-01
The absolute determination of the rate constant for the reaction Br+HO 2→HBr+O 2 has been done at 298 K using the discharge-flor EPR method. The value k1 = (1.5±0.2) × 10 -12 cm 3 molecule -1 s -1 was obtained. Previous indirect measurements of k1 from a discharge-flow, LIF/mass spectrometric study of the Br/H 2CO/O 2 system have been reinterpreted, leading to values for k1 ranging from 1.0 × 10 -12 to 2.2 × 10 -12 cm 3 molecule -1 s -1 at 298 K. These results are discussed and compared with other literature values.
Inflation Rates, Car Devaluation, and Chemical Kinetics.
ERIC Educational Resources Information Center
Pogliani, Lionello; Berberan-Santos, Mario N.
1996-01-01
Describes the inflation rate problem and offers an interesting analogy with chemical kinetics. Presents and solves the car devaluation problem as a normal chemical kinetic problem where the order of the rate law and the value of the rate constant are derived. (JRH)
Rate of reaction of OH with HNO3
NASA Technical Reports Server (NTRS)
Wine, P. H.; Ravishankara, A. R.; Kreutter, N. M.; Shah, R. C.; Nicovich, J. M.; Thompson, R. L.; Wuebbles, D. J.
1981-01-01
Measurements of the kinetics of the reaction of OH with HNO3, and mechanisms of HNO3 removal from the stratosphere, are reported. Bimolecular rate constants were determined at temperatures between 224 and 366 K by monitoring the concentrations of OH radicals produced by HNO3 photolysis and HNO3 according to their resonance fluorescence and 184.9-nm absorption, respectively. The rate constant measured at 298 K is found to be somewhat faster than previously accepted values, with a negative temperature dependence. Calculations of a one-dimensional transport-kinetic atmospheric model on the basis of the new rate constant indicate reductions in O3 depletion due to chlorofluoromethane release and NOx injection, of magnitudes dependent on the nature of the reaction products.
Garrido, M; Larrechi, M S; Rius, F X
2006-02-01
This study describes the combination of multivariate curve resolution-alternating least squares with a kinetic modeling strategy for obtaining the kinetic rate constants of a curing reaction of epoxy resins. The reaction between phenyl glycidyl ether and aniline is monitored by near-infrared spectroscopy under isothermal conditions for several initial molar ratios of the reagents. The data for all experiments, arranged in a column-wise augmented data matrix, are analyzed using multivariate curve resolution-alternating least squares. The concentration profiles recovered are fitted to a chemical model proposed for the reaction. The selection of the kinetic model is assisted by the information contained in the recovered concentration profiles. The nonlinear fitting provides the kinetic rate constants. The optimized rate constants are in agreement with values reported in the literature.
Hydrolysis mechanisms for the organopalladium complex [Pd(CNN)P(OMe)3]BF4 in sulfuric acid.
García, Begoña; Hoyuelos, Francisco J; Ibeas, Saturnino; Muñoz, María S; Peñacoba, Indalecio; Leal, José M
2009-08-13
The acid-catalyzed hydrolysis of the organopalladium complex [Pd(CNN)P(OMe)3]BF4 species was monitored spectrophotometrically at different sulfuric acid concentrations (3.9 and 11.0 M) in 10% v:v ethanol-water over the 25-45 degrees C temperature range and in 30% and 50% (v/v) ethanol-water at 25 degrees C. Two acidity regions (I and II) could be differentiated. In each of the two regions the kinetic data pairs yielded two different rate constants, k(1obs) and k(2obs), the former being faster. These constants were fitted by an Excess Acidity analysis to different hydrolyses mechanisms: A-1, A-2, and A-SE2. In region I ([H2SO4] < 7.0 M), the k(1obs) values remained constant k(1obs)(av) = 1.6 x 10(-3) s(-1) and the set of k(2obs) values nicely matched an A-SE2 mechanism, yielding a rate-determining constant k(0,ASE2) = 2.4 x 10(-7) M(-1) s(-1). In region II ([H2SO4] > 7.0 M), a switchover was observed from an A-1 mechanism (k(0,A1) = 1.3 x 10(-4) s(-1)) to an A-2 mechanism (k(0,A2) = 3.6 x 10(-3) M(-1) s(-1)). The temperature effect on the rate constants in 10% (v/v) ethanol-water yielded positive DeltaH and negative DeltaS values, except for the A-1 mechanism, where DeltaS adopted positive values throughout. The solvent permittivity effect, epsilonr, revealed that k(1obs)(av) and k(0,A2) dropped with a fall in epsilonr, whereas the k(0,ASE2) value remained unaffected. The set of results deduced is in line with the schemes put forward.
Allison, Thomas C
2016-03-03
Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.
AMMANN, E C; LYNCH, V H
1965-07-01
Continuously growing cultures of Chlorella pyrenoidosa Starr 252, operating at constant density and under constant environmental conditions, produced uniform photosynthetic quotient (PQ = CO(2)/O(2)) and O(2) values during 6 months of observations. The PQ for the entire study was 0.90 +/- 0.024. The PQ remained constant over a threefold light-intensity change and a threefold change in O(2) production (0.90 +/- 0.019). At low light intensities, when the rate of respiration approached the rate of photosynthesis, the PQ became extremely variable. Six lamps of widely different spectral-energy distribution produced no significant change in the PQ (0.90 +/- 0.025). Oxygen production was directly related to the number of quanta available, irrespective of spectral-energy distribution. Such dependability in producing uniform PQ and O(2) values warrants a consideration of algae to maintain a constant gas environment for submarine or spaceship use.
NASA Astrophysics Data System (ADS)
Bernabé-Pineda, Margarita; Ramírez-Silva, María. Teresa; Romero-Romo, Mario; González-Vergara, Enrique; Rojas-Hernández, Alberto
2004-04-01
The stability of curcumin (H 3Cur) in aqueous media is improved when the systems in which it is present are at high pH values (higher than 11.7), fitting a model describable by a pseudo-zero order with a rate constant k' for the disappearance of the Cur 3- species of 1.39 (10 -9) M min -1. There were three acidity constants measured for the curcumin as follows: p KA3=10.51±0.01 corresponding to the equilibrium HCur 2-=Cur 3-+H +, a p KA2=9.88±0.02 corresponding to the equilibrium H 2Cur -=HCur -2+H +. These p KA values were attributed to the hydrogen of the phenol part of the curcumin, while the p KA1=8.38±0.04 corresponds to the equilibrium H 3Cur=H 2Cur -+H + and is attributed the acetylacetone type group. Formation of quinoid structures play an important role in the tautomeric forms of the curcumin in aqueous media, which makes the experimental values differ from the theoretically calculated ones, depending on the conditions adopted in the study.
Thermal Optimization of Growth and Quality in Protein Crystals
NASA Technical Reports Server (NTRS)
Wiencek, John M.
1996-01-01
Experimental evidence suggests that larger and higher quality crystals can be attained in the microgravity of space; however, the effect of growth rate on protein crystal quality is not well documented. This research is the first step towards providing strategies to grow crystals under constant rates of growth. Controlling growth rates at a constant value allows for direct one-to-one comparison of results obtained in microgravity and on earth. The overall goal of the project was to control supersaturation at a constant value during protein crystal growth by varying temperature in a predetermined manner. Applying appropriate theory requires knowledge of specific physicochemical properties of the protein solution including the effect of supersaturation on growth rates and the effect of temperature on protein solubility. Such measurements typically require gram quantities of protein and many months of data acquisition. A second goal of the project applied microcalorimetry for the rapid determination of these physicochemical properties using a minimum amount of protein. These two goals were successfully implemented on hen egg-white lysozyme. Results of these studies are described in the attached reprints.
Vanhaecke, E; Remon, J P; Moors, M; Raes, F; De Rudder, D; Van Peteghem, A
1990-01-01
Fifteen different isolates of Pseudomonas aeruginosa were used to study the kinetics of adhesion to 304 and 316-L stainless steel. Stainless steel plates were incubated with approximately 1.5 X 10(7) CFU/ml in 0.01 M phosphate-buffered saline (pH 7.4). After the plates were rinsed with the buffer, the number of adhering bacteria was determined by a bioluminescence assay. Measurable adhesion, even to the electropolished surfaces, occurred within 30 s. Bacterial cell surface hydrophobicity, as determined by the bacterial adherence to hydrocarbons test and the contact angle measurement test, was the major parameter influencing the adhesion rate constant for the first 30 min of adhesion. A parabolic relationship between the CAM values and the logarithm of the adhesion rate constants (In k) was established. No correlation between either the salt aggregation or the improved salt aggregation values and the bacterial adhesion rate constants could be found. Since there was no significant correlation between the bacterial electrophoretic mobilities and the In k values, the bacterial cell surface charge seemed of minor importance in the process of adhesion of P. aeruginosa to 304 and 316-L stainless steel. PMID:2107796
Modelling audiovisual integration of affect from videos and music.
Gao, Chuanji; Wedell, Douglas H; Kim, Jongwan; Weber, Christine E; Shinkareva, Svetlana V
2018-05-01
Two experiments examined how affective values from visual and auditory modalities are integrated. Experiment 1 paired music and videos drawn from three levels of valence while holding arousal constant. Experiment 2 included a parallel combination of three levels of arousal while holding valence constant. In each experiment, participants rated their affective states after unimodal and multimodal presentations. Experiment 1 revealed a congruency effect in which stimulus combinations of the same extreme valence resulted in more extreme state ratings than component stimuli presented in isolation. An interaction between music and video valence reflected the greater influence of negative affect. Video valence was found to have a significantly greater effect on combined ratings than music valence. The pattern of data was explained by a five parameter differential weight averaging model that attributed greater weight to the visual modality and increased weight with decreasing values of valence. Experiment 2 revealed a congruency effect only for high arousal combinations and no interaction effects. This pattern was explained by a three parameter constant weight averaging model with greater weight for the auditory modality and a very low arousal value for the initial state. These results demonstrate key differences in audiovisual integration between valence and arousal.
Adachi, Mariya S.; Torres, Jason M.; Fitzpatrick, Paul F.
2010-01-01
The flavoprotein oxidase Fms1 from Saccharomyces cerevisiae catalyzes the oxidation of spermine and N1-acetylspermine to yield spermidine and 3-aminopropanal or N-acetyl-3-aminopropanal. The kinetic mechanism of the enzyme has been determined with both substrates. The initial velocity patterns are ping-pong, consistent with reduction being kinetically irreversible. Reduction of Fms1 by either substrate is biphasic. The rate constant for the rapid phase varies with the substrate concentration, with limiting rates for reduction of the enzyme of 126 and 1410 s−1 and apparent Kd values of 24.3 and 484 μM for spermine and N1-acetylspermine, respectively. The rapid phase is followed by a concentration-independent phase that is slower than turnover. The reaction of the reduced enzyme with oxygen is monophasic, with a rate constant of 402 mM−1 s−1 with spermine at 25 °C, and 204 mM−1 s−1 with N1-acetylspermine at 4 °C, pH 9.0. This step is followed by rate-limiting product dissociation. The kcat/Kamine-pH profiles are bell-shaped, with an average pKa value of 9.3 with spermine and pKa values of 8.3 and 9.6 with N1-acetylspermine. Both profiles are consistent with the active forms of substrates having two charged nitrogens. The pH profiles for the rate constant for flavin reduction show pKa values of 8.3 and 7.2 for spermine and N1-acetylspermine, respectively, for groups that must be unprotonated; these pKa values are assigned to the substrate N4. The kcat/KO2-pH profiles show pKa values of 7.5 for spermine and 6.8 for N1-acetylspermine. With both substrates, the kcat value decreases when a single residue is protonated. PMID:21067138
Becerra, Rosa; Bowes, Sarah-Jane; Ogden, J Steven; Cannady, J Pat; Adamovic, Ivana; Gordon, Mark S; Almond, Matthew J; Walsh, Robin
2005-08-07
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O(2). The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: [see text] The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H(2)SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O+SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T-->S process in H2SiOO. This process has a small spin-orbit coupling matrix element, consistent with an estimate of its rate constant of 1x10(9) s-1 obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2+O2 and SiCl2+O2.
Manchester, Keith L
2004-01-30
An analysis is made of the rate constants for the reactions involving the interactions of EF-Tu, EF-Ts, GDP, and GTP recently derived by Gromadski et al. [Biochemistry 41 (2002) 162]. Though their measured values appear to allow a reasonable rate of nucleotide exchange sufficient to support rates of protein synthesis in vivo, their data underestimate the thermodynamic barrier involved in nucleotide exchange and therefore cannot be considered definitive. A kinetic scheme consistent with the thermodynamic barrier can be achieved by modification of various rate constants, particularly of those involving the release of EF-Ts from EF-Tu.GTP.EF-Ts, but such constants are markedly different from what are experimentally observed. It thus remains impossible at present satisfactorily to model guanine nucleotide exchange on EF-Tu, catalysed by EF-Ts by a double displacement mechanism, with experimentally derived rate constants. Metabolic control analysis has been applied to determine the degree of flux control of the different steps in the pathway.
Revised estimates for ozone reduction by shuttle operation
NASA Technical Reports Server (NTRS)
Potter, A. E.
1978-01-01
Previous calculations by five different modeling groups of the effect of space shuttle operations on the ozone layer yielded an estimate of 0.2 percent ozone reduction for the Northern Hemisphere at 60 launches per year. Since these calculations were made, the accepted rate constant for the reaction between hydroperoxyl and nitric oxide to yield hydroxyl and nitrogen dioxide, HO2 + NO yields OH + NO2, was revised upward by more than an order of magnitude, with a resultant increase in the predicted ozone reduction for chlorofluoromethanes by a factor of approximately 2. New calculations of the shuttle effect were made with use of the new rate constant data, again by five different modeling groups. The new value of the shuttle effect on the ozone layer was found to be 0.25 percent. The increase resulting from the revised rate constant is considerably less for space shuttle operations than for chlorofluoromethane production, because the new rate constant also increases the calculated rate of downward transport of shuttle exhaust products out of the stratosphere.
Effect of volumetric organic loading on the nitrogen removal rate by immobilised activated sludge.
Zielinska, M; Wojnowska-Baryla, I
2006-05-01
Activated sludge was immobilised in a porous ceramic carrier to create a stationary core of a bio-reactor. Municipal wastewater was treated in this reactor under varied conditions of volumetric organic loading rate (expressed by chemical oxygen demand (COD)) that were the following: 6.5, 8.0, 20.8, 48.8 g COD l(-1) d(-1). The rate constants of ammonification, nitrification and denitrification under aerobic conditions were determined. All rate constants increased with a growth in volumetric loading rate, but the highest loading value of 48.8 g COD l(-1) d(-1) limited the ammonification and nitrification rates.
Troe, J; Ushakov, V G
2006-06-01
This work describes a simple method linking specific rate constants k(E,J) of bond fission reactions AB --> A + B with thermally averaged capture rate constants k(cap)(T) of the reverse barrierless combination reactions A + B --> AB (or the corresponding high-pressure dissociation or recombination rate constants k(infinity)(T)). Practical applications are given for ionic and neutral reaction systems. The method, in the first stage, requires a phase-space theoretical treatment with the most realistic minimum energy path potential available, either from reduced dimensionality ab initio or from model calculations of the potential, providing the centrifugal barriers E(0)(J). The effects of the anisotropy of the potential afterward are expressed in terms of specific and thermal rigidity factors f(rigid)(E,J) and f(rigid)(T), respectively. Simple relationships provide a link between f(rigid)(E,J) and f(rigid)(T) where J is an average value of J related to J(max)(E), i.e., the maximum J value compatible with E > or = E0(J), and f(rigid)(E,J) applies to the transitional modes. Methods for constructing f(rigid)(E,J) from f(rigid)(E,J) are also described. The derived relationships are adaptable and can be used on that level of information which is available either from more detailed theoretical calculations or from limited experimental information on specific or thermally averaged rate constants. The examples used for illustration are the systems C6H6+ <==> C6H5+ + H, C8H10+ --> C7H7+ + CH3, n-C9H12+ <==> C7H7+ + C2H5, n-C10H14+ <==> C7H7+ + C3H7, HO2 <==> H + O2, HO2 <==> HO + O, and H2O2 <==> 2HO.
Agnani, Deep; Acharya, Poulomi; Martinez, Esteban; Tran, Thuy Thanh; Abraham, Feby; Tobin, Frank; Ellens, Harma; Bentz, Joe
2011-01-01
P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane. PMID:22028772
Linking Thermodynamics to Pollutant Reduction Kinetics by Fe2+ Bound to Iron Oxides.
Stewart, Sydney M; Hofstetter, Thomas B; Joshi, Prachi; Gorski, Christopher A
2018-05-15
Numerous studies have reported that pollutant reduction rates by ferrous iron (Fe 2+ ) are substantially enhanced in the presence of an iron (oxyhydr)oxide mineral. Developing a thermodynamic framework to explain this phenomenon has been historically difficult due to challenges in quantifying reduction potential ( E H ) values for oxide-bound Fe 2+ species. Recently, our group demonstrated that E H values for hematite- and goethite-bound Fe 2+ can be accurately calculated using Gibbs free energy of formation values. Here, we tested if calculated E H values for oxide-bound Fe 2+ could be used to develop a free energy relationship capable of describing variations in reduction rate constants of substituted nitrobenzenes, a class of model pollutants that contain reducible aromatic nitro groups, using data collected here and compiled from the literature. All the data could be described by a single linear relationship between the logarithms of the surface-area-normalized rate constant ( k SA ) values and E H and pH values [log( k SA ) = - E H /0.059 V - pH + 3.42]. This framework provides mechanistic insights into how the thermodynamic favorability of electron transfer from oxide-bound Fe 2+ relates to redox reaction kinetics.
METHOD AND APPARATUS FOR DETERMINING AMALGAM DECOMPOSITION RATE
Johnson, R.W.; Wright, C.C.
1962-04-24
A method and apparatus for measuring the rate at which an amalgam decomposes in contact with aqueous solutions are described. The amalgam and an aqueous hydroxide solution are disposed in an electrolytic cell. The amalgam is used as the cathode of the cell, and an electrode and anode are disposed in the aqueous solution. A variable source of plating potential is connected across the cell. The difference in voltage between the amalgam cathode and a calibrated source of reference potential is used to control the variable source to null the difference in voltage and at the same time to maintain the concentration of the amalgam at some predetermined constant value. The value of the current required to maintain this concentration constant is indicative of the decomposition rate of the amalgam. (AEC)
Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G
2013-01-25
The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Xiaogai; von Holst, Hans; Kleiven, Svein
2013-01-01
A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion.
On determining dose rate constants spectroscopically.
Rodriguez, M; Rogers, D W O
2013-01-01
To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of (125)I and (103)Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated (125)I and (103)Pd sources. Spectra generated by 14 (125)I and 6 (103)Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 × 2.7 × 0.05 cm(3) voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the (125)I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for (103)Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were ≤0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. The ratio of the intensity of the 31 keV line relative to that of the main peak in (125)I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The (103)Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different investigations are in much better agreement with the calculations using the NCRP Report 58 and NNDC(2000) initial spectra with average discrepancies of 0.9% and 1.7% for the (125)I and (103)Pd seeds, respectively. However, there are no differences in the calculated TG-43U1 brachytherapy parameters using either initial spectrum in both cases. Similarly, there were no differences outside the statistical uncertainties of 0.1% or 0.2%, in the average energy, air kerma/history, dose rate/history, and dose rate constant when calculated using either the full photon spectrum or the main-peaks-only spectrum. Our calculated dose rate constants based on using the calculated on-axis spectrum and a line or dual-point source model are in excellent agreement (0.5% on average) with the values of Chen and Nath, verifying the accuracy of their more approximate method of going from the spectrum to the dose rate constant. However, the dose rate constants based on full seed models differ by between +4.6% and -1.5% from those based on the line or dual-point source approximations. These results suggest that the main value of spectroscopic measurements is to verify full Monte Carlo models of the seeds by comparison to the calculated spectra.
Reaction of SO2 with OH in the atmosphere.
Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G
2017-03-15
The OH + SO 2 reaction plays a critical role in understanding the oxidation of SO 2 in the atmosphere, and its rate constant is critical for clarifying the fate of SO 2 in the atmosphere. The rate constant of the OH + SO 2 reaction is calculated here by using beyond-CCSDT correlation energy calculations for a benchmark, validated density functional methods for direct dynamics, canonical variational transition state theory with anharmonicity and multidimensional tunneling for the high-pressure rate constant, and system-specific quantum RRK theory for pressure effects; the combination of these methods can compete in accuracy with experiments. There has been a long-term debate in the literature about whether the OH + SO 2 reaction is barrierless, but our calculations indicate a positive barrier with an transition structure that has an enthalpy of activation of 0.27 kcal mol -1 at 0 K. Our results show that the high-pressure limiting rate constant of the OH + SO 2 reaction has a positive temperature dependence, but the rate constant at low pressures has a negative temperature dependence. The computed high-pressure limiting rate constant at 298 K is 1.25 × 10 -12 cm 3 molecule -1 s -1 , which agrees excellently with the value (1.3 × 10 -12 cm 3 molecule -1 s -1 ) recommended in the most recent comprehensive evaluation for atmospheric chemistry. We show that the atmospheric lifetime of SO 2 with respect to oxidation by OH depends strongly on altitude (in the range 0-50 km) due to the falloff effect. We introduce a new interpolation procedure for fitting the combined temperature and pressure dependence of the rate constant, and it fits the calculated rate constants over the whole range with a mean unsigned error of only 7%. The present results provide reliable kinetics data for this specific reaction, and also they demonstrate convenient theoretical methods that can be reliable for predicting rate constants of other gas-phase reactions.
Effect of surface curvature on diffusion-limited reactions on a curved surface
NASA Astrophysics Data System (ADS)
Eun, Changsun
2017-11-01
To investigate how the curvature of a reactive surface can affect reaction kinetics, we use a simple model in which a diffusion-limited bimolecular reaction occurs on a curved surface that is hollowed inward, flat, or extended outward while keeping the reactive area on the surface constant. By numerically solving the diffusion equation for this model using the finite element method, we find that the rate constant is a non-linear function of the surface curvature and that there is an optimal curvature providing the maximum value of the rate constant, which indicates that a spherical reactant whose entire surface is reactive (a uniformly reactive sphere) is not the most reactive species for a given reactive surface area. We discuss how this result arises from the interplay between two opposing effects: the exposedness of the reactive area to its partner reactants, which causes the rate constant to increase as the curvature increases, and the competition occurring on the reactive surface, which decreases the rate constant. This study helps us to understand the role of curvature in surface reactions and allows us to rationally design reactants that provide a high reaction rate.
Chen, Zhe Jay; Nath, Ravinder
2010-10-21
The aim of this study was to perform a systematic comparison of the dose-rate constant (Λ) determined by the photon spectrometry technique (PST) with the consensus value ((CON)Λ) recommended by the American Association of Physicists in Medicine (AAPM) for 21 low-energy photon-emitting interstitial brachytherapy sources. A total of 63 interstitial brachytherapy sources (21 different models with 3 sources per model) containing either (125)I (14 models), (103)Pd (6 models) or (131)Cs (1 model) were included in this study. A PST described by Chen and Nath (2007 Med. Phys. 34 1412-30) was used to determine the dose-rate constant ((PST)Λ) for each source model. Source-dependent variations in (PST)Λ were analyzed systematically against the spectral characteristics of the emitted photons and the consensus values recommended by the AAPM brachytherapy subcommittee. The values of (PST)Λ for the encapsulated sources of (103)Pd, (125)I and (131)Cs varied from 0.661 to 0.678 cGyh(-1) U(-1), 0.959 to 1.024 cGyh(-1)U(-1) and 1.066 to 1.073 cGyh(-1)U(-1), respectively. The relative variation in (PST)Λ among the six (103)Pd source models, caused by variations in photon attenuation and in spatial distributions of radioactivity among the source models, was less than 3%. Greater variations in (PST)Λ were observed among the 14 (125)I source models; the maximum relative difference was over 6%. These variations were caused primarily by the presence of silver in some (125)I source models and, to a lesser degree, by the variations in photon attenuation and in spatial distribution of radioactivity among the source models. The presence of silver generates additional fluorescent x-rays with lower photon energies which caused the (PST)Λ value to vary from 0.959 to 1.019 cGyh(-1)U(-1) depending on the amount of silver used by a given source model. For those (125)I sources that contain no silver, their (PST)Λ was less variable and had values within 1% of 1.024 cGyh(-1)U(-1). For the 16 source models that currently have an AAPM recommended (CON)Λ value, the agreement between (PST)Λ and (CON)Λ was less than 2% for 15 models and was 2.6% for 1 (103)Pd source model. Excellent agreement between (PST)Λ and (CON)Λ was observed for all source models that currently have an AAPM recommended consensus dose-rate constant value. These results demonstrate that the PST is an accurate and robust technique for the determination of the dose-rate constant for low-energy brachytherapy sources.
Frembgen-Kesner, Tamara; Elcock, Adrian H
2010-11-03
Theory and computation have long been used to rationalize the experimental association rate constants of protein-protein complexes, and Brownian dynamics (BD) simulations, in particular, have been successful in reproducing the relative rate constants of wild-type and mutant protein pairs. Missing from previous BD studies of association kinetics, however, has been the description of hydrodynamic interactions (HIs) between, and within, the diffusing proteins. Here we address this issue by rigorously including HIs in BD simulations of the barnase-barstar association reaction. We first show that even very simplified representations of the proteins--involving approximately one pseudoatom for every three residues in the protein--can provide excellent reproduction of the absolute association rate constants of wild-type and mutant protein pairs. We then show that simulations that include intermolecular HIs also produce excellent estimates of association rate constants, but, for a given reaction criterion, yield values that are decreased by ∼35-80% relative to those obtained in the absence of intermolecular HIs. The neglect of intermolecular HIs in previous BD simulation studies, therefore, is likely to have contributed to the somewhat overestimated absolute rate constants previously obtained. Consequently, intermolecular HIs could be an important component to include in accurate modeling of the kinetics of macromolecular association events. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder
Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis wasmore » measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd sources. Conclusions: An independent {Lambda} determination has been performed for the Advantage Pd-103 source. The {sub PST}{Lambda} obtained in this work provides additional information needed for establishing a more accurate consensus {Lambda} value for the Advantage Pd-103 source.« less
The Henry's constant of monochloramine.
Garcia, Miguel A; Anderson, Michael A
2018-02-01
Monochloramine is a secondary disinfectant used in drinking water and is also formed in chlorinated wastewater. While known to hydrolyze over time and react with dissolved organic matter, its partitioning between the aqueous and gas phase has not been extensively studied. Preliminary experiments demonstrated that monochloramine concentrations in solutions open to the atmosphere or actively aerated decreased more rapidly than in sealed solutions, indicating significant losses to the atmosphere. For example, a monochloramine solution open to the atmosphere yielded a loss rate constant of 0.08 d -1 , a value twice that for sealed samples without headspace (0.04 d -1 ) where loss occurs exclusively as a result of hydrolysis. A solution aerated at 10 mL s -1 had a loss rate constant nearly 10× greater than that for hydrolysis alone (0.35 d -1 ). To better understand partitioning of monochloramine to the gas phase and potential for volatilization, the dimensionless Henry's law constants of monochloramine (K H ) were determined using an equilibrium headspace technique at five different temperatures (11, 16, 21, 27, and 32 °C). The resulting values ranged from 8 × 10 -3 to 4 × 10 -2 , indicating a semi-volatile compound, and were found to be consistent with quantitative structure activity relationship predictions. At 20 °C, monochloramine exhibits a dimensionless Henry's constant of about 1.7 × 10 -2 which is 35 times greater than ammonia but comparable to the Henry's constant of inorganic semi-volatile compounds such sulfur dioxide. The Henry's constant values for monochloramine suggests that volatilization could be a relevant loss process in open systems such as rivers receiving chlorinated wastewater effluent, swimming pools and cooling towers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paul, Amit K; Hase, William L
2016-01-28
A zero-point energy (ZPE) constraint model is proposed for classical trajectory simulations of unimolecular decomposition and applied to CH4* → H + CH3 decomposition. With this model trajectories are not allowed to dissociate unless they have ZPE in the CH3 product. If not, they are returned to the CH4* region of phase space and, if necessary, given additional opportunities to dissociate with ZPE. The lifetime for dissociation of an individual trajectory is the time it takes to dissociate with ZPE in CH3, including multiple possible returns to CH4*. With this ZPE constraint the dissociation of CH4* is exponential in time as expected for intrinsic RRKM dynamics and the resulting rate constant is in good agreement with the harmonic quantum value of RRKM theory. In contrast, a model that discards trajectories without ZPE in the reaction products gives a CH4* → H + CH3 rate constant that agrees with the classical and not quantum RRKM value. The rate constant for the purely classical simulation indicates that anharmonicity may be important and the rate constant from the ZPE constrained classical trajectory simulation may not represent the complete anharmonicity of the RRKM quantum dynamics. The ZPE constraint model proposed here is compared with previous models for restricting ZPE flow in intramolecular dynamics, and connecting product and reactant/product quantum energy levels in chemical dynamics simulations.
46 CFR 164.023-13 - Production tests and inspections.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Constant Rate of Traverse tensile testing machine, capable of initial clamp separation of ten inches and a... the acceptance testing values but not less than the performance minimums. (2) Length/weight values must be within 5 percent of the acceptance testing values but not less than the performance minimums...
40 CFR 60.759 - Specifications for active collection systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: Qi = 2 k Lo Mi (e-kt i) (CNMOC) (3.6 × 10−9) where, Qi = NMOC emission rate from the ith section, megagrams per year k = methane generation rate constant, year−1 Lo = methane generation potential, cubic... performed, the default values for k, LO and CNMOC provided in § 60.754(a)(1) or the alternative values from...
40 CFR 60.759 - Specifications for active collection systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: Qi = 2 k Lo Mi (e-kt i) (CNMOC) (3.6 × 10−9) where, Qi = NMOC emission rate from the ith section, megagrams per year k = methane generation rate constant, year−1 Lo = methane generation potential, cubic... performed, the default values for k, LO and CNMOC provided in § 60.754(a)(1) or the alternative values from...
40 CFR 60.759 - Specifications for active collection systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: Qi = 2 k Lo Mi (e-kt i) (CNMOC) (3.6 × 10−9) where, Qi = NMOC emission rate from the ith section, megagrams per year k = methane generation rate constant, year−1 Lo = methane generation potential, cubic... performed, the default values for k, LO and CNMOC provided in § 60.754(a)(1) or the alternative values from...
40 CFR 60.759 - Specifications for active collection systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: Qi = 2 k Lo Mi (e-kt i) (CNMOC) (3.6 × 10−9) where, Qi = NMOC emission rate from the ith section, megagrams per year k = methane generation rate constant, year−1 Lo = methane generation potential, cubic... performed, the default values for k, LO and CNMOC provided in § 60.754(a)(1) or the alternative values from...
Tomassini, L; Michailova, D; Naplatanova, D; Slavtschev, P
1979-12-01
The authors investigated the release of isoniazid from repository tablets as related to form, processing technology, strength constant and storage for 5 years. On determining the diffusion coefficient (D), the initial dissolution rate (Vo) and the time required for the diffusion of the releasing medium to the middle of the tablet (t1/2), it was found that the difference in release rate between the flat and the biconvex tablets is small. Furthermore, it was stated that the three-layer tablets have very high D and Vo values and very low t1/2 values, for what reason they are unsuited for repository tablets of the composition under investigation. Moreover, it was found that an increase of the strength constant does not affect the D, t1/2 and Vo values, and that the release of isoniazid is retarded only in flat tablets with the highest strength constant. Storage exerts no effect on the drug release from these tablets. The industrial production of these tablets is under way.
Zhou, Yu; Pearson, John E; Auerbach, Anthony
2005-12-01
We derive the analytical form of a rate-equilibrium free-energy relationship (with slope Phi) for a bounded, linear chain of coupled reactions having arbitrary connecting rate constants. The results confirm previous simulation studies showing that Phi-values reflect the position of the perturbed reaction within the chain, with reactions occurring earlier in the sequence producing higher Phi-values than those occurring later in the sequence. The derivation includes an expression for the transmission coefficients of the overall reaction based on the rate constants of an arbitrary, discrete, finite Markov chain. The results indicate that experimental Phi-values can be used to calculate the relative heights of the energy barriers between intermediate states of the chain but provide no information about the energies of the wells along the reaction path. Application of the equations to the case of diliganded acetylcholine receptor channel gating suggests that the transition-state ensemble for this reaction is nearly flat. Although this mechanism accounts for many of the basic features of diliganded and unliganded acetylcholine receptor channel gating, the experimental rate-equilibrium free-energy relationships appear to be more linear than those predicted by the theory.
Li, Fusheng; Yuasa, Akira; Obara, Aya; Mathews, Alexander P
2005-05-01
Aerobic batch degradation of 17beta estradiol (E2) spiked into the activated sludge liquor from a sewage treatment plant was studied; and the likely impacts of E2's initial concentrations (C0), microbial population densities (MLVSS) and temperatures (TEMPT) were examined for a variety of combinations of these three factors: C0 = 10, 30 and 50 microgl(-1); MLVSS = 1750, 875 and 435 mgl(-1); and TEMPT = 5, 20 and 35 degrees C. The results, together with those obtained through two control runs performed using a killed sludge sample, demonstrated clearly that E2 was eliminated from the aqueous phase readily under appropriate MLVSS and temperature levels, with the role of sorption by biomass being less significant. By fitting observed concentration data with a first-order rate expression, the degradation rate constants (k) under all experimental conditions were estimated. The magnitude of k changed markedly in the range of 0.23-4.79 h(-1), following a general order that the higher the MLVSS was, the higher the rate constant, and that the higher the temperature, the higher the rate constant. An obvious increasing trend of the biomass-modified average rate constant (k') with increases in the temperature was also presented: the k' values at 5, 20 and 35 degrees C were 0.79, 1.77 and 3.29l MLVSS g(-1)h(-1), respectively. Furthermore, based upon the estimated k values, the temperature coefficients (theta) over the ranges of 5-20 and 20-35 degrees C were determined. In similarity with the magnitude of theta reported for ordinary BOD-based organic matrices in domestic wastewater, the theta values of E2 varied in the range of 1.026-1.09, suggesting that the temperature impacts on the degradation rates of E2 and BOD constituents are probably similar.
Singlet Oxygen Reactions with Flavonoids. A Theoretical – Experimental Study
Morales, Javier; Günther, Germán; Zanocco, Antonio L.; Lemp, Else
2012-01-01
Detection of singlet oxygen emission, λmax = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, kT, and the reactive reaction rate constant, kr, for the reaction between singlet oxygen and several flavonoids. Values of kT determined in deuterated water, ranging from 2.4×107 M−1s−1 to 13.4×107 M−1s−1, for rutin and morin, respectively, and the values measured for kr, ranging from 2.8×105 M−1s−1 to 65.7×105 M−1s−1 for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid. PMID:22802966
Singlet oxygen reactions with flavonoids. A theoretical-experimental study.
Morales, Javier; Günther, Germán; Zanocco, Antonio L; Lemp, Else
2012-01-01
Detection of singlet oxygen emission, λ(max) = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T), and the reactive reaction rate constant, k(r), for the reaction between singlet oxygen and several flavonoids. Values of k(T) determined in deuterated water, ranging from 2.4×10(7) M(-1) s(-1) to 13.4×10(7) M(-1) s(-1), for rutin and morin, respectively, and the values measured for k(r), ranging from 2.8×10(5) M(-1) s(-1) to 65.7×10(5) M(-1) s(-1) for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.
Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R
2013-02-07
Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.
Modeling of polymer photodegradation for solar cell modules
NASA Technical Reports Server (NTRS)
Somersall, A. C.; Guillet, J. E.
1982-01-01
It was shown that many of the experimental observations in the photooxidation of hydrocarbon polymers can be accounted for with a computer simulation using an elementary mechanistic model with corresponding rate constants for each reaction. For outdoor applications, however, such as in photovoltaics, the variation of temperature must have important effects on the useful lifetimes of such materials. The data bank necessary to replace the isothermal rate constant values with Arrhenius activation parameters: A (the pre-exponential factor) and E (the activation energy) was searched. The best collection of data assembled to data is summarized. Note, however, that the problem is now considerably enlarged since from a theoretical point of view, with 51 of the input variables replaced with 102 parameters. The sensitivity of the overall scheme is such that even after many computer simulations, a successful photooxidation simulation with the expanded variable set was not completed. Many of the species in the complex process undergo a number of competitive pathways, the relative importance of each being often sensitive to small changes in the calculated rate constant values.
Dehydration kinetics of talc at 1 bar
NASA Technical Reports Server (NTRS)
Ganguly, J.; Bose, K.
1991-01-01
Experimental results on the dehydration kinetics of talc, which is likely to be a major potential resource for water and hydrogen in carbonaceous chondrites, is presented. The rate of dehydration of an essentially pure Mg-end member natural talc, (Mg(.99)Fe(.01))3Si4O10(OH)2, was studied by measuring in situ weight change under isothermal condition at 1 bar as a function of time in the temperature range 775 to 985 C. The grain size of the starting material was 0.7 to 1 micron. It was found that the data up to 50 to 60 percent dehydration can be fitted by an equation of the form alpha = exp(-Kt(exp n)), where alpha is the weight fraction of talc remaining, K is a rate constant and n is a numerical constant for a given temperature. For any set of isothermal data, there is a major change in the value of n for larger dehydration. For up to approximately 50 percent dehydration, all rate constants can be described by an Arrheniun relation with an activation energy of 432 (+/- 30) kJ/mol; n has a nearly constant value of 0.54 between 775 and 875 C, but increases almost linearly according to n = -10.77 + 0.012T C at T greater than or equal to 875 C.
NASA Astrophysics Data System (ADS)
Stimpfl, M.; Ganguly, J.; Molin, G.
2005-10-01
We determined the forward rate constant (K+) for the Fe2+-Mg order-disorder between the M2 and M1 sites of orthopyroxene (OPx), which is described by the homogeneous reaction Fe2+ (M2) + Mg(M1) ↔ Mg(M2) + Fe2+ (M1), by both ordering and disordering experiments at isothermal condition and also by continuous cooling experiments. The rate constant was determined as a function of temperature in the range of 550-750°C, oxygen fugacity between quartz-fayalite-iron and Ni-NiO buffers, and at compositions of 16 and 50 mol% ferrosilite component. The K+ value derived from disordering experiment was found to be larger than that derived from ordering experiment at 550°C, while at T>580°C, these two values are essentially the same. The fO2 dependence of the rate constant can be described by the relation K+ α (fO2) n with n=5.5-6.5, which is compatible with the theoretically expected relation. The Arrhenius relation at the WI buffer condition is given by ln (C_{text{o}} {text{K}}^+) = - {41511 - 12600{text{X}}_{{text{Fe}}} }/{{T({text{K}})}} + 28.26 + 5.27{text{X}}_{{text{Fe}}}, min^{-1} where C o represents the total number of M2 + M1 sites occupied by Fe2+ and Mg per unit volume of the crystal. The above relation can be used to calculate the cooling rates of natural OPx crystals around the closure temperature ( T c) of Fe-Mg ordering, which are usually below 300°C for slowly cooled rocks. We determined the Fe-Mg ordering states of several OPx crystals (˜ Fs50) from the Central Gneissic Complex (Khtada Lake), British Columbia, which yields T c ˜290°C. Numerical simulation of the change of Fe2+-Mg ordering in OPx as a function of temperature using the above expression of rate constant and a non-linear cooling model yields quenched values of ordering states that are in agreement with the observed values for cooling rates of 11-17°C/Myr below 300°C. The inferred cooling rate is in agreement with the available geochronological constraints.
NASA Astrophysics Data System (ADS)
Han, J.; Lin, J.; Liu, P.; Li, W.
2017-12-01
Evaporation from a porous medium plays a key role in hydrological, agricultural, environmental, and engineering applications. Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. Although the magnitude of condensation zone was much smaller than that for the evaporation zone, the importance of the contribution of condensation zone to soil water dynamics should not be underestimated. Results from our experiment and numerical simulation show that this condensation process resulted in an unexpected and apparent water content increase in the middle of vadose zone profile.
Kinetics of phloretin binding to phosphatidylcholine vesicle membranes
1980-01-01
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid. PMID:7391812
NASA Astrophysics Data System (ADS)
Atanasov, Atanas Todorov
2016-12-01
Here is developed the hypothesis that the cell parameters of unicellular organisms (Prokaryotes and Eukaryotes) are determined by the gravitational constant (G, N.m2 /kg2), Planck constant (h, J.s) and growth rate of cells. By scaling analyses it was shown that the growth rate vgr(m/s) of unicellular bacteria and protozoa is relatively constant parameter, ranging in a narrow window of 10-12 - 10-10 m/s, in comparison to the diapason of cell mass, ranging 10 orders of magnitudes from 10-17 kg in bacteria to 10-7 kg in amoebas. By dimensional analyses it was shown that the combination between the growth rate of cells, gravitational constant and Planck constant gives equations with dimension of mass M(vgr)=(h.vgr/G)½ in kg, length L(v gr)=(hṡG/vgr3)1/2 in meter, time T(vgr)=(hṡG/vgr5)1/2 in seconds, and density ρ ((vgr)=vgr.3.5/hG2 in kg/m3 . For growth rate vgr in diapason of 1×10-11 m/s - 1×10-9.5 m/s the calculated numerical values for mass (3×10-18 -1×10-16 kg), length (5×10-8 -1×10-5 m), time (1×102 -1×106 s) and density (1×10-1 - 1×104 kg/m3) overlaps with diapason of experimentally measured values for cell mass (3×10-18 -1×10-15 kg), volume to surface ratio (1×10-7 -1×10-4 m), doubling time (1×103 -1×107 s), and density (1050 - 1300 kg/m3) in bacteria and protozoa. These equations show that appearance of the first living cells could be mutually connected to the physical constants.
Rate constant for the reaction SO + BrO yields SO2 + Br
NASA Technical Reports Server (NTRS)
Brunning, J.; Stief, L.
1986-01-01
The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.
A phenomenological treatment of rotating turbulence
NASA Technical Reports Server (NTRS)
Zhou, YE
1995-01-01
The strong similarity between the magnetohydrodynamic (MHD) turbulence and initially isotropic turbulence subject to rotation is noted. We then apply the MHD phenomenologies of Kraichnan and Matthaeus & Zhou to rotating turbulence. When the turbulence is subject to a strong rotation, the energy spectrum is found to scale as E(k) = C(sub Omega)(Omega(sub epsilon))(sup 1/2)k(sup -2), where Omega is the rotation rate, k is the wavenumber, and epsilon is the dissipation rate. This spectral form is consistent with a recent letter by Zeman. However, here the constant C(sub Omega) is found to be related to the Kolmogorov constant and is estimated in the range 1.22 - 1.87 for the typical values of the latter constant. A 'rule' that relates spectral transfer times to the eddy turnover time and the time scale for decay of the triple correlations is deduced. A hypothesis for the triple correlation decay rate leads to the spectral law which varies between the '-5/3' (without rotation) and '-2' laws (with strong rotation). For intermediate rotation rates, the spectrum varies according to the value of a dimensionless parameter that measures the strength of the rotation wavenumber k(sub Omega) = (Omega(sup 3)/epsiolon)(sup 1/2) relative to the wavenumber k. An eddy viscosity is derived with an explicit dependence on the rotation rate.
Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla.
Clarke, William T; Robson, Matthew D; Neubauer, Stefan; Rodgers, Christopher T
2017-07-01
We present a new Bloch-Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first-order effective rate constant k f in human myocardium at 7 tesla (T). BOAST combines a variant of the four-angle saturation transfer (FAST) method using amplitude-modulated radiofrequency pulses, phosphorus Bloch-Siegert B1+-mapping to determine the per-voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1 H localization). BOAST kfCK values were 0.281 ± 0.002 s -1 in the calf and 0.35 ± 0.05 s -1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg -1 s -1 . The sensitive volume for BOAST depends on the B 1 inhomogeneity of the transmit coil. BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10-cm loop coil. Magn Reson Med 78:20-32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Creatine kinase rate constant in the human heart measured with 3D‐localization at 7 tesla
Robson, Matthew D.; Neubauer, Stefan; Rodgers, Christopher T.
2016-01-01
Purpose We present a new Bloch‐Siegert four Angle Saturation Transfer (BOAST) method for measuring the creatine kinase (CK) first‐order effective rate constant kf in human myocardium at 7 tesla (T). BOAST combines a variant of the four‐angle saturation transfer (FAST) method using amplitude‐modulated radiofrequency pulses, phosphorus Bloch‐Siegert B1+‐mapping to determine the per‐voxel flip angles, and nonlinear fitting to Bloch simulations for postprocessing. Methods Optimal flip angles and repetition time parameters were determined from Monte Carlo simulations. BOAST was validated in the calf muscle of two volunteers at 3T and 7T. The myocardial CK forward rate constant was then measured in 10 volunteers at 7T in 82 min (after 1H localization). Results BOAST kfCK values were 0.281 ± 0.002 s−1 in the calf and 0.35 ± 0.05 s−1 in myocardium. These are consistent with literature values from lower fields. Using a literature values for adenosine triphosphate concentration, we computed CK flux values of 4.55 ± 1.52 mmol kg−1 s−1. The sensitive volume for BOAST depends on the B1 inhomogeneity of the transmit coil. Conclusion BOAST enables measurement of the CK rate constant in the human heart at 7T, with spatial localization in three dimensions to 5.6 mL voxels, using a 10‐cm loop coil. Magn Reson Med 78:20–32, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27579566
Gilabert, María Angeles; Hiner, Alexander N P; García-Ruiz, Pedro Antonio; Tudela, José; García-Molina, Francisco; Acosta, Manuel; García-Cánovas, Francisco; Rodríguez-López, José Neptuno
2004-06-01
The catalytic constant (k(cat)) and the second-order association constant of compound II with reducing substrate (k(5)) of horseradish peroxidase C (HRPC) acting on phenols and anilines have been determined from studies of the steady-state reaction velocities (V(0) vs. [S(0)]). Since k(cat)=k(2)k(6)/k(2)+k(6), and k(2) (the first-order rate constant for heterolytic cleavage of the oxygen-oxygen bond of hydrogen peroxide during compound I formation) is known, it has been possible to calculate the first-order rate constant for the transformation of each phenol or aniline by HRPC compound II (k(6)). The values of k(6) are quantitatively correlated to the sigma values (Hammett equation) and can be rationalized by an aromatic substrate oxidation mechanism in which the substrate donates an electron to the oxyferryl group in HRPC compound II, accompanied by two proton additions to the ferryl oxygen atom, one from the substrate and the other the protein or solvent. k(6) is also quantitatively correlated to the experimentally determined (13)C-NMR chemical shifts (delta(1)) and the calculated ionization potentials, E (HOMO), of the substrates. Similar dependencies were observed for k(cat) and k(5). From the kinetic analysis, the absolute values of the Michaelis constants for hydrogen peroxide and the reducing substrates (K(M)(H(2)O(2)) and K(M)(S)), respectively, were obtained.
NASA Astrophysics Data System (ADS)
Gutiérrez-Montes, Cándido; Bolaños-Jiménez, Rocío; Martínez-Bazán, Carlos; Sevilla, Alejandro
2014-11-01
An experimental and numerical study has been performed to explore the influence of different geometric features and operating conditions on the dynamics of a water-air-water planar co-flow. Specifically, regarding the nozzle used, the inner-to-outer thickness ratio of the air injector, β = Hi/Ho, the water-to-air thickness ratio, h = Hw/Ho, and the shape of the injector tip, have been described. As for the operating conditions, the water exit velocity profile under constant flow rate and constant air feeding pressure has been assessed. The results show that the jetting-bubbling transition is promoted for increasing values of β, decreasing values of h, rounded injector tip, and for uniform water exit velocity profiles. As for the bubble formation frequency, it increases with increasing values of β, decreasing values of h, rounded injector and parabolic-shaped water exit profiles. Furthermore, the bubble formation frequency has been shown to be lower under constant air feeding pressure conditions than at constant gas flow rate conditions. Finally, the effectiveness of a time-variable air feeding stream has been numerically studied, determining the forcing receptivity space in the amplitude-frequency plane. Experimental results corroborate the effectiveness of this control technique. Work supported by Spanish MINECO, Junta de Andalucía, European Funds and UJA under Projects DPI2011-28356-C03-02, DPI2011-28356-C03-03, P11-TEP7495 and UJA2013/08/05.
H0, q0 and the local velocity field. [Hubble and deceleration constants in Big Bang expansion
NASA Technical Reports Server (NTRS)
Sandage, A.; Tammann, G. A.
1982-01-01
An attempt is made to find a systematic deviation from linearity for distances that are under the control of the Virgo cluster, and to determine the value of the mean random motion about the systematic flow, in order to improve the measurement of the Hubble and the deceleration constants. The velocity-distance relation for large and intermediate distances is studied, and type I supernovae are calibrated relatively as distance indicators and absolutely to obtain a new value for the Hubble constant. Methods of determining the deceleration constant are assessed, including determination from direct measurement, mean luminosity density, virgocentric motion, and the time scale test. The very local velocity field is investigated, and a solution is preferred with a random peculiar radial velocity of very nearby field galaxies of 90-100 km/s, and a Virgocentric motion of the local group of 220 km/s, leading to an underlying expansion rate of 55, in satisfactory agreement with the global value.
Radical kinetics in sub- and supercritical carbon dioxide: thermodynamic rate tuning.
Ghandi, Khashayar; McFadden, Ryan M L; Cormier, Philip J; Satija, Paras; Smith, Marisa
2012-06-28
We report rate constants for muonium addition to 1,1-difluoroethylene (vinylidene fluoride) in CO2 at 290-530 K, 40-360 bar, and 0.05-0.90 g cm(-3). Rate constants are mapped against their thermodynamic conditions, demonstrating the kinetic tuning ability of the solvent. The reaction exhibits critical slowing near conditions of maximum solvent isothermal compressibility, where activation volumes of unprecedentedly large magnitudes on the order of ±10(6) cm(3) mol(-1) are observed. Such values are suggestive of pressure being a significant parameter for tuning fluorolkene reactivity.
Simple Model for Detonation Energy and Rate
NASA Astrophysics Data System (ADS)
Lauderbach, Lisa M.; Souers, P. Clark
2017-06-01
A simple model is used to derive the Eyring equation for the size effect and detonation rate, which depends on a constant energy density. The rate derived from detonation velocities is then converted into a rate constant to be used in a reactive flow model. The rate might be constant if the size effect curve is straight, but the rate constant will change with the radius of the sample and cannot be a constant. This is based on many careful cylinder tests have been run recently on LX-17 with inner copper diameters ranging from 12.7 to 101.6 mm. Copper wall velocities at scaled displacements of 6, 12.5 and 19 mm equate to values at relative volumes of 2.4, 4.4 and 7.0. At each point, the velocities from 25.4 to 101.6 mm are constant within error whereas the 12.7 mm velocities are lower. Using the updated Gurney model, the energy densities at the three larger sizes are also constant. Similar behavior has been seen in LX-14, LX-04, and an 83% RDX mix. A rough saturation has also been in old ANFO data for diameters of 101.6 mm and larger. Although the energy densities saturate, the detonation velocities continue to increase with size. These observations suggest that maximum energy density is a constant for a given explosive of a given density. The correlation of energy density with detonation velocity is not good because the latter depends on the total energy of the sample. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Ha, Yeonjeong; Kwon, Jung-Hwan
2010-04-15
Exact determination of the partition coefficient between 1-octanol and air (K(OA)) is very important because it is a key descriptor for describing the thermodynamic partitioning between the air and organic phases. In spite of its importance, the number and quality of experimental K(OA) values for hydrophobic organic chemicals are limited because of experimental difficulties. Thus, to measure K(OA) values, a high-throughput method was developed that used liquid-phase extraction with 1-octanol drop at the tip of a microsyringe needle. The concentration in the headspace surrounding the 1 muL octanol drop was equilibrated with liquid octanol containing polycyclic aromatic hydrocarbons (PAHs). The change in concentrations of PAHs in the octanol drop was measured to obtain mass transfer rate constants, and these rate constants were then converted into K(OA) values using a film diffusion model. Thirteen polycyclic aromatic hydrocarbons with log K(OA) between 5 and 12 were chosen for the proof of the principle. Experimental determination of log K(OA) was accomplished in 30 h for PAHs with their log K(OA) less than 11. The measured log K(OA) values were very close to those obtained by various experimental and estimation methods in the literature, suggesting that this new method can provide a fast and easy determination of log K(OA) values for many chemicals of environmental interests. In addition, the applicability of the method can be extended to determine Henry's law constant for compounds with low vapor pressure and to estimate gaseous transfer rate of semivolatile compounds for environmental fate modeling.
NASA Astrophysics Data System (ADS)
Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.
2012-09-01
The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.
NASA Astrophysics Data System (ADS)
Botticella, M. T.; Cappellaro, E.; Riello, M.; Greggio, L.; Benetti, S.; Patat, F.; Turatto, M.; Altavilla, G.; Pastorello, A.; Valenti, S.; Zampieri, L.; Harutyunyan, A.; Pignata, G.; Taubenberger, S.
2008-12-01
The rate of occurrence of supernovae (SNe) is linked to some of the basic ingredients of galaxy evolution, such as the star formation rate, the chemical enrichment and feedback processes. SN rates at intermediate redshift and their dependence on specific galaxy properties have been investigated in the Southern inTermediate Redshift ESO Supernova Search (STRESS). The rate of core collapse SNe (CC SNe) at a redshift of around 0.25 is found to be a factor two higher than the local value, whereas the SNe Ia rate remains almost constant. SN rates in red and blue galaxies were also measured and it was found that the SNe Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe.
Effects of tunnelling and asymmetry for system-bath models of electron transfer
NASA Astrophysics Data System (ADS)
Mattiat, Johann; Richardson, Jeremy O.
2018-03-01
We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of the Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knyazev, V.D.; Dubinsky, I.A.; Slagle, I.R.
1994-10-27
The kinetics of the unimolecular decomposition of the sec-C[sub 4]H[sub 9] radical has been studied experimentally in a heated tubular flow reactor coupled to a photoionization mass spectrometer. Rate constants for the decomposition were determined in time-resolved experiments as a function of temperature (598-680 K) and bath gas density (3-18) [times] 10[sup 16] molecules cm[sup [minus]3] in three bath gases: He, Ar, and N[sub 2]. The rate constants are in the falloff region under the conditions of the experiments. The results of earlier studies of the reverse reaction were reanalyzed and used to create a transition state model of themore » reaction. This transition state model was used to obtain values of the microcanonical rate constants, k (E). Falloff behavior was reproduced using master equation modeling with the energy barrier height for decomposition (necessary to calculate k(E)) obtained from optimization of the agreement between experimental and calculated rate constants. The resulting model of the reaction provides the high-pressure limit rate constants for the decomposition reaction and the reverse reaction. 52 refs., 7 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heifetz, Alexander; Vilim, Richard
Super-critical carbon dioxide (S-CO2) is a promising thermodynamic cycle for advanced nuclear reactors and solar energy conversion applications. Dynamic control of the proposed recompression S-CO2 cycle is accomplished with input from resistance temperature detector (RTD) measurements of the process fluid. One of the challenges in practical implementation of S-CO2 cycle is high corrosion rate of component and sensor materials. In this paper, we develop a mathematical model of RTD sensing using eigendecomposition model of radial heat transfer in a layered long cylinder. We show that the value of RTD time constant primarily depends on the rate of heat transfer frommore » the fluid to the outer wall of RTD. We also show that for typical material properties, RTD time constant can be calculated as the sum of reciprocal eigen-values of the heat transfer matrix. Using the computational model and a set of RTD and CO2 fluid thermophysical parameter values, we calculate the value of time constant of thermowell-mounted RTD sensor at the hot side of the precooler in the S-CO2 cycle. The eigendecomposition model of RTD will be used in future studies to model sensor degradation and its impact on control of S-CO2. (C) 2016 Elsevier B.V. All rights reserved.« less
Separation of Gadolinium (Gd) using Synergic Solvent Mixed Topo-D2EHPA with Extraction Method.
NASA Astrophysics Data System (ADS)
Effendy, N.; Basuki, K. T.; Biyantoro, D.; Perwira, N. K.
2018-04-01
The main problem to obtain Gd with high purity is the similarity of chemical properties and physical properties with the other rare earth elements (REE) such as Y and Dy, it is necessary to do separation by the extraction process. The purpose of this research to determine the best solvent type, amount of solvent, feed and solvent ratio in the Gd extraction process, to determine the rate order and the value of the rate constant of Gd concentration based on experimental data of aqueous phase concentration as a function of time and to know the effect of temperature on the reaction speed constant. This research was conducted on variation of solvent, amount of solvent, feed and solvent ratio in the extraction process of Gd separation, extraction time to determine the order value and the rate constant of Gd concentration in extraction process based on the aqueous phase concentration data as a function of time, to the rate constant of decreasing concentration of Gd. Based on the calculation results, the solvent composition was obtained with the best feed to separate the rare earth elements Gd in the extraction process is 1 : 4 with 15% concentration of TOPO and 10% concentration of D2EHPA. The separation process of Gd using extraction method by solvent TOPO-D2EHPA 2 : 1 comparison is better than single solvent D2EHPA / TOPO because of the synergistic effect. The rate order of separation process of Gd follows order 1. The Arrhenius Gd equation becomes k = 1.46 x 10-7 exp (-6.96 kcal / mol / RT).
Miyata, Kazunori; Ikeda, Hiroshi; Nakaji, Masayoshi; Kanel, Dhana Raj; Terashima, Ichiro
2015-09-01
The extent of photoinhibition of PSII is determined by a balance between the rate of photodamage to PSII and that of repair of the damaged PSII. It has already been indicated that the rate constants of photodamage (kpi) and repair (krec) of the leaves differ depending on their growth light environment. However, there are no studies using plants in the field. We examined these rate constants and fluorescence parameters of several field-grown plants to determine inter-relationships between these values and the growth environment. The kpi values were strongly related to the excess energy, EY, of the puddle model and non-regulated energy dissipation, Y(NO), of the lake model, both multiplied by the photosynthetically active photon flux density (PPFD) level during the photoinhibitory treatment. In contrast, the krec values corrected against in situ air temperature were very strongly related to the daily PPFD level. The plants from the fields showed higher NPQ than the chamber-grown plants, probably because these field plants acclimated to stronger lightflecks than the averaged growth PPFD. Comparing chamber-grown plants and the field plants, we showed that kpi is determined by the incident light level and the photosynthetic capacities such as in situ rate of PSII electron transport and non-photochemical quenching (NPQ) [e.g. Y(NO)×PPFD] and that krec is mostly determined by the growth light and temperature levels. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Universal nonlinear small-scale dynamo.
Beresnyak, A
2012-01-20
We consider astrophysically relevant nonlinear MHD dynamo at large Reynolds numbers (Re). We argue that it is universal in a sense that magnetic energy grows at a rate which is a constant fraction C(E) of the total turbulent dissipation rate. On the basis of locality bounds we claim that this "efficiency of the small-scale dynamo", C(E), is a true constant for large Re and is determined only by strongly nonlinear dynamics at the equipartition scale. We measured C(E) in numerical simulations and observed a value around 0.05 in the highest resolution simulations. We address the issue of C(E) being small, unlike the Kolmogorov constant which is of order unity. © 2012 American Physical Society
Land, B R; Harris, W V; Salpeter, E E; Salpeter, M M
1984-01-01
In previous papers we studied the rising phase of a miniature endplate current (MEPC) to derive diffusion and forward rate constants controlling acetylcholine (AcCho) in the intact neuromuscular junction. The present study derives similar values (but with smaller error ranges) for these constants by including experimental results from the falling phase of the MEPC. We find diffusion to be 4 X 10(-6) cm2 s-1, slightly slower than free diffusion, forward binding to be 3.3 X 10(7) M-1 s-1, and the distance from an average release site to the nearest exit from the cleft to be 1.6 micron. We also estimate the back reaction rates. From our values we can accurately describe the shape of MEPCs under different conditions of receptor and esterase concentration. Since we suggest that unbinding is slower than isomerization, we further predict that there should be several short "closing flickers" during the total open time for an AcCho-ligated receptor channel. PMID:6584895
Streeter, Ian; Cheema, Umber
2011-10-07
Understanding the basal O(2) and nutrient requirements of cells is paramount when culturing cells in 3D tissue models. Any scaffold design will need to take such parameters into consideration, especially as the addition of cells introduces gradients of consumption of such molecules from the surface to the core of scaffolds. We have cultured two cell types in 3D native collagen type I scaffolds, and measured the O(2) tension at specific locations within the scaffold. By changing the density of cells, we have established O(2) consumption gradients within these scaffolds and using mathematical modeling have derived rates of consumption for O(2). For human dermal fibroblasts the average rate constant was 1.19 × 10(-17) mol cell(-1) s(-1), and for human bone marrow derived stromal cells the average rate constant was 7.91 × 10(-18) mol cell(-1) s(-1). These values are lower than previously published rates for similar cells cultured in 2D, but the values established in this current study are more representative of rates of consumption measured in vivo. These values will dictate 3D culture parameters, including maximum cell-seeding density and maximum size of the constructs, for long-term viability of tissue models.
Oxidation kinetics of guanine in DNA molecules adsorbed onto indium tin oxide electrodes.
Armistead, P M; Thorp, H H
2001-02-01
Oligonucleotides containing the guanine nucleobase were adsorbed onto ITO electrodes from mixtures of DMF and acetate buffer. Chronocoulometry and chronoamperometry were performed on the modified electrodes in both phosphate buffer and buffer containing low concentrations of the inorganic complex Ru(bpy)3(2+) (bpy = 2,2' bipyridine), which catalyzes guanine oxidation. The charge and current evolution with and without the catalyst were compared to the charge and current evolution for electrodes that were treated with identical oligonucleotides that were substituted at every guanine with the electrochemically inert nucleobase hypoxanthine. Chronocoulometry over 2.5 s shows that roughly 2 electrons per guanine were transferred to the electrode in both the presence and absence of Ru(bpy)3(2+), although at a slower rate for the uncatalyzed process. Chronoamperograms measured over 250 ms can be fit to a double exponential decay, with the intensity of the fast component roughly 6-20 times greater than that of the slow component. First- and second-order rate constants for catalytic and direct guanine oxidation were determined from the fast component. The maximum catalytic enhancement for immobilized guanine was found to be i(cat)/i(d) = 4 at 25 microM Ru(bpy)3(2+). The second-order rate constant for the catalyzed reaction was 1.3 x 10(7) M(-1) s(-1), with an apparent dissociation constant of 8.8 microM. When compared to parallel studies in solution, a smaller value of the dissociation constant and a larger value of the second-order rate constant are observed, probably due to distortion of the immobilized DNA, an increase in the local negative charge due to the oxygen sites on the ITO surface, and redox cycling of the catalyst, which maintains the surface concentration of the active form.
Etching Rate of Silicon Dioxide Using Chlorine Trifluoride Gas
NASA Astrophysics Data System (ADS)
Miura, Yutaka; Kasahara, Yu; Habuka, Hitoshi; Takechi, Naoto; Fukae, Katsuya
2009-02-01
The etching rate behavior of silicon dioxide (SiO2, fused silica) using chlorine trifluoride (ClF3) gas is studied at substrate temperatures between 573 and 1273 K at atmospheric pressure in a horizontal cold-wall reactor. The etching rate increases with the ClF3 gas concentration, and the overall reaction is recognized to be of the first order. The change of the etching rate with increasing substrate temperature is nonlinear, and the etching rate tends to approach a constant value at temperatures exceeding 1173 K. The overall rate constant is estimated by numerical calculation, taking into account the transport phenomena in the reactor, including the chemical reaction at the substrate surface. The activation energy obtained in this study is 45.8 kJ mol-1, and the rate constant is consistent with the measured etching rate behavior. A reactor system in which there is minimum etching of the fused silica chamber by ClF3 gas can be achieved using an IR lamp heating unit and a chamber cooling unit to maintain a sufficiently low temperature of the chamber wall.
Observed and Modeled HOCl Profiles in the Midlatitude Stratosphere: Implication for Ozone Loss
NASA Technical Reports Server (NTRS)
Kovalenko, L. J.; Jucks, K. W.; Salawitch, R. J.; Toon, G. C.; Blavier, J. F.; Johnson, D. G.; Kleinbohl, A.; Livesey, N. J .; Margitan, J. J.; Pickett, H. M.;
2007-01-01
Vertical profiles of stratospheric HOCl calculated with a diurnal steady-state photochemical model that uses currently recommended reaction rates and photolysis cross sections underestimate observed profiles of HOCl obtained by two balloon-borne instruments, FIRS-2 (a far-infrared emission spectrometer) and MkIV (a mid-infrared, solar absorption spectrometer). Considerable uncertainty (a factor of two) persists in laboratory measurements of the rate constant (k(sub 1)) for the reaction ClO + HO2 yields HOCl + O2. Agreement between modeled and measured HOCl can be attained using a value of k(sub 1) from Stimpfle et al. (1979) that is about a factor-of-two faster than the currently recommended rate constant. Comparison of modeled and measured HOCl suggests that models using the currently recommended value for k(sub 1) may underestimate the role of the HOCl catalytic cycle for ozone depletion, important in the midlatitude lower stratosphere.
Thermal decay of a metastable state: Influence of rescattering on the quasistationary dynamical rate
NASA Astrophysics Data System (ADS)
Chushnyakova, M. V.; Gontchar, I. I.
2018-03-01
We study the effect of backscattering of the Brownian particles as they escape out of a metastable state overcoming the potential barrier. For this aim, we model this process numerically using the Langevin equations. This modeling is performed for the wide range of the friction constant covering both the energy and spatial diffusion regimes. It is shown how the influence of the descent stage on the quasistationary decay rate gradually disappears as the friction constant decreases. It is found that, in the energy diffusion regime, the rescattering absents and the descent stage does not influence the decay rate. As the value of friction increases, the descent alters the value of the rate by more than 50% for different values of thermal energy and different shapes of the potential. To study the influence of the backscattering on the decay rate, four potentials have been considered which coincide near the potential well and the barrier but differ beyond the barrier. It is shown that the potential for which the well and the barrier are described by two smoothly joined parabolas ("the parabolic potential") plays a role of a dividing range for the mutual layout of the quasistationary dynamical rate and the widely used in the literature Kramers rate. Namely, for the potentials with steeper tails, the Kramers rate RKM underestimates the true quasistationary dynamical rate RD, whereas for the less steep tails the opposite holds (inversion of RD/RKM ). It is demonstrated that the mutual layout of the values of RD for different potentials is explained by the rescattering of the particles from the potential tail.
Satherley, Nicole; Milojev, Petar; Greaves, Lara M.; Huang, Yanshu; Osborne, Danny; Bulbulia, Joseph; Sibley, Chris G.
2015-01-01
This study examines attrition rates over the first four years of the New Zealand Attitudes and Values Study, a longitudinal national panel sample of New Zealand adults. We report the base rate and covariates for the following four distinct classes of respondents: explicit withdrawals, lost respondents, intermittent respondents and constant respondents. A multinomial logistic regression examined an extensive range of demographic and socio-psychological covariates (among them the Big-Six personality traits) associated with membership in these classes (N = 5,814). Results indicated that men, Māori and Asian peoples were less likely to be constant respondents. Conscientiousness and Honesty-Humility were also positively associated with membership in the constant respondent class. Notably, the effect sizes for the socio-psychological covariates of panel attrition tended to match or exceed those of standard demographic covariates. This investigation broadens the focus of research on panel attrition beyond demographics by including a comprehensive set of socio-psychological covariates. Our findings show that core psychological covariates convey important information about panel attrition, and are practically important to the management of longitudinal panel samples like the New Zealand Attitudes and Values Study. PMID:25793746
NASA Technical Reports Server (NTRS)
Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.
1984-01-01
Quantitative structure-activity relationships are presented for the hydrolysis of organophosphorus esters, RR'P(O)X, where R and R' are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. CNDO/2 calculations provide values for molecular parameters that correlate with alkaline hydrolysis rates. For each subset of esters with the same leaving group, X, the CNDO-derived net atomic charge at the central phosphorus atom correlates well with the alkaline hydrolysis rate constants. For the whole set of esters with different leaving groups, equations are derived that relate charge, orbital energy and bond order to the hydrolysis rate constants.
Spin-lattice relaxation-rate anomaly at structural phase transitions
NASA Astrophysics Data System (ADS)
Levanyuk, A. P.; Minyukov, S. A.; Etrillard, J.; Toudic, B.
1997-12-01
The theory of spin-lattice relaxation (SLR)-rate anomaly at structural phase transitions proposed about 30 years ago is reconsidered taking into account that knowledge about the relevant lattice response functions has changed considerably. We use both the results of previous authors and perform original calculations of the response functions when it is necessary. We consider displacive systems and use the perturbation theory to treat the lattice anharmonicities in a broad temperature region whenever possible. Some comments about the order-disorder systems are made as well. The possibility of linear coupling of the order parameter and the resonance frequency is always assumed. It is found that in the symmetrical phase the anomaly is due to the one-phonon processes, the anomalous part being proportional to either (T-Tc)-1 or (T-Tc)-1/2 depending on some condition on the soft-mode dispersion. In both cases the value of the SLR rate at the boundary of applicabity of the theory (close to the phase transition) is estimated to be 102-103 times more than the typical value of the SLR rate in an ideal crystal. An essential specific feature of the nonsymmetrical phase is appearance of third-order anharmonicities that are well known to lead to a low-frequency dispersion of the order-parameter damping constant. We have found that this constant exhibits, in addition, a strong wave-vector dispersion, so that the damping constant determing the SLR rate is quite different from that at zero wave vector. In the case of two-component order parameter the damping constant for the component with nonzero equilibrium value is different from that for the other component, the difference is of the same order of magnitude as the damping constants themselves. In the case of the incommensurate phase a part of the mentioned third-order anharmonicity is responsible for longitudinal-transversal interaction that is well known to influence the static longitudinal response function. We calculate as well the dynamic response function to find that for the SLR calculations the imaginary part is of main importance. Due to this interaction the longitudinal SLR rate acquires a dependence on the Larmor frequency. This dependence is however, fairly weak: a logarithmic one. The implications of the obtained results for interpretation of the experimental data on SLR in incommensurate phase are discussed as well.
Clustering and flow around a sphere moving into a grain cloud.
Seguin, A; Lefebvre-Lepot, A; Faure, S; Gondret, P
2016-06-01
A bidimensional simulation of a sphere moving at constant velocity into a cloud of smaller spherical grains far from any boundaries and without gravity is presented with a non-smooth contact dynamics method. A dense granular "cluster" zone builds progressively around the moving sphere until a stationary regime appears with a constant upstream cluster size. The key point is that the upstream cluster size increases with the initial solid fraction [Formula: see text] but the cluster packing fraction takes an about constant value independent of [Formula: see text]. Although the upstream cluster size around the moving sphere diverges when [Formula: see text] approaches a critical value, the drag force exerted by the grains on the sphere does not. The detailed analysis of the local strain rate and local stress fields made in the non-parallel granular flow inside the cluster allows us to extract the local invariants of the two tensors: dilation rate, shear rate, pressure and shear stress. Despite different spatial variations of these invariants, the local friction coefficient μ appears to depend only on the local inertial number I as well as the local solid fraction, which means that a local rheology does exist in the present non-parallel flow. The key point is that the spatial variations of I inside the cluster do not depend on the sphere velocity and explore only a small range around the value one.
NASA Astrophysics Data System (ADS)
Newsome, Ben; Evans, Mat
2017-12-01
Chemical rate constants determine the composition of the atmosphere and how this composition has changed over time. They are central to our understanding of climate change and air quality degradation. Atmospheric chemistry models, whether online or offline, box, regional or global, use these rate constants. Expert panels evaluate laboratory measurements, making recommendations for the rate constants that should be used. This results in very similar or identical rate constants being used by all models. The inherent uncertainties in these recommendations are, in general, therefore ignored. We explore the impact of these uncertainties on the composition of the troposphere using the GEOS-Chem chemistry transport model. Based on the Jet Propulsion Laboratory (JPL) and International Union of Pure and Applied Chemistry (IUPAC) evaluations we assess the influence of 50 mainly inorganic rate constants and 10 photolysis rates on tropospheric composition through the use of the GEOS-Chem chemistry transport model. We assess the impact on four standard metrics: annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime. Uncertainty in the rate constants for NO2 + OH →M HNO3 and O3 + NO → NO2 + O2 are the two largest sources of uncertainty in these metrics. The absolute magnitude of the change in the metrics is similar if rate constants are increased or decreased by their σ values. We investigate two methods of assessing these uncertainties, addition in quadrature and a Monte Carlo approach, and conclude they give similar outcomes. Combining the uncertainties across the 60 reactions gives overall uncertainties on the annual mean tropospheric ozone burden, surface ozone and tropospheric OH concentrations, and tropospheric methane lifetime of 10, 11, 16 and 16 %, respectively. These are larger than the spread between models in recent model intercomparisons. Remote regions such as the tropics, poles and upper troposphere are most uncertain. This chemical uncertainty is sufficiently large to suggest that rate constant uncertainty should be considered alongside other processes when model results disagree with measurement. Calculations for the pre-industrial simulation allow a tropospheric ozone radiative forcing to be calculated of 0.412 ± 0.062 W m-2. This uncertainty (13 %) is comparable to the inter-model spread in ozone radiative forcing found in previous model-model intercomparison studies where the rate constants used in the models are all identical or very similar. Thus, the uncertainty of tropospheric ozone radiative forcing should expanded to include this additional source of uncertainty. These rate constant uncertainties are significant and suggest that refinement of supposedly well-known chemical rate constants should be considered alongside other improvements to enhance our understanding of atmospheric processes.
Chlorine decay and bacterial inactivation kinetics in drinking water in the tropics.
Thøgersen, J; Dahi, E
1996-09-01
The decay of free chlorine (Cl2) and combined chlorine (mostly monochloramine: NH2Cl) and the inactivation of bacteria was examined in Dar es Salaam, Tanzania. Batch experiments, pilot-scale pipe experiments and full-scale pipe experiments were carried out to establish the kinetics for both decay and inactivation, and to compare the two disinfectants for use under tropical conditions. The decay of both disinfectants closely followed first order kinetics, with respect to the concentration of both disinfectant and disinfectant-consuming substances. Bacterial densities exhibited a kinetic pattern consisting of first order inactivation with respect to the density of the bacteria and the concentration of the disinfectant, and first order growth with respect to the bacterial density. The disinfection kinetic model takes the decaying concentration of the disinfectant into account. The decay rate constant for free chlorine was 114 lg(-1)h(-1), while the decay rate constant for combined chlorine was 1.84 lg(-1)h(-1) (1.6% of the decay rate for free chlorine). The average concentration of disinfectant consuming substances in the water phase was 2.6 mg Cl2/l for free chlorine and 5.6 mg NH2Cl/l for combined chlorine. The decay rate constant and the concentration of disinfectant consuming substances when water was pumped through pipes, depended on whether or not chlorination was continuous. Combined chlorine especially could clean the pipes of disinfectant consuming substances. The inactivation rate constant λ, was estimated at 3.06×10(4) lg(-1)h(-1). Based on the inactivation rate constant, and a growth rate constant determined in a previous study, the critical concentration of free chlorine was found to be 0.08 mg Cl2/l. The critical concentration is a value below which growth rates dominate over inactivation.
Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation
NASA Astrophysics Data System (ADS)
Stenback, Greg A.; Ong, Say Kee; Rogers, Shane W.; Kjartanson, Bruce H.
2004-09-01
A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day -1 for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant—highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be applicable.
NASA Astrophysics Data System (ADS)
Fagge, Ibrahim I.; Yusof, Nor Saadah M.; Zain, Sharifuddin Md; Khan, M. Niyaz
2017-12-01
Halo-substitutions at 3-position of benzene ring of the salts of aromatic carboxylate, MX, revealed the effect of two different halide ions (Br- and Cl-) on the counterion binding constants obtained from cationic nanoparticle catalyzed piperidinolysis of ionized phenyl salicylate (PhS-). The values of observed rate constant, kobs, determined at a constant total concentration of cetyltrimethylammonium bromide, [CTABr]T, piperidine, ([P]T), [PhS-]T, NaOH, and various concentration of MX (MX = 3-BrC6H4CO2Na and 3-ClC6H4CO2Na), were determined using UV-visible X spectrophotometric technique at 35 °C and 370 nm. The average value of nanoparticle binding constant, KXBr, for X- = 3-BrC6H4CO2- (RXBr = 57) was found to be about 2-fold larger than that for X- = 3-ClC6H4CO2- (RXBr = 30). These XX values were dependent of substituents 3-Br and 3-Cl, and independent of [CTABr]T. Both are related to the presence of different extent of viscoelastic worm-like nanoparticles formation in the [CTABr]T of 6 and 10 mM.
Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.
Mafé, Salvador; Pellicer, Julio
2005-02-01
We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.
Langenbucher, Frieder
2005-01-01
A linear system comprising n compartments is completely defined by the rate constants between any of the compartments and the initial condition in which compartment(s) the drug is present at the beginning. The generalized solution is the time profiles of drug amount in each compartment, described by polyexponential equations. Based on standard matrix operations, an Excel worksheet computes the rate constants and the coefficients, finally the full time profiles for a specified range of time values.
NASA Technical Reports Server (NTRS)
Huder, Karin; Demore, William B.
1993-01-01
Determination of accurate rate constants for OH abstraction is of great importance for the calculation of lifetimes for HCFCs and their impact on the atmosphere. For HCFC-141b there has been some disagreement in the literature for absolute measurements of this rate constant. In the present work rate constant ratios for HCFC-141b were measured at atmospheric pressure in the temperature range of 298-358 K, with CH4 and CH3CCl3 as reference gases. Ozone was photolyzed at 254 nm in the presence of water vapor to produce OH radicals. Relative depletions of 141b and the reference gases were measured by FTIR. Arrhenius expressions for 141b were derived from each reference gas and found to be in good agreement with each other. The combined expression for HCFC-141b which we recommend is 1.4 x 10 exp -12 exp(-1630/T) with k at 298 K being 5.9 x 10 exp -15 cu cm/molec-s. This value is in excellent agreement with the JPL 92-20 recommendation.
Growth Kinetics for Microalgae Grown in Palm Oil Mill Effluent (POME) medium at various CO2 Levels
NASA Astrophysics Data System (ADS)
Razali, S.; Salihon, J.; Ahmad, M. A.
2018-05-01
This paper sought to find the growth kinetic data of maximum specific growth rate (μmax) and substrate saturation constant (KS) for a microalgal reaction system over various dissolved CO2 levels (0.04, 0.1, 0.3, 0.5, 0.8, 1.0, 5.0, 10.0% v/v) at a constant sparging rate of 1.2 vvm, by using logistic model and Monod kinetics. The reaction system consisted of microalgae growing in palm oil mill effluent (POME) medium in 1 L flask with constant light illumination and sparged with the specified CO2 gas mixture. It is found from the experimental works that the values of μmax and KS to be at 0.04958 h-1 and 0.03523% (v/v) respectively. The results also showed that utilizing CO2 levels (v/v) in the sparging gas mixture more than 1% (v/v) would not improve microalgae growth significantly as expressed in the values of specific growth rate µ. These data and information are critically important for bioreactor scaling up purposes, especially bioreactor system dedicated for microalgae products and CO2 sequestration.
THE INFLUENCE OF DOM CHARACTER ON OZONE DECOMPOSITION RATES AND RCT
The effects of DOM character on ozonation of natural waters and solutions of DOM isolates were investigated. Batch kinetic investigations measured O3 decomposition rate constants and Rct values. Rct describes the ratio of ?OH concentration to O3 concentration, and thus provides...
NASA Astrophysics Data System (ADS)
Wang, W.; Lee, C.; Cochran, K. K.; Armstrong, R. A.
2016-02-01
Sinking particles play a pivotal role transferring material from the surface to the deeper ocean via the "biological pump". To quantify the extent to which these particles aggregate and disaggregate, and thus affect particle settling velocity, we constructed a box model to describe organic matter cycling. The box model was fit to chloropigment data sampled in the 2005 MedFlux project using Indented Rotating Sphere sediment traps operating in Settling Velocity (SV) mode. Because of the very different pigment compositions of phytoplankton and fecal pellets, chloropigments are useful as proxies to record particle exchange. The maximum likelihood statistical method was used to estimate particle aggregation, disaggregation, and organic matter remineralization rate constants. Eleven settling velocity categories collected by SV sediment traps were grouped into two sinking velocity classes (fast- and slow-sinking) to decrease the number of parameters that needed to be estimated. Organic matter degradation rate constants were estimated to be 1.2, 1.6, and 1.1 y^-1, which are equivalent to degradation half-lives of 0.60, 0.45, and 0.62 y^-1, at 313, 524, and 1918 m, respectively. Rate constants of chlorophyll a degradation to pheopigments (pheophorbide, pheophytin, and pyropheophorbide) were estimated to be 0.88, 0.93, and 1.2 y^-1, at 313, 524, and 1918 m, respectively. Aggregation rate constants varied little with depth, with the highest value being 0.07 y^-1 at 524 m. Disaggregation rate constants were highest at 524 m (14 y^-1) and lowest at 1918 m (9.6 y^-1)
A new approach using coagulation rate constant for evaluation of turbidity removal
NASA Astrophysics Data System (ADS)
Al-Sameraiy, Mukheled
2017-06-01
Coagulation-flocculation-sedimentation processes for treating three levels of bentonite synthetic turbid water using date seeds (DS) and alum (A) coagulants were investigated in the previous research work. In the current research, the same experimental results were used to adopt a new approach on a basis of using coagulation rate constant as an investigating parameter to identify optimum doses of these coagulants. Moreover, the performance of these coagulants to meet (WHO) turbidity standard was assessed by introducing a new evaluating criterion in terms of critical coagulation rate constant (kc). Coagulation rate constants (k2) were mathematically calculated in second order form of coagulation process for each coagulant. The maximum (k2) values corresponded to doses, which were obviously to be considered as optimum doses. The proposed criterion to assess the performance of coagulation process of these coagulants was based on the mathematical representation of (WHO) turbidity guidelines in second order form of coagulation process stated that (k2) for each coagulant should be ≥ (kc) for each level of synthetic turbid water. For all tested turbid water, DS coagulant could not satisfy it. While, A coagulant could satisfy it. The results obtained in the present research are exactly in agreement with the previous published results in terms of finding optimum doses for each coagulant and assessing their performances. On the whole, it is recommended considering coagulation rate constant to be a new approach as an indicator for investigating optimum doses and critical coagulation rate constant to be a new evaluating criterion to assess coagulants' performance.
On determining dose rate constants spectroscopically
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, M.; Rogers, D. W. O.
2013-01-15
Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seedsmore » were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when calculated with the TG-43U1 rather than the NNDC(2000) initial spectrum. The measured values from three different investigations are in much better agreement with the calculations using the NCRP Report 58 and NNDC(2000) initial spectra with average discrepancies of 0.9% and 1.7% for the {sup 125}I and {sup 103}Pd seeds, respectively. However, there are no differences in the calculated TG-43U1 brachytherapy parameters using either initial spectrum in both cases. Similarly, there were no differences outside the statistical uncertainties of 0.1% or 0.2%, in the average energy, air kerma/history, dose rate/history, and dose rate constant when calculated using either the full photon spectrum or the main-peaks-only spectrum. Conclusions: Our calculated dose rate constants based on using the calculated on-axis spectrum and a line or dual-point source model are in excellent agreement (0.5% on average) with the values of Chen and Nath, verifying the accuracy of their more approximate method of going from the spectrum to the dose rate constant. However, the dose rate constants based on full seed models differ by between +4.6% and -1.5% from those based on the line or dual-point source approximations. These results suggest that the main value of spectroscopic measurements is to verify full Monte Carlo models of the seeds by comparison to the calculated spectra.« less
Determination of thermodynamics and kinetics of RNA reactions by force
Tinoco, Ignacio; Li, Pan T. X.; Bustamante, Carlos
2008-01-01
Single-molecule methods have made it possible to apply force to an individual RNA molecule. Two beads are attached to the RNA; one is on a micropipette, the other is in a laser trap. The force on the RNA and the distance between the beads are measured. Force can change the equilibrium and the rate of any reaction in which the product has a different extension from the reactant. This review describes use of laser tweezers to measure thermodynamics and kinetics of unfolding/refolding RNA. For a reversible reaction the work directly provides the free energy; for irreversible reactions the free energy is obtained from the distribution of work values. The rate constants for the folding and unfolding reactions can be measured by several methods. The effect of pulling rate on the distribution of force-unfolding values leads to rate constants for unfolding. Hopping of the RNA between folded and unfolded states at constant force provides both unfolding and folding rates. Force-jumps and force-drops, similar to the temperature jump method, provide direct measurement of reaction rates over a wide range of forces. The advantages of applying force and using single-molecule methods are discussed. These methods, for example, allow reactions to be studied in non-denaturing solvents at physiological temperatures; they also simplify analysis of kinetic mechanisms because only one intermediate at a time is present. Unfolding of RNA in biological cells by helicases, or ribosomes, has similarities to unfolding by force. PMID:17040613
Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A
2015-01-01
The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.
Modelling chemical depletion profiles in regolith
Brantley, S.L.; Bandstra, J.; Moore, J.; White, A.F.
2008-01-01
Chemical or mineralogical profiles in regolith display reaction fronts that document depletion of leachable elements or minerals. A generalized equation employing lumped parameters was derived to model such ubiquitously observed patterns:C = frac(C0, frac(C0 - Cx = 0, Cx = 0) exp (??ini ?? over(k, ??) ?? x) + 1)Here C, Cx = 0, and Co are the concentrations of an element at a given depth x, at the top of the reaction front, or in parent respectively. ??ini is the roughness of the dissolving mineral in the parent and k???? is a lumped kinetic parameter. This kinetic parameter is an inverse function of the porefluid advective velocity and a direct function of the dissolution rate constant times mineral surface area per unit volume regolith. This model equation fits profiles of concentration versus depth for albite in seven weathering systems and is consistent with the interpretation that the surface area (m2 mineral m- 3 bulk regolith) varies linearly with the concentration of the dissolving mineral across the front. Dissolution rate constants can be calculated from the lumped fit parameters for these profiles using observed values of weathering advance rate, the proton driving force, the geometric surface area per unit volume regolith and parent concentration of albite. These calculated values of the dissolution rate constant compare favorably to literature values. The model equation, useful for reaction fronts in both steady-state erosional and quasi-stationary non-erosional systems, incorporates the variation of reaction affinity using pH as a master variable. Use of this model equation to fit depletion fronts for soils highlights the importance of buffering of pH in the soil system. Furthermore, the equation should allow better understanding of the effects of important environmental variables on weathering rates. ?? 2008.
Oka, Toshihiko; Saiki, Takahiro; Alam, Jahangir Md; Yamazaki, Masahito
2016-02-09
Electrostatic interaction is an important factor for phase transitions between lamellar liquid-crystalline (Lα) and inverse bicontinuous cubic (QII) phases. We investigated the effect of temperature on the low-pH-induced Lα to double-diamond cubic (QII(D)) phase transition in dioleoylphosphatidylserine (DOPS)/monoolein (MO) using time-resolved small-angle X-ray scattering with a stopped-flow apparatus. Under all conditions of temperature and pH, the Lα phase was directly transformed into an intermediate inverse hexagonal (HII) phase, and subsequently the HII phase slowly converted to the QII(D) phase. We obtained the rate constants of the initial step (i.e., the Lα to HII phase transition) and of the second step (i.e., the HII to QII(D) phase transition) using the non-negative matrix factorization method. The rate constant of the initial step increased with temperature. By analyzing this result, we obtained the values of its apparent activation energy, Ea (Lα → HII), which did not change with temperature but increased with an increase in pH. In contrast, the rate constant of the second step decreased with temperature at pH 2.6, although it increased with temperature at pH 2.7 and 2.8. These results indicate that the value of Ea (HII → QII(D)) at pH 2.6 increased with temperature, but the values of Ea (HII → QII(D)) at pH 2.7 and 2.8 were constant with temperature. The values of Ea (HII → QII(D)) were smaller than those of Ea (Lα → HII) at the same pH. We analyzed these results using a modified quantitative theory on the activation energy of phase transitions of lipid membranes proposed initially by Squires et al. (Squires, A. M.; Conn, C. E.; Seddon, J. M.; Templer, R. H. Soft Matter 2009, 5, 4773). On the basis of these results, we discuss the mechanism of this phase transition.
Bobko, A A; Khramtsov, V V
2015-01-01
Nitronyl nitroxides (NNs) are the paramagnetic probes that are capable of scavenging physiologically relevant reactive oxygen (ROS) and nitrogen (RNS) species, namely superoxide, nitric oxide (NO), and nitroxyl (HNO). NNs are increasingly considered as potent antioxidants and potential therapeutic agents. Understanding redox chemistry of the NNs is important for their use as antioxidants and as paramagnetic probes for discriminative detection of NO and HNO by electron paramagnetic resonance (EPR) spectroscopy. Here we investigated the redox properties of the two most commonly used NNs, including determination of the equilibrium and rate constants of their reduction by HNO and ferrocyanide, and reduction potential of the couple NN/hydroxylamine of nitronyl nitroxide (hNN). The rate constants of the reaction of the NNs with HNO were found to be equal to (1-2) × 10(4) M(-1)s(- 1) being close to the rate constants of scavenging superoxide and NO by NNs. The reduction potential of the NNs and iminonitroxides (INs, product of NNs reaction with NO) were calculated based on their reaction constants with ferrocyanide. The obtained values of the reduction potential for NN/hNN (E'0 ≈ 285 mV) and IN/hIN (E' ≈ 495 mV) are close to the corresponding values for vitamin C and vitamin E, correspondingly. The "balanced" scavenging rates of the NNs towards superoxide, NO, and HNO, and their low reduction potential being thermodynamically close to the bottom of the pecking order of oxidizing radicals, might be important factors contributing into their antioxidant activity.
A predator-prey model with generic birth and death rates for the predator.
Terry, Alan J
2014-02-01
We propose and study a predator-prey model in which the predator has a Holling type II functional response and generic per capita birth and death rates. Given that prey consumption provides the energy for predator activity, and that the predator functional response represents the prey consumption rate per predator, we assume that the per capita birth and death rates for the predator are, respectively, increasing and decreasing functions of the predator functional response. These functions are monotonic, but not necessarily strictly monotonic, for all values of the argument. In particular, we allow the possibility that the predator birth rate is zero for all sufficiently small values of the predator functional response, reflecting the idea that a certain level of energy intake is needed before a predator can reproduce. Our analysis reveals that the model exhibits the behaviours typically found in predator-prey models - extinction of the predator population, convergence to a periodic orbit, or convergence to a co-existence fixed point. For a specific example, in which the predator birth and death rates are constant for all sufficiently small or large values of the predator functional response, we corroborate our analysis with numerical simulations. In the unlikely case where these birth and death rates equal the same constant for all sufficiently large values of the predator functional response, the model is capable of structurally unstable behaviour, with a small change in the initial conditions leading to a more pronounced change in the long-term dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.
The Protolysis of Singlet Excited B-Naphtol.
ERIC Educational Resources Information Center
van Stam, Jan; Lofroth, Jan-Erik
1986-01-01
Presents a two-day experiment to estimate the pK for the protolysis of beta-naphtol in its ground state and the first singlet excited state. Results are compared to results obtained from the integrated rate equations in which values of the rate constants were taken from a time-resolved study. (JN)
Rahman, Safiur; Gagnon, Graham A
2014-01-01
Corrosion control strategies are important for many utilities in maintaining water quality from the water treatment plant to the customers' tap. In drinking water with low alkalinity, water quality can become significantly degraded in iron-based pipes if water utilities are not diligent in maintaining proper corrosion control. This article reports on experiments conducted in bicarbonate buffered (5 mg-C/L) synthetic water to determine the effects of corrosion control (pH and phosphate) and dissolved organic matter (DOM) on the rate constants of the Fe(II) oxidation process. A factorial design approach elucidated that pH (P = 0.007, contribution: 42.5%) and phosphate (P = 0.025, contribution: 22.7%) were the statistically significant factors in the Fe(II) oxidation process at a 95% confidence level. The comprehensive study revealed a significant dependency relationship between the Fe(II) oxidation rate constants (k) and phosphate-to- Fe(II) mole ratio. At pH 6.5, the optimum mole ratio was found to be 0.3 to reduce the k values. Conversely, the k values were observed to increase for the phosphate-to- Fe(II) mole ratio > 1. The factorial design approach revealed that chlorine and DOM for the designated dosages did not cause a statistically significant (α = 0.05, P > 0.05)change in rate constants. However, an increment of the chlorine to ferrous iron mole ratio by a factor of ∼ 2.5 resulted in an increase k values by a factor of ∼ 10. This study conclusively demonstrated that the lowest Fe(II) oxidation rate constant was obtained under low pH conditions (pH ≤ 6.5), with chlorine doses less than 2.2 mg/L and with a phosphate-to-Fe(II) mole ratio ≈ 0.3 in the iron water systems.
Direct ab initio dynamics study of the reaction of C 2(A 3Π u) radical with C 2H 6
NASA Astrophysics Data System (ADS)
Li, Na; Huo, Rui-Ping; Zhang, Xiang; Huang, Xu-Ri; Li, Ji-Lai; Sun, Chia-Chung
2011-02-01
The reaction of C 2 (A 3Π u) with C 2H 6 has been investigated at the BMC-CCSD//BB1K/6-311+G(2d, 2p) level. The classical barrier height for H-abstraction reaction is calculated to be 3.32 kcal/mol and the electron transfer behavior is also analyzed in detail. The rate constants are calculated by TST, CVT, and CVT/SCT over a wide temperature range 50-3000 K. The results indicate: (1) variational effect is small and nonclassical reflection effect is important to the H abstraction in high temperature region; and (2) variational effect is negligible and tunneling effect cooperating with the nonclassical reflection effect makes the rate constant temperature independence in low-temperature range. The CVT/SCT rate constants are in excellent agreement with experimental values.
46 CFR 164.023-13 - Production tests and inspections.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Constant Rate of Traverse tensile testing machine, capable of initial clamp separation of ten inches and a... production testing on a lot must meet the following criteria for the lot to be shipped as Coast Guard... the acceptance testing values but not less than the performance minimums. (2) Length/weight values...
Exact analytical thermodynamic expressions for a Brownian heat engine
NASA Astrophysics Data System (ADS)
Taye, Mesfin Asfaw
2015-09-01
The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t . Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.
Exact analytical thermodynamic expressions for a Brownian heat engine.
Taye, Mesfin Asfaw
2015-09-01
The nonequilibrium thermodynamics feature of a Brownian motor operating between two different heat baths is explored as a function of time t. Using the Gibbs entropy and Schnakenberg microscopic stochastic approach, we find exact closed form expressions for the free energy, the rate of entropy production, and the rate of entropy flow from the system to the outside. We show that when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long time limit, the rate of entropy production balances the rate of entropy extraction, and at equilibrium both entropy production and extraction rates become zero. Furthermore, via the present model, many thermodynamic theories can be checked.
NASA Astrophysics Data System (ADS)
Tao, Wanghai; Wang, Quanjiu; Lin, Henry
2018-03-01
Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.
O2(b1∑+g) relaxation in active medium of oxygen-iodine laser
NASA Astrophysics Data System (ADS)
Tolstov, G. I.; Zagidullin, M. V.; Khvatov, N. A.; Medvedkov, I. A.; Mikheyev, P. A.
2018-04-01
Rate constants for the removal of O2 b1∑+g by collisions with O2, N2, CO2 and H2O have been determined at temperature 297 K. O2(b1 ∑+g) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b1∑+g - X3∑-g fluorescence. The removal rate constants for CO2, N2 and H2O were not strongly dependent on temperature, and could be represented by the expressions kCO2=(1.8+/-0.05)×10-16 kN2=(2.2 +/- 0.2)×10-15, and kH2O=(6.12+/-0.67)×10-12 cm3 molecule-1 s-1. Rate constant for O2(b1∑+ ) removal by O2(X), being orders of magnitude lower, represented by the fitted expression kO2=(3.67 +/- 0.06)×10-17 cm3 molecule-1 s-1. All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.
Wei, Jianjun; Qian, Yajing; Liu, Wenjuan; Wang, Lutao; Ge, Yijie; Zhang, Jianghao; Yu, Jiang; Ma, Xingmao
2014-05-01
Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Sonne-Hansen; Westermann; Ahring
1999-03-01
Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations.
Sonne-Hansen, Jacob; Westermann, Peter; Ahring, Birgitte K.
1999-01-01
Half-saturation constants (Km), maximum uptake rates (Vmax), and threshold concentrations for sulfate and hydrogen were determined for two thermophilic sulfate-reducing bacteria (SRB) in an incubation system without headspace. Km values determined for the thermophilic SRB were similar to the constants described for mesophilic SRB isolated from environments with low sulfate concentrations. PMID:10049897
Voicing produced by a constant velocity lung source
Howe, M. S.; McGowan, R. S.
2013-01-01
An investigation is made of the influence of subglottal boundary conditions on the prediction of voiced sounds. It is generally assumed in mathematical models of voicing that vibrations of the vocal folds are maintained by a constant subglottal mean pressure pI, whereas voicing is actually initiated by contraction of the chest cavity until the subglottal pressure becomes large enough to separate the vocal folds. The problem is reformulated to determine voicing characteristics in terms of a prescribed volumetric flow rate Qo of air from the lungs—the evolution of the resulting time-dependent subglottal mean pressure p¯_(t) is then governed by glottal mechanics, the aeroacoustics of the vocal tract, and the influence of continued contraction of the lungs. The new problem is analyzed in detail for an idealized mechanical vocal system that permits precise specification of all boundary conditions. Predictions of the glottal volume velocity pulse shape are found to be in good general agreement with the traditional constant-pI theory when pI is set equal to the time averaged value of p¯_(t). But, in all cases examined the constant-pI approximation yields values of the mean flow rates Qo and sound pressure levels that are smaller by as much as 10%. PMID:23556600
Singh, Shuchi; Agarwal, Mayank; Sarma, Shyamali; Goyal, Arun; Moholkar, Vijayanand S
2015-09-01
This paper presents investigations into mechanism of ultrasound assisted bioethanol synthesis using Parthenium hysterophorus biomass through simultaneous saccharification and fermentation (SSF) mode. Approach of coupling experimental results to mathematical model for SSF using Genetic Algorithm based optimization has been adopted. Comparison of model parameters for experiments with mechanical shaking and sonication (10% duty cycle) give an interesting mechanistic account of influence of ultrasound on SSF system. A 4-fold rise in ethanol and cell mass productivity is seen with ultrasound. The analysis reveals following facets of influence of ultrasound on SSF: increase in Monod constant for glucose for cell growth, maximal specific growth rate and inhibition constant of cell growth by glucose and reduction in specific cell death rate. Values of inhibition constant of cell growth by ethanol (K3E), and constants for growth associated (a) and non-growth associated (b) ethanol production remained unaltered with sonication. Beneficial effects of ultrasound are attributed to enhanced cellulose hydrolysis, enhanced trans-membrane transport of substrate and products as well as dilution of the toxic substances due to micro-convection induced by ultrasound. Intrinsic physiological functioning of cells remained unaffected by ultrasound as indicated by unaltered values of K3E, a and b. Copyright © 2015 Elsevier B.V. All rights reserved.
Svihla, C K; Dronawat, S N; Donnelly, J A; Rieth, T C; Hanley, T R
1997-01-01
The impeller viscometer technique is frequently used to characterize the rheology of filamentous suspensions in order to avoid difficulties encountered with conventional instruments. This work presents the results of experiments conducted with vane, turbine, and helical impellers. The validity of the assumptions made in the determination of the torque and shear-rate constants were assessed for each impeller type. For the turbine and vane impellers, an increase in the apparent torque constant c was observed with increasing Reynolds number even when measurements were confined to the viscous regime. The shear-rate constants determined for the vane and turbine impellers varied for different calibration fluids, which contradicts the assumptions usually invoked in the analysis of data for this technique. When the helical impeller was calibrated, consistent values for the torque and shear-rate constants were obtained. The three impeller types were also used to characterize the rheology of cellulose fiber suspensions and the results compared for consistency and reproducibility. The results have application in design of rheometers for use in process control and product quality assessment in the fermentation and pulp and paper industries.
Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik
2015-08-27
Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.
Estimating time-based instantaneous total mortality rate based on the age-structured abundance index
NASA Astrophysics Data System (ADS)
Wang, Yingbin; Jiao, Yan
2015-05-01
The instantaneous total mortality rate ( Z) of a fish population is one of the important parameters in fisheries stock assessment. The estimation of Z is crucial to fish population dynamics analysis, abundance and catch forecast, and fisheries management. A catch curve-based method for estimating time-based Z and its change trend from catch per unit effort (CPUE) data of multiple cohorts is developed. Unlike the traditional catch-curve method, the method developed here does not need the assumption of constant Z throughout the time, but the Z values in n continuous years are assumed constant, and then the Z values in different n continuous years are estimated using the age-based CPUE data within these years. The results of the simulation analyses show that the trends of the estimated time-based Z are consistent with the trends of the true Z, and the estimated rates of change from this approach are close to the true change rates (the relative differences between the change rates of the estimated Z and the true Z are smaller than 10%). Variations of both Z and recruitment can affect the estimates of Z value and the trend of Z. The most appropriate value of n can be different given the effects of different factors. Therefore, the appropriate value of n for different fisheries should be determined through a simulation analysis as we demonstrated in this study. Further analyses suggested that selectivity and age estimation are also two factors that can affect the estimated Z values if there is error in either of them, but the estimated change rates of Z are still close to the true change rates. We also applied this approach to the Atlantic cod ( Gadus morhua) fishery of eastern Newfoundland and Labrador from 1983 to 1997, and obtained reasonable estimates of time-based Z.
NASA Technical Reports Server (NTRS)
Cantrell, C. A.; Davidson, J. A.; Mcdaniel, A. H.; Shetter, R. E.; Calvert, J. G.
1988-01-01
Direct determinations of the equilibrium constant for the reaction N2O5 = NO2 + NO3 were carried out by measuring NO2, NO3, and N2O5 using long-path visible and infrared absorption spectroscopy as a function of temperature from 243 to 397 K. The first-order decay rate constant of N2O5 was experimentally measured as a function of temperature. These results are in turn used to derive a value for the rate coefficient for the NO-forming channel in the reaction of NO3 with NO2. The implications of the results for atmospheric chemistry, the thermodynamics of NO3, and for laboratory kinetics studies are discussed.
Star formation in the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Leichenauer, Stefan
2009-03-15
We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.
Nakamura, Toru; Yamaji, Takayuki; Takayama, Kozo
2013-05-01
To predict the stability of pharmaceutical preparations under uncontrolled temperature conditions accurately, a method to compute the average reaction rate constant taking into account the heat transfer from the atmosphere to the product was developed. The average reaction rate constants computed with taken into consideration heat transfer (κ(re) ) were then compared with those computed without taking heat transfer into consideration (κ(in) ). The apparent thermal diffusivity (κ(a) ) exerted some influence on the average reaction rate constant ratio (R, R = κ(re) /κ(in) ). In the regions where the κ(a) was large (above 1 h(-1) ) or very small, the value of R was close to 1. On the contrary, in the middle region (0.001-1 h(-1) ), the value of R was less than 1.The κ(a) of the central part of a large-size container and that of the central part of a paper case of 10 bottles of liquid medicine (100 mL) fell within this middle region. On the basis of the above-mentioned considerations, heat transfer may need to be taken into consideration to enable a more accurate prediction of the stability of actual pharmaceutical preparations under nonisothermal atmospheres. Copyright © 2013 Wiley Periodicals, Inc.
Karakas, Filiz; Imamoglu, Ipek
2017-02-15
This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.
Carradori, Simone; Cirilli, Roberto; Dei Cicchi, Simona; Ferretti, Rosella; Menta, Sergio; Pierini, Marco; Secci, Daniela
2012-12-21
Here, we report on the simultaneous direct HPLC diastereo- and enantioseparation of 3-methylcyclohexanone thiosemicarbazone (3-MCET) on a polysaccharide-based chiral stationary phase under normal-phase conditions. The optimized chromatographic system was employed in dynamic HPLC experiments (DHPLC), as well as detection technique in a batch wise approach to determine the rate constants and the corresponding free energy activation barriers of the spontaneous, base- and acid-promoted E/Z diastereomerization of 3-MCET. The stereochemical characterization of four stereoisomers of 3-MCET was fully accomplished by integrating the results obtained by chemical correlation method with those derived by theoretical calculations and experimental investigations of circular dichroism (CD). As a final goal, a deepened analysis of the perturbing effect exercised by the stationary phase on rate constant values measured through DHPLC determinations as a function of the chromatographic separation factor α of the interconverting species was successfully accomplished. This revealed quite small deviations from the equivalent kinetic values obtained by off-column batch wise procedure, and suggested a possible effective correction of rate constants measured by DHPLC approach. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darghouth, Naim; Barbose, Galen; Wiser, Ryan
2013-01-09
Customer-sited photovoltaic (PV) systems in the United States are often compensated at the customer’s underlying retail electricity rate through net metering. Calculations of the customer economics of PV, meanwhile, often assume that retail rate structures and PV compensation mechanisms will not change and that retail electricity prices will increase (or remain constant) over time, thereby also increasing (or keeping constant) the value of bill savings from PV. Given the multitude of potential changes to retail rates and PV compensation mechanisms in the future, however, understanding how such changes might impact the value of bill savings from PV is critical formore » policymakers, regulators, utilities, the solar industry, and potential PV owners, i.e., any stakeholder interested in understanding uncertainties in and potential changes to the long-term customer economics of PV. This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV.« less
NASA Astrophysics Data System (ADS)
Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.
2017-12-01
In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than previously reported. This complex formation/chaperone mechanism is similar to that found for methanol, but different in that it occurs at room temperature. No precursor concentration dependence was found for the acetonylperoxy radical reactions. The equilibrium constant for the complex formation will also be presented.
Ye, Zhi-Min; Dai, Shu-Jun; Yan, Feng-Qin; Wang, Lei; Fang, Jun; Fu, Zhen-Fu; Wang, Yue-Zhen
2018-01-01
This study aimed to evaluate both the short- and long-term efficacies of chemoradiotherapy in relation to the treatment of esophageal cancer . This was achieved through the use of dynamic contrast-enhanced magnetic resonance imaging-derived volume transfer constant and diffusion weighted imaging-derived apparent diffusion coefficient . Patients with esophageal cancer were assigned into the sensitive and resistant groups based on respective efficacies in chemoradiotherapy. Dynamic contrast-enhanced magnetic resonance imaging and diffusion weighted imaging were used to measure volume transfer constant and apparent diffusion coefficient, while computed tomography was used to calculate tumor size reduction rate. Pearson correlation analyses were conducted to analyze correlation between volume transfer constant, apparent diffusion coefficient, and the tumor size reduction rate. Receiver operating characteristic curve was constructed to analyze the short-term efficacy of volume transfer constant and apparent diffusion coefficient, while Kaplan-Meier curve was employed for survival rate analysis. Cox proportional hazard model was used for the risk factors for prognosis of patients with esophageal cancer. Our results indicated reduced levels of volume transfer constant, while increased levels were observed in ADC min , ADC mean , and ADC max following chemoradiotherapy. A negative correlation was determined between ADC min , ADC mean , and ADC max , as well as in the tumor size reduction rate prior to chemoradiotherapy, whereas a positive correlation was uncovered postchemoradiotherapy. Volume transfer constant was positively correlated with tumor size reduction rate both before and after chemoradiotherapy. The 5-year survival rate of patients with esophageal cancer having high ADC min , ADC mean , and ADC max and volume transfer constant before chemoradiotherapy was greater than those with respectively lower values. According to the Cox proportional hazard model, ADC mean , clinical stage, degree of differentiation, and tumor stage were all confirmed as being independent risk factors in regard to the prognosis of patients with EC. The findings of this study provide evidence suggesting that volume transfer constant and apparent diffusion coefficient as being tools allowing for the evaluation of both the short- and long-term efficacies of chemoradiotherapy esophageal cancer treatment.
Blum, Philipp; Hunkeler, Daniel; Weede, Matthias; Beyer, Christof; Grathwohl, Peter; Morasch, Barbara
2009-04-01
At a former wood preservation plant severely contaminated with coal tar oil, in situ bulk attenuation and biodegradation rate constants for several monoaromatic (BTEX) and polyaromatic hydrocarbons (PAH) were determined using (1) classical first order decay models, (2) Michaelis-Menten degradation kinetics (MM), and (3) stable carbon isotopes, for o-xylene and naphthalene. The first order bulk attenuation rate constant for o-xylene was calculated to be 0.0025 d(-1) and a novel stable isotope-based first order model, which also accounted for the respective redox conditions, resulted in a slightly smaller biodegradation rate constant of 0.0019 d(-1). Based on MM-kinetics, the o-xylene concentration decreased with a maximum rate of k(max)=0.1 microg/L/d. The bulk attenuation rate constant of naphthalene retrieved from the classical first order decay model was 0.0038 d(-1). The stable isotope-based biodegradation rate constant of 0.0027 d(-1) was smaller in the reduced zone, while residual naphthalene in the oxic part of the plume further downgradient was degraded at a higher rate of 0.0038 d(-1). With MM-kinetics a maximum degradation rate of k(max)=12 microg/L/d was determined. Although best fits were obtained by MM-kinetics, we consider the carbon stable isotope-based approach more appropriate as it is specific for biodegradation (not overall attenuation) and at the same time accounts for the dominant electron-accepting process. For o-xylene a field based isotope enrichment factor epsilon(field) of -1.4 could be determined using the Rayleigh model, which closely matched values from laboratory studies of o-xylene degradation under sulfate-reducing conditions.
NASA Astrophysics Data System (ADS)
Kleinboehl, A.; Canty, T. P.; Salawitch, R. J.; Khosravi, M.; Urban, J.; Toon, G. C.; Kuellmann, H.; Notholt, J.
2011-12-01
Significant differences exist between different laboratory measurements of the photolysis cross-sections of ClO-dimer, and the rate constant controlling the thermal equilibrium between ClO-dimer and ClO. This leads to uncertainties in the calculations of stratospheric ozone loss in the winter polar regions. One way to constrain the plausibility of these parameters is the measurement of ClO across the terminator in the activated polar vortex. Here we analyze measurements of ClO taken by the airborne submillimeter radiometer ASUR in the Arctic winter of 1999/2000. We use measured ClO at low solar zenith angles (SZA) to estimate the total active chlorine (ClOx). We estimate total available inorganic chlorine (Cly) using ASUR measurements of N2O in January 2000 and a N2O-Cly correlation established by a balloon measurement of the MarkIV interferometer in December 1999. We compare the ClOx estimates based on different photolysis rates of ClO-Dimer. Our results show that cross-sections leading to fast photolysis rates like the ones by Burkholder et al. [1990] or Papanastasiou et al. [2009] give ClOx mixing ratios that overlap with our estimated range of available Cly. Slower photolysis rates like the ones by von Hobe et al. [2009] and Pope et al. [2007] lead to ClOx values that are significantly higher than the available Cly. We use the calculated ClOx from low SZA to estimate the ClO in darkness with different equilibrium constants, and compare it with ASUR ClO measurements before sunrise (SZA > 95). We find that calculations with equilibrium constants published in the JPL evaluation of the last few years all give good agreement with observed ClO mixing ratios. The equilibrium constant estimated by von Hobe et al. [2005] yields ClO values that are higher than the ones observed.
Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin
2009-08-05
Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.
Martin, Leigh R; Mezyk, Stephen P; Mincher, Bruce J
2009-01-08
Lactic acid is a major component of the TALSPEAK process planned for use in the separation of trivalent lanthanide and actinide elements. This acid acts both as a buffer and to protect the actinide complexant from radiolytic damage. However, there is little kinetic information on the reaction of water radiolysis species with lactic acid, particularly under the anticipated process conditions of aerated aqueous solution at pH approximately 3, where oxidizing reactions are expected to dominate. Here we have determined temperature-dependent reaction rate constants for the reactions of the hydroxyl radical with lactic acid and the lactate ion. For lactic acid this rate constant is given by the following equation: ln k(1) = (23.85 +/- 0.19) - (1120 +/- 54)/T, corresponding to an activation energy of 9.31 +/- 0.45 kJ mol(-1) and a room temperature reaction rate constant of (5.24 +/- 0.35) x 10(8) M(-1) s(-1) (24.0 degrees C). For the lactate ion, the temperature-dependent rate constant is given by ln k(2) = (24.83 +/- 0.14) - (1295 +/- 42)/T, for an activation energy of 10.76 +/- 0.35 kJ mol(-1) and a room temperature value of (7.77 +/- 0.50) x 10(8) M(-1) s(-1) (22.2 degrees C). These kinetic data have been combined with autotitration measurements to determine the temperature-dependent behavior of the lactic acid pK(a) value, allowing thermodynamic parameters for the acid dissociation to be calculated as DeltaH(o) = -10.75 +/- 1.77 kJ mol(-1), DeltaS(o) = -103.9 +/- 6.0 J K(-1) mol(-1) and DeltaG(o) = 20.24 +/- 2.52 kJ mol(-1) at low ionic strength.
NASA Astrophysics Data System (ADS)
Tian, Xin; Li, Hua; Jiang, Xiaoyu; Xie, Jingping; Gore, John C.; Xu, Junzhong
2017-02-01
Two diffusion-based approaches, CG (constant gradient) and FEXI (filtered exchange imaging) methods, have been previously proposed for measuring transcytolemmal water exchange rate constant kin, but their accuracy and feasibility have not been comprehensively evaluated and compared. In this work, both computer simulations and cell experiments in vitro were performed to evaluate these two methods. Simulations were done with different cell diameters (5, 10, 20 μm), a broad range of kin values (0.02-30 s-1) and different SNR's, and simulated kin's were directly compared with the ground truth values. Human leukemia K562 cells were cultured and treated with saponin to selectively change cell transmembrane permeability. The agreement between measured kin's of both methods was also evaluated. The results suggest that, without noise, the CG method provides reasonably accurate estimation of kin especially when it is smaller than 10 s-1, which is in the typical physiological range of many biological tissues. However, although the FEXI method overestimates kin even with corrections for the effects of extracellular water fraction, it provides reasonable estimates with practical SNR's and more importantly, the fitted apparent exchange rate AXR showed approximately linear dependence on the ground truth kin. In conclusion, either CG or FEXI method provides a sensitive means to characterize the variations in transcytolemmal water exchange rate constant kin, although the accuracy and specificity is usually compromised. The non-imaging CG method provides more accurate estimation of kin, but limited to large volume-of-interest. Although the accuracy of FEXI is compromised with extracellular volume fraction, it is capable of spatially mapping kin in practice.
Quantum dynamics of the C(1D)+HD and C(1D)+n-D2 reactions on the ã 1A' and b 1A" surfaces.
Defazio, Paolo; Gamallo, Pablo; González, Miguel; Akpinar, Sinan; Bussery-Honvault, Béatrice; Honvault, Pascal; Petrongolo, Carlo
2010-03-14
We present the Born-Oppenheimer, quantum dynamics of the reactions C((1)D)+HD and C((1)D)+n-D(2) on the uncoupled potential energy surfaces ã (1)A' and b (1)A", considering the Coriolis interactions and the nuclear-spin statistics. Using the real wavepacket method, we obtain initial-state-resolved probabilities, cross sections, isotopic branching ratios, and rate constants. Similarly to the C+n-H(2) reaction, the probabilities present many ã (1)A' or few b (1)A" sharp resonances, and the cross sections are very large at small collision energies and decrease at higher energies. At any initial condition, the C+HD reaction gives preferentially the CD+H products. Thermal cross sections, isotopic branching ratios, and rate constant k vary slightly with temperature and agree very well with the experimental values. At 300 K, we obtain for the various products k(CH+H)=(2.45+/-0.08) x 10(-10), k(CD+H)=(1.19+/-0.04) x 10(-10), k(CH+D)=(0.71+/-0.02) x 10(-10), k(CD+D)=(1.59+/-0.05) x 10(-10) cm(3) s(-1), and k(CD+H)/k(CH+D)=1.68+/-0.01. The b (1)A" contribution to cross sections and rate constants is always large, up to a maximum value of 62% for a rotationally resolved C+D(2) rate constant. The upper b (1)A" state is thus quite important in the C((1)D) collision with H(2) and its deuterated isotopes, as the agreement between theory and experiment shows.
Frommolt, R; Goss, R; Wilhelm, C
2001-07-01
In vivo the prasinophyceaen alga Mantoniella squamata Manton et Parke uses an incomplete violaxanthin (Vx) cycle, leading to a strong accumulation of antheraxanthin (Ax) under conditions of high light. Here, we show that this zeaxanthin (Zx)-depleted Vx/Ax cycle is caused by an extremely slow second de-epoxidation step from Ax to Zx, and a fast epoxidation from Ax back to Vx in the light. The rate constant of Ax epoxidation is 5 to 6 times higher than the rate constant of Zx formation, implying that Ax is efficiently converted back to Vx before it can be de-epoxidated to Zx. It is, however, only half the rate constant of the first de-epoxidation step from Vx to Ax, thus explaining the observed net accumulation of Ax during periods of strong illumination. When comparing the rate constant of the second de-epoxidation step in M. squamata with Zx formation in spinach (Spinacia oleracea L.) thylakoids, we find a 20-fold reduction in the reaction kinetics of the former. This extremely slow Ax de-epoxidation, which is also exhibited by the isolated Mantoniella violaxanthin de-epoxidase (VDE), is due to a reduced substrate affinity of M. squamata VDE for Ax compared with the VDE of higher plants. Mantoniella VDE, which has a similar Km value for Vx, shows a substantially increased Km for the substrate Ax in comparison with spinach VDE. Our results furthermore explain why Zx formation in Mantoniella cells can only be found at low pH values that represent the pH optimum of VDE. A pH of 5 blocks the epoxidation reaction and, consequently, leads to a slow but appreciable accumulation of Zx.
NASA Technical Reports Server (NTRS)
Warnock, J. M.; Vanzandt, T. E.
1986-01-01
A computer program has been tested and documented (Warnock and VanZandt, 1985) that estimates mean values of the refractivity turbulence structure constant in the stable free atmosphere from standard National Weather Service balloon data or an equivalent data set. The program is based on the statistical model for the occurrence of turbulence developed by VanZandt et al. (1981). Height profiles of the estimated refractivity turbulence structure constant agree well with profiles measured by the Sunset radar with a height resolution of about 1 km. The program also estimates the energy dissipation rate (epsilon), but because of the lack of suitable observations of epsilon, the model for epsilon has not yet been evaluated sufficiently to be used in routine applications. Vertical profiles of the refractivity turbulence structure constant were compared with profiles measured by both radar and optical remote sensors and good agreement was found. However, at times the scintillometer measurements were less than both the radar and model values.
(210)Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil.
Bonotto, Daniel Marcos; Vergotti, Marcelo
2015-05-01
Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to Madeira River due to fact it is a major tributary of Amazon River and that since 1986, gold exploration has been officially permitted along a 350km sector of the river. The (21)(0)Pb method has been used to date sediments taken from nine lakes situated in Madeira River basin, Rondônia State, and to verify where anthropogenic Hg might exist due to gold exploitation in Madeira River. Activity profiles of excess (21)(0)Pb determined in the sediment cores provided a means to evaluate the sedimentation rates using a Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess (21)(0)Pb models. A significant relationship was found between the CF:CS sedimentation rates and the mean values of the CRS sedimentation rates (Pearson correlation coefficient r=0.59). Chemical data were also determined in the sediments for identifying possible relationships with Hg occurring in the area. Significant values were found in statistical correlation tests realized among the Hg, major oxides and Total Organic Carbon (TOC) content in the sediments. The TOC increased in the sediment cores accompanied by a loss on ignition (LOI) increment, whereas silica decreased following a specific surface area raising associated to the TOC increase. The CRS model always provided ages within the permitted range of the (21)(0)Pb-method in the studied lakes, whereas the CF:CS model predicted two values above 140 years. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seal, Prasenjit; Oyedepo, Gbenga; Truhlar, Donald G
2013-01-17
In the present work, we study the H atom abstraction reactions by hydroxyl radical at all five sites of 1-butanol. Multistructural variational transition state theory (MS-VTST) was employed to estimate the five thermal rate constants. MS-VTST utilizes a multifaceted dividing surface that accounts for the multiple conformational structures of the transition state, and we also include all the structures of the reactant molecule. The vibrational frequencies and minimum energy paths (MEPs) were computed using the M08-HX/MG3S electronic structure method. The required potential energy surfaces were obtained implicitly by direct dynamics employing interpolated variational transition state theory with mapping (IVTST-M) using a variational reaction path algorithm. The M08-HX/MG3S electronic model chemistry was then used to calculate multistructural torsional anharmonicity factors to complete the MS-VTST rate constant calculations. The results indicate that torsional anharmonicity is very important at higher temperatures, and neglecting it would lead to errors of 26 and 32 at 1000 and 1500 K, respectively. Our results for the sums of the site-specific rate constants agree very well with the experimental values of Hanson and co-workers at 896-1269 K and with the experimental results of Campbell et al. at 292 K, but slightly less well with the experiments of Wallington et al., Nelson et al., and Yujing and Mellouki at 253-372 K; nevertheless, the calculated rates are within a factor of 1.61 of all experimental values at all temperatures. This gives us confidence in the site-specific values, which are currently inaccessible to experiment.
NASA Astrophysics Data System (ADS)
Campbell, J.; Dean, J.; Clyne, T. W.
2017-02-01
This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.
Nam, J G; Kang, K M; Choi, S H; Lim, W H; Yoo, R-E; Kim, J-H; Yun, T J; Sohn, C-H
2017-12-01
Glioblastoma is the most common primary brain malignancy and differentiation of true progression from pseudoprogression is clinically important. Our purpose was to compare the diagnostic performance of dynamic contrast-enhanced pharmacokinetic parameters using the fixed T1 and measured T1 on differentiating true from pseudoprogression of glioblastoma after chemoradiation with temozolomide. This retrospective study included 37 patients with histopathologically confirmed glioblastoma with new enhancing lesions after temozolomide chemoradiation defined as true progression ( n = 15) or pseudoprogression ( n = 22). Dynamic contrast-enhanced pharmacokinetic parameters, including the volume transfer constant, the rate transfer constant, the blood plasma volume per unit volume, and the extravascular extracellular space per unit volume, were calculated by using both the fixed T1 of 1000 ms and measured T1 by using the multiple flip-angle method. Intra- and interobserver reproducibility was assessed by using the intraclass correlation coefficient. Dynamic contrast-enhanced pharmacokinetic parameters were compared between the 2 groups by using univariate and multivariate analysis. The diagnostic performance was evaluated by receiver operating characteristic analysis and leave-one-out cross validation. The intraclass correlation coefficients of all the parameters from both T1 values were fair to excellent (0.689-0.999). The volume transfer constant and rate transfer constant from the fixed T1 were significantly higher in patients with true progression ( P = .048 and .010, respectively). Multivariate analysis revealed that the rate transfer constant from the fixed T1 was the only independent variable (OR, 1.77 × 10 5 ) and showed substantial diagnostic power on receiver operating characteristic analysis (area under the curve, 0.752; P = .002). The sensitivity and specificity on leave-one-out cross validation were 73.3% (11/15) and 59.1% (13/20), respectively. The dynamic contrast-enhanced parameter of rate transfer constant from the fixed T1 acted as a preferable marker to differentiate true progression from pseudoprogression. © 2017 by American Journal of Neuroradiology.
Temperature dependencies of Henry’s law constants for different plant sesquiterpenes
Copolovici, Lucian; Niinemets, Ülo
2018-01-01
Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry’s law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry’s law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry’s law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755
Ramsden, Diane; Zhou, Jin; Tweedie, Donald J
2015-09-01
Accurate determination of rates of de novo synthesis and degradation of cytochrome P450s (P450s) has been challenging. There is a high degree of variability in the multiple published values of turnover for specific P450s that is likely exacerbated by differences in methodologies. For CYP3A4, reported half-life values range from 10 to 140 hours. An accurate value for kdeg has been identified as a major limitation for prediction of drug interactions involving mechanism-based inhibition and/or induction. Estimation of P450 half-life from in vitro test systems, such as human hepatocytes, is complicated by differential decreased enzyme function over culture time, attenuation of the impact of enzyme loss through inclusion of glucocorticoids in media, and viability limitations over long-term culture times. HepatoPac overcomes some of these challenges by providing extended stability of enzymes (2.5 weeks in our hands). As such it is a unique tool for studying rates of enzyme degradation achieved through modulation of enzyme levels. CYP3A4 mRNA levels were rapidly depleted by >90% using either small interfering RNA or addition of interleukin-6, which allowed an estimation of the degradation rate constant for CYP3A protein over an incubation time of 96 hours. The degradation rate constant of 0.0240 ± 0.005 hour(-1) was reproducible in hepatocytes from five different human donors. These donors also reflected the overall population with respect to CYP3A5 genotype. This methodology can be applied to additional enzymes and may provide a more accurate in vitro derived kdeg value for predicting clinical drug-drug interaction outcomes. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Jin, Jian; Ma, Haile; Qu, Wenjuan; Wang, Kai; Zhou, Cunshan; He, Ronghai; Luo, Lin; Owusu, John
2015-11-01
The effects of multi-frequency power ultrasound (MPU) pretreatment on the kinetics and thermodynamics of corn gluten meal (CGM) were investigated in this research. The apparent constant (KM), apparent break-down rate constant (kA), reaction rate constants (k), energy of activation (Ea), enthalpy of activation (ΔH), entropy of activation (ΔS) and Gibbs free energy of activation (ΔG) were determined by means of the Michaelis-Menten equation, first-order kinetics model, Arrhenius equation and transition state theory, respectively. The results showed that MPU pretreatment can accelerate the enzymolysis of CGM under different enzymolysis conditions, viz. substrate concentration, enzyme concentration, pH, and temperature. Kinetics analysis revealed that MPU pretreatment decreased the KM value by 26.1% and increased the kA value by 7.3%, indicating ultrasound pretreatment increased the affinity between enzyme and substrate. In addition, the values of k for ultrasound pretreatment were increased by 84.8%, 41.9%, 28.9%, and 18.8% at the temperature of 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased Ea, ΔH and ΔS by 23.0%, 24.3% and 25.3%, respectively, but ultrasound had little change in ΔG value in the temperature range of 293-323 K. In conclusion, MPU pretreatment could remarkably enhance the enzymolysis of CGM, and this method can be applied to protein proteolysis industry to produce peptides. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaraswamy, L; Xu, Z; Podgorsak, M
Purpose: Commercial dose calculation algorithms incorporate a single DLG value for a given beam energy that is applied across an entire treatment field. However, the physical processes associated with beam generation and dose delivery suggest that the DLG is not constant. The aim of this study is to evaluate the variation of DLG among all leaf pairs, to quantify how this variation impacts delivered dose, and to establish a novel method to correct dose distributions calculated using the approximation of constant DLG. Methods: A 2D diode array was used to measure the DLG for all 60 leaf pairs at severalmore » points along each leaf pair travel direction. This approach was validated by comparison to DLG values measured at select points using a 0.6 cc ion chamber with the standard formalism. In-house software was developed to enable incorporation of position dependent DLG values into dose distribution optimization and calculation. The accuracy of beam delivery of both the corrected and uncorrected treatment plans was studied through gamma pass rate evaluation. A comparison of DVH statistics in corrected and uncorrected treatment plans was made. Results: The outer 20 MLC leaf pairs (1.0 cm width) have DLG values that are 0.32 mm (mean) to 0.65 mm (maximum) lower than the central leaf-pair. VMAT plans using a large number of 1 cm wide leaves were more accurately delivered (gamma pass rate increased by 5%) and dose coverage was higher (D100 increased by 3%) when the 2D DLG was modeled. Conclusion: Using a constant DLG value for a given beam energy will result in dose optimization, dose calculation and treatment delivery inaccuracies that become significant for treatment plans with high modulation complexity scores delivered with 1 cm wide leaves.« less
A Simple and Reliable Setup for Monitoring Corrosion Rate of Steel Rebars in Concrete
Jibran, Mohammed Abdul Azeem; Azad, Abul Kalam
2014-01-01
The accuracy in the measurement of the rate of corrosion of steel in concrete depends on many factors. The high resistivity of concrete makes the polarization data erroneous due to the Ohmic drop. The other source of error is the use of an arbitrarily assumed value of the Stern-Geary constant for calculating corrosion current density. This paper presents the outcomes of a research work conducted to develop a reliable and low-cost experimental setup and a simple calculation procedure that can be utilised to calculate the corrosion current density considering the Ohmic drop compensation and the actual value of the Stern-Geary constants calculated using the polarization data. The measurements conducted on specimens corroded to different levels indicate the usefulness of the developed setup to determine the corrosion current density with and without Ohmic drop compensation. PMID:24526907
Bunyard, W C; Kadla, J F; DeYoung, J; DeSimone, J M
2001-08-01
The thermal decomposition of the free-radical initiator bis(perfluoro-2-N-propoxyprionyl) peroxide (BPPP) was studied in dense carbon dioxide and a series of fluorinated solvents. For the fluorinated solvents, the observed first-order decomposition rate constants, k(obs), increased with decreasing solvent viscosity, suggesting a single-bond decomposition mechanism. The k(obs) values are comparatively larger in dense carbon dioxide and similar to the "zero-viscosity" rate constants extrapolated from the decomposition kinetics in the fluorinated solvents. The decomposition activation parameters demonstrate a compensation behavior of the activation enthalpy with the activation entropy upon change in solvent viscosity. Comparison of the change in activation parameter values upon change in solvent viscosity for BPPP with two additional initiators, acetyl peroxide (AP) and trifluoroacetyl peroxide (TFAP), further suggests that carbon dioxide exerts a very minimal influence on the decomposition mechanism of these initiators through solvent-cage effects.
Batch growth kinetic studies of locally isolated cyanide-degrading Serratia marcescens strain AQ07.
Karamba, Kabiru Ibrahim; Ahmad, Siti Aqlima; Zulkharnain, Azham; Yasid, Nur Adeela; Ibrahim, Salihu; Shukor, Mohd Yunus
2018-01-01
The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination ( R 2 ) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration ( S m ) of 713.4 and empirical constant ( n ) of 1.516. Tessier and Aiba fitted the experimental data with a R 2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R 2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R 2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.
Kinetics of binding of chicken cystatin to papain.
Björk, I; Alriksson, E; Ylinenjärvi, K
1989-02-21
The kinetics of binding of chicken cystatin to papain were studied by stopped-flow fluorometry under pseudo-first-order conditions, i.e., with an excess of inhibitor. All reactions showed first-order behavior, and the observed pseudo-first-order rate constant increased linearly with the cystatin concentration up to the highest concentration that could be studied, 35 microM. The analyses thus provided no evidence for a limiting rate resulting from a conformational change stabilizing an initial encounter complex, in contrast with previous studies of reactions between serine proteinases and their protein inhibitors. The second-order association rate constant for complex formation was 9.9 X 10(6) M-1 s-1 at 25 degrees C, pH 7.4, I = 0.15, for both forms of cystatin, 1 and 2. This value approaches that expected for a diffusion-controlled rate. The temperature dependence of the association rate constant gave an enthalpy of activation at 25 degrees C of 31.5 kJ mol-1 and an entropy of activation at 25 degrees C of -7 J K-1 mol-1, compatible with no appreciable conformational change during the reaction. The association rate constant was independent of pH between pH 6 and 8 but decreased at lower and higher pH in a manner consistent with involvement of an unprotonated acid group with a pKa of 4-4.5 and a protonated basic group with a pKa of 9-9.5 in the interaction. The association rate constant was unaffected by ionic strengths between 0.15 and 1.0 but decreased somewhat at lower ionic strengths. Incubation of the complex between cystatin 2 and papain with an excess of cystatin 1 resulted in slow displacement of cystatin 2 from the complex.(ABSTRACT TRUNCATED AT 250 WORDS)
The Oxidation of Ascorbic Acid by Hexacyanoferrate(III) Ion in Acidic Aqueous Media.
ERIC Educational Resources Information Center
Martins, Luis J. A.; da Costa, J. Barbosa
1988-01-01
Describes a kinetic and mechanistic investigation of ascorbic acid by a substitution-inert complex in acidic medium suitable for the undergraduate level. Discusses obtaining the second order rate constant for the rate determining step at a given temperature and comparison with the value predicted on the basis of the Marcus cross-relation. (CW)
Zagidullin, M V; Pershin, A A; Azyazov, V N; Mebel, A M
2015-12-28
Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O2(a(1)Δg) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O2(a(1)Δg))2 collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90-315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k2 and k3 are found to be similar, with the k3/k2 ratio monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k2 slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O2)2 dimole, which were utilized to compute rate constants k2 and k3 within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O2 molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1(1)Ag←(1)B3u transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1(1)Ag←2(1)Ag transition induced by the asymmetric O-O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k2 and k3 close to one another.
Determination of the strong coupling constant from jet rates in deep inelastic scattering
NASA Astrophysics Data System (ADS)
Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hill, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuler, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration
1995-02-01
Jet rates in deep inelastic electron proton scattering are studied with the H1 detector at HERA for momentum transfers squared between 10 and 4000 GeV 2. It is shown that they can be quantitatively described by perturbative QCD in next to leading order making use of the parton densities of the proton and with the strong coupling constant αs as a free parameter. The measured value, αs( MZ2) = 0.123 ± 0.018, is in agreement both with determinations from e+e- annihilation at LEP using the same observable and with the world average.
NASA Astrophysics Data System (ADS)
Ali, Ismat H.
2015-06-01
The kinetics of oxidation of [CrIII(atda)(H2O)2] (atda = anthranil- N, N-diacetato) complex by IO{4/-} was studied spectrophotometrically in aqueous solutions with pH range 2.20-3.34, 0.30 M ionic strength and in 20.0-40.0°C temperature range. The rate law of the reaction exhibited saturation kinetics. Values of the rate constant for the electron transfer process, the equilibrium constant for dissociation of [CrIII (atda)(H2O)2] to [CrIII (atda) (H2O)OH]+ + H+ and the pre-equilibrium formation constant were calculated. The thermodynamic activation parameters are reported. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of the IVII to chromium(III).
Subcutaneous blood flow in psoriasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klemp, P.
1985-03-01
The simultaneously recorded disappearance rates of /sup 133/xe from subcutaneous adipose tissue in the crus were studied in 10 patients with psoriasis vulgaris using atraumatic labeling of the tissue in lesional skin (LS) areas and symmetrical, nonlesional skin (NLS) areas. Control experiments were performed bilaterally in 10 younger, healthy subjects. The subcutaneous washout rate constant was significantly higher in LS, 0.79 +/- 0.05 min-1 x 10(2) compared to the washout rate constant of NLS, 0.56 +/- 0.07 min-1. 10(2), or the washout rate constant in the normal subjects, 0.46 +/- 0.17 min-1 x 10(2). The mean washout rate constant inmore » NLS was 25% higher than the mean washout rate constant in the normal subjects. The difference was, however, not statistically significant. Differences in the washout rate constants might be due to abnormal subcutaneous tissue-to-blood partition (lambda) in the LS--and therefore not reflecting the real differences in the subcutaneous blood flow (SBF). The lambda for /sup 133/Xe was therefore measured--using a double isotope washout method (/sup 133/Xe and (/sup 131/I)antipyrine)--in symmetrical sites of the lateral crus in LS and NLS of 10 patients with psoriasis vulgaris and in 10 legs of normal subjects. In LS the lambda was 4.52 +/- 1.67 ml/g, which was not statistically different from that of NLS, 5.25 +/- 2.19 ml/g, nor from that of normal subcutaneous tissue, 4.98 +/- 1.04 ml/g. Calculations of the SBF using the obtained lambda values gave a significantly higher SBF in LS, 3.57 +/- 0.23 ml/100 g/min, compared to SBF in the NLS, 2.94 +/- 0.37 ml/100 g/min. There was no statistically significant difference between SBF in NLS and SBF in the normal subjects. The increased SBF in LS of psoriatics might be a secondary phenomenon to an increased heat loss in the lesional skin.« less
Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate.
Mahmoodlu, Mojtaba G; Hassanizadeh, S Majid; Hartog, Niels
2014-07-01
The use of permanganate solutions for in-situ chemical oxidation (ISCO) is a well-established groundwater remediation technology, particularly for targeting chlorinated ethenes. The kinetics of oxidation reactions is an important ISCO remediation design aspect that affects the efficiency and oxidant persistence. The overall rate of the ISCO reaction between oxidant and contaminant is typically described using a second-order kinetic model while the second-order rate constant is determined experimentally by means of a pseudo first order approach. However, earlier studies of chlorinated hydrocarbons have yielded a wide range of values for the second-order rate constants. Also, there is limited insight in the kinetics of permanganate reactions with fuel-derived groundwater contaminants such as toluene and ethanol. In this study, batch experiments were carried out to investigate and compare the oxidation kinetics of aqueous trichloroethylene (TCE), ethanol, and toluene in an aqueous potassium permanganate solution. The overall second-order rate constants were determined directly by fitting a second-order model to the data, instead of typically using the pseudo-first-order approach. The second-order reaction rate constants (M(-1) s(-1)) for TCE, toluene, and ethanol were 8.0×10(-1), 2.5×10(-4), and 6.5×10(-4), respectively. Results showed that the inappropriate use of the pseudo-first-order approach in several previous studies produced biased estimates of the second-order rate constants. In our study, this error was expressed as a function of the extent (P/N) in which the reactant concentrations deviated from the stoichiometric ratio of each oxidation reaction. The error associated with the inappropriate use of the pseudo-first-order approach is negatively correlated with the P/N ratio and reached up to 25% of the estimated second-order rate constant in some previous studies of TCE oxidation. Based on our results, a similar relation is valid for the other volatile organic compounds studied. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Heming; Wei, Xiaoxuan; Song, Xuedan; Shah, Shaheen; Chen, Jingwen; Liu, Jianhui; Hao, Ce; Chen, Zhongfang
2018-01-01
For organic pollutants, photodegradation, as a major abiotic elimination process and of great importance to the environmental fate and risk, involves rather complicated physical and chemical processes of excited molecules. Herein, we systematically studied the photophysical and photochemical processes of a widely used antibiotic, namely sulfapyridine. By means of density functional theory (DFT) computations, we examined the rate constants and the competition of both photophysical and photochemical processes, elucidated the photochemical reaction mechanism, calculated reaction quantum yield (Φ) based on both photophysical and photochemical processes, and subsequently estimated the photodegradation rate constant. We further conducted photolysis experiments to measure the photodegradation rate constant of sulfapyridine. Our computations showed that sulfapyridine at the lowest excited singlet state (S 1 ) mainly undergoes internal conversion to its ground state, and is difficult to transfer to the lowest excited triplet states (T 1 ) via intersystem crossing (ISC) and emit fluorescence. In T 1 state, compared with phosphorescence emission and ISC, chemical reaction is much easier to initiate. Encouragingly, the theoretically predicted photodegradation rate constant is close to the experimentally observed value, indicating that quantum chemistry computation is powerful enough to study photodegradation involving ultra-fast photophysical and photochemical processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Processes and kinetics of Cd2+ sorption by a calcareous aquifer sand
Fuller, C.C.; Davis, J.A.
1987-01-01
The rate of Cd2+ sorption by a calcareous aquifer sand was characterized by two reaction steps, with the first step reaching completion in 24 hours. The second step proceeded at a slow and nearly constant rate for at least seven days. The first step includes a fast adsorption reaction which is followed by diffusive transport into either a disordered surface film of hydrated calcium carbonate or into pore spaces. After 24 hours the rate of Cd2+ sorption was constant and controlled by the rate of surface coprecipitation, as a solid solution of CdCO3 in CaCO3 formed in recrystallizing material. Desorption of Cd2+ from the sand was slow. Clean grains of primary minerals, e.g. quartz and aluminosilicates. sorbed much less Cd2+ than grains which had surface patches of secondary minerals, e.g. carbonates, iron and manganese oxides. Calcite grains sorbed the greatest amount of Cd2+ on a weight-normalized basis despite the greater abundance of quartz. A method is illustrated for determining empirical binding constants for trace metals at in situ pH values without introducing the experimental problem of supersaturation. The binding constants are useful for solute transport models which include a computation of aqueous speciation. ?? 1987.
Absolute rate constants of alkoxyl radical reactions in aqueous solution. [Tert-butyl hydroperoxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erben-Russ, M.; Michel, C.; Bors, W.
1987-04-23
The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 10/sup 6/ s/sup -1/. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA)more » was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent.« less
Quenching of I(2P1/2) by O3 and O(3P).
Azyazov, Valeriy N; Antonov, Ivan O; Heaven, Michael C
2007-04-26
Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.
Pressure and temperature dependences of the reaction of OH with nitric acid
NASA Technical Reports Server (NTRS)
Stachnik, R. A.; Molina, L. T.; Molina, M. J.
1986-01-01
Rate constants for the reaction of OH with HNO3 have been measured by using a laser flash photolysis resonance absorption technique at 298 and 248 K in the presence of 10-730 Torr of He, N2, and SF6. A dependence on total pressure was observed with rate constant values increasing at 298 K from 1.11 x 10 to the -13th cu cm/molecule/s at 10 Torr to 1.45 x 10 to the -13th cu cm/molecule/s at 730 Torr, and at 248 K from 1.87 x 10 to the -13th cu cm/molecule/s at 10 Torr to 3.07 x 10 to the -13th cu cm/molecule/s at 730 Torr with helium as the diluent gas. Falloff behavior occurred at lower pressures with SF6 or N2 as the diluent gas. Extrapolated zero pressure rate constants were determined and correspond to an Arrhenius activation energy of E/R = -710 K.
Becerra, Rosa; Cannady, J Pat; Walsh, Robin
2011-05-05
Time-resolved kinetic studies of silylene, SiH(2), generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol, and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modeled using RRKM theory, based on E(0) values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k(∞) values in the range (1.9-4.5) × 10(-10) cm(3) molecule(-1) s(-1). These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16% and 67% of the collision rates for these reactions. In the reaction of SiH(2) + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalyzed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H(2)O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.
Mizukawa, N; Hino, A; Imahori, Y; Tenjin, H; Yano, I; Yoshino, E; Hirakawa, K; Yamashita, M; Oki, F; Nakahashi, H
1989-03-01
Blood flow and glucose metabolism of the tumors and perifocal edematous tissues were evaluated using positron emission tomography (PET). Thirty-one brain tumor cases were investigated 12 non glial tumors (9 meningiomas and 3 metastatic tumors) and 19 gliomas (these were classified in 5 astrocytomas, 7 anaplastic astrocytomas and 7 glioblastomas, according to the malignancy). The diagnosis were confirmed pathologically in 30 cases. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were measured by O-15 labeled gases inhalation methods. Cerebral metabolic rate for glucose (CMFglu) were measured by F-18 Deoxyglucose intravenous injection method and calculated by Hutchins's formula. The rate constant (ks) and lumped constant (LC) used in this study were the same as those published by Phelps et al. in 1979. The blood flow and glucose metabolic rates of tumors were measured by the same methods. The results were as follows: 1) Meningiomas showed very high blood flow and blood volume with a wide range. The OEF and metabolic rate for glucose (MRglu) values were very low. 2) Metastatic tumors showed the low values of blood flow, metabolic rate for oxygen (MRO2) and OEF. 3) The blood flow and MRglu values on gliomas were varied with no significant differences between the three subgroups. On the other hands, as the malignancy of the glioma increased, a statistically significant increase in blood volume and a decrease in OEF were noted. 4) The OEF values from the various types of tumors studied were significantly lower than those obtained from the normal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasbinder, Michael John
2006-01-01
Chapters 1 and 2 dealt with the chemistry of superoxo-, hydroperoxo-, and oxo- complexes of chromium, rhodium and cobalt. Chapter 3 dealt with the mechanism of oxygen-atom transfer catalyzed by an oxo-complex of rhenium. In Chapter 1, it was shown that hydroperoxometal complexes of cobalt and rhodium react with superoxochromium and chromyl ions, generating reduced chromium species while oxidizing the hydroperoxometal ions to their corresponding superoxometal ions. It was shown that the chromyl and superoxochromium ions are the more powerful oxidants. Evidence supports hydrogen atom transfer from the hydroperoxometal ion to the oxidizing superoxochromium or chromyl ion as the reactionmore » mechanism. There is a significant H/D kinetic isotope effect. Comparisons to the rate constants of other known hydrogen atom transfer reactions show the expected correlation with bond dissociation energies. In Chapter 2, it was found that the superoxometal complexes Cr{sub aq}OO 2+ and Rh(NH 3) 4(H 2O)OO 2+ oxidize stable nitroxyl radicals of the TEMPO series with rate constants that correlate with the redox potentials of both the oxidant and reductant. These reactions fit the Marcus equation for electron transfer near the theoretical value. Acid catalysis is important to the reaction, especially the thermodynamically limited cases involving Rh(NH 3) 4(H 2O)OO 2+ as the oxidant. The rate constants are notably less than those measured in the reaction between the same nitroxyl radicals and other strong free-radical oxidants, an illustration of the delocalized and stabilized nature of the superoxometal ions. Chapter 3 showed that oxo-rhenium catalysts needed a nucleophile to complete the catalytic oxygen-atom transfer from substituted pyridine-N-oxides to triphenylphosphine. The reaction was studied by introducing various pyridine-derived nucleophiles and monitoring their effect on the rate, then fitting the observed rate constants to the Hammett correlation. It was found that the values of the Hammett reaction constant PN were -1.0(1) for 4-nitro-2-methylpyridine-N-oxide and -2.6(4) for 4-methylpyridine-N-oxide as substrates. The negative value confirms pyridine is acting as a nucleophile. Nucleophiles other than pyridine derivatives were also tested. In the end, it was found that the most effective nucleophiles were the pyridine-N-oxides themselves, meaning that a second equivalent of substrate serves as the most efficient promoter of this oxygen-atom transfer reaction. This relative nucleophilicity of pyridines and pyridine-N-oxides is similar to what is observed in other OAT reactions generating high-valent metal-oxo species.« less
Donoso, J; Muñoz, F; García Del Vado, A; Echevarría, G; García Blanco, F
1986-01-01
Formation and hydrolysis rate constants as well as equilibrium constants of the Schiff base derived from pyridoxal 5'-phosphate and n-hexylamine were determined between pH 3.5 and 7.5 in ethanol/water mixtures (3:17, v/v, and 49:1, v/v). The results indicate that solvent polarity scarcely alters the values of these constants but that they are dependent on the pH. Spectrophotometric titration of this Schiff base was also carried out. We found that a pKa value of 6.1, attributed in high-polarity media to protonation of the pyridine nitrogen atom, is independent of solvent polarity, whereas the pKa of the monoprotonated form of the imine falls from 12.5 in ethanol/water (3:17) to 11.3 in ethanol/water (49:1). Fitting of the experimental results for the hydrolysis to a theoretical model indicates the existence of a group with a pKa value of 6.1 that is crucial in the variation of kinetic constant of hydrolysis with pH. Studies of the reactivity of the coenzyme (pyridoxal 5'-phosphate) of glycogen phosphorylase b with hydroxylamine show that this reaction only occurs when the pH value of solution is below 6.5 and the hydrolysis of imine bond has started. We propose that the decrease in activity of phosphorylase b when the pH value is less than 6.2 must be caused by the cleavage of enzyme-coenzyme binding and that this may be related with protonation of the pyridine nitrogen atom of pyridoxal 5'-phosphate. PMID:3099764
Nonquaternary Cholinesterase Reactivators.
1982-08-30
c, a plot (not shown) of pKa versus Hammet substituent constant (a )42 is also linear and conforms p to equation (5) pKa - (7.63 ±0.02) - (.63 ±0.05...dissociates to the active oximate form, we have defined an effective bimolecular reactivation rate constant as in equation (6) keff ’ kb [1 + antilog(pKa...type 1 compounds generally exhibit low activity as reactivators. In terms of keff values [see equation (6)] for reactivation of ethyl methylphosphonyl
Touw, D J; Vinks, A A; Neef, C
1997-06-01
The availability of personal computer programs for individualizing drug dosage regimens has stimulated the interest in modelling population pharmacokinetics. Data from 82 adolescent and adult patients with cystic fibrosis (CF) who were treated with intravenous tobramycin because of an exacerbation of their pulmonary infection were analysed with a non-parametric expectation maximization (NPEM) algorithm. This algorithm estimates the entire discrete joint probability density of the pharmacokinetic parameters. It also provides traditional parametric statistics such as the means, standard deviation, median, covariances and correlations among the various parameters. It also provides graphic-2- and 3-dimensional representations of the marginal densities of the parameters investigated. Several models for intravenous tobramycin in adolescent and adult patients with CF were compared. Covariates were total body weight (for the volume of distribution) and creatinine clearance (for the total body clearance and elimination rate). Because of lack of data on patients with poor renal function, restricted models with non-renal clearance and the non-renal elimination rate constant fixed at literature values of 0.15 L/h and 0.01 h-1 were also included. In this population, intravenous tobramycin could be best described by median (+/-dispersion factor) volume of distribution per unit of total body weight of 0.28 +/- 0.05 L/kg, elimination rate constant of 0.25 +/- 0.10 h-1 and elimination rate constant per unit of creatinine clearance of 0.0008 +/- 0.0009 h-1/(ml/min/1.73 m2). Analysis of populations of increasing size showed that using a restricted model with a non-renal elimination rate constant fixed at 0.01 h-1, a model based on a population of only 10 to 20 patients, contained parameter values similar to those of the entire population and, using the full model, a larger population (at least 40 patients) was needed.
Failure in laboratory fault models in triaxial tests
Savage, J.C.; Lockner, D.A.; Byerlee, J.D.
1996-01-01
A model of a fault in the Earth is a sand-filled saw cut in a granite cylinder subjected to a triaxial test. The saw cut is inclined at an angle a to the cylinder axis, and the sand filling is intended to represent gouge. The triaxial test subjects the granite cylinder to a constant confining pressure and increasing axial stress to maintain a constant rate of shortening of the cylinder. The required axial stress increases at a decreasing rate to a maximum, beyond which a roughly constant axial stress is sufficient to maintain the constant rate of shortening: Such triaxial tests were run for saw cuts inclined at angles ?? of 20??, 25??, 30??, 35??, 40??, 45??, and 50?? to the cylinder axis, and the apparent coefficient of friction ??a (ratio of the shear stress to the normal stress, both stresses resolved onto the saw cut) at failure was determined. Subject to the assumption that the observed failure involves slip on Coulomb shears (orientation unspecified), the orientation of the principal compression axis within the gouge can be calculated as a function of ??a for a given value of the coefficient of internal friction ??i. The rotation of the principal stress axes within the gouge in a triaxial test can then be followed as the shear strain across the gouge layer increases. For ??i ??? 0.8, an appropriate value for highly sheared sand, the observed values ??a imply that the principal-axis of compression within the gouge rotates so as to approach being parallel to the cylinder axis for all saw cut angles (20?? < ?? < 50??). In the limiting state (principal compression axis parallel to cylinder axis) the stress state in the gouge layer would be the same as that in the granite cylinder, and the failure criterion would be independent of the saw cut angle.
Loureiro, Susana; Sousa, J P; Nogueira, A J A; Soares, A M V M
2002-12-01
An achievable way to evaluate the bioavailability of a certain toxic in the environment is to measure the concentration inside soil organisms. Non-target saprotrophic organisms like isopods are often exposed to agrochemicals or other kind of persistent chemicals. In this study the isopod Porcellionides pruinosus was exposed to a constant concentration of Lindane (gamma-HCH) via food. Using toxicokinetic models the bioaccumulation and fate of the pesticide by isopods was assessed and compared with previous studies, where an unexpected decrease in gamma-HCH concentration was observed. Animal body burdens showed higher values, and a lower assimilation rate constant, although the elimination rate constant was twice the value previously observed. It was also observed that a significant amount of gamma-HCH had an unknown fate. To discover its possible destiny, a factorial experiment was carried out using two types of CO2 traps and contaminated leaves in the presence and absence of isopods. It was concluded that isopod activity might have been responsible for a more rapid biotransformation of gamma-HCH in leaves, since the amount of the pesticide is reduced in their presence.
Ren, Jimin; Sherry, A. Dean; Malloy, Craig R.
2015-01-01
Inversion transfer (IT) is a well-established technique with multiple attractive features for analysis of kinetics. However, its application in measurement of ATP synthesis rate in vivo has lagged behind the more common ST techniques. One well-recognized issue with IT is the complexity of data analysis in comparison to much simpler analysis by ST. This complexity arises, in part, because the γ-ATP spin is involved in multiple chemical reactions and magnetization exchanges, whereas Pi is involved in a single reaction, Pi → γ-ATP. By considering the reactions involving γ-ATP only as a lumped constant, the rate constant for the reaction of physiological interest, kPi→γATP, can be determined. Here, we present a new IT data analysis method to evaluate kPi→γATP using data collected from resting human skeletal muscle at 7T. The method is based on the basic Bloch-McConnell equation, which relates kPi→γATP with ṁPi, the rate of Pi magnetization change. The kPi→γATP value is accessed from ṁPi data by more familiar linear correlation approaches. For a group of human subjects (n = 15), the kPi→γATP value derived for resting calf muscle was 0.066 ± 0.017 s−1, in agreement with literature reported values. In this study we also explored possible time-saving strategies to speed up data acquisition for kPi→γATP evaluation using simulations. The analysis indicates that it is feasible to carry out a 31P inversion transfer experiment in ~10 minutes or shorter at 7T with reasonable outcome in kPi→γATP variance for measurement of ATP synthesis in resting human skeletal muscle. We believe that this new IT data analysis approach will facilitate the wide acceptance of IT to evaluate ATP synthesis rate in vivo. PMID:25943328
Very slow growth of Escherichia coli.
Chesbro, W; Evans, T; Eifert, R
1979-01-01
A recycling fermentor (a chemostat with 100% biomass feedback) was used to study glucose-limited behavior of Escherichia coli B. The expectation from mass transfer analysis that growth would asymptotically approach a limit mass determined by the glucose provision rate (GPR) and the culture's maintenance requirement was not met. Instead, growth proceeded at progressively lower rates through three distinct phases. After the fermentor was seeded, but before glucose became limiting, growth followed the usual, exponential path (phase 1). About 12 h postseeding, residual glucose in the fermentor fell below 1 microgram . ml-1 and the growth rate (dx/dt) became constant and a linear function of GPR (phase 2). The specific growth rate, mu, therefore fell continuously throughout the phase. Biomass yield and glucose assimilation (13%) were near the level for exponential growth, however, and independent of GPR over a broad range. At a critical specific growth rate (0.04 h-1 for this strain), phase 2 ended abruptly and phase 3 commenced. In phase 3, the growth rate was again constant, although lower than in phase 2, so that mu continued to fall, but growth rates and yields were praboloid functions of GPR. They were never zero, however, at any positive value of GPR. By inference, the fraction of metabolic energy used for maintenance functions is constant for a given GPR, although different for phases 2 and 3, and independent of biomass. In both phases 2 and 3, orcinol, diphenylamine, and Lowry reactive materials were secreted at near-constant rates such that over 50% as much biosynthetic mass was secreted as was retained by the cells. Images PMID:378981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzegilenko, F.N.; Bowman, J.M.
1996-08-01
Two reduced dimensionality theories are used to calculate the thermal rate constant for the OH+CO{r_arrow}H+CO{sub 2} reaction. The standard theory employs energy-shift approximations to extract the full six degree-of-freedom quantum rate constant for this reaction from the previous two degree-of-freedom (2-DOF) quantum calculations of Hernandez and Clary [M.I. Hernandez and D.C. Clary, J. Chem. Phys. {bold 101}, 2779 (1994)]. Three extra bending modes and one extra {open_quote}{open_quote}spectator{close_quote}{close_quote} CO stretch mode are treated adiabatically in the harmonic fashion. The parameters of the exit channel transition state are used to evaluate the frequencies of those additional modes. A new reduced dimensionality theorymore » is also applied to this reaction. This theory explicitly addresses the finding from the 2-DOF calculations that the reaction proceeds mainly via complex formation. A J-shifting approximation has been used to take into account the initial states with non-zero values of total angular momentum in both reduced dimensionality theories. Cumulative reaction probabilities and thermal rate constants are calculated and compared with the previous quasiclassical and reduced dimensionality quantum calculations and with experiment. The rate constant from the new reduced dimensionality theory is between a factor of 5 and 100 times smaller than the statistical transition state theory result, and is in much better agreement with experiment. {copyright} {ital 1996 American Institute of Physics.}« less
Stockbridge, Randy B.; Wolfenden, Richard
2011-01-01
To estimate the proficiency of inorganic pyrophosphatase as a catalyst, 31P NMR was used to determine rate constants and thermodynamics of activation for the spontaneous hydrolysis of inorganic pyrophosphate (PPi) in the presence and absence of Mg2+ at elevated temperatures. These values were compared with rate constants and activation parameters determined for the reaction catalyzed by Escherichia coli inorganic pyrophosphatase using isothermal titration calorimetry. At 25 °C and pH 8.5, the hydrolysis of MgPPi2− proceeds with a rate constant of 2.8 × 10−10 s−1, whereas E. coli pyrophosphatase was found to have a turnover number of 570 s−1 under the same conditions. The resulting rate enhancement (2 × 1012-fold) is achieved entirely by reducing the enthalpy of activation (ΔΔH‡ = −16.6 kcal/mol). The presence of Mg2+ ions or the transfer of the substrate from bulk water to dimethyl sulfoxide was found to increase the rate of pyrophosphate hydrolysis by as much as ∼106-fold. Transfer to dimethyl sulfoxide accelerated PPi hydrolysis by reducing the enthalpy of activation. Mg2+ increased the rate of PPi hydrolysis by both increasing the entropy of activation and reducing the enthalpy of activation. PMID:21460215
Keromnes, Alan; Metcalfe, Wayne K.; Heufer, Karl A.; ...
2013-03-12
The oxidation of syngas mixtures was investigated experimentally and simulated with an updated chemical kinetic model. Ignition delay times for H 2/CO/O 2/N 2/Ar mixtures have been measured using two rapid compression machines and shock tubes at pressures from 1 to 70 bar, over a temperature range of 914–2220 K and at equivalence ratios from 0.1 to 4.0. Results show a strong dependence of ignition times on temperature and pressure at the end of the compression; ignition delays decrease with increasing temperature, pressure, and equivalence ratio. The reactivity of the syngas mixtures was found to be governed by hydrogen chemistrymore » for CO concentrations lower than 50% in the fuel mixture. For higher CO concentrations, an inhibiting effect of CO was observed. Flame speeds were measured in helium for syngas mixtures with a high CO content and at elevated pressures of 5 and 10 atm using the spherically expanding flame method. A detailed chemical kinetic mechanism for hydrogen and H 2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature. Experimental results for ignition delay times and flame speeds have been compared with predictions using our newly revised chemical kinetic mechanism, and good agreement was observed. In the mechanism validation, particular emphasis is placed on predicting experimental data at high pressures (up to 70 bar) and intermediate- to high-temperature conditions, particularly important for applications in internal combustion engines and gas turbines. The reaction sequence H 2 + HO˙ 2 ↔ H˙+H 2O 2 followed by H 2O 2(+M) ↔ O˙H+O˙H(+M) was found to play a key role in hydrogen ignition under high-pressure and intermediate-temperature conditions. The rate constant for H 2+HO˙ 2 showed strong sensitivity to high-pressure ignition times and has considerable uncertainty, based on literature values. As a result, a rate constant for this reaction is recommended based on available literature values and on our mechanism validation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Todd Andrew; Brandt, Craig C.; Brooks, Scott C.
Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from East Fork Poplar Creek, Tennessee, USA (EFPC) were measured during 2014-2015 using stable Hg isotopic rate assays. 201Hg II and MM 202Hg were added to intact periphyton samples and the formation of MM 201Hg and loss of MM 202Hg were monitored over time and used to calculate first-order rate constants for methylation and demethylation, respectively. The influence of location, temperature/season, light exposure and biofilm structure on methylation and demethylation were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven bymore » differences in the demethylation rate constant (k d). In contrast, the within-site seasonal difference in net methylation was driven by changes in the methylation rate constant (k m). Samples incubated in the dark had lower net methylation due to km values that were 60% less than those incubated in the light. Disrupting the biofilm structure decreased km by 50% and resulted in net demethylating conditions. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 27-85% of the MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.« less
Brazzale, Alessandra R; Küchenhoff, Helmut; Krügel, Stefanie; Schiergens, Tobias S; Trentzsch, Heiko; Hartl, Wolfgang
2018-04-05
We present a new method for estimating a change point in the hazard function of a survival distribution assuming a constant hazard rate after the change point and a decreasing hazard rate before the change point. Our method is based on fitting a stump regression to p values for testing hazard rates in small time intervals. We present three real data examples describing survival patterns of severely ill patients, whose excess mortality rates are known to persist far beyond hospital discharge. For designing survival studies in these patients and for the definition of hospital performance metrics (e.g. mortality), it is essential to define adequate and objective end points. The reliable estimation of a change point will help researchers to identify such end points. By precisely knowing this change point, clinicians can distinguish between the acute phase with high hazard (time elapsed after admission and before the change point was reached), and the chronic phase (time elapsed after the change point) in which hazard is fairly constant. We show in an extensive simulation study that maximum likelihood estimation is not robust in this setting, and we evaluate our new estimation strategy including bootstrap confidence intervals and finite sample bias correction.
Discounting and decision making in the economic evaluation of health-care technologies.
Claxton, Karl; Paulden, Mike; Gravelle, Hugh; Brouwer, Werner; Culyer, Anthony J
2011-01-01
Discounting costs and health benefits in cost-effectiveness analysis has been the subject of recent debate - some authors suggesting a common rate for both and others suggesting a lower rate for health. We show how these views turn on key judgments of fact and value: on whether the social objective is to maximise discounted health outcomes or the present consumption value of health; on whether the budget for health care is fixed; on the expected growth in the cost-effectiveness threshold; and on the expected growth in the consumption value of health. We demonstrate that if the budget for health care is fixed and decisions are based on incremental cost effectiveness ratios (ICERs), discounting costs and health gains at the same rate is correct only if the threshold remains constant. Expecting growth in the consumption value of health does not itself justify differential rates but implies a lower rate for both. However, whether one believes that the objective should be the maximisation of the present value of health or the present consumption value of health, adopting the social time preference rate for consumption as the discount rate for costs and health gains is valid only under strong and implausible assumptions about values and facts. 2010 John Wiley & Sons, Ltd.
Gas phase recombination of hydrogen and deuterium atoms. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Trainor, D. W.; Ham, D. O.; Kaufman, F.
1973-01-01
Rate constants for the reaction H + H + M - H2 + M, with M = H2, He, and Ar were measured over the temperature range 77 to 298 K. Hydrogen atoms were produced by thermal dissociation and absolute atom concentrations were measured through use of self-balancing, isothermal catalytic probe detector. The specific rate constants were 8.1 + or - 0.4 x 10 to the minus 33rd power, 7.0 + or - 0.4 x 10 to the minus 33rd power, and 9.2 + or - 0.6 x at 298 K for M = H2, He, and Ar respectively; these values rising to 18.5 + or - 2.2 x 10 to the minus 33rd power, 12.0 + or - 1.5 x 10 to the minus 33rd power, and 27.4 + or - 4.6 x 10 to the minus 33rd power cm to the 6th power/molecules sq/sec at 77 K. for the equivalent deuterium atom process with D2 as the third body, the rate constants are 6.1 + or - 0.3 x 10 to the minus 33rd power cm to the 6th power/molecules sq/sec at 298 K and 15.1 + or - 1.0 x 10 to the minus 33rd power cm to the 6th power/molecules sq/sec at 77 K. These values are compared with previous experimental measurements and with recent theoretical calculations.
Medvedeva, Nataly; Papper, Vladislav; Likhtenshtein, Gertz I
2005-09-21
Measurements of active encounters between molecules in native membranes containing ingredients, including proteins, are of prime importance. To estimate rare encounters in a high range of rate constants (rate coefficients) and distances between interacting molecules in membranes, a cascade of photochemical reactions for molecules diffusing in multilamellar liposomes was investigated. The sensitised cascade triplet cis-trans photoisomerisation of the excited stilbene involves the use of a triplet sensitiser (Erythrosin B), a photochrome stilbene-derivative probe (4-dimethylamino-4'-aminostilbene) exhibiting the phenomenon of trans-cis photoisomerisation, and nitroxide radicals (5-doxyl stearic acid) to quench the excited triplet state of the sensitiser. Measurement of the phosphorescence lifetime of Erythrosin B and the fluorescence enhancement of the stilbene-derivative photochrome probe, at various concentrations of the nitroxide probe, made it possible to calculate the quenching rate constant k(q)= 1.1 x 10(15) cm2 M(-1) s(-1) and the rate constant of the triplet-triplet energy transfer between the sensitiser and stilbene probe k(T)= 1.0 x 10(12) cm2 M(-1) s(-1). These values, together with the data on diffusion rate constant, obtained by methods utilising various theoretical characteristic times of about seven orders of magnitude and the experimental rate constants of about five orders of magnitude, were found to be in good agreement with the advanced theory of diffusion-controlled reactions in two dimensions. Because the characteristic time of the proposed cascade method is relatively large (0.1 s), it is possible to follow rare collisions between molecules and free radicals in model and biological membranes with a very sensitive fluorescence spectroscopy technique, using a relatively low concentration of probes.
Cropper, S L; Kocaoglu-Vurma, N A; Tharp, B W; Harper, W J
2013-06-01
The objective of this study was to determine how varying concentrations of the stabilizer, locust bean gum (LBG), and different levels of the emulsifier, mono- and diglycerides (MDGs), influenced fat aggregation and melting characteristics of ice cream. Ice creams were made containing MDGs and LBG singly and in combination at concentrations ranging between 0.0% to 0.14% and 0.0% to 0.23%, respectively. Particle size analysis, conducted on both the mixes and ice cream, and melting rate testing on the ice cream were used to determine fat aggregation. No significant differences (P < 0.05) were found between particle size values for experimental ice cream mixes. However, higher concentrations of both LBG and MDG in the ice creams resulted in values that were larger than the control. This study also found an increase in the particle size values when MDG levels were held constant and LBG amounts were increased in the ice cream. Ice creams with higher concentrations of MDG and LBG together had the greatest difference in the rate of melting than the control. The melting rate decreased with increasing LBG concentrations at constant MDG levels. These results illustrated that fat aggregation may not only be affected by emulsifiers, but that stabilizers may play a role in contributing to the destabilization of fat globules. © 2013 Institute of Food Technologists®
Radiation Parameters of High Dose Rate Iridium -192 Sources
NASA Astrophysics Data System (ADS)
Podgorsak, Matthew B.
A lack of physical data for high dose rate (HDR) Ir-192 sources has necessitated the use of basic radiation parameters measured with low dose rate (LDR) Ir-192 seeds and ribbons in HDR dosimetry calculations. A rigorous examination of the radiation parameters of several HDR Ir-192 sources has shown that this extension of physical data from LDR to HDR Ir-192 may be inaccurate. Uncertainty in any of the basic radiation parameters used in dosimetry calculations compromises the accuracy of the calculated dose distribution and the subsequent dose delivery. Dose errors of up to 0.3%, 6%, and 2% can result from the use of currently accepted values for the half-life, exposure rate constant, and dose buildup effect, respectively. Since an accuracy of 5% in the delivered dose is essential to prevent severe complications or tumor regrowth, the use of basic physical constants with uncertainties approaching 6% is unacceptable. A systematic evaluation of the pertinent radiation parameters contributes to a reduction in the overall uncertainty in HDR Ir-192 dose delivery. Moreover, the results of the studies described in this thesis contribute significantly to the establishment of standardized numerical values to be used in HDR Ir-192 dosimetry calculations.
Sleep, John; Irving, Malcolm; Burton, Kevin
2005-03-15
The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two biochemical steps with similar rate constants -- ATP hydrolysis and the release of inorganic phosphate -- both of which combine to control the rate of force development.
Effects of alteration product precipitation on glass dissolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strachan, Denis M.; Neeway, James J.
2014-06-01
Understanding the mechanisms that control the durability of nuclear waste glass is paramount if reliable models are to be constructed so that the glass dissolution rate in a given geological repository can be calculated. Presently, it is agreed that (boro)silicate glasses dissolve in water at a rate dependent on the solution concentration of orthosilicic acid (H 4SiO 4) with higher [H 4SiO 4] leading to lower dissolution rates. Once the reaction has slowed as a result of the buildup of H 4SiO 4, another increase in the rate has been observed that corresponds to the precipitation of certain silica-bearing alterationmore » products. However, it has also been observed that the concentration of silica-bearing solution species does not significantly decrease, indicating saturation, while other glass tracer elements concentrations continue to increase, indicating that the glass is still dissolving. In this study, we have used the Geochemist’s Workbench code to investigate the relationship between glass dissolution rates and the precipitation rate of a representative zeolitic silica-bearing alteration product, analcime [Na(AlSi 2O 6)∙H 2O]. To simplify the calculations, we suppressed all alteration products except analcime, gibbsite (Al(OH) 3), and amorphous silica. The pseudo-equilibrium-constant matrix for amorphous silica was substituted for the glass pseudo-equilibrium-constant matrix because it has been shown that silicate glasses act as a silica-only solid with respect to kinetic considerations. In this article, we present the results of our calculations of the glass dissolution rate at different values for the analcime precipitation rate constant and the effects of varying the glass dissolution rate constant at a constant analcime precipitation rate constant. From the simulations we conclude, firstly, that the rate of glass dissolution is dependent on the kinetics of formation of the zeolitic phase. Therefore, the kinetics of secondary phase formation is an important parameter that should be taken into account in future glass dissolution modeling efforts. Secondly, the results indicate that, in the absence of a gel layer, the glass dissolution rate controls the rate of analcime precipitation in the long term. Finally, the meaning of these results pertinent to long-term glass durability is discussed.« less
Asquith, William H.; Roussel, Meghan C.
2007-01-01
Estimation of representative hydrographs from design storms, which are known as design hydrographs, provides for cost-effective, riskmitigated design of drainage structures such as bridges, culverts, roadways, and other infrastructure. During 2001?07, the U.S. Geological Survey (USGS), in cooperation with the Texas Department of Transportation, investigated runoff hydrographs, design storms, unit hydrographs,and watershed-loss models to enhance design hydrograph estimation in Texas. Design hydrographs ideally should mimic the general volume, peak, and shape of observed runoff hydrographs. Design hydrographs commonly are estimated in part by unit hydrographs. A unit hydrograph is defined as the runoff hydrograph that results from a unit pulse of excess rainfall uniformly distributed over the watershed at a constant rate for a specific duration. A time-distributed, watershed-loss model is required for modeling by unit hydrographs. This report develops a specific time-distributed, watershed-loss model known as an initial-abstraction, constant-loss model. For this watershed-loss model, a watershed is conceptualized to have the capacity to store or abstract an absolute depth of rainfall at and near the beginning of a storm. Depths of total rainfall less than this initial abstraction do not produce runoff. The watershed also is conceptualized to have the capacity to remove rainfall at a constant rate (loss) after the initial abstraction is satisfied. Additional rainfall inputs after the initial abstraction is satisfied contribute to runoff if the rainfall rate (intensity) is larger than the constant loss. The initial abstraction, constant-loss model thus is a two-parameter model. The initial-abstraction, constant-loss model is investigated through detailed computational and statistical analysis of observed rainfall and runoff data for 92 USGS streamflow-gaging stations (watersheds) in Texas with contributing drainage areas from 0.26 to 166 square miles. The analysis is limited to a previously described, watershed-specific, gamma distribution model of the unit hydrograph. In particular, the initial-abstraction, constant-loss model is tuned to the gamma distribution model of the unit hydrograph. A complex computational analysis of observed rainfall and runoff for the 92 watersheds was done to determine, by storm, optimal values of initial abstraction and constant loss. Optimal parameter values for a given storm were defined as those values that produced a modeled runoff hydrograph with volume equal to the observed runoff hydrograph and also minimized the residual sum of squares of the two hydrographs. Subsequently, the means of the optimal parameters were computed on a watershed-specific basis. These means for each watershed are considered the most representative, are tabulated, and are used in further statistical analyses. Statistical analyses of watershed-specific, initial abstraction and constant loss include documentation of the distribution of each parameter using the generalized lambda distribution. The analyses show that watershed development has substantial influence on initial abstraction and limited influence on constant loss. The means and medians of the 92 watershed-specific parameters are tabulated with respect to watershed development; although they have considerable uncertainty, these parameters can be used for parameter prediction for ungaged watersheds. The statistical analyses of watershed-specific, initial abstraction and constant loss also include development of predictive procedures for estimation of each parameter for ungaged watersheds. Both regression equations and regression trees for estimation of initial abstraction and constant loss are provided. The watershed characteristics included in the regression analyses are (1) main-channel length, (2) a binary factor representing watershed development, (3) a binary factor representing watersheds with an abundance of rocky and thin-soiled terrain, and (4) curve numb
CODATA recommended values of the fundamental constants
NASA Astrophysics Data System (ADS)
Mohr, Peter J.; Taylor, Barry N.
2000-11-01
A review is given of the latest Committee on Data for Science and Technology (CODATA) adjustment of the values of the fundamental constants. The new set of constants, referred to as the 1998 values, replaces the values recommended for international use by CODATA in 1986. The values of the constants, and particularly the Rydberg constant, are of relevance to the calculation of precise atomic spectra. The standard uncertainty (estimated standard deviation) of the new recommended value of the Rydberg constant, which is based on precision frequency metrology and a detailed analysis of the theory, is approximately 1/160 times the uncertainty of the 1986 value. The new set of recommended values as well as a searchable bibliographic database that gives citations to the relevant literature is available on the World Wide Web at physics.nist.gov/constants and physics.nist.gov/constantsbib, respectively. .
Park, Jinwoo; Kumar, Vipin; Wang, Xu; Lee, Pooi See; Kim, Woong
2017-10-04
The redox-active electrolyte supercapacitor (RAES) is a relatively new type of energy storage device. Simple addition of selected redox species in the electrolyte can greatly enhance the energy density of supercapacitors relative to traditional electric double layer capacitors (EDLCs) owing to redox reactions. Studies on the kinetics at the interface of the electrode and redox mediator are important when developing RAESs. In this work, we employ highly accurate scanning electrochemical microscopy (SECM) to extract the kinetic constants at carbon/hydroquinone interfaces. The charge transfer rate constants are 1.2 × 10 -2 and 1.3 × 10 -2 cm s -1 for the carbon nanotube/hydroquinone and reduced graphene oxide/hydroquinone interfaces, respectively. These values are higher than those obtained by the conventional cyclic voltammetry method, approximately by an order of magnitude. The evaluation of heterogeneous rate constants with SECM would be the cornerstone for understanding and developing high performance RAESs.
NASA Astrophysics Data System (ADS)
Munir, Adnan; Zhao, Ming; Wu, Helen; Lu, Lin; Ning, Dezhi
2018-05-01
The vortex-induced vibration (VIV) of an elastically mounted rotating circular cylinder vibrating in a uniform flow is studied numerically. The cylinder is allowed to vibrate only in the cross-flow direction. In the numerical simulations, the Reynolds number, the mass ratio, and the damping ratio are kept constants to 500, 11.5, and 0, respectively. Simulations are performed for rotation rates of α = 0, 0.5, and 1 and a range of reduced velocities from 1 to 13, which covers the entire lock-in regime. It is found that the lock-in regime of a rotating cylinder is wider than that of a non-rotating cylinder for α = 0, 0.5, and 1. The vortex shedding pattern of a rotating cylinder is found to be similar to that of a non-rotating cylinder. Next, simulations are performed for three typical reduced velocities inside the lock-in regime and a range of higher rotation rates from α = 1.5 to 3.5 to investigate the effect of the rotation rate on the suppression of VIV. It is found that the VIV is suppressed when the rotation rate exceeds a critical value, which is dependent on the reduced velocity. For a constant reduced velocity, the amplitude of the vibration is found to increase with increasing rotation rate until the latter reaches its critical value for VIV suppression, beyond which the vibration amplitude becomes extremely small. If the rotation rate is greater than its critical value, vortex shedding ceases and hairpin vortices are observed due to the rotation of the cylinder.
Microbial endogenous response to acute inhibitory impact of antibiotics.
Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D
2017-06-13
Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).
Sossou, S K; Hijikata, N; Sou, M; Tezuka, R; Maiga, A H; Funamizu, N
2014-01-01
This study aimed to compare the inactivation rate and the mechanisms of pathogenic bacteria in three matrixes (sawdust, rice husk and charcoal) during the composting process. The inactivation rate was evaluated with Escherichia coli strain and the damaged parts and/or functions were evaluated with three different media. Normalized inactivation rate constant in three media and from three matrixes had no significant difference in each process (pure, 1 month and 2 months). The value in rice husk was relatively increased during 2 months but there was no significant difference. The inactivation rate constants of Tryptic Soy Agar (TSA) and Compact Dry E. coli/Coliform in pure sawdust and rice husk were relatively lower than that of Desoxycholate Agar, but increased in 2 months. This indicated that damaging part was changed from outer membrane to enzymes and metabolisms during the 2-month composting process. In the case of charcoal, only the TSA value in apure matrix was relatively lower than that of others, but it increased in 2 months. This indicated that damaging part was changed from outer membrane and enzyme to metabolisms during the composting process. Composting matrix and composting process did not significantly affect inactivation rate of pathogenic bacteria during the process but affected the damaging part of the bacteria.
Thermal oxidation of single-crystal silicon carbide - Kinetic, electrical, and chemical studies
NASA Technical Reports Server (NTRS)
Petit, J. B.; Neudeck, P. G.; Matus, L. G.; Powell, J. A.
1992-01-01
This paper presents kinetic data from oxidation studies of the polar faces for 3C and 6H SiC in wet and dry oxidizing ambients. Values for the linear and parabolic rate constants were obtained, as well as preliminary results for the activation energies of the rate constants. Examples are presented describing how thermal oxidation can be used to map polytypes and characterize defects in epitaxial layers grown on low tilt angle 6H SiC substrates. Interface widths were measured using Auger electron spectroscopy (AES) with Ar ion beam depth profiling and variable angle spectroscopic ellipsometry (VASE) with effective medium approximation (EMA) models. Preliminary electrical measurements of MOS capacitors are also presented.
Heterodimer Autorepression Loop: A Robust and Flexible Pulse-Generating Genetic Module
NASA Astrophysics Data System (ADS)
Lannoo, B.; Carlon, E.; Lefranc, M.
2016-07-01
We investigate the dynamics of the heterodimer autorepression loop (HAL), a small genetic module in which a protein A acts as an autorepressor and binds to a second protein B to form an A B dimer. For suitable values of the rate constants, the HAL produces pulses of A alternating with pulses of B . By means of analytical and numerical calculations, we show that the duration of A pulses is extremely robust against variation of the rate constants while the duration of the B pulses can be flexibly adjusted. The HAL is thus a minimal genetic module generating robust pulses with a tunable duration, an interesting property for cellular signaling.
Method for measuring and controlling beam current in ion beam processing
Kearney, Patrick A.; Burkhart, Scott C.
2003-04-29
A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.
THE EFFECT OF CHLORINE DEMAND ON INACTIVATION RATE CONSTANT
Ct (disinfectant concentration multiplied by exposure time) values are used by the US EPA to evaluate the efficacy of disinfection of microorganisms under various conditions of drinking water treatment conditions. First-order decay is usually assumed for the degradation of a disi...
Bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod.
Chen, Ciara Chun; Kuo, Dave Ta Fu
2018-05-01
The present study presents a bioconcentration model for non-ionic, polar, and ionizable organic compounds in amphipod based on first-order kinetics. Uptake rate constant k 1 is modeled as logk1=10.81logKOW + 0.15 (root mean square error [RMSE] = 0.52). Biotransformation rate constant k M is estimated using an existing polyparameter linear free energy relationship model. Respiratory elimination k 2 is calculated as modeled k 1 over theoretical biota-water partition coefficient K biow considering the contributions of lipid, protein, carbohydrate, and water. With negligible contributions of growth and egestion over a typical amphipod bioconcentration experiment, the bioconcentration factor (BCF) is modeled as k 1 /(k M + k 2 ) (RMSE = 0.68). The proposed model performs well for non-ionic organic compounds (log K OW range = 3.3-7.62) within 1 log-unit error margin. Approximately 12% of the BCFs are underpredicted for polar and ionizable compounds. However, >50% of the estimated k 2 values are found to exceed the total depuration rate constants. Analyses suggest that these excessive k 2 values and underpredicted BCFs reflect underestimation in K biow , which may be improved by incorporating exoskeleton as a relevant partitioning component and refining the membrane-water partitioning model. The immediate needs to build up high-quality experimental k M values, explore the sorptive role of exoskeleton, and investigate the prevalence of k 2 overestimation in other bioconcentration models are also identified. The resulting BCF model can support, within its limitations, the ecotoxicological and risk assessment of emerging polar and ionizable organic contaminants in aquatic environments and advance the science of invertebrate bioaccumulation. Environ Toxicol Chem 2018;37:1378-1386. © 2018 SETAC. © 2018 SETAC.
Lundin, Arne; Eriksson, Jonas
2008-08-01
The firefly luciferin-luciferase reaction has been used to set up an assay for protein kinase based on measuring ATP consumption rate as the first-order rate constant for the kinase reaction. The assay obviates the problems encountered with previous bioluminescent protein kinase assays such as interference with the luciferase reaction from library compounds, nonlinear standard curves, and limited dynamic ranges. In the assay described in the present paper luciferase and luciferin are present during the entire kinase reaction, and the light emission can be measured continuously. In an HTS situation the light emission is measured only twice, i.e., initially and after a predetermined time. After a fivefold reduction of the ATP concentration a Z' value of 0.96 was obtained. Light emission data from samples with kinase are normalized with light emission data from blanks without kinase. First-order rate constants for the kinase reaction calculated from normalized light emission are not affected by a moderate degree of inactivation of luciferase and luciferin during the measuring time. The constants have the same value at all ATP concentrations much lower than the K(m) of the luciferase and the kinase. These factors make the assay very robust and influenced neither by ATP concentration nor by luciferase inhibition. The measuring time depends on the kinase activity and can be varied from minutes to more than 8 h provided the kinase is stable and the evaporation of water from the wells is acceptable. The assay is linear with respect to kinase activity over three orders of magnitude. The new reagents also allowed us to determine K(m) values for ATP and for Kemptide.
Timmermann, W; Dralle, H; Hamelmann, W; Thomusch, O; Sekulla, C; Meyer, Th; Timm, S; Thiede, A
2002-05-01
Two different aspects of the influence of neuromonitoring on the possible reduction of post-operative recurrent laryngeal nerve palsies require critical examination: the nerve identification and the monitoring of it's functions. Due to the additional information from the EMG signals, neuromonitoring is the best method for identifying the nerves as compared to visual identification alone. There are still no randomized studies available that compare the visual and electrophysiological recurrent laryngeal nerve detection in thyroid operations with respect to the postoperative nerve palsies. Nevertheless, comparisons with historical collectives show that a constant low nerve-palsy-rate was achieved with electrophysiological detection in comparison to visual detection. The rate of nerve identification is normally very high and amounts to 99 % in our own patients. The data obtained during the "Quality assurance of benign and malignant Goiter" study show that in hemithyreoidectomy and subtotal resection, lower nerve-palsy-rates are achieved with neuromonitoring as compared to solely visual detection. Following subtotal resection, this discrepancy becomes even statistically significant. While monitoring the nerve functions with the presently used neuromonitoring technique, it is possible to observe the EMG-signal remaining constant or decreasing in volume. Assuming that a constant neuromonitoring signal represents a normal vocal cord, our evaluation shows that there is a small percentage of false negative and positive results. Looking at the permanent recurrent nerve palsy rates, this method has a specificity of 98 %, a sensitivity of 100 %, a positive prognostic value of 10 %, and a negative prognostic value of 100 %. Although an altered neuromonitoring signal can be taken as a clear indication of eventual nerve damage, an absolutely reliable statement about the postoperative vocal cord function is presently not possible with intraoperative neuromonitoring.
Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C
2014-12-02
Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.
Stabilizing effect of citrate buffer on the photolysis of riboflavin in aqueous solution
Ahmad, Iqbal; Sheraz, Muhammad Ali; Ahmed, Sofia; Kazi, Sadia Hafeez; Mirza, Tania; Aminuddin, Mohammad
2011-01-01
In the present investigation the photolysis of riboflavin (RF) in the presence of citrate species at pH 4.0–7.0 has been studied. A specific multicomponent spectrophotometric method has been used to assay RF in the presence of photoproducts during the reactions. The overall first-order rate constants (kobs) for the photolysis of RF range from 0.42 to 1.08×10–2 min−1 in the region. The values of kobs have been found to decrease with an increase in citrate concentration indicating an inhibitory effect of these species on the rate of reaction. The second-order rate constants for the interaction of RF with total citrate species causing inhibition range from 1.79 to 5.65×10–3 M−1 min−1 at pH 4.0–7.0. The log k–pH profiles for the reactions at 0.2–1.0 M citrate concentration show a gradual decrease in kobs and the value at 1.0 M is more than half compared to that of k0, i.e., in the absence of buffer, at pH 5.0. Divalent citrate ions cause a decrease in RF fluorescence due to the quenching of the excited singlet state resulting in a decrease in the rate of reaction and consequently leading to the stabilization of RF solutions. The greater quenching of fluorescence at pH 4.0 compared to that of 7.0 is in accordance with the greater concentration of divalent citrate ions (99.6%) at that pH. The trivalent citrate ions exert a greater inhibitory effect on the rate of RF photolysis compared to that of the divalent citrate ions probably as a result of excited triplet state quenching. The values of second-order rate constants for the interaction of divalent and trivalent citrate ions are 0.44×10–2 and 1.06×10–3 M–1 min–1, respectively, indicating that the trivalent ions exert a greater stabilizing effect, compared to the divalent ions, on RF solutions. PMID:25755977
Skibinski, David O. F.
2018-01-01
Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment. PMID:29702650
Pavon, Jorge Alex; Eser, Bekir; Huynh, Michaela T.; Fitzpatrick, Paul F.
2010-01-01
Tryptophan hydroxylase (TrpH) uses a non-heme mononuclear iron center to catalyze the tetrahydropterin-dependent hydroxylation of tryptophan to 5-hydroxytryptophan. The reactions of the TrpH·Fe(II), TrpH·Fe(II)·tryptophan, TrpH·Fe(II)·6MePH4·tryptophan, and TrpH·Fe(II)·6MePH4·phenylalanine complexes with O2 were monitored by stopped-flow absorbance spectroscopy and rapid quench methods. The second-order rate constant for the oxidation of TrpH·Fe(II) has a value of 104 M−1s−1 irrespective of the presence of tryptophan. Stopped-flow absorbance analyses of the reaction of the TrpH·Fe(II)·6MePH4·tryptophan complex with oxygen are consistent with the initial step being reversible binding of oxygen, followed by the formation with a rate constant of 65 s−1 of an intermediate I that has maximal absorbance at 420 nm. The rate constant for decay of I, 4.4 s−1, matches that for formation of the 4a-hydroxypterin product monitored at 248 nm. Chemical-quench analyses show that 5-hydroxytryptophan forms with a rate constant of 1.3 s−1, and that overall turnover is limited by a subsequent slow step, presumably product release, with a rate constant of 0.2 s−1. All of the data with tryptophan as substrate can be described by a five-step mechanism. In contrast, with phenylalanine as substrate, the reaction can be described by three steps: a second-order reaction with oxygen to form I, decay of I as tyrosine forms, and slow product release. PMID:20687613
Sreedevi, Gudapati; Prasad, Yenumula Gerard; Prabhakar, Mathyam; Rao, Gubbala Ramachandra; Vennila, Sengottaiyan; Venkateswarlu, Bandi
2013-01-01
Temperature-driven development and survival rates of the mealybug, Phenacoccussolenopsis Tinsley (Hemiptera: Pseudococcidae) were examined at nine constant temperatures (15, 20, 25, 27, 30, 32, 35 and 40°C) on hibiscus ( Hibiscus rosa -sinensis L.). Crawlers successfully completed development to adult stage between 15 and 35°C, although their survival was affected at low temperatures. Two linear and four nonlinear models were fitted to describe developmental rates of P . solenopsis as a function of temperature, and for estimating thermal constants and bioclimatic thresholds (lower, optimum and upper temperature thresholds for development: Tmin, Topt and Tmax, respectively). Estimated thresholds between the two linear models were statistically similar. Ikemoto and Takai’s linear model permitted testing the equivalence of lower developmental thresholds for life stages of P . solenopsis reared on two hosts, hibiscus and cotton. Thermal constants required for completion of cumulative development of female and male nymphs and for the whole generation were significantly lower on hibiscus (222.2, 237.0, 308.6 degree-days, respectively) compared to cotton. Three nonlinear models performed better in describing the developmental rate for immature instars and cumulative life stages of female and male and for generation based on goodness-of-fit criteria. The simplified β type distribution function estimated Topt values closer to the observed maximum rates. Thermodynamic SSI model indicated no significant differences in the intrinsic optimum temperature estimates for different geographical populations of P . solenopsis . The estimated bioclimatic thresholds and the observed survival rates of P . solenopsis indicate the species to be high-temperature adaptive, and explained the field abundance of P . solenopsis on its host plants. PMID:24086597
Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang; Tomsia, Antoni P.
2011-01-01
Scaffolds of 13–93 bioactive glass (6Na2O, 12K2O, 5MgO, 20CaO, 4P2O5, 53SiO2; wt %) with an oriented pore architecture were formed by unidirectional freezing of camphene-based suspensions, followed by thermal annealing of the frozen constructs to grow the camphene crystals. After sublimation of the camphene, the constructs were sintered (1 h at 700 °C) to produce a dense glass phase with oriented macropores. The objective of this work was to study how constant freezing rates (1–7 °C/min) during the freezing step influenced the pore orientation and mechanical response of the scaffolds. When compared to scaffolds prepared by freezing the suspensions on a substrate kept at a constant temperature of 3 °C (time-dependent freezing rate), higher freezing rates resulted in better pore orientation, a more homogeneous microstructure, and a marked improvement in the mechanical response of the scaffolds in compression. Scaffolds fabricated using a constant freezing rate of 7 °C/min (porosity = 50 ± 4%; average pore diameter = 100 μm), had a compressive strength of 47 ± 5 MPa and an elastic modulus of 11 ± 3 GPa (in the orientation direction). In comparison, scaffolds prepared by freezing on the constant-temperature substrate had strength and modulus values of 35 ± 11 MPa and 8 ± 3 GPa, respectively. These oriented bioactive glass scaffolds prepared by the constant freezing rate route could potentially be used for the repair of defects in load-bearing bones, such as segmental defects in the long bones. PMID:21855661
Dammeier, J; Colberg, M; Friedrichs, G
2007-08-21
The rate constants for , HCO + NO --> HNO + CO, and , HCO + NO(2)--> products, have been measured at temperatures between 770 K < T < 1305 K behind reflected shock waves and, for the purpose of a consistency check, in a slow flow reactor at room temperature. HCO radicals were generated by 193 nm excimer laser photolysis of diluted gas mixtures containing glyoxal, (CHO)(2), and NO or NO(2) in argon and were monitored using frequency modulation (FM) absorption spectroscopy. Kinetic simulations based on a comprehensive reaction mechanism showed that the rate constants for the title reactions could be sensitively extracted from the measured HCO profiles. The determined high temperature rate constants are k(1)(769-1307 K) = (7.1 +/- 2.7) x 10(12) cm(3) mol(-1) s(-1) and k(2)(804-1186 K) = (3.3 +/- 1.8) x 10(13) cm(3) mol(-1) s(-1). The room temperature values were found to be in very good agreement with existing literature data and show that both reactions are essentially temperature independent. The weak temperature dependence of can be explained by the interplay of a dominating direct abstraction pathway and a complex-forming mechanism. Both pathways yield the products HNO + CO. In contrast to , no evidence for a significant contribution of a direct high temperature abstraction channel was found for . Here, the observed temperature independent overall rate constant can be described by a complex-forming mechanism with several product channels. Detailed information on the strongly temperature dependent channel branching ratios is provided. Moreover, the high temperature rate constant of , OH + (CHO)(2), has been determined to be k(7) approximately 1.1 x 10(13) cm(3) mol(-1) s(-1).
NASA Astrophysics Data System (ADS)
McKelvie, Jennifer R.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara
2007-12-01
Compound-specific isotope analysis (CSIA) was used to assess biodegradation of MTBE and TBA during an ethanol release study at Vandenberg Air Force Base. Two continuous side-by-side field releases were conducted within a preexisting MTBE plume to form two lanes. The first involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene ("No ethanol lane"), while the other involved the continuous injection of site groundwater amended with benzene, toluene and o-xylene and ethanol ("With ethanol lane"). The δ 13C of MTBE for all wells in the "No ethanol lane" remained constant during the experiment with a mean value of - 31.3 ± 0.5‰ ( n = 40), suggesting the absence of any substantial MTBE biodegradation in this lane. In contrast, substantial enrichment in 13C of MTBE by 40.6‰, was measured in the "With ethanol lane", consistent with the effects of biodegradation. A substantial amount of TBA (up to 1200 μg/L) was produced by the biodegradation of MTBE in the "With ethanol lane". The mean value of δ 13C for TBA in groundwater samples in the "With ethanol lane" was - 26.0 ± 1.0‰ ( n = 32). Uniform δ 13C TBA values through space and time in this lane suggest that substantial anaerobic biodegradation of TBA did not occur during the experiment. Using the reported range in isotopic enrichment factors for MTBE of - 9.2‰ to - 15.6‰, and values of δ 13C of MTBE in groundwater samples, MTBE first-order biodegradation rates in the "With ethanol lane" were 12.0 to 20.3 year - 1 ( n = 18). The isotope-derived rate constants are in good agreement with the previously published rate constant of 16.8 year - 1 calculated using contaminant mass-discharge for the "With ethanol lane".
Aulen, Maurice; Shipley, Bill; Bradley, Robert
2012-01-01
Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237
A Piloted Simulator Evaluation of Transport Aircraft Rudder Pedal Force/Feel Characteristics
NASA Technical Reports Server (NTRS)
Stewart, Eric C.
2008-01-01
A piloted simulation study has been conducted in a fixed-base research simulator to assess the directional handling qualities for various rudder pedal feel characteristics for commercial transport airplanes. That is, the effects of static pedal force at maximum pedal travel, breakout force, and maximum pedal travel on handling qualities were studied. An artificial maneuver with a severe lateral wind shear and requiring runway tracking at an altitude of 50 feet in a crosswind was used to fully exercise the rudder pedals. Twelve active airline pilots voluntarily participated in the study and flew approximately 500 maneuvers. The pilots rated the maneuver performance with various rudder pedal feel characteristics using the Cooper- Harper rating scale. The test matrix had 15 unique combinations of the 3 static pedal feel characteristics. A 10-term, second-order equation for the Cooper-Harper pilot rating as a function of the 3 independent pedal feel parameters was fit to the data. The test matrix utilized a Central Composite Design that is very efficient for fitting an equation of this form. The equation was used to produce contour plots of constant pilot ratings as a function of two of the parameters with the third parameter held constant. These contour plots showed regions of good handling qualities as well as regions of degraded handling qualities. In addition, a numerical equation solver was used to predict the optimum parameter values (those with the lowest pilot rating). Quantitative pilot performance data were also analyzed. This analysis found that the peak values of the cross power spectra of the pedal force and heading angle could be used to quantify the tendency toward directional pilot induced oscillations (PIO). Larger peak values of the cross power spectra were correlated with larger (degraded) Cooper-Harper pilot ratings. Thus, the subjective data (Cooper-Harper pilot ratings) were consistent with the objective data (peak values of the cross power spectra).
Warburton, William K.; Zhou, Zhiquing
1999-01-01
A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.
Effect of pH and nitrite concentration on nitrite oxidation rate.
Jiménez, E; Giménez, J B; Ruano, M V; Ferrer, J; Serralta, J
2011-10-01
The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO₂). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO₂ concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO₂ concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained. Copyright © 2011 Elsevier Ltd. All rights reserved.
Volke-Sepúlveda, Tania; Gutiérrez-Rojas, Mariano; Favela-Torres, Ernesto
2006-09-01
Solid-state microcosms were used to assess the influence of constant and variable C/N ratios on the biodegradation efficiency by Aspergillus niger at high hexadecane (HXD) concentrations (180-717 mg g-1). With a constant C/N ratio, 100% biodegradation (33-44% mineralization) was achieved after 15 days, at rates increasing as the HXD concentration increased. Biomass yields (YX/S) remained almost independent (approximately 0.77) of the carbon-source amount, while the specific growth rates (mu) decreased with increasing concentrations of HXD. With C/N ratios ranging from 29 to 115, complete degradation was only attained at 180 mg g-1, corresponding to 46% mineralization. YX/S diminished (approximately 0.50 units) as the C/N ratio increased. The highest values of mu (1.08 day-1) were obtained at low C/N values. Our results demonstrate that, under balanced nutritional conditions, high HXD concentrations can be completely degraded in solid-state microcosms, with a negligible (<10%) formation of by-products.
Theoretical studies of the decomposition mechanisms of 1,2,4-butanetriol trinitrate.
Pei, Liguan; Dong, Kehai; Tang, Yanhui; Zhang, Bo; Yu, Chang; Li, Wenzuo
2017-12-06
Density functional theory (DFT) and canonical variational transition-state theory combined with a small-curvature tunneling correction (CVT/SCT) were used to explore the decomposition mechanisms of 1,2,4-butanetriol trinitrate (BTTN) in detail. The results showed that the γ-H abstraction reaction is the initial pathway for autocatalytic BTTN decomposition. The three possible hydrogen atom abstraction reactions are all exothermic. The rate constants for autocatalytic BTTN decomposition are 3 to 10 40 times greater than the rate constants for the two unimolecular decomposition reactions (O-NO 2 cleavage and HONO elimination). The process of BTTN decomposition can be divided into two stages according to whether the NO 2 concentration is above a threshold value. HONO elimination is the main reaction channel during the first stage because autocatalytic decomposition requires NO 2 and the concentration of NO 2 is initially low. As the reaction proceeds, the concentration of NO 2 gradually increases; when it exceeds the threshold value, the second stage begins, with autocatalytic decomposition becoming the main reaction channel.
Critical cracking potentials of 26Cr-1 Mo ferritic stainless steels in boiling 42% LiCl solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, H.S.; Troiano, A.R.; Hehemann, R.F.
This paper reports that the critical cracking potentials (E[sub cc] for 26Cr-1Mo ferritic stainless steels (UNS S44627), above which stress corrosion cracking (SCC) does occur, have been measured at constant load in a hot chloride solution. Various factors affecting E[sub cc] for the low interstitial 26Cr-1Mo alloy (E-Brite) is shown to be a potential for crack initiation and is determined by the competing rates of generation of new surface by slip-induced film breakdown and repassivation. E[sub cc] for E-Brite is very sensitive to the microstructural conditions developed by prior thermal and mechanical treatments; varying in the range of -485 mVmore » for the mill annealed to -625 mV for the grain coarsened. On the other hand, the minimum potential permitting crack growth is insensitive to these treatments and corresponds to the most active value of E[sub cc] -625 mV. When strained at a constant strain rate (2.5 [times] 10[sup [minus]6]/S), the critical potential above which E-Brite is susceptible to SCC corresponds to the most active value of E[sub cc] measured at constant load. Thus, it appears that the most active value of E[sub cc](-625 mV) is a repassivation potential for growing cracks, and E[sub cc] approaches that for crack propagation as a limiting condition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh R. Martin; Stephen P. Mezyk; Bruce J. Mincher
2009-01-01
Lactic acid is a major component of the TALSPEAK process planned for use in the separation of trivalent lanthanide and actinide elements. This acid acts both as a buffer, and also to protect the actinide complexant from radiolytic damage. However, there is little kinetic information on the reaction of water radiolysis species with lactic acid, particularly under the anticipated process conditions of aerated aqueous solution at pH~3, where oxidizing reactions are expected to dominate. Here we have determined temperature-dependent reaction rate constants for the reactions of the hydroxyl radical with lactic acid and the lactate ion. For lactic acid thismore » rate constant is given by the equation: ln k1 = (23.85 ± 0.19) – (1120 ± 54) / T, corresponding to an activation energy of 9.31 ± 0.45 kJ mol-1 and a room temperature reaction rate constant of (5.24 ± 0.09) x 108 M-1 s-1 (24.0oC). For the lactate ion, the temperature-dependent rate constant is given by: ln k2 = (24.83 ± 0.14) – (1295 ± 42) / T, for an activation energy of 10.76 ± 0.35 kJ mol-1 and a room temperature value of (7.77 ± 0.11) x 108 M-1 s-1 (22.2oC). These kinetic data have been combined with autotitration measurements to determine the temperature-dependent behavior of the lactic acid pKa value, allowing thermodynamic parameters for the acid dissociation to be calculated as ?Hº = -10.75 ± 1.77 kJ mol-1, ?Sº = -103.9 ± 6.0 J K-1 mol-1 and ?Gº = 20.24 ± 2.52 kJ mol-1 at low ionic strength.« less
NASA Astrophysics Data System (ADS)
Bystrov, N. S.; Emelianov, A. V.; Eremin, A. V.; Yatsenko, P. I.
2018-05-01
The kinetics of the dissociation of CF3I behind shock waves was experimentally investigated. The reaction CF3I + Ar → CF3 + I + Ar was studied at temperatures between 900 and 1250 K and pressures of 2–3 bar. For this purpose, the time profiles of the concentration of atomic iodine were measured using a highly sensitive atomic resonance absorption spectroscopy method at a wavelength of 183.04 nm. From these data, the experimental value of the dissociation rate constant of CF3I was obtained: . We found that the investigated range of pressures and temperatures for the CF3I dissociation lies in the pressure transition region. Based on the Rice-Ramsperger–Kassel–Marcus theory, the threshold high and low-pressure rate constants ( and k 0) and falloff curves are calculated for the temperatures of 950–1200 K. As a result of this calculation, the threshold rate constants could be evaluated in the forms: and , and the center broadening factor, which takes into account the contribution of strong and weak collisions in the transition region, is .
Kinetics of leather dyeing pretreated with enzymes: role of acid protease.
Kanth, Swarna Vinodh; Venba, Rajangam; Jayakumar, Gladstone Christopher; Chandrababu, Narasimhan Kannan
2009-04-01
In the present investigation, kinetics of dyeing involving pretreatment with acid protease has been presented. Application of acid protease in dyeing process resulted in increased absorption and diffusion of dye into the leather matrix. Enzyme treatment at 1% concentration, 60 min duration and 50 degrees C resulted in maximum of 98% dye exhaustion and increased absorption rate constants. The final exhaustion (C(infinity)) for the best fit of CI Acid Black 194 dye has been 98.5% with K and r2 values from the modified Cegarra-Puente isotherm as 0.1033 and 0.0631. CI Acid Black 194 being a 2:1 metal complex acid dye exhibited higher absorption rate than the acid dye CI Acid Black 210. A reduction in 50% activation energy calculated from Arrhenius equation has been observed in enzyme assisted dyeing process of both the dyes that substantiates enhanced dye absorption. The absorption rate constant calculated with modified Cegarra-Puente equation confirm higher rate constants and faster kinetics for enzyme assisted dyeing process. Enzyme treated leather exhibited richness of color and shade when compared with control. The present study substantiates the essential role of enzyme pretreatment as an eco-friendly leather dyeing process.
NASA Astrophysics Data System (ADS)
Mathias, Simon A.; Wen, Zhang
2015-05-01
This article presents a numerical study to investigate the combined role of partial well penetration (PWP) and non-Darcy effects concerning the performance of groundwater production wells. A finite difference model is developed in MATLAB to solve the two-dimensional mixed-type boundary value problem associated with flow to a partially penetrating well within a cylindrical confined aquifer. Non-Darcy effects are incorporated using the Forchheimer equation. The model is verified by comparison to results from existing semi-analytical solutions concerning the same problem but assuming Darcy's law. A sensitivity analysis is presented to explore the problem of concern. For constant pressure production, Non-Darcy effects lead to a reduction in production rate, as compared to an equivalent problem solved using Darcy's law. For fully penetrating wells, this reduction in production rate becomes less significant with time. However, for partially penetrating wells, the reduction in production rate persists for much larger times. For constant production rate scenarios, the combined effect of PWP and non-Darcy flow takes the form of a constant additional drawdown term. An approximate solution for this loss term is obtained by performing linear regression on the modeling results.
Gozzi, Fábio; Oliveira, Silvio C; Dantas, Renato F; Silva, Volnir O; Quina, Frank H; Machulek, Amilcar
2016-03-30
Due to contamination of the environment by pesticides and their mishandling, there is the need for treatment of contaminated sites and correct disposal of materials containing them. Thus, studies with advanced oxidation processes are expanding and can determine the rate constant of the hydroxyl radical with organic compounds of great importance in environmental contamination. In this context, the use of laser flash photolysis has been shown to be viable for the determination of these constants. The reaction rate constants of different pesticides with HO(•) in degassed acetonitrile have been determined. They were 1.6 × 10(9) M(-1) s(-1), 0.6 × 10(9) M(-1) s(-1), 1.2 × 10(9) M(-1) s(-1), 2.4 × 10(9) M(-1) s(-1) and 2.2 × 10(9) M(-1) s(-1) for the pesticides carbaryl, propoxur, fenoxycarb, ethoxysulfuron and chlorimuron-ethyl, respectively. These values are about an order of magnitude smaller than the diffusion controlled rate and correlate with the relative rates of disappearance of the pesticides in the photo-Fenton reaction in water. The correlation of the relative rate constants determined by laser flash photolysis with the relative rates of photo-Fenton degradation of the pesticides is compelling evidence for the participation of the hydroxyl radical in the degradation of these pesticides in the latter system. © 2015 Society of Chemical Industry.
Rydzy, M; Deslauriers, R; Smith, I C; Saunders, J K
1990-08-01
A systematic study was performed to optimize the accuracy of kinetic parameters derived from magnetization transfer measurements. Three techniques were investigated: time-dependent saturation transfer (TDST), saturation recovery (SRS), and inversion recovery (IRS). In the last two methods, one of the resonances undergoing exchange is saturated throughout the experiment. The three techniques were compared with respect to the accuracy of the kinetic parameters derived from experiments performed in a given, fixed, amount of time. Stochastic simulation of magnetization transfer experiments was performed to optimize experimental design. General formulas for the relative accuracies of the unidirectional rate constant (k) were derived for each of the three experimental methods. It was calculated that for k values between 0.1 and 1.0 s-1, T1 values between 1 and 10 s, and relaxation delays appropriate for the creatine kinase reaction, the SRS method yields more accurate values of k than does the IRS method. The TDST method is more accurate than the SRS method for reactions where T1 is long and k is large, within the range of k and T1 values examined. Experimental verification of the method was carried out on a solution in which the forward (PCr----ATP) rate constant (kf) of the creatine kinase reaction was measured.
Pérez-Malo, Marylaine; Szabó, Gergely; Eppard, Elisabeth; Vagner, Adrienn; Brücher, Ernő; Tóth, Imre; Maiocchi, Alessandro; Suh, Eul Hyun; Kovács, Zoltán; Baranyai, Zsolt; Rösch, Frank
2018-05-21
Typically, the synthesis of radiometal-based radiopharmaceuticals is performed in buffered aqueous solutions. We found that the presence of organic solvents like ethanol increased the radiolabeling yields of [ 68 Ga]Ga-DOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacatic acid). In the present study, the effect of organic cosolvents [ethanol (EtOH), isopropyl alcohol, and acetonitrile] on the radiolabeling yields of the macrocyclic chelator DOTA with several trivalent radiometals (gallium-68, scandium-44, and lutetium-177) was systematically investigated. Various binary water (H 2 O)/organic solvent mixtures allowed the radiolabeling of DOTA at a significantly lower temperature than 95 °C, which is relevant for the labeling of sensitive biological molecules. Simultaneously, much lower amounts of the chelators were required. This strategy may have a fundamental impact on the formulation of trivalent radiometal-based radiopharmaceuticals. The equilibrium properties and formation kinetics of [M(DOTA)] - (M III = Ga III , Ce III , Eu III , Y III , and Lu III ) complexes were investigated in H 2 O/EtOH mixtures (up to 70 vol % EtOH). The protonation constants of DOTA were determined by pH potentiometry in H 2 O/EtOH mixtures (0-70 vol % EtOH, 0.15 M NaCl, 25 °C). The log K 1 H and log K 2 H values associated with protonation of the ring N atoms decreased with an increase of the EtOH content. The formation rates of [M(DOTA)] - complexes increase with an increase of the pH and [EtOH]. Complexation occurs through rapid formation of the diprotonated [M(H 2 DOTA)] + intermediates, which are in equilibrium with the kinetically active monoprotonated [M(HDOTA)] intermediates. The rate-controlling step is deprotonation (and rearrangement) of the monoprotonated intermediate, which occurs through H 2 O ( *M(HL) k H 2 O ) and OH - ( *M(HL) k OH ) assisted reaction pathways. The rate constants are essentially independent of the EtOH concentration, but the M(HL) k H2O values increase from Ce III to Lu III . However, the log K M(HL) H protonation constants, analogous to the log K H 2 value, decrease with increasing [EtOH], which increases the concentration of the monoprotonated M(HDOTA) intermediate and accelerates formation of the final complexes. The overall rates of complex formation calculated by the obtained rate constants at different EtOH concentrations show a trend similar to that of the complexation rates determined with the use of radioactive isotopes.
Effect of Oxygen Gas on the Decomposition of Dye by Pulsed Discharge in Water Droplet Spray
NASA Astrophysics Data System (ADS)
Nose, Taisuke; Yokoyama, Yuzo; Nakamura, Akira; Minamitani, Yasushi
Effect of O2 on the decolorization of indigo carmine and on the production of dissolved species such as NO2-, NO3-, O3 and H2O2 in the treatment water by pulsed discharge in water droplet spray was investigated by controlling the O2/N2 ratios as carrier gases in the reactor. The decolorization rate gradually increased with rise in O2 ratio, which reached a constant value in the range of 50% to 90% O2 ratio and decreased in pure O2. The maximum value was about 2 times as high as that of 20% O2 ratio. The decolorization efficiency was not affected by gas flow rate in the range of 4 L/min to 50 L/min. NO2- in the treatment water was only detected in pure N2, but NO3- was produced in O2/N2. NO2- added to the treatment water was not oxidized in pure N2, but was perfectly converted to NO3- in O2/N2. These results implied that hydroxyl radical produced in gas phase does not directly contribute to the oxidation of substances in water. O3 concentration gradually increased with rise in O2 ratio, whereas H2O2 concentration decreased. In the range of 50 to 80% O2 ratio, O3 and H2O2 concentrations were approximately constant value, similar to the trend of decolorization rate. Moreover rate constants on various gas mixing ratio of O2/N2 were determined from the kinetics study. These results suggested that hydroxyl radical produced in the treatment water by the chain reactions of O3 and hydroperoxy radical (HO2·) plays an important role of the decomposition of molecules in water.
Markin, V. S.; Tsong, T. Y.
1991-01-01
Previous work has shown that a simple four-state membrane transport system can interact with an oscillating electric field to become an active transport system if there is charge translocation associated with conformational changes of the transporter and if affinities of the transporter for the ligand on the two sides of membrane are different. The relationship between the transport flux and both the frequency of the applied field and the concentration of ligand have been examined based on the following assumptions: the rate of the electroconformational change of the transporter is much greater than that of the ligand association/dissociation reaction, and the oscillating electric field has a large amplitude. It was found that the transport flux depends strongly on the frequency of the field and on the concentration of the ligand and it displays a window of broad bandwidth both on the frequency and the concentration axes. The maximum concentration gradient, or the static head, which can be supported by this mechanism is shown to be constant for field frequencies smaller than the rate of the electroconformational change. The static head value diminishes completely when the field frequency exceeds the rate of the conformational change. The presence of an optimal field frequency has been shown experimentally in several membrane enzyme systems. The theory was applied to the description of Rb and Na pumping in human erythrocytes stimulated by an AC field. The prediction of a window for a ligand concentration and the static head value may be tested experimentally. In addition, the rate constants and the equilibrium constants of the four state model can be determined by measuring positions of windows, fluxes, and static head values under different experimental conditions. These results are equally applicable to the oscillation of pressure, membrane tension, substrate concentration, or temperature if these external parameters can induce functionally relevant conformational changes of the transporter. Images FIGURE 8 PMID:1873467
Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M
2010-05-01
The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.
Ionizing power and nucleophilicity in water in oil AOT-based microemulsions.
García-Río, Luis; Hervella, Pablo; Leis, José Ramón
2005-08-16
A study was carried out on the solvolysis of substituted phenyl chloroformates in AOT/isooctane/water microemulsions. (AOT is the sodium salt of bis(2-ethyhexyl)sulfosuccinate.) The results obtained have been interpreted by taking into account the distribution of the chloroformates between the continuous medium and the interface of the microemulsions, where the reactions take place. The values obtained for the rate constant in the interface, k(i), decreases as the water content of the microemulsions increases, as a consequence of the decrease in its nucleophilic capacity. This behavior is consistent with a rate-determining step of water addition to the carbonyl group. The values of k(i) allow us to obtain the slopes of the Hammett correlations at the interface of the microemulsions, rho = 2.25, whose values are greater than those obtained in an aqueous medium, rho = 0.82. This increase in the Hammett slope is similar to that observed in ethanol/water mixtures and is a consequence of a variation in the structure of the transition state of the reaction where there is a smaller extension of the expulsion of the leaving group. The values of the rate constants at the interface of the microemulsions have allowed us, by means of the Grunwald-Winstein equation, to obtain the solvent ionizing power and the nucleophilicity of the solvent. The values obtained for Y(Cl) increase together with the water content of the microemulsion, whereas the values of N(T) decrease. These variations are a consequence of the interaction between the AOT headgroups and the interfacial water, where the water molecules act like electronic acceptors. The intensity of this interaction is greater if the system has a small water content, which explains the variation of Y(Cl) and N(T).
NASA Astrophysics Data System (ADS)
Iwano, K.; Iwamoto, A.; Asahina, T.; Yamanoi, K.; Arikawa, Y.; Nagatomo, H.; Nakai, M.; Norimatsu, T.; Azechi, H.
2017-07-01
Infrared (IR) heating processes have been studied to form a deuterium layer in an inertial confinement fusion target. To understand the relationship between the IR intensity and the fuel layering time constant, we have developed a new method to assess the IR intensity during irradiation. In our method, a glass flask acting as a dummy target is filled with liquid hydrogen (LH2) and is then irradiated with 2-μm light. The IR intensity is subsequently calculated from the time constant of the LH2 evaporation rate. Although LH2 evaporation is also caused by the heat inflow from the surroundings and by the background heat, the evaporation rate due to IR heating can be accurately determined by acquiring the time constant with and without irradiation. The experimentally measured IR intensity is 0.66 mW/cm2, which agrees well with a value estimated by considering the IR photon energy balance. Our results suggest that the present method can be used to measure the IR intensity inside a cryogenic system during IR irradiation of laser fusion targets.
Quenching of I(2P 1/2) by O 3 and O( 3P)
NASA Astrophysics Data System (ADS)
Azyazov, V. N.; Antonov, I. O.; Ruffner, S.; Heaven, M. C.
2006-02-01
Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P 1/2) by O atoms and O 3 may impact the efficiency of discharge driven iodine lasers. In the present study we have measured the rate constants for quenching of I(2P 1/2) by O( 3P) atoms and O 3 using pulsed laser photolysis techniques. The rate constant for quenching by O 3, 1.8x10 -12 cm 3 s -1, was found to be a factor of five smaller than the literature value. The rate constant for quenching by O( 3P) was 1.2x10 -11 cm 3 s -1. This was six times larger than a previously reported upper bound, but consistent with estimates obtained by modeling the kinetics of discharge-driven laser systems.
NASA Technical Reports Server (NTRS)
Jaffee, R. L.
1978-01-01
Classical trajectory calculations are presented for the reaction ClO + O yields Cl + O2, a reaction which is an important step in the chlorine-catalyzed destruction of ozone which is thought to occur in the 220 and 1000 K. The calculated rate constant is 4.36 x 10 to the minus 11th power exp (-191/T)cu cm molecule (-1)s(-1) and its value at 300 K is 2.3 plus or minus 10 to the 11th power cu cm molecule (-1)s(-1), about a factor of 2 lower than recent experimental data. The empirical potential energy surface used in the calculations was constructed to fit experimental data for ClO, O2 and ClOO molecules. Other important features of this potential surface, such as the barrier to reaction, were varied systematically and calculations were performed for a range of conditions to determine the best theoretical rate constants. Results demonstrate the utility of classical trajectory methods for determining activation energies and other kinetic data for important atmospheric reactions.
Iwano, K; Iwamoto, A; Asahina, T; Yamanoi, K; Arikawa, Y; Nagatomo, H; Nakai, M; Norimatsu, T; Azechi, H
2017-07-01
Infrared (IR) heating processes have been studied to form a deuterium layer in an inertial confinement fusion target. To understand the relationship between the IR intensity and the fuel layering time constant, we have developed a new method to assess the IR intensity during irradiation. In our method, a glass flask acting as a dummy target is filled with liquid hydrogen (LH 2 ) and is then irradiated with 2-μm light. The IR intensity is subsequently calculated from the time constant of the LH 2 evaporation rate. Although LH 2 evaporation is also caused by the heat inflow from the surroundings and by the background heat, the evaporation rate due to IR heating can be accurately determined by acquiring the time constant with and without irradiation. The experimentally measured IR intensity is 0.66 mW/cm 2 , which agrees well with a value estimated by considering the IR photon energy balance. Our results suggest that the present method can be used to measure the IR intensity inside a cryogenic system during IR irradiation of laser fusion targets.
Pierpoint, A C; Hapeman, C J; Torrents, A
2001-08-01
The relative rate constants for the reaction of ozone were determined for several substituted anilines in aqueous solutions at pH 6.5 and 1.5. At pH 6.5, with the exception of m- and p-nitroaniline, the rate constants obey Hammett's equation: log(k(X)/k(H)) = rho sigma. The departure of m- and p-nitroaniline may be explained by direct conjugation of the reaction center. The commonly used sigma(p)(-) value of 1.27, which extends the range of applicability of the Hammett equation, was insufficient to account for the conjugation effects on ozonation of p-nitroaniline; rho = -1.48 (R = 0.973). Use of amine group atomic charge determinations significantly improved correlations: (k(X)/k(H)) = 48.7 delta - 18.2 (R = 0.996). A linear plot of Hammett constants versus relative rate data at pH 1.5 showed poor correlation: rho = 0.72 (R = 0.572). Poor correlation was similarly observed for amine group atomic charge determinations, suggesting varied reaction mechanisms.
Quenching of I(2P1/2) by NO2, N2O4, and N2O.
Kabir, Md Humayun; Azyazov, Valeriy N; Heaven, Michael C
2007-10-11
Quenching of excited iodine atoms (I(5p5, 2P1/2)) by nitrogen oxides are processes of relevance to discharge-driven oxygen iodine lasers. Rate constants at ambient and elevated temperatures (293-380 K) for quenching of I(2P1/2) atoms by NO2, N2O4, and N2O have been measured using time-resolved I(2P1/2) --> I(2P3/2) 1315 nm emission. The excited atoms were generated by pulsed laser photodissociation of CF3I at 248 nm. The rate constants for I(2P1/2) quenching by NO2 and N2O were found to be independent of temperature over the range examined with average values of (2.9 +/- 0.3) x 10(-15) and (1.4 +/- 0.1) x 10(-15) cm3 s(-1), respectively. The rate constant for quenching of I(2P1/2) by N2O4 was found to be (3.5 +/- 0.5) x 10(-13) cm3 s(-1) at ambient temperature.
Amino acid geochemistry of fossil bones from the Rancho La Brea asphalt deposit, California
McMenamin, M.A.S.; Blunt, D.J.; Kvenvolden, K.A.; Miller, S.E.; Marcus, L.F.; Pardi, R.R.
1982-01-01
Low aspartic acid d:l ratios and modern collagenlike concentration values indicate that amino acids in bones from the Rancho La Brea asphalt deposit, Los Angeles, California are better preserved than amino acids in bones of equivalent age that have not been preserved in asphalt. Amino acids were recovered from 10 Rancho La Brea bone samples which range in age from less than 200 to greater than 36,000 yr. The calibrated rates of aspartic acid racemization range from 2.1 to 5.0 ?? 10-6yr-1. Although this wide range of rate constants decreases the level of confidence for age estimates, use of the larger rate constant of 5.0 ?? 10-6yr-1 provides minimum age estimates which fit the known stratigraphic and chronologic records of the Rancho La Brea deposits. ?? 1982.
Li, Yang; Klippenstein, Stephen J; Zhou, Chong-Wen; Curran, Henry J
2017-10-12
The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of polyunsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution toward soot formation. On the basis of our previous work on propene and the butene isomers (1-, 2-, and isobutene), it was found that the reaction kinetics of Ḣ-atom addition to the C═C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations, and flame speed measurements. In this study, the rate constants and thermodynamic properties for Ḣ-atom addition to 1,3-butadiene and related reactions on the Ċ 4 H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero-point energies, single-point energies, rate constants, barrier heights, and thermochemistry are systematically compared among the two quantum chemical methods. 1-Methylallyl (Ċ 4 H 7 1-3) and 3-buten-1-yl (Ċ 4 H 7 1-4) radicals and C 2 H 4 + Ċ 2 H 3 are found to be the most important channels and reactivity-promoting products, respectively. We calculated that terminal addition is dominant (>80%) compared to internal Ḣ-atom addition at all temperatures in the range 298-2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4 H 6 + Ḣ → products and C 2 H 4 + Ċ 2 H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species, the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H atom abstraction by Ḣ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (>70%) at temperatures in the range of 298-2000 K. Finally, by incorporating our calculated rate constants for both Ḣ atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagidullin, M. V., E-mail: marsel@fian.smr.ru; Pershin, A. A., E-mail: anchizh93@gmail.com; Azyazov, V. N., E-mail: azyazov@ssau.ru
Experimental and theoretical studies of collision induced emission of singlet oxygen molecules O{sub 2}(a{sup 1}Δ{sub g}) in the visible range have been performed. The rate constants, half-widths, and position of peaks for the emission bands of the (O{sub 2}(a{sup 1}Δ{sub g})){sub 2} collisional complex centered around 634 nm (2) and 703 nm (3) have been measured in the temperature range of 90–315 K using a flow-tube apparatus that utilized a gas-liquid chemical singlet oxygen generator. The absolute values of the spontaneous emission rate constants k{sub 2} and k{sub 3} are found to be similar, with the k{sub 3}/k{sub 2} ratiomore » monotonically decreasing from 1.1 at 300 K to 0.96 at 90 K. k{sub 2} slowly decreases with decreasing temperature but a sharp increase in its values is measured below 100 K. The experimental results were rationalized in terms of ab initio calculations of the ground and excited potential energy and transition dipole moment surfaces of singlet electronic states of the (O{sub 2}){sub 2} dimole, which were utilized to compute rate constants k{sub 2} and k{sub 3} within a statistical model. The best theoretical results reproduced experimental rate constants with the accuracy of under 40% and correctly described the observed temperature dependence. The main contribution to emission process (2), which does not involve vibrational excitation of O{sub 2} molecules at the ground electronic level, comes from the spin- and symmetry-allowed 1{sup 1}A{sub g}←{sup 1}B{sub 3u} transition in the rectangular H configuration of the dimole. Alternatively, emission process (3), in which one of the monomers becomes vibrationally excited in the ground electronic state, is found to be predominantly due to the vibronically allowed 1{sup 1}A{sub g}←2{sup 1}A{sub g} transition induced by the asymmetric O–O stretch vibration in the collisional complex. The strong vibronic coupling between nearly degenerate excited singlet states of the dimole makes the intensities of vibronically and symmetry-allowed transitions comparable and hence the rate constants k{sub 2} and k{sub 3} close to one another.« less
Estimation of attitude sensor timetag biases
NASA Technical Reports Server (NTRS)
Sedlak, J.
1995-01-01
This paper presents an extended Kalman filter for estimating attitude sensor timing errors. Spacecraft attitude is determined by finding the mean rotation from a set of reference vectors in inertial space to the corresponding observed vectors in the body frame. Any timing errors in the observations can lead to attitude errors if either the spacecraft is rotating or the reference vectors themselves vary with time. The state vector here consists of the attitude quaternion, timetag biases, and, optionally, gyro drift rate biases. The filter models the timetags as random walk processes: their expectation values propagate as constants and white noise contributes to their covariance. Thus, this filter is applicable to cases where the true timing errors are constant or slowly varying. The observability of the state vector is studied first through an examination of the algebraic observability condition and then through several examples with simulated star tracker timing errors. The examples use both simulated and actual flight data from the Extreme Ultraviolet Explorer (EUVE). The flight data come from times when EUVE had a constant rotation rate, while the simulated data feature large angle attitude maneuvers. The tests include cases with timetag errors on one or two sensors, both constant and time-varying, and with and without gyro bias errors. Due to EUVE's sensor geometry, the observability of the state vector is severely limited when the spacecraft rotation rate is constant. In the absence of attitude maneuvers, the state elements are highly correlated, and the state estimate is unreliable. The estimates are particularly sensitive to filter mistuning in this case. The EUVE geometry, though, is a degenerate case having coplanar sensors and rotation vector. Observability is much improved and the filter performs well when the rate is either varying or noncoplanar with the sensors, as during a slew. Even with bad geometry and constant rates, if gyro biases are independently known, the timetag error for a single sensor can be accurately estimated as long as its boresight is not too close to the spacecraft rotation axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bockris, J.O.; Devanathan, M.A.V.
The galvanostatic double charging method was applied to determine the coverage of Ni cathodes with adsorbed atomic H in 2 N NaOH solutions. Anodic current densities were varied from 0.05 to 1.8 amp/sq cm. The plateau indicating absence of readsorption was between 0.6 and 1.8 amp/sq cm, for a constant cathodic c.d. of 1/10,000 amp/sq cm. The variation of the adsorbed H over cathodic c.d.'s ranging from 10 to the -6th power to 1/10 at a constant anodic c.d. of 1 amp/sq cm were calculated and the coverage calculated. The mechanism of the H evolution reaction was elucidated. The ratemore » determining step is discharge from a water molecules followed by rapid Tafel recombination. The rate constants for these processes and the rate constant for the ionisation, calculated with the extrapolated value of coverage for the reversible H electrode, were determined. A modification of the Tafel equation which takes into account both coverage and ionisation is in harmony with the results. A new method for the determination of coverage suitable for corrodible metals is described which involves the measurement of the rate of permeation of H by electrochemical techniques which enhances the sensitivity of the method. (Author)« less
Detection of the YORP effect in asteroid (161989) Cacus
NASA Astrophysics Data System (ADS)
Durech, Josef; Vokrouhlicky, David; Pravec, Petr; Hanus, Josef; Kusnirak, Peter; Hornoch, Kamil; Galad, Adrian; Masi, Gianluca
2016-10-01
The rotation state of small asteroids is affected by the thermal Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) torque. The directly observable consequence of YORP is the secular change of the asteroid's rotational period in time. We carried out new photometric observations of asteroid (161989) Cacus during its apparitions in 2014-2016. Using the new lightcurves together with archived data going back to 1978, we were able to detect a tiny deviation from the constant-period rotation. This deviation caused an observable shift between the observed lightcurves and those predicted by the best constant-period model. We used the lightcurve inversion method to derive a shape/spin solution that fitted the data at best. We assumed that the rotation rate evolved linearly in time and derived the acceleration of the rotation rate dω/dt = (1.9 +/- 0.3) × 10-8 rad/day2. The accelerating model provides a significantly better fit than the constant-period model. By applying a thermophysical model on WISE thermal infrared data, we estimated the thermal inertia of the surface to Γ = 250-2000 J m-2 s-0.5 K-1 and the volume-equivalent diameter to 0.8-1.2 km (1σ intervals). The value of dω/dt derived from observations is in agreement with the theoretical value computed numerically from the lightcurve inversion shape model and its spin axis orientation. Cacus has become the sixth asteroid with YORP detection. Surprisingly, for all six cases the rotation rate accelerates.
Periphyton biofilms influence net methylmercury production in an industrially contaminated system
Olsen, Todd Andrew; Brandt, Craig C.; Brooks, Scott C.
2016-09-12
Mercury (Hg) methylation and methylmercury (MMHg) demethylation activity of periphyton biofilms from East Fork Poplar Creek, Tennessee, USA (EFPC) were measured during 2014-2015 using stable Hg isotopic rate assays. 201Hg II and MM 202Hg were added to intact periphyton samples and the formation of MM 201Hg and loss of MM 202Hg were monitored over time and used to calculate first-order rate constants for methylation and demethylation, respectively. The influence of location, temperature/season, light exposure and biofilm structure on methylation and demethylation were examined. Between-site differences in net methylation for samples collected from an upstream versus downstream location were driven bymore » differences in the demethylation rate constant (k d). In contrast, the within-site seasonal difference in net methylation was driven by changes in the methylation rate constant (k m). Samples incubated in the dark had lower net methylation due to km values that were 60% less than those incubated in the light. Disrupting the biofilm structure decreased km by 50% and resulted in net demethylating conditions. Overall, the measured rates resulted in a net excess of MMHg generated which could account for 27-85% of the MMHg flux in EFPC and suggests intact, actively photosynthesizing periphyton biofilms harbor zones of MMHg production.« less
Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E.
1998-01-01
The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMD to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB- contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/ g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMDs was also similar. The rates of uptake generally increased or decreased with increasing K(ow), depending on the assumption of presence or absence of TOC.The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMB to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB-contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMBs was also similar. The rates of uptake generally increased or decreased with increasing KOW, depending on the assumption of presence or absence of TOC.
Carvalho, M N; da Motta, M; Benachour, M; Sales, D C S; Abreu, C A M
2012-11-15
The removal process of BTEX and phenol was evaluated. The smectite organoclay for single-solute system reached removal was evaluated by adsorption on smectite organoclay adsorbent by kinetic and equilibrium efficiencies between 55 and 90% while was reached between 30 and 90% for multi-solute system at 297 K and pH 9. The Langmuir-Freundlich model was used to fit the experimental data with correlation coefficient between 0.98 and 0.99 providing kinetic and equilibrium parameter values. Phenol and ethylbenzene presented high maximum adsorbed amount, 8.28 and 6.67 mg/g, respectively, compared to the other compounds for single-solute. Toluene and p-xylene presented high values of adsorption constant which indicates a high adsorption affinity of compounds to organoclay surface and high binding energy of adsorption. Phenol presented low kinetic adsorption constant value indicating slow rate of adsorption. Copyright © 2012 Elsevier B.V. All rights reserved.
State income tax policy and family size: fertility and the dependency exemption.
Whittington, L A
1993-10-01
Data from the Panel Study on Income Dynamics, excluding the low income Survey of Economic Opportunity, were used to test an empirical model of the relationship between US state tax exemption values and tax rates for couples and fertility. Income is held constant so that the real tax exemption value is affected by changes in tax rates, the price level, or the statutory value of the exemption. Prior research by Whittington et al. found a positive relationship between births and the federal exemption between 1979-83 for 294 households. The tax value of the exemption varies widely across states. There are 41 states with substantial personal income taxes, while seven states have no state personal income taxes. A very limited tax on personal income is collected in Tennessee, New Hampshire, and Connecticut. Pennsylvania has no dependency exemption. The range in exemption varies from $1500 in Georgia to $300 in Alabama. Tax credits in lieu of exemptions vary from $6 in Arkansas to $85 in Oregon. Tax rates also vary across states. The value of the exemption lowers the cost of a child and is not constant over time. Six models are specified. Model 1 uses combined state and federal exemptions. Models 2 and 3 use a lagged combined exemption value of one and two years. Models 4 and 6 use state exemptions separated from federal exemptions. Model 5 uses a lag of one year, and model 6 uses a lag of two years. The estimation results of the conditional logit (Chamberlain) Model 1 show a negative and significant coefficient, which suggests that exemptions are not an incentive for births. In Models 2 and 3, the coefficient is positive and significant. In Model 4, the pattern of Model 1 holds except the sign is positive. In Models 5 and 6, the federal exemption is positive and significant, and the state exemption is negative and significant. When substitution is made with the means of the predicted values for the exemption, Models 1-4 all become positive and significant. In models with income as a constant, income reduces the impact of the dependency exemption on fertility. Neither state or federal exemptions are a determinant of fertility but serve as a policy tool for motivating average family size.
NASA Technical Reports Server (NTRS)
Watson, W. D.; Anicich, V. G.; Huntress, W. T., Jr.
1976-01-01
Laboratory measurements using the ion-cyclotron resonance technique yield a rate constant of 2 by 10 to the -10th power cu cm/sec at 300 K for the isotope exchange C-13(+) + (C-12)O yields C-12(+) + (C-13)O. According to the usual ideas about ion-molecule reactions, this rate constant should also be appropriate at temperatures not exceeding about 100 K. Then the observed C-13/C-12 ratio obtained from radio observation of interstellar molecules may be either larger or smaller than the actual value in the interstellar medium by factors of 2 or so. If the ratio is altered from the actual interstellar value, it will not be the same in all molecules, and CO will tend to have the highest value. The chief astronomical uncertainty for the occurrence of this isotope fractionation is the abundance of 'unobservable' molecules which can react rapidly with C(+): e.g., O2, H2O, CO2, and CH4. If their abundance is greater than about one-tenth that of CO, the isotope fractionation will be inhibited.
NASA Astrophysics Data System (ADS)
Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.
2018-05-01
It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.
Effect of bacterial growth rate on bacteriophage population growth rate.
Nabergoj, Dominik; Modic, Petra; Podgornik, Aleš
2018-04-01
It is important to understand how physiological state of the host influence propagation of bacteriophages (phages), due to the potential higher phage production needs in the future. In our study, we tried to elucidate the effect of bacterial growth rate on adsorption constant (δ), latent period (L), burst size (b), and bacteriophage population growth rate (λ). As a model system, a well-studied phage T4 and Escherichia coli K-12 as a host was used. Bacteria were grown in a continuous culture operating at dilution rates in the range between 0.06 and 0.98 hr -1 . It was found that the burst size increases linearly from 8 PFU·cell -1 to 89 PFU·cell -1 with increase in bacteria growth rate. On the other hand, adsorption constant and latent period were both decreasing from 2.6∙10 -9 ml·min -1 and 80 min to reach limiting values of 0.5 × 10 -9 ml·min -1 and 27 min at higher growth rates, respectively. Both trends were mathematically described with Michaelis-Menten based type of equation and reasons for such form are discussed. By applying selected equations, a mathematical equation for prediction of bacteriophage population growth rate as a function of dilution rate was derived, reaching values around 8 hr -1 at highest dilution rate. Interestingly, almost identical description can be obtained using much simpler Monod type equation and possible reasons for this finding are discussed. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie
2015-01-01
ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500
Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew
2015-07-01
Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.
Recommended Values of the Fundamental Physical Constants: A Status Report
Taylor, Barry N.; Cohen, E. Richard
1990-01-01
We summarize the principal advances made in the fundamental physical constants field since the completion of the 1986 CODATA least-squares adjustment of the constants and discuss their implications for both the 1986 set of recommended values and the next least-squares adjustment. In general, the new results lead to values of the constants with uncertainties 5 to 7 times smaller than the uncertainties assigned the 1986 values. However, the changes in the values themselves are less than twice the 1986 assigned one-standard-deviation uncertainties and thus are not highly significant. Although much new data has become available since 1986, three new results dominate the analysis: a value of the Planck constant obtained from a realization of the watt; a value of the fine-structure constant obtained from the magnetic moment anomaly of the electron; and a value of the molar gas constant obtained from the speed of sound in argon. Because of their dominant role in determining the values and uncertainties of many of the constants, it is highly desirable that additional results of comparable uncertainty that corroborate these three data items be obtained before the next adjustment is carried out. Until then, the 1986 CODATA set of recommended values will remain the set of choice. PMID:28179787
Cosmic Explosions, Life in the Universe, and the Cosmological Constant.
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia
2016-02-26
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
Cosmic Explosions, Life in the Universe, and the Cosmological Constant
NASA Astrophysics Data System (ADS)
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J.; Simpson, Fergus; Verde, Licia
2016-02-01
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N -body simulations to determine at what time and for what value of the cosmological constant (Λ ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
Lique, F; Jorfi, M; Honvault, P; Halvick, P; Lin, S Y; Guo, H; Xie, D Q; Dagdigian, P J; Kłos, J; Alexander, M H
2009-12-14
We report extensive, fully quantum, time-independent (TID) calculations of cross sections at low collision energies and rate constants at low temperatures for the O+OH reaction, of key importance in the production of molecular oxygen in cold, dark, interstellar clouds and in the chemistry of the Earth's atmosphere. Our calculations are compared with TID calculations within the J-shifting approximation, with wave-packet calculations, and with quasiclassical trajectory calculations. The fully quantum TID calculations yield rate constants higher than those from the more approximate methods and are qualitatively consistent with a low-temperature extrapolation of earlier experimental values but not with the most recent experiments at the lowest temperatures.
Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H
2016-10-03
Amputees using passive ankle-foot prostheses tend to expend more metabolic energy during walking than non-amputees, and reducing this cost has been a central motivation for the development of active ankle-foot prostheses. Increased push-off work at the end of stance has been proposed as a way to reduce metabolic energy use, but the effects of push-off work have not been tested in isolation. In this experiment, participants with unilateral transtibial amputation (N=6) walked on a treadmill at a constant speed while wearing a powered prosthesis emulator. The prosthesis delivered different levels of ankle push-off work across conditions, ranging from the value for passive prostheses to double the value for non-amputee walking, while all other prosthesis mechanics were held constant. Participants completed six acclimation sessions prior to a data collection in which metabolic rate, kinematics, kinetics, muscle activity and user satisfaction were recorded. Metabolic rate was not affected by net prosthesis work rate (p=0.5; R 2 =0.007). Metabolic rate, gait mechanics and muscle activity varied widely across participants, but no participant had lower metabolic rate with higher levels of push-off work. User satisfaction was affected by push-off work (p=0.002), with participants preferring values of ankle push-off slightly higher than in non-amputee walking, possibly indicating other benefits. Restoring or augmenting ankle push-off work is not sufficient to improve energy economy for lower-limb amputees. Additional necessary conditions might include alternate timing or control, individualized tuning, or particular subject characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stability of colloidal gold and determination of the Hamaker constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirci, S.; Enuestuen, B.V.; Turkevich, J.
1978-12-14
Previous computation of stability factors of colloidal gold from coagulation data was found to be in systematic error due to an underestimation of the particle concentration by electron microscopy. A new experimental technique was developed for determination of this concentration. Stability factors were recalculated from the previous data using the correct concentration. While most of the previously reported conclusions remain unchanged, the absolute rate of fast coagulation is found to agree with that predicted by the theory. A value of the Hamaker constant was determined from the corrected data.
Srinivasan, Nanda K; Su, Meng-Chih; Sutherland, James W; Michael, Joe V; Ruscic, Branko
2006-06-01
The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.
DiLabio, Gino A; Ingold, K U
2004-03-05
Brown and Okamoto (J. Am. Chem. Soc. 1958, 80, 4979) derived their electrophilic substitutent constants, sigma(p)+, from the relative rates of solvolysis of ring-substituted cumyl chlorides in an acetone/water solvent mixture. Application of the Hammett equation to the rates for the meta-substituted cumyl chlorides, where there could be no resonance interaction with the developing carbocation, gave a slope, rho(+) = -4.54 ( identical with 6.2 kcal/mol free energy). Rates for the para-substituted chlorides were then used to obtain sigma(p)+ values. We have calculated gas-phase C-Cl heterolytic bond dissociation enthalpy differences, Delta BDE(het) (= BDE(het)(4-YC(6)H(4)CMe(2)Cl) - BDE(het)(C(6)H(5)CMe(2)Cl)), for 16 of the 4-Y substituents employed by Brown and Okamoto. The plot of Delta BDE(het) vs sigma(p)+ gave rho(+) (SD) = 16.3 (2.3) kcal/mol, i.e., a rho(+) value roughly 2.5 times greater than experiment. Inclusion of solvation (water) energies, calculated using three continuum solvent models, reduced rho(+) and SD. The computationally least expensive model used, SM5.42R (Li et al. Theor. Chem. Acc. 1999, 103, 9) gave the best agreement with experiment. This model yielded rho(+) (SD) = 7.7 (0.9) kcal/mol, i.e., a rho(+) value that is only 24% larger than experiment.
Massoth, F E; Politzer, P; Concha, M C; Murray, J S; Jakowski, J; Simons, Jack
2006-07-27
The hydrodeoxygenation of methyl-substituted phenols was carried out in a flow microreactor at 300 degrees C and 2.85 MPa hydrogen pressure over a sulfided CoMo/Al(2)O(3) catalyst. The primary reaction products were methyl-substituted benzene, cyclohexene, cyclohexane, and H(2)O. Analysis of the results suggests that two independent reaction paths are operative, one leading to aromatics and the other to partially or completely hydrogenated cyclohexanes. The reaction data were analyzed using Langmuir-Hinshelwood kinetics to extract the values of the reactant-to-catalyst adsorption constant and of the rate constants characterizing the two reaction paths. The adsorption constant was found to be the same for both reactions, suggesting that a single catalytic site center is operative in both reactions. Ab initio electronic structure calculations were used to evaluate the electrostatic potentials and valence orbital ionization potentials for all of the substituted phenol reactants. Correlations were observed between (a) the adsorption constant and the two reaction rate constants measured for various methyl-substitutions and (b) certain moments of the electrostatic potentials and certain orbitals' ionization potentials of the isolated phenol molecules. On the basis of these correlations to intrinsic reactant-molecule properties, a reaction mechanism is proposed for each pathway, and it is suggested that the dependencies of adsorption and reaction rates upon methyl-group substitution are a result of the substituents' effects on the electrostatic potential and orbitals rather than geometric (steric) effects.
Simulation of substrate degradation in composting of sewage sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jun; Gao Ding, E-mail: gaod@igsnrr.ac.c; Chen Tongbin
2010-10-15
To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k{sub 20} (the first-order rate constant at 20 {sup o}C). After comparison withmore » experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k{sub 20}, k{sub 20s} (first-order rate coefficient of slow fraction of BVS at 20 {sup o}C) of the sewage sludge were estimated as 0.082 and 0.015 d{sup -1}, respectively.« less
Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian
2015-05-01
Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.
Couple stress fluid flow in a rotating channel with peristalsis
NASA Astrophysics Data System (ADS)
Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.
2018-04-01
This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.
Sorption kinetics of diuron on volcanic ash derived soils.
Cáceres-Jensen, Lizethly; Rodríguez-Becerra, Jorge; Parra-Rivero, Joselyn; Escudey, Mauricio; Barrientos, Lorena; Castro-Castillo, Vicente
2013-10-15
Diuron sorption kinetic was studied in Andisols, Inceptisol and Ultisols soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Two types of kinetic models were used to fit the experimental dates: those that allow to establish principal kinetic parameters and modeling of sorption process (pseudo-first-order, pseudo-second-order), and some ones frequently used to describe solute transport mechanisms of organic compounds on different sorbents intended for remediation purposes (Elovich equation, intraparticle diffusion, Boyd, and two-site nonequilibrium models). The best fit was obtained with the pseudo-second-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the behavior of Diuron in each soil, in Andisols were observed the highest values for both parameters. The application of the models to describe solute transport mechanisms allowed establishing that in all soils the mass transfer controls the sorption kinetic across the boundary layer and intraparticle diffusion into macropores and micropores. The slowest sorption rate was observed on Ultisols, behavior which must be taken into account when the leaching potential of Diuron is considered. Copyright © 2013 Elsevier B.V. All rights reserved.
Constant-roll (quasi-)linear inflation
NASA Astrophysics Data System (ADS)
Karam, A.; Marzola, L.; Pappas, T.; Racioppi, A.; Tamvakis, K.
2018-05-01
In constant-roll inflation, the scalar field that drives the accelerated expansion of the Universe is rolling down its potential at a constant rate. Within this framework, we highlight the relations between the Hubble slow-roll parameters and the potential ones, studying in detail the case of a single-field Coleman-Weinberg model characterised by a non-minimal coupling of the inflaton to gravity. With respect to the exact constant-roll predictions, we find that assuming an approximate slow-roll behaviour yields a difference of Δ r = 0.001 in the tensor-to-scalar ratio prediction. Such a discrepancy is in principle testable by future satellite missions. As for the scalar spectral index ns, we find that the existing 2-σ bound constrains the value of the non-minimal coupling to ξphi ~ 0.29–0.31 in the model under consideration.
The CODATA 2017 values of h, e, k, and N A for the revision of the SI
NASA Astrophysics Data System (ADS)
Newell, D. B.; Cabiati, F.; Fischer, J.; Fujii, K.; Karshenboim, S. G.; Margolis, H. S.; de Mirandés, E.; Mohr, P. J.; Nez, F.; Pachucki, K.; Quinn, T. J.; Taylor, B. N.; Wang, M.; Wood, B. M.; Zhang, Z.
2018-04-01
Sufficient progress towards redefining the International System of Units (SI) in terms of exact values of fundamental constants has been achieved. Exact values of the Planck constant h, elementary charge e, Boltzmann constant k, and Avogadro constant N A from the CODATA 2017 Special Adjustment of the Fundamental Constants are presented here. These values are recommended to the 26th General Conference on Weights and Measures to form the foundation of the revised SI.
Pulsed Power Discharges in Water
NASA Astrophysics Data System (ADS)
Kratel, Axel Wolf Hendrik
An Electrohydraulic Discharge Process (EHD) for the treatment of hazardous chemical wastes in water has been developed. Liquid waste in a 4 L EHD reactor is directly exposed to high-energy pulsed electrical discharges between two submerged electrodes. The high-temperature (> 14,000 K) plasma channel created by an EHD discharge emits ultraviolet radiation, and produces an intense shock wave as it expands against the surrounding water. A simulation of the EHD process is presented along with experimental results. The simulation assumes a uniform plasma channel with a plasma that obeys the ideal gas law and the Spitzer conductivity law. The results agree with previously published data. The simulation is used to predict the total energy efficiency, energy partitioning, maximum plasma channel temperature and pressure for the Caltech Pulsed Power Facility (CPPF). The simulation shows that capacitance, initial voltage and gap length can be used to control the efficiency of the discharge. The oxidative degradation of 4-chlorophenol (4 -CP), 3,4-dichloroaniline (3,4-DCA), and 2,4,6 trinitrotoluene (TNT) in an EHD reactor was explored. The initial rates of degradation for the three substrates are described by a first-order rate equation, where k_{ it 0/} is the zero-order rate constant that accounts for direct photolysis; and k_ {it 1/} is the first-order term that accounts for oxidation in the plasma channel region. For 4-CP in the 4.0 L reactor, the values of these two rate constants are k_{it 0/} = 0.73 +/- 0.08 mu M, and k_{ it 1/} =(9.4 +/- 1.4) times 10^{-4}. For a 200 mu M 4-CP solution this corresponds to an overall intrinsic zero-order rate constant of 0.022 M s^{it -1/} , and a G-value of 4.45 times 10^{-3}. Ozone increases the rate and extent of degradation of the substrates in the EHD reactor. Combined EHD/ozone treatment of a 160 mu M TNT solution resulted in the complete degradation of TNT, and a 34% reduction of the total organic carbon (TOC). The intrinsic initial rate constant of TNT degradation was 0.024 M s^{it -1/} . The results of these experiments demonstrate the potential application of the EHD process for the treatment of hazardous wastes.
Kinetic modeling of ion conduction in KcsA potassium channel.
Mafé, Salvador; Pellicer, Julio; Cervera, Javier
2005-05-22
KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter could limit conduction at high concentration. Although some experimental data from other authors were included to allow qualitative comparison with model calculations, the absolute values of the effective rate constants obtained are only tentative. However, the relative changes in these constants needed to explain qualitatively the experiments should be of significance.
NASA Technical Reports Server (NTRS)
Green, S.; Truhlar, D. G.
1979-01-01
Rate constants for rotational excitation of hydrogen molecules by collisions with hydrogen atoms have been obtained from quantum-mechanical calculations for kinetic temperatures between 100 and 5000 K. These calculations involve the rigid-rotator approximation, but other possible sources of error should be small. The calculations indicate that the early values of Nishimura are larger than accurate rigid-rotator values by about a factor of 20 or more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, D.; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Miranda, F.
2016-06-08
Tailoring battery geometries is essential for many applications, as geometry influences the delivered capacity value. Two geometries, frame and conventional, have been studied and, for a given scan rate of 330C, the square frame shows a capacity value of 305,52 Ahm{sup −2}, which is 527 times higher than the one for the conventional geometry for a constant the area of all components.
BTEX and MTBE adsorption onto raw and thermally modified diatomite.
Aivalioti, Maria; Vamvasakis, Ioannis; Gidarakos, Evangelos
2010-06-15
The removal of BTEX (benzene, toluene, ethyl-benzene and xylenes) and MTBE (methyl tertiary butyl ether) from aqueous solution by raw (D(R)) and thermally modified diatomite at 550, 750 and 950 degrees C (D(550), D(750) and D(950) respectively) was studied. Physical characteristics of both raw and modified diatomite such as specific surface, pore volume distribution, porosity and pH(solution) were determined, indicating important structural changes in the modified diatomite, due to exposure to high temperatures. Both adsorption kinetic and isotherm experiments were carried out. The kinetics data proved a closer fit to the pseudo-second order model. Maximum values for the rate constant, k(2), were obtained for MTBE and benzene (48.9326 and 18.0996 g mg(-1)h(-1), respectively) in sample D(550). The isotherm data proved to fit the Freundlich model more closely, which produced values of the isotherm constant 1/n higher than one, indicating unfavorable adsorption. The highest adsorption capacity, calculated through the values of the isotherm constant k(F), was obtained for MTBE (48.42 mg kg(-1) (mg/L)(n)) in sample D(950). Copyright 2010 Elsevier B.V. All rights reserved.
Although detection of breath odor is the oldest of the medical diagnostic techniques, blood and urine biomarker measurements are the current "gold standard" for modern exposure and health assessments. Of late, it has been recognized that collecting exhaled breath is an attractiv...
Alumni Perspectives Survey, 2011. Survey Report
ERIC Educational Resources Information Center
Sheikh, Sabeen
2011-01-01
Since the Graduate Management Admission Council[R] (GMAC[R]) first began conducting its Alumni Perspectives Surveys 11 years ago, several "truths" about graduate business school alumni have consistently stood the test of time: They are and remain eminently employable. They constantly rate the value of the degree highly. This year's results are…
Ren, Jimin; Sherry, A Dean; Malloy, Craig R
2016-09-01
Inversion transfer (IT) is a well-established technique with multiple attractive features for analysis of kinetics. However, its application in measurement of ATP synthesis rate in vivo has lagged behind the more common saturation transfer (ST) techniques. One well-recognized issue with IT is the complexity of data analysis in comparison with much simpler analysis by ST. This complexity arises, in part, because the γ-ATP spin is involved in multiple chemical reactions and magnetization exchanges, whereas Pi is involved in a single reaction, Pi → γ-ATP. By considering the reactions involving γ-ATP only as a lumped constant, the rate constant for the reaction of physiological interest, kPi→γATP , can be determined. Here, we present a new IT data analysis method to evaluate kPi→γATP using data collected from resting human skeletal muscle at 7 T. The method is based on the basic Bloch-McConnell equation, which relates kPi→γATP to m˙Pi, the rate of Pi magnetization change. The kPi→γATP value is accessed from m˙Pi data by more familiar linear correlation approaches. For a group of human subjects (n = 15), the kPi→γATP value derived for resting calf muscle was 0.066 ± 0.017 s(-1) , in agreement with literature-reported values. In this study we also explored possible time-saving strategies to speed up data acquisition for kPi→γATP evaluation using simulations. The analysis indicates that it is feasible to carry out a (31) P IT experiment in about 10 min or less at 7 T with reasonable outcome in kPi→γATP variance for measurement of ATP synthesis in resting human skeletal muscle. We believe that this new IT data analysis approach will facilitate the wide acceptance of IT to evaluate ATP synthesis rate in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Control of Growth Rate by Initial Substrate Concentration at Values Below Maximum Rate
Gaudy, Anthony F.; Obayashi, Alan; Gaudy, Elizabeth T.
1971-01-01
The hyperbolic relationship between specific growth rate, μ, and substrate concentration, proposed by Monod and used since as the basis for the theory of steady-state growth in continuous-flow systems, was tested experimentally in batch cultures. Use of a Flavobacterium sp. exhibiting a high saturation constant for growth in glucose minimal medium allowed direct measurement of growth rate and substrate concentration throughout the growth cycle in medium containing a rate-limiting initial concentration of glucose. Specific growth rates were also measured for a wide range of initial glucose concentrations. A plot of specific growth rate versus initial substrate concentration was found to fit the hyperbolic equation. However, the instantaneous relationship between specific growth rate and substrate concentration during growth, which is stated by the equation, was not observed. Well defined exponential growth phases were developed at initial substrate concentrations below that required for support of the maximum exponential growth rate and a constant doubling time was maintained until 50% of the substrate had been used. It is suggested that the external substrate concentration initially present “sets” the specific growth rate by establishing a steady-state internal concentration of substrate, possibly through control of the number of permeation sites. PMID:5137579
Smith, Jeremy D; Kinney, Haley; Anastasio, Cort
2015-04-21
Chemical processing in atmospheric aqueous phases, such as cloud and fog drops, can play a significant role in the production and evolution of secondary organic aerosol (SOA). In this work we examine aqueous SOA production via the oxidation of benzene-diols (dihydroxy-benzenes) by the triplet excited state of 3,4-dimethoxybenzaldehyde, (3)DMB*, and by hydroxyl radical, ˙OH. Reactions of the three benzene-diols (catechol (CAT), resorcinol (RES) and hydroquinone (HQ)) with (3)DMB* or ˙OH proceed rapidly, with rate constants near diffusion-controlled values. The two oxidants exhibit different behaviors with pH, with rate constants for (3)DMB* increasing as pH decreases from pH 5 to 2, while rate constants with ˙OH decrease in more acidic solutions. Mass yields of SOA were near 100% for all three benzene-diols with both oxidants. We also examined the reactivity of atmospherically relevant mixtures of phenols and benzene-diols in the presence of (3)DMB*. We find that the kinetics of phenol and benzene-diol loss, and the production of SOA mass, in mixtures are generally consistent with rate constants determined in experiments containing a single phenol or benzene-diol. Combining our aqueous kinetic and SOA mass yield data with previously published gas-phase data, we estimate a total SOA production rate from benzene-diol oxidation in a foggy area with significant wood combustion to be nearly 0.6 μg mair(-3) h(-1), with approximately half from the aqueous oxidation of resorcinol and hydroquinone, and half from the gas-phase oxidation of catechol.
Belden, Jason B; Lotufo, Guilherme R; Biedenbach, James M; Sieve, Kristal K; Rosen, Gunther
2015-05-01
The present study examined the potential use of polar organic chemical integrative samplers (POCIS) for exposure assessment of munitions constituents, including 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and their breakdown products (aminodinitrotoluenes [ADNTs], diaminonitrotoluenes [DANTs], and hexahydro-1,3,5-trinitroso-1,3,5-triazine [TNX]). Loss of munitions constituents from the sorbent phase after uptake was observed for the "pesticide" POCIS configuration but not for the "pharmaceutical" configuration. Therefore, the latter was selected for further investigation. Under constant exposure conditions, TNT, ADNTs, DANT, RDX, and atrazine (a common environmental contaminant) accumulated at a linear rate for at least 14 d, with sampling rates between 34 mL/d and 215 mL/d. When POCIS were exposed to fluctuating concentrations, analyte accumulation values were similar to values found during constant exposure, indicating that the sampler was indeed integrative. In contrast, caffeine (a common polar contaminant) and TNX did not accumulate at a linear rate and had a reduction in accumulation of greater than 50% on the POCIS during fluctuating exposures, demonstrating that POCIS did not sample those chemicals in an integrative manner. Moreover, in a flow-through microcosm containing the explosive formulation Composition B, TNT and RDX were readily measured using POCIS, despite relatively high turnover rates and thus reduced water concentrations. Mean water concentrations estimated from POCIS were ± 37% of mean water concentrations measured by traditional grab sample collection. Thus, POCIS were found to have high utility for quantifying exposure to most munitions constituents evaluated (TNT, ADNTs, and RDX) and atrazine. © 2014 SETAC.
Du, Fei; Zhang, Yi; Zhu, Xiao-Hong; Chen, Wei
2012-01-01
Cerebral glucose consumption and glucose transport across the blood–brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMRglc) and glucose transport constants (KT: half-saturation constant; Tmax: maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMRglc, KT, and Tmax via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo 1H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMRglc, Tmax, and KT were determined to be 0.44±0.17 μmol/g per minute, 1.35±0.47 μmol/g per minute, and 13.4±6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMRglc and Tmax are more reliable than that of KT. The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application. PMID:22714049
NASA Astrophysics Data System (ADS)
Fantola Lazzarini, Anna L.; Lazzarini, Ennio
The o-Ps quenching reactions promoted in aqueous solutions by the following six cyanocomplexes: [Fe(CN) 6] 4-; [Co(CN) 6] 3-; [Zn(CN) 4] 2-; [Cd(CN) 6] 2-; [Fe(CN) 6] 3-; [Ni(CN) 4] 2- were investigated. The first four reactions probably consist in o-Ps addition across the CN bond, their rate constants at room temperature, Tr, being ⩽(0.04±0.02) × 10 9 M -1 s -1, i.e. almost at the limit of experimental errors. The rate constant of the fifth reaction, in o-Ps oxydation, at Tr is (20.3±0.4) × 10 9 M -1 s -1. The [Ni(CN) 4] 2-k value at Tr, is (0.27±0.01) × 10 9 M -1 s -1, i.e. 100 times less than the rate constants of o-Ps oxydation, but 10 times larger than those of the o-Ps addition across the CN bond. The [Ni(CN) 4] 2- reaction probably results in formation of the following positronido complex: [Ni(CN) 4Ps] 2-. However, it is worth noting that the existence of such a complex is only indirectly deduced. In fact it arises from comparison of the [Ni(CN) 4] 2- rate constant with those of the Fe(II), Zn(II), Cd(II), and Co(III) cyanocomplexes, which, like the Ni(II) cyanocomplex, do not promote o-Ps oxydation or spin exchange reactions.
Du, Fei; Zhang, Yi; Zhu, Xiao-Hong; Chen, Wei
2012-09-01
Cerebral glucose consumption and glucose transport across the blood-brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMR(glc)) and glucose transport constants (K(T): half-saturation constant; T(max): maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMR(glc), K(T), and T(max) via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo (1)H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMR(glc), T(max), and K(T) were determined to be 0.44 ± 0.17 μmol/g per minute, 1.35 ± 0.47 μmol/g per minute, and 13.4 ± 6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMR(glc) and T(max) are more reliable than that of K(T). The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application.
A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks
Schaffer, Evan S.; Ostojic, Srdjan; Abbott, L. F.
2013-01-01
Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons. PMID:24204236
Kinetics and equilibria of cyanide binding to prostaglandin H synthase.
MacDonald, I D; Dunford, H B
1989-09-01
Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.
NASA Astrophysics Data System (ADS)
Ahmad, Saeed; Holopainen, Hannu; Huovinen, Pasi
2017-05-01
In hydrodynamical modeling of ultrarelativistic heavy-ion collisions, the freeze-out is typically assumed to take place at a surface of constant temperature or energy density. A more physical approach is to assume that freeze-out takes place at a surface of constant Knudsen number. We evaluate the Knudsen number as a ratio of the expansion rate of the system to the pion-scattering rate and apply the constant Knudsen number freeze-out criterion to the ideal hydrodynamical description of heavy-ion collisions at the Relativistic Heavy Ion Collider at BNL (√{sNN}=200 GeV) and the Large Hadron Collider (√{sNN}=2760 GeV) energies. We see that once the numerical values of freeze-out temperature and freeze-out Knudsen number are chosen to produce similar pT distributions, the elliptic and triangular anisotropies are similar too, in both event-by-event and averaged initial state calculations.
Absolute instabilities of travelling wave solutions in a Keller-Segel model
NASA Astrophysics Data System (ADS)
Davis, P. N.; van Heijster, P.; Marangell, R.
2017-11-01
We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.
Spin-oscillator model for the unzipping of biomolecules by mechanical force.
Prados, A; Carpio, A; Bonilla, L L
2012-08-01
A spin-oscillator system models unzipping of biomolecules (such as DNA, RNA, or proteins) subject to an external force. The system comprises a macroscopic degree of freedom, represented by a one-dimensional oscillator, and internal degrees of freedom, represented by Glauber spins with nearest-neighbor interaction and a coupling constant proportional to the oscillator position. At a critical value F(c) of an applied external force F, the oscillator rest position (order parameter) changes abruptly and the system undergoes a first-order phase transition. When the external force is cycled at different rates, the extension given by the oscillator position exhibits a hysteresis cycle at high loading rates, whereas it moves reversibly over the equilibrium force-extension curve at very low loading rates. Under constant force, the logarithm of the residence time at the stable and metastable oscillator rest position is proportional to F-F(c) as in an Arrhenius law.
Explosive Model Tarantula 4d/JWL++ Calibration of LX-17
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souers, P C; Vitello, P A
2008-09-30
Tarantula is an explosive kinetic package intended to do detonation, shock initiation, failure, corner-turning with dead zones, gap tests and air gaps in reactive flow hydrocode models. The first, 2007-2008 version with monotonic Q is here run inside JWL++ with square zoning from 40 to 200 zones/cm on ambient LX-17. The model splits the rate behavior in every zone into sections set by the hydrocode pressure, P + Q. As the pressure rises, we pass through the no-reaction, initiation, ramp-up/failure and detonation sections sequentially. We find that the initiation and pure detonation rate constants are largely insensitive to zoning butmore » that the ramp-up/failure rate constant is extremely sensitive. At no time does the model pass every test, but the pressure-based approach generally works. The best values for the ramp/failure region are listed here in Mb units.« less
Thompson, B.D.; Young, R.P.; Lockner, D.A.
2006-01-01
New observations of fracture nucleation are presented from three triaxial compression experiments on intact samples of Westerly granite, using Acoustic Emission (AE) monitoring. By conducting the tests under different loading conditions, the fracture process is demonstrated for quasi-static fracture (under AE Feedback load), a slowly developing unstable fracture (loaded at a 'slow' constant strain rate of 2.5 ?? 10-6/s) and an unstable fracture that develops near instantaneously (loaded at a 'fast' constant strain rate of 5 ?? 10-5/s). By recording a continuous ultrasonic waveform during the critical period of fracture, the entire AE catalogue can be captured and the exact time of fracture defined. Under constant strain loading, three stages are observed: (1) An initial nucleation or stable growth phase at a rate of ??? 1.3 mm/s, (2) a sudden increase to a constant or slowly accelerating propagation speed of ??? 18 mm/s, and (3) unstable, accelerating propagation. In the ??? 100 ms before rupture, the high level of AE activity (as seen on the continuous record) prevented the location of discrete AE events. A lower bound estimate of the average propagation velocity (using the time-to-rupture and the existing fracture length) suggests values of a few m/s. However from a low gain acoustic record, we infer that in the final few ms, the fracture propagation speed increased to 175 m/s. These results demonstrate similarities between fracture nucleation in intact rock and the nucleation of dynamic instabilities in stick slip experiments. It is suggested that the ability to constrain the size of an evolving fracture provides a crucial tool in further understanding the controls on fracture nucleation. ?? Birkha??user Verlag, Basel, 2006.
Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents.
Fayad, Paul B; Zamyadi, Arash; Broseus, Romain; Prévost, Michèle; Sauvé, Sébastien
2013-01-01
This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M(-1) sec(-1) in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M(-1) sec(-1) in ultrapure water and 26 to 149 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M(-1) sec(-1) in ultrapure water and 180 to 368 M(-1) sec(-1) in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L(-1) after contact times of 10 to 60 min. This work presents the first results on the permanganate-promoted oxidation of progestagens, as a function of pH, temperature as well as NOM. Progestagen concentrations used to determine rate constants were analyzed using an ultrafast laser diode thermal desorption interface coupled to tandem mass spectrometry for the analysis of water sample for progestagens.
NASA Astrophysics Data System (ADS)
Ghosh, Shubhrangshu; Banik, Prabir
2015-07-01
In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central dominant (CD) galaxies directly from ambient intercluster medium (ICM). However, for high mass accretion rate, the influence of cosmological constant on Bondi accretion dynamics, generically, diminishes. As active galactic nuclei (AGN)/ICM feedback can be advertently linked to Bondi type spherical accretion, any proper modeling of AGN feedback or megaparsecs-scale jet dynamics or accretion flow from ICM onto the central regions of host galaxies should take into account the relevant information of repulsive Λ, especially in context to supergiant elliptical galaxies or CD galaxies present in rich galaxy clusters. This could also explore the feasibility to limit the value of Λ, from the kinematics in local galactic-scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, M.E.; Mazziotta, J.C.; Hawkins, R.A.
1981-01-01
Glycogen storage disease type I (GSD-I) is characterized by a functional deficit in glucose-6-phosphatase that normally hydrolyzes glucose-6-PO/sub 4/ to glucose. This enzyme is primarily found in liver, kidney, and muscle but it is also present in brain, where it appears to participate in the regulation of cerebral tissue glucose. Since most neurological symptoms in GSD-I patients involve systemic hypoglycemia, previous reports have not examined possible deficiencies in phosphatase activity in the brain. Positron computed tomography, F-18-labeled 2-fluorodeoxyglucose (FDG) and a tracer kinetic model for FDG were used to measure the cortical plasma/tissue forward and reverse transport, phosphorylation and dephosphorylationmore » rate constants, tissue/plasma concentration gradient, tissue concentration turnover rate for this competitive analog of glucose, and the cortical metabolic rates for glucose. Studies were carried out in age-matched normals (N = 13) and a single GSD-I patient. The dephosphorylation rate constant in the GSD-I patient was about one tenth the normal value indicating a low level of cerebral phosphatase activity. The other measured parameters were within normal limits except for the rate of glucose phosphorylation which reflected a cortical glucose metabolic rate one half the normal value. Since glucose transport and tissue glucose concentration was normal, the reduced cortical glucose metabolism probably results from the use of alternative substrates (..beta..-hydroxybutyrate and acetoacetate) which are consistently elevated in the plasma of GSD-I patients.« less
Marchione, Alexander A; McCord, Elizabeth F
2009-11-01
Diffusion-ordered (DOSY) NMR techniques have for the first time been applied to the spectral separation of mixtures of fluorinated gases by diffusion rates. A mixture of linear perfluoroalkanes from methane to hexane was readily separated at 25 degrees C in an ordinary experimental setup with standard DOSY pulse sequences. Partial separation of variously fluorinated ethanes was also achieved. The constants of self-diffusion of a set of pure perfluoroalkanes were obtained at pressures from 0.25 to 1.34 atm and temperatures from 20 to 122 degrees C. Under all conditions there was agreement within 20% of experimental self-diffusion constant D and values calculated by the semiempirical Fuller method.
Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.
Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun
2016-05-01
Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.
Furusawa, Hiroyuki; Takano, Hiroki; Okahata, Yoshio
2008-02-15
pH-Dependent kinetic parameters (k(on), k(off), and k(cat)) of protein (myoglobin) hydrolyses catalyzed by exo-enzyme (carboxypeptidase P, CPP) were obtained by using a protein-immobilized quartz crystal microbalance (QCM) in acidic aqueous solutions. The formation of the enzyme-substrate (ES) complex (k(on)), the decay of the ES complex (k(off)), and the formation of the product (k(cat)) could be analyzed by transient kinetics as mass changes on the QCM plate. The Kd (k(off)/k(on)) value was different from the Michaelis constant Km calculated from (k(off) + k(cat))/k(on) due to k(cat) > k(off). The rate-determining step was the binding step (k(on), and the catalytic rate k(cat) was faster than other k(on) and k(off) values. In the range of pH 2.5-5.0, values of k(on) gradually increased with decreasing pH showing a maximum at pH 3.7, values of k(off) were independent of pH, and k(cat) increased gradually with decreasing pH. As a result, the apparent rate constant (k(cat)/Km) showed a maximum at pH 3.7 and gradually increased with decreasing pH. The optimum pH at 3.7 of k(on) is explained by the optimum binding ability of CPP to the COOH terminus of the substrate with hydrogen bonds. The increase of k(cat) at the lower pH correlated with the decrease of alpha-helix contents of the myoglobin substrate on the QCM.
The 1% concordance Hubble constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, C. L.; Larson, D.; Weiland, J. L.
2014-10-20
The determination of the Hubble constant has been a central goal in observational astrophysics for nearly a hundred years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. Amore » precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations and we combine them to determine a best-fit Hubble constant of 69.6 ± 0.7 km s{sup –1} Mpc{sup –1}. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H {sub 0}/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.« less
Isotopologue fractionation during N(2)O production by fungal denitrification.
Sutka, Robin L; Adams, Gerard C; Ostrom, Nathaniel E; Ostrom, Peggy H
2008-12-01
Identifying the importance of fungi to nitrous oxide (N2O) production requires a non-intrusive method for differentiating between fungal and bacterial N2O production such as natural abundance stable isotopes. We compare the isotopologue composition of N2O produced during nitrite reduction by the fungal denitrifiers Fusarium oxysporum and Cylindrocarpon tonkinense with published data for N2O production during bacterial nitrification and denitrification. The fractionation factors for bulk nitrogen isotope values for fungal denitrification were in the range -74.7 to -6.6 per thousand. There was an inverse relationship between the absolute value of the fractionation factors and the reaction rate constant. We interpret this in terms of variation in the relative importance of the rate constants for diffusion and enzymatic reduction in controlling the net isotope effect for N2O production during fungal denitrification. Over the course of nitrite reduction, the delta(18)O values for N2O remained constant and did not exhibit a relationship with the concentration characteristic of an isotope effect. This probably reflects isotopic exchange with water. Similar to the delta(18)O data, the site preference (SP; the difference in delta(15)N between the central and outer N atoms in N2O) was unrelated to concentration during nitrite reduction and, therefore, has the potential to act as a conservative tracer of production from fungal denitrification. The SP values of N2O produced by F. oxysporum and C. tonkinense were 37.1 +/- 2.5 per thousand and 36.9 +/- 2.8 per thousand, respectively. These SP values are similar to those obtained in pure culture studies of bacterial nitrification but quite distinct from SP values for bacterial denitrification. The large magnitude of the bulk nitrogen isotope fractionation and the delta(18)O values associated with fungal denitrification are distinct from bacterial production pathways; thus multiple isotopologue data holds much promise for resolving bacterial and fungal production. Our work further provides insight into the role that fungal and bacterial nitric oxide reductases have in determining site preference during N2O production. Copyright 2008 John Wiley & Sons, Ltd.
Báez, Armando P; Torres, Ma del Carmen B; García, Rocío M; Padilla, Hugo G
2002-01-01
A great number of studies on the ambient levels of formaldehyde and other carbonyls in the urban rural and maritime atmospheres have been published because of their chemical and toxicological characteristics, and adverse health effects. Due to their toxicological effects, it was considered necessary to measure these compounds at different sites in the metropolitan area of Mexico City, and to calculate the total rate of photolytic constants and the photolytic lifetime of formaldehyde and acetaldehyde. Four sites were chosen. Sampling was carried out at different seasons and atmospheric conditions. The results indicated that formaldehyde was the most abundant carbonyl, followed by acetone and acetaldehyde. Data sets obtained from the 4 sites were chosen to calculate the total rate of photolysis and the photolytic lifetime for formaldehyde and acetaldehyde. Maximum photolytic rate values were obtained at the maximum actinic fluxes, as was to be expected.
Kinetic characterization of the deproteinization of trabecular and cortical bovine femur bones.
Castro-Ceseña, Ana B; Sánchez-Saavedra, M Pilar; Novitskaya, Ekaterina E; Chen, Po-Yu; Hirata, Gustavo A; McKittrick, Joanna
2013-12-01
The present study proposes an interpretation of the mechanism of bone deproteinization. Cortical and trabecular bovine femur bones were deproteinized using 6% NaOCl (37, 50, 60°C). The kinetic parameters (rate constant and activation energy) were calculated, and the surface area of each type of bone was considered. A statistical analysis of the rate constants shows that cortical bone deproteinizes at a lower rate than trabecular. The activation energy is higher for trabecular than cortical bone, and no significant differences are found in the protein concentration values for both bones. Therefore, although trabecular bone deproteinizes at a higher rate than cortical, trabecular bone requires more energy for the deproteinization reaction to take place. Considering that both types of bones are constituted by mineral, protein, and water; the present work shows that the individual inner matrix architecture of trabecular and cortical bones, along with characteristics such as the mineral concentration and its bonding with collagen fibers, may be the responsible factors that control protein depletion. © 2013.
A dissolution model that accounts for coverage of mineral surfaces by precipitation in core floods
NASA Astrophysics Data System (ADS)
Pedersen, Janne; Jettestuen, Espen; Madland, Merete V.; Hildebrand-Habel, Tania; Korsnes, Reidar I.; Vinningland, Jan Ludvig; Hiorth, Aksel
2016-01-01
In this paper, we propose a model for evolution of reactive surface area of minerals due to surface coverage by precipitating minerals. The model is used to interpret results from an experiment where a chalk core was flooded with MgCl2 for 1072 days, giving rise to calcite dissolution and magnesite precipitation. The model successfully describes both the long-term behavior of the measured effluent concentrations and the more or less homogeneous distribution of magnesite found in the core after 1072 days. The model also predicts that precipitating magnesite minerals form as larger crystals or aggregates of smaller size crystals, and not as thin flakes or as a monomolecular layer. Using rate constants obtained from literature gave numerical effluent concentrations that diverged from observed values only after a few days of flooding. To match the simulations to the experimental data after approximately 1 year of flooding, a rate constant that is four orders of magnitude lower than reported by powder experiments had to be used. We argue that a static rate constant is not sufficient to describe a chalk core flooding experiment lasting for nearly 3 years. The model is a necessary extension of standard rate equations in order to describe long term core flooding experiments where there is a large degree of textural alteration.
Moran-Muñoz, Rafael; Valverde, Alexander; Ibancovichi, J A; Acevedo-Arcique, Carlos M; Recillas-Morales, Sergio; Sanchez-Aparicio, Pedro; Osorio-Avalos, Jorge; Chavez-Monteagudo, Julio Raul
2017-07-01
This study evaluated the cardiovascular effects of a constant rate infusion (CRI) of lidocaine, lidocaine and dexmedetomidine, and dexmedetomidine in dogs anesthetized with sevoflurane at equipotent doses. Treatments consisted of T1-Lidocaine [loading dose 2 mg/kg body weight (BW), IV, and CRI of 100 μg/kg BW per min] at 1.4% end-tidal of sevoflurane (FE SEV ); T2-Dexmedetomidine (loading dose 2 μg/kg BW, IV, and CRI of 2 μg/kg BW per hour) and FE SEV 1.1%; and T3-Lidocaine-Dexmedetomidine using the same doses of T1 and T2 and FE SEV 0.8%. Constant rate infusion of lidocaine did not induce any cardiovascular changes; lidocaine and dexmedetomidine resulted in cardiovascular effects similar to dexmedetomidine alone. These effects were characterized by a significant ( P < 0.001) decrease in heart rate, cardiac output, cardiac index, oxygen delivery, and pulmonary vascular resistance index, and a significant ( P < 0.001) increase in mean and diastolic arterial pressure, systemic vascular resistance index, pulmonary arterial occlusion pressure and oxygen extraction ratio, compared with baseline values. In conclusion, a CRI of lidocaine combined with dexmedetomidine produces significant cardiovascular changes similar to those observed with dexmedetomidine alone.
Limits on the Time Evolution of Space Dimensions from Newton's Constant
NASA Astrophysics Data System (ADS)
Nasseri, Forough
Limits are imposed upon the possible rate of change of extra spatial dimensions in a decrumpling model Universe with time variable spatial dimensions (TVSD) by considering the time variation of (1+3)-dimensional Newton's constant. Previous studies on the time variation of (1+3)-dimensional Newton's constant in TVSD theory had not include the effects of the volume of the extra dimensions and the effects of the surface area of the unit sphere in D-space dimensions. Our main result is that the absolute value of the present rate of change of spatial dimensions to be less than about 10-14 yr-1. Our results would appear to provide a prima facie case for ruling the TVSD model out. We show that based on observational bounds on the present variation of Newton's constant, one would have to conclude that the spatial dimension of the Universe when the Universe was "at the Planck scale" to be less than or equal to 3.09. If the dimension of space when the Universe was "at the Planck scale" is constrained to be fractional and very close to 3, then the whole edifice of TVSD model loses credibility.
Nagaoka, Shin-ichi; Nagai, Kanae; Fujii, Yuko; Ouchi, Aya; Mukai, Kazuo
2013-10-23
A new free radical absorption capacity assay method is proposed with use of an aroxyl radical (2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical) and stopped-flow spectroscopy and is named the aroxyl radical absorption capacity (ARAC) assay method. The free radical absorption capacity (ARAC value) of each tocopherol was determined through measurement of the radical-scavenging rate constant in ethanol. The ARAC value could also be evaluated through measurement of the half-life of the aroxyl radical during the scavenging reaction. For the estimation of the free radical absorption capacity, the aroxyl radical was more suitable than the DPPH radical, galvinoxyl, and p-nitrophenyl nitronyl nitroxide. The ARAC value in tocopherols showed the same tendency as the free radical absorption capacities reported previously, and the tendency was independent of an oxygen radical participating in the scavenging reaction and of a medium surrounding the tocopherol and oxygen radical. The ARAC value can be directly connected to the free radical-scavenging rate constant, and the ARAC method has the advantage of treating a stable and isolable radical (aroxyl radical) in a user-friendly organic solvent (ethanol). The ARAC method was also successfully applied to a palm oil extract. Accordingly, the ARAC method would be useful in free radical absorption capacity assay of antioxidative reagents and foods.
Belke, Terry W; Hancock, Stephanie D
2003-03-01
Six male albino rats were placed in running wheels and exposed to a fixed-interval 30-s schedule of lever pressing that produced either a drop of sucrose solution or the opportunity to run for a fixed duration as reinforcers. Each reinforcer type was signaled by a different stimulus. In Experiment 1, the duration of running was held constant at 15 s while the concentration of sucrose solution was varied across values of 0, 2.5. 5, 10, and 15%. As concentration decreased, postreinforcement pause duration increased and local rates decreased in the presence of the stimulus signaling sucrose. Consequently, the difference between responding in the presence of stimuli signaling wheel-running and sucrose reinforcers diminished, and at 2.5%, response functions for the two reinforcers were similar. In Experiment 2, the concentration of sucrose solution was held constant at 15% while the duration of the opportunity to run was first varied across values of 15, 45, and 90 s then subsequently across values of 5, 10, and 15 s. As run duration increased, postreinforcement pause duration in the presence of the wheel-running stimulus increased and local rates increased then decreased. In summary, inhibitory aftereffects of previous reinforcers occurred when both sucrose concentration and run duration varied; changes in responding were attributable to changes in the excitatory value of the stimuli signaling the two reinforcers.
[Kinetic Characteristics of Degradation of Geosmin and 2-Methylisoborneol by Bacillus subtilis].
Ma, Nian-nian; Luo, Guo-zhi; Tan, Hong-xin; Yao, Miao-lan; Wang, Xiao-yong
2015-04-01
The earthy and musty odor problem in aquaculture systems has been a worldwide problem, especially in freshwater aquaculture systems. Geosmin (GSM) and 2-methylisoborneol (2-MIB), the most common causative agents of the off-flavor in fish, are lipophilic secondary metabolites of cyanobacteria, actinomycetes, and other microorganisms. The odor threshold concentrations for 2-MIB and GSM are approximately 9-42 ng x L(-1) and 4-10 ng x L(-1), and 600 ng x kg(-1) and 900 ng x kg(-1) in the aquaculture water and fish, respectively. With such a low odor threshold concentration, the off-flavor compounds greatly reduce the quality and economic value of aquatic products. This renders the fish, especially some valuable fish produced in recirculating aquaculture systems (RAS), unmarketable. The study reported the kinetic characteristics of degradation of GSM and 2-MIB by Bacillus subtilis and discussed the impacts of the initial concentration of GSM and 2-MIB (T1, T2) and inoculation amount (T1, T3 ) on the biodegradation rate. The result demonstrated that these two compounds could be degraded by B. subtilis effectively and the biodegradation rate reached more than 90% in T1, T2 and T3 treatments. The biodegradation of these two compounds behaved as a pseudo-first-order kinetics with rate constants (K) in the range of 0.14-0.41. K values indicated that the degradation rate was dependent on the inoculation amount but the start concentration of GSM and MIB. The degradation kinetics showed the maximum specific rate value (u(max)) and the Monod constant (K(s)) were 0.311 and 1.73, however, 2-MIB degradation process did not meet the Monod microbial growth equation (R2 = 0.781).
Grunwald-Winstein Analysis - Isopropyl Chloroformate Solvolysis Revisited
D’Souza, Malcolm J.; Reed, Darneisha N.; Erdman, Kevin J.; Kyong, Jin Burm; Kevill, Dennis N.
2009-01-01
Specific rates of solvolysis at 25 °C for isopropyl chloroformate (1) in 24 solvents of widely varying nucleophilicity and ionizing power, plus literature values for studies in water and formic acid, are reported. Previously published solvolytic rate constants at 40.0 °C are supplemented with two additional values in the highly ionizing fluoroalcohols. These rates are now are analyzed using the one and two-term Grunwald-Winstein Equations. In the more ionizing solvents including ten fluoroalcohols negligible sensitivities towards changes in solvent nucleophilicity (l) and very low sensitivities towards changes in solvent ionizing power (m) values are obtained, evocative to those previously observed for 1-adamantyl and 2-adamantyl chloroformates 2 and 3. These observations are rationalized in terms of a dominant solvolysis-decomposition with loss of the CO2 molecule. In nine of the more nucleophilic pure alchohols and aqueous solutions an association-dissociation mechanism is believed to be operative. Deficiencies in the acid production indicate 2-33% isopropyl chloride formation, with the higher values in less nucleophilic solvents. PMID:19399225
Davidi, Dan; Noor, Elad; Liebermeister, Wolfram; Bar-Even, Arren; Flamholz, Avi; Tummler, Katja; Barenholz, Uri; Goldenfeld, Miki; Shlomi, Tomer; Milo, Ron
2016-01-01
Turnover numbers, also known as kcat values, are fundamental properties of enzymes. However, kcat data are scarce and measured in vitro, thus may not faithfully represent the in vivo situation. A basic question that awaits elucidation is: how representative are kcat values for the maximal catalytic rates of enzymes in vivo? Here, we harness omics data to calculate kmaxvivo, the observed maximal catalytic rate of an enzyme inside cells. Comparison with kcat values from Escherichia coli, yields a correlation of r2= 0.62 in log scale (p < 10−10), with a root mean square difference of 0.54 (3.5-fold in linear scale), indicating that in vivo and in vitro maximal rates generally concur. By accounting for the degree of saturation of enzymes and the backward flux dictated by thermodynamics, we further refine the correspondence between kmaxvivo and kcat values. The approach we present here characterizes the quantitative relationship between enzymatic catalysis in vitro and in vivo and offers a high-throughput method for extracting enzyme kinetic constants from omics data. PMID:26951675
PCE DNAPL degradation using ferrous iron solid mixture (ISM).
Lee, Hong-Kyun; Do, Si-Hyun; Batchelor, Bill; Jo, Young-Hoon; Kong, Sung-Ho
2009-08-01
Ferrous iron solid mixture (ISM) containing Fe(II), Fe(III), and Cl was synthesized for degradation of tetrachloroethene (PCE) as a dense non-aqueous phase liquid (DNAPL), and an extraction procedure was developed to measure concentrations of PCE in both the aqueous and non-aqueous phases. This procedure included adding methanol along with hexane in order to achieve the high extraction efficiency, particularly when solids were present. When PCE was present as DNAPL, dechlorination of PCE was observed to decrease linearly with respect to the total PCE concentration (aqueous and non-aqueous phases) and the concentration of PCE in the aqueous phase was observed to be approximately constant. In the absence of DNAPL, the rate of PCE degradation was observed to be the first-order with respect to the concentration in the aqueous phase. A kinetic model was developed to describe these observations and it was able to fit experimental data well. Increasing the concentration of Fe(II) in ISM increased the values of rate constants, while increasing the concentration of PCE DNAPL did not affect the value of the rate constant. The reactivity of ISM for PCE dechlorination might be close to that of Friedel's salt, and the accumulation of trichloroethylene (TCE) might imply the lower reactivity of ISM for degradation of TCE or the necessity of large amount of Fe(II) in ISM. TCE (the major chlorinated intermediate), ethene (the major non-chlorinated compound), acetylene and ethane were detected, which implied that both hydrogenolysis and beta-elimination were pathways of PCE DNAPL degradation on ISM.
Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R
2000-01-01
Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.
Jia, Lijuan; Shen, Zhemin; Su, Pingru
2016-05-01
Fenton oxidation is a promising water treatment method to degrade organic pollutants. In this study, 30 different organic compounds were selected and their reaction rate constants (k) were determined for the Fenton oxidation process. Gaussian09 and Material Studio software sets were used to carry out calculations and obtain values of 10 different molecular descriptors for each studied compound. Ferric-oxyhydroxide coagulation experiments were conducted to determine the coagulation percentage. Based upon the adsorption capacity, all of the investigated organic compounds were divided into two groups (Group A and Group B). The percentage adsorption of organic compounds in Group A was less than 15% (wt./wt.) and that in the Group B was higher than 15% (wt./wt.). For Group A, removal of the compounds by oxidation was the dominant process while for Group B, removal by both oxidation and coagulation (as a synergistic process) took place. Results showed that the relationship between the rate constants (k values) and the molecular descriptors of Group A was more pronounced than for Group B compounds. For the oxidation-dominated process, EHOMO and Fukui indices (f(0)x, f(-)x, f(+)x) were the most significant factors. The influence of bond order was more significant for the synergistic process of oxidation and coagulation than for the oxidation-dominated process. The influences of all other molecular descriptors on the synergistic process were weaker than on the oxidation-dominated process. Copyright © 2015. Published by Elsevier B.V.
Hattori, Shigeki; Wada, Yuji; Yanagida, Shozo; Fukuzumi, Shunichi
2005-07-06
The electron self-exchange rate constants of blue copper model complexes, [(-)-sparteine-N,N'](maleonitriledithiolato-S,S')copper ([Cu(SP)(mmt)])(0/)(-), bis(2,9-dimethy-1,10-phenanthroline)copper ([Cu(dmp)(2)](2+/+)), and bis(1,10-phenanthroline)copper ([Cu(phen)(2)](2+/+)) have been determined from the rate constants of electron transfer from a homologous series of ferrocene derivatives to the copper(II) complexes in light of the Marcus theory of electron transfer. The resulting electron self-exchange rate constant increases in the order: [Cu(phen)(2)](2+/+) < [Cu(SP)(mmt)](0/)(-) < [Cu(dmp)(2)](2+/+), in agreement with the order of the smaller structural change between the copper(II) and copper(I) complexes due to the distorted tetragonal geometry. The dye-sensitized solar cells (DSSC) were constructed using the copper complexes as redox couples to compare the photoelectrochemical responses with those using the conventional I(3)(-)/I(-) couple. The light energy conversion efficiency (eta) values under illumination of simulated solar light irradiation (100 mW/cm(2)) of DSSCs using [Cu(phen)(2)](2+/+), [Cu(dmp)(2)](2+/+), and [Cu(SP)(mmt)](0/)(-) were recorded as 0.1%, 1.4%, and 1.3%, respectively. The maximum eta value (2.2%) was obtained for a DSSC using the [Cu(dmp)(2)](2+/+) redox couple under the light irradiation of 20 mW/cm(2) intensity, where a higher open-circuit voltage of the cell was attained as compared to that of the conventional I(3)(-)/I(-) couple.
Electron-transfer oxidation properties of DNA bases and DNA oligomers.
Fukuzumi, Shunichi; Miyao, Hiroshi; Ohkubo, Kei; Suenobu, Tomoyoshi
2005-04-21
Kinetics for the thermal and photoinduced electron-transfer oxidation of a series of DNA bases with various oxidants having the known one-electron reduction potentials (E(red)) in an aqueous solution at 298 K were examined, and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of DNA bases and the intrinsic barrier of the electron transfer. Although the E(ox) value of GMP at pH 7 is the lowest (1.07 V vs SCE) among the four DNA bases, the highest E(ox) value (CMP) is only 0.19 V higher than that of GMP. The selective oxidation of GMP in the thermal electron-transfer oxidation of GMP results from a significant decrease in the pH dependent oxidation potential due to the deprotonation of GMP*+. The one-electron reduced species of the photosensitizer produced by photoinduced electron transfer are observed as the transient absorption spectra when the free energy change of electron transfer is negative. The rate constants of electron-transfer oxidation of the guanine moieties in DNA oligomers with Fe(bpy)3(3+) and Ru(bpy)3(3+) were also determined using DNA oligomers containing different guanine (G) sequences from 1 to 10 G. The rate constants of electron-transfer oxidation of the guanine moieties in single- and double-stranded DNA oligomers with Fe(bpy)3(2+) and Ru(bpy)3(3+) are dependent on the number of sequential guanine molecules as well as on pH.
Detection of the YORP effect in asteroid (1620) Geographos
NASA Astrophysics Data System (ADS)
Durech, J.; Vokrouhlický, D.; Kaasalainen, M.; Higgins, D.; Krugly, Yu. N.; Gaftonyuk, N. M.; Shevchenko, V. G.; Chiorny, V. G.; Hamanowa, H.; Hamanowa, H.; Reddy, V.; Dyvig, R. R.
2008-10-01
Aims: The rotation state of small asteroids is affected by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) torque. The directly observable consequence of the YORP effect is the secular change of the asteroid's rotation period. We carried out new photometric observations of asteroid (1620) Geographos in 2008 to extend the time line that, if long enough, would enable us to see possible deviations from a constant period rotation. Methods: We used the lightcurve inversion method to model the shape and spin state of Geographos. We assumed that the rotation rate evolves in time as ω(t) = ω0 + \\upsilon t, where both the constant term of the rotation rate ω0 and the linear term \\upsilon are parameters to be optimized. In total, we used 94 lightcurves observed in 1969-2008. Results: We show that for \\upsilon = 0, a constant-period model, the whole dataset of lightcurves cannot be satisfactorily fitted. However, when relaxing \\upsilon in the optimization process we obtain an excellent agreement between the model and observations. The best-fit value \\upsilon = (1.15 ± 0.15) × 10-8 rad d-2 implies that Geographos' rotation rate accelerates by ≃2.7 ms yr-1. This is in agreement with the theoretically predicted value 1.4 × 10-8 rad d-2 obtained from numerical integration of YORP torques acting on our convex shape model. Geographos is only the third asteroid (after (1862) Apollo and (54509) YORP) for which the YORP effect has been detected. It is also the largest object for which effects of thermal torques were revealed.
Optimal dividends in the Brownian motion risk model with interest
NASA Astrophysics Data System (ADS)
Fang, Ying; Wu, Rong
2009-07-01
In this paper, we consider a Brownian motion risk model, and in addition, the surplus earns investment income at a constant force of interest. The objective is to find a dividend policy so as to maximize the expected discounted value of dividend payments. It is well known that optimality is achieved by using a barrier strategy for unrestricted dividend rate. However, ultimate ruin of the company is certain if a barrier strategy is applied. In many circumstances this is not desirable. This consideration leads us to impose a restriction on the dividend stream. We assume that dividends are paid to the shareholders according to admissible strategies whose dividend rate is bounded by a constant. Under this additional constraint, we show that the optimal dividend strategy is formed by a threshold strategy.
Do, V; Choo, R; De Boer, G; Klotz, L; Danjoux, C; Morton, G; Szumacher, E; Fleshner, N; Bunting, P
2002-05-01
To examine the change in the free/total prostate specific antigen ratio (f/tPSA) with time and to assess the potential value of serial measurements of f/tPSA as a determinant of disease progression in untreated, low-to-intermediate grade prostate cancer (T1b-T2b N0M0, Gleason score < or = 7 and PSA < or = 15 ng/mL). In a prospective single-arm cohort study from November 1995, patients were conservatively managed with watchful observation alone unless they met arbitrarily defined criteria (clinical, histological and biochemical) of disease progression. Patients were followed regularly and underwent blood tests including PSA and f/tPSA. The initial and mean f/tPSA and the rate of change of f/tPSA with time were evaluated against the rate constant for the PSA doubling time (PSATd). Correlation analyses were used to evaluate any association between baseline clinical variables and either the rate of change of f/tPSA or initial f/tPSA. As of December 2000, 161 of a total of 206 accrued patients had three or more f/tPSA measurements and formed the basis of the study (median age 70 years; median follow-up 2.7 years). The median initial f/tPSA was 0.16; there was a significant negative correlation between this value and the initial total PSA. The mean f/tPSA and rate of change of f/tPSA with time were significantly negatively correlated with the rate constant for PSATd. Also, the rate of change of f/tPSA correlated negatively with clinical T stage, but not with other baseline variables, including initial PSA, age and Gleason score. The f/tPSA in men with untreated, clinically localized prostate cancer varied widely. The negative correlation between the rate of change of f/tPSA with time and rate constant for PSATd suggests that both might provide valuable information to allow clinicians to develop a strategy for optimizing the timing of therapeutic intervention for those patients choosing watchful observation alone.
Wettwer, Erich; Himmel, Herbert M; Amos, Gregory J; Li, Qi; Metzger, Franz; Ravens, Ursula
1998-01-01
Tedisamil is a new antiarrhythmic drug with predominant class III action. The aim of the present study was to investigate the blocking pattern of the compound on the transient outward current (Ito) in human subepicardial myocytes isolated from explanted left ventricles. Using the single electrode whole cell voltage clamp technique, Ito was analysed after appropriate voltage inactivation of sodium current and block of calcium current.Tedisamil reduced the amplitude of peak Ito, but did not affect the amplitude of non-inactivating outward current. The drug accelerated the apparent rate of Ito inactivation. The reduction in time constant of Ito inactivation depended on drug concentration, the apparent IC50 value was 4.4 μM.Tedisamil affected Ito amplitude in a use-dependent manner. After 2 min at −80 mV, maximum block of Ito was reached after 4–5 clamp steps either at the frequency of 0.2 or 2 Hz, indicating that the block was not frequency-dependent in an experimentally relevant range. Recovery from block was very slow and proceeded with a time constant of 12.1±1.8 s. Also in the presence of drug, a fraction of channels recovered from inactivation with a similar time constant as in control myocytes (i.e. 81±40 ms and 51±8 ms, respectively, n.s.).From the onset of fractional block of Ito by tedisamil during the initial 60 ms of a clamp step, we calculated k1=9×106 mol−1 s−1 for the association rate constant, and k2=23 s−1 for the dissociation rate constant. The resulting apparent KD was 2.6 μM and is similar to the IC50 value.The effects of tedisamil on Ito could be simulated by assuming a four state channel model where the drug binds to the channel in an open (activated) conformation. It is concluded that in human subepicardial myocytes tedisamil is an open channel blocker of Ito and that this effect probably contributes to the antiarrhythmic potential of this drug. PMID:9831899
Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.
Wangler, A; Canales, R; Held, C; Luong, T Q; Winter, R; Zaitsau, D H; Verevkin, S P; Sadowski, G
2018-04-25
This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations. This provides KaM and Kth values that are independent of any co-solvent. To this end, the hydrolysis reaction of N-succinyl-l-phenylalanine-p-nitroanilide catalysed by the enzyme α-chymotrypsin was studied in pure buffer and in the presence of the co-solvents dimethyl sulfoxide, trimethylamine-N-oxide, urea, and two salts. A strong influence of the co-solvents on the measured Michaelis constant (KM) and equilibrium constant (Kx) was observed, which was found to be caused by molecular interactions expressed as activity coefficients. Substrate and product activity coefficients were used to calculate the activity-based values KaM and Kth for the co-solvent free reaction. Based on these constants, the co-solvent effect on KM and Kx was predicted in almost quantitative agreement with the experimental data. The approach presented here does not only reveal the importance of understanding the thermodynamic non-ideality of reactions taking place in biological solutions and in many technological applications, it also provides a framework for interpreting and quantifying the multifaceted co-solvent effects on enzyme-catalysed reactions that are known and have been observed experimentally for a long time.
Zubenko, Dmitry; Tsentalovich, Yuri; Lebedeva, Nataly; Kirilyuk, Igor; Roshchupkina, Galina; Zhurko, Irina; Reznikov, Vladimir; Marque, Sylvain R A; Bagryanskaya, Elena
2006-08-04
Time-resolved chemically induced dynamic nuclear polarization (TR-CIDNP) and laser flash photolysis (LFP) techniques have been used to measure rate constants for coupling between acrylate-type radicals and a series of newly synthesized stable imidazolidine N-oxyl radicals. The carbon-centered radicals under investigation were generated by photolysis of their corresponding ketone precursors RC(O)R (R = C(CH3)2-C(O)OCH3 and CH(CH3)-C(O)-OtBu) in the presence of stable nitroxides. The coupling rate constants kc for modeling studies of nitroxide-mediated polymerization (NMP) experiments were determined, and the influence of steric and electronic factors on kc values was addressed by using a Hammett linear free energy relationship. The systematic changes in kc due to the varied steric (Es,n) and electronic (sigmaL,n) characters of the substituents are well-described by the biparameter equation log(kc/M- 1s(-1)) = 3.52sigmaL,n + 0.47Es,n + 10.62. Hence, kc decreases with the increasing steric demand and increases with the increasing electron-withdrawing character of the substituents on the nitroxide.
Detection of the YORP Effect in Asteroid (3103) Eger
NASA Astrophysics Data System (ADS)
Durech, Josef; Vokrouhlicky, D.; Polishook, D.; Krugly, Y. N.; Gaftonyuk, N. M.; Stephens, R. D.; Warner, B. D.; Kaasalainen, M.; Gross, J.; Cooney, W.; Terrel, D.
2009-09-01
The rotation state of small bodies of the Solar System is affected by the thermal Yarkovsky-O'Keefe-Radzievski-Paddack (YORP) torque. The directly observable consequence of YORP is the secular change of the asteroid's rotational period in time. We carried out new photometric measurements of asteroid (3103) Eger during its suitable apparitions in 2001-2009. We also used archived data going back to 1987. Using all available photometry covering more than twenty years, we were able to detect a tiny deviation from the constant-period rotation. This deviation caused an observable shift between the observed lightcurves and those predicted by the best constant-period model. We used the lightcurve inversion method to derive a shape/spin solution that fitted the data at best. We assumed that the rotation rate evolved linearly in time and derived the acceleration of Eger's rotation rate dω/dt = (9 +/- 6) x 10-9 rad/d2 (maximum estimated uncertainty). The accelerating model provides a significantly better fit than the constant-period model. The value of dω/dt derived from observations is in agreement with the theoretical value computed numerically from the lightcurve inversion shape model and its spin axis orientation. After the three asteroids for which the YORP effect has already been detected (1862 Apollo, 54509 YORP, and 1620 Geographos), Eger is the fourth one.
Biomarker measurements are used in three ways: 1) evaluating the time course and distribution of a chemical in the body, 2) estimating previous exposure or dose, and 3) assessing disease state. Blood and urine measurements are the primary methods employed. Of late, it has been ...
Observations on the methane oxidation capacity of landfill soils
USDA-ARS?s Scientific Manuscript database
Field data and two independent models indicate that landfill cover methane (CH4) oxidation should not be considered as a constant 10% or any other single value. Percent oxidation is a decreasing exponential function of the total methane flux rate into the cover and is also dependent on climate and c...
Warburton, W.K.
1999-02-16
A high speed, digitally based, signal processing system is disclosed which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system lifetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired. 31 figs.
Modelling of intermittent microwave convective drying: parameter sensitivity
NASA Astrophysics Data System (ADS)
Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei
2017-06-01
The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Degradation of anionic surfactants during drying of UASBR sludges on sand drying beds.
Mungray, Arvind Kumar; Kumar, Pradeep
2008-09-01
Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9,233 mg kg(-1)dry wt. (average 7,347 mg kg(-1)dry wt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1,452 mg kg(-1)dry wt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051 d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034 d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.
Influence of temperature and preserving agents on the stability of cornelian cherries anthocyanins.
Moldovan, Bianca; David, Luminiţa
2014-06-17
Cornelian cherry (Cornus mas L.) fruits are known for their significant amounts of anthocyanins which can be used as natural food colorants. The storage stability of anthocyanins from these fruit extracts, at different temperatures (2 °C, 25 °C and 75 °C), pH 3.02, in the presence of two of the most widely employed food preserving agents (sodium benzoate and potassium sorbate) was investigated. The highest stability was exhibited by the anthocyanin extract stored at 2 °C without any added preservative, with half-life and constant rate values of 1443.8 h and 0.48 × 10(-3) h(-1), respectively. The highest value of the degradation rate constant (82.76 × 10(-3)/h) was obtained in the case of anthocyanin extract stored at 75 °C without any added preservative. Experimental results indicate that the storage degradation of anthocyanins followed first-order reaction kinetics under each of the investigated conditions. In aqueous solution, the food preservatives used were found to have a slight influence on the anthocyanins' stability.
Indentation Size Effect on the Creep Behavior of a SnAgCu Solder
NASA Astrophysics Data System (ADS)
Han, Y. D.; Jing, H. Y.; Nai, S. M. L.; Xu, L. Y.; Tan, C. M.; Wei, J.
In the present study, nanoindentation studies of the 95.8Sn-3.5Ag-0.7Cu lead-free solder were conducted over a range of maximum loads from 20 mN to 100 mN, under a constant ramp rate of 0.05 s-1. The indentation scale dependence of creep behavior was investigated. The results revealed that the creep rate, creep strain rate and indentation stress are all dependent on the indentation depth. As the maximum load increased, an increasing trend in the creep rate was observed, while a decreasing trend in creep strain rate and indentation stress were observed. On the contrary, for the case of stress exponent value, no trend was observed and the values were found to range from 6.16 to 7.38. Furthermore, the experimental results also showed that the creep mechanism of the lead-free solder is dominated by dislocation climb.
Control of the Protein Turnover Rates in Lemna minor
Trewavas, A.
1972-01-01
The control of protein turnover in Lemna minor has been examined using a method described in the previous paper for determining the rate constants of synthesis and degradation of protein. If Lemna is placed on water, there is a reduction in the rate constants of synthesis of protein and an increase (3- to 6-fold) in the rate constant of degradation. The net effect is a loss of protein from the tissue. Omission of nitrate, phosphate, sulfate, magnesium, or calcium results in increases in the rate constant of degradation of protein. An unusual dual effect of benzyladenine on the turnover constants has been observed. Treatment of Lemna grown on sucrose-mineral salts with benzyladenine results in alterations only in the rate constant of synthesis. Treatment of Lemna grown on water with benzyladenine alters only the rate constant of degradation. Abscisic acid on the other hand alters both rate constants of synthesis and degradation of protein together. Inclusion of growth-inhibiting amino acids in the medium results in a reduction in the rate constants of synthesis and increases in the rate constant of degradation of protein. It is concluded that the rate of turnover of protein in Lemna is very dependent on the composition of the growth medium. Conditions which reduce growth rates also reduce the rates of synthesis of protein and increase those of degradation. PMID:16657895
NASA Astrophysics Data System (ADS)
Botticella, M. T.
We performed the Southern inTermediate Redshift ESO Supernova Search (STRESS), a survey specifically designed to measure the rate of both SNe Ia and CC SNe, in order to obtain a direct comparison of the high redshift and local rates and to investigate the dependence of the rates on specific galaxy properties, most notably their colour. We found that the type Ia SN rate, at mean redshift z = 0.3, is 0.22+0.10+0.16-0.08-0.14 h270 SNu, while the CC SN rate, at z = 0.21, is 0.82+0.31+0.300.24-0.26 h270 SNu. The quoted errors are the statistical and systematic uncertainties. With respect to the local value, the CC SN rate at z = 0.2 is higher by a factor of ˜ 2, whereas the type Ia SN rate remains almost constant. We also measured the SN rates in the red and blue galaxies and found that the SN Ia rate seems to be constant in galaxies of different colour, whereas the CC SN rate seems to peak in blue galaxies, as in the local Universe. Finally we exploited the link between SFH and SN rates to predict the evolutionary behaviour of the SN rates and compare it with the path indicated by observations.
Studies of the 4-JET Rate and of Moments of Event Shape Observables Using Jade Data
NASA Astrophysics Data System (ADS)
Kluth, S.
2005-04-01
Data from e+e- annihilation into hadrons collected by the JADE experiment at centre-of-mass energies between 14 and 44 GeV were used to study the 4-jet rate using the Durham algorithm as well as the first five moments of event shape observables. The data were compared with NLO QCD predictions, augmented by resummed NLLA calculations for the 4-jet rate, in order to extract values of the strong coupling constant αS. The preliminary results are αS(M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hranisavljevic, J.; Michael, J.V.
1998-09-24
The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H and (2) CF{sub 3}H + H {r_arrow} CF{sub 3} + H{sub 2} over the temperature ranges 1168--1673 K and 1111--1550 K, respectively. The results can be represented by the Arrhenius expressions k{sub 1} = 2.56 {times} 10{sup {minus}11} exp({minus}8549K/T) and k{sub 2} = 6.13 {times} 10{sup {minus}11} exp({minus}7364K/T), both in cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, andmore » good agreement was obtained with the literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k{sub 1} measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 {times} 10{sup {minus}11} exp({minus}8185K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less
Projection rule for complex-valued associative memory with large constant terms
NASA Astrophysics Data System (ADS)
Kitahara, Michimasa; Kobayashi, Masaki
Complex-valued Associative Memory (CAM) has an inherent property of rotation invariance. Rotation invariance produces many undesirable stable states and reduces the noise robustness of CAM. Constant terms may remove rotation invariance, but if the constant terms are too small, rotation invariance does not vanish. In this paper, we eliminate rotation invariance by introducing large constant terms to complex-valued neurons. We have to make constant terms sufficiently large to improve the noise robustness. We introduce a parameter to control the amplitudes of constant terms into projection rule. The large constant terms are proved to be effective by our computer simulations.
Vitamin D dose response is underestimated by Endocrine Society's Clinical Practice Guideline.
McKenna, Malachi J; Murray, Barbara F
2013-06-01
The recommended daily intakes of vitamin D according to the recent Clinical Practice Guideline (CPG) of the Endocrine Society are three- to fivefold higher than the Institute of Medicine (IOM) report. We speculated that these differences could be explained by different mathematical approaches to the vitamin D dose response. Studies were selected if the daily dose was ≤2000 IU/day, the duration exceeded 3 months, and 25-hydroxyvitamin D (25OHD) concentrations were measured at baseline and post-therapy. The rate constant was estimated according to the CPG approach. The achieved 25OHD result was estimated according to the following: i) the regression equation approach of the IOM; ii) the regression approach of the Vitamin D Supplementation in Older Subjects (ViDOS) study; and iii) the CPG approach using a rate constant of 2.5 (CPG2.5) and a rate constant of 5.0 (CPG5.0). The difference between the expected and the observed 25OHD result was expressed as a percentage of observed and analyzed for significance against a value of 0% for the four groups. Forty-one studies were analyzed. The mean (95% CI) rate constant was 5.3 (4.4-6.2) nmol/l per 100 IU per day, on average twofold higher than the CPG rate constant. The mean (95% CI) for the difference between the expected and observed expressed as a percentage of observed was as follows: i) IOM, -7 (-16,+2)% (t=1.64, P=0.110); ii) ViDOS, +2 (-8,+12)% (t=0.40, P=0.69); iii) CPG2.5, -21 (-27,-15)% (t=7.2, P<0.0001); and iv) CPG5.0+3 (-4,+10)% (t=0.91, P=0.366). The CPG 'rule of thumb' should be doubled to 5.0 nmol/l (2.0 ng/ml) per 100 IU per day, adopting a more risk-averse position.
Determination of the alpha(s) using jet rates at LEP
NASA Astrophysics Data System (ADS)
Donkers, Michael A.
Jets are produced in any high energy collision of particles in which quarks are produced in the final state. Using the OPAL detector to measure particles produced in e+e- collisions at the LEP accelerator, the rate of jet formation has been measured at 91 GeV as well as each of the LEP2 energies, ranging from 161 GeV to 207 GeV. The jet rate observables, in particular the differential 2-jet rate and the average jet rate can be used to determine a value of the strong coupling constant, alphas, by fitting to various theoretical predictions. The value of alphas has been determined using data at 91 GeV and a combined sample comprising all of the LEP2 energies with a luminosity weighted centre-of-mass energy of 195.8 GeV for 10 theoretical predictions and two jet clustering algorithms. A fit of the 91 GeV and LEP2 values of alphas determined using the ln R matching prediction is also performed on the D2 and
Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential
Rocchetti, Marcella; Besana, Alessandra; Gurrola, Georgina B; Possani, Lourival D; Zaza, Antonio
2001-01-01
The action potential clamp technique was exploited to evaluate the rate dependency of delayed rectifier currents (IKr and IKs) during physiological electrical activity. IKr and IKs were measured in guinea-pig ventricular myocytes at pacing cycle lengths (CL) of 1000 and 250 ms.A shorter CL, with the attendant changes in action potential shape, was associated with earlier activation and increased magnitude of both IKr and IKs. Nonetheless, the relative contributions of IKr and IKs to total transmembrane current were independent of CL.Shortening of diastolic interval only (constant action potential shape) enhanced IKs, but not IKr.IKr was increased by a change in the action potential shape only (constant diastolic interval).In ramp clamp experiments, IKr amplitude was directly proportional to repolarization rate at values within the low physiological range (< 1.0 V s−1); at higher repolarization rates proportionality became shallower and finally reversed.When action potential duration (APD) was modulated by constant current injection (I-clamp), repolarization rates > 1.0 V s−1 were associated with a reduced effect of IKr block on APD. The effect of changes in repolarization rate was independent of CL and occurred in the presence of IKs blockade.In spite of its complexity, the behaviour of IKr was accurately predicted by a numerical model based entirely on known kinetic properties of the current.Both IKr and IKs may be increased at fast heart rates, but this may occur through completely different mechanisms. The mechanisms identified are such as to contribute to abnormal rate dependency of repolarization in prolonged repolarization syndromes. PMID:11483703
Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise
2016-03-01
Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Klippenstein, Stephen J.; Zhou, Chong-Wen
The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of poly-unsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution towards soot formation. Based on our previous work on propene and the butene isomers (1-, 2- and isobutene), it was found that the reaction kinetics of H-atom addition to the C=C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations and flame speed measurements. In this study, the rate constants and thermodynamic properties formore » $$\\dot{H}$$-atom addition to 1,3-butadiene and related reactions on the $$\\dot{C}$$ 4H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero point energies, single point energies, rate constants, barrier heights and thermochemistry are systematically compared among the two quantum chemical methods. 1-methylallyl ($$\\dot{C}$$ 4H 71-3) and 3-buten-1- yl ($$\\dot{C}$$ 4H 71-4) radicals and C 2H 4 + $$\\dot{C}$$2H3 are found to be the most important channels and reactivity promoting products, respectively. We calculated that terminal addition is dominant (> 80%) compared to internal $$\\dot{H}$$-atom addition at all temperatures in the range 298 – 2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4H 6 + $$\\dot{H}$$ → products and C 2H 4 + $$\\dot{C}$$ 2H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H-atom abstraction by $$\\dot{H}$$ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (> 70%) at temperatures in the range 298 – 2000 K. Lastly, by incorporating our calculated rate constants for both H-atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.« less
An Investigation into Performance Modelling of a Small Gas Turbine Engine
2012-10-01
b = Combustor part load constant f = Fuel to mass flow ratio or scale factor h = Enthalpy F = Force P = Pressure T = Temperature W = Mass flow...HP engine performance parameters[5,6] Parameter Condition (ISA, SLS) Value Thrust 108000 rpm 230 N Pressure Ratio 108000 rpm 4 Mass Flow Rate...system. The reasons for removing the electric starter were to ensure uniform flow through the bell- mouth for mass flow rate measurement, eliminate a
Dynamics of short-term acclimation to UV radiation in marine diatoms.
Fouqueray, Manuela; Mouget, Jean-Luc; Morant-Manceau, Annick; Tremblin, Gérard
2007-11-12
In order to investigate the dynamics of the acclimation of marine diatoms to ultraviolet radiation (UVR), Amphora coffeaeformis, Odontella aurita and Skeletonema costatum were exposed for 5 h per day to a combination of UVA and UVB (UVBR/UVAR ratio 4.5%) with a total UVR daily dose of 110 kJ m(-2), which is equivalent to that observed in the natural environment. This treatment was applied in the middle of the photoperiod and was repeated on five successive days. During the UVR treatment, chlorophyll fluorescence parameters were monitored, damage and repair constants were calculated from effective quantum yield values (phi(PSII)), and rapid light curves (electron transport rate versus irradiance curves using short light steps of different intensity) were plotted to determine the maximum relative electron transport rate (rETR(max)) and maximum light use efficiency (alpha). In all species the growth rate was lower than control from day 1-3, but increased thereafter, except for S. costatum. The cellular chlorophyll a content increased significantly with repeated daily exposure to UVR for A. coffeaeformis only. In all species, the fluorescence parameters (F(m), the maximum fluorescence level measured in the dark, phi(PSII), rETR(max) and alpha) decreased during UVR exposure, in contrast to F(0) (the minimum fluorescence level measured in the dark). The response to UVR stress was species-specific. S. costatum was very sensitive, and failed to survive for more than three days, whereas A. coffeaeformis and O. aurita were able to acclimate to UVR stress. These two species used different strategies. In A. coffeaeformis, the repair constant was lower than the damage constant, but phi(PSII) values returned to baseline values at the beginning of each experimental day, indicating that an effective active recovery process occurred after stress. In O. aurita, the repair processes took place during the stress, and could account for the UVR tolerance of this species.
Cyclic debonding of unidirectional composite bonded to aluminum sheet for constant-amplitude loading
NASA Technical Reports Server (NTRS)
Roderick, G. L.; Everett, R. A., Jr.; Crews, J. H., Jr.
1976-01-01
Cyclic debonding rates were measured during constant-amplitude loading of specimens made of graphite/epoxy bonded to aluminum and S-glass/epoxy bonded to aluminum. Both room-temperature and elevated-temperature curing adhesives were used. Debonding was monitored with a photoelastic coating technique. The debonding rates were compared with three expressions for strain-energy release rate calculated in terms of the maximum stress, stress range, or a combination of the two. The debonding rates were influenced by both adherent thickness and the cyclic stress ratio. For a given value of maximum stress, lower stress ratios and thicker specimens produced faster debonding. Microscopic examination of the debonded surfaces showed different failure mechanisms both for identical adherends bonded with different adhesive and, indeed, even for different adherends bonded with identical adhesives. The expressions for strain-energy release rate correlated the data for different specimen thicknesses and stress ratios quite well for each material system, but the form of the best correlating expression varied among material systems. Empirical correlating expressions applicable to one material system may not be appropriate for another system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strachan, Denis
Here, various rate equations for the dissolution of silicate glasses have been discussed in the literature. In this article, the published results from studies are discussed in which the dissolution rate data are collected under high flow conditions such that saturation with respect to alteration products is avoided. Additionally, the studies also covered broad ranges of temperature and pH. Starting with nuclear waste glass studies, a two-term rate expression is used to fit data with the result that the data point toward a three-term expression offered by Köhler et al. (2003). These rate expressions contain two or three pre-exponential or rate constants. However, it appears that a single rate constant, an intrinsic rate constant, is consistent with the data. Thus, a rate expression of the form R=k i [exp(more » $$\\frac{-EaH+}{RT})$$a$$ηH\\atop{H}$$+exp ($$\\frac{-EaH2O}{RT}$$) + exp ($$\\frac{-EaOH-}{RT}$$) a$$ηOH\\atop{OH}$$] appears to be applicable to a broad range of glasses. Here, R is the rate of dissolution, mol/(m 2·s) or similar; E is the activation energy associated with the acid, water, or hydroxide activated reactions, kJ/mol; a is the activity of H +, H 2O, or OH -, unitless; η is the order of the reaction with respect to H +, H 2O, or OH-; R is the gas constant, kJ/(mol·K); T is the temperature, Kelvin; and k i is the intrinsic rate constant, mol/(m 2·s) or similar. The contribution to the overall rate from the ‘water’ term is evident as a minor contribution in the middle pH range for some glass compositions and a major contributor for others. One nuclear waste glass (the Japanese P0798), a basalt glass (Köhler et al. (2003)), and a glass with a mineral composition (Bourcier (1998)) exhibit this contribution as a relatively flat response to changes in pH in the range of 5 to 8. However, to distinguish between the possible rate laws, more experiments and more carefully constrained experimentation are needed. Additionally, these may include experiments at pH values that differ by as little as 0.25. Lastly, experiments with glasses of different compositions are needed to determine the dependence of the intrinsic rate constant on the glass composition and structure, i.e. non-bridging oxygens, Si-O-Si and Si-O-X (X = a matrix-forming element, e.g. Al or Fe), and other glass structural properties, e.g. binding energies.« less
Strachan, Denis
2017-09-09
Here, various rate equations for the dissolution of silicate glasses have been discussed in the literature. In this article, the published results from studies are discussed in which the dissolution rate data are collected under high flow conditions such that saturation with respect to alteration products is avoided. Additionally, the studies also covered broad ranges of temperature and pH. Starting with nuclear waste glass studies, a two-term rate expression is used to fit data with the result that the data point toward a three-term expression offered by Köhler et al. (2003). These rate expressions contain two or three pre-exponential or rate constants. However, it appears that a single rate constant, an intrinsic rate constant, is consistent with the data. Thus, a rate expression of the form R=k i [exp(more » $$\\frac{-EaH+}{RT})$$a$$ηH\\atop{H}$$+exp ($$\\frac{-EaH2O}{RT}$$) + exp ($$\\frac{-EaOH-}{RT}$$) a$$ηOH\\atop{OH}$$] appears to be applicable to a broad range of glasses. Here, R is the rate of dissolution, mol/(m 2·s) or similar; E is the activation energy associated with the acid, water, or hydroxide activated reactions, kJ/mol; a is the activity of H +, H 2O, or OH -, unitless; η is the order of the reaction with respect to H +, H 2O, or OH-; R is the gas constant, kJ/(mol·K); T is the temperature, Kelvin; and k i is the intrinsic rate constant, mol/(m 2·s) or similar. The contribution to the overall rate from the ‘water’ term is evident as a minor contribution in the middle pH range for some glass compositions and a major contributor for others. One nuclear waste glass (the Japanese P0798), a basalt glass (Köhler et al. (2003)), and a glass with a mineral composition (Bourcier (1998)) exhibit this contribution as a relatively flat response to changes in pH in the range of 5 to 8. However, to distinguish between the possible rate laws, more experiments and more carefully constrained experimentation are needed. Additionally, these may include experiments at pH values that differ by as little as 0.25. Lastly, experiments with glasses of different compositions are needed to determine the dependence of the intrinsic rate constant on the glass composition and structure, i.e. non-bridging oxygens, Si-O-Si and Si-O-X (X = a matrix-forming element, e.g. Al or Fe), and other glass structural properties, e.g. binding energies.« less
The kinetics of the oxidation of ferrous iron in synthetic and natural waters
NASA Astrophysics Data System (ADS)
Davison, W.; Seed, G.
1983-01-01
The rate of oxidation of ferrous iron in a seasonally anoxic lake was measured on 39 occasions with respect to both depth and time. Sample disturbance was minimal as only oxygen had to be introduced to initiate the reaction. The data were consistent with the simple rate law for homogeneous chemical kinetics previously established for synthetic solutions. The rate constant for the oxidation reaction in lake water was indistinguishable from that measured in synthetic samples. It did not appear to be influenced by changes in the microbial populations or by changes in any particulate or soluble components in the water, including iron and manganese. Analysis of the errors inherent in the kinetic measurements showed that the estimation of pH was the major source of inaccuracy and that values of the rate constant determined by different workers could easily differ by a factor of six. The present data, together with a comprehensive survey of the literature, are used to suggest a 'universal' rate constant of ca. 2 × 10 13 M -2 atm -1 min -1 (range 1.5-3 × 10 13) in the rate law -d[Fe II]/dt = k[Fe II]pO 2 (OH-) 2 for natural freshwaters in the pH range 6.5-7.4. Discrepancies in the effects of ionic strength and interfering substances reported in the literature are highlighted. Generally substances have only been found to interfere at concentrations which far exceed those in most natural waters.
Appiani, Elena; Page, Sarah E; McNeill, Kristopher
2014-10-21
Dissolved organic matter (DOM) is involved in numerous environmental processes, and its molecular size is important in many of these processes, such as DOM bioavailability, DOM sorptive capacity, and the formation of disinfection byproducts during water treatment. The size and size distribution of the molecules composing DOM remains an open question. In this contribution, an indirect method to assess the average size of DOM is described, which is based on the reaction of hydroxyl radical (HO(•)) quenching by DOM. HO(•) is often assumed to be relatively unselective, reacting with nearly all organic molecules with similar rate constants. Literature values for HO(•) reaction with organic molecules were surveyed to assess the unselectivity of DOM and to determine a representative quenching rate constant (k(rep) = 5.6 × 10(9) M(-1) s(-1)). This value was used to assess the average molecular weight of various humic and fulvic acid isolates as model DOM, using literature HO(•) quenching constants, kC,DOM. The results obtained by this method were compared with previous estimates of average molecular weight. The average molecular weight (Mn) values obtained with this approach are lower than the Mn measured by other techniques such as size exclusion chromatography (SEC), vapor pressure osmometry (VPO), and flow field fractionation (FFF). This suggests that DOM is an especially good quencher for HO(•), reacting at rates close to the diffusion-control limit. It was further observed that humic acids generally react faster than fulvic acids. The high reactivity of humic acids toward HO(•) is in line with the antioxidant properties of DOM. The benefit of this method is that it provides a firm upper bound on the average molecular weight of DOM, based on the kinetic limits of the HO(•) reaction. The results indicate low average molecular weight values, which is most consistent with the recent understanding of DOM. A possible DOM size distribution is discussed to reconcile the small nature of DOM with the large-molecule behavior observed in other studies.
Angulo, Jesús; Enríquez-Navas, Pedro M; Nieto, Pedro M
2010-07-12
The direct evaluation of dissociation constants (K(D)) from the variation of saturation transfer difference (STD) NMR spectroscopy values with the receptor-ligand ratio is not feasible due to the complex dependence of STD intensities on the spectral properties of the observed signals. Indirect evaluation, by competition experiments, allows the determination of K(D), as long as a ligand of known affinity is available for the protein under study. Herein, we present a novel protocol based on STD NMR spectroscopy for the direct measurements of receptor-ligand dissociation constants (K(D)) from single-ligand titration experiments. The influence of several experimental factors on STD values has been studied in detail, confirming the marked impact on standard determinations of protein-ligand affinities by STD NMR spectroscopy. These factors, namely, STD saturation time, ligand residence time in the complex, and the intensity of the signal, affect the accumulation of saturation in the free ligand by processes closely related to fast protein-ligand rebinding and longitudinal relaxation of the ligand signals. The proposed method avoids the dependence of the magnitudes of ligand STD signals at a given saturation time on spurious factors by constructing the binding isotherms using the initial growth rates of the STD amplification factors, in a similar way to the use of NOE growing rates to estimate cross relaxation rates for distance evaluations. Herein, it is demonstrated that the effects of these factors are cancelled out by analyzing the protein-ligand association curve using STD values at the limit of zero saturation time, when virtually no ligand rebinding or relaxation takes place. The approach is validated for two well-studied protein-ligand systems: the binding of the saccharides GlcNAc and GlcNAcbeta1,4GlcNAc (chitobiose) to the wheat germ agglutinin (WGA) lectin, and the interaction of the amino acid L-tryptophan to bovine serum albumin (BSA). In all cases, the experimental K(D) measured under different experimental conditions converged to the thermodynamic values. The proposed protocol allows accurate determinations of protein-ligand dissociation constants, extending the applicability of the STD NMR spectroscopy for affinity measurements, which is of particular relevance for those proteins for which a ligand of known affinity is not available.
Wind assistance: A requirement for migration of shorebirds?
Butler, Robert W.; Williams, Tony D.; Warnock, Nils; Bishop, Mary Anne
1997-01-01
We investigated the importance of wind-assisted flight for northward (spring) migration by Western Sandpipers (Calidris mauri) along the Pacific Coast of North America. Using current models of energy costs of flight and recent data on the phenology of migration, we estimated the energy (fat) requirements for migration in calm winds and with wind-assisted flight for different rates of fat deposition: (1) a variable rate, assuming that birds deposit the minimum amount of fat required to reach the next stopover site; (2) a constant maximum rate of 1.0 g/day; and (3) a lower constant rate of 0.4 g/day. We tested these models by comparing conservative estimates of predicted body mass along the migration route with empirical data on body mass of Western Sandpipers at different stopover sites and upon arrival at the breeding grounds. In calm conditions, birds would have to deposit unrealistically high amounts of fat (up to 330% of observed values) to maintain body mass above absolute lean mass values. Fat-deposition rates of 1.0 g/day and 0.4 g/day, in calm conditions, resulted in a steady decline in body mass along the migration route, with predicted body masses on arrival in Alaska of only 60% (13.6 g) and 26% (5.9 g) of average lean mass (22.7 g). Conversely, birds migrating with wind assistance would be able to complete migration with fat-deposition rates as low as 0.4 g/day, similar to values reported for this size bird from field studies. Our results extend the conclusion of the importance of winds for large, long-distance migrants to a small, short-distance migrant. We suggest that the migratory decisions of birds are more strongly influenced by the frequency and duration of winds aloft, i.e. by events during the flight phase, than by events during the stopover phase of migration, such as fat-deposition rate, that have been the focus of much recent migration theory.
NASA Technical Reports Server (NTRS)
Tanner, J. A.
1973-01-01
An investigation was conducted to determine the fore-and-aft elastic response characteristics of aircraft tires of bias ply, bias-belted, and radial-belted design. The investigation consisted of: (1)static and rolling tests, (2)a statistical analysis which related the measured tire elastic characteristics to variations in the vertical load, inflation pressure, braking force and/or tire vertical deflection, and (3) a semi-empirical analysis which related the tire elastic behavior to measured wheel slippage during a steady-state braking. The results of this investigation indicate that the bias-belted tire has the largest spring constant value for most loading conditions and the radial-belted tire has the smallest spring constant value.
NASA Astrophysics Data System (ADS)
Choi, Nari; Han, Jongmin
2018-04-01
In this paper, we study an elliptic equation arising from the self-dual Maxwell gauged O (3) sigma model coupled with gravity. When the parameter τ equals 1 and there is only one singular source, we consider radially symmetric solutions. There appear three important constants: a positive parameter a representing a scaled gravitational constant, a nonnegative integer N1 representing the total string number, and a nonnegative integer N2 representing the total anti-string number. The values of the products aN1 , aN2 ∈ [ 0 , ∞) play a crucial role in classifying radial solutions. By using the decay rates of solutions at infinity, we provide a complete classification of solutions for all possible values of aN1 and aN2. This improves previously known results.
Thermodynamics and kinetics of cyanidin 3-glucoside and caffeine copigments.
Limón, Piedad M; Gavara, Raquel; Pina, Fernando
2013-06-05
The multiequilibrium system of reactions of cyanidin 3-glucoside at acidic and mildly acidic pH values was studied in the presence of caffeine as a copigment. The thermodynamic and kinetic constants were determined using the so-called direct and reverse pH jump experiments that were followed by conventional UV-vis spectroscopy or stopped flow coupled to a UV-vis detector, depending on the rate of the monitored process. Compared with that of free anthocyanin, the copigmentation with caffeine extends the domain of the flavylium cation up to less acidic pH values, while in a moderately acidic medium, the quinoidal base becomes more stabilized. As a consequence, the hydration to give the colorless hemiketal is difficult over the entire range of pH values. At pH 1, two adducts were found for the flavylium cation-caffeine interaction, with stoichiometries of 1:1 and 1:2 and association constants of 161 M⁻¹ (K₁) and 21 M⁻¹ (K₂), respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redies, C.; Hoffer, L.J.; Beil, C.
In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylationmore » fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.« less
Birdwell, Justin; Cook, Robert L; Thibodeaux, Louis J
2007-03-01
Resuspension of contaminated sediment can lead to the release of toxic compounds to surface waters where they are more bioavailable and mobile. Because the timeframe of particle resettling during such events is shorter than that needed to reach equilibrium, a kinetic approach is required for modeling the release process. Due to the current inability of common theoretical approaches to predict site-specific release rates, empirical algorithms incorporating the phenomenological assumption of biphasic, or fast and slow, release dominate the descriptions of nonpolar organic chemical release in the literature. Two first-order rate constants and one fraction are sufficient to characterize practically all of the data sets studied. These rate constants were compared to theoretical model parameters and functionalities, including chemical properties of the contaminants and physical properties of the sorbents, to determine if the trends incorporated into the hindered diffusion model are consistent with the parameters used in curve fitting. The results did not correspond to the parameter dependence of the hindered diffusion model. No trend in desorption rate constants, for either fast or slow release, was observed to be dependent on K(OC) or aqueous solubility for six and seven orders of magnitude, respectively. The same was observed for aqueous diffusivity and sediment fraction organic carbon. The distribution of kinetic rate constant values was approximately log-normal, ranging from 0.1 to 50 d(-1) for the fast release (average approximately 5 d(-1)) and 0.0001 to 0.1 d(-1) for the slow release (average approximately 0.03 d(-1)). The implications of these findings with regard to laboratory studies, theoretical desorption process mechanisms, and water quality modeling needs are presented and discussed.
Mukai, Kazuo; Ouchi, Aya; Azuma, Nagao; Takahashi, Shingo; Aizawa, Koichi; Nagaoka, Shin-Ichi
2017-02-01
Recently, a new assay method for the quantification of the singlet oxygen absorption capacity (SOAC) of antioxidants (AOs) and food extracts in homogeneous organic solvents was proposed. In this study, second-order rate constants (k Q ) for the reaction of singlet oxygen ( 1 O 2 ) with eight different carotenoids (Cars) and α-tocopherol (α-Toc) were measured in an aqueous Triton X-100 (5.0 wt %) micellar solution (pH 7.4, 35 °C), which was used as a simple model of biomembranes. The k Q and relative SOAC values were measured using ultraviolet-visible (UV-vis) spectroscopy. The UV-vis absorption spectra of Cars and α-Toc were measured in both a micellar solution and chloroform, to investigate the effect of solvent on the k Q and SOAC values. Furthermore, decay rates (k d ) of 1 O 2 were measured in 0.0, 1.0, 3.0, and 5.0 wt % micellar solutions (pH 7.4), using time-resolved near-infrared fluorescence spectroscopy, to determine the absolute k Q values of the AOs. The results obtained demonstrate that the k Q values of AOs in homogeneous and heterogeneous solutions vary notably depending on (i) the polarity [dielectric constant (ε)] of the reaction field between AOs and 1 O 2 , (ii) the local concentration of AOs, and (iii) the mobility of AOs in solution. In addition, the k Q and relative SOAC values obtained for the Cars in a heterogeneous micellar solution differ remarkably from those in homogeneous organic solvents. Measurements of k Q and SOAC values in a micellar solution may be useful for evaluating the 1 O 2 quenching activity of AOs in biological systems.
The vibrational dependence of dissociative recombination: Rate constants for N{sub 2}{sup +}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guberman, Steven L., E-mail: slg@sci.org
Dissociative recombination rate constants are reported with electron temperature dependent uncertainties for the lowest 5 vibrational levels of the N{sub 2}{sup +} ground state. The rate constants are determined from ab initio calculations of potential curves, electronic widths, quantum defects, and cross sections. At 100 K electron temperature, the rate constants overlap with the exception of the third vibrational level. At and above 300 K, the rate constants for excited vibrational levels are significantly smaller than that for the ground level. It is shown that any experimentally determined total rate constant at 300 K electron temperature that is smaller thanmore » 2.0 × 10{sup −7} cm{sup 3}/s is likely to be for ions that have a substantially excited vibrational population. Using the vibrational level specific rate constants, the total rate constant is in very good agreement with that for an excited vibrational distribution found in a storage ring experiment. It is also shown that a prior analysis of a laser induced fluorescence experiment is quantitatively flawed due to the need to account for reactions with unknown rate constants. Two prior calculations of the dissociative recombination rate constant are shown to be inconsistent with the cross sections upon which they are based. The rate constants calculated here contribute to the resolution of a 30 year old disagreement between modeled and observed N{sub 2}{sup +} ionospheric densities.« less
Yajima, Ryoji; Sakamoto, Yosuke; Inomata, Satoshi; Hirokawa, Jun
2017-08-31
We investigated the relative reactivity of stabilized CH 2 OO, produced by ethene ozonolysis, toward acetic acid and water vapor at a temperature of 298 ± 2 K and atmospheric pressure. Hydroperoxymethyl acetate produced through the reaction between stabilized CH 2 OO and acetic acid was monitored using a chemical ionization mass spectrometer as a function of the acetic acid concentration at different relative humidities. The rate of the reaction between CH 2 OO and water vapor depended quadratically on the water vapor concentration, suggesting that CH 2 OO reacted with water dimers in preference to water monomers. We obtained the bimolecular rate constant for the reaction between CH 2 OO and water dimer relative to the rate constant for the reaction between CH 2 OO and acetic acid, k 3 /k 1 , of (6.3 ± 0.4) × 10 -2 . The k 3 value of (8.2 ± 0.8) × 10 -12 cm 3 molecule -1 s -1 was derived by combining with a k 1 value of (1.3 ± 0.1) × 10 -10 cm 3 molecule -1 s -1 , which has been previously reported by direct kinetic studies. The k 3 value thus obtained is consistent with the absolute rate constants measured directly, suggesting that the reactivity of CH 2 OO is irrespective of the CH 2 OO generation method, namely, ethene ozonolysis or diiodomethane photolysis. We indirectly determined the yield of stabilized CH 2 OO from the ozonolysis of ethene of 0.59 ± 0.17 and 0.55 ± 0.16 under dry and humid (relative humidity 23-24%) conditions, respectively, suggesting that the yield is independent of the water vapor concentration. Our results suggest that hydroperoxymethyl acetate is the sole product of the reaction between stabilized CH 2 OO and acetic acid. The approach presented here can likely be extended to studies of the reactivities of more complicated and atmospherically relevant stabilized Criegee intermediates.
Krause, Sophia; Goss, Kai-Uwe
2018-05-23
Until now, the question whether slow desorption of compounds from transport proteins like the plasma protein albumin can affect hepatic uptake and thereby hepatic metabolism of these compounds has not yet been answered conclusively. This work now combines recently published experimental desorption rate constants with a liver model to address this question. For doing so, the used liver model differentiates the bound compound in blood, the unbound compound in blood and the compound within the hepatocytes as three well-stirred compartments. Our calculations show that slow desorption kinetics from albumin can indeed limit hepatic metabolism of a compound by decreasing hepatic extraction efficiency and hepatic clearance. The extent of this decrease, however, depends not only on the value of the desorption rate constant but also on how much of the compound is bound to albumin in blood and how fast intrinsic metabolism of the compound in the hepatocytes is. For strongly sorbing and sufficiently fast metabolized compounds, our calculations revealed a twentyfold lower hepatic extraction efficiency and hepatic clearance for the slowest known desorption rate constant compared to the case when instantaneous equilibrium between bound and unbound compound is assumed. The same desorption rate constant, however, has nearly no effect on hepatic extraction efficiency and hepatic clearance of weakly sorbing and slowly metabolized compounds. This work examines the relevance of desorption kinetics in various example scenarios and provides the general approach needed to quantify the effect of flow limitation, membrane permeability and desorption kinetics on hepatic metabolism at the same time.
Zhou, Chong-Wen; Simmie, John M; Curran, Henry J
2011-06-21
A theoretical study is presented of the mechanism and kinetics of the reactions of the hydroxyl radical with three ketones: dimethyl (DMK), ethylmethyl (EMK) and iso-propylmethyl (iPMK) ketones. CCSD(T) values extrapolated to the basis set limit are used to benchmark the computationally less expensive methods G3 and G3MP2BH&H, for the DMK + OH reaction system. These latter methods are then used in computations involving the reactions of the larger ketones. All possible abstraction channels have been modeled. A stepwise mechanism involving the formation of a reactant complex in the entrance channel and a product complex in the exit channel has been recognized in part of the abstracting processes. High-pressure limit rate constants of the title reactions have been calculated in the temperature range of 500-2000 K using the Variflex code including Eckart tunneling corrections. Variable reaction coordinate transition state theory (VRC-TST) has been used for the rate constants of the barrier-less entrance channel. Calculated total rate constants (cm(3) mol(-1) s(-1)) are reported as follows: k(DMK) = 1.32 × 10(2)×T(3.30)exp(503/T), k(EMK) = 3.84 × 10(1)×T(3.51)exp(1515/T), k(iPMK) = 2.08 × 10(1)×T(3.58)exp(2161/T). Group rate constants (on a per H atom basis) for different carbon sites in title reactions have also been provided.
O2(b1Σg+) Quenching by O2, CO2, H2O, and N2 at Temperatures of 300-800 K.
Zagidullin, M V; Khvatov, N A; Medvedkov, I A; Tolstov, G I; Mebel, A M; Heaven, M C; Azyazov, V N
2017-10-05
Rate constants for the removal of O 2 (b 1 Σ g + ) by collisions with O 2 , N 2 , CO 2 , and H 2 O have been determined over the temperature range from 297 to 800 K. O 2 (b 1 Σ g + ) was excited by pulses from a tunable dye laser, and the deactivation kinetics were followed by observing the temporal behavior of the b 1 Σ g + -X 3 Σ g - fluorescence. The removal rate constants for CO 2 , N 2 , and H 2 O were not strongly dependent on temperature and could be represented by the expressions k CO2 = (1.18 ± 0.05) × 10 -17 × T 1.5 × exp[Formula: see text], k N2 = (8 ± 0.3) × 10 -20 × T 1.5 × exp[Formula: see text], and k H2O = (1.27 ± 0.08) × 10 -16 × T 1.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . Rate constants for O 2 (b 1 Σ g + ) removal by O 2 (X), being orders of magnitude lower, demonstrated a sharp increase with temperature, represented by the fitted expression k O2 = (7.4 ± 0.8) × 10 -17 × T 0.5 × exp[Formula: see text] cm 3 molecule -1 s -1 . All of the rate constants measured at room temperature were found to be in good agreement with previously reported values.
NASA Astrophysics Data System (ADS)
Ji, Yuemeng; Gao, Yanpeng; Li, Guiying; An, Taicheng
2012-07-01
Accurate description of atmospheric reactions of a series of low-molecular-weight (LMW) aldehydes (C1-C4) with NO2 has been modeled using a direct dynamic approach. The profiles of the potential energy surface were constructed at the BMC-CCSD//MPWB1K/6-311G(d,p) level of theory, and two different pathways have been found: H-abstraction and NO2-addition. The modeling results found that the contribution of NO2-addition reaction pathway to the total rate constant is very small and thus this kind of pathway is insignificant in atmospheric conditions. The predicted H-abstraction products are mainly reactive acyl radical and nitrous acid (HONO) which is very mutagenic and carcinogenic pollutant as well as the precursor of acid deposition. The rate constants of both pathways were also deduced by using canonical variational transition state theory incorporating with the small curvature tunneling correction within 200-360 and 360-2000 K. Theoretical overall rate constants are in good agreement with the available experimental values, whose increase in the order of kformaldehyde < kacetaldehyde < kpropanal < kbutanal, implying that relative long-chain LMW aldehydes are more reactive toward NO2 than those short-chain LMW aldehydes in the atmospheric condition. At 298 K, the total rate constants of LMW aldehydes (C1-C4) with NO2 are obtained as 1.65 × 10-25, 1.43 × 10-24, 3.39 × 10-24 and 1.83 × 10-23 cm3 molecule-1 s-1, respectively.
Lear, Benjamin J; Glover, Starla D; Salsman, J Catherine; Londergan, Casey H; Kubiak, Clifford P
2007-10-24
We relate the solvent and temperature dependence of the rates of intramolecular electron transfer (ET) of mixed valence complexes of the type {[Ru3O(OAc)6(CO)(L)]2-BL}-1, where L = pyridyl ligand and BL = pyrazine. Complexes were reduced chemically or electrochemically to obtain the mixed valence anions in seven solvents: acetonitrile, methylene chloride, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, chloroform, and hexamethylphosphoramide. Rate constants for intramolecular ET were estimated by simulating the observed degree of nu(CO) IR band shape coalescence in the mixed valence state. Correlations between rate constants for ET and solvent properties including static dielectric constant, optical dielectric constant, the quantity 1/epsilonop - 1/epsilonS, microscopic solvent polarity, viscosity, cardinal rotational moments of inertia, and solvent relaxation times were examined. In the temperature study, the complexes displayed a sharp increase in the ket as the freezing points of the solvents methylene chloride and acetonitrile were approached. The solvent phase transition causes a localized-to-delocalized transition in the mixed valence ions and an acceleration in the rate of ET. This is explained in terms of decoupling the slower solvent motions involved in the frequency factor nuN which increases the value of nuN. The observed solvent and temperature dependence of the ket for these complexes is used in order to formulate a new definition for Robin-Day class II-III mixed valence compounds. Specifically, it is proposed that class II-III compounds are those for which thermodynamic properties of the solvent exert no control over ket, but the dynamic properties of the solvent still influence ket.
Quality evaluation of onion bulbs during low temperature drying
NASA Astrophysics Data System (ADS)
Djaeni, M.; Asiah, N.; Wibowo, Y. P.; Yusron, D. A. A.
2016-06-01
A drying technology must be designed carefully by evaluating the foods' final quality properties as a dried material. Thermal processing should be operated with the minimum chance of substantial flavour, taste, color and nutrient loss. The main objective of this research was to evaluate the quality parameters of quercetin content, color, non-enzymatic browning and antioxidant activity. The experiments showed that heating at different temperatures for several drying times resulted in a percentage of quercetin being generally constant. The quercetin content maintained at the value of ±1.2 % (dry basis). The color of onion bulbs was measured by CIE standard illuminant C. The red color (a*) of the outer layer of onion bulbs changed significantly when the drying temperature was increased. However the value of L* and b* changed in a fluctuating way based on the temperature. The change of onion colors was influenced by temperature and moisture content during the drying process. The higher the temperature, the higher it affects the rate of non-enzymatic browning reaction. The correlation between temperature and reaction rate constant was described as Arrhenius equation. The rate of non-enzymatic browning increases along with the increase of drying temperature. The results showed that higher drying temperatures were followed by a lower IC10. This condition indicated the increase of antioxidant activity after the drying process.
Navarrete, Rocio; Quirós-Carmona, Setefilla; Granados, María Del M; Gómez-Villamandos, Rafael J; Domínguez, Juan M; Férnandez-Sarmiento, José A; Muñoz-Rascón, Pilar; Funes, Francisco J; Morgaz, Juan
2016-07-01
To assess the effect of two rates of infusion of dexmedetomidine on the bispectral index (BIS) in dogs anaesthetized with alfaxalone constant rate infusion (CRI). Prospective, randomized, 'blinded' experimental study. Six healthy Beagles (three females and three males). Dogs received as premedication saline (group D0), 1 μg kg(-1) (group D1) or 2 μg kg(-1) (group D2) dexmedetomidine, intravenously (IV). Anaesthesia was induced with alfaxalone (6 mg kg(-1) to effect IV) and maintained with alfaxalone at 0.07 mg kg(-1) minute(-1) and a CRI of saline (D0) or dexmedetomidine 0.5 μg kg(-1) hour(-1) (D1) or 1 μg kg(-1) hour(-1) (D2) for 90 minutes. BIS, electromyography (EMG), signal quality index (SQI) and suppression ratio (SR) were measured at 10 minute intervals and the median values were calculated. Nociceptive stimuli were applied every 30 minutes and BIS and cardiorespiratory values were compared before and after stimuli. Cardiorespiratory parameters were recorded throughout the study. BIS and EMG values differed significantly among groups, being lower in D2 (71 ± 8) than in D0 (85 ± 10) and D1 (84 ± 9). SQI was always over 90% and SR was zero throughout all the treatments. There were no significant differences between pre- and post-stimulus values of BIS, EMG and SQI for any treatment, although in D0 and D1, heart rate, respiratory rate and arterial pressures increased significantly after the nociceptive stimulus. Administration of dexmedetomidine (2 μg kg(-1) + CRI 1 μg kg(-1) hour(-1) ) decreases the BIS values and avoids the autonomic responses of a nociceptive stimulus during alfaxalone anaesthesia at 0.07 mg kg(-1) minute(-1) in dogs. However, further studies are needed to verify whether this combination produces an adequate degree of hypnosis under surgical situations. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.
Effect of liposomes on the rate of alkaline hydrolysis of indomethacin and acemetacin.
Matos, C; Chaimovich, H; Lima, J L; Cuccovia, I M; Reis, S
2001-03-01
The anti-inflammatory, analgesic, and antipyretic drugs indomethacin (INDO) and acemetacin (ACE), extensively used for the treatment of diseases of degenerative or inflammatory character, exhibit marked gastric irritant action, have low water solubility at neutral pH, and decompose in alkali. Alternative formulations are being investigated to obtain products with lower toxicity and higher stability. Here we examine the effect of liposome charge on the rate of alkaline decomposition of INDO and ACE using micelles as reference. Binding of ACE and INDO to zwitterionic hexadecylphosphocholine (HDPC) micelles and phosphatidylcholine (PC) liposomes was analyzed using a two-phase separation model to quantify the effect of these aggregates on the rate of alkaline degradation. The substrate association constants to HDPC micelles were 1335 and 2192 M(-1) for INDO and ACE, respectively, whereas the corresponding values for PC vesicles were 612 and 3050 M(-1). The difference was attributed to the additional hydrophobicity of ACE. The inhibitory effect of HDPC micelles and PC vesicles was quantified by calculating the ratio between the rate constants in water (k(w)) and in the aggregate (k(m)). The values of the k(w)/k(m) ratios for INDO and ACE in HDPC micelles were, respectively, 80 and 42, and in PC liposomes these ratios were 21 and 3.7, respectively. Positively charged micelles of hexadecyltrimethylammonium chloride (CTAC) and vesicles containing varying proportions of dioctadecyldimethylammonium chloride (DODAC) and PC increase the rate of INDO and ACE alkaline decomposition. Vesicle effects were very sensitive to the DODAC/PC ratio, with rates increasing with the proportion of DODAC. The data were analyzed quantitatively using a pseudophase model with explicit consideration of ion exchange. The calculated second-order rate constants in micelles and vesicles were lower than that in water. The charge density in the liposome necessary to increase the entrapment efficiency and decrease drug decomposition can be modulated, by judicious choice of pH and ionic strength. These manipulations can lead to more stable formulation with increased efficiency in drug entrapment and controlled effects on drug stability.
SU-F-T-12: Monte Carlo Dosimetry of the 60Co Bebig High Dose Rate Source for Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, L T; Almeida, C E V de
Purpose: The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. Methods: The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, whichmore » is a part of EGS++ that allows calculating the radial dose function around the source. The XCOM photon cross-section library was used. Variance reduction techniques were used to speed up the calculation and to considerably reduce the computer time. To obtain the dose rate distributions of the source in an unbounded liquid water phantom, the source was immersed at the center of a cube phantom of 100 cm3. Results: The obtained dose rate constant for the BEBIG 60Co source was 1.108±0.001 cGyh-1U-1, which is consistent with the values in the literature. The radial dose functions were compared with the values of the consensus data set in the literature, and they are consistent with the published data for this energy range. Conclusion: The dose rate constant is consistent with the results of Granero et al. and Selvam and Bhola within 1%. Dose rate data are compared to GEANT4 and DORZnrc Monte Carlo code. However, the radial dose function is different by up to 10% for the points that are notably near the source on the transversal axis because of the high-energy photons from 60Co, which causes an electronic disequilibrium at the interface between the source capsule and the liquid water for distances up to 1 cm.« less
Optimality of profit-including prices under ideal planning.
Samuelson, P A
1973-07-01
Although prices calculated by a constant percentage markup on all costs (nonlabor as well as direct-labor) are usually admitted to be more realistic for a competitive capitalistic model, the view is often expressed that, for optimal planning purposes, the "values" model of Marx's Capital, Volume I, is to be preferred. It is shown here that an optimal-control model that maximizes discounted social utility of consumption per capita and that ultimately approaches a steady state must ultimately have optimal pricing that involves equal rates of steady-state profit in all industries; and such optimal pricing will necessarily deviate from Marx's model of equal rates of surplus value (markups on direct-labor only) in all industries.
Kawakami, M; Smith, D A
2008-12-10
We have developed a new force ramp modification of the atomic force microscope (AFM) which can control multiple unfolding events of a multi-modular protein using software-based digital force feedback control. With this feedback the force loading rate can be kept constant regardless the length of soft elastic linkage or number of unfolded polypeptide domains. An unfolding event is detected as a sudden drop in force, immediately after which the feedback control reduces the applied force to a low value of a few pN by lowering the force set point. Hence the remaining folded domains can relax and the subsequent force ramp is applied to relaxed protein domains identically in each case. We have applied this technique to determine the kinetic parameters x(u), which is the distance between the native state and transition state, and α(0), which is the unfolding rate constant at zero force, for the mechanical unfolding of a pentamer of I27 domains of titin. In each force ramp the unfolding probability depends on the number of folded domains remaining in the system and we had to take account of this effect in the analysis of unfolding force data. We obtained values of x(u) and α(0) to be 0.28 nm and 1.02 × 10(-3) s(-1), which are in good agreement with those obtained from conventional constant velocity experiments. This method reveals unfolding data at low forces that are not seen in constant velocity experiments and corrects for the change in stiffness that occurs with most mechanical systems throughout the unfolding process to allow constant force ramp experiments to be carried out. In addition, a mechanically weak structure was detected, which formed from the fully extended polypeptide chain during a force quench. This indicates that the new technique will allow studies of the folding kinetics of previously hidden, mechanically weak species.
NASA Astrophysics Data System (ADS)
Dutka, V. S.; Matsyuk, N. V.; Dutka, Yu. V.
2011-01-01
The influence of different solvents on the oxidation reaction rate of pyridine (Py), quinoline (QN), acridine (AN), α-oxyquinoline (OQN) and α-picolinic acid (APA) by peroxydecanoic acid (PDA) was studied. It was found that the oxidation rate grows in the series Py < QN < AN, and the rate of the oxidation reaction of compounds containing a substituent in the α position from a reactive center is significantly lower than for unsubstituted analogues. The effective energies of activation of the oxidation reaction were found. It was shown that in the first stage, the reaction mechanism includes the rapid formation of an intermediate complex nitrogen-containing compound, peroxyacid, which forms products upon decomposing in the second stage. A kinetic equation that describes the studied process is offered. The constants of equilibrium of the intermediate complex formation ( K eq) and its decomposition constant ( k 2) in acetone and benzene were calculated. It was shown that the nature of the solvent influences the numerical values of both K p and k 2. It was established that introduction of acetic acid (which is able to form compounds with Py) into the reaction medium slows the rate of the oxidation process drastically. Correlation equations linking the polarity, polarizability, electrophilicity, and basicity of solvents with the constant of the PDA oxidation reaction rate for Py were found. It was concluded that the basicity and polarity of the solvent have a decisive influence on the oxidation reaction rate, while the polarizability and electrophilicity of the reaction medium do not influence the oxidation reaction rate.
A New TCP Congestion Control Supporting RTT-Fairness
NASA Astrophysics Data System (ADS)
Ogura, Kazumine; Nemoto, Yohei; Su, Zhou; Katto, Jiro
This paper focuses on RTT-fairness of multiple TCP flows over the Internet, and proposes a new TCP congestion control named “HRF (Hybrid RTT-Fair)-TCP”. Today, it is a serious problem that the flows having smaller RTT utilize more bandwidth than others when multiple flows having different RTT values compete in the same network. This means that a user with longer RTT may not be able to obtain sufficient bandwidth by the current methods. This RTT fairness issue has been discussed in many TCP papers. An example is CR (Constant Rate) algorithm, which achieves RTT-fairness by multiplying the square of RTT value in its window increment phase against TCP-Reno. However, the method halves its windows size same as TCP-Reno when a packet loss is detected. This makes worse its efficiency in certain network cases. On the other hand, recent proposed TCP versions essentially require throughput efficiency and TCP-friendliness with TCP-Reno. Therefore, we try to keep these advantages in our TCP design in addition to RTT-fairness. In this paper, we make intuitive analytical models in which we separate resource utilization processes into two cases: utilization of bottleneck link capacity and that of buffer space at the bottleneck link router. These models take into account three characteristic algorithms (Reno, Constant Rate, Constant Increase) in window increment phase where a sender receives an acknowledgement successfully. Their validity is proved by both simulations and implementations. From these analyses, we propose HRF-TCP which switches two modes according to observed RTT values and achieves RTT fairness. Experiments are carried out to validate the proposed method. Finally, HRF-TCP outperforms conventional methods in RTT-fairness, efficiency and friendliness with TCP-Reno.
Factory overload testing of a large power transformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, D.H.; Lawrence, C.O.; Templeton, J.B.
1985-09-01
A factory overload test of up to 150% of the nameplate rating was run on a 224 MVA autotransformer. The results of this test were of great value and were used in identifying transformer overload limitations, in evaluating loading guide oil and winding equations, exponents and time constants, and in helping to perfect a factory overload test procedure.
Excited-state redox properties of ruthenium(II) phthalocyanine from electron-transfer quenching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, D.R.; Ferraudi, G.
1982-09-30
Electron-transfer reactions between the lowest-lying triplet state, /sup 3/..pi pi../sup */, of ruthenium (phthalocyanine)(pyridine)/sub 2/ and various nitroaromatic compounds have been studied by laser and conventional flash photolysis. Quenching rate constants determined for the oxidation of the excited state have been treated according to the Marcus-Hush theory. A self-exchange rate constant K approx. 10/sup 7/ M/sup -1/ x/sup -1/ was determined for the self-exchange reaction between the /sup 3/..pi pi../sup */ and radical cation, Ru(ph)(py)/sub 2//sup +/. Such a value indicates that the major component to the Franck-Condon reorganizational energy is the outer-sphere contribution. The photochemical properties of the phthalocyaninesmore » are discussed in terms of the redox potentials estimate for various excited states.« less
Development of an Austenitization Kinetics Model for 22MnB5 Steel
NASA Astrophysics Data System (ADS)
Di Ciano, M.; Field, N.; Wells, M. A.; Daun, K. J.
2018-03-01
This paper presents a first-order austenitization kinetics model for 22MnB5 steel, commonly used in hot forming die quenching. Model parameters are derived from constant heating rate dilatometry measurements. Vickers hardness measurements made on coupons that were quenched at intermediate stages of the process were used to verify the model, and the Ac 1 and Ac 3 temperatures inferred from dilatometry are consistent with correlations found in the literature. The austenitization model was extended to consider non-constant heating rates typical of industrial furnaces and again showed reasonable agreement between predictions and measurements. Finally, the model is used to predict latent heat evolution during industrial heating and is shown to be consistent with values inferred from thermocouple measurements of furnace-heated 22MnB5 coupons reported in the literature.
Steyaert, Nils L L; Hauck, Mara; Van Hulle, Stijn W H; Hendriks, A Jan
2009-10-01
A model was developed for gaseous plant-air exchange of semi-volatile organic compounds. Based on previous soil-plant modelling, uptake and elimination kinetics were scaled as a function of plant mass and octanol-air partition ratios. Exchange of chemicals was assumed to be limited by resistances encountered during diffusion through a laminar boundary layer of air and permeation through the cuticle of the leaf. The uptake rate constant increased and the elimination rate constant decreased with the octanol-air partition ratio both apparently levelling off at high values. Differences in kinetics between species could be explained by their masses. Validation on independent data showed that bio-concentration factors of PCBs, chlorobenzenes and other chemicals were predicted well by the model. For pesticides, polycyclic aromatic hydrocarbons and dioxins deviations occurred.
Mukhtasimova, Nuriya; daCosta, Corrie J.B.
2016-01-01
The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist–receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy. PMID:27353445
Vapors-liquid phase separator. [infrared telescope heat sink
NASA Technical Reports Server (NTRS)
Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.
1980-01-01
The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.
Song, Bo; Sanborn, Brett
2018-05-07
In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Sanborn, Brett
In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less
Degradation of progestagens by oxidation with potassium permanganate in wastewater effluents
2013-01-01
Background This study investigated the oxidation of selected progestagenic steroid hormones by potassium permanganate at pH 6.0 and 8.0 in ultrapure water and wastewater effluents, using bench-scale assays. Second order rate constants for the reaction of potassium permanganate with progestagens (levonorgestrel, medroxyprogesterone, norethindrone and progesterone) was determined as a function of pH, presence of natural organic matter and temperature. This work also illustrates the advantages of using a novel analytical method, the laser diode thermal desorption (LDTD-APCI) interface coupled to tandem mass spectrometry apparatus, allowing for the quick determination of oxidation rate constants and increasing sample throughput. Results The second-order rate constants for progestagens with permanganate determined in bench-scale experiments ranged from 23 to 368 M-1 sec-1 in both wastewater and ultrapure waters with pH values of 6.0 and 8.0. Two pairs of progestagens exhibited similar reaction rate constants, i.e. progesterone and medroxyprogesterone (23 to 80 M-1 sec-1 in ultrapure water and 26 to 149 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0) and levonorgestrel and norethindrone (179 to 224 M-1 sec-1 in ultrapure water and 180 to 368 M-1 sec-1 in wastewaters, at pH 6.0 and 8.0). The presence of dissolved natural organic matter and the pH conditions improved the oxidation rate constants for progestagens with potassium permanganate only at alkaline pH. Reaction rates measured in Milli-Q water could therefore be used to provide conservative estimates for the oxidation rates of the four selected progestagens in wastewaters when exposed to potassium permanganate. The progestagen removal efficiencies was lower for progesterone and medroxyprogesterone (48 to 87 %) than for levonorgestrel and norethindrone (78 to 97%) in Milli-Q and wastewaters at pH 6.0-8.2 using potassium permanganate dosages of 1 to 5 mg L-1 after contact times of 10 to 60 min. Conclusion This work presents the first results on the permanganate-promoted oxidation of progestagens, as a function of pH, temperature as well as NOM. Progestagen concentrations used to determine rate constants were analyzed using an ultrafast laser diode thermal desorption interface coupled to tandem mass spectrometry for the analysis of water sample for progestagens. PMID:23675917
Changes of Photochemical Properties of Dissolved Organic Matter During a Hydrological Year
NASA Astrophysics Data System (ADS)
Porcal, P.; Dillon, P. J.
2009-05-01
The fate of dissolved organic matter (DOM) in lakes and streams is significantly affected by photochemical transformation of DOM. A series of laboratory photochemical experiments has been conducted to describe long term changes in photochemical properties of DOM. The stream samples used in this study originated from three different watersheds in Dorset area (Ontario, Canada), the first watershed has predominantly coniferous cove, the second one is dominated by maple and birch, and a large wetland dominates to the third one. The first order kinetic constant rate was used as a suitable characteristic of photochemical properties of DOM. The higher rates were observed in samples from watershed dominated by coniferous forest while the lower rates were determined in deciduous forest. Kinetic rates from all three watersheds showed sinusoidal pattern during the hydrological year. The rates increased steadily during autumn and winter and decreased during spring and summer. The highest values were observed during the spring melt events when the fresh DOM was flushed out from terrestrial sources. The minimum rate constants were in summer when the discharge was lower. The photochemical properties of DOM changes during the hydrological year and correspond to the seasonal cycles of terrestrial organic matter.
Estimating rock and slag wool fiber dissolution rate from composition.
Eastes, W; Potter, R M; Hadley, J G
2000-12-01
A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.
Distance-dependent diffusion-controlled reaction of •NO and O2•- at chemical equilibrium with ONOO-.
Botti, Horacio; Möller, Matías N; Steinmann, Daniel; Nauser, Thomas; Koppenol, Willem H; Denicola, Ana; Radi, Rafael
2010-12-16
The fast reaction of (•)NO and O(2)(•-) to give ONOO(-) has been extensively studied at irreversible conditions, but the reasons for the wide variations in observed forward rate constants (3.8 ≤ k(f) ≤ 20 × 10(9) M(-1) s(-1)) remain unexplained. We characterized the diffusion-dependent aqueous (pH > 12) chemical equilibrium of the form (•)NO + O(2)(•-) = ONOO(-) with respect to its dependence on temperature, viscosity, and [ONOO(-)](eq) by determining [ONOO(-)](eq) and [(•)NO](eq). The equilibrium forward reaction rate constant (k(f)(eq)) has negative activation energy, in contrast to that found under irreversible conditions. In contradiction to the law of mass action, we demonstrate that the equilibrium constant depends on ONOO(-) concentration. Therefore, a wide range of k(f)(eq) values could be derived (7.5-21 × 10(9) M(-1) s(-1)). Of general interest, the variations in k(f) can thus be explained by its dependence on the distance between ONOO(-) particles (sites of generation of (•)NO and O(2)(•-)).
Crystallization kinetics of the borax decahydrate
NASA Astrophysics Data System (ADS)
Ceyhan, A. A.; Sahin, Ö.; Bulutcu, A. N.
2007-03-01
The growth and dissolution rates of borax decahydrate have been measured as a function of supersaturation for various particle sizes at different temperature ranges of 13 and 50 °C in a laboratory-scale fluidized bed crystallizer. The values of mass transfer coefficient, K, reaction rate constant, kr and reaction rate order, r were determined. The relative importances of diffusion and integration resistance were described by new terms named integration and diffusion concentration fraction. It was found that the overall growth rate of borax decahydrate is mainly controlled by integration (reaction) steps. It was also estimated that the dissolution region of borax decahydrate, apart from other materials, is controlled by diffusion and surface reaction. Increasing the temperature and particle size cause an increase in the values of kinetic parameters ( Kg, kr and K). The activation energies of overall, reaction and mass transfer steps were determined as 18.07, 18.79 and 8.26 kJmol -1, respectively.
Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut
2010-03-07
The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.
Purification and DNA-binding properties of RNA polymerase from Bacillus subtilis.
Giacomoni, P U
1980-05-01
Four RNA-polymerizing activities having different subunit composition can be purified from uninfected and from SPO1-infected Bacillus subtilis. Lysozyme and sodium deoxycholate are used for lysing the cells. Polymin P is used for precipitating nucleic acids and DEAE-cellulose chromatography allows separation of enzymatic activity from the residual Polymin P. After these common steps, one can purify core + sigma + delta by chromatography on single-stranded DNA-agarose followed by gel filtration while pure core + sigma can be obtained by chromatography on double-stranded DNA cellulose. Core + delta is obtained by high-salt sucrose/glycerol gradient centrifugation. The host enzyme modified by the product of gene 28 of phage SPO1 can be purified from SPO1 infected cells by chromatography on DNA cellulose (or CNA agarose) followed by chromatography on phosphocellulose. The pH and salt dependance of the initial rate of RNA synthesis of core + sigma has been investigated using SPO1 and SPP1 DNA as templates. The optimum pH for the initial rate of transcription is 8.2 at 30 degrees C in 50 mM N,N-bis(2-hydroxyethyl)glycine buffer, and the optimum Na+ concentration is between 0.1 and 0.15 M. The kinetics of formation and of dissociation of non-filterable complexes between SPP1 DNA and core + sigma have been analyzed at different cationic concentrations. The value of the rate constant of dissociation in 0.1 M NaCl at 30 degrees C is kd = 2.16 x 10(-4) S-1. The value of the rate constant of association, under the same conditions, is ka = 5.5 x 10(8) M-1 S-1; this value is compatible with a diffusion-controlled reaction for promoter selection.
The Effect of Sn Orientation on Intermetallic Compound Growth in Idealized Sn-Cu-Ag Interconnects
NASA Astrophysics Data System (ADS)
Kinney, Chris; Linares, Xioranny; Lee, Kyu-Oh; Morris, J. W.
2013-04-01
The work reported here explores the influence of crystal orientation on the growth of the interfacial intermetallic layer during electromigration in Cu||Sn||Cu solder joints. The samples were thin, planar Sn-Ag-Cu (SAC) solder layers between Cu bars subject to a uniaxial current. Electron backscatter diffraction (EBSD) was used to characterize the microstructure before and after testing. The most useful representation of the EBSD data identifies the Sn grain orientation by the angle between the Sn c-axis and the current direction. The tested samples included single-crystal joints with c-axis nearly parallel to the current ("green" samples) and with c-axis perpendicular to the current ("red" samples). At current density of 104 A/cm2 (steady-state temperature of ~150°C), an intermetallic layer grew at an observable rate in the "green" samples, but not in the "red" ones. A current density of 1.15 × 104 A/cm2 (temperature ~160°C) led to measurable intermetallic growth in both samples. The growth fronts were nearly planar and the growth rates constant (after an initial incubation period); the growth rates in the "green" samples were about 10× those in the "red" samples. The Cu concentrations were constant within the joints, showing that the intermetallic growth is dominated by the electromigration flux. The measured growth rates and literature values for the diffusion of Cu in Sn were used to extract values for the effective charge, z *, that governs the electromigration of Cu. The calculated value of z * is significantly larger for current perpendicular to the c-axis than along it.
England, M L; Broderick, G A; Shaver, R D; Combs, D K
1997-11-01
Ruminally undegraded protein (RUP) values of blood meal (n = 2), hydrolyzed feather meal (n = 2), fish meal (n = 2), meat and bone meal, and soybean meal were estimated using an in situ method, an inhibitor in vitro method, and an inhibitor in vitro technique applying Michaelis-Menten saturation kinetics. Degradation rates for in situ and inhibitor in vitro methods were calculated by regression of the natural log of the proportion of crude protein (CP) remaining undegraded versus time. Nonlinear regression analysis of the integrated Michaelis-Menten equation was used to determine maximum velocity, the Michaelis constant, and degradation rate (the ratio of maximum velocity to the Michaelis constant). A ruminal passage rate of 0.06/h was assumed in the calculation of RUP. The in situ and inhibitor in vitro techniques yielded similar estimates of ruminal degradation. Mean RUP estimated for soybean meal, blood meal, hydrolyzed feather meal, fish meal, and meat and bone meal were, respectively, 28.6, 86.0, 77.4, 52.9, and 52.6% of CP by the in situ method and 26.4, 86.1, 76.0, 59.6, and 49.5% of CP by the inhibitor in vitro technique. The Michaelis-Menten inhibitor in vitro technique yielded more rapid CP degradation rates and decreased estimates of RUP. The inhibitor in vitro method required less time and labor than did the other two techniques to estimate the RUP values of animal by-product proteins. Results from in vitro incubations with pepsin.HCl suggested that low postruminal digestibility of hydrolyzed feather meal may impair its value as a source of RUP.
Comparison of TID Effects in Space-Like Variable Dose Rates and Constant Dose Rates
NASA Technical Reports Server (NTRS)
Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Evans, Robin W.; Jun, Insoo
2008-01-01
The degradation of the LM193 dual voltage comparator has been studied at different TID dose rate profiles, including several different constant dose rates and a variable dose rate that simulates the behavior of a solar flare. A comparison of results following constant dose rate vs. variable dose rates is made to explore how well the constant dose rates used for typical part testing predict the performance during a simulated space-like mission. Testing at a constant dose rate equal to the lowest dose rate seen during the simulated flare provides an extremely conservative estimate of the overall amount of degradation. A constant dose rate equal to the average dose rate is also more conservative than the variable rate. It appears that, for this part, weighting the dose rates by the amount of total dose received at each rate (rather than the amount of time at each dose rate) results in an average rate that produces an amount of degradation that is a reasonable approximation to that received by the variable rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hranisavljevic, J.; Michael, V.; Chemistry
1998-09-24
The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and (2) CF{sub 3}H + H{yields} CF{sub 3} + H{sub 2} over the temperature ranges 1168-1673 K and 1111-1550 K, respectively. The results can be represented by the Arrhenius expressions k1 = 2.56 x 10{sup -11} exp(-8549K/T) and k2 = 6.13 x 10{sup -11} exp(-7364K/T), both in cm3 molecule-1 s-1. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, and good agreement was obtained with themore » literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k1 measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 x 10{sup -11} exp(-8185K/T) cm3 molecule-1 s-1. The CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less
Ambros-Ingerson, J; Lynch, G
1993-01-01
A kinetic model of the glutamate DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor/channel complex was used to test whether changes in the rate constants describing channel behavior could account for various features of long-term potentiation (LTP). Starting values for the kinetic parameters were set to satisfy experimental data (e.g., affinity, mean open time, mean burst length, etc.) and physical constraints (i.e., microreversibility). The resultant model exhibited a variety of dynamic properties known to be associated with the receptor. Increasing the rate constants governing opening/closing of the channel produced an unexpected increase in the probability of the channel being open shortly after transmitter binding. This would account for the enhanced response size with LTP. Increases in rate constants produced two other aspects of LTP: (i) an alteration of the waveform of the synaptic response and (ii) an interaction with changes in desensitization kinetics. The results obtained with the model corresponded closely to those found in LTP experiments. Thus, an increase in opening/closing rates for the postsynaptic receptor channel provides a single explanation for diverse characteristics of LTP. Finally, the kinetic manipulation reduced the coefficient of variation of synaptic currents in a model involving 250 receptors. This calls into question the use of variance measures for distinguishing pre- vs. postsynaptic sites of potentiation. PMID:8395058
Autoxidation of jet fuels: Implications for modeling and thermal stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heneghan, S.P.; Chin, L.P.
1995-05-01
The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to modelmore » the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.« less
Gioannis, G De; Muntoni, A; Cappai, G; Milia, S
2009-03-01
Mechanical biological treatment (MBT) of residual municipal solid waste (RMSW) was investigated with respect to landfill gas generation. Mechanically treated RMSW was sampled at a full-scale plant and aerobically stabilized for 8 and 15 weeks. Anaerobic tests were performed on the aerobically treated waste (MBTW) in order to estimate the gas generation rate constants (k,y(-1)), the potential gas generation capacity (L(o), Nl/kg) and the amount of gasifiable organic carbon. Experimental results show how MBT allowed for a reduction of the non-methanogenic phase and of the landfill gas generation potential by, respectively, 67% and 83% (8 weeks treatment), 82% and 91% (15 weeks treatment), compared to the raw waste. The amount of gasified organic carbon after 8 weeks and 15 weeks of treatment was equal to 11.01+/-1.25kgC/t(MBTW) and 4.54+/-0.87kgC/t(MBTW), respectively, that is 81% and 93% less than the amount gasified from the raw waste. The values of gas generation rate constants obtained for MBTW anaerobic degradation (0.0347-0.0803y(-1)) resemble those usually reported for the slowly and moderately degradable fractions of raw MSW. Simulations performed using a prediction model support the hypothesis that due to the low production rate, gas production from MBTW landfills is well-suited to a passive management strategy.
Fujisawa, Seiichiro; Kadoma, Yoshinori
2012-01-01
The NMR chemical shift, i.e., the π-electron density of the double bond, of acrylates and methacrylates is related to the reactivity of their monomers. We investigated quantitative structure-property relationships (QSPRs) between the base-catalyzed hydrolysis rate constants (k1) or the rate constant with glutathione (GSH) (log kGSH) for acrylates and methacrylates and the 13C NMR chemical shifts of their α,β-unsaturated carbonyl groups (δCα and δCβ) or heat of formation (Hf) calculated by the semi-empirical MO method. Reported data for the independent variables were employed. A significant linear relationship between k1 and δCβ, but not δCα, was obtained for methacrylates (r2 = 0.93), but not for acrylates. Also, a significant relationship between k1 and Hf was obtained for both acrylates and methacrylates (r2 = 0.89). By contrast, log kGSH for acrylates and methacrylates was linearly related to their δCβ (r2 = 0.99), but not to Hf. These findings indicate that the 13C NMR chemical shifts and calculated Hf values for acrylates and methacrylates could be valuable for estimating the hydrolysis rate constants and GSH reactivity of these compounds. Also, these data for monomers may be an important tool for examining mechanisms of reactivity. PMID:22754331
Reduction of Fe(III) colloids by Shewanella putrefaciens: A kinetic model
NASA Astrophysics Data System (ADS)
Bonneville, Steeve; Behrends, Thilo; van Cappellen, Philippe; Hyacinthe, Christelle; Röling, Wilfred F. M.
2006-12-01
A kinetic model for the microbial reduction of Fe(III) oxyhydroxide colloids in the presence of excess electron donor is presented. The model assumes a two-step mechanism: (1) attachment of Fe(III) colloids to the cell surface and (2) reduction of Fe(III) centers at the surface of attached colloids. The validity of the model is tested using Shewanella putrefaciens and nanohematite as model dissimilatory iron reducing bacteria and Fe(III) colloidal particles, respectively. Attachment of nanohematite to the bacteria is formally described by a Langmuir isotherm. Initial iron reduction rates are shown to correlate linearly with the relative coverage of the cell surface by nanohematite particles, hence supporting a direct electron transfer from membrane-bound reductases to mineral particles attached to the cells. Using internally consistent parameter values for the maximum attachment capacity of Fe(III) colloids to the cells, Mmax, the attachment constant, KP, and the first-order Fe(III) reduction rate constant, k, the model reproduces the initial reduction rates of a variety of fine-grained Fe(III) oxyhydroxides by S. putrefaciens. The model explains the observed dependency of the apparent Fe(III) half-saturation constant, Km∗, on the solid to cell ratio, and it predicts that initial iron reduction rates exhibit saturation with respect to both the cell density and the abundance of the Fe(III) oxyhydroxide substrate.
Trajectory Control for Vehicles Entering the Earth's Atmosphere at Small Flight Path Angles
NASA Technical Reports Server (NTRS)
Eggleston, John M.
1959-01-01
Methods of controlling the trajectories of high-drag-low-lift vehicles entering the earth's atmosphere at angles of attack near 90 deg and at initial entry angles up to 3 deg are studied. The trajectories are calculated for vehicles whose angle of attack can be held constant at some specified value or can be perfectly controlled as a function of some measured quantity along the trajectory. The results might be applied in the design of automatic control systems or in the design of instruments which will give the human pilot sufficient information to control his trajectory properly during an atmospheric entry. Trajectory data are compared on the basis of the deceleration, range, angle of attack, and, in some cases, the rate of descent. The aerodynamic heat-transfer rate and skin temperature of a vehicle with a simple heat-sink type of structure are calculated for trajectories made with several types of control functions. For the range of entry angles considered, it is found that the angle of attack can be controlled to restrict the deceleration down to an arbitrarily chosen level of 3g. All the control functions tried are successful in reducing the maximum deceleration to the desired level. However, in order to avoid a tendency for the deceleration to reach an initial peak decrease, and then reach a second peak, some anticipation is required in the control function so that the change in angle of attack will lead the change in deceleration. When the angle of attack is controlled in the aforementioned manner, the maximum rate of aerodynamic heat transfer to the skin is reduced, the maximum skin temperature of the vehicle is virtually unaffected, and the total heat absorbed is slightly increased. The increase in total heat can be minimized, however, by maintaining the maximum desired deceleration for as much of the trajectory as possible. From an initial angle of attack of 90 deg, the angle-of-attack requirements necessary to maintain constant values of deceleration (1g to 4g) and constant values of rate of descent (450 to 1,130 ft/sec) as long as it is aerodynamically practical are calculated and are found to be moderate in both magnitude and rate. Entry trajectories made with these types of control are presented and discussed.
Ke, R.; Xu, Y.; Huang, S.; Wang, Z.; Huckins, J.N.
2007-01-01
Uptake of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) by triolein-containing semipermeable membrane devices (SPMDs) and by crucian carp (Carassius carassius) was studied in Taihu Lake, a shallow, freshwater lake in China. Crucian carp and SPMDs were deployed side by side for 32 d. The first-order uptake rate constants of individual PAHs and OCPs for the two matrices were calculated and compared to relate the amounts of chemicals accumulated by the matrices to dissolved water concentrations. On a wet-weight basis, total concentrations of PAHs and OCPs in crucian carp fillets averaged 49.5 and 13.6 ng/g, respectively, after the 32-d exposure, whereas concentrations in whole SPMDs averaged 716.9 and 62.3 ng/g, respectively. The uptake rate constants of PAHs and OCPs by SPMDs averaged seven- and fivefold higher, respectively, than those for crucian carp; however, the patterns of uptake rate constants derived from test chemical concentrations in the crucian carp and SPMDs were similar. Although equilibrium was not reached for some PAHs and OCPs during the 32-d exposure period, a reasonably good correlation between the concentration factors (CFs) and octanol/water partition coefficient (K ow) values of PAHs and OCPs in SPMDs (r = 0.86, p < 0.001) was observed when potential sorption to dissolved organic carbon was taken into account. Similar efforts to correlate the CFs and Kow values of PAHs and OCPs in crucian carp (r = 0.75, p < 0.001) were less successful, likely because of PAH metabolism by finfish. Overall, the present results suggest that SPMDs may serve as a surrogate for contaminant monitoring with fish in freshwater lake environments. ?? 2007 SETAC.
Fitts, Douglas A
2017-09-21
The variable criteria sequential stopping rule (vcSSR) is an efficient way to add sample size to planned ANOVA tests while holding the observed rate of Type I errors, α o , constant. The only difference from regular null hypothesis testing is that criteria for stopping the experiment are obtained from a table based on the desired power, rate of Type I errors, and beginning sample size. The vcSSR was developed using between-subjects ANOVAs, but it should work with p values from any type of F test. In the present study, the α o remained constant at the nominal level when using the previously published table of criteria with repeated measures designs with various numbers of treatments per subject, Type I error rates, values of ρ, and four different sample size models. New power curves allow researchers to select the optimal sample size model for a repeated measures experiment. The criteria held α o constant either when used with a multiple correlation that varied the sample size model and the number of predictor variables, or when used with MANOVA with multiple groups and two levels of a within-subject variable at various levels of ρ. Although not recommended for use with χ 2 tests such as the Friedman rank ANOVA test, the vcSSR produces predictable results based on the relation between F and χ 2 . Together, the data confirm the view that the vcSSR can be used to control Type I errors during sequential sampling with any t- or F-statistic rather than being restricted to certain ANOVA designs.
Tan, Yanliang; Xiao, Detao; Shan, Jian; Zhou, Qingzhi; Qu, Jingnian
2014-09-01
Generally, 88% of the freshly generated 218Po ions decayed from 222Rn are positively charged. These positive ions become neutralized by recombination with negative ions, and the main source of the negative ions is the OH- ions formed by radiolysis of water vapor. However, the neutralization rate of positively charged 218Po versus the square root of the concentration of H2O will be a constant when the concentration of H2O is sufficiently high. Since the electron affinity of the hydroxyl radical formed by water vapor is high, the authors propose that the hydroxyl radical can grab an electron to become OH-. Because the average period of collision with other positively charged ions and the average life of the OH- are much longer than those of the electron, the average concentration of negative ions will grow when the water vapor concentration increases. The authors obtained a model to describe the growth of OH- ions. From this model, it was found that the maximum value of the OH- ion concentration is limited by the square root of the radon concentration. If the radon concentration is invariant, the OH- ion concentration should be approximately a constant when the water vapor concentration is higher than a certain value. The phenomenon that the neutralization rate of positively charged 218Po versus the square root of the water vapor concentration will be saturated when the water vapor concentration is sufficiently high can be explained by this mechanism. This mechanism can be used also to explain the phenomenon that the detection efficiency of a radon monitor based on the electrostatic collection method seems to be constant when the water vapor concentration is high.
NASA Astrophysics Data System (ADS)
Pham, Tien Hung; Rühaak, Wolfram; Sass, Ingo
2017-04-01
Extensive groundwater extraction leads to a drawdown of the ground water table. Consequently, soil effective stress increases and can cause land subsidence. Analysis of land subsidence generally requires a numerical model based on poroelasticity theory, which was first proposed by Biot (1941). In the review of regional land subsidence accompanying groundwater extraction, Galloway and Burbey (2011) stated that more research and application is needed in coupling of stress-dependent land subsidence process. In geotechnical field, the constant rate of strain tests (CRS) was first introduced in 1969 (Smith and Wahls 1969) and was standardized in 1982 through the designation D4186-82 by American Society for Testing and Materials. From the reading values of CRS tests, the stress-dependent parameters of poroelasticity model can be calculated. So far, there is no research to link poroelasticity theory with CRS tests in modelling land subsidence due to groundwater extraction. One dimensional CRS tests using conventional compression cell and three dimension CRS tests using Rowe cell were performed. The tests were also modelled by using finite element method with mixed elements. Back analysis technique is used to find the suitable values of hydraulic conductivity and bulk modulus that depend on the stress or void ratio. Finally, the obtained results are used in land subsidence models. Biot, M. A. (1941). "General theory of three-dimensional consolidation." Journal of applied physics 12(2): 155-164. Galloway, D. L. and T. J. Burbey (2011). "Review: Regional land subsidence accompanying groundwater extraction." Hydrogeology Journal 19(8): 1459-1486. Smith, R. E. and H. E. Wahls (1969). "Consolidation under constant rates of strain." Journal of Soil Mechanics & Foundations Div.
Prediction of Rate Constant for Supramolecular Systems with Multiconfigurations.
Guo, Tao; Li, Haiyan; Wu, Li; Guo, Zhen; Yin, Xianzhen; Wang, Caifen; Sun, Lixin; Shao, Qun; Gu, Jingkai; York, Peter; Zhang, Jiwen
2016-02-25
The control of supramolecular systems requires a thorough understanding of their dynamics, especially on a molecular level. It is extremely difficult to determine the thermokinetic parameters of supramolecular systems, such as drug-cyclodextrin complexes with fast association/dissociation processes by experimental techniques. In this paper, molecular modeling combined with novel mathematical relationships integrating the thermodynamic/thermokinetic parameters of a series of isomeric multiconfigurations to predict the overall parameters in a range of pH values have been employed to study supramolecular dynamics at the molecular level. A suitable form of Eyring's equation was derived and a two-stage model was introduced. The new approach enabled accurate prediction of the apparent dissociation/association (k(off)/k(on)) and unbinding/binding (k-r/kr) rate constants of the ubiquitous multiconfiguration complexes of the supramolecular system. The pyronine Y (PY) was used as a model system for the validation of the presented method. Interestingly, the predicted k(off) value ((40 ± 1) × 10(5) s(-1), 298 K) of PY is largely in agreement with that previously determined by fluorescence correlation spectroscopy ((5 ± 3) × 10(5) s(-1), 298 K). Moreover, the k(off)/k(on) and k-r/kr for flurbiprofen-β-cylcodextrin and ibuprofen-β-cyclodextrin systems were also predicted and suggested that the association processes are diffusion-controlled. The methodology is considered to be especially useful in the design and selection of excipients for a supramolecular system with preferred association and dissociation rate constants and understanding their mechanisms. It is believed that this new approach could be applicable to a wide range of ligand-receptor supramolecular systems and will surely help in understanding their complex mechanism.
NASA Astrophysics Data System (ADS)
Chval, Zdeněk; Futera, Zdeněk; Burda, Jaroslav V.
2011-01-01
The hydration process for two Ru(II) representative half-sandwich complexes: Ru(arene)(pta)Cl2 (from the RAPTA family) and [Ru(arene)(en)Cl]+ (further labeled as Ru_en) were compared with analogous reaction of cisplatin. In the study, quantum chemical methods were employed. All the complexes were optimized at the B3LYP/6-31G(d) level using Conductor Polarizable Continuum Model (CPCM) solvent continuum model and single-point (SP) energy calculations and determination of electronic properties were performed at the B3LYP/6-311++G(2df,2pd)/CPCM level. It was found that the hydration model works fairly well for the replacement of the first chloride by water where an acceptable agreement for both Gibbs free energies and rate constants was obtained. However, in the second hydration step worse agreement of the experimental and calculated values was achieved. In agreement with experimental values, the rate constants for the first step can be ordered as RAPTA-B > Ru_en > cisplatin. The rate constants correlate well with binding energies (BEs) of the Pt/Ru-Cl bond in the reactant complexes. Substitution reactions on Ru_en and cisplatin complexes proceed only via pseudoassociative (associative interchange) mechanism. On the other hand in the case of RAPTA there is also possible a competitive dissociation mechanism with metastable pentacoordinated intermediate. The first hydration step is slightly endothermic for all three complexes by 3-5 kcal/mol. Estimated BEs confirm that the benzene ligand is relatively weakly bonded assuming the fact that it occupies three coordination positions of the Ru(II) cation.
Ni, Xiao Yu; Drengstig, Tormod; Ruoff, Peter
2009-09-02
Organisms have the property to adapt to a changing environment and keep certain components within a cell regulated at the same level (homeostasis). "Perfect adaptation" describes an organism's response to an external stepwise perturbation by regulating some of its variables/components precisely to their original preperturbation values. Numerous examples of perfect adaptation/homeostasis have been found, as for example, in bacterial chemotaxis, photoreceptor responses, MAP kinase activities, or in metal-ion homeostasis. Two concepts have evolved to explain how perfect adaptation may be understood: In one approach (robust perfect adaptation), the adaptation is a network property, which is mostly, but not entirely, independent of rate constant values; in the other approach (nonrobust perfect adaptation), a fine-tuning of rate constant values is needed. Here we identify two classes of robust molecular homeostatic mechanisms, which compensate for environmental variations in a controlled variable's inflow or outflow fluxes, and allow for the presence of robust temperature compensation. These two classes of homeostatic mechanisms arise due to the fact that concentrations must have positive values. We show that the concept of integral control (or integral feedback), which leads to robust homeostasis, is associated with a control species that has to work under zero-order flux conditions and does not necessarily require the presence of a physico-chemical feedback structure. There are interesting links between the two identified classes of homeostatic mechanisms and molecular mechanisms found in mammalian iron and calcium homeostasis, indicating that homeostatic mechanisms may underlie similar molecular control structures.
Kinetics and Thermodynamics of Watson-Crick Base Pairing Driven DNA Origami Dimerization.
Zenk, John; Tuntivate, Chanon; Schulman, Rebecca
2016-03-16
We investigate the kinetics and thermodynamics of DNA origami dimerization using flat rectangle origami components and different architectures of Watson-Crick complementary single-stranded DNA ("sticky end") linking strategies. We systematically vary the number of linkers, the length of the sticky ends on the linker, and linker architecture and measure the corresponding yields as well as forward and reverse reaction rate constants through fluorescence quenching assays. Yields were further verified using atomic force microscopy. We calculate values of H° and ΔS° for various interface designs and find nonlinear van't Hoff behavior, best described by two linear equations, suggesting distinct regimes of dimerization between those with and those without well-formed interfaces. We find that self-assembly reactions can be tuned by manipulating the interface architecture without suffering a loss in yield, even when yield is high, ∼75-80%. We show that the second-order forward reaction rate constant (k(on)) depends on both linker architecture and number of linkers used, with typical values on the order of 10(5)-10(6) (M·s)(-1), values that are similar to those of bimolecular association of small, complementary DNA strands. The k(on) values are generally non-Arrhenius, tending to increase with decreasing temperature. Finally, we use kinetic and thermodynamic information about the optimal linking architecture to extend the system to an infinite, two-component repeating lattice system and show that we can form micron-sized lattices, with well-formed structures up to 8 μm(2).
Nanoparticle growth by particle-phase chemistry
NASA Astrophysics Data System (ADS)
Apsokardu, Michael J.; Johnston, Murray V.
2018-02-01
The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2-100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5) or ozonolysis of β-pinene, oligomerization rate constants on the order of 10-3 to 10-1 M-1 s-1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.
Güzel, Fuat; Yakut, Hakan; Topal, Giray
2008-05-30
In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (kads) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (Ea) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (qm and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (Delta H), free energy (Delta G), and entropy (Delta S) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures.
Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste
Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming
2017-01-01
This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste. PMID:28546964
Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste.
Feng, Lei; Gao, Yuan; Kou, Wei; Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming
2017-01-01
This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste.
Anaerobic work calculated in cycling time trials of different length.
Mulder, Roy C; Noordhof, Dionne A; Malterer, Katherine R; Foster, Carl; de Koning, Jos J
2015-03-01
Previous research showed that gross efficiency (GE) declines during exercise and therefore influences the expenditure of anaerobic and aerobic resources. To calculate the anaerobic work produced during cycling time trials of different length, with and without a GE correction. Anaerobic work was calculated in 18 trained competitive cyclists during 4 time trials (500, 1000, 2000, and 4000-m). Two additional time trials (1000 and 4000 m) that were stopped at 50% of the corresponding "full" time trial were performed to study the rate of the decline in GE. Correcting for a declining GE during time-trial exercise resulted in a significant (P<.001) increase in anaerobically attributable work of 30%, with a 95% confidence interval of [25%, 36%]. A significant interaction effect between calculation method (constant GE, declining GE) and distance (500, 1000, 2000, 4000 m) was found (P<.001). Further analysis revealed that the constant-GE calculation method was different from the declining method for all distances and that anaerobic work calculated assuming a constant GE did not result in equal values for anaerobic work calculated over different time-trial distances (P<.001). However, correcting for a declining GE resulted in a constant value for anaerobically attributable work (P=.18). Anaerobic work calculated during short time trials (<4000 m) with a correction for a declining GE is increased by 30% [25%, 36%] and may represent anaerobic energy contributions during high-intensity exercise better than calculating anaerobic work assuming a constant GE.
Yang, Zhihui; Luo, Shuang; Wei, Zongsu; Ye, Tiantian; Spinney, Richard; Chen, Dong; Xiao, Ruiyang
2016-04-01
The second-order rate constants (k) of hydroxyl radical (·OH) with polychlorinated biphenyls (PCBs) in the gas phase are of scientific and regulatory importance for assessing their global distribution and fate in the atmosphere. Due to the limited number of measured k values, there is a need to model the k values for unknown PCBs congeners. In the present study, we developed a quantitative structure-activity relationship (QSAR) model with quantum chemical descriptors using a sequential approach, including correlation analysis, principal component analysis, multi-linear regression, validation, and estimation of applicability domain. The result indicates that the single descriptor, polarizability (α), plays an important role in determining the reactivity with a global standardized function of lnk = -0.054 × α ‒ 19.49 at 298 K. In order to validate the QSAR predicted k values and expand the current k value database for PCBs congeners, an independent method, density functional theory (DFT), was employed to calculate the kinetics and thermodynamics of the gas-phase ·OH oxidation of 2,4',5-trichlorobiphenyl (PCB31), 2,2',4,4'-tetrachlorobiphenyl (PCB47), 2,3,4,5,6-pentachlorobiphenyl (PCB116), 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169), and 2,3,3',4,5,5',6-heptachlorobiphenyl (PCB192) at 298 K at B3LYP/6-311++G**//B3LYP/6-31 + G** level of theory. The QSAR predicted and DFT calculated k values for ·OH oxidation of these PCB congeners exhibit excellent agreement with the experimental k values, indicating the robustness and predictive power of the single-descriptor based QSAR model we developed. Copyright © 2015 Elsevier Ltd. All rights reserved.
The growth of the tearing mode - Boundary and scaling effects
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.; Van Hoven, G.
1983-01-01
A numerical model of resistive magnetic tearing is developed in order to verify and relate the results of the principal approximations used in analytic analyses and to investigate the solutions and their growth-rate scalings over a large range of primary parameters which include parametric values applicable to the solar atmosphere. The computations cover the linear behavior for a variety of boundary conditions, emphasizing effects which differentiate magnetic tearing in astrophysical situations from that in laboratory devices. Eigenfunction profiles for long and short wavelengths are computed and the applicability of the 'constant psi' approximation is investigated. The growth rate is computed for values of the magnetic Reynolds number up to a trillion and of the dimensionless wavelength parameter down to 0.001. The analysis predicts significant effects due to differing values of the magnetic Reynolds number.
Sublimation rates of carbon monoxide and carbon dioxide from comets at large heliocentric distances
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek
1992-01-01
Using a simple model for outgassing from a small flat surface area, the sublimation rates of carbon monoxide and carbon dioxide, two species more volatile than water ice that are known to be present in comets, are calculated for a suddenly activated discrete source on the rotating nucleus. The instantaneous sublimation rate depends upon the comet's heliocentric distance and the Sun's zenith angle at the location of the source. The values are derived for the constants of CO and CO2 in an expression that yields the local rotation-averaged sublimation rate as a function of the comet's spin parameters and the source's cometocentric latitude.
NASA Astrophysics Data System (ADS)
Ogden, Fred L.
2016-11-01
Tropical Storm Erika was a weakly organized tropical storm when its center of circulation passed more than 150 km north of the island of Dominica on August 27, 2015. Hurricane hunter flights had difficulty finding the center of circulation as the storm encountered a high shear environment. Satellite and radar observations showed gyres imbedded within the broader circulation. Radar observations from Guadeloupe show that one of these gyres formed in convergent mid-level flow triggered by orographic convection over the island of Dominica. Gauge-adjusted radar rainfall data indicated between 300 and 750 mm of rainfall on Dominica, most of it over a four hour period. The result was widespread flooding, destruction of property, and loss of life. The extremity of the rainfall on steep watersheds covered with shallow soils was hypothesized to result in near-equilibrium runoff conditions where peak runoff rates equal the watershed-average peak rainfall rate minus a small constant loss rate. Rain gauge adjusted radar rainfall estimates and indirect peak discharge (IPD) measurements from 16 rivers at watershed areas ranging from 0.9 to 31.4 km2 using the USGS Slope-Area method allowed testing of this hypothesis. IPD measurements were compared against the global envelope of maximum observed flood peaks versus drainage area and against simulations using the U.S. Army Corps of Engineers Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model to detect landslide-affected peak flows. Model parameter values were estimated from the literature. Reasonable agreement was found between GSSHA simulated peak flows and IPD measurements in some watersheds. Results showed that landslide dam failure affected peak flows in 5 of the 16 rivers, with peak flows significantly greater than the envelope curve values for the flood of record for like-sized watersheds on the planet. GSSHA simulated peak discharges showed that the remaining 11 peak flow values were plausible. Simulations of an additional 24 watersheds ranging in size from 2.2 to 75.4 km2 provided confirmation that the IPD measurements varied from 40 to nearly 100% of the envelope curve value depending on storm-total rainfall. Results presented in this paper support the hypothesis that on average, the peak discharges scaled linearly with drainage area, and the constant of proportionality was equivalent to 134 mm h-1, or a unit discharge of 37.22 m3 s-1 km-2. The results also indicate that after the available watershed storage was filled after approximately 450-500 mm of rain fell, runoff efficiencies exceeded 50-60%, and peak runoff rates were more than 80% of the peak rainfall rate minus a small constant loss rate of 20 mm h-1. These findings have important implications for design of resilient infrastructure, and means that rainfall rate was the primary determinant of peak flows once the available storage was filled in the absences of landslide dam failure.
Anderson, Janet S.; LeMaster, David M.; Hernández, Griselda
2006-01-01
Hydrogen exchange measurements on Zn(II)-, Ga(III)-, and Ge(IV)-substituted Pyrococcus furiosus rubredoxin demonstrate that the log ratio of the base-catalyzed rate constants (Δ log kex) varies inversely with the distance out to at least 12 Å from the metal. This pattern is consistent with the variation of the amide nitrogen pK values with the metal charge-dependent changes in the electrostatic potential. Fifteen monitored amides lie within this range, providing an opportunity to assess the strength of electrostatic interactions simultaneously at numerous positions within the structure. Poisson-Boltzmann calculations predict an optimal effective internal dielectric constant of 6. The largest deviations between the experimentally estimated and the predicted ΔpK values appear to result from the conformationally mobile charged side chains of Lys-7 and Glu-48 and from differential shielding of the peptide units arising from their orientation relative to the metal site. PMID:17012322
Biver, T; Boggioni, A; Secco, F; Venturini, M
2008-01-01
The equilibria and kinetics of the complex formation and dissociation reaction between gallium(III) and PAR [4-(2-pyridylazo)resorcinol] have been investigated in water and in the presence of SDS micelles. The reactive form of Ga(III) is GaOH2+ in both cases. The addition of SDS results in an increase of both the binding affinity and velocity, the maximum accelerating effect being observed just above the cmc value of SDS that, under the conditions of the experiments, is 5.6 x 10-3 M. At pH = 3.2, the maximum value of the equilibrium constant ratio Kapp(SDS)/Kapp(H2O) is 27.4, whereas that of the binding rate constants kf(SDS)/kf(H2O) is 16. The results are interpreted in terms of increased concentrations of the reactants on the micelle surface and on competition of PAR and SDS for GaOH2+.
Relaxing the cosmological constant: a proof of concept
NASA Astrophysics Data System (ADS)
Alberte, Lasma; Creminelli, Paolo; Khmelnitsky, Andrei; Pirtskhalava, David; Trincherini, Enrico
2016-12-01
We propose a technically natural scenario whereby an initially large cosmological constant (c.c.) is relaxed down to the observed value due to the dynamics of a scalar evolving on a very shallow potential. The model crucially relies on a sector that violates the null energy condition (NEC) and gets activated only when the Hubble rate becomes sufficiently small — of the order of the present one. As a result of NEC violation, this low-energy universe evolves into inflation, followed by reheating and the standard Big Bang cosmology. The symmetries of the theory force the c.c. to be the same before and after the NEC-violating phase, so that a late-time observer sees an effective c.c. of the correct magnitude. Importantly, our model allows neither for eternal inflation nor for a set of possible values of dark energy, the latter fixed by the parameters of the theory.
Dowdall, R J; Davies, C T H; Horgan, R R; Monahan, C J; Shigemitsu, J
2013-05-31
We present the first lattice QCD calculation of the decay constants f(B) and f(B(s)) with physical light quark masses. We use configurations generated by the MILC Collaboration including the effect of u, d, s, and c highly improved staggered quarks in the sea at three lattice spacings and with three u/d quark mass values going down to the physical value. We use improved nonrelativistic QCD (NRQCD) for the valence b quarks. Our results are f(B)=0.186(4) GeV, f(B(s))=0.224(4) GeV, f(B(s))/f(B)=1.205(7), and M(B(s))-M(B)=85(2) MeV, superseding earlier results with NRQCD b quarks. We discuss the implications of our results for the standard model rates for B((s))→μ(+)μ(-) and B→τν.
Kinetic study of the oxidation of 4-hydroxyanisole catalyzed by tyrosinase.
Espín, J C; Varón, R; Tudela, J; García-Cánovas, F
1997-05-01
Despite the importance of the substrate 4-hydroxyanisole in melanoma therapy, the kinetics of its oxidation catalyzed by tyrosinase has never been properly characterized. This approach is reported here for the first time. The applicability to 4-hydroxyanisole of the reaction mechanism of tyrosinase previously proposed for other monophenols has been corroborated. The Michaelis constant for the oxidation of 4-hydroxyanisole catalyzed by mushroom tyrosinase was (62 +/- 1.5) microM at pH 7 and increased when the pH decreased, reaching a value of (195 +/- 5) microM at pH 5.5. However the maximum steady-state rate, whose value was (0.54 +/- 0.01) microM/min, did not change with the pH. The apparent catalytic constant was (184 +/- 5) s-1, around twenty three times higher than that previously described for L-tyrosine (8 s-1).
Hybrid value foraging: How the value of targets shapes human foraging behavior.
Wolfe, Jeremy M; Cain, Matthew S; Alaoui-Soce, Abla
2018-04-01
In hybrid foraging, observers search visual displays for multiple instances of multiple target types. In previous hybrid foraging experiments, although there were multiple types of target, all instances of all targets had the same value. Under such conditions, behavior was well described by the marginal value theorem (MVT). Foragers left the current "patch" for the next patch when the instantaneous rate of collection dropped below their average rate of collection. An observer's specific target selections were shaped by previous target selections. Observers were biased toward picking another instance of the same target. In the present work, observers forage for instances of four target types whose value and prevalence can vary. If value is kept constant and prevalence manipulated, participants consistently show a preference for the most common targets. Patch-leaving behavior follows MVT. When value is manipulated, observers favor more valuable targets, though individual foraging strategies become more diverse, with some observers favoring the most valuable target types very strongly, sometimes moving to the next patch without collecting any of the less valuable targets.
Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.
2009-01-01
To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.
Pan, Yang; Fu, Yao; Liu, Shaoxiong; Yu, Haizhu; Gao, Yuhe; Guo, Qingxiang; Yu, Shuqin
2006-06-15
The quenching of the triplets of 1,2-naphthoquinone (NQ) and 1,2-naphthoquinone-4-sulfonic acid sodium salt (NQS) by various electron and H-atom donors was investigated by laser flash photolysis measurement in acetonitrile and benzene. The results showed that the reactivities and configurations of 3NQ* (3NQS*) are governed by solvent polarity. All the quenching rate constants (kq) measured in benzene are larger than those in acetonitrile. The SO3Na substituent at the C-4 position of NQS makes 3NQS* more reactive than 3NQ* in electron/H-atom transfer reactions. Large differences of kq values were discovered in H-atom transfer reactions for alcohols and phenols, which can be explained by different H-abstraction mechanisms. Detection of radical cations of amines/anilines in time-resolved transient absorption spectra confirms an electron transfer mechanism. Triplets are identified as precursors of formed radical anions of NQ and NQS in photoinduced reactions. The dependence of electron transfer rate constants on the free energy changes (DeltaG) was treated by using the Rehm-Weller equation. For the four anilines with different substituents on the para or meta position of amidocyanogen, good correlation between log kq values with Hammett sigma constants testifies the correctness of empirical Hammett equation. Charge density distributions, adiabatic ionization/affinity potentials and redox potentials of NQ (NQS) and some quenchers were studied by quantum chemistry calculation.
NASA Astrophysics Data System (ADS)
Vijaykumar, Adithya; ten Wolde, Pieter Rein; Bolhuis, Peter G.
2018-03-01
To predict the response of a biochemical system, knowledge of the intrinsic and effective rate constants of proteins is crucial. The experimentally accessible effective rate constant for association can be decomposed in a diffusion-limited rate at which proteins come into contact and an intrinsic association rate at which the proteins in contact truly bind. Reversely, when dissociating, bound proteins first separate into a contact pair with an intrinsic dissociation rate, before moving away by diffusion. While microscopic expressions exist that enable the calculation of the intrinsic and effective rate constants by conducting a single rare event simulation of the protein dissociation reaction, these expressions are only valid when the substrate has just one binding site. If the substrate has multiple binding sites, a bound enzyme can, besides dissociating into the bulk, also hop to another binding site. Calculating transition rate constants between multiple states with forward flux sampling requires a generalized rate expression. We present this expression here and use it to derive explicit expressions for all intrinsic and effective rate constants involving binding to multiple states, including rebinding. We illustrate our approach by computing the intrinsic and effective association, dissociation, and hopping rate constants for a system in which a patchy particle model enzyme binds to a substrate with two binding sites. We find that these rate constants increase as a function of the rotational diffusion constant of the particles. The hopping rate constant decreases as a function of the distance between the binding sites. Finally, we find that blocking one of the binding sites enhances both association and dissociation rate constants. Our approach and results are important for understanding and modeling association reactions in enzyme-substrate systems and other patchy particle systems and open the way for large multiscale simulations of such systems.
NASA Astrophysics Data System (ADS)
Hernández Cifre, J. G.; García de la Torre, J.
2001-11-01
When linear polymer chains in dilute solution are subject to extensional flow, each chain in the sample experiences the coil-stretch transition at a different time. Using Brownian dynamics simulation, we have studied the distribution of transition times in terms of the extensional rate and the length of the chains. If instead of time one characterizes the effect of the flow by the accumulated strain, then the distribution and its moments seem to take general forms, independent of molecular weight and flow rate, containing some numerical, universal constants that have been evaluated from the dynamical simulation. The kinetics of the transition, expressed by the time-dependence of the fraction of remaining coils, has also been simulated, and the results for the kinetic rate constant has been rationalized in a manner similar to that used for the transition time. The molecular individualism, characterized in this work by the distribution of transition times, is related to the excess of the applied extensional rate over its critical value, which will determine the transition time and other features of the coil-stretch transition.
The entrance of water into beef and dog red cells.
VILLEGAS, R; BARTON, T C; SOLOMON, A K
1958-11-20
The rate constants for diffusion of THO across the red cell membrane of beef and dog, and the rate of entrance of water into the erythrocytes of these species under an osmotic pressure gradient have been measured. For water entrance into the erythrocyte by diffusion the rate constants are 0.10 +/- 0.02 msec.(-1) (beef) and 0.14 +/- 0.03 msec.(-1) (dog); the permeability coefficients for water entrance under a pressure gradient of 1 osmol./cm(3) are 0.28 See PDF for Equation These values permit the calculation of an equivalent pore radius for the erythrocyte membrane of 4.1 A for beef and 7.4 A for dog. In the beef red cell the change in THO diffusion due to osmotically produced cell volume shifts has been studied. The resistance to THO diffusion increases as the cell volume increases. At the maximum volume, (1.06 times normal), THO diffusion is decreased to 0.84 times the normal rate. This change in diffusion is attributed to swelling of the cellular membrane.
Biostatistical analysis of mortality data for cohorts of cancer patients.
Pauling, L
1989-01-01
The Hardin Jones principle states that for a homogeneous cohort of cancer patients the logarithm of the fraction surviving at time t has a constant slope. With use of this principle, the survival times of the members of a heterogeneous cohort can be analyzed to divide the cohort into subcohorts with different mortality rate constants. Probable values of the additional survival time can be estimated for members surviving at the closing date of a clinical trial, permitting them to be included in the biostatistical analysis of the results of the trial in a more significant way than through Kaplan-Meier renormalization. PMID:2726729
Temperature measurement in a gas turbine engine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul
A method and system for determining a temperature of a working gas passing through a passage to a turbine section of a gas turbine engine. The method includes identifying an acoustic frequency at a first location in the engine upstream from the turbine section, and using the acoustic frequency for determining a first temperature value at the first location that is directly proportional to the acoustic frequency and a calculated constant value. A second temperature of the working gas is determined at a second location in the engine and, using the second temperature, a back calculation is performed to determinemore » a temperature value for the working gas at the first location. The first temperature value is compared to the back calculated temperature value to change the calculated constant value to a recalculated constant value. Subsequent first temperature values at the first location may be determined based on the recalculated constant value.« less
Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya
2017-03-10
The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.
Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connell, D.W.; Hawker, D.W.
1988-12-01
For the bioconcentration of hydrophobic chemicals by fish, relationships have been previously established between uptake rate constants (k1) and the octanol/water partition coefficient (Kow), and also between the clearance rate constant (k2) and Kow. These have been refined and extended on the basis of data for chlorinated hydrocarbons, and closely related compounds including polychlorinated dibenzodioxins, that covered a wider range of hydrophobicity (2.5 less than log Kow less than 9.5). This has allowed the development of new relationships between log Kow and various factors, including the bioconcentration factor (as log KB), equilibrium time (as log teq), and maximum biotic concentrationmore » (as log CB), which include extremely hydrophobic compounds previously not taken into account. The shape of the curves generated by these equations are in qualitative agreement with theoretical prediction and are described by polynomial expressions which are generally approximately linear over the more limited range of log Kow values used to develop previous relationships. The influences of factors such as hydrophobicity, aqueous solubility, molecular weight, lipid solubility, and also exposure time were considered. Decreasing lipid solubilities of extremely hydrophobic chemicals were found to result in increasing clearance rate constants, as well decreasing equilibrium times and bioconcentration factors.« less
Cisse, Mady; Vaillant, Fabrice; Acosta, Oscar; Dhuique-Mayer, Claudie; Dornier, Manuel
2009-07-22
Anthocyanin stability was assessed over temperatures ranging from 30 to 90 degrees C for seven products: blood orange juice [Citrus sinensis (L.) Osbeck]; two tropical highland blackberry juices (Rubus adenotrichus Schlech.), one with high content and the other with low content of suspended insoluble solids (SIS); and four roselle extracts (Hibiscus sabdariffa L.). The blackberry juice showed the highest content of anthocyanins with 1.2 g/L (two times less in the roselle extracts and 12 times less in the blood orange juice). The rate constant for anthocyanin degradation and isothermal kinetic parameters were calculated according to three models: Arrhenius, Eyring, and Ball. Anthocyanins in blood orange juice presented the highest rate constant for degradation, followed by the blackberry juices and roselle extracts. Values of activation energies were 66 and 37 kJ/mol, respectively, for blood orange and blackberry and 47-61 kJ/mol for roselle extracts. For the blackberry juices, a high SIS content provided only slight protection for the anthocyanins. The increasing content of dissolved oxygen, from 0.5 to 8.5 g/L, did not significantly increase the rate constant. For both isothermal and nonisothermal treatments, all three models accurately predicted anthocyanin losses from different food matrices.
Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A
2015-10-01
Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Shenghua; Liu, Jie; Sun, Zhiwei
2006-12-01
Turbidity measurement for the absolute coagulation rate constants of suspensions has been extensively adopted because of its simplicity and easy implementation. A key factor in deriving the rate constant from experimental data is how to theoretically evaluate the so-called optical factor involved in calculating the extinction cross section of doublets formed during aggregation. In a previous paper, we have shown that compared with other theoretical approaches, the T-matrix method provides a robust solution to this problem and is effective in extending the applicability range of the turbidity methodology, as well as increasing measurement accuracy. This paper will provide a more comprehensive discussion of the physical insight for using the T-matrix method in turbidity measurement and associated technical details. In particular, the importance of ensuring the correct value for the refractive indices for colloidal particles and the surrounding medium used in the calculation is addressed, because the indices generally vary with the wavelength of the incident light. The comparison of calculated results with experiments shows that the T-matrix method can correctly calculate optical factors even for large particles, whereas other existing theories cannot. In addition, the data of the optical factor calculated by the T-matrix method for a range of particle radii and incident light wavelengths are listed.
Rate constants measured for hydrated electron reactions with peptides and proteins
NASA Technical Reports Server (NTRS)
Braams, R.
1968-01-01
Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.
Sequential CFAR detectors using a dead-zone limiter
NASA Astrophysics Data System (ADS)
Tantaratana, Sawasd
1990-09-01
The performances of some proposed sequential constant-false-alarm-rate (CFAR) detectors are evaluated. The observations are passed through a dead-zone limiter, the output of which is -1, 0, or +1, depending on whether the input is less than -c, between -c and c, or greater than c, where c is a constant. The test statistic is the sum of the outputs. The test is performed on a reduced set of data (those with absolute value larger than c), with the test statistic being the sum of the signs of the reduced set of data. Both constant and linear boundaries are considered. Numerical results show a significant reduction of the average number of observations needed to achieve the same false alarm and detection probabilities as a fixed-sample-size CFAR detector using the same kind of test statistic.
The Value in Rushing: Memory and Selectivity when Short on Time
Middlebrooks, Catherine D.; Murayama, Kou; Castel, Alan D.
2016-01-01
While being short on time can certainly limit what one remembers, are there always such costs? The current study investigates the impact of time constraints on selective memory and the self-regulated study of valuable information. Participants studied lists of words ranging in value from 1-10 points, with the goal being to maximize their score during recall. Half of the participants studied these words at a constant presentation rate of either 1 or 5 seconds. The other half of participants studied under both rates, either fast (1sec) during the first several lists and then slow (5sec) during later lists, or vice versa. Study was then self-paced during a final segment of lists for all participants to determine how people regulate their study time after experiencing different presentation rates during study. While participants recalled more words overall when studying at a 5-second rate, there were no significant differences in terms of value-based recall, with all participants demonstrating better recall for higher-valued words and similar patterns of selectivity, regardless of study time or prior timing experience. Self-paced study was also value-based, with participants spending more time studying high-value words than low-value. Thus, while being short on time may have impaired memory overall, participants’ attention to item value during study was not differentially impacted by the fast and slow timing rates. Overall, these findings offer further insight regarding the influence that timing schedules and task experience have on how people selectively focus on valuable information. PMID:27305652
Tritium effect in peroxidation of ehtanol by liver catalase.
Damgaard, S E
1977-01-01
1. Simultaneous determination of the rate of appearance of 3H in water from [(1R)-1-3H1] ethanol and the rate of acetaldehyde formation in the presence of rat or ox liver catalase under conditions of steady-state generation of H2O2 allowed calculation of the 3H isotope effect. The mean value of 2.52 obtained for rat liver catalase at 37 degrees C and pH 6.3-7.7 was independent of both ethanol concentration and the rate of H2O2 generation over a wide range. At 25 degrees C a slightly lower mean value of 2.40 was obtained with the ox liver catalase. 2. Neither the product, acetaldehyde, nor 4-methylpyrazole influenced the two rates measured in the assay. 3. Relating the value obtained for the 3H isotope effect to a known value for the 2H isotope effect strongly supports the view that both values are close to the true isotope effect with the respective substituted compounds on the rate constant in the catalytic step involving scission of the C-H bond. 4. The constancy of the isotope effect under various conditions makes it possible to use it for interpretations in vivo. 5. It was established that beta-D-galactose dehydrogenase exhibits B-specificity towards the nicotinamide ring in NAD. PMID:22327
EFFECTS OF PH ON DECHLORINATION OF TRICHLOROETHYLENE BY ZERO-VALENT IRON
The surface normalized reaction rate constants (ksa) of trichloroethylene (TCE) and zero-valent iron (ZVI) was quantified in batch reactors at pH values between 1.7 and 10. The ksa of TCE linearly decreased from 0.044 to 0.009 L/hr-m2 between pH 3.8 and 8.0, whereas the ksa at pH...
Constant strain rate experiments and constitutive modeling for a class of bitumen
NASA Astrophysics Data System (ADS)
Reddy, Kommidi Santosh; Umakanthan, S.; Krishnan, J. Murali
2012-08-01
The mechanical properties of bitumen vary with the nature of the crude source and the processing methods employed. To understand the role of the processing conditions played in the mechanical properties, bitumen samples derived from the same crude source but processed differently (blown and blended) are investigated. The samples are subjected to constant strain rate experiments in a parallel plate rheometer. The torque applied to realize the prescribed angular velocity for the top plate and the normal force applied to maintain the gap between the top and bottom plate are measured. It is found that when the top plate is held stationary, the time taken by the torque to be reduced by a certain percentage of its maximum value is different from the time taken by the normal force to decrease by the same percentage of its maximum value. Further, the time at which the maximum torque occurs is different from the time at which the maximum normal force occurs. Since the existing constitutive relations for bitumen cannot capture the difference in the relaxation times for the torque and normal force, a new rate type constitutive model, incorporating this response, is proposed. Although the blended and blown bitumen samples used in this study correspond to the same grade, the mechanical responses of the two samples are not the same. This is also reflected in the difference in the values of the material parameters in the model proposed. The differences in the mechanical properties between the differently processed bitumen samples increase further with aging. This has implications for the long-term performance of the pavement.
Nishiye, E; Somlyo, A V; Török, K; Somlyo, A P
1993-01-01
1. The effects of MgADP on cross-bridge kinetics were investigated using laser flash photolysis of caged ATP (P3-1(2-nitrophenyl) ethyladenosine 5'-triphosphate), in guinea-pig portal vein smooth muscle permeabilized with Staphylococcus aureus alpha-toxin. Isometric tension and in-phase stiffness transitions from rigor state were monitored upon photolysis of caged ATP. The estimated concentration of ATP released from caged ATP by high-pressure liquid chromatography (HPLC) was 1.3 mM. 2. The time course of relaxation initiated by photolysis of caged ATP in the absence of Ca2+ was well fitted during the initial 200 ms by two exponential functions with time constants of, respectively, tau 1 = 34 ms and tau 2 = 1.2 s and relative amplitudes of 0.14 and 0.86. Multiple exponential functions were needed to fit longer intervals; the half-time of the overall relaxation was 0.8 s. The second order rate constant for cross-bridge detachment by ATP, estimated from the rate of initial relaxation, was 0.4-2.3 x 10(4) M-1 s-1. 3. MgADP dose dependently reduced both the relative amplitude of the first component and the rate constant of the second component of relaxation. Conversely, treatment of muscles with apyrase, to deplete endogenous ADP, increased the relative amplitude of the first component. In the presence of MgADP, in-phase stiffness decreased during force maintenance, suggesting that the force per cross-bridge increased. The apparent dissociation constant (Kd) of MgADP for the cross-bridge binding site, estimated from its concentration-dependent effect on the relative amplitude of the first component, was 1.3 microM. This affinity is much higher than the previously reported values (50-300 microM for smooth muscle; 18-400 microM for skeletal muscle; 7-10 microM for cardiac muscle). It is possible that the high affinity reflects the properties of a state generated during the co-operative reattachment cycle, rather than that of the rigor bridge. 4. The rate constant of MgADP release from cross-bridges, estimated from its concentration-dependent effect on the rate constant of the second (tau 2) component, was 0.35-7.7 s-1. To the extent that reattachment of cross-bridges could slow relaxation even during the initial 200 ms, this rate constant may be an underestimate. 5. Inorganic phosphate (Pi, 30 mM) did not affect the rate of relaxation during the initial approximately 50 ms, but accelerated the slower phase of relaxation, consistent with a cyclic cross-bridge model in which Pi increases the proportion of cross-bridges in detached ('weakly bound') states.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 PMID:8487195
Adsorption kinetics of ion of Pb2+ using Tricalcium Phosphate particles
NASA Astrophysics Data System (ADS)
Fadli, A.; Yenti, S. R.; Akbar, F.; Maihendra; Mawarni, F.
2018-04-01
One of the heavy metals that can pollute water is Pb2+. The concentration of ion Pb2+ can be removed using the adsorption method. The purpose of this research is to determine the adsorption kinetics model of ions Pb2+ using tricalcium phosphate (TCP) particles with variation of the temperature and adsorbent dosage. Five hundred mililiter Pb2+ solution with of 3 mg/L were added 0,5 gr, 1 gr and 1,5 gr of TCP in a glass beaker and stirred with rate of 300 rpm at a temperature of 30 °C, 40 °C and 50 °C. Pb2+ concentration in solution was analyzed by AAS (Atomic Adsorption Spectroscopy). The results showed that the rate of adsorption increased with the increasing of the temperature and adsorbent dosage. Minimum constant value of adsorption kinetic was 1,720 g/mg.min obtained at temperature of 30 °C and adsorbent dosageof 0,5 gr. The maximum value of adsorption kinetic constant was 9,755 g/mg.min obtained at temperature of 50 °C and adsorbent dosage of 1,5 gr. The appropriate model for adsorption kinetics followed the pseudo second order.
Hadron mass and decays constant predictions of the valence approximation to lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weingarten, D.
1993-05-01
A key goal of the lattice formulation of QCD is to reproduce the masses and decay constants of the low-lying baryons and mesons. Lattice QCD mass and decay constant predictions for the real world are supposed to be obtained from masses and decay constants calculated with finite lattice spacing and finite lattice volume by taking the limits of zero spacing and infinite volume. In addition, since the algorithms used for hadron mass and decay constant calculations become progressively slower for small quark masses, results are presently found with quark masses much larger than the expected values of the up andmore » down quark masses. Predictions for the properties of hadrons containing up and down quarks then require a further extrapolation to small quark masses. The author reports here mass and decay constant predictions combining all three extrapolations for Wilson quarks in the valence (quenched) approximation. This approximation may be viewed as replacing the momentum and frequency dependent color dielectric constant arising from quark-antiquark vacuum polarization with its zero-momentum, zero-frequency limit. These calculations used approximately one year of machine time on the GF11 parallel computer running at a sustained rate of between 5 and 7 Gflops.« less
Mihl, Casper; Wildberger, Joachim E; Jurencak, Tomas; Yanniello, Michael J; Nijssen, Estelle C; Kalafut, John F; Nalbantov, Georgi; Mühlenbruch, Georg; Behrendt, Florian F; Das, Marco
2013-11-01
Both iodine delivery rate (IDR) and iodine concentration are decisive factors for vascular enhancement in computed tomographic angiography. It is unclear, however, whether the use of high-iodine concentration contrast media is beneficial to lower iodine concentrations when IDR is kept identical. This study evaluates the effect of using different iodine concentrations on intravascular attenuation in a circulation phantom while maintaining a constant IDR. A circulation phantom with a low-pressure venous compartment and a high-pressure arterial compartment simulating physiological circulation parameters was used (heart rate, 60 beats per minute; stroke volume, 60 mL; blood pressure, 120/80 mm Hg). Maintaining a constant IDR (2.0 g/s) and a constant total iodine load (20 g), prewarmed (37°C) contrast media with differing iodine concentrations (240-400 mg/mL) were injected into the phantom using a double-headed power injector. Serial computed tomographic scans at the level of the ascending aorta (AA), the descending aorta (DA), and the left main coronary artery (LM) were obtained. Total amount of contrast volume (milliliters), iodine delivery (grams of iodine), peak flow rate (milliliter per second), and intravascular pressure (pounds per square inch) were monitored using a dedicated data acquisition program. Attenuation values in the AA, the DA, and the LM were constantly measured (Hounsfield unit [HU]). In addition, time-enhancement curves, aortic peak enhancement, and time to peak were determined. All contrast injection protocols resulted in similar attenuation values: the AA (516 [11] to 531 [37] HU), the DA (514 [17] to 531 [32] HU), and the LM (490 [10] to 507 [17] HU). No significant differences were found between the AA, the DA, and the LM for either peak enhancement (all P > 0.05) or mean time to peak (AA, 19.4 [0.58] to 20.1 [1.05] seconds; DA, 21.1 [1.0] to 21.4 [1.15] seconds; LM, 19.8 [0.58] to 20.1 [1.05] seconds). This phantom study demonstrates that constant injection parameters (IDR, overall iodine load) lead to robust enhancement patterns, regardless of the contrast material used. Higher iodine concentration itself does not lead to higher attenuation levels. These results may stimulate a shift in paradigm toward clinical usage of contrast media with lower iodine concentrations (eg, 240 mg iodine/mL) in individual tailored contrast protocols. The use of low-iodine concentration contrast media is desirable because of the lower viscosity and the resulting lower injection pressure.
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources.
Ghorbani, Mahdi; Mehrpouyan, Mohammad; Davenport, David; Ahmadi Moghaddas, Toktam
2016-06-01
The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems.
Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources
Ghorbani, Mahdi; Davenport, David
2016-01-01
Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558
Determining the Optimal Values of Exponential Smoothing Constants--Does Solver Really Work?
ERIC Educational Resources Information Center
Ravinder, Handanhal V.
2013-01-01
A key issue in exponential smoothing is the choice of the values of the smoothing constants used. One approach that is becoming increasingly popular in introductory management science and operations management textbooks is the use of Solver, an Excel-based non-linear optimizer, to identify values of the smoothing constants that minimize a measure…
NASA Astrophysics Data System (ADS)
Budhijanto, Budhijanto; Subagyo, Albertus F. P. H.
2017-05-01
Palm Fatty Acid Distillate (PFAD) is one of the wastes from the conversion of crude palm oil (CPO) into cooking oil. The PFAD is currently only utilized as the raw material for low grade soap and biofuel. To improve the economic value of PFAD, it was converted into monoglyceride by esterification process. Furthermore, the monoglyceride could be polymerized to form alkyd resin, which is a commodity of increasing importance. This study aimed to propose a kinetics model for esterification of PFAD with epichlorohydrin using cation exchange resin catalyst. The reaction was the first step from a series of reactions to produce the monoglyceride. In this study, the reaction between PFAD and epichlorohydirne was run in a stirred batch reactor. The stirrer was operated at a constant speed of 400 RPM. The reaction was carried out for 180 minutes on varied temperatures of 60°C, 70°C, 80°C, dan 90°C. Cation exchange resin was applied as solid catalysts. Analysis was conducted periodically by measuring the acid number of the samples, which was further used to calculate PFAD conversion. The data were used to determine the rate constants and the equilibrium constants of the kinetics model. The kinetics constants implied that the reaction was reversible and controlled by the intrinsic surface reaction. Despite the complication of the heterogeneous nature of the reaction, the kinetics data well fitted the elementary rate law. The effect of temperature on the equilibrium constants indicated that the reaction is exothermic.
NASA Astrophysics Data System (ADS)
Widyawan, A.; Pasaribu, U. S.; Henintyas, Permana, D.
2015-12-01
Nowadays some firms, including insurer firms, think that customer-centric services are better than product-centric ones in terms of marketing. Insurance firms will try to attract as many new customer as possible while maintaining existing customer. This causes the Customer Lifetime Value (CLV) becomes a very important thing. CLV are able to put customer into different segments and calculate the present value of a firm's relationship with its customer. Insurance customer will depend on the last service he or she can get. So if the service is bad now, then customer will not renew his contract though the service is very good at an erlier time. Because of this situation one suitable mathematical model for modeling customer's relationships and calculating their lifetime value is Markov Chain. In addition, the advantages of using Markov Chain Modeling is its high degree of flexibility. In 2000, Pfeifer and Carraway states that Markov Chain Modeling can be used for customer retention situation. In this situation, Markov Chain Modeling requires only two states, which are present customer and former ones. This paper calculates customer lifetime value in an insurance firm with two distinctive interest rates; the constant interest rate and uniform distribution of interest rates. The result shows that loyal customer and the customer who increase their contract value have the highest CLV.
Modeling light and temperature effects on leaf emergence in wheat and barley
NASA Technical Reports Server (NTRS)
Volk, T.; Bugbee, B.
1991-01-01
Phenological development affects canopy structure, radiation interception, and dry matter production; most crop simulation models therefore incorporate leaf emergence rate as a basic parameter. A recent study examined leaf emergence rate as a function of temperature and daylength among wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) cultivars. Leaf emergence rate and phyllochron were modeled as functions of temperature alone, daylength alone, and the interaction between temperature and daylength. The resulting equations contained an unwieldy number of constants. Here we simplify by reducing the constants by > 70%, and show leaf emergence rate as a single response surface with temperature and daylength. In addition, we incorporate the effect of photosynthetic photon flux into the model. Generic fits for wheat and barley show cultivar differences less than +/- 5% for wheat and less than +/- 10% for barley. Barley is more sensitive to daylength changes than wheat for common environmental values of daylength, which may be related to the difference in sensitivity to daylength between spring and winter cultivars. Differences in leaf emergence rate between cultivars can be incorporated into the model by means of a single, nondimensional factor for each cultivar.
Liotta, Flavia; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco
2014-01-01
The role of the moisture content and particle size (PS) on the disintegration of complex organic matter during the wet anaerobic digestion (AD) process was investigated. A range of total solids (TS) from 5% to 11.3% and PS from 0.25 to 15 mm was evaluated using carrot waste as model complex organic matter. The experimental results showed that the methane production rate decreased with higher TS and PS. A modified version of the AD model no.1 for complex organic substrates was used to model the experimental data. The simulations showed a decrease of the disintegration rate constants with increasing TS and PS. The results of the biomethanation tests were used to calibrate and validate the applied model. In particular, the values of the disintegration constant for various TS and PS were determined. The simulations showed good agreement between the numerical and observed data.
Martínez-González, Eduardo; Frontana, Carlos
2014-05-07
In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.
Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye.
Makoid, M C; Robinson, J R
1979-04-01
The temporal and spatial pattern of [3H]-pilocarpine nitrate distribution in the albino rabbit eye following topical administration was determined. A four-compartment caternary chain model describing this disposition corresponds to the precorneal area, the cornea, the aqueous humor, and the lens and vitreous. Simultaneous computer fitting of data from tissue corresponding to some compartments in the model supported the proposed model. Additional support was provided by the excellent correlation between predicted and observed values in multiple-dosing studies. Several important aspects of ocular drug disposition are evident from the model. The extensive parallel elimination at the absorption site gives rise to an apparent absorption rate constant that is one to two orders of magnitude larger than the true absorption rate constant. In addition, aqueous flow accounts for most of the drug removal. Thus, major effects on absorption and elimination, independent of the drug structure, suggest the possibility of similar pharmacokinetics for vastly different drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, J.W.
Pulse radiolysis of aqueous hydrazine solutions has been studied in the pH range 2 to 13. At times greater than about 1 ms after the pulse, a single transient species is observed (lambda/sub max/230nm). This species decayed by first-order kinetics under all conditions studied. A mechanism which accounts satisfactorily for the observed kinetic behavior is proposed. This species, identified as triazene (N/sub 3/H/sub 3/) is amphiprotic and the following acid--base equilibria are rapidly established: N/sub 3/H/sub 4//sup +/in equilibrium N/sub 3/H/sub 3//sup +/H/sup +/ (pK/sub 1/ = 4.95, ..delta..H/sub 1//sup 0/ = -4.9 kcal mol/sup -1/, ..delta..S/sub 1//sup 0/ =more » -39.2 eu) N/sub 3/H/sub 3/in equilibrium N/sub 3/H/sub 2//sup -/ + H/sup +/ or N/sub 3/H/sub 3/ + OH/sup -/ = N/sub 3/H/sub 4/O/sup -/ (pK/sub 2/ = 11.37, ..delta..H/sub 2//sup 0/ = -4.2 kcal mol/sup -1/, ..delta..S/sub 2//sup 0/ = -67 eu). pK values derived from the dependence of the first-order rate constant on pH, from the dependence of initial absorbance on pH, and from the dependence of the first-order rate constant on temperature at selected values of pH are in satisfactory agreement. The rate constants for decomposition of the acidic and basic forms of triazene are k/sub N3H4/sup +// = 1.97 X 10/sup 11/ exp(-12600/RT)s/sup -1/ and k/sub N3H2/sup -// = 2.14 X 10/sup 14/. exp(-19200/RT)s/sup -1/. For N/sub 3/H/sub 3/, which is stable relative to the faster reaction rates of its conjugate acid and base forms, k is estimated to be less than or equal to 0.001 s/sup -1/ at 24/sup 0/C. The dependence of the observed first-order rate constant on pH at constant temperature is expressed by the following equation: k/sub obsd/ = (k/sub 3//(1 + (K/sub 1//(H/sup +/)))) + (k;/sub 4//(1 + ((H/sup +/)/K/sub 2/))) (k/sub 3/ = k/sub N3H4/sup +// = 133 s/sup -1/, k/sub 4/ = k/sub N3H2/sup -// = 2 s/sup -1/, pK/sub 1/ = 4.9/sub 5/ and pK/sub 2/ = 11.3/sub 7/). Phosphate is a catalyst for the decomposition of triazene. It is shown that the conjugate acid of neutral triazene has unit positive charge and its conjugate base has unit negative charge.« less
NASA Technical Reports Server (NTRS)
Hoobler, Ray J.; Leone, Stephen R.
1997-01-01
Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtenstein, A.H.; Cohn, J.S.; Hachey, D.L.
1990-09-01
The production rates of apolipoprotein (apo)B-100 in very low density lipoprotein and in low density lipoprotein and apolipoprotein A-I in high density lipoprotein were determined using a primed-constant infusion of (5,5,5,-2H3)leucine, (4,4,4,-2H3)valine, and (6,6-2H2,1,2-13C2)lysine. The three stable isotope-labeled amino acids were administered simultaneously to determine whether absolute production rates calculated using a stochastic model were independent of the tracer species utilized. Three normolipidemic adult males were studied in the constantly fed state over a 15-h period. The absolute production rates of very low density lipoprotein apoB-100 were 11.4 +/- 5.8 (leucine), 11.2 +/- 6.8 (valine), and 11.1 +/- 5.4 (lysine)more » mg per kg per day (mean +/- SDM). The absolute production rates for low density lipoprotein apoB-100 were 8.0 +/- 4.7 (leucine), 7.5 +/- 3.8 (valine), and 7.5 +/- 4.2 (lysine) mg per kg per day. The absolute production rates for high density lipoprotein apoA-I were 9.7 +/- 0.2 (leucine), 9.4 +/- 1.7 (valine), and 9.1 +/- 1.3 (lysine) mg per kg per day. There were no statistically significant differences in absolute synthetic rates of the three apolipoproteins when the plateau isotopic enrichment values of very low density lipoprotein apoB-100 were used to define the isotopic enrichment of the intracellular precursor pool. Our data indicate that deuterated leucine, valine, or lysine provided similar results when used for the determination of apoA-I and apoB-100 absolute production rates within plasma lipoproteins as part of a primed-constant infusion protocol.« less
Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito
2017-10-01
During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Hiroyuki; Yamamoto, Yuka; Hatakeyama, Tetsuhiro; Nishiyama, Yoshihiro
2018-05-01
CBF, OEF, and CMRO 2 images can be quantitatively assessed using PET. Their image calculation requires arterial input functions, which require invasive procedure. The aim of the present study was to develop a non-invasive approach with image-derived input functions (IDIFs) using an image from an ultra-rapid O 2 and C 15 O 2 protocol. Our technique consists of using a formula to express the input using tissue curve with rate constants. For multiple tissue curves, the rate constants were estimated so as to minimize the differences of the inputs using the multiple tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects ( n = 24). The estimated IDIFs were well-reproduced against the measured ones. The difference in the calculated CBF, OEF, and CMRO 2 values by the two methods was small (<10%) against the invasive method, and the values showed tight correlations ( r = 0.97). The simulation showed errors associated with the assumed parameters were less than ∼10%. Our results demonstrate that IDIFs can be reconstructed from tissue curves, suggesting the possibility of using a non-invasive technique to assess CBF, OEF, and CMRO 2 .
NASA Astrophysics Data System (ADS)
Litvinov, I. I.
2015-11-01
A critical analysis is given of the well-known expression for the electron-impact ionization rate constant α i of neutral atoms and ions, derived by linearization of the ionization cross section σ i (ɛ) as a function of the electron energy near the threshold I and containing the characteristic factor ( I + 2 kT). Using the classical Thomson expression for the ionization cross section, it is shown that in addition to the linear slope of σ i (ɛ), it is also necessary to take into account the large negative curvature of this function near the threshold. In this case, the second term in parentheses changes its sign, which means that the commonly used expression for α i (˜4 kT/I) already at moderate values of the temperature ( kT/I ˜ 0.1). The source of this error lies in a mathematical mistake in the original approach and is related to the incorrect choice of the sequential orders of terms small in the parameter kT/I. On the basis of a large amount of experimental data and considerations similar to the Gryzinski theory, a universal two-parameter modification of the Thomson formula (as well as the Bethe—Born formula) is proposed and a new simple expression for the ionization rate constant for arbitrary values of kT/I is derived.
Instanton rate constant calculations close to and above the crossover temperature.
McConnell, Sean; Kästner, Johannes
2017-11-15
Canonical instanton theory is known to overestimate the rate constant close to a system-dependent crossover temperature and is inapplicable above that temperature. We compare the accuracy of the reaction rate constants calculated using recent semi-classical rate expressions to those from canonical instanton theory. We show that rate constants calculated purely from solving the stability matrix for the action in degrees of freedom orthogonal to the instanton path is not applicable at arbitrarily low temperatures and use two methods to overcome this. Furthermore, as a by-product of the developed methods, we derive a simple correction to canonical instanton theory that can alleviate this known overestimation of rate constants close to the crossover temperature. The combined methods accurately reproduce the rate constants of the canonical theory along the whole temperature range without the spurious overestimation near the crossover temperature. We calculate and compare rate constants on three different reactions: H in the Müller-Brown potential, methylhydroxycarbene → acetaldehyde and H 2 + OH → H + H 2 O. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Suto, Hirofumi; Kanao, Taro; Nagasawa, Tazumi; Mizushima, Koichi; Sato, Rie
2018-05-01
Microwave-assisted magnetization switching (MAS) is attracting attention as a method for reversing nanomagnets with a high magnetic anisotropy by using a small-amplitude magnetic field. We experimentally study MAS of a perpendicularly magnetized nanomagnet by applying a microwave magnetic field with a time-varying frequency. Because the microwave field frequency can follow the nonlinear decrease of the resonance frequency, larger magnetization excitation than that in a constant-frequency microwave field is induced, which enhances the MAS effect. The switching field decreases almost linearly as the start value of the time-varying microwave field frequency increases, and it becomes smaller than the minimum switching field in a constant-frequency microwave field. To obtain this enhancement of the MAS effect, the end value of the time-varying microwave field frequency needs to be almost the same as or lower than the critical frequency for MAS in a constant-frequency microwave field. In addition, the frequency change typically needs to take 1 ns or longer to make the rate of change slow enough for the magnetization to follow the frequency change. This switching behavior is qualitatively explained by the theory based on the macrospin model.
NASA Astrophysics Data System (ADS)
Arab, M.; Khodam-Mohammadi, A.
2018-03-01
As a deformed matter bounce scenario with a dark energy component, we propose a deformed one with running vacuum model (RVM) in which the dark energy density ρ _{Λ } is written as a power series of H^2 and \\dot{H} with a constant equation of state parameter, same as the cosmological constant, w=-1. Our results in analytical and numerical point of views show that in some cases same as Λ CDM bounce scenario, although the spectral index may achieve a good consistency with observations, a positive value of running of spectral index (α _s) is obtained which is not compatible with inflationary paradigm where it predicts a small negative value for α _s. However, by extending the power series up to H^4, ρ _{Λ }=n_0+n_2 H^2+n_4 H^4, and estimating a set of consistent parameters, we obtain the spectral index n_s, a small negative value of running α _s and tensor to scalar ratio r, which these reveal a degeneracy between deformed matter bounce scenario with RVM-DE and inflationary cosmology.
Trehalose delays the reversible but not the irreversible thermal denaturation of cutinase.
Baptista, R P; Cabral, J M; Melo, E P
2000-12-20
The effect of trehalose (0.5 M) on the thermal stability of cutinase in the alkaline pH range was studied. The thermal unfolding induced by increasing temperature was analyzed in the absence and in the presence of trehalose according to a two-state model (which assumes that only the folded and unfolded states of cutinase were present). Trehalose delays the reversible unfolding. The midpoint temperature of the unfolding transition (Tm) increases by 4.0 degrees C and 2. 6 degrees C at pH 9.2 and 10.5, respectively, in the presence of trehalose. At pH 9.2 the thermal unfolding occurs at higher temperatures (Tm is 52.6 degrees C compared to 42.0 degrees C at pH 10.5) and a refolding yield of around 80% was obtained upon cooling. This pH value was chosen to study the irreversible inactivation (long-term stability) of cutinase. Temperatures in the transition range from folded to unfolded state were selected and the rate constants of irreversible inactivation determined. Inactivation followed first-order kinetics and trehalose reduced the observed rate constants of inactivation, pointing to a stabilizing effect on the irreversible inactivation step of thermal denaturation. However, if the contribution of reversible unfolding on the irreversible inactivation of cutinase was taken into account, i.e., considering the fraction of cutinase molecules in the reversible unfolded conformation, the intrinsic rate constants can be calculated. Based on the intrinsic rate constants it was concluded that trehalose does not delay the irreversible inactivation. This conclusion was further supported by comparing the activation energy of the irreversible inactivation in the absence and in the presence of trehalose. The apparent activation energy in the absence and in the presence of trehalose were 67 and 99 Kcal/mol, respectively. The activation energy calculated from intrinsic rate constants was higher in the absence (30 Kcal/mol) than in the presence of trehalose (16 Kcal/mol), showing that kinetics of the irreversible inactivation step increased in the presence of trehalose. In fact, trehalose stabilized only the reversible step of thermal denaturation of cutinase.
Radiation Hardened, Modulator ASIC for High Data Rate Communications
NASA Technical Reports Server (NTRS)
McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene
2000-01-01
Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).
Vlot, Anna H C; de Witte, Wilhelmus E A; Danhof, Meindert; van der Graaf, Piet H; van Westen, Gerard J P; de Lange, Elizabeth C M
2017-12-04
Selectivity is an important attribute of effective and safe drugs, and prediction of in vivo target and tissue selectivity would likely improve drug development success rates. However, a lack of understanding of the underlying (pharmacological) mechanisms and availability of directly applicable predictive methods complicates the prediction of selectivity. We explore the value of combining physiologically based pharmacokinetic (PBPK) modeling with quantitative structure-activity relationship (QSAR) modeling to predict the influence of the target dissociation constant (K D ) and the target dissociation rate constant on target and tissue selectivity. The K D values of CB1 ligands in the ChEMBL database are predicted by QSAR random forest (RF) modeling for the CB1 receptor and known off-targets (TRPV1, mGlu5, 5-HT1a). Of these CB1 ligands, rimonabant, CP-55940, and Δ 8 -tetrahydrocanabinol, one of the active ingredients of cannabis, were selected for simulations of target occupancy for CB1, TRPV1, mGlu5, and 5-HT1a in three brain regions, to illustrate the principles of the combined PBPK-QSAR modeling. Our combined PBPK and target binding modeling demonstrated that the optimal values of the K D and k off for target and tissue selectivity were dependent on target concentration and tissue distribution kinetics. Interestingly, if the target concentration is high and the perfusion of the target site is low, the optimal K D value is often not the lowest K D value, suggesting that optimization towards high drug-target affinity can decrease the benefit-risk ratio. The presented integrative structure-pharmacokinetic-pharmacodynamic modeling provides an improved understanding of tissue and target selectivity.
Air To Air Helicopter Fire Control Equations and Software Generation.
1979-11-01
A A A A v D1. Bin), velocity (VTs, VTI. VTm). and acceleration (ATs, ATI. ATm) using the measured values of range. Rm. angular rate of the LOS W s...10 second time constant. Note that the input to each integrator also has cross channel coupling terms which are cross products of the LOS angular rate...ownship’s velocity (Vs. V1. Vm). This is subtracted from the estimated target velocity ( VsT . 01T. VmT) before the inal integration so that the
Initial statistics from the Perth Automated Supernova Search
NASA Astrophysics Data System (ADS)
Williams, A. J.
1997-08-01
The Perth Automated Supernova Search uses the 61-cm PLAT (Perth Lowell Automated Telescope) at Perth Observatory, Western Australia. Since 1993 January 1, five confirmed supernovae have been found by the search. The analysis of the first three years of data is discussed, and preliminary results presented. We find a Type Ib/c rate of 0.43 +/- 0.43 SNu, and a Type IIP rate of 0.86 +/- 0.49 SNu, where SNu are 'supernova units'. These values are for a Hubble constant of 75 km per sec per Mpc.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
Monge-Palacios, M; Rangel, C; Espinosa-Garcia, J
2013-02-28
A full-dimensional analytical potential energy surface (PES) for the OH + NH3 → H2O + NH2 gas-phase reaction was developed based exclusively on high-level ab initio calculations. This reaction presents a very complicated shape with wells along the reaction path. Using a wide spectrum of properties of the reactive system (equilibrium geometries, vibrational frequencies, and relative energies of the stationary points, topology of the reaction path, and points on the reaction swath) as reference, the resulting analytical PES reproduces reasonably well the input ab initio information obtained at the coupled-cluster single double triple (CCSD(T)) = FULL/aug-cc-pVTZ//CCSD(T) = FC/cc-pVTZ single point level, which represents a severe test of the new surface. As a first application, on this analytical PES we perform an extensive kinetics study using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 200-2000 K. The forward rate constants reproduce the experimental measurements, while the reverse ones are slightly underestimated. However, the detailed analysis of the experimental equilibrium constants (from which the reverse rate constants are obtained) permits us to conclude that the experimental reverse rate constants must be re-evaluated. Another severe test of the new surface is the analysis of the kinetic isotope effects (KIEs), which were not included in the fitting procedure. The KIEs reproduce the values obtained from ab initio calculations in the common temperature range, although unfortunately no experimental information is available for comparison.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Joseph A.; Shuman, Nicholas S.; Melko, Joshua J.
A novel technique using a flowing afterglow-Langmuir probe apparatus for measurement of temperature dependences of rate constants for dissociative recombination (DR) is presented. Low ({approx}10{sup 11} cm{sup -3}) concentrations of a neutral precursor are added to a noble gas/electron afterglow plasma thermalized at 300-500 K. Charge exchange yields one or many cation species, each of which may undergo DR. Relative ion concentrations are monitored at a fixed reaction time while the initial plasma density is varied between 10{sup 9} and 10{sup 10} cm{sup -3}. Modeling of the decrease in concentration of each cation relative to the non-recombining noble gas cationmore » yields the rate constant for DR. The technique is applied to several species (O{sub 2}{sup +}, CO{sub 2}{sup +}, CF{sub 3}{sup +}, N{sub 2}O{sup +}) with previously determined 300 K values, showing excellent agreement. The measurements of those species are extended to 500 K, with good agreement to literature values where they exist. Measurements are also made for a range of C{sub n}H{sub m}{sup +} (C{sub 7}H{sub 7}{sup +}, C{sub 7}H{sub 8}{sup +}, C{sub 5}H{sub 6}{sup +}, C{sub 4}H{sub 4}{sup +}, C{sub 6}H{sub 5}{sup +}, C{sub 3}H{sub 3}{sup +}, and C{sub 6}H{sub 6}{sup +}) derived from benzene and toluene neutral precursors. C{sub n}H{sub m}{sup +} DR rate constants vary from 8-12 Multiplication-Sign 10{sup -7} cm{sup 3} s{sup -1} at 300 K with temperature dependences of approximately T{sup -0.7}. Where prior measurements exist these results are in agreement, with the exception of C{sub 3}H{sub 3}{sup +} where the present results disagree with a previously reported flat temperature dependence.« less
Gritsan, N P; Gudmundsdóttir, A D; Tigelaar, D; Zhu, Z; Karney, W L; Hadad, C M; Platz, M S
2001-03-07
Laser flash photolysis (LFP, Nd:YAG laser, 35 ps, 266 nm, 10 mJ or KrF excimer laser, 10 ns, 249 nm, 50 mJ) of 2-fluoro, 4-fluoro, 3,5-difluoro, 2,6-difluoro, and 2,3,4,5,6-pentafluorophenyl azides produces the corresponding singlet nitrenes. The singlet nitrenes were detected by transient absorption spectroscopy, and their spectra are characterized by sharp absorption bands with maxima in the range of 300-365 nm. The kinetics of their decay were analyzed as a function of temperature to yield observed decay rate constants, k(OBS). The observed rate constant in inert solvents is the sum of k(R) + k(ISC) where k(R) is the absolute rate constant of rearrangement of singlet nitrene to an azirine and k(ISC) is the absolute rate constant of nitrene intersystem crossing (ISC). Values of k(R) and k(ISC) were deduced after assuming that k(ISC) is independent of temperature. Barriers to cyclization of 4-fluoro-, 3,5-difluoro-, 2-fluoro-, 2,6-difluoro-, and 2,3,4,5,6-pentafluorophenylnitrene in inert solvents are 5.3 +/- 0.3, 5.5 +/- 0.3, 6.7 +/- 0.3, 8.0 +/- 1.5, and 8.8 +/- 0.4 kcal/mol, respectively. The barrier to cyclization of parent singlet phenylnitrene is 5.6 +/- 0.3 kcal/mol. All of these values are in good quantitative agreement with CASPT2 calculations of the relative barrier heights for the conversion of fluoro-substituted singlet aryl nitrenes to benzazirines (Karney, W. L. and Borden, W. T. J. Am. Chem. Soc. 1997, 119, 3347). A single ortho-fluorine substituent exerts a small but significant bystander effect on remote cyclization that is not steric in origin. The influence of two ortho-fluorine substituents on the cyclization is pronounced. In the case of the singlet 2-fluorophenylnitrene system, evidence is presented that the benzazirine is an intermediate and that the corresponding singlet nitrene and benzazirine interconvert. Ab initio calculations at different levels of theory on a series of benzazirines, their isomeric ketenimines, and the transition states converting the benzazirines to ketenimines were performed. The computational results are in good qualitative and quantitative agreement with the experimental findings.
Rotor Re-Design for the SSME Fuel Flowmeter
NASA Technical Reports Server (NTRS)
Marcu, Bogdan
1999-01-01
The present report describes the process of redesigning a new rotor for the SSME Fuel Flowmeter. The new design addresses the specific requirement of a lower rotor speed which would allow the SSME operation at 1 15% rated power level without reaching a blade excitation by the wakes behind the hexagonal flow straightener upstream at frequencies close to the blade natural frequency. A series of calculations combining fleet flowmeters test data, airfoil fluid dynamics and CFD simulations of flow patterns behind the flowmeter's hexagonal straightener has led to a blade twist design alpha = alpha (radius) targeting a kf constant of 0.8256. The kf constant relates the fuel volume flow to the flowmeter rotor speed, for this particular value 17685 GPM at 3650 RPM. Based on this angle distribution, two actual blade designs were developed. A first design using the same blade airfoil as the original design targeted the new kf value only. A second design using a variable blade chord length and airfoil relative thickness targeted simultaneously the new kf value and an optimum blade design destined to provide smooth and stable operation and a significant increase in the blade natural frequency associated with the first bending mode, such that a comfortable margin could be obtained at 115% RPL. The second design is a result of a concurrent engineering process, during which several iterations were made in order to achieve a targeted blade natural frequency associated with the first bending mode of 1300 Hz. Water flow tests preliminary results indicate a kf value of 0.8179 for the f-irst design, which is within 1% of the target value. The second design rotor shows a natural frequency associated with the first bending mode of 1308 Hz, and a water-flow calibration constant of kf 0.8169.
Pierens, Gregory K; Venkatachalam, Taracad K; Reutens, David C
2016-12-01
Two- and three-bond coupling constants ( 2 J HC and 3 J HC ) were determined for a series of 12 substituted cinnamic acids using a selective 2D inphase/antiphase (IPAP)-single quantum multiple bond correlation (HSQMBC) and 1D proton coupled 13 C NMR experiments. The coupling constants from two methods were compared and found to give very similar values. The results showed coupling constant values ranging from 1.7 to 9.7 Hz and 1.0 to 9.6 Hz for the IPAP-HSQMBC and the direct 13 C NMR experiments, respectively. The experimental values of the coupling constants were compared with discrete density functional theory (DFT) calculated values and were found to be in good agreement for the 3 J HC . However, the DFT method under estimated the 2 J HC coupling constants. Knowing the limitations of the measurement and calculation of these multibond coupling constants will add confidence to the assignment of conformation or stereochemical aspects of complex molecules like natural products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, A.; Ghoshdastidar, P.S.
1999-07-01
In this paper, numerical simulation of injection mold-filling during the production of a cylindrical object under isothermal and non-isothermal conditions is presented. The material of the object is low density polyethylene (LDPE) following power-law viscosity model for non-zero shear rate zone. However, where shear rate becomes zero, zero-shear viscosity value has been used. Three cases have been considered, namely (1) Isothermal filling at constant injection pressure, (2) Isothermal filling at constant flow rate, and (3) Non-isothermal filling at constant flow rate. For the case-(3), the viscosity of LDPE is also a function of temperature. The material of the mold ismore » steel. For the non-isothermal filling, the concept of melt-mold thermal contact resistance coefficient has been incorporated in the model. The length and diameter of the body in all three cases have been taken as 0.254 m and 0.00508 m respectively. The finite-difference method has been used to solve the governing differential equations for the processes. The results show excellent agreement with the corresponding equations for the processes. The results show excellent agreement with the corresponding analytical solutions for the first two cases showing the correctness of the numerical method. The simulation results for non-isothermal filling show physically realistic trends and lend insight into various important aspects of mold-filling including frozen skin layer.« less