Sample records for rate control system

  1. Development of digital flow control system for multi-channel variable-rate sprayers

    USDA-ARS?s Scientific Manuscript database

    Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...

  2. Application of Calspan pitch rate control system to the Space Shuttle for approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.; Chalk, C. R.

    1983-01-01

    A pitch rate control system designed for use in the shuttle during approach and landing was analyzed and compared with a revised control system developed by NASA and the existing OFT control system. The design concept control system uses filtered pitch rate feedback with proportional plus integral paths in the forward loop. Control system parameters were designed as a function of flight configuration. Analysis included time and frequency domain techniques. Results indicate that both the Calspan and NASA systems significantly improve the flying qualities of the shuttle over the OFT. Better attitude and flight path control and less time delay are the primary reasons. The Calspan system is preferred because of reduced time delay and simpler mechanization. Further testing of the improved flight control systems in an in-flight simulator is recommended.

  3. An electronic flow control system for a variable-rate tree sprayer

    USDA-ARS?s Scientific Manuscript database

    Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...

  4. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    PubMed

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    PubMed

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  6. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  7. An improved lateral control wheel steering law for the Transport Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Ragsdale, W. A.

    1992-01-01

    A lateral control wheel steering law with improved performance was developed for the Transport Systems Research Vehicle (TSRV) simulation and used in the Microwave Landing System research project. The control law converted rotational hand controller inputs into roll rate commands, manipulated ailerons, spoilers, and the rudder to achieve the desired roll rates. The system included automatic turn coordination, track angle hold, and autopilot/autoland modes. The resulting control law produced faster roll rates (15 degrees/sec), quicker response to command reversals, and safer bank angle limits, while using a more concise program code.

  8. Nap environment control considering respiration rate and music tempo by using sensor agent robot

    NASA Astrophysics Data System (ADS)

    Nakaso, Sayaka; Mita, Akira

    2015-03-01

    We propose a system that controls a nap environment considering respiration rates and music tempo by using a sensor agent robot. The proposed system consists of two sub-systems. The first sub-system measures respiration rates using optical flow. We conducted preparatory experiments to verify the accuracy of this sub-system. The experimental results showed that this sub-system can measure the respiration rates accurately despite several positional relationships. It was also shown that the accuracy could be affected by clothes, movements and light. The second sub-system we constructed was the music play sub-system that chooses music with the certain tempo corresponding to the respiration rates measured by the first sub-system. We conducted verification experiments to verify the effectiveness of this music play sub-system. The experimental results showed the effectiveness of varying music tempo based on the respiration rates in taking a nap. We also demonstrated this system in a real environment; a subject entered into the room being followed by ebioNα. When the subject was considered sleeping, ebioNα started measuring respiration rates, controlling music based on the respiration rates. As a result, we showed that this system could be realized. As a next step, we would like to improve this system to a nap environment control system to be used in offices. To realize this, we need to update the first sub-system measuring respiration rates by removing disturbances. We also need to upgrade music play sub-system considering the numbers of tunes, the kinds of music and time to change music.

  9. Flight Evaluation of an Aircraft with Side and Center Stick Controllers and Rate-Limited Ailerons

    NASA Technical Reports Server (NTRS)

    Deppe, P. R.; Chalk, C. R.; Shafer, M. F.

    1996-01-01

    As part of an ongoing government and industry effort to study the flying qualities of aircraft with rate-limited control surface actuators, two studies were previously flown to examine an algorithm developed to reduce the tendency for pilot-induced oscillation when rate limiting occurs. This algorithm, when working properly, greatly improved the performance of the aircraft in the first study. In the second study, however, the algorithm did not initially offer as much improvement. The differences between the two studies caused concern. The study detailed in this paper was performed to determine whether the performance of the algorithm was affected by the characteristics of the cockpit controllers. Time delay and flight control system noise were also briefly evaluated. An in-flight simulator, the Calspan Learjet 25, was programmed with a low roll actuator rate limit, and the algorithm was programmed into the flight control system. Side- and center-stick controllers, force and position command signals, a rate-limited feel system, a low-frequency feel system, and a feel system damper were evaluated. The flight program consisted of four flights and 38 evaluations of test configurations. Performance of the algorithm was determined to be unaffected by using side- or center-stick controllers or force or position command signals. The rate-limited feel system performed as well as the rate-limiting algorithm but was disliked by the pilots. The low-frequency feel system and the feel system damper were ineffective. Time delay and noise were determined to degrade the performance of the algorithm.

  10. A comparison of position and rate control for telemanipulations with consideration of manipulator system dynamics

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tendick, Frank; Stark, Lawrence W.; Ellis, Stephen R.

    1987-01-01

    Position and rate control are the two common manual control modes in teleoperations. Human operator performance using the two modes is evaluated and compared. Simulated three-axis pick-and-place operations are used as the primary task for evaluation. First, ideal position and rate control are compared by considering several factors, such as joystick gain, joystick type, display mode, task, and manipulator work space size. Then the effects of the manipulator system dynamics are investigated by varying the natural frequency and speed limit. Experimental results show that ideal position control is superior to ideal rate control, regardless of joystick type or display mode, when the manipulation work space is small or comparable to the human operator's control space. Results also show that when the manipulator system is slow, the superiority of position control disappears. Position control is recommended for small-work-space telemanipulation tasks, while rate control is recommended for slow wide-work-space telemanipulation tasks.

  11. Initial Investigation of Reaction Control System Design on Spacecraft Handling Qualities for Earth Orbit Docking

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Jackson, E. Bruce; Goodrich, Kenneth H.; Ragsdale, W. Al; Neuhaus, Jason; Barnes, Jim

    2008-01-01

    A program of research, development, test, and evaluation is planned for the development of Spacecraft Handling Qualities guidelines. In this first experiment, the effects of Reaction Control System design characteristics and rotational control laws were evaluated during simulated proximity operations and docking. Also, the influence of piloting demands resulting from varying closure rates was assessed. The pilot-in-the-loop simulation results showed that significantly different spacecraft handling qualities result from the design of the Reaction Control System. In particular, cross-coupling between translational and rotational motions significantly affected handling qualities as reflected by Cooper-Harper pilot ratings and pilot workload, as reflected by Task-Load Index ratings. This influence is masked but only slightly by the rotational control system mode. While rotational control augmentation using Rate Command Attitude Hold can reduce the workload (principally, physical workload) created by cross-coupling, the handling qualities are not significantly improved. The attitude and rate deadbands of the RCAH introduced significant mental workload and control compensation to evaluate when deadband firings would occur, assess their impact on docking performance, and apply control inputs to mitigate that impact.

  12. Temperature Control. Honeywell Planning Guide.

    ERIC Educational Resources Information Center

    Honeywell, Inc., Minneapolis, Minn.

    Presents planning considerations in selecting proper temperature control systems. Various aspects are discussed including--(1) adequate environmental control, (2) adequate control area, (3) control system design, (4) operators rate their systems, (5) type of control components, (6) basic control system, (7) automatic control systems, and (8)…

  13. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  14. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.

    PubMed

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-20

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.

  15. Longitudinal Stability and Control Characteristics of a B-29 Airplane with a Booster Incorporated in the Elevator Control System to Provide Various Stick-Force and Control-Rate Characteristics

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W.; Talmage, Donald B.; Whitten, James B.

    1948-01-01

    The longitudinal stability and control characteristics of a B-29 airplane have been measured with a booster incorporated in the elevator control system. Tests were made to determine the effects on the handling qualities of the test airplane of variations in pilots control-force gradients as well as the effects of variations in the maximum rate of control motion supplied by the booster system.

  16. An error criterion for determining sampling rates in closed-loop control systems

    NASA Technical Reports Server (NTRS)

    Brecher, S. M.

    1972-01-01

    The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.

  17. Interaction of feel system and flight control system dynamics on lateral flying qualities

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Powers, Bruce G.; Shafer, Mary F.

    1988-01-01

    An investigation of feel system and flight control system dynamics on lateral flying qualities was conducted using the variable stability USAF NT-33 aircraft. Experimental variations in feel system natural frequency, force-deflection gradient, control system command architecture type, flight control system filter frequency, and control system delay were made. The experiment data include pilot ratings using the Cooper-Harper (1969) rating scale, pilot comments, and tracking performance statistic. Three test pilots served as evaluators. The data indicate that as the feel system natural frequency is reduced lateral flying qualities degrade. At the slowest feel system frequency, the closed-loop response becomes nonlinear with a 'bobweight' effect apparent in the feel system. Feel system influences were essentially independent of the control system architecture. The flying qualities influence due to the feel system was different than when the identical dynamic systenm was used as a flight control system element.

  18. Effect on Longitudinal Stability and Control Characteristics of a Boeing B-29 Airplane of Variations in Stick-Force and Control-Rate Characteristics Obtained Through Use of a Booster in the Elevator-Control System

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W; Talmage, Donald B; Whitten, James B

    1952-01-01

    A longitudinal stability and control characteristics of a Boeing B-29 airplane have been measured with a booster incorporated in the elevator-control system. Tests were made to determine the effects on the handling qualities of the test airplane of variations in the pilot's control-force gradients as well as the effects of variations in the maximum rate of control motion supplied by the booster. The results of the control-rate investigation indicate that large airplanes may have satisfactory handling qualities with the booster adjusted to give much lower rates of control motion than those normally used by pilots.

  19. Adaptive data rate control TDMA systems as a rain attenuation compensation technique

    NASA Technical Reports Server (NTRS)

    Sato, Masaki; Wakana, Hiromitsu; Takahashi, Takashi; Takeuchi, Makoto; Yamamoto, Minoru

    1993-01-01

    Rainfall attenuation has a severe effect on signal strength and impairs communication links for future mobile and personal satellite communications using Ka-band and millimeter wave frequencies. As rain attenuation compensation techniques, several methods such as uplink power control, site diversity, and adaptive control of data rate or forward error correction have been proposed. In this paper, we propose a TDMA system that can compensate rain attenuation by adaptive control of transmission rates. To evaluate the performance of this TDMA terminal, we carried out three types of experiments: experiments using a Japanese CS-3 satellite with Ka-band transponders, in house IF loop-back experiments, and computer simulations. Experimental results show that this TDMA system has advantages over the conventional constant-rate TDMA systems, as resource sharing technique, in both bit error rate and total TDMA burst lengths required for transmitting given information.

  20. A new rate-dependent model for high-frequency tracking performance enhancement of piezoactuator system

    NASA Astrophysics Data System (ADS)

    Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han

    2017-05-01

    Feedforward-feedback control is widely used in motion control of piezoactuator systems. Due to the phase lag caused by incomplete dynamics compensation, the performance of the composite controller is greatly limited at high frequency. This paper proposes a new rate-dependent model to improve the high-frequency tracking performance by reducing dynamics compensation error. The rate-dependent model is designed as a function of the input and input variation rate to describe the input-output relationship of the residual system dynamics which mainly performs as phase lag in a wide frequency band. Then the direct inversion of the proposed rate-dependent model is used to compensate the residual system dynamics. Using the proposed rate-dependent model as feedforward term, the open loop performance can be improved significantly at medium-high frequency. Then, combining the with feedback controller, the composite controller can provide enhanced close loop performance from low frequency to high frequency. At the frequency of 1 Hz, the proposed controller presents the same performance as previous methods. However, at the frequency of 900 Hz, the tracking error is reduced to be 30.7% of the decoupled approach.

  1. A robust variable sampling time BLDC motor control design based upon μ-synthesis.

    PubMed

    Hung, Chung-Wen; Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach.

  2. A Robust Variable Sampling Time BLDC Motor Control Design Based upon μ-Synthesis

    PubMed Central

    Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach. PMID:24327804

  3. Field Assessment of A Variable-rate Aerial Application System

    USDA-ARS?s Scientific Manuscript database

    Several experiments were conducted to evaluate the system response of a variable-rate aerial application controller to changing flow rates. The research is collaboration between the USDA, ARS, APTRU and Houma Avionics, USA, manufacturer of a widely used flow controller designed for agricultural airc...

  4. Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Fletcher, John; Burr, Patrick; Hall, Charles; Zheng, Bowen; Wang, Da-Wei; Ouyang, Zi; Lennon, Alison

    2018-04-01

    Photovoltaic (PV) systems can exhibit rapid variances in their power output due to irradiance changes which can destabilise an electricity grid. This paper presents a quantitative comparison of the suitability of different electrochemical energy storage system (ESS) technologies to provide ramp-rate control of power in PV systems. Our investigations show that, for PV systems ranging from residential rooftop systems to megawatt power systems, lithium-ion batteries with high energy densities (up to 600 Wh L-1) require the smallest power-normalised volumes to achieve the ramp rate limit of 10% min-1 with 100% compliance. As the system size increases, the ESS power-normalised volume requirements are significantly reduced due to aggregated power smoothing, with high power lithium-ion batteries becoming increasingly more favourable with increased PV system size. The possibility of module-level ramp-rate control is also introduced, and results show that achievement of a ramp rate of 10% min-1 with 100% compliance with typical junction box sizes will require ESS energy and power densities of 400 Wh L-1 and 2300 W L-1, respectively. While module-level ramp-rate control can reduce the impact of solar intermittence, the requirement is challenging, especially given the need for low cost and long cycle life.

  5. ACTS TDMA network control. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  6. Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production.

    PubMed

    Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee

    2010-01-01

    Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.

  7. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  8. An analysis of the Dahl friction model and its effect on a CMG gimbal rate controller

    NASA Technical Reports Server (NTRS)

    Nurre, G. S.

    1974-01-01

    The effects of friction, represented by the Dahl model, on a CMG rate control system was investigated by digital simulation. The conclusion from these simulation results is that gimbal pivot friction can be a significant effect on the gimbal rate control system. The magnitude of the problem this presents depends on the characteristics of the actual pivot. It would appear from this preliminary look that one solution is to insure that the control system natural frequency is higher by some prescribed amount than the natural frequency of the friction loop.

  9. [Construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province].

    PubMed

    Zhao-Hui, Zheng; Jun, Qin; Li, Chen; Hong, Zhu; Li, Tang; Zu-Wu, Tu; Ming-Xing, Zeng; Qian, Sun; Shun-Xiang, Cai

    2016-10-09

    To analyze the construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province, so as to provide the reference for the standardized detection and management of schistosomiasis laboratories. According to the laboratory standard of schistosomiasis at provincial, municipal and county levels, the management system construction and operation status of 60 schistosomiasis control institutions was assessed by the acceptance examination method from 2013 to 2015. The management system was already occupied over all the laboratories of schistosomiasis control institutions and was officially running. There were 588 non-conformities and the inconsistency rate was 19.60%. The non-conformity rate of the management system of laboratory quality control was 38.10% (224 cases) and the non-conformity rate of requirements of instrument and equipment was 23.81% (140 cases). The management system has played an important role in the standardized management of schistosomiasis laboratories.

  10. Electric motor assisted bicycle as an aerobic exercise machine.

    PubMed

    Nagata, T; Okada, S; Makikawa, M

    2012-01-01

    The goal of this study is to maintain a continuous level of exercise intensity around the aerobic threshold (AT) during riding on an electric motor assisted bicycle using a new control system of electrical motor assistance which uses the efficient pedaling rate of popular bicycles. Five male subjects participated in the experiment, and the oxygen uptake was measured during cycling exercise using this new pedaling rate control system of electrical motor assistance, which could maintain the pedaling rate within a specific range, similar to that in previous type of electrically assisted bicycles. Results showed that this new pedaling rate control system at 65 rpm ensured continuous aerobic exercise intensity around the AT in two subjects, and this intensity level was higher than that observed in previous type. However, certain subjects were unable to maintain the expected exercise intensity because of their particular cycling preferences such as the pedaling rate. It is necessary to adjust the specific pedaling rate range of the electrical motor assist control according to the preferred pedaling rate, so that this system becomes applicable to anyone who want continuous aerobic exercise.

  11. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System

    PubMed Central

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-01

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833

  12. Computer optimization techniques for NASA Langley's CSI evolutionary model's real-time control system

    NASA Technical Reports Server (NTRS)

    Elliott, Kenny B.; Ugoletti, Roberto; Sulla, Jeff

    1992-01-01

    The evolution and optimization of a real-time digital control system is presented. The control system is part of a testbed used to perform focused technology research on the interactions of spacecraft platform and instrument controllers with the flexible-body dynamics of the platform and platform appendages. The control system consists of Computer Automated Measurement and Control (CAMAC) standard data acquisition equipment interfaced to a workstation computer. The goal of this work is to optimize the control system's performance to support controls research using controllers with up to 50 states and frame rates above 200 Hz. The original system could support a 16-state controller operating at a rate of 150 Hz. By using simple yet effective software improvements, Input/Output (I/O) latencies and contention problems are reduced or eliminated in the control system. The final configuration can support a 16-state controller operating at 475 Hz. Effectively the control system's performance was increased by a factor of 3.

  13. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    NASA Technical Reports Server (NTRS)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  14. 93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND SYSTEM 2, FACING WEST IN MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Characteristics of Health Care Practices and Systems That Excel in Hypertension Control.

    PubMed

    Young, An; Ritchey, Matthew D; George, Mary G; Hannan, Judy; Wright, Janet

    2018-06-07

    Approximately 1 in 3 US adults has hypertension, but only half have their blood pressure controlled. We identified characteristics of health care practices and systems (hereinafter practices) effective in achieving control rates at or above 70% by using data collected via applications submitted from April through June 2017 for consideration in the Million Hearts Hypertension Control Challenge. We included 96 practices serving 635,000 patients with hypertension across 34 US states in the analysis. Mean hypertension control rate was 77.1%; 27.1% of practices had a control rate of 80% or greater. Although many practices served large populations with multiple risk factors for uncontrolled hypertension, high control rates were achieved with implementation of evidenced-based strategies.

  16. Analysis of Aircraft Control Performance using a Fuzzy Rule Base Representation of the Cooper-Harper Aircraft Handling Quality Rating

    NASA Technical Reports Server (NTRS)

    Tseng, Chris; Gupta, Pramod; Schumann, Johann

    2006-01-01

    The Cooper-Harper rating of Aircraft Handling Qualities has been adopted as a standard for measuring the performance of aircraft since it was introduced in 1966. Aircraft performance, ability to control the aircraft, and the degree of pilot compensation needed are three major key factors used in deciding the aircraft handling qualities in the Cooper- Harper rating. We formulate the Cooper-Harper rating scheme as a fuzzy rule-based system and use it to analyze the effectiveness of the aircraft controller. The automatic estimate of the system-level handling quality provides valuable up-to-date information for diagnostics and vehicle health management. Analyzing the performance of a controller requires a set of concise design requirements and performance criteria. Ir, the case of control systems fm a piloted aircraft, generally applicable quantitative design criteria are difficult to obtain. The reason for this is that the ultimate evaluation of a human-operated control system is necessarily subjective and, with aircraft, the pilot evaluates the aircraft in different ways depending on the type of the aircraft and the phase of flight. In most aerospace applications (e.g., for flight control systems), performance assessment is carried out in terms of handling qualities. Handling qualities may be defined as those dynamic and static properties of a vehicle that permit the pilot to fully exploit its performance in a variety of missions and roles. Traditionally, handling quality is measured using the Cooper-Harper rating and done subjectively by the human pilot. In this work, we have formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with performance, control, and compensation as the antecedents, and pilot rating as the consequent. Appropriate direct measurements on the controller are related to the fuzzy Cooper-Harper rating system: a stability measurement like the rate of change of the cost function can be used as an indicator if the aircraft is under control; the tracking error is a good measurement for performance needed in the rating scheme. Finally, the change of the control amount or the output of a confidence tool, which has been developed by the authors, can be used as an indication of pilot compensation. We use a number of known aircraft flight scenarios with known pilot ratings to calibrate our fuzzy membership functions. These include normal flight conditions and situations in which partial or complete failure of tail, aileron, engine, or throttle occurs.

  17. Aerial applications dispersal systems control requirements study. [agriculture

    NASA Technical Reports Server (NTRS)

    Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.

    1980-01-01

    Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.

  18. Solar energy thermally powered electrical generating system

    NASA Technical Reports Server (NTRS)

    Owens, William R. (Inventor)

    1989-01-01

    A thermally powered electrical generating system for use in a space vehicle is disclosed. The rate of storage in a thermal energy storage medium is controlled by varying the rate of generation and dissipation of electrical energy in a thermally powered electrical generating system which is powered from heat stored in the thermal energy storage medium without exceeding a maximum quantity of heat. A control system (10) varies the rate at which electrical energy is generated by the electrical generating system and the rate at which electrical energy is consumed by a variable parasitic electrical load to cause storage of an amount of thermal energy in the thermal energy storage system at the end of a period of insolation which is sufficient to satisfy the scheduled demand for electrical power to be generated during the next period of eclipse. The control system is based upon Kalman filter theory.

  19. Sliding Mode Thermal Control System for Space Station Furnace Facility

    NASA Technical Reports Server (NTRS)

    Jackson Mark E.; Shtessel, Yuri B.

    1998-01-01

    The decoupled control of the nonlinear, multiinput-multioutput, and highly coupled space station furnace facility (SSFF) thermal control system is addressed. Sliding mode control theory, a subset of variable-structure control theory, is employed to increase the performance, robustness, and reliability of the SSFF's currently designed control system. This paper presents the nonlinear thermal control system description and develops the sliding mode controllers that cause the interconnected subsystems to operate in their local sliding modes, resulting in control system invariance to plant uncertainties and external and interaction disturbances. The desired decoupled flow-rate tracking is achieved by optimization of the local linear sliding mode equations. The controllers are implemented digitally and extensive simulation results are presented to show the flow-rate tracking robustness and invariance to plant uncertainties, nonlinearities, external disturbances, and variations of the system pressure supplied to the controlled subsystems.

  20. Simulation comparison of a decoupled longitudinal control system and a velocity vector control wheel steering system during landings in wind shear

    NASA Technical Reports Server (NTRS)

    Kimball, G., Jr.

    1980-01-01

    A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.

  1. Combined Diffusion Tensor Imaging and Apparent Transverse Relaxation Rate Differentiate Parkinson Disease and Atypical Parkinsonism.

    PubMed

    Du, G; Lewis, M M; Kanekar, S; Sterling, N W; He, L; Kong, L; Li, R; Huang, X

    2017-05-01

    Both diffusion tensor imaging and the apparent transverse relaxation rate have shown promise in differentiating Parkinson disease from atypical parkinsonism (particularly multiple system atrophy and progressive supranuclear palsy). The objective of the study was to assess the ability of DTI, the apparent transverse relaxation rate, and their combination for differentiating Parkinson disease, multiple system atrophy, progressive supranuclear palsy, and controls. A total of 106 subjects (36 controls, 35 patients with Parkinson disease, 16 with multiple system atrophy, and 19 with progressive supranuclear palsy) were included. DTI and the apparent transverse relaxation rate measures from the striatal, midbrain, limbic, and cerebellar regions were obtained and compared among groups. The discrimination performance of DTI and the apparent transverse relaxation rate among groups was assessed by using Elastic-Net machine learning and receiver operating characteristic curve analysis. Compared with controls, patients with Parkinson disease showed significant apparent transverse relaxation rate differences in the red nucleus. Compared to those with Parkinson disease, patients with both multiple system atrophy and progressive supranuclear palsy showed more widespread changes, extending from the midbrain to striatal and cerebellar structures. The pattern of changes, however, was different between the 2 groups. For instance, patients with multiple system atrophy showed decreased fractional anisotropy and an increased apparent transverse relaxation rate in the subthalamic nucleus, whereas patients with progressive supranuclear palsy showed an increased mean diffusivity in the hippocampus. Combined, DTI and the apparent transverse relaxation rate were significantly better than DTI or the apparent transverse relaxation rate alone in separating controls from those with Parkinson disease/multiple system atrophy/progressive supranuclear palsy; controls from those with Parkinson disease; those with Parkinson disease from those with multiple system atrophy/progressive supranuclear palsy; and those with Parkinson disease from those with multiple system atrophy; but not those with Parkinson disease from those with progressive supranuclear palsy, or those with multiple system atrophy from those with progressive supranuclear palsy. DTI and the apparent transverse relaxation rate provide different but complementary information for different parkinsonisms. Combined DTI and apparent transverse relaxation rate may be a superior marker for the differential diagnosis of parkinsonisms. © 2017 by American Journal of Neuroradiology.

  2. An in flight investigation of pitch rate flight control systems and application of frequency domain and time domain predictive criteria

    NASA Technical Reports Server (NTRS)

    Berthe, C. J.; Chalk, C. R.; Sarrafian, S.

    1984-01-01

    The degree of attitude control provided by current integral-proportional pitch rate command-type control systems, while a prerequisite for flared landing, is insufficient for 'Level 1' performance. The pilot requires 'surrogate' feedback cues to precisely control flight path in the landing flare. Monotonic stick forces and pilot station vertical acceleration are important cues which can be provided by means of angle-of-attack and pitch rate feedback in order to achieve conventional short period and phugoid characteristics. Integral-proportional pitch rate flight control systems can be upgraded to Level 1 flared landing performance by means of lead/lag and washout prefilters in the command path. Strong pilot station vertical acceleration cues can provide Level 1 flared landing performance even in the absence of monotonic stick forces.

  3. Total energy based flight control system

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1985-01-01

    An integrated aircraft longitudinal flight control system uses a generalized thrust and elevator command computation (38), which accepts flight path angle, longitudinal acceleration command signals, along with associated feedback signals, to form energy rate error (20) and energy rate distribution error (18) signals. The engine thrust command is developed (22) as a function of the energy rate distribution error and the elevator position command is developed (26) as a function of the energy distribution error. For any vertical flight path and speed mode the outerloop errors are normalized (30, 34) to produce flight path angle and longitudinal acceleration commands. The system provides decoupled flight path and speed control for all control modes previously provided by the longitudinal autopilot, autothrottle and flight management systems.

  4. A pilot rating scale for evaluating failure transients in electronic flight control systems

    NASA Technical Reports Server (NTRS)

    Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.

    1990-01-01

    A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.

  5. Evaluation of Application Accuracy and Performance of a Hydraulically Operated Variable-Rate Aerial Application System

    USDA-ARS?s Scientific Manuscript database

    An aerial variable-rate application system consisting of a DGPS-based guidance system, automatic flow controller, and hydraulically controlled pump/valve was evaluated for response time to rapidly changing flow requirements and accuracy of application. Spray deposition position error was evaluated ...

  6. A system for calibrating seepage meters used to measure flow between ground water and surface water

    USGS Publications Warehouse

    Rosenberry, Donald O.; Menheer, Michael A.

    2006-01-01

    The in-line flowmeter used with this system is incapable of measuring seepage rates below about 7 centimeters per day. Smaller seepage rates can be measured manually. The seepage- control system also can be modified for measuring slower seepage rates with the use of two flowmeters and a slightly different water-routing system, or a fluid-metering pump can be used to control flow through the flux tank instead of an adjustable-height reservoir.

  7. Growth control of the eukaryote cell: a systems biology study in yeast.

    PubMed

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David Cj; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom Pj; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.

  8. Growth control of the eukaryote cell: a systems biology study in yeast

    PubMed Central

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David CJ; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom PJ; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell. PMID:17439666

  9. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  10. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  11. Piloted simulator investigation of helicopter control systems effects on handling qualities during instrument flight

    NASA Technical Reports Server (NTRS)

    Forrest, R. D.; Chen, R. T. N.; Gerdes, R. M.; Alderete, T. S.; Gee, D. R.

    1979-01-01

    An exploratory piloted simulation was conducted to investigate the effects of the characteristics of helicopter flight control systems on instrument flight handling qualities. This joint FAA/NASA study was motivated by the need to improve instrument flight capability. A near-term objective is to assist in updating the airworthiness criteria for helicopter instrument flight. The experiment consisted of variations of single-rotor helicopter types and levels of stability and control augmentation systems (SCAS). These configurations were evaluated during an omnirange approach task under visual and instrument flight conditions. The levels of SCAS design included a simple rate damping system, collective decoupling plus rate damping, and an attitude command system with collective decoupling. A limited evaluation of stick force versus airspeed stability was accomplished. Some problems were experienced with control system mechanization which had a detrimental effect on longitudinal stability. Pilot ratings, pilot commentary, and performance data related to the task are presented.

  12. Study on application of adaptive fuzzy control and neural network in the automatic leveling system

    NASA Astrophysics Data System (ADS)

    Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng

    2015-04-01

    This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.

  13. Enhancing vehicle cornering limit through sideslip and yaw rate control

    NASA Astrophysics Data System (ADS)

    Lu, Qian; Gentile, Pierangelo; Tota, Antonio; Sorniotti, Aldo; Gruber, Patrick; Costamagna, Fabio; De Smet, Jasper

    2016-06-01

    Fully electric vehicles with individually controlled drivetrains can provide a high degree of drivability and vehicle safety, all while increasing the cornering limit and the 'fun-to-drive' aspect. This paper investigates a new approach on how sideslip control can be integrated into a continuously active yaw rate controller to extend the limit of stable vehicle cornering and to allow sustained high values of sideslip angle. The controllability-related limitations of integrated yaw rate and sideslip control, together with its potential benefits, are discussed through the tools of multi-variable feedback control theory and non-linear phase-plane analysis. Two examples of integrated yaw rate and sideslip control systems are presented and their effectiveness is experimentally evaluated and demonstrated on a four-wheel-drive fully electric vehicle prototype. Results show that the integrated control system allows safe operation at the vehicle cornering limit at a specified sideslip angle independent of the tire-road friction conditions.

  14. The study on the evaluation of the pollution control situation of the sewage systems in the counties and cities of Taiwan by applying the VIKOR method.

    PubMed

    Kuo, Jun-Yuan

    2017-12-01

    Currently, the pollution control situation of the sewage systems across Taiwan can be divided into the two major sewage systems, namely, industrial area sewage and public community sewage. When the counties and cities of Taiwan cannot effectively control the sewage pollution situation, ecological pollution of the environment and personal health damage would result. Therefore, evaluating the pollution control situation of the sewage systems can help the environmental protection authorities developing strategies for the pollution control of the sewage systems in the future. In this study, the Vise Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method was applied to evaluate the pollution control situation of the sewage systems. The water sample test qualification rate, the emission permit issuance rate, and the staff setting rate of the dedicated wastewater treatment company were used as the pollution control evaluation indexes. According to the results, the use of the VIKOR method to evaluate the pollution control situation of the sewage systems is effective. In cities and counties in Taiwan, public community sewage systems, dedicated to pollution control case, the public community should be actively coached in emission control technology to upgrade sewage capacity, the issuance of discharge permits, and the staff setting rate of the dedicated wastewater treatment, to improve public community sewage pollution control system capabilities. In Taiwan, the industrial area sewage systems, dedicated to pollution control situations, must pay attention to business units in raw materials, spare part inventory, and machine supplier of choice, and we must choose to meet environmental supply chain of green suppliers, which would be effective in reducing effluent produce and improve water sample test qualification rate. The VIKOR value of Yilan County is 1.0000, which is the worst in the pollution control of all the industrial area sewage systems, followed by Taoyuan County (0.2253) and Kaohsiung City (0.1334). Other cities and counties of Taiwan have good performance in the pollution control of the industrial area sewage systems. The VIKOR value of Kinmen County is 1.0000, which is the worst pollution control among the all public community sewage systems, followed by Hsinchu County (0.7458) and New Taipei City (0.5527). Among the cities and counties with good pollution control of the public community sewage systems, the best is Chiayi County (0.0000), followed by Kaohsiung City (0.0159) and Hsinchu City (0.0352). Chiayi County is a good performance compromise between all VIKOR values (0.0000), whether in industrial or public community area pollution control sewage systems. Yilan County industrial pollution control has the poorest performance of all the industrial area sewage systems in Taiwan, but in the public community, it ranked as fourth place of all the public community area sewage systems in Taiwan. The VIKOR method proposed in this study can effectively evaluate the pollution control situation of the sewage systems, and serve as a reference for the environmental protection authorities in developing the strategies for the pollution control of the sewage systems.

  15. Columbus Payloads Flow Rate Anomalies

    NASA Technical Reports Server (NTRS)

    Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.

    2011-01-01

    The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.

  16. Dynamic neural networking as a basis for plasticity in the control of heart rate.

    PubMed

    Kember, G; Armour, J A; Zamir, M

    2013-01-21

    A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Observer-based sliding mode control of Markov jump systems with random sensor delays and partly unknown transition rates

    NASA Astrophysics Data System (ADS)

    Yao, Deyin; Lu, Renquan; Xu, Yong; Ren, Hongru

    2017-10-01

    In this paper, the sliding mode control problem of Markov jump systems (MJSs) with unmeasured state, partly unknown transition rates and random sensor delays is probed. In the practical engineering control, the exact information of transition rates is hard to obtain and the measurement channel is supposed to subject to random sensor delay. Design a Luenberger observer to estimate the unmeasured system state, and an integral sliding mode surface is constructed to ensure the exponential stability of MJSs. A sliding mode controller based on estimator is proposed to drive the system state onto the sliding mode surface and render the sliding mode dynamics exponentially mean-square stable with H∞ performance index. Finally, simulation results are provided to illustrate the effectiveness of the proposed results.

  18. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  19. An analysis of a nonlinear instability in the implementation of a VTOL control system

    NASA Technical Reports Server (NTRS)

    Weber, J. M.

    1982-01-01

    The contributions to nonlinear behavior and unstable response of the model following yaw control system of a VTOL aircraft during hover were determined. The system was designed as a state rate feedback implicit model follower that provided yaw rate command/heading hold capability and used combined full authority parallel and limited authority series servo actuators to generate an input to the yaw reaction control system of the aircraft. Both linear and nonlinear system models, as well as describing function linearization techniques were used to determine the influence on the control system instability of input magnitude and bandwidth, series servo authority, and system bandwidth. Results of the analysis describe stability boundaries as a function of these system design characteristics.

  20. Oil field management system

    DOEpatents

    Fincke, James R.

    2003-09-23

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  1. System and method for determining an ammonia generation rate in a three-way catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Min; Perry, Kevin L; Kim, Chang H

    A system according to the principles of the present disclosure includes a rate determination module, a storage level determination module, and an air/fuel ratio control module. The rate determination module determines an ammonia generation rate in a three-way catalyst based on a reaction efficiency and a reactant level. The storage level determination module determines an ammonia storage level in a selective catalytic reduction (SCR) catalyst positioned downstream from the three-way catalyst based on the ammonia generation rate. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the ammonia storage level.

  2. Left hemisphere specialization for the control of voluntary movement rate.

    PubMed

    Agnew, John A; Zeffiro, Thomas A; Eden, Guinevere F

    2004-05-01

    Although persuasive behavioral evidence demonstrates the superior dexterity of the right hand in most people under a variety of conditions, little is known about the neural mechanisms responsible for this phenomenon. As this lateralized superiority is most evident during the performance of repetitive, speeded movement, we used parametric rate variations to compare visually paced movement of the right and left hands. Twelve strongly right-handed subjects participated in a functional magnetic resonance imaging (fMRI) experiment involving variable rate thumb movements. For movements of the right hand, contralateral rate-related activity changes were identified in the precentral gyrus, thalamus, and posterior putamen. For left-hand movements, activity was seen only in the contralateral precentral gyrus, consistent with the existence of a rate-sensitive motor control subsystem involving the left, but not the right, medial premotor corticostriatal loop in right-handed individuals. We hypothesize that the right hemisphere system is less skilled at controlling variable-rate movements and becomes maximally engaged at a lower movement rate without further modulation. These findings demonstrate that right- and left-hand movements engage different neural systems to control movement, even during a relatively simple thumb flexion task. Specialization of the left hemisphere corticostriatal system for dexterity is reflected in asymmetric mechanisms for movement rate control.

  3. Self-optimizing Pitch Control for Large Scale Wind Turbine Based on ADRC

    NASA Astrophysics Data System (ADS)

    Xia, Anjun; Hu, Guoqing; Li, Zheng; Huang, Dongxiao; Wang, Fengxiang

    2018-01-01

    Since wind turbine is a complex nonlinear and strong coupling system, traditional PI control method can hardly achieve good control performance. A self-optimizing pitch control method based on the active-disturbance-rejection control theory is proposed in this paper. A linear model of the wind turbine is derived by linearizing the aerodynamic torque equation and the dynamic response of wind turbine is transformed into a first-order linear system. An expert system is designed to optimize the amplification coefficient according to the pitch rate and the speed deviation. The purpose of the proposed control method is to regulate the amplification coefficient automatically and keep the variations of pitch rate and rotor speed in proper ranges. Simulation results show that the proposed pitch control method has the ability to modify the amplification coefficient effectively, when it is not suitable, and keep the variations of pitch rate and rotor speed in proper ranges

  4. Effects on Longitudinal Stability and Control Characteristics of a B-29 Airplane of Variations in Stick-force and Control-rate Characteristics Obtained Through Use of a Booster in the Elevator-control System

    NASA Technical Reports Server (NTRS)

    Mathews, Charles W; Talmage, Donald B; Whitten, James B

    1951-01-01

    The longitudinal stability and control characteristics of a B-29 airplane have been measured with a control surface booster incorporated in the elevator-control system. The measurements were obtained with the booster operating to provide various control-force gradients and various maximum rates of control motion. Results are presented which show the effect of these booster parameters on the handling qualities of the test airplane.

  5. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.

  6. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays

    PubMed Central

    Salt, Julián; Guinaldo, María; Chacón, Jesús

    2018-01-01

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant. PMID:29747441

  7. Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays.

    PubMed

    Aranda-Escolástico, Ernesto; Salt, Julián; Guinaldo, María; Chacón, Jesús; Dormido, Sebastián

    2018-05-09

    In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n -input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.

  8. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    NASA Astrophysics Data System (ADS)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  9. A Position and Rate Control System: An Ingredient for Budget Planning.

    ERIC Educational Resources Information Center

    Gilbert, Linda L.

    A position and rate control system was undertaken at Florida State University in 1974 to alleviate the problems of the manual budgeting system. The budget master file was created biweekly by combining a subset of the current payroll/personnel data base with the updated budget information from the previous budget master file, keying on positional…

  10. Vote Stuffing Control in IPTV-based Recommender Systems

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajen

    Vote stuffing is a general problem in the functioning of the content rating-based recommender systems. Currently IPTV viewers browse various contents based on the program ratings. In this paper, we propose a fuzzy clustering-based approach to remove the effects of vote stuffing and consider only the genuine ratings for the programs over multiple genres. The approach requires only one authentic rating, which is generally available from recommendation system administrators or program broadcasters. The entire process is automated using fuzzy c-means clustering. Computational experiments performed over one real-world program rating database shows that the proposed approach is very efficient for controlling vote stuffing.

  11. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  12. Method and apparatus for rate integration supplement for attitude referencing with quaternion differencing

    NASA Technical Reports Server (NTRS)

    Rodden, John James (Inventor); Price, Xenophon (Inventor); Carrou, Stephane (Inventor); Stevens, Homer Darling (Inventor)

    2002-01-01

    A control system for providing attitude control in spacecraft. The control system comprising a primary attitude reference system, a secondary attitude reference system, and a hyper-complex number differencing system. The hyper-complex number differencing system is connectable to the primary attitude reference system and the secondary attitude reference system.

  13. Embedded computer controlled premixing inline injection system for air-assisted variable-rate sprayers

    USDA-ARS?s Scientific Manuscript database

    Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...

  14. Alcator C-Mod Digital Plasma Control System

    NASA Astrophysics Data System (ADS)

    Wolfe, S. M.

    2005-10-01

    A new digital plasma control system (DPCS) has been implemented for Alcator C-Mod. The new system was put into service at the start of the 2005 run campaign and has been in routine operation since. The system consists of two 64-input, 16-output cPCI digitizers attached to a rack-mounted single-CPU Linux server, which performs both the I/O and the computation. During initial operation, the system was set up to directly emulate the original C-Mod ``Hybrid'' MIMO linear control system. Compatibility with the previous control system allows the existing user interface software and data structures to be used with the new hardware. The control program is written in IDL and runs under standard Linux. Interrupts are disabled during the plasma pulses to achieve real-time operation. A synchronous loop is executed with a nominal cycle rate of 10 kHz. Emulation of the original linear control algorithms requires 50 μsec per iteration, with the time evenly split between I/O and computation, so rates of about 20 KHz are achievable. Reliable vertical position control has been demonstrated with cycle rates as low as 5 KHz. Additional computations, including non-linear algorithms and adaptive response, are implemented as optional procedure calls within the main real-time loop.

  15. Biologically inspired rate control of chaos.

    PubMed

    Olde Scheper, Tjeerd V

    2017-10-01

    The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.

  16. 14 CFR 25.331 - Symmetric maneuvering conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Where sudden displacement of a control is specified, the assumed rate of control surface displacement... torque or maximum rate obtainable by a power control system.) (1) Maximum pitch control displacement at V..., whichever occurs first, need not be considered. (2) Specified control displacement. A checked maneuver...

  17. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  18. Observer-based robust finite time H∞ sliding mode control for Markovian switching systems with mode-dependent time-varying delay and incomplete transition rate.

    PubMed

    Gao, Lijun; Jiang, Xiaoxiao; Wang, Dandan

    2016-03-01

    This paper investigates the problem of robust finite time H∞ sliding mode control for a class of Markovian switching systems. The system is subjected to the mode-dependent time-varying delay, partly unknown transition rate and unmeasurable state. The main difficulty is that, a sliding mode surface cannot be designed based on the unknown transition rate and unmeasurable state directly. To overcome this obstacle, the set of modes is firstly divided into two subsets standing for known transition rate subset and unknown one, based on which a state observer is established. A component robust finite-time sliding mode controller is also designed to cope with the effect of partially unknown transition rate. It is illustrated that the reachability, finite-time stability, finite-time boundedness, finite-time H∞ state feedback stabilization of sliding mode dynamics can be ensured despite the unknown transition rate. Finally, the simulation results verify the effectiveness of robust finite time control problem. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. A software control system for the ACTS high-burst-rate link evaluation terminal

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Daugherty, Elaine S.

    1991-01-01

    Control and performance monitoring of NASA's High Burst Rate Link Evaluation Terminal (HBR-LET) is accomplished by using several software control modules. Different software modules are responsible for controlling remote radio frequency (RF) instrumentation, supporting communication between a host and a remote computer, controlling the output power of the Link Evaluation Terminal and data display. Remote commanding of microwave RF instrumentation and the LET digital ground terminal allows computer control of various experiments, including bit error rate measurements. Computer communication allows system operators to transmit and receive from the Advanced Communications Technology Satellite (ACTS). Finally, the output power control software dynamically controls the uplink output power of the terminal to compensate for signal loss due to rain fade. Included is a discussion of each software module and its applications.

  20. Polarization control of spontaneous emission for rapid quantum-state initialization

    NASA Astrophysics Data System (ADS)

    DiLoreto, C. S.; Rangan, C.

    2017-04-01

    We propose an efficient method to selectively enhance the spontaneous emission rate of a quantum system by changing the polarization of an incident control field, and exploiting the polarization dependence of the system's spontaneous emission rate. This differs from the usual Purcell enhancement of spontaneous emission rates as it can be selectively turned on and off. Using a three-level Λ system in a quantum dot placed in between two silver nanoparticles and a linearly polarized, monochromatic driving field, we present a protocol for rapid quantum state initialization, while maintaining long coherence times for control operations. This process increases the overall amount of time that a quantum system can be effectively utilized for quantum operations, and presents a key advance in quantum computing.

  1. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  2. Development of an intelligent system for cooling rate and fill control in GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.

    1992-09-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less

  3. Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.

    1992-01-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less

  4. Motion-Based Piloted Simulation Evaluation of a Control Allocation Technique to Recover from Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Leonard, Michael W.; Hardy, Gordon H.; Weinstein, Michael; Yildiz, Yildiray

    2013-01-01

    This paper describes the maturation of a control allocation technique designed to assist pilots in the recovery from pilot induced oscillations (PIOs). The Control Allocation technique to recover from Pilot Induced Oscillations (CAPIO) is designed to enable next generation high efficiency aircraft designs. Energy efficient next generation aircraft require feedback control strategies that will enable lowering the actuator rate limit requirements for optimal airframe design. One of the common issues flying with actuator rate limits is PIOs caused by the phase lag between the pilot inputs and control surface response. CAPIO utilizes real-time optimization for control allocation to eliminate phase lag in the system caused by control surface rate limiting. System impacts of the control allocator were assessed through a piloted simulation evaluation of a non-linear aircraft simulation in the NASA Ames Vertical Motion Simulator. Results indicate that CAPIO helps reduce oscillatory behavior, including the severity and duration of PIOs, introduced by control surface rate limiting.

  5. Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.

    PubMed

    Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He

    2010-01-01

    For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method. 2009 ISA. Published by Elsevier Ltd. All rights reserved.

  6. 14 CFR 25.693 - Joints.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.693 Joints. Control... in cable control systems. For ball or roller bearings, the approved ratings may not be exceeded...

  7. 14 CFR 25.693 - Joints.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.693 Joints. Control... in cable control systems. For ball or roller bearings, the approved ratings may not be exceeded...

  8. 14 CFR 25.693 - Joints.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.693 Joints. Control... in cable control systems. For ball or roller bearings, the approved ratings may not be exceeded...

  9. 14 CFR 25.693 - Joints.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.693 Joints. Control... in cable control systems. For ball or roller bearings, the approved ratings may not be exceeded...

  10. 49 CFR 236.554 - Rate of pressure reduction; equalizing reservoir or brake pipe.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions... pressure or brake-pipe pressure reduction during an automatic brake application shall be at a rate not less...

  11. 49 CFR 236.554 - Rate of pressure reduction; equalizing reservoir or brake pipe.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions... pressure or brake-pipe pressure reduction during an automatic brake application shall be at a rate not less...

  12. Delay-based signal shapers and acfa 2020 blended wing body flight control system

    NASA Astrophysics Data System (ADS)

    Kucera, V.; Hromčík, M.

    2013-12-01

    The purpose of this paper is twofold. First: results related to application of signal shapers, imposed on pilot's commands, in cooperation with feedback flight control system (FCS) are reported for the case of ACFA2020 (Active Control for Flexible 2020 Aircraft) blended-wingbody (BWB) design. The results suggest that signal shapers can cooperate nicely both with FCS focused on the rigid-body dynamics only, as well as with an implemented and properly working active damping system. In both cases, the amount of vibrations due to pilot's inputs (manoeuvres) can be substantially reduced. Second: combination of signal shapers and rate-limiters is discussed in detail. Rate-limiters, representing finite achievable rates of servos for control surfaces, deteriorate considerably performance of the delay-based shapers. Configuration proposes only open-loop response of the free aircraft (without controller) for shaped reference respect to nonlinearities at action surface. Standard versions of the shapers cannot be therefore directly applied, especially for higher control surfaces deflections. Instead, two efficient alternatives can be used, suggested in the paper, that take the rate limitations into account at the design stage already.

  13. Long-term impact of environmental public health disaster on health system performance: experiences from the Graniteville, South Carolina chlorine spill.

    PubMed

    Runkle, Jennifer R; Zhang, Hongmei; Karmaus, Wilfried; Brock-Martin, Amy; Svendsen, Erik R

    2013-01-01

    In the aftermath of an environmental public health disaster (EPHD) a healthcare system may be the least equipped entity to respond. Preventable visits for ambulatory care-sensitive conditions (ACSCs) may be used as a population-based indicator to monitor health system access postdisaster. The objective of this study was to examine whether ACSC rates among vulnerable subpopulations are sensitive to the impact of a disaster. We conducted a retrospective analysis on the 2005 chlorine spill in Graniteville, South Carolina using a Medicaid claims database. Poisson regression was used to calculate change in monthly ACSC visits at the disaster site in the postdisaster period compared with the predisaster period after adjusting for parallel changes in a control group. The adjusted rate of a predisaster ACSC hospital visit for the direct group was 1.68 times the rate for the control group (95% confidence interval [CI] 1.47-1.93), whereas the adjusted ACSC hospital rate postdisaster for the direct group was 3.10 times the rate for the control group (95% CI 1.97-5.18). For ED ACSC visits, the adjusted rate among those directly affected predisaster were 1.82 times the rate for the control group (95% CI 1.61-2.08), whereas the adjusted ACSC rate postdisaster was 2.81 times the rate for the control group (95% CI 1.92-5.17). Results revealed that an increased demand on the health system altered health services delivery for vulnerable populations directly affected by a disaster. Preventable visits for ACSCs may advance public health practice by identifying healthcare disparities during disaster recovery.

  14. Verification and Validation Challenges for Adaptive Flight Control of Complex Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2018-01-01

    Autonomy of aerospace systems requires the ability for flight control systems to be able to adapt to complex uncertain dynamic environment. In spite of the five decades of research in adaptive control, the fact still remains that currently no adaptive control system has ever been deployed on any safety-critical or human-rated production systems such as passenger transport aircraft. The problem lies in the difficulty with the certification of adaptive control systems since existing certification methods cannot readily be used for nonlinear adaptive control systems. Research to address the notion of metrics for adaptive control began to appear in the recent years. These metrics, if accepted, could pave a path towards certification that would potentially lead to the adoption of adaptive control as a future control technology for safety-critical and human-rated production systems. Development of certifiable adaptive control systems represents a major challenge to overcome. Adaptive control systems with learning algorithms will never become part of the future unless it can be proven that they are highly safe and reliable. Rigorous methods for adaptive control software verification and validation must therefore be developed to ensure that adaptive control system software failures will not occur, to verify that the adaptive control system functions as required, to eliminate unintended functionality, and to demonstrate that certification requirements imposed by regulatory bodies such as the Federal Aviation Administration (FAA) can be satisfied. This presentation will discuss some of the technical issues with adaptive flight control and related V&V challenges.

  15. Demand controlled ventilating systems: Sensor market survey. Energy conservation in buildings and community systems programme, annex 18, December 1991

    NASA Astrophysics Data System (ADS)

    Raatschen, W.; Sjoegren, M.

    The subject of indoor and outdoor air quality has generated a great deal of attention in many countries. Areas of concern include outgassing of building materials as well as occupant-generated pollutants such as carbon dioxide, moisture, and odors. Progress has also been made towards addressing issues relating to the air tightness of the building envelope. Indoor air quality studies indicate that better control of supply flow rates as well as the air distribution pattern within buildings are necessary. One method of maintaining good indoor air quality without extensive energy consumption is to control the ventilation rate according to the needs and demands of the occupants, or to preserve the building envelope. This is accomplished through the use of demand controlled ventilating (DCV) systems. The specific objective of Annex 18 is to develop guidelines for demand controlled ventilating systems based on state of the art analyses, case studies on ventilation effectiveness, and proposed ventilation rates for different users in domestic, office, and school buildings.

  16. Delay times of a LiDAR-guided precision sprayer control system

    USDA-ARS?s Scientific Manuscript database

    Accurate flow control systems in triggering sprays against detected targets are needed for precision variable-rate sprayer development. System delay times due to the laser-sensor data buffer, software operation, and hydraulic-mechanical component response were determined for a control system used fo...

  17. Phase Transition in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Togo, Fumiharu; Yamamoto, Yoshiharu

    2005-07-01

    A healthy human heart rate displays complex fluctuations which share characteristics of physical systems in a critical state. We demonstrate that the human heart rate in healthy individuals undergoes a dramatic breakdown of criticality characteristics, reminiscent of continuous second order phase transitions. By studying the germane determinants, we show that the hallmark of criticality—highly correlated fluctuations—is observed only during usual daily activity, and a breakdown of these characteristics occurs in prolonged, strenuous exercise and sleep. This finding is the first reported discovery of the dynamical phase transition phenomenon in a biological control system and will be a key to understanding the heart rate control system in health and disease.

  18. Conic Sector Analysis of Hybrid Control Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Thompson, P. M.

    1982-01-01

    A hybrid control system contains an analog plant and a hybrid (or sampled-data) compensator. In this thesis a new conic sector is determined which is constructive and can be used to: (1) determine closed loop stability, (2) analyze robustness with respect to modelling uncertainties, (3) analyze steady state response to commands, and (4) select the sample rate. The use of conic sectors allows the designer to treat hybrid control systems as though they were analog control systems. The center of the conic sector can be used as a rigorous linear time invariant approximation of the hybrid control system, and the radius places a bound on the errors of this approximation. The hybrid feedback system can be multivariable, and the sampler is assumed to be synchronous. Algorithms to compute the conic sector are presented. Several examples demonstrate how the conic sector analysis techniques are applied. Extensions to single loop multirate hybrid feedback systems are presented. Further extensions are proposed for multiloop multirate hybrid feedback system and for single rate systems with asynchronous sampling.

  19. Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.; Gerdes, R. M.

    1984-01-01

    The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

  20. State estimation for networked control systems using fixed data rates

    NASA Astrophysics Data System (ADS)

    Liu, Qing-Quan; Jin, Fang

    2017-07-01

    This paper investigates state estimation for linear time-invariant systems where sensors and controllers are geographically separated and connected via a bandwidth-limited and errorless communication channel with the fixed data rate. All plant states are quantised, coded and converted together into a codeword in our quantisation and coding scheme. We present necessary and sufficient conditions on the fixed data rate for observability of such systems, and further develop the data-rate theorem. It is shown in our results that there exists a quantisation and coding scheme to ensure observability of the system if the fixed data rate is larger than the lower bound given, which is less conservative than the one in the literature. Furthermore, we also examine the role that the disturbances have on the state estimation problem in the case with data-rate limitations. Illustrative examples are given to demonstrate the effectiveness of the proposed method.

  1. Yield response to variable rate irrigation in corn

    USDA-ARS?s Scientific Manuscript database

    To investigate the impact of variable rate irrigation on corn yield, twenty plots of corn were laid out under a center pivot variable rate irrigation (VRI) system in an experimental field near Stoneville, MS. The VRI system is equipped with five VRI zone control units, a global positioning system (G...

  2. A VLF-based technique in applications to digital control of nonlinear hybrid multirate systems

    NASA Astrophysics Data System (ADS)

    Vassilyev, Stanislav; Ulyanov, Sergey; Maksimkin, Nikolay

    2017-01-01

    In this paper, a technique for rigorous analysis and design of nonlinear multirate digital control systems on the basis of the reduction method and sublinear vector Lyapunov functions is proposed. The control system model under consideration incorporates continuous-time dynamics of the plant and discrete-time dynamics of the controller and takes into account uncertainties of the plant, bounded disturbances, nonlinear characteristics of sensors and actuators. We consider a class of multirate systems where the control update rate is slower than the measurement sampling rates and periodic non-uniform sampling is admitted. The proposed technique does not use the preliminary discretization of the system, and, hence, allows one to eliminate the errors associated with the discretization and improve the accuracy of analysis. The technique is applied to synthesis of digital controller for a flexible spacecraft in the fine stabilization mode and decentralized controller for a formation of autonomous underwater vehicles. Simulation results are provided to validate the good performance of the designed controllers.

  3. The minimum control authority of a system of actuators with applications to Gravity Probe-B

    NASA Technical Reports Server (NTRS)

    Wiktor, Peter; Debra, Dan

    1991-01-01

    The forcing capabilities of systems composed of many actuators are analyzed in this paper. Multiactuator systems can generate higher forces in some directions than in others. Techniques are developed to find the force in the weakest direction. This corresponds to the worst-case output and is defined as the 'minimum control authority'. The minimum control authority is a function of three things: the actuator configuration, the actuator controller and the way in which the output of the system is limited. Three output limits are studied: (1) fuel-flow rate, (2) power, and (3) actuator output. The three corresponding actuator controllers are derived. These controllers generate the desired force while minimizing either fuel flow rate, power or actuator output. It is shown that using the optimal controller can substantially increase the minimum control authority. The techniques for calculating the minimum control authority are applied to the Gravity Probe-B spacecraft thruster system. This example shows that the minimum control authority can be used to design the individual actuators, choose actuator configuration, actuator controller, and study redundancy.

  4. Collector design for measuring high intensity time variant sprinkler application rates

    USDA-ARS?s Scientific Manuscript database

    Peak water application rate in relation to soil water infiltration rate and soil surface storage capacity is important in the design of center pivot sprinkler irrigation systems for efficient irrigation and soil erosion control. Measurement of application rates of center pivot irrigation systems ha...

  5. A pilot's assessment of helicopter handling-quality factors common to both agility and instrument flying tasks

    NASA Technical Reports Server (NTRS)

    Gerdes, R. M.

    1980-01-01

    A series of simulation and flight investigations were undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-Earth (NOE) agility and instrument flying tasks. Handling quality factors common to both tasks were identified. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping, and rotor system cross coupling due to helicopter angular rate and collective pitch input. Application of rate command, attitude command, and control input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. The NOE agility and instrument flying handling quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.

  6. Fluid delivery control system

    DOEpatents

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  7. DOSE CONTROLLER FOR AGUACLARA WATER TREATMENT PLANTS

    EPA Science Inventory

    The expected results include a proven design for a gravity powered dose controller that works for calcium hypochlorite or aluminum sulfate solutions. The dose controller will be coupled with plant flow rate measuring systems that have compatible relationships between flow rate...

  8. A speech-controlled environmental control system for people with severe dysarthria.

    PubMed

    Hawley, Mark S; Enderby, Pam; Green, Phil; Cunningham, Stuart; Brownsell, Simon; Carmichael, James; Parker, Mark; Hatzis, Athanassios; O'Neill, Peter; Palmer, Rebecca

    2007-06-01

    Automatic speech recognition (ASR) can provide a rapid means of controlling electronic assistive technology. Off-the-shelf ASR systems function poorly for users with severe dysarthria because of the increased variability of their articulations. We have developed a limited vocabulary speaker dependent speech recognition application which has greater tolerance to variability of speech, coupled with a computerised training package which assists dysarthric speakers to improve the consistency of their vocalisations and provides more data for recogniser training. These applications, and their implementation as the interface for a speech-controlled environmental control system (ECS), are described. The results of field trials to evaluate the training program and the speech-controlled ECS are presented. The user-training phase increased the recognition rate from 88.5% to 95.4% (p<0.001). Recognition rates were good for people with even the most severe dysarthria in everyday usage in the home (mean word recognition rate 86.9%). Speech-controlled ECS were less accurate (mean task completion accuracy 78.6% versus 94.8%) but were faster to use than switch-scanning systems, even taking into account the need to repeat unsuccessful operations (mean task completion time 7.7s versus 16.9s, p<0.001). It is concluded that a speech-controlled ECS is a viable alternative to switch-scanning systems for some people with severe dysarthria and would lead, in many cases, to more efficient control of the home.

  9. Flow-rate independent gas-mixing system for drift chambers, using solenoid valves

    NASA Astrophysics Data System (ADS)

    Sugano, K.

    1991-03-01

    We describe an inexpensive system for mixing argon and ethane gas for drift chambers which was used for an experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow-rate independent without readjustments. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running.

  10. A portable personal cooling system for mine rescue operations

    NASA Technical Reports Server (NTRS)

    Webbon, B.; Williams, B.; Kirk, P.; Elkins, W.; Stein, R.

    1977-01-01

    Design of a portable personal cooling system to reduce physiological stress in high-temperature, high-humidity conditions is discussed. The system, based on technology used in the thermal controls of space suits, employs a combination of head and thoracic insulation and cooling through a heat sink unit. Average metabolic rates, heart rates, rectal temperature increase and sweat loss were monitored for test subjects wearing various configurations of the cooling system, as well as for a control group. The various arrangements of the cooling garment were found to provide significant physiological benefits; however, increases in heat transfer rate of the cooling unit and more effective insulation are suggested to improve the system's function.

  11. Sensitivity to musical emotion is influenced by tonal structure in congenital amusia.

    PubMed

    Jiang, Cunmei; Liu, Fang; Wong, Patrick C M

    2017-08-08

    Emotional communication in music depends on multiple attributes including psychoacoustic features and tonal system information, the latter of which is unique to music. The present study investigated whether congenital amusia, a lifelong disorder of musical processing, impacts sensitivity to musical emotion elicited by timbre and tonal system information. Twenty-six amusics and 26 matched controls made tension judgments on Western (familiar) and Indian (unfamiliar) melodies played on piano and sitar. Like controls, amusics used timbre cues to judge musical tension in Western and Indian melodies. While controls assigned significantly lower tension ratings to Western melodies compared to Indian melodies, thus showing a tonal familiarity effect on tension ratings, amusics provided comparable tension ratings for Western and Indian melodies on both timbres. Furthermore, amusics rated Western melodies as more tense compared to controls, as they relied less on tonality cues than controls in rating tension for Western melodies. The implications of these findings in terms of emotional responses to music are discussed.

  12. AirSTAR: A UAV Platform for Flight Dynamics and Control System Testing

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Foster, John V.; Bailey, Roger M.; Belcastro, Christine M.

    2006-01-01

    As part of the NASA Aviation Safety Program at Langley Research Center, a dynamically scaled unmanned aerial vehicle (UAV) and associated ground based control system are being developed to investigate dynamics modeling and control of large transport vehicles in upset conditions. The UAV is a 5.5% (seven foot wingspan), twin turbine, generic transport aircraft with a sophisticated instrumentation and telemetry package. A ground based, real-time control system is located inside an operations vehicle for the research pilot and associated support personnel. The telemetry system supports over 70 channels of data plus video for the downlink and 30 channels for the control uplink. Data rates are in excess of 200 Hz. Dynamic scaling of the UAV, which includes dimensional, weight, inertial, actuation, and control system scaling, is required so that the sub-scale vehicle will realistically simulate the flight characteristics of the full-scale aircraft. This testbed will be utilized to validate modeling methods, flight dynamics characteristics, and control system designs for large transport aircraft, with the end goal being the development of technologies to reduce the fatal accident rate due to loss-of-control.

  13. Heart rate variability in patients with systemic lupus erythematosus: a systematic review and methodological considerations.

    PubMed

    Matusik, P S; Matusik, P T; Stein, P K

    2018-07-01

    Aim The aim of this review was to summarize current knowledge about the scientific findings and potential clinical utility of heart rate variability measures in patients with systemic lupus erythematosus. Methods PubMed, Embase and Scopus databases were searched for the terms associated with systemic lupus erythematosus and heart rate variability, including controlled vocabulary, when appropriate. Articles published in English and available in full text were considered. Finally, 11 publications were selected, according to the systematic review protocol and were analyzed. Results In general, heart rate variability, measured in the time and frequency domains, was reported to be decreased in patients with systemic lupus erythematosus compared with controls. In some systemic lupus erythematosus studies, heart rate variability was found to correlate with inflammatory markers and albumin levels. A novel heart rate variability measure, heart rate turbulence onset, was shown to be increased, while heart rate turbulence slope was decreased in systemic lupus erythematosus patients. Reports of associations of changes in heart rate variability parameters with increasing systemic lupus erythematosus activity were inconsistent, showing decreasing heart rate variability or no relationship. However, the low/high frequency ratio was, in some studies, reported to increase with increasing disease activity or to be inversely correlated with albumin levels. Conclusions Patients with systemic lupus erythematosus have abnormal heart rate variability, which reflects cardiac autonomic dysfunction and may be related to inflammatory cytokines but not necessarily to disease activity. Thus measurement of heart rate variability could be a useful clinical tool for monitoring autonomic dysfunction in systemic lupus erythematosus, and may potentially provide prognostic information.

  14. Generalized Momentum Control of the Spin-Stabilized Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Queen, Steven Z.; Shah, Neerav; Benegalrao, Suyog S.; Blackman, Kathie

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. The on-board attitude control system adjusts the angular momentum of the system using a generalized thruster-actuated control system that simultaneously manages precession, nutation and spin. Originally developed using Lyapunov control-theory with rate-feedback, a published algorithm has been augmented to provide a balanced attitude/rate response using a single weighting parameter. This approach overcomes an orientation sign-ambiguity in the existing formulation, and also allows for a smoothly tuned-response applicable to both a compact/agile spacecraft, as well as one with large articulating appendages.

  15. A quality improvement project to improve the Medicare and Medicaid Services (CMS) sepsis bundle compliance rate in a large healthcare system.

    PubMed

    Raschke, Robert A; Groves, Robert H; Khurana, Hargobind S; Nikhanj, Nidhi; Utter, Ethel; Hartling, Didi; Stoffer, Brenda; Nunn, Kristina; Tryon, Shona; Bruner, Michelle; Calleja, Maria; Curry, Steven C

    2017-01-01

    Sepsis is a leading cause of mortality and morbidity in hospitalised patients. The Centers for Medicare and Medicaid Services (CMS) mandated that US hospitals report sepsis bundle compliance rate as a quality process measure in October 2015. The specific aim of our study was to improve the CMS sepsis bundle compliance rate from 30% to 40% across 20 acute care hospitals in our healthcare system within 1 year. The study included all adult inpatients with sepsis sampled according to CMS specifications from October 2015 to September 2016. The CMS sepsis bundle compliance rate was tracked monthly using statistical process control charting. A baseline rate of 28.5% with 99% control limits was established. We implemented multiple interventions including computerised decision support systems (CDSSs) to increase compliance with the most commonly missing bundle elements. Compliance reached 42% (99% statistical process control limits 18.4%-38.6%) as CDSS was implemented system-wide, but this improvement was not sustained after CMS changed specifications of the outcome measure. Difficulties encountered elucidate shortcomings of our study methodology and of the CMS sepsis bundle compliance rate as a quality process measure.

  16. Dynamic Exergy Method for Evaluating the Control and Operation of Oxy-Combustion Boiler Island Systems.

    PubMed

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang; Liang, Zhiwu

    2017-01-03

    Exergy-based methods are widely applied to assess the performance of energy conversion systems; however, these methods mainly focus on a certain steady-state and have limited applications for evaluating the control impacts on system operation. To dynamically obtain the thermodynamic behavior and reveal the influences of control structures, layers and loops, on system energy performance, a dynamic exergy method is developed, improved, and applied to a complex oxy-combustion boiler island system for the first time. The three most common operating scenarios are studied, and the results show that the flow rate change process leads to less energy consumption than oxygen purity and air in-leakage change processes. The variation of oxygen purity produces the largest impact on system operation, and the operating parameter sensitivity is not affected by the presence of process control. The control system saves energy during flow rate and oxygen purity change processes, while it consumes energy during the air in-leakage change process. More attention should be paid to the oxygen purity change because it requires the largest control cost. In the control system, the supervisory control layer requires the greatest energy consumption and the largest control cost to maintain operating targets, while the steam control loops cause the main energy consumption.

  17. Adaptive data rate SSMA system for personal and mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Ikegami, Tetsushi; Takahashi, Takashi; Arakaki, Yoshiya; Wakana, Hiromitsu

    1995-01-01

    An adaptive data rate SSMA (spread spectrum multiple access) system is proposed for mobile and personal multimedia satellite communications without the aid of system control earth stations. This system has a constant occupied bandwidth and has variable data rates and processing gains to mitigate communication link impairments such as fading, rain attenuation and interference as well as to handle variable data rate on demand. Proof of concept hardware for 6MHz bandwidth transponder is developed, that uses offset-QPSK (quadrature phase shift keying) and MSK (minimum shift keying) for direct sequence spread spectrum modulation and handle data rates of 4k to 64kbps. The RS422 data interface, low rate voice and H.261 video codecs are installed. The receiver is designed with coherent matched filter technique to achieve fast code acquisition, AFC (automatic frequency control) and coherent detection with minimum hardware losses in a single matched filter circuit. This receiver structure facilitates variable data rate on demand during a call. This paper shows the outline of the proposed system and the performance of the prototype equipment.

  18. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    PubMed

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Chou, Hwei-Lan; Biezad, Daniel J.

    1996-01-01

    Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.

  20. Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems

    PubMed Central

    Ströbel, Ulrich; Rose-Meierhöfer, Sandra; Öz, Hülya; Brunsch, Reiner

    2013-01-01

    Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. PMID:23765272

  1. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    DOE PAGES

    Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...

    2016-05-24

    We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less

  2. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes.

    PubMed

    Zaher, A; Li, S; Wolf, K T; Pirmoradi, F N; Yassine, O; Lin, L; Khashab, N M; Kosel, J

    2015-09-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5-2 μg/h for higher release rate designs, and 12-40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  3. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    PubMed Central

    Zaher, A.; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, O.; Lin, L.; Khashab, N. M.; Kosel, J.

    2015-01-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source. PMID:26487899

  4. A pilot's assessment of helicopter handling-quality factors common to both agility and instrument flying tasks

    NASA Technical Reports Server (NTRS)

    Gerdes, R. M.

    1980-01-01

    Results from a series of simulation and flight investigations undertaken to evaluate helicopter flying qualities and the effects of control system augmentation for nap-of-the-earth (NOE) agility and instrument flying tasks were analyzed to assess handling-quality factors common to both tasks. Precise attitude control was determined to be a key requirement for successful accomplishment of both tasks. Factors that degraded attitude controllability were improper levels of control sensitivity and damping and rotor-system cross-coupling due to helicopter angular rate and collective pitch input. Application of rate-command, attitude-command, and control-input decouple augmentation schemes enhanced attitude control and significantly improved handling qualities for both tasks. NOE agility and instrument flying handling-quality considerations, pilot rating philosophy, and supplemental flight evaluations are also discussed.

  5. Modular Aero-Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Parker, Khary I.; Guo, Ten-Huei

    2006-01-01

    The Modular Aero-Propulsion System Simulation (MAPSS) is a graphical simulation environment designed for the development of advanced control algorithms and rapid testing of these algorithms on a generic computational model of a turbofan engine and its control system. MAPSS is a nonlinear, non-real-time simulation comprising a Component Level Model (CLM) module and a Controller-and-Actuator Dynamics (CAD) module. The CLM module simulates the dynamics of engine components at a sampling rate of 2,500 Hz. The controller submodule of the CAD module simulates a digital controller, which has a typical update rate of 50 Hz. The sampling rate for the actuators in the CAD module is the same as that of the CLM. MAPSS provides a graphical user interface that affords easy access to engine-operation, engine-health, and control parameters; is used to enter such input model parameters as power lever angle (PLA), Mach number, and altitude; and can be used to change controller and engine parameters. Output variables are selectable by the user. Output data as well as any changes to constants and other parameters can be saved and reloaded into the GUI later.

  6. Displacement and force coupling control design for automotive active front steering system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanzhong; Zhang, Han; Li, Yijun

    2018-06-01

    A displacement and force coupling control design for active front steering (AFS) system of vehicle is proposed in this paper. In order to investigate the displacement and force characteristics of the AFS system of the vehicle, the models of AFS system, vehicle, tire as well as the driver model are introduced. Then, considering the nonlinear characteristics of the tire force and external disturbance, a robust yaw rate control method is designed by applying a steering motor to generate an active steering angle to adjust the yaw stability of the vehicle. Based on mixed H2/H∞ control, the system robustness and yaw rate tracking performance are enforced by H∞ norm constraint and the control effort is captured through H2 norm. In addition, based on the AFS system, a planetary gear set and an assist motor are both added to realize the road feeling control in this paper to dismiss the influence of extra steering angle through a compensating method. Evaluation of the overall system is accomplished by simulations and experiments under various driving condition. The simulation and experiment results show the proposed control system has excellent tracking performance and road feeling performance, which can improve the cornering stability and maneuverability of vehicle.

  7. Engineering stategies and implications of using higher plants for throttling gas and water exchange in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis; Wheeler, Raymond M.; Corey, Kenneth A.

    1993-01-01

    Engineering stategies for advanced life support systems to be used on Lunar and Mars bases involve a wide spectrum of approaches. These range from purely physical-chemical life support strategies to purely biological approaches. Within the context of biological based systems, a bioengineered system can be devised that would utilize the metabolic mechanisms of plants to control the rates of CO2 uptake and O2 evolution (photosynthesis) and water production (transpiration). Such a mechanism of external engineering control has become known as throttling. Research conducted at the John F. Kennedy Space Center's Controlled Ecological Life Support System Breadboard Project has demonstrated the potential of throttling these fluxes by changing environmental parameters affecting the plant processes. Among the more effective environmental throttles are: light and CO2 concentration for controllingthe rate of photsynthesis and humidity and CO2 concentration for controlling transpiration. Such a bioengineered strategy implies control mechanisms that in the past have not been widely attributed to life support systems involving biological components and suggests a broad range of applications in advanced life support system design.

  8. Practical and Theoretical Requirements for Controlling Rater Stringency in Peer Review.

    ERIC Educational Resources Information Center

    Cason, Gerald J.; Cason, Carolyn L.

    This study describes a computer based, performance rating information processing system, performance rating theory, and programs for the application of the theory to obtain ratings free from the effects of reviewer stringency in reviewing abstracts of conference papers. Originally, the Performance Rating (PR) System was used to evaluate the…

  9. Modeling Control Strategies and Range Impacts for Electric Vehicle Integrated Thermal Management Systems with MATLAB/Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, Gene; Lustbader, Jason Aaron

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was used to explore control strategies for an electric vehicle combined loop system. Three system variants of increased complexity and efficiency were explored: a glycol-based positive temperature coefficient heater (PTC), PTC with power electronics and electric motor (PEEM) waste heat recovery, and PTC with PEEM waste heat recovery plus heat pump versions. Additionally, the benefit of electric motor preheating was considered. A two-level control strategy was developed where the mode selection and component control were treated separately. Only the parameters typically available by vehicle sensors were used to control themore » system. The control approach included a mode selection algorithm and controllers for the compressor speed, cabin blower flow rate, coolant flow rate, and the front-end heat exchanger coolant bypass rate. The electric motor was bypassed by the cooling circuit until its temperature exceeded the coolant inlet temperature. The impact of these thermal systems on electric vehicle range during warmup was simulated for the Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Test (HWFET2X) drive cycles weighted 45%/55% respectively. A range of ambient temperatures from -20 degrees C to +20 degrees C was considered. NREL's Future Automotive Systems Technology Simulator (FASTSim) vehicle modeling tool showed up to a 10.9% improvement in range for the full system over the baseline during warmup from cold soak. The full system with preheat showed up to 17% improvement in range.« less

  10. Practical Loop-Shaping Design of Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the effectiveness of the control design in a methodical and quantifiable way. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs. Unlike conventional ad hoc methodologies of feedback control design, in this approach actuator rates are incorporated into the design right from the start: The relation between actuator speeds and the desired control bandwidth of the system is established explicitly. The technique developed is demonstrated via design examples in a step-by-step tutorial way. Given the actuation system rates and range limits together with design specifications in terms of stability margins, disturbance rejection, and transient response, the procedure involves designing the feedback loop gain to meet the requirements and maximizing the control system effectiveness, without exceeding the actuation system limits and saturating the controller. Then knowing the plant transfer function, the procedure involves designing the controller so that the controller transfer function together with the plant transfer function equate to the designed loop gain. The technique also shows what the limitations of the controller design are and how to trade competing design requirements such as stability margins and disturbance rejection. Finally, the technique is contrasted against other more familiar control design techniques, like PID control, to show its advantages.

  11. International Space Station Water Balance Operations

    NASA Technical Reports Server (NTRS)

    Tobias, Barry; Garr, John D., II; Erne, Meghan

    2011-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) Environmental Control and Life Support Systems (ECLSS), which includes the Oxygen Generation Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of water balance . In November of 2010, the Sabatier system, which converts H2 and CO2 into water and methane, was brought on line. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water, which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification (spec) rates of crew urine output, condensate output, O2 requirements, toilet flush water, and drinking needs are well documented and used as the best guess planning rates when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent upon a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS from Mission Control in Houston. This paper reviews the various inputs to water planning, rate changes, and dynamic events, including but not limited to: crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water storage availability, and Carbon Dioxide Removal Assembly (CDRA), Sabatier, and OGA capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints, and finally the operational challenges and means by which flight controllers manage this new concept of "water balance."

  12. [Interventional effects of different management programs on the outcomes of stable chronic obstructive pulmonary disease patients].

    PubMed

    Zhang, Rong-bao; Tan, Xing-yu; He, Quan-ying; Chen, Qing; Gai, Jun; Wei, Jing-an; Wang, Yan

    2012-11-27

    To evaluate the interventional effects of different management programs on the outcomes of stable chronic obstructive pulmonary disease (COPD) patients. Systemic education, follow-up and control groups were divided according to the frequency of follow-ups and the profile of participating in education. A total of 157 patients were enrolled into the COPD database from May 2002 to May 2010. They were interviewed face-to-face at our department. The investigation contained general conditions, the frequency of acute exacerbations (AE) the previous year, COPD Assessment Test (CAT), Modified British Medical Research Council Dyspnea Scale (mMRC) and spirometric classification. A combined assessment was conducted. The frequency of AE and rate of AE < once the previous year in systemic education group was 0.9 ± 1.1 and 71.2%, 1.0 ± 0.8 and 68.6% in follow-up group and 1.4 ± 1.1 and 44.4% in control group. And the frequency of AE in systemic education and follow-up groups was significantly less than that in control group (P < 0.05). Rate of AE < once in systemic education and follow-up groups was significantly higher than that in control group (P < 0.01). CAT and rate of CAT ≤ 20 in systemic education, follow-up and control groups were 10.0 ± 5.0 and 96.2%, 11.1 ± 6.0 and 88.2%, 15.3 ± 6.8 and 64.8% respectively. CAT in systemic education and follow-up groups was significantly lower than that in control group (P < 0.01). Rate of CAT ≤ 20 in systemic education and follow-up groups was significantly higher than that in control group (P < 0.01). mMRC in systemic education, follow-up and control groups was 1.5 ± 0.8, 1.6 ± 0.9 and 2.1 ± 1.0 respectively. mMRC in systemic education and follow-up groups was significantly lower than that in control group (P < 0.05). Combined assessment showed that no significant difference existed in Types A and B among three groups (P > 0.05). Type C in the systemic education group was significantly higher than that of the control (P < 0.05). Type D in the systemic education and follow-up groups was significantly lower than that of the control (P < 0.01). Long-term systemic education and follow-up management program can reduce the frequency of AE of COPD effectively and improve the health status of COPD patients.

  13. Inflight redesign of the IUE attitude control system

    NASA Technical Reports Server (NTRS)

    Femiano, M. D.

    1986-01-01

    The one- and two-gyro system designs of the International Ultraviolet Explorer (IUE) attitude control system (ACS) are examined. The inertial reference assembly that provides the primary attitude reference for IUE consists of six rate sensors which are single-axis rate integrating gyros. The gyros operate in a pulse rebalanced mode that produces an output pulse for 0.01 arcsec of motion about the input axis. The functions of the fine error sensor, fine sun sensor (FSS), the IUE reaction wheels, the onboard computer, and the hold/slew algorithm are described. The use of the hold/slew algorithm to compute the control voltage for the ACS based on the Kalman filter is studied. A two-gyro system was incorporated into IUE following gyro failure. The procedures for establishing attitude control with the two-gyro design based on the FSS is analyzed. The performance of the two-gyro system is evaluated; it is observed that the pitch and yaw gyro control is 0.24 arcsec and the control is sufficient to permit extended periods of observation.

  14. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  15. Importance of Geodetically Controlled Topography to Constrain Rates of Volcanism and Internal Magma Plumbing Systems

    NASA Astrophysics Data System (ADS)

    Glaze, L. S.; Baloga, S. M.; Garvin, J. B.; Quick, L. C.

    2014-05-01

    Lava flows and flow fields on Venus lack sufficient topographic data for any type of quantitative modeling to estimate eruption rates and durations. Such modeling can constrain rates of resurfacing and provide insights into magma plumbing systems.

  16. A piloted simulator investigation of augmentation systems to improve helicopter nap-of-the-earth handling qualities

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.

    1978-01-01

    A piloted simulation study assessed various levels of stability and control augmentation designed to improve the handling qualities of several helicopters in nap-of-the-earth (NOE) flight. Five basic single rotor helicopters - one teetering, two articulated, and two hingeless - which were found to have a variety of major deficiencies in a previous fixed-based simulator study were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems (CAS) to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular rate; and attitude command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usage and their gain levels associated with specific rotor type are also discussed.

  17. Digital-computer normal shock position and restart control of a Mach 2.5 axisymmetric mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Neiner, G. H.; Cole, G. L.; Arpasi, D. J.

    1972-01-01

    Digital computer control of a mixed-compression inlet is discussed. The inlet was terminated with a choked orifice at the compressor face station to dynamically simulate a turbojet engine. Inlet diffuser exit airflow disturbances were used. A digital version of a previously tested analog control system was used for both normal shock and restart control. Digital computer algorithms were derived using z-transform and finite difference methods. Using a sample rate of 1000 samples per second, the digital normal shock and restart controls essentially duplicated the inlet analog computer control results. At a sample rate of 100 samples per second, the control system performed adequately but was less stable.

  18. Progress in multirate digital control system design

    NASA Technical Reports Server (NTRS)

    Berg, Martin C.; Mason, Gregory S.

    1991-01-01

    A new methodology for multirate sampled-data control design based on a new generalized control law structure, two new parameter-optimization-based control law synthesis methods, and a new singular-value-based robustness analysis method are described. The control law structure can represent multirate sampled-data control laws of arbitrary structure and dynamic order, with arbitrarily prescribed sampling rates for all sensors and update rates for all processor states and actuators. The two control law synthesis methods employ numerical optimization to determine values for the control law parameters. The robustness analysis method is based on the multivariable Nyquist criterion applied to the loop transfer function for the sampling period equal to the period of repetition of the system's complete sampling/update schedule. The complete methodology is demonstrated by application to the design of a combination yaw damper and modal suppression system for a commercial aircraft.

  19. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  20. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  1. Contamination control plan for prelaunch operations

    NASA Technical Reports Server (NTRS)

    Austin, J. D.

    1983-01-01

    A unified, systematic plan is presented for contamination control for space flight systems. Allowable contaminant quantities, or contamination budgets, are determined based on system performance margins and system-level allowable degradations. These contamination budgets are compared to contamination rates in ground environments to establish the controls required in each ground environment. The use of feedback from contamination monitoring and some contamination control procedures are discussed.

  2. 40 CFR 63.4167 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system and add-on control device operating limits during the performance test? 63.4167 Section 63.4167... Emission Rate with Add-on Controls Option § 63.4167 How do I establish the emission capture system and add-on control device operating limits during the performance test? During the performance test required...

  3. The research of automatic speed control algorithm based on Green CBTC

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi

    2017-06-01

    Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.

  4. Optimal coherent control of dissipative N -level systems

    NASA Astrophysics Data System (ADS)

    Jirari, H.; Pötz, W.

    2005-07-01

    General optimal coherent control of dissipative N -level systems in the Markovian time regime is formulated within Pointryagin’s principle and the Lindblad equation. In the present paper, we study feasibility and limitations of steering of dissipative two-, three-, and four-level systems from a given initial pure or mixed state into a desired final state under the influence of an external electric field. The time evolution of the system is computed within the Lindblad equation and a conjugate gradient method is used to identify optimal control fields. The influence of both field-independent population and polarization decay on achieving the objective is investigated in systematic fashion. It is shown that, for realistic dephasing times, optimum control fields can be identified which drive the system into the target state with very high success rate and in economical fashion, even when starting from a poor initial guess. Furthermore, the optimal fields obtained give insight into the system dynamics. However, if decay rates of the system cannot be subjected to electromagnetic control, the dissipative system cannot be maintained in a specific pure or mixed state, in general.

  5. Demand-type gas supply system for rocket borne thin-window proportional counters

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Caravalho, R.; Catura, R. C.; Joki, E. G.

    1977-01-01

    A simple closed loop control system has been developed to maintain the gas pressure in thin-window proportional counters during rocket flights. This system permits convenient external control of detector pressure and system flushing rate. The control system is activated at launch with the sealing of a reference volume at the existing system pressure. Inflight control to plus or minus 2 torr at a working pressure of 760 torr has been achieved on six rocket flights.

  6. On Optimizing H. 264/AVC Rate Control by Improving R-D Model and Incorporating HVS Characteristics

    NASA Astrophysics Data System (ADS)

    Zhu, Zhongjie; Wang, Yuer; Bai, Yongqiang; Jiang, Gangyi

    2010-12-01

    The state-of-the-art JVT-G012 rate control algorithm of H.264 is improved from two aspects. First, the quadratic rate-distortion (R-D) model is modified based on both empirical observations and theoretical analysis. Second, based on the existing physiological and psychological research findings of human vision, the rate control algorithm is optimized by incorporating the main characteristics of the human visual system (HVS) such as contrast sensitivity, multichannel theory, and masking effect. Experiments are conducted, and experimental results show that the improved algorithm can simultaneously enhance the overall subjective visual quality and improve the rate control precision effectively.

  7. 40 CFR 63.4291 - What are my options for meeting the emission limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission capture systems and add-on controls, the organic HAP emission rate for the web coating/printing... demonstrate that all capture systems and control devices for the web coating/printing operation(s) meet the... capture systems and control devices for the web coating/printing operation(s) meet the operating limits...

  8. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    PubMed

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  9. Flight evaluation of advanced controls and displays for transition and landing on the NASA V/STOL systems research aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III

    1996-01-01

    Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for demanding vertical landing tasks aboard ship and in confined land-based sites.

  10. Dissipative controller designs for second-order dynamic systems

    NASA Technical Reports Server (NTRS)

    Morris, K. A.; Juang, J. N.

    1990-01-01

    The passivity theorem may be used to design robust controllers for structures with positive transfer functions. This result is extended to more general configurations using dissipative system theory. A stability theorem for robust, model-independent controllers of structures which lack collocated rate sensors and actuators is given. The theory is illustrated for non-square systems and systems with displacement sensors.

  11. Rate-Based Model Predictive Control of Turbofan Engine Clearance

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.

    2006-01-01

    An innovative model predictive control strategy is developed for control of nonlinear aircraft propulsion systems and sub-systems. At the heart of the controller is a rate-based linear parameter-varying model that propagates the state derivatives across the prediction horizon, extending prediction fidelity to transient regimes where conventional models begin to lose validity. The new control law is applied to a demanding active clearance control application, where the objectives are to tightly regulate blade tip clearances and also anticipate and avoid detrimental blade-shroud rub occurrences by optimally maintaining a predefined minimum clearance. Simulation results verify that the rate-based controller is capable of satisfying the objectives during realistic flight scenarios where both a conventional Jacobian-based model predictive control law and an unconstrained linear-quadratic optimal controller are incapable of doing so. The controller is evaluated using a variety of different actuators, illustrating the efficacy and versatility of the control approach. It is concluded that the new strategy has promise for this and other nonlinear aerospace applications that place high importance on the attainment of control objectives during transient regimes.

  12. Influence of grid control and object detection on radiation exposure and image quality using mobile C-arms - first results.

    PubMed

    Gosch, D; Ratzmer, A; Berauer, P; Kahn, T

    2007-09-01

    The objective of this study was to examine the extent to which the image quality on mobile C-arms can be improved by an innovative exposure rate control system (grid control). In addition, the possible dose reduction in the pulsed fluoroscopy mode using 25 pulses/sec produced by automatic adjustment of the pulse rate through motion detection was to be determined. As opposed to conventional exposure rate control systems, which use a measuring circle in the center of the field of view, grid control is based on a fine mesh of square cells which are overlaid on the entire fluoroscopic image. The system uses only those cells for exposure control that are covered by the object to be visualized. This is intended to ensure optimally exposed images, regardless of the size, shape and position of the object to be visualized. The system also automatically detects any motion of the object. If a pulse rate of 25 pulses/sec is selected and no changes in the image are observed, the pulse rate used for pulsed fluoroscopy is gradually reduced. This may decrease the radiation exposure. The influence of grid control on image quality was examined using an anthropomorphic phantom. The dose reduction achieved with the help of object detection was determined by evaluating the examination data of 146 patients from 5 different countries. The image of the static phantom made with grid control was always optimally exposed, regardless of the position of the object to be visualized. The average dose reduction when using 25 pulses/sec resulting from object detection and automatic down-pulsing was 21 %, and the maximum dose reduction was 60 %. Grid control facilitates C-arm operation, since optimum image exposure can be obtained independently of object positioning. Object detection may lead to a reduction in radiation exposure for the patient and operating staff.

  13. Dynamic Modelling of the DEP Controlled Boiling in a Microchannel

    NASA Astrophysics Data System (ADS)

    Lackowski, Marcin; Kwidzinski, Roman

    2018-04-01

    The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.

  14. Launch Vehicle Manual Steering with Adaptive Augmenting Control:In-Flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Miller, Chris; Wall, John H.; VanZwieten, Tannen S.; Gilligan, Eric T.; Orr, Jeb S.

    2015-01-01

    An Adaptive Augmenting Control (AAC) algorithm for the Space Launch System (SLS) has been developed at the Marshall Space Flight Center (MSFC) as part of the launch vehicle's baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a potential manual steering mode were also investigated by giving the pilot trajectory deviation cues and pitch rate command authority, which is the subject of this paper. Two NASA research pilots flew a total of 25 constant pitch rate trajectories using a prototype manual steering mode with and without adaptive control, evaluating six different nominal and off-nominal test case scenarios. Pilot comments and PIO ratings were given following each trajectory and correlated with aircraft state data and internal controller signals post-flight.

  15. Solid state control system for oil well bailer pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senghaas, K. A.; Senghaas, P.

    1985-05-14

    A solid state switching controller for use with various types of oil well bailer pumps. Individually programmable steps with lockouts provide multiple mutual exclusivity between various circuit operations. A trickle charge battery system powers the control circuits. A tank overflow float protects against oil spillage. An automatic production rate adjustment circuit is provided which increases cycle time in proportion to the rate of production. The circuit includes a low power voltage detector for disabling the control circuits until the line voltage is acceptable. A three-phase power and control system with an isolation transformer for the controls avoids unreliable ground connections.more » The timers include a dividing circuit with an RC circuit. All power actuated apparatus are actuated by triac switches which are controlled by an opto driver. The bailer brake is pulse actuated for allowing the bailer to sink into crude oil without excess cable looseness.« less

  16. Isothermal thermogravimetric data acquisition analysis system

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth, Jr.

    1991-01-01

    The description of an Isothermal Thermogravimetric Analysis (TGA) Data Acquisition System is presented. The system consists of software and hardware to perform a wide variety of TGA experiments. The software is written in ANSI C using Borland's Turbo C++. The hardware consists of a 486/25 MHz machine with a Capital Equipment Corp. IEEE488 interface card. The interface is to a Hewlett Packard 3497A data acquisition system using two analog input cards and a digital actuator card. The system provides for 16 TGA rigs with weight and temperature measurements from each rig. Data collection is conducted in three phases. Acquisition is done at a rapid rate during initial startup, at a slower rate during extended data collection periods, and finally at a fast rate during shutdown. Parameters controlling the rate and duration of each phase are user programmable. Furnace control (raising and lowering) is also programmable. Provision is made for automatic restart in the event of power failure or other abnormal terminations. Initial trial runs were conducted to show system stability.

  17. Measurement of semiochemical release rates with a dedicated environmental control system

    Treesearch

    Heping Zhu; Harold W. Thistle; Christopher M. Ranger; Hongping Zhou; Brian L. Strom

    2015-01-01

    Insect semiochemical dispensers are commonly deployed under variable environmental conditions over a specified period. Predictions of their longevity are hampered by a lack of methods to accurately monitor and predict how primary variables affect semiochemical release rate. A system was constructed to precisely determine semiochemical release rates under...

  18. Cryptographic robustness of a quantum cryptography system using phase-time coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2008-01-15

    A cryptographic analysis is presented of a new quantum key distribution protocol using phase-time coding. An upper bound is obtained for the error rate that guarantees secure key distribution. It is shown that the maximum tolerable error rate for this protocol depends on the counting rate in the control time slot. When no counts are detected in the control time slot, the protocol guarantees secure key distribution if the bit error rate in the sifted key does not exceed 50%. This protocol partially discriminates between errors due to system defects (e.g., imbalance of a fiber-optic interferometer) and eavesdropping. In themore » absence of eavesdropping, the counts detected in the control time slot are not caused by interferometer imbalance, which reduces the requirements for interferometer stability.« less

  19. Quadcopter Control Using Speech Recognition

    NASA Astrophysics Data System (ADS)

    Malik, H.; Darma, S.; Soekirno, S.

    2018-04-01

    This research reported a comparison from a success rate of speech recognition systems that used two types of databases they were existing databases and new databases, that were implemented into quadcopter as motion control. Speech recognition system was using Mel frequency cepstral coefficient method (MFCC) as feature extraction that was trained using recursive neural network method (RNN). MFCC method was one of the feature extraction methods that most used for speech recognition. This method has a success rate of 80% - 95%. Existing database was used to measure the success rate of RNN method. The new database was created using Indonesian language and then the success rate was compared with results from an existing database. Sound input from the microphone was processed on a DSP module with MFCC method to get the characteristic values. Then, the characteristic values were trained using the RNN which result was a command. The command became a control input to the single board computer (SBC) which result was the movement of the quadcopter. On SBC, we used robot operating system (ROS) as the kernel (Operating System).

  20. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    NASA Astrophysics Data System (ADS)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  1. 40 CFR 63.4767 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system and add-on control device operating limits during the performance test? 63.4767 Section 63.4767... Rate with Add-on Controls Option § 63.4767 How do I establish the emission capture system and add-on control device operating limits during the performance test? During the performance test required by § 63...

  2. 40 CFR 63.4767 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system and add-on control device operating limits during the performance test? 63.4767 Section 63.4767... Rate with Add-on Controls Option § 63.4767 How do I establish the emission capture system and add-on control device operating limits during the performance test? During the performance test required by § 63...

  3. System design of the annular suspension and pointing system /ASPS/

    NASA Technical Reports Server (NTRS)

    Cunningham, D. C.; Gismondi, T. P.; Wilson, G. W.

    1978-01-01

    This paper presents the control system design for the Annular Suspension and Pointing System. Actuator sizing and configuration of the system are explained, and the control laws developed for linearizing and compensating the magnetic bearings, roll induction motor and gimbal torquers are given. Decoupling, feedforward and error compensation for the vernier and gimbal controllers is developed. The algorithm for computing the strapdown attitude reference is derived, and the allowable sampling rates, time delays and quantization of control signals are specified.

  4. Feasibility Analysis and Evaluation of an Adaptive Tracked Vehicle Suspension and Control System

    DTIC Science & Technology

    1975-06-01

    CONTROL SYSTEM FINAL REPORT JUNE 1975 Contract No. DAAE07-72-C-017 D D C •W 6 1976 B t> y Robert M. Salemka National Water Lift Company A...spring rate which is as soft as a hydropneumatic system. 3.3 Adaptive Control The adaptive control was achieved by switching the jounce damping relief...inherently included in this type of system. The solenoid valves are of the normally closed type so that with no electrical power , the system will

  5. Evaluation of exercise-respiratory system modifications and preliminary respiratory-circulatory system integration scheme

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    The respiratory control system, functioning as an independent system, is presented with modifications of the exercise subroutine. These modifications illustrate an improved control of ventilation rates and arterial and compartmental gas tensions. A very elementary approach to describing the interactions of the respiratory and circulatory system is presented.

  6. Design of an all-attitude flight control system to execute commanded bank angles and angles of attack

    NASA Technical Reports Server (NTRS)

    Burgin, G. H.; Eggleston, D. M.

    1976-01-01

    A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.

  7. Development and performance evaluation of air fine bubbles on water quality of thai catfish rearing

    NASA Astrophysics Data System (ADS)

    Subhan, Ujang; Muthukannan, Vanitha; Azhary, Sundoro Yoga; Mulhadi, Muhammad Fakhri; Rochima, Emma; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    The efficiency and productivity of aquaculture strongly depends on the development of advanced technology for water quality management system. The most important factor for the success of intensive aquaculture system is controlling the water quality of fish rearing media. This paper reports the design of fine bubbles (FBs) generator and performance evaluation of the system to improve water quality in thai catfish media (10 g/ind) with density (16.66 ind./L). The FBs generator was designed to control the size distribution of bubble by controlling its air flow rate entry to the mixing chamber of the generator. The performance of the system was evaluated based on the produced debit, dissolved oxygen rate and ammonia content in the catfish medium. The size distribution was observed by using a high speed camera image followed by processing using ImageJ. freeware application. The results show that air flow rate 0.05 L/min and 0.1 L/min received average bubble size of 29 µm and 31 µm respectively. The generator produced bubbles with capacity of 6 L/min and dissolved oxygen rate 0.2 ppm/min/L. The obtained DO growth was 0.455 ppm/second/L while the average decay rate was 0.20 ppm/second/L. (0.011/0.005 fold). In contrast, the recieved DO growth rate is faster compared to the DO consumption rate of the Thai catfish. This results indicated that the potential application of FBs enhanced the density of thai catfish seed rearing. In addition, ammonia can be reduced at 0.0358 ppm/hour/L and it is also observed that the inhibition of bacterial growth of air FBs is postive to Aeromonas hydrophila bacteria compared to the negative control. It is concluded that as-developed FBs system can be potentially applied for intensive thai catfish culture and expected to improve the feeding efficiency rate.

  8. Control of Wave Propagation and Effect of Kerr Nonlinearity on Group Index

    NASA Astrophysics Data System (ADS)

    Hazrat, Ali; Ziauddin; Iftikhar, Ahmed

    2013-07-01

    We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden decay rate via increasing the number of atoms [G.S. Agarwal and T.N. Dey, Phys. Rev. A 74 (2006) 043805 and K. Harada, T. Kanbashi, and M. Mitsunaga, Phys. Rev. A 73 (2006) 013803]. The behavior of wave propagation is dramatically changed from normal (subluminal) to anomalous (superluminal) dispersion by increasing the forbidden decay rate. The system can also give a control over the group velocity of the light propagating through the medium via Kerr field.

  9. Hybrid suboptimal control of multi-rate multi-loop sampled-data systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Chen, Gwangchywan; Tsai, Jason S. H.

    1992-01-01

    A hybrid state-space controller is developed for suboptimal digital control of multirate multiloop multivariable continuous-time systems. First, an LQR is designed for a continuous-time subsystem which has a large bandwidth and is connnected in the inner loop of the overall system. The designed LQR would optimally place the eigenvalues of a closed-loop subsystem in the common region of an open sector bounded by sector angles + or - pi/2k for k = 2 or 3 from the negative real axis and the left-hand side of a vertical line on the negative real axis in the s-plane. Then, the developed continuous-time state-feedback gain is converted into an equivalent fast-rate discrete-time state-feedback gain via a digital redesign technique (Tsai et al. 1989, Shieh et al. 1990) reviewed here. A real state reconstructor is redeveloped utilizing the fast-rate input-output data of the system of interest. The design procedure of multiloop multivariable systems using multirate samplers is shown, and a terminal homing missile system example is used to demonstrate the effectiveness of the proposed method.

  10. 40 CFR 63.4966 - How do I establish the emission capture system and add-on control device operating limits during...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... system and add-on control device operating limits during the performance test? 63.4966 Section 63.4966... outlet gas temperature is the maximum operating limit for your condenser. (e) Emission capture system... Emission Rate with Add-on Controls Option § 63.4966 How do I establish the emission capture system and add...

  11. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Volume 2, Part 2: Appendixes B, C, D and E

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    The derivation of the equations is presented, the rate control algorithm described, and simulation methodologies summarized. A set of dynamics equations that can be used recursively to calculate forces and torques acting at the joints of an n link manipulator given the manipulator joint rates are derived. The equations are valid for any n link manipulator system with any kind of joints connected in any sequence. The equations of motion for the class of manipulators consisting of n rigid links interconnected by rotary joints are derived. A technique is outlined for reducing the system of equations to eliminate contraint torques. The linearized dynamics equations for an n link manipulator system are derived. The general n link linearized equations are then applied to a two link configuration. The coordinated rate control algorithm used to compute individual joint rates when given end effector rates is described. A short discussion of simulation methodologies is presented.

  12. Design and construction of a high frame rate imaging system

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Waugaman, John L.; Liu, Anjun; Lu, Jian-Yu

    2002-05-01

    A new high frame rate imaging method has been developed recently [Jian-yu Lu, ``2D and 3D high frame rate imaging with limited diffraction beams,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 839-856 (1997)]. This method may have a clinical application for imaging of fast moving objects such as human hearts, velocity vector imaging, and low-speckle imaging. To implement the method, an imaging system has been designed. The system consists of one main printed circuit board (PCB) and 16 channel boards (each channel board contains 8 channels), in addition to a set-top box for connections to a personal computer (PC), a front panel board for user control and message display, and a power control and distribution board. The main board contains a field programmable gate array (FPGA) and controls all channels (each channel has also an FPGA). We will report the analog and digital circuit design and simulations, multiplayer PCB designs with commercial software (Protel 99), PCB signal integrity testing and system RFI/EMI shielding, and the assembly and construction of the entire system. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  13. Logic design and implementation of FPGA for a high frame rate ultrasound imaging system

    NASA Astrophysics Data System (ADS)

    Liu, Anjun; Wang, Jing; Lu, Jian-Yu

    2002-05-01

    Recently, a method has been developed for high frame rate medical imaging [Jian-yu Lu, ``2D and 3D high frame rate imaging with limited diffraction beams,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(4), 839-856 (1997)]. To realize this method, a complicated system [multiple-channel simultaneous data acquisition, large memory in each channel for storing up to 16 seconds of data at 40 MHz and 12-bit resolution, time-variable-gain (TGC) control, Doppler imaging, harmonic imaging, as well as coded transmissions] is designed. Due to the complexity of the system, field programmable gate array (FPGA) (Xilinx Spartn II) is used. In this presentation, the design and implementation of the FPGA for the system will be reported. This includes the synchronous dynamic random access memory (SDRAM) controller and other system controllers, time sharing for auto-refresh of SDRAMs to reduce peak power, transmission and imaging modality selections, ECG data acquisition and synchronization, 160 MHz delay locked loop (DLL) for accurate timing, and data transfer via either a parallel port or a PCI bus for post image processing. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  14. Development and evaluation of a monitoring-aid system for a nuclear power plant in control room system manipulation.

    PubMed

    Lin, Jhih-Tsong; Chen, Yan-Cheng; Wu, Shih-Chieh; Hwang, Sheue-Ling

    2017-01-01

    In an advanced nuclear power plant (NPP), the operators are responsible for monitoring a massive number of alarm parameters. To assist the operators, a monitoring-aid system (MAS), that applies four quality control chart methods, was proposed and evaluated. Two types of MAS, namely, text and graph marks, were proposed and compared with the original display. To validate the proposed MAS, 17 professional engineers and operators were invited to join an experiment. Two different system states, normal and abnormal, were simulated. The operators were asked to manipulate the system, monitor the critical parameters, search for operational procedures, and deal with other secondary tasks. The primary and secondary task performance and heart rate were measured. After each task was conducted, three subjective rating questionnaires, namely, mental workload, situation awareness, and preference ratings, were implemented for the proposed MAS and the original system. With the assistance of the MAS, the alarm detection rate, secondary task performance, and subjective mental workload demonstrate significant improvements. The proposed MAS helps the operators monitor critical parameters. Therefore, the MAS should be considered for implementation with the control panel to increase the safety of NPPs. Furthermore, the MAS could reduce the mental workload might decrease the health hazard of the operators.

  15. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Lin, Yashen; Gevorgian, Vahan

    Synchronous machines have traditionally acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, with the increased integration of distributed renewable resources and energy-storage technologies, there is a need to systematically acknowledge the dynamics of power-electronics inverters - the primary energy-conversion interface in such systems - in all aspects of modeling, analysis, and control of the bulk power network. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator, three-phase inverter, and a load. The inverter model is formulatedmore » such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.« less

  16. Adaptive Wavelet Coding Applied in a Wireless Control System.

    PubMed

    Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O

    2017-12-13

    Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.

  17. Leak Rate Quantification Method for Gas Pressure Seals with Controlled Pressure Differential

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Braun, Minel J.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.

    2015-01-01

    An enhancement to the pressure decay leak rate method with mass point analysis solved deficiencies in the standard method. By adding a control system, a constant gas pressure differential across the test article was maintained. As a result, the desired pressure condition was met at the onset of the test, and the mass leak rate and measurement uncertainty were computed in real-time. The data acquisition and control system were programmed to automatically stop when specified criteria were met. Typically, the test was stopped when a specified level of measurement uncertainty was attained. Using silicone O-ring test articles, the new method was compared with the standard method that permitted the downstream pressure to be non-constant atmospheric pressure. The two methods recorded comparable leak rates, but the new method recorded leak rates with significantly lower measurement uncertainty, statistical variance, and test duration. Utilizing this new method in leak rate quantification, projects will reduce cost and schedule, improve test results, and ease interpretation between data sets.

  18. New approach to control the methanogenic reactor of a two-phase anaerobic digestion system.

    PubMed

    von Sachs, Jürgen; Meyer, Ulrich; Rys, Paul; Feitkenhauer, Heiko

    2003-03-01

    A new control strategy for the methanogenic reactor of a two-phase anaerobic digestion system has been developed and successfully tested on the laboratory scale. The control strategy serves the purpose to detect inhibitory effects and to achieve good conversion. The concept is based on the idea that volatile fatty acids (VFA) can be measured in the influent of the methanogenic reactor by means of titration. Thus, information on the output (methane production) and input of the methanogenic reactor is available, and a (carbon) mass balance can be obtained. The control algorithm comprises a proportional/integral structure with the ratio of (a) the methane production rate measured online and (b) a maximum methane production rate expected (derived from the stoichiometry) as a control variable. The manipulated variable is the volumetric feed rate. Results are shown for an experiment with VFA (feed) concentration ramps and for experiments with sodium chloride as inhibitor.

  19. 30 CFR 250.616 - Blowout prevention equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...

  20. 30 CFR 250.616 - Blowout prevention equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...

  1. 30 CFR 250.615 - Blowout prevention equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressure rating of the BOP system and system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the... pressure limitations that will be applied during each mode of pressure control. (b) The minimum BOP system...

  2. Improving in vitro maturation and pregnancy outcome in cattle using a novel oocyte shipping and maturation system not requiring a CO₂ gas phase.

    PubMed

    Barceló-Fimbres, M; Campos-Chillón, L F; Mtango, N R; Altermatt, J; Bonilla, L; Koppang, R; Verstegen, J P

    2015-07-01

    The present work evaluated the benefit of a novel shipping and maturation medium (SMM) not requiring a CO2 gas for maturation and subsequent embryonic development of slaughterhouse and ovum pickup (OPU) bovine cumulus-oocyte complexes (COCs). Four experiments were conducted. In experiment 1, COCs were maturated for 18 hours in SMM and then incubated for 6 hours in, or 24 hours in a conventional system (control). Experiment 2 compared maturation for 24 hours in SMM versus 24 hours in the control. Experiment 3 compared three different incubation temperatures (37 °C, 38 °C, and 38.5 °C) for COCs maturation in SMM. In experiment 4, COCs obtained from 166 OPU sessions (representing two dairy and two beef breeds) in two locations (Wisconsin and California) were matured in SMM or control and evaluated relative to embryo production and pregnancy rates. Frozen semen was used for all experiments. The results for experiment 1 showed that the blastocyst rate and total embryo production rate (TE, Day-7 morulae plus all blastocysts) were higher for SMM than those in the control. However, no differences were observed for cleavage rate or blastocyst stage. In experiment 2, the blastocyst rate and TE were higher for SMM than those in the control; however, there was no difference for cleavage rate, total cell number, blastocyst stage. In experiment 3, the cleavage rate was similar, but the blastocyst rate and TE were greater for 38.5 °C than those for 38.0 °C and 37.5 °C. For experiment 4, Wisconsin OPU-derived COCs had a greater cleavage rate, blastocyst rate, TE, and blastocyst stage for SMM versus control. There were no breed effects. For the California trial, OPU-derived COCs matured in SMM had similar cleavage and pregnancy rates at Day 35 but greater blastocyst rates and transferred embryos per session than the control, which resulted in 2.2 more pregnancies per OPU session. Holstein COCs had superior embryonic development but similar pregnancy compared with Jersey. We conclude that COCs matured in SMM had greater oocyte competence than the control. Also, maturation at 38.5 °C in SMM was optimal for embryonic development. In summary, SMM resulted in greater embryonic development, similar pregnancy rates, but higher pregnancies per OPU session than the conventional maturation system. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Neural control of heart rate: the role of neuronal networking.

    PubMed

    Kember, G; Armour, J A; Zamir, M

    2011-05-21

    Neural control of heart rate, particularly its sympathetic component, is generally thought to reside primarily in the central nervous system, though accumulating evidence suggests that intrathoracic extracardiac and intrinsic cardiac ganglia are also involved. We propose an integrated model in which the control of heart rate is achieved via three neuronal "levels" representing three control centers instead of the conventional one. Most importantly, in this model control is effected through networking between neuronal populations within and among these layers. The results obtained indicate that networking serves to process demands for systemic blood flow before transducing them to cardiac motor neurons. This provides the heart with a measure of protection against the possibility of "overdrive" implied by the currently held centrally driven system. The results also show that localized networking instabilities can lead to sporadic low frequency oscillations that have the characteristics of the well-known Mayer waves. The sporadic nature of Mayer waves has been unexplained so far and is of particular interest in clinical diagnosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Effects of the DRG-based prospective payment system operated by the voluntarily participating providers on the cesarean section rates in Korea.

    PubMed

    Lee, Kwangsoo; Lee, Sangil

    2007-05-01

    This study explored the effects of the diagnosis-related group (DRG)-based prospective payment system (PPS) operated by voluntarily participating organizations on the cesarean section (CS) rates, and analyzed whether the participating health care organizations had similar CS rates despite the varied participation periods. The study sample included delivery claims data from the Korean national health insurance program for the year 2003. Risk factors were identified and used in the adjustment model to distinguish the main reason for CS. Their risk-adjusted CS rates were compared by the reimbursement methods, and the organizations' internal and external environments were controlled. The final risk-adjustment model for the CS rates meets the criteria for an effective model. There were no significant differences of CS rates between providers in the DRG and fee-for-service system after controlling for organizational variables. The CS rates did not vary significantly depending on the providers' DRG participation periods. The results provide evidence that the DRG payment system operated by volunteering health care organizations had no impact on the CS rates, which can lower the quality of care. Although the providers joined the DRG system in different years, there were no differences in the CS rates among the DRG providers. These results support the future expansion of the DRG-based PPS plan to all health care services in Korea.

  5. A Control Allocation Technique to Recover From Pilot-Induced Oscillations (CAPIO) Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2010-01-01

    This paper proposes a control allocation technique that can help pilots recover from pilot induced oscillations (PIO). When actuators are rate-saturated due to aggressive pilot commands, high gain flight control systems or some anomaly in the system, the effective delay in the control loop may increase depending on the nature of the cause. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate PIOs. The proposed control allocator reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. Simulation results are reported, which demonstrate phase shift minimization and recovery from PIOs. Conversion of the objective function to be minimized and constraints to a form that is suitable for implementation is given.

  6. The principle of sufficiency and the evolution of control: using control analysis to understand the design principles of biological systems.

    PubMed

    Brown, Guy C

    2010-10-01

    Control analysis can be used to try to understand why (quantitatively) systems are the way that they are, from rate constants within proteins to the relative amount of different tissues in organisms. Many biological parameters appear to be optimized to maximize rates under the constraint of minimizing space utilization. For any biological process with multiple steps that compete for control in series, evolution by natural selection will tend to even out the control exerted by each step. This is for two reasons: (i) shared control maximizes the flux for minimum protein concentration, and (ii) the selection pressure on any step is proportional to its control, and selection will, by increasing the rate of a step (relative to other steps), decrease its control over a pathway. The control coefficient of a parameter P over fitness can be defined as (∂N/N)/(∂P/P), where N is the number of individuals in the population, and ∂N is the change in that number as a result of the change in P. This control coefficient is equal to the selection pressure on P. I argue that biological systems optimized by natural selection will conform to a principle of sufficiency, such that the control coefficient of all parameters over fitness is 0. Thus in an optimized system small changes in parameters will have a negligible effect on fitness. This principle naturally leads to (and is supported by) the dominance of wild-type alleles over null mutants.

  7. Control system for an artificial heart

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1970-01-01

    Inexpensive industrial pneumatic components are combined to produce control system to drive sac-type heart-assistance blood pump with controlled pulsatile pressure that makes pump rate of flow sensitive to venous /atrial/ pressure, while stroke is centered about set operating point and pump is synchronized with natural heart.

  8. Deducing growth mechanisms for minerals from the shapes of crystal size distributions

    USGS Publications Warehouse

    Eberl, D.D.; Drits, V.A.; Srodon, J.

    1998-01-01

    Crystal size distributions (CSDs) of natural and synthetic samples are observed to have several distinct and different shapes. We have simulated these CSDs using three simple equations: the Law of Proportionate Effect (LPE), a mass balance equation, and equations for Ostwald ripening. The following crystal growth mechanisms are simulated using these equations and their modifications: (1) continuous nucleation and growth in an open system, during which crystals nucleate at either a constant, decaying, or accelerating nucleation rate, and then grow according to the LPE; (2) surface-controlled growth in an open system, during which crystals grow with an essentially unlimited supply of nutrients according to the LPE; (3) supply-controlled growth in an open system, during which crystals grow with a specified, limited supply of nutrients according to the LPE; (4) supply- or surface-controlled Ostwald ripening in a closed system, during which the relative rate of crystal dissolution and growth is controlled by differences in specific surface area and by diffusion rate; and (5) supply-controlled random ripening in a closed system, during which the rate of crystal dissolution and growth is random with respect to specific surface area. Each of these mechanisms affects the shapes of CSDs. For example, mechanism (1) above with a constant nucleation rate yields asymptotically-shaped CSDs for which the variance of the natural logarithms of the crystal sizes (??2) increases exponentially with the mean of the natural logarithms of the sizes (??). Mechanism (2) yields lognormally-shaped CSDs, for which ??2 increases linearly with ??, whereas mechanisms (3) and (5) do not change the shapes of CSDs, with ??2 remaining constant with increasing ??. During supply-controlled Ostwald ripening (4), initial lognormally-shaped CSDs become more symmetric, with ??2 decreasing with increasing ??. Thus, crystal growth mechanisms often can be deduced by noting trends in ?? versus ??2 of CSDs for a series of related samples.

  9. Dynamics of a Hogg-Huberman Model with Time Dependent Reevaluation Rates

    NASA Astrophysics Data System (ADS)

    Tanaka, Toshijiro; Kurihara, Tetsuya; Inoue, Masayoshi

    2006-05-01

    The dynamical behavior of the Hogg-Huberman model with time-dependent reevaluation rates is studied. The time dependence of the reevaluation rate that agents using one of resources decide to consider their resource choice is obtained in terms of states of the system. It is seen that the change of fraction of agents using one resource is suppressed to be smaller than that in the case of a fixed reevaluation rate and the chaos control in the system associated with time-dependent reevaluation rates can be performed by the system itself.

  10. Adaptive control system of dump truck traction electric drive

    NASA Astrophysics Data System (ADS)

    Bolshunova, O. M.; Korzhev, A. A.; Kamyshyan, A. M.

    2018-03-01

    The paper describes the operational factors that determine the accident rate of a quarry motor vehicle and assessment of their impact on the choice of the operation mode of the traction drive control system.

  11. Adaptive Control Based Harvesting Strategy for a Predator-Prey Dynamical System.

    PubMed

    Sen, Moitri; Simha, Ashutosh; Raha, Soumyendu

    2018-04-23

    This paper deals with designing a harvesting control strategy for a predator-prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.

  12. Liquid Bismuth Propellant Management System for the Very High Specific Impulse Thruster with Anode Layer

    NASA Technical Reports Server (NTRS)

    Polzin, K. A.; Markusic, T. E.; Stanojev, B. J.

    2007-01-01

    Two prototype bismuth propellant feed systems were constructed and operated in conjunction with a propellant vaporizer. One system provided bismuth to a vaporizer using gas pressurization but did not include a means to measure the flow rate. The second system incorporated an electromagnetic pump to provide fine control of the hydrostatic pressure and a new type of in-line flow sensor that was developed for accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of Macor for the main body of both components. Posttest inspections of both components revealed no degradation of the material. The gas pressurization system demonstrated continuous pressure control over a range from zero to 200 torr. In separate proof-of-concept experiments, the electromagnetic pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, producing a pressure rise of 10 kPa at 30 A. Preliminary flow sensor operation indicated a bismuth flow rate of 6 mg/s with an uncertainty of plus or minus 6%. An electronics suite containing a real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.

  13. Improving Control System Cyber-State Awareness using Known Secure Sensor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Milos Manic; Miles McQueen

    Abstract—This paper presents design and simulation of a low cost and low false alarm rate method for improved cyber-state awareness of critical control systems - the Known Secure Sensor Measurements (KSSM) method. The KSSM concept relies on physical measurements to detect malicious falsification of the control systems state. The KSSM method can be incrementally integrated with already installed control systems for enhanced resilience. This paper reviews the previously developed theoretical KSSM concept and then describes a simulation of the KSSM system. A simulated control system network is integrated with the KSSM components. The effectiveness of detection of various intrusion scenariosmore » is demonstrated on several control system network topologies.« less

  14. Face Recognition for Access Control Systems Combining Image-Difference Features Based on a Probabilistic Model

    NASA Astrophysics Data System (ADS)

    Miwa, Shotaro; Kage, Hiroshi; Hirai, Takashi; Sumi, Kazuhiko

    We propose a probabilistic face recognition algorithm for Access Control System(ACS)s. Comparing with existing ACSs using low cost IC-cards, face recognition has advantages in usability and security that it doesn't require people to hold cards over scanners and doesn't accept imposters with authorized cards. Therefore face recognition attracts more interests in security markets than IC-cards. But in security markets where low cost ACSs exist, price competition is important, and there is a limitation on the quality of available cameras and image control. Therefore ACSs using face recognition are required to handle much lower quality images, such as defocused and poor gain-controlled images than high security systems, such as immigration control. To tackle with such image quality problems we developed a face recognition algorithm based on a probabilistic model which combines a variety of image-difference features trained by Real AdaBoost with their prior probability distributions. It enables to evaluate and utilize only reliable features among trained ones during each authentication, and achieve high recognition performance rates. The field evaluation using a pseudo Access Control System installed in our office shows that the proposed system achieves a constant high recognition performance rate independent on face image qualities, that is about four times lower EER (Equal Error Rate) under a variety of image conditions than one without any prior probability distributions. On the other hand using image difference features without any prior probabilities are sensitive to image qualities. We also evaluated PCA, and it has worse, but constant performance rates because of its general optimization on overall data. Comparing with PCA, Real AdaBoost without any prior distribution performs twice better under good image conditions, but degrades to a performance as good as PCA under poor image conditions.

  15. Self-tuning control of attitude and momentum management for the Space Station

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Yuan, Z. Z.; Zhao, X. M.

    1992-01-01

    This paper presents a hybrid state-space self-tuning design methodology using dual-rate sampling for suboptimal digital adaptive control of attitude and momentum management for the Space Station. This new hybrid adaptive control scheme combines an on-line recursive estimation algorithm for indirectly identifying the parameters of a continuous-time system from the available fast-rate sampled data of the inputs and states and a controller synthesis algorithm for indirectly finding the slow-rate suboptimal digital controller from the designed optimal analog controller. The proposed method enables the development of digitally implementable control algorithms for the robust control of Space Station Freedom with unknown environmental disturbances and slowly time-varying dynamics.

  16. Heart rate autonomic regulation system at rest and during paced breathing among patients with CRPS as compared to age-matched healthy controls.

    PubMed

    Bartur, Gadi; Vatine, Jean-Jacques; Raphaely-Beer, Noa; Peleg, Sara; Katz-Leurer, Michal

    2014-09-01

    The objective of this study is to assess the autonomic nerve heart rate regulation system at rest and its immediate response to paced breathing among patients with complex regional pain syndrome (CRPS) as compared with age-matched healthy controls. Quasiexperimental. Outpatient clinic. Ten patients with CRPS and 10 age- and sex-matched controls. Participants underwent Holter ECG (NorthEast Monitoring, Inc., Maynard, MA, USA) recording during rest and biofeedback-paced breathing session. Heart rate variability (HRV), time, and frequency measures were assessed. HRV and time domain values were significantly lower at rest among patients with CRPS as compared with controls. A significant association was noted between pain rank and HRV frequency measures at rest and during paced breathing; although both groups reduced breathing rate significantly during paced breathing, HRV time domain parameters increased only among the control group. The increased heart rate and decreased HRV at rest in patients with CRPS suggest a general autonomic imbalance. The inability of the patients to increase HRV time domain values during paced breathing may suggest that these patients have sustained stress response with minimal changeability in response to slow-paced breathing stimuli. Wiley Periodicals, Inc.

  17. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiao; Shanechi, Maryam M.

    2016-12-01

    Objective. Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. Approach. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. Main results. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. Significance. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.

  18. V/STOL Systems Research Aircraft: A Tool for Cockpit Integration

    NASA Technical Reports Server (NTRS)

    Stortz, Michael W.; ODonoghue, Dennis P.; Tiffany, Geary (Technical Monitor)

    1995-01-01

    The next generation ASTOVL aircraft will have a complicated propulsion System. The configuration choices include Direct Lift, Lift-Fan and Lift+Lift /Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to decouple longitudinal and vertical responses allowing the pilot to close the loop on flight path and flight path acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision. has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flight path command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results will be used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.

  19. V/STOL systems research aircraft: A tool for cockpit integration

    NASA Technical Reports Server (NTRS)

    Stortz, Michael W.; ODonoghue, Dennis P.

    1995-01-01

    The next generation ASTOVL aircraft will have a complicated propulsion system. The configuration choices include Direct Lift, Lift-Fan and Lift + Lift/Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to de-couple longitudinal and vertical responses allowing the pilot to close the loop on flightpath and flightpath acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision, has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flightpath command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results are used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.

  20. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia.

    PubMed

    Yang, Yuxiao; Shanechi, Maryam M

    2016-12-01

    Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.

  1. A MySQL Based EPICS Archiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Slominski

    2009-10-01

    Archiving a large fraction of the EPICS signals within the Jefferson Lab (JLAB) Accelerator control system is vital for postmortem and real-time analysis of the accelerator performance. This analysis is performed on a daily basis by scientists, operators, engineers, technicians, and software developers. Archiving poses unique challenges due to the magnitude of the control system. A MySQL Archiving system (Mya) was developed to scale to the needs of the control system; currently archiving 58,000 EPICS variables, updating at a rate of 11,000 events per second. In addition to the large collection rate, retrieval of the archived data must also bemore » fast and robust. Archived data retrieval clients obtain data at a rate over 100,000 data points per second. Managing the data in a relational database provides a number of benefits. This paper describes an archiving solution that uses an open source database and standard off the shelf hardware to reach high performance archiving needs. Mya has been in production at Jefferson Lab since February of 2007.« less

  2. Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts

    PubMed Central

    Backhausen, Lea L.; Herting, Megan M.; Buse, Judith; Roessner, Veit; Smolka, Michael N.; Vetter, Nora C.

    2016-01-01

    In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g., FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e., determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here, we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies. PMID:27999528

  3. Command and Service Module Communications

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation examines Command and Service Module (CSM) Communications. The communication system's capabilities are defined, including CSM-Earth, CSM-Lunar Module and CSM-Extravehicular crewman communications. An overview is provided for S-band communications, including data transmission and receiving rates, operating frequencies and major system components (pre-modulation processors, unified S-band electronics, S-band power amplifier and S-band antennas). Additionally, data transmission rates, operating frequencies and the capabilities of VHF communications are described. Major VHF components, including transmitters and receivers, and the VHF multiplexer and antennas are also highlighted. Finally, communications during pre-launch, ascent, in-flight and entry are discussed. Overall, the CSM communication system was rated highly by flight controllers and crew. The system was mostly autonomous for both crew and flight controllers and no major issues were encountered during flight.

  4. [Study on interventions based on systematic ecological system construction to interrupt transmission of schistosomiasis in hilly endemic regions].

    PubMed

    Jia, Xu; Xue-Xiang, Wan; Lin, Chen; Bo, Zhong; Yi, Zhang

    2016-10-13

    To study the effectiveness of comprehensive control measures based on systematic ecological system construction to interrupt the transmission of schistosomiasis in hilly endemic regions in Sichuan Province, so as to provide the evidence for adjustment of schistosomiasis prevention and control strategies. A high endemic area of schistosomiasis, Panao Township of Dongpo District in Meishan City, was selected as a demonstration area. The comprehensive measures for schistosomiasis control with focus on systematic ecological management were implemented, and the income of residents, indexes of schistosomiasis control effect and so on were investigated before and after the intervention and the results were compared. The project based on systematic ecological system construction started in 2009 and 317.351 million Yuan was put into the construction. The construction included economic forest plant base (1 866.68 hm 2 , 72.66% of the total farmland areas), ecological protection gardens (585.35 hm 2 ) and so on. Totally 97.04% of historical areas with Oncomelania hupensis snails were comprehensively improved. In 2015, the peasants´ pure income per capita increased 4 938 Yuan, with the average annual growth rate of 14.69%. All the farm cattle were replaced by the machine. The benefit rate of water improvement was increased by 52.84% and the coverage rate of harmless toilets increased by 18.30%. The positive rate of serological tests for schistosomiasis decreased from 7.69% to 3.50%, and the positive rate of parasitological tests decreased from 1.18% to 0. The area with snails was decreased from 23.33 hm 2 to 0. The awareness rate of schistosomiasis control knowledge and correct behavior rate of the residents increased from 85.50% and 82.60% to 95.70% and 93.90% respectively. The comprehensive schistosomiasis control measures based on systematic ecological management are conform to the currently actual schistosomiasis prevention and control work in hilly endemic regions, and have good ecological economic benefit and schistosomiasis control effectiveness, which provide an effectively new model of prevention and control for advancing process, consolidating the effect, finally realizing goal of interruption and elimination of schistosomiasis in hilly endemic regions.

  5. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.

    2004-01-15

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patternsmore » of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.« less

  6. Large area sheet task: Advanced Dendritic Web Growth Development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1981-01-01

    A melt level control system was implemented to provide stepless silicon feed rates from zero to rates exactly matching the silicon consumed during web growth. Bench tests of the unit were successfully completed and the system mounted in a web furnace for operational verification. Tests of long term temperature drift correction techniques were made; web width monitoring seems most appropriate for feedback purposes. A system to program the initiation of the web growth cycle was successfully tested. A low cost temperature controller was tested which functions as well as units four times as expensive.

  7. Launch Vehicle Manual Steering with Adaptive Augmenting Control In-flight Evaluations of Adverse Interactions Using a Piloted Aircraft

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Miller, Chris; Wall, John H.; Vanzwieten, Tannen S.; Gilligan, Eric; Orr, Jeb S.

    2015-01-01

    An adaptive augmenting control algorithm for the Space Launch System has been developed at the Marshall Space Flight Center as part of the launch vehicles baseline flight control system. A prototype version of the SLS flight control software was hosted on a piloted aircraft at the Armstrong Flight Research Center to demonstrate the adaptive controller on a full-scale realistic application in a relevant flight environment. Concerns regarding adverse interactions between the adaptive controller and a proposed manual steering mode were investigated by giving the pilot trajectory deviation cues and pitch rate command authority. Two NASA research pilots flew a total of twenty five constant pitch-rate trajectories using a prototype manual steering mode with and without adaptive control.

  8. Cardiopulmonary data-acquisition system

    NASA Technical Reports Server (NTRS)

    Crosier, W. G.; Reed, R. A.

    1981-01-01

    Computerized system controls and monitors bicycle and treadmill cardiovascular stress tests. It acquires and reduces stress data and displays heart rate, blood pressure, workload, respiratory rate, exhaled-gas composition, and other variables. Data are printed on hard-copy terminal every 30 seconds for quick operator response to patient. Ergometer workload is controlled in real time according to experimental protocol. Collected data are stored directly on tape in analog form and on floppy disks in digital form for later processing.

  9. Effects of stick dynamics on helicopter flying qualities

    NASA Technical Reports Server (NTRS)

    Watson, Douglas C.; Schroeder, Jeffery A.

    1990-01-01

    An experiment that investigated the influence of typical helicopter force-feel system dynamics on roll-axis handling qualities was conducted in concurrent ground and inflight simulations. Variations in lateral control natural frequency and damping ratio, effected by changes in inertia and damping, were evaluated in a disturbance-rejection task. Pilot ratings indicated a preference for low-inertia feel systems, although measured performance was relatively constant over the range of stick characteristics. Force-sensing was compared with position sensing as the input to the control system. Force-sensing improved performance but did not improve pilot ratings. Overall, the results indicated that control-stick dynamics, at least within a reasonable range, did not have a significant effect on pilot-vehicle performance. However, the physical effort required to maintain a desired pilot/manipulator bandwidth became objectionable as the stick inertia increased beyond 5-7 lbm, which was reflected in the pilot ratings and comments.

  10. A Modular System of Interfacing Microcomputers.

    ERIC Educational Resources Information Center

    Martin, Peter

    1983-01-01

    Describes a system of interfacing allowing a range of signal conditioning and control modules to be connected to microcomputers, enabling execution of such experiments as: examining rate of cooling; control by light-activated switch; pH measurements; control frequency of signal generators; and making automated measurements of frequency response of…

  11. A piloted simulator study on augmentation systems to improve helicopter flying qualities in terrain flight

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.

    1979-01-01

    Four basic single-rotor helicopters, one teetering, on articulated, and two hingeless, which were found to have a variety of major deficiencies in a previous fixed-based simulator study, were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate-command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular tate; and attitude-command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usages and their gain levels associated with specific rotor types are also discussed.

  12. [Application of HIS Hospital Management System in Medical Equipment].

    PubMed

    Li, Yucheng

    2015-07-01

    To analyze the effect of HIS hospital management system in medical equipment. From April 2012 to 2013 in our hospital 5 100 sets of medical equipment as the control group, another 2013 in our hospital from April 2014 may 100 sets of medical equipment as the study group, comparative analysis of two groups of medical equipment scrap rate, usage, maintenance score and the score of benefit etc. Control group and taken to hospital information system, his research group equipment scrap rate, there was a significant difference, the research group of equipment maintenance score and efficiency scores were higher than those of the control group (P < 0.05), the study group of equipment maintenance score and efficiency scores were higher than those of the control group. HIS hospital management system for medical equipment management has positive clinical application value, can effectively improve the use of medical equipment, it is worth to draw and promote.

  13. Variable rate irrigation (VRI)

    USDA-ARS?s Scientific Manuscript database

    Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...

  14. Dynamically controlled crystal growth system

    NASA Technical Reports Server (NTRS)

    Bray, Terry L. (Inventor); Kim, Larry J. (Inventor); Harrington, Michael (Inventor); DeLucas, Lawrence J. (Inventor)

    2002-01-01

    Crystal growth can be initiated and controlled by dynamically controlled vapor diffusion or temperature change. In one aspect, the present invention uses a precisely controlled vapor diffusion approach to monitor and control protein crystal growth. The system utilizes a humidity sensor and various interfaces under computer control to effect virtually any evaporation rate from a number of different growth solutions simultaneously by means of an evaporative gas flow. A static laser light scattering sensor can be used to detect aggregation events and trigger a change in the evaporation rate for a growth solution. A control/follower configuration can be used to actively monitor one chamber and accurately control replicate chambers relative to the control chamber. In a second aspect, the invention exploits the varying solubility of proteins versus temperature to control the growth of protein crystals. This system contains miniature thermoelectric devices under microcomputer control that change temperature as needed to grow crystals of a given protein. Complex temperature ramps are possible using this approach. A static laser light scattering probe also can be used in this system as a non-invasive probe for detection of aggregation events. The automated dynamic control system provides systematic and predictable responses with regard to crystal size. These systems can be used for microgravity crystallization projects, for example in a space shuttle, and for crystallization work under terrestial conditions. The present invention is particularly useful for macromolecular crystallization, e.g. for proteins, polypeptides, nucleic acids, viruses and virus particles.

  15. Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Zhang, Qiming

    2004-01-01

    An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.

  16. Impacts of Aging Emission Control Systems on In-Use Heavy-Duty Diesel Truck Emission Rates

    NASA Astrophysics Data System (ADS)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2017-12-01

    Heavy-duty diesel trucks are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems have become standard equipment on new trucks. Particle filters can also be installed as a retrofit on older engines. Prior work has shown that exhaust filters and SCR systems effectively reduce BC and NOx emission rates by up to 90 and 80%, respectively (Preble et al., ES&T 2015). There is concern, however, that DPFs may promote the formation of ultrafine particles (UFP) and increase tailpipe emissions of nitrogen dioxide (NO2). Additionally, urea-based SCR systems for NOx control may form nitrous oxide (N2O), an important contributor to stratospheric ozone depletion. The effectiveness of these emission controls has been thoroughly evaluated in the laboratory, but the long-term durability of in-use systems and their impacts on co-emitted species have not been well characterized. To evaluate the in-use performance of DPF and SCR systems, pollutant emissions from thousands of diesel trucks were measured over several years at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Pollutants present in the exhaust plumes of individual trucks were measured at high time resolution (≥1 Hz) as trucks passed under a mobile lab stationed on an overpass. Fuel-based emission factors (g pollutant emitted per kg fuel burned) were calculated for individual trucks and linked via recorded license plates to vehicle attributes, including engine model year and installed emission control systems. Use of DPFs reduced the BC emission rate by up to 95% at both locations. SCR systems were more effective at reducing NOx emissions under the uphill, highway driving conditions at the Caldecott Tunnel. The emission rates of co-emitted species NO2, UFP, and N2O depended on driving mode. Some DPFs on trucks with 2007-2009 model year engines showed deterioration or failure in filter performance, leading to higher BC emission rates compared to the average for trucks without filters. Emission inventories may underestimate total on-road emissions from diesel trucks, especially if particle filter failure rates continue to increase over time.

  17. Minimum airflow reset of single-duct VAV terminal boxes

    NASA Astrophysics Data System (ADS)

    Cho, Young-Hum

    Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and applied to actual systems for performance validation. The results of the theoretical analysis, numeric simulations, and experiments show that the optimal control algorithms can automatically identify the minimum rate of heating airflow under actual working conditions. Improved control helps to stabilize room air temperatures. The vertical difference in the room air temperature was lower than the comfort value. Measurements of room CO2 levels indicate that when the minimum airflow set point was reduced it did not adversely affect the indoor air quality. According to the measured energy results, optimal control algorithms give a lower rate of reheating energy consumption than conventional controls.

  18. An approximation formula for a class of Markov reliability models

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1984-01-01

    A way of considering a small but often used class of reliability model and approximating algebraically the systems reliability is shown. The models considered are appropriate for redundant reconfigurable digital control systems that operate for a short period of time without maintenance, and for such systems the method gives a formula in terms of component fault rates, system recovery rates, and system operating time.

  19. Power flow controller with a fractionally rated back-to-back converter

    DOEpatents

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  20. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    NASA Technical Reports Server (NTRS)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  1. Control of autothermal reforming reactor of diesel fuel

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther

    2016-05-01

    In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).

  2. 77 FR 33950 - Prudential Management and Operations Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... by guideline. 12 U.S.C. 4513b. Those 10 areas relate to: Adequacy of internal controls and information systems; adequacy and independence of the internal audit systems; management of interest rate risk... Join Bank Letter at 7-8. 4. Standard 1 (Internal Controls and Information Systems) \\22\\ \\22\\ The Joint...

  3. Intervention criterion and control research for active front steering with consideration of road adhesion

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojian; Zhou, Bing; Wen, Guilin; Long, Lefei; Cui, Qingjia

    2018-04-01

    A multi-objective active front steering (AFS) control system considering the road adhesion constraint on vehicle stability is developed using the sliding mode control (SMC) method. First, an identification function combined with the relationship between the yaw rate and the steering angle is developed to determine whether the tyre state is linear or nonlinear. On this basis, an intervention criterion for the AFS system is proposed to improve vehicle handling and stability in emergent conditions. A sideslip angle stability domain enveloped by the upper, lower, left, and right boundaries, as well as the constraint of road adhesion coefficient, is constructed based on the ? phase-plane method. A dynamic weighting coefficient to coordinate the control of yaw rate and sideslip angle, and a control strategy that considers changing control objectives based on the desired yaw rate, the desired sideslip angle, and their proportional weights, are proposed for the SMC controller. Because road adhesion has a significant effect on vehicle stability and to meet the control algorithm's requirement of real-time access to vehicle states, a unscented Kalman filter-based state observer is proposed to estimate the adhesion coefficient and the required states. Finally, simulations are performed using high and low road adhesion conditions in a Matlab/Simulink environment, and the results show that the proposed AFS control system promptly intervenes according to the intervention criterion, effectively improving vehicle handling and stability.

  4. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  5. Local position control: A new concept for control of manipulators

    NASA Technical Reports Server (NTRS)

    Kelly, Frederick A.

    1988-01-01

    Resolved motion rate control is currently one of the most frequently used methods of manipulator control. It is currently used in the Space Shuttle remote manipulator system (RMS) and in prosthetic devices. Position control is predominately used in locating the end-effector of an industrial manipulator along a path with prescribed timing. In industrial applications, resolved motion rate control is inappropriate since position error accumulates. This is due to velocity being the control variable. In some applications this property is an advantage rather than a disadvantage. It may be more important for motion to end as soon as the input command is removed rather than reduce the position error to zero. Local position control is a new concept for manipulator control which retains the important properties of resolved motion rate control, but reduces the drift. Local position control can be considered to be a generalization of resolved position and resolved rate control. It places both control schemes on a common mathematical basis.

  6. Engineering Design of ITER Prototype Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Goncalves, B.; Sousa, J.; Carvalho, B.; Rodrigues, A. P.; Correia, M.; Batista, A.; Vega, J.; Ruiz, M.; Lopez, J. M.; Rojo, R. Castro; Wallander, A.; Utzel, N.; Neto, A.; Alves, D.; Valcarcel, D.

    2011-08-01

    The ITER control, data access and communication (CODAC) design team identified the need for two types of plant systems. A slow control plant system is based on industrial automation technology with maximum sampling rates below 100 Hz, and a fast control plant system is based on embedded technology with higher sampling rates and more stringent real-time requirements than that required for slow controllers. The latter is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and, if necessary, high performance networks. Two prototypes of a fast plant system controller specialized for data acquisition and constrained by ITER technological choices are being built using two different form factors. This prototyping activity contributes to the Plant Control Design Handbook effort of standardization, specifically regarding fast controller characteristics. Envisaging a general purpose fast controller design, diagnostic use cases with specific requirements were analyzed and will be presented along with the interface with CODAC and sensors. The requirements and constraints that real-time plasma control imposes on the design were also taken into consideration. Functional specifications and technology neutral architecture, together with its implications on the engineering design, were considered. The detailed engineering design compliant with ITER standards was performed and will be discussed in detail. Emphasis will be given to the integration of the controller in the standard CODAC environment. Requirements for the EPICS IOC providing the interface to the outside world, the prototype decisions on form factor, real-time operating system, and high-performance networks will also be discussed, as well as the requirements for data streaming to CODAC for visualization and archiving.

  7. Flatness-based adaptive fuzzy control of chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.

  8. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature

    NASA Astrophysics Data System (ADS)

    Kizilel, R.; Lateef, A.; Sabbah, R.; Farid, M. M.; Selman, J. R.; Al-Hallaj, S.

    A strategy for portable high-power applications with a controlled thermal environment has been developed and has demonstrated the advantage of using the novel phase change material (PCM) thermal management systems over conventional active cooling systems. A passive thermal management system using PCM for Li-ion batteries is tested for extreme conditions, such as ambient temperature of 45 °C and discharge rate of 2.08 C-rate (10 A). Contrary to Li-ion packs without thermal management system, high-energy packs with PCM are discharged safely at high currents and degrading rate of capacity of the Li-ion packs lowered by half. Moreover, the compactness of the packs not only decreases the volume occupied by the packs and its associated complex cooling system, but also decreases the total weight for large power application.

  9. Online automatic tuning and control for fed-batch cultivation

    PubMed Central

    van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.

    2007-01-01

    Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554

  10. Powder Flux Regulation in the Laser Material Deposition Process

    NASA Astrophysics Data System (ADS)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  11. Motor Controller System For Large Dynamic Range of Motor Operation

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor); Dutton, Kenneth R. (Inventor); Paulson, Mitchell Scott (Inventor)

    2006-01-01

    A motor controller system uses a rotary sensor with a plurality of signal conditioning units, coupled to the rotary sensor. Each of these units, which is associated with a particular range of motor output shaft rotation rates, generate a feedback signal indicative of the position of the motor s output shaft. A controller (i) converts a selected motor output shaft rotation rate to a corresponding incremental amount of rotational movement for a selected fixed time period, (ii) selects, at periodic completions of the selected fixed time period, the feedback signal from one of the signal conditioning units for which the particular range of motor output shaft rotation rates associated therewith encompasses the selected motor output shaft rotation rate, and (iii) generates a motor drive signal based on a difference between the incremental amount of rotational movement and the feedback signal from the selected one of the signal conditioning Units.

  12. Outcomes in Treatment for Intradural Spinal Cord Ependymomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volpp, P. Brian; Han, Khanh; Kagan, A. Robert

    2007-11-15

    Purpose: Spinal cord ependymomas are rare tumors, accounting for <2% of all primary central nervous system tumors. This study assessed the treatment outcomes for patients diagnosed with spinal cord ependymomas within the Southern California Kaiser Permanente system. Methods and Materials: We studied 23 patients treated with surgery with or without external beam radiotherapy (EBRT). The local and distant control rates and overall survival rates were determined. Results: The overall local control, overall recurrence, and 9-year overall survival rate was 96%, 17.4%, and 63.9%, respectively. Conclusions: The results of our study indicate that en bloc gross total resection should be themore » initial treatment, with radiotherapy reserved primarily for postoperative cases with unfavorable characteristics such as residual tumor, anaplastic histologic features, or piecemeal resection. Excellent local control and overall survival rates can be achieved using modern microsurgical techniques, with or without local radiotherapy.« less

  13. A Comparative Study of Alternative Controls and Displays for by the Severely Physically Handicapped

    NASA Technical Reports Server (NTRS)

    Williams, D.; Simpson, C.; Barker, M.

    1984-01-01

    A modification of a row/column scanning system was investigated in order to increase the speed and accuracy with which communication aids can be accessed with one or two switches. A selection algorithm was developed and programmed in BASIC to automatically select individuals with the characteristic difficulty in controlling time dependent control and display systems. Four systems were compared: (1) row/column directed scan (2 switches); (2) row/column auto scan (1 switch); (3) row auto scan (1 switch); and (4) column auto scan (1 switch). For this sample population, there were no significant differences among systems for scan time to select the correct target. The row/column auto scan system resulted in significantly more errors than any of the other three systems. Thus, the most widely prescribed system for severely physically disabled individuals turns out for this group to have a higher error rate and no faster communication rate than three other systems that have been considered inappropriate for this group.

  14. Theoretical study and control optimization of an integrated pest management predator-prey model with power growth rate.

    PubMed

    Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan

    2016-09-01

    This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.

    1983-01-01

    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.

  16. Development of a computer-simulation model for a plant-nematode system.

    PubMed

    Ferris, H

    1976-07-01

    A computer-simulation model (MELSIM) of a Meloidogyne-grapevine system is developed. The objective is to attempt a holistic approach to the study of nematode population dynamics by using experimental data from controlled environmental conditions. A simulator with predictive ability would be useful in considering pest management alternatives and in teaching. Rates of flow and interaction between the components of the system are governed by environmental conditions. Equations for these rates are determined by fitting curves to data from controlled environment studies. Development of the model and trial simulations have revealed deficiencies in understanding of the system and identified areas where further research is necessary.

  17. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  18. A microeconomic scheduler for parallel computers

    NASA Technical Reports Server (NTRS)

    Stoica, Ion; Abdel-Wahab, Hussein; Pothen, Alex

    1995-01-01

    We describe a scheduler based on the microeconomic paradigm for scheduling on-line a set of parallel jobs in a multiprocessor system. In addition to the classical objectives of increasing the system throughput and reducing the response time, we consider fairness in allocating system resources among the users, and providing the user with control over the relative performances of his jobs. We associate with every user a savings account in which he receives money at a constant rate. When a user wants to run a job, he creates an expense account for that job to which he transfers money from his savings account. The job uses the funds in its expense account to obtain the system resources it needs for execution. The share of the system resources allocated to the user is directly related to the rate at which the user receives money; the rate at which the user transfers money into a job expense account controls the job's performance. We prove that starvation is not possible in our model. Simulation results show that our scheduler improves both system and user performances in comparison with two different variable partitioning policies. It is also shown to be effective in guaranteeing fairness and providing control over the performance of jobs.

  19. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  20. The Role of Neural Reflexes in Control of the Cardiovascular System during Stress.

    DTIC Science & Technology

    1984-02-01

    cold block increase arterial pressure but did not alter plasma renin activity or renin secretory rate in dogs with normal or high sodium diet...also found that these afferents may play a keen role in the regulation of renin scretoary rate during conditions which may alter cardiopulmonary blood ...important hormone in -. the regulation of arterial pressure . However, the role of the nervous system in controlling the release of vasopressin has not been

  1. Thermal and rheological controls on magma migration in dikes: Examples from the east rift zone of Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Wilson, L.; Pinkerton, H.

    1993-01-01

    Long-lived eruptions from basaltic volcanoes involving episodic or steady activity indicate that a delicate balance has been struck between the rate of magma cooling in the dike system feeding the vent and the rate of magma supply to the dike system from a reservoir. We describe some key factors, involving the relationships between magma temperature, magma rheology, and dike geometry that control the nature of such eruptions.

  2. Universal computer control system (UCCS) for space telerobots

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Szakaly, Zoltan

    1987-01-01

    A universal computer control system (UCCS) is under development for all motor elements of a space telerobot. The basic hardware architecture and software design of UCCS are described, together with the rich motor sensing, control, and self-test capabilities of this all-computerized motor control system. UCCS is integrated into a multibus computer environment with direct interface to higher level control processors, uses pulsewidth multiplier power amplifiers, and one unit can control up to sixteen different motors simultaneously at a high I/O rate. UCCS performance capabilities are illustrated by a few data.

  3. Study of a Satellite Attitude Control System Using Integrating Gyros as Torque Sources

    NASA Technical Reports Server (NTRS)

    White, John S.; Hansen, Q. Marion

    1961-01-01

    This report considers the use of single-degree-of-freedom integrating gyros as torque sources for precise control of satellite attitude. Some general design criteria are derived and applied to the specific example of the Orbiting Astronomical Observatory. The results of the analytical design are compared with the results of an analog computer study and also with experimental results from a low-friction platform. The steady-state and transient behavior of the system, as determined by the analysis, by the analog study, and by the experimental platform agreed quite well. The results of this study show that systems using integrating gyros for precise satellite attitude control can be designed to have a reasonably rapid and well-damped transient response, as well as very small steady-state errors. Furthermore, it is shown that the gyros act as rate sensors, as well as torque sources, so that no rate stabilization networks are required, and when no error sensor is available, the vehicle is still rate stabilized. Hence, it is shown that a major advantage of a gyro control system is that when the target is occulted, an alternate reference is not required.

  4. Cockpit integration from a pilot's point of view

    NASA Technical Reports Server (NTRS)

    Green, D. L.

    1982-01-01

    Extensive experience in both operational and engineering test flight was used to suggest straightforward changes to helicopter cockpit and control system design that would improve pilot performance in marginal and instrument flight conditions. Needed control system improvements considered include: (1) separation of yaw from cyclic force trim; (2) pedal force proportional to displacement rate; and (3) integration of engine controls in collective stick. Display improvements needed include: (1) natural cuing of yaw rate in attitude indicator; (2) collective position indication and radar altimeter placed within primary scan; and (3) omnidirectional display of full range airspeed data.

  5. Control strategies for a telerobot

    NASA Technical Reports Server (NTRS)

    Ohara, John; Stasi, Bill

    1989-01-01

    One of the major issues impacting the utility of telerobotic systems for space is the development of effective control strategies. For near-term applications, telerobot control is likely to utilize teleoperation methodologies with integrated supervisory control capabilities to assist the operator. Two different approaches to telerobotic control are evaluated: bilateral force reflecting master controllers and proportional rate six degrees-of-freedom hand controllers. The controllers' performance of single manipulator arm tasks is compared. Simultaneous operation of both manipulator arms and complex multiaxis slave arm movements is investigated. Task times are significantly longer and fewer errors are committed with the hand controllers. The hand controllers are also rated significantly higher in cognitive and manual control workload on the two-arm task. The master controllers are rated significantly higher in physical workload. The implications of these findings for space teleoperations and higher levels of control are discussed.

  6. Controlling Flows Of Two Ingredients For Spraying

    NASA Technical Reports Server (NTRS)

    Chandler, Huel H.

    1995-01-01

    Closed-loop servo control subsystem incorporated, as modification, into system controlling flows of two ingredients mixed and sprayed to form thermally insulating foams on large tanks. Provides steady flows at specified rates. Foams produced smoother and of higher quality. Continued use of system results in substantial reduction in cost stemming from close control of application of foam and consequent reduced use of material.

  7. Attitude determination with three-axis accelerometer for emergency atmospheric entry

    NASA Technical Reports Server (NTRS)

    Garcia-Llama, Eduardo (Inventor)

    2012-01-01

    Two algorithms are disclosed that, with the use of a 3-axis accelerometer, will be able to determine the angles of attack, sideslip and roll of a capsule-type spacecraft prior to entry (at very high altitudes, where the atmospheric density is still very low) and during entry. The invention relates to emergency situations in which no reliable attitude and attitude rate are available. Provided that the spacecraft would not attempt a guided entry without reliable attitude information, the objective of the entry system in such case would be to attempt a safe ballistic entry. A ballistic entry requires three controlled phases to be executed in sequence: First, cancel initial rates in case the spacecraft is tumbling; second, maneuver the capsule to a heat-shield-forward attitude, preferably to the trim attitude, to counteract the heat rate and heat load build up; and third, impart a ballistic bank or roll rate to null the average lift vector in order to prevent prolonged lift down situations. Being able to know the attitude, hence the attitude rate, will allow the control system (nominal or backup, automatic or manual) to cancel any initial angular rates. Also, since a heat-shield forward attitude and the trim attitude can be specified in terms of the angles of attack and sideslip, being able to determine the current attitude in terms of these angles will allow the control system to maneuver the vehicle to the desired attitude. Finally, being able to determine the roll angle will allow for the control of the roll ballistic rate during entry.

  8. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  9. Development of monitoring and control system for a mine main fan based on frequency converter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. C.; Zhang, R. W.; Kong, X. Z.; Y Gong, J.; Chen, Q. G.

    2013-12-01

    In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production.

  10. Control of nitrification/denitrification in an onsite two-chamber intermittently aerated membrane bioreactor with alkalinity and carbon addition: Model and experiment.

    PubMed

    Perera, Mahamalage Kusumitha; Englehardt, James D; Tchobanoglous, George; Shamskhorzani, Reza

    2017-05-15

    Denitrifying membrane bioreactors (MBRs) are being found useful in water reuse treatment systems, including net-zero water (nearly closed-loop), non-reverse osmosis-based, direct potable reuse (DPR) systems. In such systems nitrogen may need to be controlled in the MBR to meet the nitrate drinking water standard in the finished water. To achieve efficient nitrification and denitrification, the addition of alkalinity and external carbon may be required, and control of the carbon feed rate is then important. In this work, an onsite, two-chamber aerobic nitrifying/denitrifying MBR, representing one unit process of a net-zero water, non-reverse osmosis-based DPR system, was modeled as a basis for control of the MBR internal recycling rate, aeration rate, and external carbon feed rate. Specifically, a modification of the activated sludge model ASM2dSMP was modified further to represent the rate of recycling between separate aerobic and anoxic chambers, rates of carbon and alkalinity feed, and variable aeration schedule, and was demonstrated versus field data. The optimal aeration pattern for the modeled reactor configuration and influent matrix was found to be 30 min of aeration in a 2 h cycle (104 m 3 air/d per 1 m 3 /d average influent), to ultimately meet the nitrate drinking water standard. Optimal recycling ratios (inter-chamber flow to average daily flow) were found to be 1.5 and 3 during rest and mixing periods, respectively. The model can be used to optimize aeration pattern and recycling ratio in such MBRs, with slight modifications to reflect reactor configuration, influent matrix, and target nitrogen species concentrations, though some recalibration may be required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Kaman 40 kW wind turbine generator - control system dynamics

    NASA Technical Reports Server (NTRS)

    Perley, R.

    1981-01-01

    The generator design incorporates an induction generator for application where a utility line is present and a synchronous generator for standalone applications. A combination of feed forward and feedback control is used to achieve synchronous speed prior to connecting the generator to the load, and to control the power level once the generator is connected. The dynamics of the drive train affect several aspects of the system operation. These were analyzed to arrive at the required shaft stiffness. The rotor parameters that affect the stability of the feedback control loop vary considerably over the wind speed range encountered. Therefore, the controller gain was made a function of wind speed in order to maintain consistent operation over the whole wind speed range. The velocity requirement for the pitch control mechanism is related to the nature of the wind gusts to be encountered, the dynamics of the system, and the acceptable power fluctuations and generator dropout rate. A model was developed that allows the probable dropout rate to be determined from a statistical model of wind gusts and the various system parameters, including the acceptable power fluctuation.

  12. The effectiveness of incorporating a real-time oculometer system in a commercial flight training program

    NASA Technical Reports Server (NTRS)

    Jones, D. H.; Coates, G. D.; Kirby, R. H.

    1983-01-01

    The effectiveness of incroporating a real-time oculometer system into a Boeing 737 commercial flight training program was studied. The study combined a specialized oculometer system with sophisticated video equipment that would allow instructor pilots (IPs) to monitor pilot and copilot trainees' instrument scan behavior in real-time, and provide each trainee with video tapes of his/her instrument scanning behavior for each training session. The IPs' performance ratings and trainees' self-ratings were compared to the performance ratings by IPs and trainees in a control group. The results indicate no difference in IP ratings or trainees' self-ratings for the control and experimental groups. The results indicated that the major beneficial role of a real-time oculometer system for pilots and copilots having a significant amount of flight experience would be for problem solving or refinement of instrument scanning behavior rather than a general instructional scheme. It is suggested that this line of research be continued with the incorporation of objective data (e.g., state of the aircraft data), measures of cost effectiveness and with trainees having less flight experience.

  13. Study on the Control Strategy of Ground Source Heat Pump of Complex Buildings

    NASA Astrophysics Data System (ADS)

    Dandan, Zhang; Wei, Li; Siyi, Tang

    2018-05-01

    The complex building group is a building group which integrates residential, business and office. Study on the operation of buried tube heat exchanger (BHE) with 30%, 50%, 70% and 100% occupancy rate by numerical simulation under the condition of full operation of the business and office, the optimal operation control strategy of a hybrid ground-source heat pump (HGSHP) system with different occupancy rates can be obtained. The results show that: at low occupancy rate the optimal operation control of the heat pump system is to use the cooling tower in the valley load period (June and September) and the heat absorption of the buried tube in winter; While at high occupancy rates, opening the cooling tower when the temperature of the outlet of the BHE is 2 degrees centigrade higher than the temperature of the wet bulb at the corresponding time is the optimal operating strategy. This paper is based on the annual energy consumption and optimization of soil temperature rise, which has an important guideline value for the design and operation of HGSHP system in complex buildings.

  14. Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System.

    PubMed

    Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M

    Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.

  15. A comprehensive inversion approach for feedforward compensation of piezoactuator system at high frequency

    NASA Astrophysics Data System (ADS)

    Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han

    2016-09-01

    Motion control of the piezoactuator system over broadband frequencies is limited due to its inherent hysteresis and system dynamics. One of the suggested ways is to use feedforward controller to linearize the input-output relationship of the piezoactuator system. Although there have been many feedforward approaches, it is still a challenge to develop feedforward controller for the piezoactuator system at high frequency. Hence, this paper presents a comprehensive inversion approach in consideration of the coupling of hysteresis and dynamics. In this work, the influence of dynamics compensation on the input-output relationship of the piezoactuator system is investigated first. With system dynamics compensation, the input-output relationship of the piezoactuator system will be further represented as rate-dependent nonlinearity due to the inevitable dynamics compensation error, especially at high frequency. Base on this result, the feedforward controller composed by a cascade of linear dynamics inversion and rate-dependent nonlinearity inversion is developed. Then, the system identification of the comprehensive inversion approach is proposed. Finally, experimental results show that the proposed approach can improve the performance on tracking of both periodic and non-periodic trajectories at medium and high frequency compared with the conventional feedforward approaches.

  16. Comparison of Photovoltaic Energy Systems for the Solar Village

    DTIC Science & Technology

    1988-08-01

    power -point-trackIng ( MPPT ) for the array. It also Includes AC and DC contactors, an isolation transformer, and a control system that fully automates...the day when the array is producing power , the battery controller uses excess array power , not needed for household use , to recharge the batteries. As...alone design) The battery controller used Is the Balance of System Specialists, Inc. Power Control Series model *8104820 rated at 48 volt, 20 amp. This

  17. The control system of synchronous movement of the gantry crane supports

    NASA Astrophysics Data System (ADS)

    Odnokopylov, I. G.; Gneushev, V. V.; Galtseva, O. V.; Natalinova, N. M.; Li, J.; Serebryakov, D. I.

    2017-01-01

    The paper presents study findings on synchronization of the gantry crane support movement. Asynchrony moving speed bearings may lead to an emergency mode at the natural rate of deformed metal structure alignment. The use of separate control of asynchronous motors with the vector control method allows synchronizing the movement speed of crane supports and achieving a balance between the motors. Simulation results of various control systems are described. Recommendations regarding the system further application are given.

  18. A Digital Control Algorithm for Magnetic Suspension Systems

    NASA Technical Reports Server (NTRS)

    Britton, Thomas C.

    1996-01-01

    An ongoing program exists to investigate and develop magnetic suspension technologies and modelling techniques at NASA Langley Research Center. Presently, there is a laboratory-scale large air-gap suspension system capable of five degree-of-freedom (DOF) control that is operational and a six DOF system that is under development. Those systems levitate a cylindrical element containing a permanent magnet core above a planar array of electromagnets, which are used for levitation and control purposes. In order to evaluate various control approaches with those systems, the Generic Real-Time State-Space Controller (GRTSSC) software package was developed. That control software package allows the user to implement multiple control methods and allows for varied input/output commands. The development of the control algorithm is presented. The desired functionality of the software is discussed, including the ability to inject noise on sensor inputs and/or actuator outputs. Various limitations, common issues, and trade-offs are discussed including data format precision; the drawbacks of using either Direct Memory Access (DMA), interrupts, or program control techniques for data acquisition; and platform dependent concerns related to the portability of the software, such as memory addressing formats. Efforts to minimize overall controller loop-rate and a comparison of achievable controller sample rates are discussed. The implementation of a modular code structure is presented. The format for the controller input data file and the noise information file is presented. Controller input vector information is available for post-processing by mathematical analysis software such as MATLAB1.

  19. A controlled rate freeze/thaw system for cryopreservation of biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.

    1979-01-01

    A system which allows programmable temperature-time control for a 5 cc sample volume of an arbitrary biological material was constructed. Steady state and dynamic temperature control was obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container was totally immersed into a cold heat sink. Sample volume thermodynamic property data were obtained by measurements of heater power and heat flux through the container walls. Using a mixture of dry ice and alcohol at -79 C, sample volume was controlled from +40 C to -60 C at rates from steady state to + or - 65 C/min. Steady state temperature precision was better than 0.2 C while the dynamic capability depends on the temperature rate of change as well as the thermal mass of the sample and the container.

  20. Trickling Filters. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Richwine, Reynold D.

    The textual material for a unit on trickling filters is presented in this student manual. Topic areas discussed include: (1) trickling filter process components (preliminary treatment, media, underdrain system, distribution system, ventilation, and secondary clarifier); (2) operational modes (standard rate filters, high rate filters, roughing…

  1. Robust, Decoupled, Flight Control Design with Rate Saturating Actuators

    NASA Technical Reports Server (NTRS)

    Snell, S. A.; Hess, R. A.

    1997-01-01

    Techniques for the design of control systems for manually controlled, high-performance aircraft must provide the following: (1) multi-input, multi-output (MIMO) solutions, (2) acceptable handling qualities including no tendencies for pilot-induced oscillations, (3) a tractable approach for compensator design, (4) performance and stability robustness in the presence of significant plant uncertainty, and (5) performance and stability robustness in the presence actuator saturation (particularly rate saturation). A design technique built upon Quantitative Feedback Theory is offered as a candidate methodology which can provide flight control systems meeting these requirements, and do so over a considerable part of the flight envelope. An example utilizing a simplified model of a supermaneuverable fighter aircraft demonstrates the proposed design methodology.

  2. Wireless Power Control for Tactical MANET: Power Rate Bounds

    DTIC Science & Technology

    2016-09-01

    signals and by their inherent interference.” Figure 1. Transmission and interference in a two-link wireless network. Wireless power control seeks to...e.g., shutting off transmissions to measure the interference is impractical.) In a wireless power control system, the receiver sets its transmitter’s...Travassos Ro- mano [2013] Transmission Power Control for Opportunistic QoS Provision in Wireless Networks, IEEE Transactions on Control Systems Technology

  3. Modeling the use of a binary mixture as a control scheme for two-phase thermal systems

    NASA Technical Reports Server (NTRS)

    Benner, S. M.; Costello, Frederick A.

    1990-01-01

    Two-phase thermal loops using mechanical pumps, capillary pumps, or a combination of the two have been chosen as the main heat transfer systems for the space station. For these systems to operate optimally, the flow rate in the loop should be controlled in response to the vapor/liquid ratio leaving the evaporator. By substituting a mixture of two non-azeotropic fluids in place of the single fluid normally used in these systems, it may be possible to monitor the temperature of the exiting vapor and determine the vapor/liquid ratio. The flow rate would then be adjusted to maximize the load capability with minimum energy input. A FLUINT model was developed to study the system dynamics of a hybrid capillary pumped loop using this type of control and was found to be stable under all the test conditions.

  4. Hand controller commonality evaluation process

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Bierschwale, John M.; Wilmington, Robert P.; Adam, Susan C.; Diaz, Manuel F.; Jensen, Dean G.

    1990-01-01

    A hand controller evaluation process has been developed to determine the appropriate hand controller configurations for supporting remotely controlled devices. These devices include remote manipulator systems (RMS), dexterous robots, and remotely-piloted free flyers. Standard interfaces were developed to evaluate six different hand controllers in three test facilities including dynamic computer simulations, kinematic computer simulations, and physical simulations. The hand controllers under consideration were six degree-of-freedom (DOF) position and rate minimaster and joystick controllers, and three-DOF rate controllers. Task performance data, subjective comments, and anthropometric data obtained during tests were used for controller configuration recommendations to the SSF Program.

  5. Recovery Systems Design Guide

    DTIC Science & Technology

    1978-12-01

    analysis. retrieval parachute concepts are being investigated. The development of recovery systems for fast flying, possible out-of-control missiles proved...system. 21 •, . , r, _ . .. , . " , , . : . .. . " . , ,- Reference 32 suggests certain applications (speed/ Fast Opening. An emergency escape...operation, physiological aspect of flying and escape. fast parachute opening., Low Rate of Descent. A sea level rate of descent low parachute opening

  6. Effect of rotation rate on the forces of a rotating cylinder: Simulation and control

    NASA Technical Reports Server (NTRS)

    Burns, John A.; Ou, Yuh-Roung

    1993-01-01

    In this paper we present numerical solutions to several optimal control problems for an unsteady viscous flow. The main thrust of this work is devoted to simulation and control of an unsteady flow generated by a circular cylinder undergoing rotary motion. By treating the rotation rate as a control variable, we can formulate two optimal control problems and use a central difference/pseudospectral transform method to numerically compute the optimal control rates. Several types of rotations are considered as potential controls, and we show that a proper synchronization of forcing frequency with the natural vortex shedding frequency can greatly influence the flow. The results here indicate that using moving boundary controls for such systems may provide a feasible mechanism for flow control.

  7. Digital flight control systems

    NASA Technical Reports Server (NTRS)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  8. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  9. Analytic descriptions of stochastic bistable systems under force ramp

    DOE PAGES

    Friddle, Raymond W.

    2016-05-13

    Solving the two-state master equation with time-dependent rates, the ubiquitous driven bistable system, is a long-standing problem that does not permit a complete solution for all driving rates. We show an accurate approximation to this problem by considering the system in the control parameter regime. Moreover, the results are immediately applicable to a diverse range of bistable systems including single-molecule mechanics.

  10. The tobacco excise system in Indonesia: hindering effective tobacco control for health.

    PubMed

    Barber, Sarah; Ahsan, Abdillah

    2009-07-01

    Comprehensive tobacco control policies include high taxes. This paper describes the tobacco excise structure in Indonesia from 2007 to 2009. The design of the tobacco excise system contributes to neutralizing the effect of a tax increase on consumption. Wide gaps in tax rates allow for the availability of low-priced products, and consumers can substitute to cheaper products in response to price increases. There has been no systematic increase in the tax rates, which promotes affordable of tobacco products. Firms can reduce their prices at point of sale and absorb the tax increase instead of passing it onto consumers. Tiered tax rates by production scale allow firms to evade paying the highest tax brackets legally, thereby increasing profit margins while reducing prices at point of sale. Increases in tobacco excise rates in Indonesia may not have a large health impact under the current system of tax administration.

  11. Programming adaptive control to evolve increased metabolite production.

    PubMed

    Chou, Howard H; Keasling, Jay D

    2013-01-01

    The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.

  12. Moving base simulation of an integrated flight and propulsion control system for an ejector-augmentor STOVL aircraft in hover

    NASA Technical Reports Server (NTRS)

    Mcneill, Walter, E.; Chung, William W.; Stortz, Michael W.

    1995-01-01

    A piloted motion simulator evaluation, using the NASA Ames Vertical Motion Simulator, was conducted in support of a NASA Lewis Contractual study of the integration of flight and propulsion systems of a STOVL aircraft. Objectives of the study were to validate the Design Methods for Integrated Control Systems (DMICS) concept, to evaluate the handling qualities, and to assess control power usage. The E-7D ejector-augmentor STOVL fighter design served as the basis for the simulation. Handling-qualities ratings were obtained during precision hover and shipboard landing tasks. Handling-qualities ratings for these tasks ranged from satisfactory to adequate. Further improvement of the design process to fully validate the DMICS concept appears to be warranted.

  13. MICROPROCESSOR CONTROL OF ROTOGRAVURE AIRFLOWS

    EPA Science Inventory

    The report discusses the technical and economic viability of using micro-processor-based control technology to collect volatile organic compound (VOC) emissions from a paper coating operation. The microprocessor-based control system monitors and controls both the airflow rate and...

  14. Cancer control needs of 2-1-1 callers in Missouri, North Carolina, Texas, and Washington.

    PubMed

    Purnell, Jason Q; Kreuter, Matthew W; Eddens, Katherine S; Ribisl, Kurt M; Hannon, Peggy; Williams, Rebecca S; Fernandez, Maria E; Jobe, David; Gemmel, Susan; Morris, Marti; Fagin, Debbie

    2012-05-01

    Innovative interventions are needed to connect underserved populations to cancer control services. With data from Missouri, North Carolina, Texas, and Washington this study a) estimated the cancer control needs of callers to 2-1-1, an information and referral system used by underserved populations, b) compared rates of need with state and national data, and c) examined receptiveness to needed referrals. From October 2009 to March 2010 callers' (N=1,408) cancer control needs were assessed in six areas: breast, cervical, and colorectal cancer screening, HPV vaccination, smoking, and smoke-free homes using Behavioral Risk Factor Surveillance System (BRFSS) survey items. Standardized estimates were compared with state and national rates. Nearly 70% of the sample had at least one cancer control need. Needs were greater for 2-1-1 callers than for state and national rates, and callers were receptive to referrals. 2-1-1 could be a key partner in efforts to reduce cancer disparities.

  15. Adaptive NN control for discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints.

    PubMed

    Chen, Weisheng

    2009-07-01

    This paper focuses on the problem of adaptive neural network tracking control for a class of discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints. Two novel state-feedback and output-feedback dynamic control laws are established where the function tanh(.) is employed to solve the saturation constraint problem. Implicit function theorem and mean value theorem are exploited to deal with non-affine variables that are used as actual control. Radial basis function neural networks are used to approximate the desired input function. Discrete Nussbaum gain is used to estimate the unknown sign of control gain. The uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. A simulation example is provided to illustrate the effectiveness of control schemes proposed in this paper.

  16. 40 CFR 63.4100 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliant material option or the emission rate without add-on controls option, as specified in § 63.4091(a... coating operation(s) for which you use the emission rate with add-on controls option, as specified in § 63... operating limits for emission capture systems and add-on control devices required by § 63.4092 at all times...

  17. 40 CFR 63.3500 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... material option or the emission rate without add-on controls option, as specified in § 63.3491(a) and (b... which you use the emission rate with add-on controls option, as specified in § 63.3491(c), or the... systems and add-on control devices required by § 63.3492 at all times, except for those for which you use...

  18. 40 CFR 63.4700 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliant material option or the emission rate without add-on controls option, as specified in § 63.4691(a... coating operation(s) for which you use the emission rate with add-on controls option, as specified in § 63... systems and add-on control devices required by § 63.4692 at all times, except during periods of SSM, and...

  19. 40 CFR 63.4100 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliant material option or the emission rate without add-on controls option, as specified in § 63.4091(a... coating operation(s) for which you use the emission rate with add-on controls option, as specified in § 63... operating limits for emission capture systems and add-on control devices required by § 63.4092 at all times...

  20. 40 CFR 63.4700 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliant material option or the emission rate without add-on controls option, as specified in § 63.4691(a... coating operation(s) for which you use the emission rate with add-on controls option, as specified in § 63... systems and add-on control devices required by § 63.4692 at all times, except during periods of SSM, and...

  1. 40 CFR 63.3500 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliant material option or the emission rate without add-on controls option, as specified in § 63.3491(a... operation(s) for which you use the emission rate with add-on controls option, as specified in § 63.3491(c... capture systems and add-on control devices required by § 63.3492 at all times, except for those for which...

  2. 40 CFR 63.3500 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliant material option or the emission rate without add-on controls option, as specified in § 63.3491(a... operation(s) for which you use the emission rate with add-on controls option, as specified in § 63.3491(c... capture systems and add-on control devices required by § 63.3492 at all times, except for those for which...

  3. 40 CFR 63.4100 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... corrective actions in the event of a malfunction of the emission capture system or the add-on control device... material option or the emission rate without add-on controls option, as specified in § 63.4091(a) and (b... operation(s) for which you use the emission rate with add-on controls option, as specified in § 63.4091(c...

  4. 40 CFR 63.4100 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... corrective actions in the event of a malfunction of the emission capture system or the add-on control device... material option or the emission rate without add-on controls option, as specified in § 63.4091(a) and (b... operation(s) for which you use the emission rate with add-on controls option, as specified in § 63.4091(c...

  5. 40 CFR 63.4100 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliant material option or the emission rate without add-on controls option, as specified in § 63.4091(a... coating operation(s) for which you use the emission rate with add-on controls option, as specified in § 63... operating limits for emission capture systems and add-on control devices required by § 63.4092 at all times...

  6. 40 CFR 63.3500 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material option or the emission rate without add-on controls option, as specified in § 63.3491(a) and (b... which you use the emission rate with add-on controls option, as specified in § 63.3491(c), or the... systems and add-on control devices required by § 63.3492 at all times, except for those for which you use...

  7. 40 CFR 63.3500 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliant material option or the emission rate without add-on controls option, as specified in § 63.3491(a... operation(s) for which you use the emission rate with add-on controls option, as specified in § 63.3491(c... capture systems and add-on control devices required by § 63.3492 at all times, except for those for which...

  8. 40 CFR 63.4700 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliant material option or the emission rate without add-on controls option, as specified in § 63.4691(a... coating operation(s) for which you use the emission rate with add-on controls option, as specified in § 63... systems and add-on control devices required by § 63.4692 at all times, except during periods of SSM, and...

  9. A direct application of the non-linear inverse transformation flight control system design on a STOVL aircraft

    NASA Technical Reports Server (NTRS)

    Chung, W. W.; Mcneill, W. E.; Stortz, M. W.

    1993-01-01

    The nonlinear inverse transformation flight control system design method is applied to the Lockheed Ft. Worth Company's E-7D short takeoff and vertical land (STOVL) supersonic fighter/attack aircraft design with a modified General Electric F110 engine which has augmented propulsive lift capability. The system is fully augmented to provide flight path control and velocity control, and rate command attitude hold for angular axes during the transition and hover operations. In cruise mode, the flight control system is configured to provide direct thrust command, rate command attitude hold for pitch and roll axes, and sideslip command with turn coordination. A control selector based on the nonlinear inverse transformation method is designed specifically to be compatible with the propulsion system's physical configuration which has a two dimensional convergent-divergent aft nozzle, a vectorable ventral nozzle, and a thrust augmented ejector. The nonlinear inverse transformation is used to determine the propulsive forces and nozzle deflections, which in combination with the aerodynamic forces and moments (including propulsive induced contributions), and gravitational force, are required to achieve the longitudinal and vertical acceleration commands. The longitudinal control axes are fully decoupled within the propulsion system's performance envelope. A piloted motion-base flight simulation was conducted on the Vertical Motion Simulator (VMS) at NASA Ames Research Center to examine the handling qualities of this design. Based on results of the simulation, refinements to the control system have been made and will also be covered in the report.

  10. A Quantum Approach to Multi-Agent Systems (MAS), Organizations, and Control

    DTIC Science & Technology

    2003-06-01

    interdependent interactions between individuals represented approximately as vocal harmonic I resonators. Then the growth rate of an organization fits ...A quantum approach to multi-agent systems (MAS), organizations , and control W.F. Lawless Paine College 1235 15th Street Augusta, GA 30901...AND SUBTITLE A quantum approach to multi-agent systems (MAS), organizations , and control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  11. Experimental Assessment of the Reciprocating Feed System

    NASA Technical Reports Server (NTRS)

    Eddleman, David E.; Blackmon, James B.; Morton, Christopher D.

    2006-01-01

    The primary goal of this project was to design, construct, and test a full scale, high pressure simulated propellant feed system test bed that could evaluate the ability of the Reciprocating Feed System (RFS) to provide essentially constant flow rates and pressures to a rocket engine. The two key issues addressed were the effects of the transition of the drain cycle from tank to tank and the benefits of other hardware such as accumulators to provide a constant pressure flow rate out of the RFS. The test bed provided 500 psi flow at rates of the order of those required for engines in the 20,000 lbf thrust class (e.g., 20 to 40 lb/sec). A control system was developed in conjunction with the test article and automated system operation was achieved. Pre-test planning and acceptance activities such as a documented procedure and hazard analysis were conducted and the operation of the test article was approved by, and conducted in coordination with, appropriate NASA Marshall Space Flight Center personnel under a Space Act Agreement. Tests demonstrated successful control of flow rates and pressures.

  12. [Study on interventions based on urban - rural integration system construction to consolidate achievements of schistosomiasis control in hilly schistosomiasis endemic areas].

    PubMed

    Rong-Zhi, Li; Yang, Liu; Hui, Zhang; Yi, Zhang; Bo, Zhong; Jian-Jun, Wu; Chun-Xia, Yang

    2017-09-28

    To explore the effectiveness of comprehensive schistosomiasis control interventions based on urban-rural integration system construction to carry out the schistosomiasis control in hilly schistosomiasis endemic areas, so as to offer a new mode to consolidate the achievements of schistosomiasis control in the new situation. Shouan Town and Changqiu Township in Pujiang County in hilly schistosomiasis endemic regions were selected as demonstration areas. The comprehensive schistosomiasis control interventions based on urban-rural integration system construction were implemented, including the land consolidation, centralized residence and so on. The effectiveness the interventions was evaluated. In Shouan Town and Changqiu Township, the transformed environments with Oncomelania hupensis snail habitats were 1 330.61 hm 2 and 1 456.84 hm 2 , the areas with snails decreased from 94.31 hm 2 and 83.00 hm 2 in 2000 to both 0 in 2015, the positive rates of serological tests for schistosomiasis decreased from 11.8% and 7.53% in 2000 to 1.01% and 1.86% in 2015, and the positive rates of parasitological tests decreased from 0.18% and 0.15% in 2000 to both 0 in 2015 respectively. The numbers of cattle decreased from 358 and 368 in 2000 to 4 and 6 in 2015 respectively. In 2000, the schistosome infection rates of cattle were 3.63% and 6.51% in Shouan Town and Changqiu Township respectively, and from 2004, no infected cattle were found. The comprehensive schistosomiasis control interventions based on urban-rural integration system construction can decrease the schistosome infection rate and area with snails effectively, providing a new mode for schistosomiasis elimination.

  13. Implementing a vector surveillance-response system for chagas disease control: a 4-year field trial in Nicaragua.

    PubMed

    Yoshioka, Kota; Tercero, Doribel; Pérez, Byron; Nakamura, Jiro; Pérez, Lenin

    2017-03-06

    Chagas disease is one of the neglected tropical diseases (NTDs). International goals for its control involve elimination of vector-borne transmission. Central American countries face challenges in establishing sustainable vector control programmes, since the main vector, Triatoma dimidiata, cannot be eliminated. In 2012, the Ministry of Health in Nicaragua started a field test of a vector surveillance-response system to control domestic vector infestation. This paper reports the main findings from this pilot study. This study was carried out from 2012 to 2015 in the Municipality of Totogalpa. The Japan International Cooperation Agency provided technical cooperation in designing and monitoring the surveillance-response system until 2014. This system involved 1) vector reports by householders to health facilities, 2) data analysis and planning of responses at the municipal health centre and 3) house visits or insecticide spraying by health personnel as a response. We registered all vector reports and responses in a digital database. The collected data were used to describe and analyse the system performance in terms of amount of vector reports as well as rates and timeliness of responses. During the study period, T. dimidiata was reported 396 times. Spatiotemporal analysis identified some high-risk clusters. All houses reported to be infested were visited by health personnel in 2013 and this response rate dropped to 39% in 2015. Rates of insecticide spraying rose above 80% in 2013 but no spraying was carried out in the following 2 years. The timeliness of house visits improved significantly after the responsibility was transferred from a vector control technician to primary health care staff. We argue that the proposed vector surveillance-response system is workable within the resource-constrained health system in Nicaragua. Integration to the primary health care services was a key to improve the system performance. Continual efforts are necessary to keep adapting the surveillance-response system to the dynamic health systems. We also discuss that the goal of eliminating vector-borne transmission remains unachievable. This paper provides lessons not only for Chagas disease control in Central America, but also for control efforts for other NTDs that need a sustainable surveillance-response system to support elimination.

  14. [Study of an adherence rating score system for tuberculosis patients in China].

    PubMed

    Yuan, Yan-li; Yu, Bao-zhu; Jiang, Shi-wen; Wang, Tao; Lv, Jun; Tao, Qiu-Shan

    2010-06-18

    To develop an adherence rating score (ARS) system specific for tuberculosis (TB) patients. A cross-sectional survey of 124 TB patients was conducted to figure out risk factors for adherence to treatment. The step-wise logistic regression models were used for selecting adherence-related variables. ARS was developed based on the weighting scores of the parameters of all the predicted variables in the logistic model. The reliability and responsibility of ARS was evaluated by using external data from an open label randomized controlled trial on 574 TB patients. The patients were grouped as adherence group (247 patients) and non-adherence group (327 patients) based on the predicted ARS. And the non-adherence group was randomized divided into a trail group (146 patients) and a control group (181 patients). The intervention for the trail group was custom health educational material aimed to reduce ARS, while the intervention for control groups was general TB education material, which was routinely used in the current local TB control settings. The cumulative non-adherence rates of the three groups were compared with each other after six-month follow-up period of treatment. The ARS system had 7 items which covered the following domains: disease status, psychology, patients' KAP (knowledge, attitude, and practice), regularly life-style and social supports. The score of ARS was 2.38+/-0.18 (mean+/-SD) for adherence patients, and 4.69 +/-0.20 (mean+/-SD) for non-adherence patients (t=8.52, P<0.01). In the randomized controlled trial, the six months cumulative non-adherence rates ware 24.7% for the trail group and it was 41.4% for the control group(P<0.01); while the six months cumulative non-adherence rates were not statistical significant difference between trail group and adherence group (P>0.05). The ARS system was reliability and validity for evaluating the adherence of TB treatment in the stop TB settings in China.

  15. Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stermer, D.L.; Gale, L.G.

    1989-03-01

    Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less

  16. Method of controlling temperature of a thermoelectric generator in an exhaust system

    DOEpatents

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  17. CONTROL OF HYDROCARBON EMISSIONS FROM GASOLINE LOADING BY REFRIGERATION SYSTEMS

    EPA Science Inventory

    The report gives results of a study of the capabilities of refrigeration systems, operated at three temperatures, to control volatile organic compound (VOC) emissions from truck loading at bulk gasoline terminals. Achievable VOC emission rates were calculated for refrigeration sy...

  18. Strap-Down Inertial Systems

    DTIC Science & Technology

    1978-05-01

    navigation computer (SNC), sepa- rate alterable memory units for the computer, a control /display unit (CDU), a computer control unit (CCU), and a non ...AND SYSTEM Advisory Group for Aerospace Research and Development, Paris (France). Presented at the 15th Meeting of the Guidance and Control Panel of... Group , Redondo Beach, Calif.) American Institute of Aeronautics and Astronautics, Guidance and Control Conference, Key Biscayne, Fla., August 20-22

  19. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  20. Synthesis of active controls for flutter suppression on a flight research wing

    NASA Technical Reports Server (NTRS)

    Abel, I.; Perry, B., III; Murrow, H. N.

    1977-01-01

    This paper describes some activities associated with the preliminary design of an active control system for flutter suppression capable of demonstrating a 20% increase in flutter velocity. Results from two control system synthesis techniques are given. One technique uses classical control theory, and the other uses an 'aerodynamic energy method' where control surface rates or displacements are minimized. Analytical methods used to synthesize the control systems and evaluate their performance are described. Some aspects of a program for flight testing the active control system are also given. This program, called DAST (Drones for Aerodynamics and Structural Testing), employs modified drone-type vehicles for flight assessments and validation testing.

  1. MAS2-8 radar and digital control unit

    NASA Technical Reports Server (NTRS)

    Oberg, J. M.; Ulaby, F. T.

    1974-01-01

    The design of the MAS 2-8 (2 to 8 GHz microwave-active spectrometer), a ground-based sensor system, is presented. A major modification in 1974 to the MAS 2-8, that of a control subsystem to automate the data-taking operation, is the prime focus. The digital control unit automatically changes all system parameters except FM rate and records the return signal on paper tape. The overall system operation and a detailed discussion of the design and operation of the digital control unit are presented.

  2. Control system for fluid heated steam generator

    DOEpatents

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  3. Control system for fluid heated steam generator

    DOEpatents

    Boland, James F.; Koenig, John F.

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin

    Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less

  5. Microencapsulation: A promising technique for controlled drug delivery.

    PubMed

    Singh, M N; Hemant, K S Y; Ram, M; Shivakumar, H G

    2010-07-01

    MICROPARTICLES OFFER VARIOUS SIGNIFICANT ADVANTAGES AS DRUG DELIVERY SYSTEMS, INCLUDING: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.

  6. Microencapsulation: A promising technique for controlled drug delivery

    PubMed Central

    Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G.

    2010-01-01

    Microparticles offer various significant advantages as drug delivery systems, including: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed. PMID:21589795

  7. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control

    NASA Astrophysics Data System (ADS)

    Chun, C.; Mitchell, C. A.

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO_2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  8. Flight evaluations of several hover control and display combinations for precise blind vertical landings

    NASA Technical Reports Server (NTRS)

    Schroeder, J. A.; Merrick, V. K.

    1990-01-01

    Several control and display concepts were evaluated on a variable-stability helicopter prior to future evaluations on a modified Harrier. The control and display concepts had been developed to enable precise hover maneuvers, station keeping, and vertical landings in simulated zero-visibility conditions and had been evaluated extensively in previous piloted simulations. Flight evaluations early in the program revealed several inadequacies in the display drive laws that were later corrected using an alternative design approach that integrated the control and display characteristics with the desired guidance law. While hooded, three pilots performed landing-pad captures followed by vertical landings with attitude-rate, attitude, and translation-velocity-command control systems. The latter control system incorporated a modified version of state-rate-feedback implicit-model following. Precise landing within 2 ft of the desired touchdown point were achieved.

  9. Boundary-layer-ingesting inlet flow control system

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)

    2010-01-01

    A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.

  10. Emergency Multiengine Aircraft System for Lateral Control Using Differential Thrust Control of Wing Engines

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)

    2000-01-01

    Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.

  11. Hand controller study of force and control mode

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1992-01-01

    The objectives are to compare and evaluate the utility and effectiveness of various input control devices, e.g., hand controllers, with respect to the relative importance of force and operation control mode (rate or position) for Space Station Freedom (SSF) related tasks. The topics are presented in viewgraph form and include the: Intelligent Research Systems Lab (ISRL) experimental design; Telerobotic Systems Research Laboratory (TSRL) final experimental design; and factor analysis summary of results.

  12. Effects of Homeopathic Arsenicum Album, Nosode, and Gibberellic Acid Preparations on the Growth Rate of Arsenic-Impaired Duckweed (Lemna gibba L.)

    PubMed Central

    Jäger, Tim; Scherr, Claudia; Simon, Meinhard; Heusser, Peter; Baumgartner, Stephan

    2010-01-01

    This study evaluated the effects of homeopathically potentized Arsenicum album, nosode, and gibberellic acid in a bioassay with arsenic-stressed duckweed (Lemna gibba L.). The test substances were applied in nine potency levels (17x, 18x, 21x–24x, 28x, 30x, 33x) and compared with controls (unsuccussed and succussed water) regarding their influence on the plant’s growth rate. Duckweed was stressed with arsenic(V) for 48 h. Afterwards, plants grew in either potentized substances or water controls for 6 days. Growth rates of frond (leaf) area and frond number were determined with a computerized image analysis system for different time intervals (days 0–2, 2–6, 0–6). Five independent experiments were evaluated for each test substance. Additionally, five water control experiments were analyzed to investigate the stability of the experimental setup (systematic negative control experiments). All experiments were randomized and blinded. The test system exhibited a low coefficient of variation (≈1%). Unsuccussed and succussed water did not result in any significant differences in duckweed growth rate. Data from the control and treatment groups were pooled to increase statistical power. Growth rates for days 0–2 were not influenced by any homeopathic preparation. Growth rates for days 2–6 increased after application of potentized Arsenicum album regarding both frond area (p < 0.001) and frond number (p < 0.001), and by application of potentized nosode (frond area growth rate only, p < 0.01). Potencies of gibberellic acid did not influence duckweed growth rate. The systematic negative control experiments did not yield any significant effects. Thus, false-positive results can be excluded with high certainty. To conclude, the test system with L. gibba impaired by arsenic(V) was stable and reliable. It yielded evidence for specific effects of homeopathic Arsenicum album preparations and it will provide a valuable tool for future experiments that aim at revealing the mode of action of homeopathic preparations. It may also be useful to investigate the influence of external factors (e.g., heat, electromagnetic radiation) on the effects of homeopathic preparations. PMID:21057725

  13. Sliding mode controller for a photovoltaic pumping system

    NASA Astrophysics Data System (ADS)

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.

    2017-03-01

    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.

  14. Power-rate-distortion analysis for wireless video communication under energy constraint

    NASA Astrophysics Data System (ADS)

    He, Zhihai; Liang, Yongfang; Ahmad, Ishfaq

    2004-01-01

    In video coding and streaming over wireless communication network, the power-demanding video encoding operates on the mobile devices with limited energy supply. To analyze, control, and optimize the rate-distortion (R-D) behavior of the wireless video communication system under the energy constraint, we need to develop a power-rate-distortion (P-R-D) analysis framework, which extends the traditional R-D analysis by including another dimension, the power consumption. Specifically, in this paper, we analyze the encoding mechanism of typical video encoding systems and develop a parametric video encoding architecture which is fully scalable in computational complexity. Using dynamic voltage scaling (DVS), a hardware technology recently developed in CMOS circuits design, the complexity scalability can be translated into the power consumption scalability of the video encoder. We investigate the rate-distortion behaviors of the complexity control parameters and establish an analytic framework to explore the P-R-D behavior of the video encoding system. Both theoretically and experimentally, we show that, using this P-R-D model, the encoding system is able to automatically adjust its complexity control parameters to match the available energy supply of the mobile device while maximizing the picture quality. The P-R-D model provides a theoretical guideline for system design and performance optimization in wireless video communication under energy constraint, especially over the wireless video sensor network.

  15. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Information transmission systems based on two-mode lasers with controlled emission frequencies

    NASA Astrophysics Data System (ADS)

    Naumov, N. V.; Petrovskii, V. N.; Protsenko, E. D.; Shananin, R. A.

    1995-10-01

    Various information transmission systems, based on two-mode lasers with controlled emission frequencies, are proposed. It is suggested that these systems can be implemented by modulation of the intermode spacing of a two-mode laser. An experimental investigation is reported of frequency control methods. It is shown that these methods should make it possible to construct information transmission systems with high transmission rates subject to weak nonlinear distortions of the information-carrying signal.

  16. 77 FR 19128 - Defense Federal Acquisition Regulation Supplement: Separation of Combined Provisions and Clauses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... and Clauses (DFARS Case 2011-D048) AGENCY: Defense Acquisition Regulations System, Department of...-- Representation. 252.216-7003, Economic Price 252.216-7008, Economic Price Adjustment--Wage Rates or Material Adjustment--Wage Rates or Prices Controlled by a Foreign Material Prices Controlled by Government. a Foreign...

  17. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Gati, Frank; Yuko, James R.; Motil, Brian J.; Lumpkin, Forrest E.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module showed that thermal protection is necessary because of significant heating from the plume.

  18. Some engineering aspects of insulin delivery systems.

    PubMed

    Spencer, W J; Bair, R E; Carlson, G A; Love, J T; Urenda, R S; Eaton, R P; Schade, D S

    1980-01-01

    The characteristics of electronically controlled insulin delivery systems are presented. Early experiments with an external system have shown promise in providing improved glycemic control over conventional methods of single or multiple subcutaneous insulin injections. The encouraging results with external insulin delivery systems have led to the development and early testing in dogs of an implantable system with remote controls to permit variable insulin flow rates. A number of questions remain to be answered before widespread experimentation with external and implanted insulin delivery systems is possible. There appears to be no major development problems with the engineering aspects of such systems.

  19. The national fire-danger rating system: basic equations

    Treesearch

    Jack D. Cohen; John E. Deeming

    1985-01-01

    Updating the National Fire-Danger Rating System (NFDRS) was completed in 1977, and operational use of it was begun the next year. The System provides a guide to wildfire control and suppression by its indexes that measure the relative potential of initiating fires. Such fires do not behave erratically–they spread without spotting through continuous ground fuels....

  20. 30 CFR 250.516 - Blowout prevention equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...

  1. 30 CFR 250.516 - Blowout prevention equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...

  2. 30 CFR 250.515 - Blowout prevention equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressure rating of the BOP system and BOP system components shall exceed the expected surface pressure to which they may be subjected. If the expected surface pressure exceeds the rated working pressure of the...-control procedure that indicates how the annular preventer will be utilized, and the pressure limitations...

  3. A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.

    PubMed

    Robles, A; Latrille, E; Ruano, M V; Steyer, J P

    2017-01-01

    The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.

  4. Proposed control tower and cockpit visibility readouts based on an airport-aircraft information flow system

    DOT National Transportation Integrated Search

    1971-07-01

    The problem of displaying visibility information to both : controller and pilot is discussed in the context of visibility : information flow in the airport-aircraft system. : The optimum amount of visibility information, as well as its : rate of flow...

  5. On-off closed-loop control of vagus nerve stimulation for the adaptation of heart rate.

    PubMed

    Ugalde, Hector Romero; Le Rolle, Virginie; Bel, Alain; Bonnet, Jean-Luc; Andreu, David; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I

    2014-01-01

    Vagus nerve stimulation (VNS) is a potential therapeutic approach in a number of clinical applications. Although VNS is commonly delivered in an open-loop approach, it is now recognized that closed-loop approaches may be necessary to optimize the therapy and minimize side effects of neuro-stimulation devices. In this paper, we describe a prototype system for real-time control of the instantaneous heart rate, working synchronously with the heart period. As a first step, an on-off control method has been integrated. The system is evaluated on one sheep with induced heart failure, showing the interest of the proposed approach.

  6. Refinement and evaluation of helicopter real-time self-adaptive active vibration controller algorithms

    NASA Technical Reports Server (NTRS)

    Davis, M. W.

    1984-01-01

    A Real-Time Self-Adaptive (RTSA) active vibration controller was used as the framework in developing a computer program for a generic controller that can be used to alleviate helicopter vibration. Based upon on-line identification of system parameters, the generic controller minimizes vibration in the fuselage by closed-loop implementation of higher harmonic control in the main rotor system. The new generic controller incorporates a set of improved algorithms that gives the capability to readily define many different configurations by selecting one of three different controller types (deterministic, cautious, and dual), one of two linear system models (local and global), and one or more of several methods of applying limits on control inputs (external and/or internal limits on higher harmonic pitch amplitude and rate). A helicopter rotor simulation analysis was used to evaluate the algorithms associated with the alternative controller types as applied to the four-bladed H-34 rotor mounted on the NASA Ames Rotor Test Apparatus (RTA) which represents the fuselage. After proper tuning all three controllers provide more effective vibration reduction and converge more quickly and smoothly with smaller control inputs than the initial RTSA controller (deterministic with external pitch-rate limiting). It is demonstrated that internal limiting of the control inputs a significantly improves the overall performance of the deterministic controller.

  7. Electrohydraulic Synchronizing Servo Control of a Robotic Arm

    NASA Astrophysics Data System (ADS)

    Li, S.; Ruan, J.; Pei, X.; Yu, Z. Q.; Zhu, F. M.

    2006-10-01

    The large robotic arm is usually driven by the electrodraulic synchronizing control system. The electrodraulic synchronizing system is designed with the digital valve to eliminate the effect of the nonlinearities, such as hysteresis, saturation, definite resolution. The working principle of the electrodraulic synchronizing control system is introduced and the mathematical model is established through construction of flow rate equation, continuity equation, force equilibrium equation, etc. To obtain the high accuracy, the PID control is introduced in the system. Simulation analysis shows that the dynamic performance of the synchronizing system is good, and its steady state error is very small. To validate the results, the experimental set-up of the synchronizing system is built. The experiment makes it clear that the control system has high accuracy. The synchronizing system can be applied widely in practice.

  8. A Summary of the Naval Postgraduate School Research Program.

    DTIC Science & Technology

    1986-09-30

    a Helmholtz mode involving the head section plenum. An experimental investigation was conducted to examine fuel regresion rate control methods other...Directed: Regression Rate Control in Solid Fuel Ramjets", Master’s Thesis, September, 1985. D. C. Rigterink, "An Experimental Investigation of Combustion...Space Systems Academic Group , Code 72 1 EW Academic Group , Code 73 1 Command, Control & Communications Group , Code 74 1 Curricular Officer of

  9. Reliability Analysis of the Electrical Control System of Subsea Blowout Preventers Using Markov Models

    PubMed Central

    Liu, Zengkai; Liu, Yonghong; Cai, Baoping

    2014-01-01

    Reliability analysis of the electrical control system of a subsea blowout preventer (BOP) stack is carried out based on Markov method. For the subsea BOP electrical control system used in the current work, the 3-2-1-0 and 3-2-0 input voting schemes are available. The effects of the voting schemes on system performance are evaluated based on Markov models. In addition, the effects of failure rates of the modules and repair time on system reliability indices are also investigated. PMID:25409010

  10. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  11. Tire-road friction estimation and traction control strategy for motorized electric vehicle.

    PubMed

    Jin, Li-Qiang; Ling, Mingze; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS).

  12. Tire-road friction estimation and traction control strategy for motorized electric vehicle

    PubMed Central

    Jin, Li-Qiang; Yue, Weiqiang

    2017-01-01

    In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053

  13. Control of Industrial Safety Based on Dynamic Characteristics of a Safety Budget-Industrial Accident Rate Model in Republic of Korea.

    PubMed

    Choi, Gi Heung; Loh, Byoung Gook

    2017-06-01

    Despite the recent efforts to prevent industrial accidents in the Republic of Korea, the industrial accident rate has not improved much. Industrial safety policies and safety management are also known to be inefficient. This study focused on dynamic characteristics of industrial safety systems and their effects on safety performance in the Republic of Korea. Such dynamic characteristics are particularly important for restructuring of the industrial safety system. The effects of damping and elastic characteristics of the industrial safety system model on safety performance were examined and feedback control performance was explained in view of cost and benefit. The implications on safety policies of restructuring the industrial safety system were also explored. A strong correlation between the safety budget and the industrial accident rate enabled modeling of an industrial safety system with these variables as the input and the output, respectively. A more effective and efficient industrial safety system could be realized by having weaker elastic characteristics and stronger damping characteristics in it. A substantial decrease in total social cost is expected as the industrial safety system is restructured accordingly. A simple feedback control with proportional-integral action is effective in prevention of industrial accidents. Securing a lower level of elastic industrial accident-driving energy appears to have dominant effects on the control performance compared with the damping effort to dissipate such energy. More attention needs to be directed towards physical and social feedbacks that have prolonged cumulative effects. Suggestions for further improvement of the safety system including physical and social feedbacks are also made.

  14. [Application of laboratory information system in the management of the key indicators of quality inspection].

    PubMed

    Guo, Ye; Chen, Qian; Wu, Wei; Cui, Wei

    2015-03-31

    To establish a system of monitoring the key indicator of quality for inspection (KIQI) on a laboratory information system (LIS), and to have a better management of KIQI. Clinical sample made in PUMCH were collected during the whole of 2014. Next, interactive input program were designed to accomplish data collecting of the disqualification rate of samples, the mistake rate of samples and the occasions of losing samples, etc. Then, a series moment of sample collection, laboratory sample arrived, sample test, sample check, response to critical value, namely, trajectory information left on LIS were recorded and the qualification rate of TAT, the notification rate of endangering result were calculated. Finally, the information about quality control were collected to build an internal quality control database and the KIQI, such as the out-of-control rate of quality control and the total error of test items were monitored. The inspection of the sample management shows the disqualification rates in 2014 were all below the target, but the rates in January and February were a little high and the rates of four wards were above 2%. The mistake rates of samples was 0.47 cases/10 000 cases, attaining the target (< 2 cases/10 000 cases). Also, there was no occasion of losing samples in 2014, attaining the target too. The inspection of laboratory reports shows the qualification rates of TAT was within the acceptable range (> 95%), however the rates of blood routine in November (94.75%) was out of range. We have solved the problem by optimizing the processes. The notification rate of endangering result attained the target (≥ 98%), while the rate of timely notification is needed to improve. Quality inspection shows the CV of APTT in August (5.02%) was rising significantly, beyond the accepted CV (5.0%). We have solved the problem by changing the reagent. The CV of TT in 2014 were all below the allowable CV, thus the allowable CV of the next year lower to 10%. It is an objective and effective method to manage KIQI with the powerful management mode of database and information process capability on LIS.

  15. Overview of the Miniature Sensor Technology Integration (MSTI) spacecraft attitude control system

    NASA Technical Reports Server (NTRS)

    Mcewen, Rob

    1994-01-01

    Msti2 is a small, 164 kg (362 lb), 3-axis stabilized, low-Earth-orbiting satellite whose mission is missile booster tracking. The spacecraft is actuated by 3 reaction wheels and 12 hot gas thrusters. It carries enough fuel for a projected life of 6 months. The sensor complement consists of a Horizon Sensor, a Sun Sensor, low-rate gyros, and a high rate gyro for despin. The total pointing control error allocation is 6 mRad (.34 Deg), and this is while tracking a target on the Earth's surface. This paper describes the Attitude Control System (ACS) algorithms which include the following: attitude acquisition (despin, Sun and Earth acquisition), attitude determination, attitude control, and linear stability analysis.

  16. Loss-of-Control-Inhibitor Systems for Aircraft

    NASA Technical Reports Server (NTRS)

    AHarrah, Ralph C.

    2007-01-01

    Systems to provide improved tactile feedback to aircraft pilots are being developed to help the pilots maintain harmony between their control actions and the positions of aircraft control surfaces, thereby helping to prevent loss of control. A system of this type, denoted a loss-of-control-inhibitor system (LOCIS) can be implemented as a relatively simple addition to almost any pre-existing flight-control system. The LOCIS concept offers at least a partial solution to the problem of (1) keeping a pilot aware of the state of the control system and the aircraft and (2) maintaining sufficient control under conditions that, as described below, have been known to lead to loss of control. Current commercial aircraft exhibit uneven responses of primary flight-control surfaces to aggressive pilot control commands, leading to deterioration of pilots ability to control their aircraft. In severe cases, this phenomenon can result in loss of control and consequent loss of aircraft. For an older aircraft equipped with a purely mechanical control system, the loss of harmony between a pilot s command action and the control- surface response can be attributed to compliance in the control system (caused, for example, by stretching of control cables, flexing of push rods, or servo-valve distortion). In a newer aircraft equipped with a fly-by-wire control system, the major contributions to loss of harmony between the pilot and the control surfaces are delays attributable to computer cycle time, control shaping, filtering, aliasing, servo-valve distortion, and actuator rate limiting. In addition, a fly-by-wire control system provides no tactile feedback that would enable the pilot to sense such features of the control state as surface flutter, surface jam, position limiting, actuator rate limiting, and control limiting imposed by the aircraft operational envelope. Hence, for example, when a pilot is involved in aggressive closed-loop maneuvering, as when encountering a wake-vortex upset on final landing approach, the control-surface delay can lead to loss of control. Aggressive piloting can be triggered and exacerbated by control-system anomalies, which the pilot cannot diagnose because of the lack of symptoms caused by the absence of feedback through the controls. The purpose served by a LOCIS is to counteract these adverse effects by providing real-time feedback that notifies the pilot that the aircraft is tending to lag the pilot s commands. A LOCIS (see figure) includes cockpit control input-position sensors, control-surface output-position sensors, variable dampers (for example, shock absorbers containing magneto-rheological fluids such that the damping forces can be varied within times of the order of milliseconds by varying applied magnetic fields) attached to the cockpit control levers, electromagnet coils to apply the magnetic fields, and feedback control circuits to drive the electromagnet coils. The feedback control gains are chosen so that the current applied to each electromagnet coil results in a damping force that increases in a suitable nonlinear manner (e.g., exponentially) with the difference between the actual and commanded positions of the affected control surface. The increasing damping force both alerts the pilot to the onset of a potentially dangerous situation and resists the pilot s effort to command a control surface to change position at an excessive rate

  17. Improved Beam Jitter Control Methods for High Energy Laser Systems

    DTIC Science & Technology

    2009-12-01

    Figure 16. The inner loop is a rate control loop composed of a gimbal, power amplifier , controller, and servo components (gyro, motor, and encoder...system characterization experiments 1. WFOV Control Loop a. Resonance Frequency Random signals were applied to the power amplifier and output...Loop Stabilization By applying a disturbance to the input of the power amplifier and measuring torque error, one is able to determine the torque

  18. Measurement systems and indices of miners' exposure to radon daughter products in the air of mines.

    PubMed

    Domański, T

    1990-01-01

    This paper presents the classification of measurement systems that may be used for the assessment of miners' exposure to radiation in mines. The following systems were described and characterized as the Air Sampling System (ASS), the Environmental Control System (ECS), the Individual Dosimetry System (IDS), the Stream Monitoring System (SMS) and the Exhaust Monitoring System (EMS). The indices for evaluation of miners' working environments, or for assessment of individual or collective miners' exposure, were selected and determined. These are: average expected concentration (CAE), average observed concentration (CAO), average expected rate of exposure cumulation rate (EEXP), average observed exposure cumulation rate (EOBS), average effective exposure cumulation rate (EEFF). Mathematical formulae for determining all these indicators, according to the type of measurement system used in particular mines, are presented. The reliability of assessment of miners' exposure in particular measurement systems, as well as the role of the possible reference system, are discussed.

  19. Research on fuzzy PID control to electronic speed regulator

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo

    2007-12-01

    As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.

  20. Summary of the effects of engine throttle response on airplane formation-flying qualities

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.

    1992-01-01

    A flight evaluation as conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented.

  1. Twelfth Annual Conference on Manual Control

    NASA Technical Reports Server (NTRS)

    Wempe, T. E.

    1976-01-01

    Main topics discussed cover multi-task decision making, attention allocation and workload measurement, displays and controls, nonvisual displays, tracking and other psychomotor tasks, automobile driving, handling qualities and pilot ratings, remote manipulation, system identification, control models, and motion and visual cues. Sixty-five papers are included with presentations on results of analytical studies to develop and evaluate human operator models for a range of control task, vehicle dynamics and display situations; results of tests of physiological control systems and applications to medical problems; and on results of simulator and flight tests to determine display, control and dynamics effects on operator performance and workload for aircraft, automobile, and remote control systems.

  2. The development of a microprocessor-controlled linearly-actuated valve assembly

    NASA Technical Reports Server (NTRS)

    Wall, R. H.

    1984-01-01

    The development of a proportional fluid control valve assembly is presented. This electromechanical system is needed for space applications to replace the current proportional flow controllers. The flow is controlled by a microprocessor system that monitors the control parameters of upstream pressure and requested volumetric flow rate. The microprocessor achieves the proper valve stem displacement by means of a digital linear actuator. A linear displacement sensor is used to measure the valve stem position. This displacement is monitored by the microprocessor system as a feedback signal to close the control loop. With an upstream pressure between 15 and 47 psig, the developed system operates between 779 standard CU cm/sec (SCCS) and 1543 SCCS.

  3. Theoretical Analysis of the Longitudinal Behavior of an Automatically Controlled Supersonic Interceptor During the Attack Phase

    NASA Technical Reports Server (NTRS)

    Gates, Ordway B., Jr.; Woodling, C. H.

    1959-01-01

    Theoretical analysis of the longitudinal behavior of an automatically controlled supersonic interceptor during the attack phase against a nonmaneuvering target is presented. Control of the interceptor's flight path is obtained by use of a pitch rate command system. Topics lift, and pitching moment, effects of initial tracking errors, discussion of normal acceleration limited, limitations of control surface rate and deflection, and effects of neglecting forward velocity changes of interceptor during attack phase.

  4. Design, analysis, and control of a large transport aircraft utilizing selective engine thrust as a backup system for the primary flight control. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gerren, Donna S.

    1995-01-01

    A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.

  5. Preliminary design study of a lateral-directional control system using thrust vectoring

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1985-01-01

    A preliminary design of a lateral-directional control system for a fighter airplane capable of controlled operation at extreme angles of attack is developed. The subject airplane is representative of a modern twin-engine high-performance jet fighter, is equipped with ailerons, rudder, and independent horizontal-tail surfaces. Idealized bidirectional thrust-vectoring engine nozzles are appended to the mathematic model of the airplane to provide additional control moments. Optimal schedules for lateral and directional pseudo control variables are calculated. Use of pseudo controls results in coordinated operation of the aerodynamic and thrust-vectoring controls with minimum coupling between the lateral and directional airplane dynamics. Linear quadratic regulator designs are used to specify a preliminary flight control system to improve the stability and response characteristics of the airplane. Simulated responses to step pilot control inputs are stable and well behaved. For lateral stick deflections, peak stability axis roll rates are between 1.25 and 1.60 rad/sec over an angle-of-attack range of 10 deg to 70 deg. For rudder pedal deflections, the roll rates accompanying the sideslip responses can be arrested by small lateral stick motions.

  6. Dynamics of multirate sampled data control systems. [for space shuttle boost vehicle

    NASA Technical Reports Server (NTRS)

    Naylor, J. R.; Hynes, R. J.; Molnar, D. O.

    1974-01-01

    The effect was investigated of the synthesis approach (single or multirate) on the machine requirements for a digital control system for the space shuttle boost vehicle. The study encompassed four major work areas: synthesis approach trades, machine requirements trades, design analysis requirements and multirate adaptive control techniques. The primary results are two multirate autopilot designs for the low Q and maximum Q flight conditions that exhibits equal or better performance than the analog and single rate system designs. Also, a preferred technique for analyzing and synthesizing multirate digital control systems is included.

  7. Approach path control for powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Clymer, D. J.; Flora, C. C.

    1973-01-01

    A flight control system concept is defined for approach flightpath control of an augmentor wing (or similar) powered-lift STOL configuration. The proposed STOL control concept produces aircraft transient and steady-state control responses that are familiar to pilots of conventional jet transports, and has potential for good handling qualities ratings in all approach and landing phases. The effects of trailing-edge rate limits, real-engine dynamics, and atmospheric turbulence are considered in the study. A general discussion of STOL handling qualities problems and piloting techniques is included.

  8. Embedded system based on PWM control of hydrogen generator with SEPIC converter

    NASA Astrophysics Data System (ADS)

    Fall, Cheikh; Setiawan, Eko; Habibi, Muhammad Afnan; Hodaka, Ichijo

    2017-09-01

    The objective of this paper is to design and to produce a micro electrical plant system based on fuel cell for teaching material-embedded systems in technical vocational training center. Based on this, the student can experience generating hydrogen by fuel cells, controlling the rate of hydrogen generation by the duty ration of single-ended primary-inductor converter(SEPIC), drawing the curve rate of hydrogen to duty ratio, generating electrical power by using hydrogen, and calculating the fuel cell efficiency when it is used as electrical energy generator. This project is of great importance insofar as students will need to acquire several skills to be able to realize it such as continuous DC DC conversion and the scientific concept behind the converter, the regulation of systems with integral proportional controllers, the installation of photovoltaic cells, the use of high-tech sensors, microcontroller programming, object-oriented programming, mastery of the fuel cell syste

  9. A vehicle health monitoring system for the Space Shuttle Reaction Control System during reentry. M.S. Thesis - Massachusetts Inst. of Technology

    NASA Technical Reports Server (NTRS)

    Rosello, Anthony David

    1995-01-01

    A general two tier framework for vehicle health monitoring of Guidance Navigation and Control (GN&C) system actuators, effectors, and propulsion devices is presented. In this context, a top level monitor that estimates jet thrust is designed for the Space Shuttle Reaction Control System (RCS) during the reentry phase of flight. Issues of importance for the use of estimation technologies in vehicle health monitoring are investigated and quantified for the Shuttle RCS demonstration application. These issues include rate of convergence, robustness to unmodeled dynamics, sensor quality, sensor data rates, and information recording objectives. Closed loop simulations indicate that a Kalman filter design is sensitive to modeling error and robust estimators may reduce this sensitivity. Jet plume interaction with the aerodynamic flowfield is shown to be a significant effect adversely impacting the ability to accurately estimate thrust.

  10. Study on the polarization scrambling time for ultra-high-speed optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Jia, Nan; Li, Tangjun; Zhong, Kangping; Gong, Taorong; Lu, Dan; Chen, Ming; Wang, Chen

    2009-11-01

    A 160Gbit/s optical time-division-multiplexing (OTDM) transmission system with polarization Scrambler is demonstrated experimentally. The Scrambler based on the structure of the all-fiber dynamic polarization controller (PolaRITE II by General Photonics Co.). The polarization controller is controlled accurately the peak scrambling frequencies and the corresponding half-wave voltages by home-made a singlechip circuit. Both theory and experience show that the rate of scrambler is related to the spectrum width, spectral distribution, modulation rate and so on. The rate of Scramble for broadband light would be much slower compare with narrowband light to carrying out depolarization. In the same width of spectrum, light with abundant spectrum would need a slower rate. The relationship between the Rate of Scrambler and the Character of different Lasers will be discussed by using Stokes parameters and Mueller matrix. And the experiments performed to verify the results of theoretical analysis results. The Scrambler can reduce Intersymbol Interference, Polarization Mode Dispersion (PMD) and Polarization Dependent Loss (PDL) that have are validated experimentally. Based on the Scrambler, the 160-Gb/s OTDM transmissions are successfully demonstrated.

  11. The dependency of expiratory airway collapse on pump system and flow rate in liquid ventilated rabbits.

    PubMed

    Meinhardt, J P; Ashton, B A; Annich, G M; Quintel, M; Hirschl, R B

    2003-05-30

    To evaluate the influence of pump system and flow pattern on expiratory airway collapse (EAC) in total perfluorocarbon ventilation. - Prospective, controlled, randomized animal trial for determination of (1) post-mortem changes by repeated expiration procedures (EP) with a constant flow piston pump (PP) before and after sacrifice (n = 8 rabbits), (2) differences between pump systems by subjecting animals to both PP and roller pump (RP) circuits for expiration (n = 16 rabbits). EP were performed using a servo-controlled shut-off at airway pressures < 25 cm H subset 2O randomly with either pump at different flows. - Expired volumes before and after sacrifice were not significantly different. PP and RP revealed identical mean flows, while significantly more liquid was drained using PP (p<0.05). Increasing differences towards higher flow rates indicated profound flow pulsatility in RP. - (1) post-mortem changes in expired volumes are not significant, (2) EAC is related to flow rate and pump system; (3) relationship between expiratory flow rate and drainable liquid volume is linear inverse; (4) PP provides higher drainage than RP. - Expiratory airway collapse is related to flow rate and pump system, post mortem changes in expirable volumes are not significant. Relationship between expiratory flow rate and drainable liquid volume is linear inverse, piston pump expiration provides higher drainage volumes than roller pump expiration.

  12. General purpose rocket furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1979-01-01

    A multipurpose furnace for space vehicles used for material processing experiments in an outer space environment is described. The furnace contains three separate cavities designed to process samples of the widest possible range of materials and thermal requirements. Each cavity contains three heating elements capable of independent function under the direction of an automatic and programmable control system. A heat removable mechanism is also provided for each cavity which operates in conjunction with the control system for establishing an isothermally heated cavity or a wide range of thermal gradients and cool down rates. A monitoring system compatible with the rocket telemetry provides furnace performance and sample growth rate data throughout the processing cycle.

  13. Psychophysiological Control of Acognitive Task Using Adaptive Automation

    NASA Technical Reports Server (NTRS)

    Freeman, Frederick; Pope, Alan T. (Technical Monitor)

    2001-01-01

    The major focus of the present proposal was to examine psychophysiological variables related to hazardous states of awareness induced by monitoring automated systems. With the increased use of automation in today's work environment, people's roles in the work place are being redefined from that of active participant to one of passive monitor. Although the introduction of automated systems has a number of benefits, there are also a number of disadvantages regarding worker performance. Byrne and Parasuraman have argued for the use of psychophysiological measures in the development and the implementation of adaptive automation. While both performance based and model based adaptive automation have been studied, the use of psychophysiological measures, especially EEG, offers the advantage of real time evaluation of the state of the subject. The current study used the closed-loop system, developed at NASA-Langley Research Center, to control the state of awareness of subjects while they performed a cognitive vigilance task. Previous research in our laboratory, supported by NASA, has demonstrated that, in an adaptive automation, closed-loop environment, subjects perform a tracking task better under a negative than a positive, feedback condition. In addition, this condition produces less subjective workload and larger P300 event related potentials to auditory stimuli presented in a concurrent oddball task. We have also recently shown that the closed-loop system used to control the level of automation in a tracking task can also be used to control the event rate of stimuli in a vigilance monitoring task. By changing the event rate based on the subject's index of arousal, we have been able to produce improved monitoring, relative to various control groups. We have demonstrated in our initial closed-loop experiments with the the vigilance paradigm that using a negative feedback contingency (i.e. increasing event rates when the EEG index is low and decreasing event rates when the EEG index is high) results in a marked decrease of the vigilance decrement over a 40 minute session. This effect is in direct contrast to performance of a positive feedback group, as well as a number of other control groups which demonstrated the typical vigilance decrement. Interestingly, however, the negative feedback group performed at virtually the same level as a yoked control group. The yoked control group received the same order of changes in event rate that were generated by the negative feedback subjects using the closed-loop system. Thus it would appear to be possible to optimize vigilance performance by controlling the stimuli which subjects are asked to process.

  14. Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Lattime, Scott B.; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.

    2005-01-01

    Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance (0.001 in. error).

  15. Evaluation of an Active Clearance Control System Concept

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Lattime, Scott B.; Taylor, Shawn; DeCastro, Jonathan A.; Oswald, Jay; Melcher, Kevin J.

    2005-01-01

    Reducing blade tip clearances through active tip clearance control in the high pressure turbine can lead to significant reductions in emissions and specific fuel consumption as well as dramatic improvements in operating efficiency and increased service life. Current engines employ scheduled cooling of the outer case flanges to reduce high pressure turbine tip clearances during cruise conditions. These systems have relatively slow response and do not use clearance measurement, thereby forcing cold build clearances to set the minimum clearances at extreme operating conditions (e.g., takeoff, reburst) and not allowing cruise clearances to be minimized due to the possibility of throttle transients (e.g., step change in altitude). In an effort to improve upon current thermal methods, a first generation mechanically-actuated active clearance control (ACC) system has been designed and fabricated. The system utilizes independent actuators, a segmented shroud structure, and clearance measurement feedback to provide fast and precise active clearance control throughout engine operation. Ambient temperature performance tests of this first generation ACC system assessed individual seal component leakage rates and both static and dynamic overall system leakage rates. The ability of the nine electric stepper motors to control the position of the seal carriers in both open- and closed-loop control modes for single and multiple cycles was investigated. The ability of the system to follow simulated engine clearance transients in closed-loop mode showed the system was able to track clearances to within a tight tolerance ( 0.001 in. error).

  16. Digital Optical Control System

    NASA Astrophysics Data System (ADS)

    Jordan, David H.; Tipton, Charles A.; Christmann, Charles E.; Hochhausler, Nils P.

    1988-09-01

    We describe the digital optical control system (DOGS), a state-of-the-art controller for electrical feedback in an optical system. The need for a versatile optical controller arose from a number of unique experiments being performed by the Air Force Weapons Laboratory. These experiments use similar detectors and actuator-controlled mirrors, but the control requirements vary greatly. The experiments have in common a requirement for parallel control systems. The DOGS satisfies these needs by allowing several control systems to occupy a single chassis with one master controller. The architecture was designed to allow upward compatibility with future configurations. Combinations of off-the-shelf and custom boards are configured to meet the requirements of each experiment. The configuration described here was used to control piston error to X/80 at a wavelength of 0.51 Am. A peak sample rate of 8 kHz, yielding a closed loop bandwidth of 800 Hz, was achieved.

  17. Diffusional interaction behavior of NSAIDs in lipid bilayer membrane using molecular dynamics (MD) simulation: Aspirin and Ibuprofen.

    PubMed

    Sodeifian, Gholamhossein; Razmimanesh, Fariba

    2018-05-10

    In this research, for the first time, molecular dynamics (MD) method was used to simulate aspirin and ibuprofen at various concentrations and in neutral and charged states. Effects of the concentration (dosage), charge state, and existence of an integral protein in the membrane on the diffusion rate of drug molecules into lipid bilayer membrane were investigated on 11 systems, for which the parameters indicating diffusion rate and those affecting the rate were evaluated. Considering the diffusion rate, a suitable score was assigned to each system, based on which, analysis of variance (ANOVA) was performed. By calculating the effect size of the indicative parameters and total scores, an optimum system with the highest diffusion rate was determined. Consequently, diffusion rate controlling parameters were obtained: the drug-water hydrogen bond in protein-free systems and protein-drug hydrogen bond in the systems containing protein.

  18. Web-based proactive system to improve breast cancer screening: a randomized controlled trial.

    PubMed

    Chaudhry, Rajeev; Scheitel, Sidna M; McMurtry, Erin K; Leutink, Dorinda J; Cabanela, Rosa L; Naessens, James M; Rahman, Ahmed S; Davis, Lynn A; Stroebel, Robert J

    2007-03-26

    Screening mammography is recommended for early detection of breast cancer but screening rates remain suboptimal. A primary care portal for a large academic primary practice was developed for all preventive services. Another Web-based system (PRECARES [PREventive CAre REminder System]) was developed for appointment secretaries to manage proactive breast cancer screening. Female patients aged 40 to 75 years were randomly assigned to a control group (usual care) and an intervention group. For the intervention group, 2 monthly letters inviting patients to undergo mammography were sent starting 3 months before they were due for annual screening, followed by a telephone call to nonresponding patients. A subgroup of women employees was further randomized to receive a reminder by either US mail or e-mail. Of the total eligible population of 6665 women identified as having consented to participate in research, 3339 were randomly assigned to the control group and 3326 to the intervention group. The screening rate for annual mammography was 64.3% for the intervention group and 55.3% for the control group (P <.001). There were no significant differences between the 2 groups for any of the other adult preventive services. For the employee subgroup, the screening rate was 57.5% for the control group, 68.1% for the US mail group, and 72.2% for the e-mail group (intervention vs control, P <.001; e-mail vs US mail; P = .24). The breast cancer screening rate improved significantly with the practice redesign of having appointment secretaries proactively manage breast cancer screening needs.

  19. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less

  20. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    DOE PAGES

    O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen; ...

    2018-01-11

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less

  1. A laboratory breadboard system for dual-arm teleoperation

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Szakaly, Z.; Kim, W. S.

    1990-01-01

    The computing architecture of a novel dual-arm teleoperation system is described. The novelty of this system is that: (1) the master arm is not a replica of the slave arm; it is unspecific to any manipulator and can be used for the control of various robot arms with software modifications; and (2) the force feedback to the general purpose master arm is derived from force-torque sensor data originating from the slave hand. The computing architecture of this breadboard system is a fully synchronized pipeline with unique methods for data handling, communication and mathematical transformations. The computing system is modular, thus inherently extendable. The local control loops at both sites operate at 100 Hz rate, and the end-to-end bilateral (force-reflecting) control loop operates at 200 Hz rate, each loop without interpolation. This provides high-fidelity control. This end-to-end system elevates teleoperation to a new level of capabilities via the use of sensors, microprocessors, novel electronics, and real-time graphics displays. A description is given of a graphic simulation system connected to the dual-arm teleoperation breadboard system. High-fidelity graphic simulation of a telerobot (called Phantom Robot) is used for preview and predictive displays for planning and for real-time control under several seconds communication time delay conditions. High fidelity graphic simulation is obtained by using appropriate calibration techniques.

  2. Frequency Based Real-time Pricing for Residential Prosumers

    NASA Astrophysics Data System (ADS)

    Hambridge, Sarah Mabel

    This work is the first to explore frequency based pricing for secondary frequency control as a price-reactive control mechanism for residential prosumers. A frequency based real-time electricity rate is designed as an autonomous market control mechanism for residential prosumers to provide frequency support as an ancillary service. In addition, prosumers are empowered to participate in dynamic energy transactions, therefore integrating Distributed Energy Resources (DERs), and increasing distributed energy storage onto the distributed grid. As the grid transitions towards DERs, a new market based control system will take the place of the legacy distributed system and possibly the legacy bulk power system. DERs provide many benefits such as energy independence, clean generation, efficiency, and reliability to prosumers during blackouts. However, the variable nature of renewable energy and current lack of installed energy storage on the grid will create imbalances in supply and demand as uptake increases, affecting the grid frequency and system operation. Through a frequency-based electricity rate, prosumers will be encouraged to purchase energy storage systems (ESS) to offset their neighbor's distributed generation (DG) such as solar. Chapter 1 explains the deregulation of the power system and move towards Distributed System Operators (DSOs), as prosumers become owners of microgrids and energy cells connected to the distributed system. Dynamic pricing has been proposed as a benefit to prosumers, giving them the ability to make decisions in the energy market, while also providing a way to influence and control their behavior. Frequency based real-time pricing is a type of dynamic pricing which falls between price-reactive control and transactive control. Prosumer-to-prosumer transactions may take the place of prosumer-to-utility transactions, building The Energy Internet. Frequency based pricing could be a mechanism for determining prosumer prices and supporting stability in a free, competitive, market. Frequency based pricing is applied to secondary frequency control in this work, providing support at one to five minute time intervals. In Chapter 2, a frequency based pricing curve is designed as a preliminary study and the response of the prosumer is optimized for economic dispatch. In Chapter 3, a day-ahead schedule and real-time adjustment energy management framework is presented for the prosumer, creating a market structure similar to the existing energy market supervised by Independent System Operators (ISOs). Enabling technology, such as the solid state transformer (SST) is described for prosumer energy transactions, controlling power flow from the prosumer's energy cell to the grid or neighboring prosumer as an energy router. Experimental results are shown to demonstrate this capability. Additionally, the SST is capable of measuring the grid frequency. Lastly, a frequency based real-time hybrid electricity rate is presented in Chapter 4 and Chapter 5. Chapter 4 specializes in a single direction rate while Chapter 5 presents a bi-directional rate. A Time-of-use (TOU) rate is combined with the real-time frequency based price to lower energy bills for a residential prosumer with ESS, in agreement with the proposed day-ahead and real-time energy management framework. The cost to the ESS is also considered in this section. Linear programming and strategic rule based methods are utilized to find the lowest energy bill. As a result, prosumers can use ESS to balance the grid, reducing their bill as much per kWh as PV or DG under a TOU net-metering price scheme, while providing distributed frequency support to the grid authority. The variability of the frequency based rate is similar to variability in the stock market, which gives a sense of how prosumers will interact with variable prices in a system supported by The Energy Internet.

  3. Guanosine 3'-diphosphate 5'-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli.

    PubMed Central

    Gaal, T; Gourse, R L

    1990-01-01

    rRNA synthesis in Escherichia coli is subject to at least two regulation systems, growth rate-dependent control and stringent control. The inverse correlation between rRNA synthesis rates and guanosine 3'-diphosphate 5'-diphosphate (ppGpp) levels under various physiological conditions has led to the supposition that ppGpp is the mediator of both control mechanisms by inhibiting transcription from rrn P1 promoters. Recently, relA- spoT- strains have been constructed in which both ppGpp synthesis pathways most likely have been removed (M. Cashel, personal communication). We have confirmed that such strains produce no detectable ppGpp and therefore offer a direct means for testing the involvement of ppGpp in the regulation of rRNA synthesis in vivo. Stringent control was determined by measurement of rRNA synthesis after amino acid starvation, while growth rate control was determined by measurement of rRNA synthesis under different nutritional conditions. As expected, the relA- spoT- strain is relaxed for stringent control. However, growth rate-dependent regulation is unimpaired. These results indicate that growth rate regulation can occur in the absence of ppGpp and imply that ppGpp is not the mediator, or at least is not the sole mediator, of growth rate-dependent control. Therefore, growth rate-dependent control and stringent control may utilize different mechanisms for regulating stable RNA synthesis. PMID:2196571

  4. A simulation-based study on different control strategies for variable speed pump in distributed ground source heat pump systems

    DOE PAGES

    Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin

    2016-01-01

    Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less

  5. Automatic reactor control system for transient operation

    NASA Astrophysics Data System (ADS)

    Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.

    Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.

  6. Physiological and Mood Changes Induced by Exercise Withdrawal

    DTIC Science & Technology

    2004-01-01

    parasympathetic nervous system and a shift towards increased sympathetic activity (Dekker et al., 2000; Task Force of the European Society of Cardiology and...HR response will be important. HR is controlled by both the sympathetic and parasympathetic nervous systems . Heart rate variability (HRV) is a... sympathetic and parasympathetic nervous systems plays an important role in cardiovascular homeostasis. Heart rate variability has been used as an

  7. Asymptotic sideslip angle and yaw rate decoupling control in four-wheel steering vehicles

    NASA Astrophysics Data System (ADS)

    Marino, Riccardo; Scalzi, Stefano

    2010-09-01

    This paper shows that, for a four-wheel steering vehicle, a proportional-integral (PI) active front steering control and a PI active rear steering control from the yaw rate error together with an additive feedforward reference signal for the vehicle sideslip angle can asymptotically decouple the lateral velocity and the yaw rate dynamics; that is the control can set arbitrary steady state values for lateral speed and yaw rate at any longitudinal speed. Moreover, the PI controls can suppress oscillatory behaviours by assigning real stable eigenvalues to a widely used linearised model of the vehicle steering dynamics for any value of longitudinal speed in understeering vehicles. In particular, the four PI control parameters are explicitly expressed in terms of the three real eigenvalues to be assigned. No lateral acceleration and no lateral speed measurements are required. The controlled system maintains the well-known advantages of both front and rear active steering controls: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres and improved manoeuvrability. In particular, zero lateral speed may be asymptotically achieved while controlling the yaw rate: in this case comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced. Also zero yaw rate can be asymptotically achieved: in this case additional stable manoeuvres are obtained in obstacle avoidance. Several simulations, including step references and moose tests, are carried out on a standard small SUV CarSim model to explore the robustness with respect to unmodelled effects such as combined lateral and longitudinal tyre forces, pitch, roll and driver dynamics. The simulations confirm the decoupling between the lateral velocity and the yaw rate and show the advantages obtained by the proposed control: reduced lateral speed or reduced yaw rate, suppressed oscillations and new stable manoeuvres.

  8. 14 CFR 25.693 - Joints.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system joints (in push-pull systems) that are subject to angular motion, except those in ball and roller... in cable control systems. For ball or roller bearings, the approved ratings may not be exceeded...

  9. Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller

    NASA Technical Reports Server (NTRS)

    Chen, J.; Morgenstern, Wendy; Garrick, Joseph

    2001-01-01

    Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.

  10. Force-reflective teleoperated system with shared and compliant control capabilities

    NASA Technical Reports Server (NTRS)

    Szakaly, Z.; Kim, W. S.; Bejczy, A. K.

    1989-01-01

    The force-reflecting teleoperator breadboard is described. It is the first system among available Research and Development systems with the following combined capabilities: (1) The master input device is not a replica of the slave arm. It is a general purpose device which can be applied to the control of different robot arms through proper mathematical transformations. (2) Force reflection generated in the master hand controller is referenced to forces and moments measured by a six DOF force-moment sensor at the base of the robot hand. (3) The system permits a smooth spectrum of operations between full manual, shared manual and automatic, and full automatic (called traded) control. (4) The system can be operated with variable compliance or stiffness in force-reflecting control. Some of the key points of the system are the data handling and computing architecture, the communication method, and the handling of mathematical transformations. The architecture is a fully synchronized pipeline. The communication method achieves optimal use of a parallel communication channel between the local and remote computing nodes. A time delay box is also implemented in this communication channel permitting experiments with up to 8 sec time delay. The mathematical transformations are computed faster than 1 msec so that control at each node can be operated at 1 kHz servo rate without interpolation. This results in an overall force-reflecting loop rate of 200 Hz.

  11. RPV application of a globally adaptive rate controlled compressor

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1978-01-01

    A globally adaptive image compression structure is introduced for use in a tactical RPV environment. The structure described would provide an operator with the flexibility to dynamically maximize the usefulness of a limited and changing data rate. The concepts would potentially simplify system design while at the same time improving overall system performance.

  12. Examining the Dynamics of Managing Information Systems Development Projects: A Control Loss Perspective

    ERIC Educational Resources Information Center

    Narayanaswamy, Ravi

    2009-01-01

    The failure rate of information systems development (ISD) projects continues to pose a big challenge for organizations. The success rate of ISD projects is less then forty percent. Factors such as disagreements and miscommunications among project manager and team members, poor monitoring and intermediary problems contribute to project failure.…

  13. Evaluating the Strength of School Tobacco Policies: The Development of a Practical Rating System

    ERIC Educational Resources Information Center

    Boyce, Jennifer C.; Mueller, Nancy B.; Hogan-Watts, Melissa; Luke, Douglas A.

    2009-01-01

    Background: School tobacco control policies vary widely in their strength, extensiveness, and enforcement. Currently, no standardized method exists to assess the comprehensiveness of school tobacco policies. The purpose of this study was to develop a new practical rating system for school tobacco policies, assess its reliability, and present…

  14. Heart rate variability regression and risk of sudden unexpected death in epilepsy.

    PubMed

    Galli, Alessio; Lombardi, Federico

    2017-02-01

    The exact mechanisms of sudden unexpected death in epilepsy remain elusive, despite there is consensus that SUDEP is associated with severe derangements in the autonomic control to vital functions as breathing and heart rate regulation. Heart rate variability (HRV) has been advocated as biomarker of autonomic control to the heart. Cardiac dysautonomia has been found in diseases where other branches of the autonomous nervous system are damaged, as Parkinson disease and multiple system atrophy. In this perspective, an impaired HRV not only is a risk factor for sudden cardiac death mediated by arrhythmias, but also a potential biomarker for monitoring a progressive decline of the autonomous nervous system. This slope may lead to an acute imbalance of the regulatory pathways of vital functions after seizure and then to SUDEP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Attitude and vibration control of a large flexible space-based antenna

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1982-01-01

    Control systems synthesis is considered for controlling the rigid body attitude and elastic motion of a large deployable space-based antenna. Two methods for control systems synthesis are considered. The first method utilizes the stability and robustness properties of the controller consisting of torque actuators and collocated attitude and rate sensors. The second method is based on the linear-quadratic-Gaussian control theory. A combination of the two methods, which results in a two level hierarchical control system, is also briefly discussed. The performance of the controllers is analyzed by computing the variances of pointing errors, feed misalignment errors and surface contour errors in the presence of sensor and actuator noise.

  16. Mobile-phone dispatch of laypersons for CPR in out-of-hospital cardiac arrest.

    PubMed

    Ringh, Mattias; Rosenqvist, Mårten; Hollenberg, Jacob; Jonsson, Martin; Fredman, David; Nordberg, Per; Järnbert-Pettersson, Hans; Hasselqvist-Ax, Ingela; Riva, Gabriel; Svensson, Leif

    2015-06-11

    Cardiopulmonary resuscitation (CPR) performed by bystanders is associated with increased survival rates among persons with out-of-hospital cardiac arrest. We investigated whether rates of bystander-initiated CPR could be increased with the use of a mobile-phone positioning system that could instantly locate mobile-phone users and dispatch lay volunteers who were trained in CPR to a patient nearby with out-of-hospital cardiac arrest. We conducted a blinded, randomized, controlled trial in Stockholm from April 2012 through December 2013. A mobile-phone positioning system that was activated when ambulance, fire, and police services were dispatched was used to locate trained volunteers who were within 500 m of patients with out-of-hospital cardiac arrest; volunteers were then dispatched to the patients (the intervention group) or not dispatched to them (the control group). The primary outcome was bystander-initiated CPR before the arrival of ambulance, fire, and police services. A total of 5989 lay volunteers who were trained in CPR were recruited initially, and overall 9828 were recruited during the study. The mobile-phone positioning system was activated in 667 out-of-hospital cardiac arrests: 46% (306 patients) in the intervention group and 54% (361 patients) in the control group. The rate of bystander-initiated CPR was 62% (188 of 305 patients) in the intervention group and 48% (172 of 360 patients) in the control group (absolute difference for intervention vs. control, 14 percentage points; 95% confidence interval, 6 to 21; P<0.001). A mobile-phone positioning system to dispatch lay volunteers who were trained in CPR was associated with significantly increased rates of bystander-initiated CPR among persons with out-of-hospital cardiac arrest. (Funded by the Swedish Heart-Lung Foundation and Stockholm County; ClinicalTrials.gov number, NCT01789554.).

  17. Using consumption rate to assess potential predators for biological control of white perch

    USGS Publications Warehouse

    Gosch, N.J.C.; Pope, K.L.

    2011-01-01

    Control of undesirable fishes is important in aquatic systems, and using predation as a tool for biological control is an attractive option to fishery biologists. However, determining the appropriate predators for biological control is critical for success. The objective of this study was to evaluate the utility of consumption rate as an index to determine the most effective predators for biological control of an invasive fish. Consumption rate values were calculated for nine potential predators that prey on white perch Morone americana in Branched Oak and Pawnee reservoirs, Nebraska. The consumption rate index provided a unique and insightful means of determining the potential effectiveness of each predator species in controlling white perch. Cumulative frequency distributions facilitated interpretation by providing a graphical presentation of consumption rates by all individuals within each predator species. Largemouth bass Micropterus salmoides, walleye Sander vitreus and sauger S. canadensis were the most efficient white perch predators in both reservoirs; however, previous attempts to increase biomass of these predators have failed suggesting that successful biological control is unlikely using existing predator species in these Nebraska reservoirs. ?? 2011 ONEMA.

  18. Study of connected system of automatic control of load and operation efficiency of a steam boiler with extremal controller on a simulation model

    NASA Astrophysics Data System (ADS)

    Sabanin, V. R.; Starostin, A. A.; Repin, A. I.; Popov, A. I.

    2017-02-01

    The problems of operation effectiveness increase of steam boilers are considered. To maintain the optimum fuel combustion modes, it is proposed to use an extremal controller (EC) determining the value of airflow rate, at which the boiler generating the desired amount of heat will consume a minimum amount of fuel. EC sets the determined value of airflow rate to airflow rate controller (ARC). The test results of numerical simulation dynamic nonlinear model of steam boiler with the connected system of automatic control of load and combustion efficiency using EC are presented. The model is created in the Simulink modeling package of MATLAB software and can be used to optimize the combustion modes. Based on the modeling results, the conclusion was drawn about the possibility in principle of simultaneously boiler load control and optimizing by EC the combustion modes when changing the fuel combustion heat and the boiler characteristics and its operating mode. It is shown that it is possible to automatically control the operation efficiency of steam boilers when using EC without applying the standard flue gas analyzers. The article considers the numerical simulation dynamic model of steam boiler with the schemes of control of fuel consumption and airflow rate, the steam pressure and EC; the purpose of using EC in the scheme with linear controllers and the requirements to the quality of its operation; the results of operation of boiler control schemes without EC with estimation of influence of roughness of thermal mode maps on the nature of static and dynamic connection of the control units of fuel consumption and airflow rate; the phase trajectories and the diagrams of transient processes occurring in the control scheme with EC with stepped changing the fuel quality and boiler characteristics; analysis of modeling results and prospects for using EC in the control schemes of boilers.

  19. Improved Steam Turbine Leakage Control with a Brush Seal Design

    NASA Astrophysics Data System (ADS)

    Turnquist, Norman; Chupp, Raymond E.; Pastrana, Ryan; Wolfe, Chris; Burnett, Mark

    2002-10-01

    This paper presents an improved steam turbine leakage control system with a brush seal design. The contents include: 1) Typical Design Characteristics; 2) Typical Brush Seal Locations; 3) Reduced Leakage Rates; 4) Performance Benefits; 5) System Considerations; 6) Rotor Dynamics; 7) Laboratory Tests and 8) Field Experience.

  20. Solid state remote power controllers for 120 VDC power systems

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.; Baker, D. E.

    1975-01-01

    Solid state remote power controllers can be applied to any dc power system up to 120 Vdc and distribute power up to 3.6 kW per hour. Devices have demonstrated total electrical efficiencies of 98.5 percent to 99.0 percent at rated load currents.

  1. Spacecraft optical disk recorder memory buffer control

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1993-01-01

    This paper discusses the research completed under the NASA-ASEE summer faculty fellowship program. The project involves development of an Application Specific Integrated Circuit (ASIC) to be used as a Memory Buffer Controller (MBC) in the Spacecraft Optical Disk System (SODR). The SODR system has demanding capacity and data rate specifications requiring specialized electronics to meet processing demands. The system is being designed to support Gigabit transfer rates with Terabit storage capability. The complete SODR system is designed to exceed the capability of all existing mass storage systems today. The ASIC development for SODR consist of developing a 144 pin CMOS device to perform format conversion and data buffering. The final simulations of the MBC were completed during this summer's NASA-ASEE fellowship along with design preparations for fabrication to be performed by an ASIC manufacturer.

  2. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOEpatents

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  3. Absorption of carbon dioxide by solid hydroxide sorbent beds in closed-loop atmospheric revitalization system

    NASA Technical Reports Server (NTRS)

    Davis, S. H., Jr.; Kissinger, L. D.

    1982-01-01

    The reactions of carbon dioxide with various metals are discussed. The equations which govern the rates of CO2 removal from the atmosphere in spacecraft environmental control systems are discussed. Results from performance testing of various Space Shuttle environmental control systems are presented with the correlation of the equations to the performance given.

  4. The design of RFID convey or belt gate systems using an antenna control unit.

    PubMed

    Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan

    2011-01-01

    This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.

  5. The Design of RFID Convey or Belt Gate Systems Using an Antenna Control Unit

    PubMed Central

    Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan

    2011-01-01

    This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance. PMID:22164119

  6. Distance matters: Effect of geographic trauma system resource organization on fatal motor vehicle collisions.

    PubMed

    Brown, Joshua B; Rosengart, Matthew R; Billiar, Timothy R; Peitzman, Andrew B; Sperry, Jason L

    2017-07-01

    Trauma systems improve outcome; however, it is unclear how geographic organization of trauma system resources (TSR) affects outcome. Our objective was to evaluate the relationship of fatal motor vehicle collision (MVC) rates and the distance from individual MVC locations to the nearest TSR as a measure of the geographical organization of trauma systems, as well as how theoretical changes in the distribution of TSR may affect fatal MVC rates. All fatal MVC in Pennsylvania 2013-2014 were mapped from the Fatality Analysis Reporting System database. Deaths on scene were excluded. TSR including trauma centers and helicopter bases were mapped. Distance between each fatal MVC and nearest TSR was calculated. The primary outcome was fatal MVC rate per 100 million vehicle miles traveled (VMT). Empiric Bayes kriging and hot spot analysis were performed to evaluate geographic patterns in fatal MVC rates. Association between fatal MVC rate and distance to the nearest TSR was evaluated with linear regression. Spatial lag regression evaluated this association while controlling for MVC and county-level characteristics. We identified 886 fatalities from 863 fatal MVC. Median fatal MVC rate was 0.187 per 100 million VMT. Higher fatal MVC rates and fatality hot spots occur in locations farther from TSR. The fatal MVC rate increased 0.141 per 100 million VMT for every 10 miles farther from the nearest TSR (p < 0.01). When controlling for confounders, the fatal MVC rate increased by 0.089 per 100 million VMT for every 10 miles farther from the nearest TSR (p < 0.01). If two helicopters stationed at trauma centers were relocated into the highest fatality regions, our model predicts a 12.3% relative reduction in the overall MVC fatality rate. Increasing distance to the nearest TSR is associated with increasing fatal MVC rate. The geographic organization of trauma systems may impact outcome, and geospatial analysis can allow data-driven changes to potentially improve outcome. Prognostic/Epidemiologic, level III; Case management, level III.

  7. 46 CFR 63.20-1 - Specific control system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... interlock must ensure low fire start when variable firing rates are used. (c) Water level controls and low water cutoff controls. Water level controls must be constructed and located to minimize the effects of vessel roll and pitch. Float chamber low water cutoff controls using stuffing boxes to transmit the...

  8. 46 CFR 63.20-1 - Specific control system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... interlock must ensure low fire start when variable firing rates are used. (c) Water level controls and low water cutoff controls. Water level controls must be constructed and located to minimize the effects of vessel roll and pitch. Float chamber low water cutoff controls using stuffing boxes to transmit the...

  9. 46 CFR 63.20-1 - Specific control system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... interlock must ensure low fire start when variable firing rates are used. (c) Water level controls and low water cutoff controls. Water level controls must be constructed and located to minimize the effects of vessel roll and pitch. Float chamber low water cutoff controls using stuffing boxes to transmit the...

  10. Influence of Three Contrasting Detrital Carbon Sources on Planktonic Bacterial Metabolism in a Mesotrophic Lake.

    PubMed

    Wehr; Petersen; Findlay

    1999-01-01

    Abstract Lakes receive organic carbon from a diversity of sources which vary in their contribution to planktonic microbial food webs. We conducted a mesocosm study to test the effects of three different detrital carbon sources (algae, aquatic macrophytes, terrestrial leaves) on several measures of microbial metabolism in a small meso-eutrophic lake (DOC approximately 5 mg/L). Small DOC additions (DeltaC < 1 mg/L) affected bacterial numbers, growth, and pathways of carbon acquisition. Macrophyte and leaf detritus significantly increased TDP and color, but bacterial densities initially (+12 h) were unaffected. After 168 h, densities in systems amended with terrestrial detritus were 60% less than in controls, while production rates in mesocosms with macrophyte detritus were 4-fold greater. Detritus treatments resulted in greater per-cell production rates either through stable cell numbers and greater growth rates (macrophyte-C) or lower densities with stable production rates (terrestrial-C). After only 12 h, rates of leucine aminopeptidase (LAPase) activity were 2.5x greater in macrophyte-C systems than in controls, but LAPase and beta-N-acetylglucosamindase activities in systems amended with terrestrial-C were only 50% of rates in controls. After 168 h, beta-xylosidase rates were significantly greater in communities with terrestrial and phytoplankton detritus. Microbial utilization of >20% of 102 carbon sources tested were affected by at least one detritus addition. Macrophyte-C had positive (6% of substrates) and negative (14%) effects on substrate use; terrestrial detritus had mainly positive effects. An ordination based on carbon-use profiles (+12 h) revealed a cluster of macrophyte-amended communities with greater use of psicose, lactulose, and succinamic acid; controls and algal-detritus systems were more effective in metabolizing two common sugars and cellobiose. After 168 h, communities receiving terrestrial detritus were most tightly clustered, exhibiting greater use of raffinose, pyroglutamic acid, and sebacic acid. Results suggest that pelagic bacterial communities respond to changes in organic carbon source rapidly and by different routes, including shifts in per-cell production rates and variations in degradation of a variety of compounds comprising the DOC pool.

  11. Computationally inexpensive approach for pitch control of offshore wind turbine on barge floating platform.

    PubMed

    Zuo, Shan; Song, Y D; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the "NREL offshore 5 MW baseline wind turbine" being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control.

  12. Computationally Inexpensive Approach for Pitch Control of Offshore Wind Turbine on Barge Floating Platform

    PubMed Central

    Zuo, Shan; Song, Y. D.; Wang, Lei; Song, Qing-wang

    2013-01-01

    Offshore floating wind turbine (OFWT) has gained increasing attention during the past decade because of the offshore high-quality wind power and complex load environment. The control system is a tradeoff between power tracking and fatigue load reduction in the above-rated wind speed area. In allusion to the external disturbances and uncertain system parameters of OFWT due to the proximity to load centers and strong wave coupling, this paper proposes a computationally inexpensive robust adaptive control approach with memory-based compensation for blade pitch control. The method is tested and compared with a baseline controller and a conventional individual blade pitch controller with the “NREL offshore 5 MW baseline wind turbine” being mounted on a barge platform run on FAST and Matlab/Simulink, operating in the above-rated condition. It is shown that the advanced control approach is not only robust to complex wind and wave disturbances but adaptive to varying and uncertain system parameters as well. The simulation results demonstrate that the proposed method performs better in reducing power fluctuations, fatigue loads and platform vibration as compared to the conventional individual blade pitch control. PMID:24453834

  13. Compensation for time delay in flight simulator visual-display systems

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1983-01-01

    A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.

  14. A rate-controlled teleoperator task with simulated transport delays

    NASA Technical Reports Server (NTRS)

    Pennington, J. E.

    1983-01-01

    A teleoperator-system simulation was used to examine the effects of two control modes (joint-by-joint and resolved-rate), a proximity-display method, and time delays (up to 2 sec) on the control of a five-degree-of-freedom manipulator performing a probe-in-hole alignment task. Four subjects used proportional rotational control and discrete (on-off) translation control with computer-generated visual displays. The proximity display enabled subjects to separate rotational errors from displacement (translation) errors; thus, when the proximity display was used with resolved-rate control, the simulated task was trivial. The time required to perform the simulated task increased linearly with time delay, but time delays had no effect on alignment accuracy. Based on the results of this simulation, several future studies are recommended.

  15. Effect of water chemistry upsets on the dynamics of corrective reagent dosing systems at thermal power stations

    NASA Astrophysics Data System (ADS)

    Voronov, V. N.; Yegoshina, O. V.; Bolshakova, N. A.; Yarovoi, V. O.; Latt, Aie Min

    2016-12-01

    Typical disturbances in the dynamics of a corrective reagent dosing system under unsteady-state conditions during the unsatisfactory operation of a chemical control system with some water chemistry upsets at thermal and nuclear power stations are considered. An experimental setup representing a physical model for the water chemistry control system is described. The two disturbances, which are most frequently encountered in water chemistry control practice, such as a breakdown or shutdown of temperature compensation during pH measurement and an increase in the heat-transfer fluid flow rate, have been modeled in the process of study. The study of the effect produced by the response characteristics of chemical control analyzers on the operation of a reagent dosing system under unsteady-state conditions is important for the operative control of a water chemistry regime state. The effect of temperature compensation during pH measurement on the dynamics of an ammonia-dosing system in the manual and automatic cycle chemistry control modes has been studied. It has been demonstrated that the reading settling time of a pH meter in the manual ammonia- dosing mode grows with a breakdown in temperature compensation and a simultaneous increase in the temperature of a heat-transfer fluid sample. To improve the efficiency of water chemistry control, some systems for the quality control of a heat-transfer fluid by a chemical parameter with the obligatory compensation of a disturbance in its flow rate have been proposed for use. Experimental results will possibly differ from industrial data due to a great length of sampling lines. For this reason, corrective reagent dosing systems must be adapted to the conditions of a certain power-generating unit in the process of their implementation.

  16. Design, Integration, Certification and Testing of the Orion Crew Module Propulsion System

    NASA Technical Reports Server (NTRS)

    McKay, Heather; Freeman, Rich; Cain, George; Albright, John D.; Schoenberg, Rich; Delventhal, Rex

    2014-01-01

    The Orion Multipurpose Crew Vehicle (MPCV) is NASA's next generation spacecraft for human exploration of deep space. Lockheed Martin is the prime contractor for the design, development, qualification and integration of the vehicle. A key component of the Orion Crew Module (CM) is the Propulsion Reaction Control System, a high-flow hydrazine system used during re-entry to orient the vehicle for landing. The system consists of a completely redundant helium (GHe) pressurization system and hydrazine fuel system with monopropellant thrusters. The propulsion system has been designed, integrated, and qualification tested in support of the Orion program's first orbital flight test, Exploration Flight Test One (EFT-1), scheduled for 2014. A subset of the development challenges and lessons learned from this first flight test campaign will be discussed in this paper for consideration when designing future spacecraft propulsion systems. The CONOPS and human rating requirements of the CM propulsion system are unique when compared with a typical satellite propulsion reaction control system. The system requires a high maximum fuel flow rate. It must operate at both vacuum and sea level atmospheric pressure conditions. In order to meet Orion's human rating requirements, multiple parts of the system must be redundant, and capable of functioning after spacecraft system fault events.

  17. Developmental Testing of Electric Thrust Vector Control Systems for Manned Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Bates, Lisa B.; Young, David T.

    2012-01-01

    This paper describes recent developmental testing to verify the integration of a developmental electromechanical actuator (EMA) with high rate lithium ion batteries and a cross platform extensible controller. Testing was performed at the Thrust Vector Control Research, Development and Qualification Laboratory at the NASA George C. Marshall Space Flight Center. Electric Thrust Vector Control (ETVC) systems like the EMA may significantly reduce recurring launch costs and complexity compared to heritage systems. Electric actuator mechanisms and control requirements across dissimilar platforms are also discussed with a focus on the similarities leveraged and differences overcome by the cross platform extensible common controller architecture.

  18. A Comprehensive Assessment of Health Care Utilization Among Homeless Adults Under a System of Universal Health Insurance

    PubMed Central

    Chambers, Catharine; Chiu, Shirley; Katic, Marko; Kiss, Alex; Redelmeier, Donald A.; Levinson, Wendy

    2013-01-01

    Objectives. We comprehensively assessed health care utilization in a population-based sample of homeless adults and matched controls under a universal health insurance system. Methods. We assessed health care utilization by 1165 homeless single men and women and adults in families and their age- and gender-matched low-income controls in Toronto, Ontario, from 2005 to 2009, using repeated-measures general linear models to calculate risk ratios and 95% confidence intervals (CIs). Results. Homeless participants had mean rates of 9.1 ambulatory care encounters (maximum = 141.1), 2.0 emergency department (ED) encounters (maximum = 104.9), 0.2 medical–surgical hospitalizations (maximum = 14.9), and 0.1 psychiatric hospitalizations per person-year (maximum = 4.8). Rate ratios for homeless participants compared with matched controls were 1.76 (95% CI = 1.58, 1.96) for ambulatory care encounters, 8.48 (95% CI = 6.72, 10.70) for ED encounters, 4.22 (95% CI = 2.99, 5.94) for medical–surgical hospitalizations, and 9.27 (95% CI = 4.42, 19.43) for psychiatric hospitalizations. Conclusions. In a universal health insurance system, homeless people had substantially higher rates of ED and hospital use than general population controls; these rates were largely driven by a subset of homeless persons with extremely high-intensity usage of health services. PMID:24148051

  19. Kalman filter based glucose control at small set points during fed-batch cultivation of Saccharomyces cerevisiae.

    PubMed

    Arndt, Michael; Hitzmann, Bernd

    2004-01-01

    A glucose control system is presented, which is able to control cultivations of Saccharomyces cerevisiae even at low glucose concentrations. Glucose concentrations are determined using a special flow injection analysis (FIA) system, which does not require a sampling module. An extended Kalman filter is employed for smoothing the glucose measurements as well as for the prediction of glucose and biomass concentration, the maximum specific growth rate, and the volume of the culture broth. The predicted values are utilized for feedforward/feedback control of the glucose concentration at set points of 0.08 and 0.05 g/L. The controller established well-defined conditions over several hours up to biomass concentrations of 13.5 and 20.7 g/L, respectively. The specific glucose uptake rates at both set points were 1.04 and 0.68 g/g/h, respectively. It is demonstrated that during fed-batch cultivation an overall pure oxidative metabolism of glucose is maintained at the lower set point and a specific ethanol production rate of 0.18 g/g/h at the higher set point.

  20. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    PubMed

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR).

    PubMed

    Kim, Hyun Woo; Marcus, Andrew K; Shin, Jeong Hoon; Rittmann, Bruce E

    2011-06-01

    A membrane carbonation (MC) module uses bubbleless gas-transfer membranes to supply inorganic carbon (C(i)) for photoautotrophic cyanobacterial growth in a photobioreactor (PBR); this creates the novel MCPBR system, which allows precise control of the CO(2)-delivery rate and minimal loss of CO(2) to the atmosphere. Experiments controlled the supply rate of C(i) to the main PBR by regulating the recirculation rate (Q(R)) between the module of MC chamber and the main PBR. The experiments evaluated how Q(R) controls the CO(2) mass transport in MC chamber and how it connects with the biomass production rate, C(i) concentration, pH in the PBR, and CO(2)-utilization efficiency. The biomass production rate and C(i) concentration increased in response to the C(i) supply rate (controlled by Q(R)), but not in linear proportion. The biomass production rate increased less than C(i) due to increased light limitation. Except for the highest Q(R), when the higher C(i) concentration caused the pH to decrease, CO(2) loss to gas ventilation was negligible. The results demonstrate that this MCPBR offers independent control over the growth of photoautotrophic biomass, pH control, and minimal loss of CO(2) to the atmosphere.

  2. Modular Biometric Monitoring System

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor)

    2017-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to control communication of data, via the bus, with each of the plurality of data acquisition modules.

  3. Exercise, Insulin Absorption Rates, and Artificial Pancreas Control

    NASA Astrophysics Data System (ADS)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Basu, Ananda; Szeri, Andrew J.

    2016-11-01

    Type 1 Diabetes is characterized by an inability of a person to endogenously produce the hormone insulin. Because of this, insulin must be injected - usually subcutaneously. The size of the injected dose and the rate at which the dose reaches the circulatory system have a profound effect on the ability to control glucose excursions, and therefore control of diabetes. However, insulin absorption rates via subcutaneous injection are variable and depend on a number of factors including tissue perfusion, physical activity (vasodilation, increased capillary throughput), and other tissue geometric and physical properties. Exercise may also have a sizeable effect on the rate of insulin absorption, which can potentially lead to dangerous glucose levels. Insulin-dosing algorithms, as implemented in an artificial pancreas controller, should account accurately for absorption rate variability and exercise effects on insulin absorption. The aforementioned factors affecting insulin absorption will be discussed within the context of both fluid mechanics and data driven modeling approaches.

  4. System and method for correcting attitude estimation

    NASA Technical Reports Server (NTRS)

    Josselson, Robert H. (Inventor)

    2010-01-01

    A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.

  5. Online terahertz thickness measurement in films and coatings

    NASA Astrophysics Data System (ADS)

    Duling, Irl N.; White, Jeffrey S.

    2017-02-01

    Pulsed terahertz systems are currently being deployed for online process control and quality control of multi-layered products for use in the building products and aerospace industries. While many laboratory applications of terahertz can allow waveforms to be acquired at rates of 1 - 40 Hz, online applications require measurement rates of in excess of 100Hz. The existing technologies of thickness measurement (nuclear, x-ray, or laser gauges) have rates between 100 and 1000 Hz. At these rates, the single waveform bandwidth must still remain at 2THz or above to allow thinner layers to be measured. In the applications where terahertz can provide unique capability (e.g. multi-layer thickness, delamination, density) long-term stability must be guaranteed within the tolerance required by the measurement. This can mean multi-day stability of less than a micron. The software that runs on these systems must be flexible enough to allow multiple product configurations, while maintaining the simplicity required by plant operators. The final requirement is to have systems that can withstand the environmental conditions of the measurement. This might mean qualification in explosive environments, or operation in hot, wet or dusty environments. All of these requirements can put restrictions on not only the voltage of electronic circuitry used, but also the wavelength and optical power used for the transmitter and receiver. The application of terahertz systems to online process control presents unique challenges that not only effect the physical design of the system, but can also effect the choices made on the terahertz technology itself.

  6. The needs of digital games content rating system in Malaysia

    NASA Astrophysics Data System (ADS)

    Hamid, Ros Syammimi; Shiratuddin, Norshuhada

    2016-08-01

    Numerous studies revealed that playing digital games with adverse contents can lead to negative effects. Therefore, this article presents a review of the harmful contents and the detrimental effects of playing digital games. Violent and sexual contents of digital games, digital games scenarios in Malaysia, and review of existing content rating system are covered. The review indicates that Malaysia should have its own digital games content ratings system to control the contents and inform the users about the contents of the games that they wish to consume.

  7. Linear-parameter-varying gain-scheduled control of aerospace systems

    NASA Astrophysics Data System (ADS)

    Barker, Jeffrey Michael

    The dynamics of many aerospace systems vary significantly as a function of flight condition. Robust control provides methods of guaranteeing performance and stability goals across flight conditions. In mu-syntthesis, changes to the dynamical system are primarily treated as uncertainty. This method has been successfully applied to many control problems, and here is applied to flutter control. More recently, two techniques for generating robust gain-scheduled controller have been developed. Linear fractional transformation (LFT) gain-scheduled control is an extension of mu-synthesis in which the plant and controller are explicit functions of parameters measurable in real-time. This LFT gain-scheduled control technique is applied to the Benchmark Active Control Technology (BACT) wing, and compared with mu-synthesis control. Linear parameter-varying (LPV) gain-scheduled control is an extension of Hinfinity control to parameter varying systems. LPV gain-scheduled control directly incorporates bounds on the rate of change of the scheduling parameters, and often reduces conservatism inherent in LFT gain-scheduled control. Gain-scheduled LPV control of the BACT wing compares very favorably with the LFT controller. Gain-scheduled LPV controllers are generated for the lateral-directional and longitudinal axes of the Innovative Control Effectors (ICE) aircraft and implemented in nonlinear simulations and real-time piloted nonlinear simulations. Cooper-Harper and pilot-induced oscillation ratings were obtained for an initial design, a reference aircraft and a redesign. Piloted simulation results for the initial LPV gain-scheduled control of the ICE aircraft are compared with results for a conventional fighter aircraft in discrete pitch and roll angle tracking tasks. The results for the redesigned controller are significantly better than both the previous LPV controller and the conventional aircraft.

  8. End-to-End Flow Control for Visual-Haptic Communication under Bandwidth Change

    NASA Astrophysics Data System (ADS)

    Yashiro, Daisuke; Tian, Dapeng; Yakoh, Takahiro

    This paper proposes an end-to-end flow controller for visual-haptic communication. A visual-haptic communication system transmits non-real-time packets, which contain large-size visual data, and real-time packets, which contain small-size haptic data. When the transmission rate of visual data exceeds the communication bandwidth, the visual-haptic communication system becomes unstable owing to buffer overflow. To solve this problem, an end-to-end flow controller is proposed. This controller determines the optimal transmission rate of visual data on the basis of the traffic conditions, which are estimated by the packets for haptic communication. Experimental results confirm that in the proposed method, a short packet-sending interval and a short delay are achieved under bandwidth change, and thus, high-precision visual-haptic communication is realized.

  9. Evaluation of the leap motion controller as a new contact-free pointing device.

    PubMed

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2014-12-24

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.

  10. Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device

    PubMed Central

    Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard

    2015-01-01

    This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC. PMID:25609043

  11. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    PubMed Central

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  12. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    PubMed

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  13. Autonomic functions in acrocyanosis assessed by heart rate variability

    PubMed Central

    Yılmaz, Sedat; Yokuşoğlu, Mehmet; Çınar, Muhammet; Şimşek, İsmail; Baysan, Oben; Öz, Bilgehan Savaş; Erdem, Hakan; Pay, Salih; Dinç, Ayhan

    2014-01-01

    Objective To evaluate the autonomic activity of patients with acrocyanosis by using heart rate variability indices. Material and Methods The study group consisted of 24 patients with acrocyanosis and the control group contained 22 sex- and age-matched healthy subjects. All subjects underwent 24-hour Holter monitoring. Among the heart rate variability (HRV) parameters, time-domain and frequency-domain indices were analysed. Results The time-domain indices of HRV indicating global autonomic functions were found to be increased, and indices indicating parasympathetic activity showed a significant decrease in the patient group. Power-spectral analysis of HRV revealed that the low frequency and high frequency power were higher in the patient group than in controls. However, the ratio of Low Frequency/High Frequency was found to be lower in the patient group than in controls. Conclusion In acrocyanosis, both sympathetic and parasympathetic systems seem to be disrupted. Therefore, we may conclude that acrocyanosis may be resulted of systemic autonomic imbalance rather than pure sympathetic over-activation. Also, these results suggest that acrocyanosis is not a localised disorder; on the contrary, it is associated with various abnormalities of the systemic autonomic nervous system. PMID:27708866

  14. System Analysis Applied to Autonomy: Application to Human-Rated Lunar/Mars Landers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2006-01-01

    System analysis is an essential technical discipline for the modern design of spacecraft and their associated missions. Specifically, system analysis is a powerful aid in identifying and prioritizing the required technologies needed for mission and/or vehicle development efforts. Maturation of intelligent systems technologies, and their incorporation into spacecraft systems, are dictating the development of new analysis tools, and incorporation of such tools into existing system analysis methodologies, in order to fully capture the trade-offs of autonomy on vehicle and mission success. A "system analysis of autonomy" methodology will be outlined and applied to a set of notional human-rated lunar/Mars lander missions toward answering these questions: 1. what is the optimum level of vehicle autonomy and intelligence required? and 2. what are the specific attributes of an autonomous system implementation essential for a given surface lander mission/application in order to maximize mission success? Future human-rated lunar/Mars landers, though nominally under the control of their crew, will, nonetheless, be highly automated systems. These automated systems will range from mission/flight control functions, to vehicle health monitoring and prognostication, to life-support and other "housekeeping" functions. The optimum degree of autonomy afforded to these spacecraft systems/functions has profound implications from an exploration system architecture standpoint.

  15. System and method of providing quick thermal comfort with reduced energy by using directed spot conditioning

    DOEpatents

    Wang, Mingyu; Kadle, Prasad S.; Ghosh, Debashis; Zima, Mark J.; Wolfe, IV, Edward; Craig, Timothy D

    2016-10-04

    A heating, ventilation, and air conditioning (HVAC) system and a method of controlling a HVAC system that is configured to provide a perceived comfortable ambient environment to an occupant seated in a vehicle cabin. The system includes a nozzle configured to direct an air stream from the HVAC system to the location of a thermally sensitive portion of the body of the occupant. The system also includes a controller configured to determine an air stream temperature and an air stream flow rate necessary to establish the desired heat supply rate for the sensitive portion and provide a comfortable thermal environment by thermally isolating the occupant from the ambient vehicle cabin temperature. The system may include a sensor to determine the location of the sensitive portion. The nozzle may include a thermoelectric device to heat or cool the air stream.

  16. Stomatal control and hydraulic conductance, with special reference to tall trees.

    PubMed

    Franks, Peter J

    2004-08-01

    A better understanding of the mechanistic basis of stomatal control is necessary to understand why modes of stomatal response differ among individual trees, and to improve the theoretical foundation for predictive models and manipulative experiments. Current understanding of the mechanistic basis of stomatal control is reviewed here and discussed in relation to the plant hydraulic system. Analysis focused on: (1) the relative role of hydraulic conductance in the vicinity of the stomatal apparatus versus whole-plant hydraulic conductance; (2) the influence of guard cell inflation characteristics and the mechanical interaction between guard cells and epidermal cells; and (3) the system requirements for moderate versus dramatic reductions in stomatal conductance with increasing evaporation potential. Special consideration was given to the potential effect of changes in hydraulic properties as trees grow taller. Stomatal control of leaf gas exchange is coupled to the entire plant hydraulic system and the basis of this coupling is the interdependence of guard cell water potential and transpiration rate. This hydraulic feedback loop is always present, but its dynamic properties may be altered by growth or cavitation-induced changes in hydraulic conductance, and may vary with genetically related differences in hydraulic conductances. Mechanistic models should include this feedback loop. Plants vary in their ability to control transpiration rate sufficiently to maintain constant leaf water potential. Limited control may be achieved through the hydraulic feedback loop alone, but for tighter control, an additional element linking transpiration rate to guard cell osmotic pressure may be needed.

  17. Modeling the control of the central nervous system over the cardiovascular system using support vector machines.

    PubMed

    Díaz, José; Acosta, Jesús; González, Rafael; Cota, Juan; Sifuentes, Ernesto; Nebot, Àngela

    2018-02-01

    The control of the central nervous system (CNS) over the cardiovascular system (CS) has been modeled using different techniques, such as fuzzy inductive reasoning, genetic fuzzy systems, neural networks, and nonlinear autoregressive techniques; the results obtained so far have been significant, but not solid enough to describe the control response of the CNS over the CS. In this research, support vector machines (SVMs) are used to predict the response of a branch of the CNS, specifically, the one that controls an important part of the cardiovascular system. To do this, five models are developed to emulate the output response of five controllers for the same input signal, the carotid sinus blood pressure (CSBP). These controllers regulate parameters such as heart rate, myocardial contractility, peripheral and coronary resistance, and venous tone. The models are trained using a known set of input-output response in each controller; also, there is a set of six input-output signals for testing each proposed model. The input signals are processed using an all-pass filter, and the accuracy performance of the control models is evaluated using the percentage value of the normalized mean square error (MSE). Experimental results reveal that SVM models achieve a better estimation of the dynamical behavior of the CNS control compared to others modeling systems. The main results obtained show that the best case is for the peripheral resistance controller, with a MSE of 1.20e-4%, while the worst case is for the heart rate controller, with a MSE of 1.80e-3%. These novel models show a great reliability in fitting the output response of the CNS which can be used as an input to the hemodynamic system models in order to predict the behavior of the heart and blood vessels in response to blood pressure variations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Control law synthesis and optimization software for large order aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, V.; Pototzky, A.; Noll, Thomas

    1989-01-01

    A flexible aircraft or space structure with active control is typically modeled by a large-order state space system of equations in order to accurately represent the rigid and flexible body modes, unsteady aerodynamic forces, actuator dynamics and gust spectra. The control law of this multi-input/multi-output (MIMO) system is expected to satisfy multiple design requirements on the dynamic loads, responses, actuator deflection and rate limitations, as well as maintain certain stability margins, yet should be simple enough to be implemented on an onboard digital microprocessor. A software package for performing an analog or digital control law synthesis for such a system, using optimal control theory and constrained optimization techniques is described.

  19. Instrumentation and control system for an F-15 stall/spin

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Holmes, D. C. E.; Zaepfel, K. P.

    1974-01-01

    An instrumentation and control system is described that was used for radio-controlled F-15 airplane model stall/spin research at the NASA-Langley Research Center. This stall/spin research technique, using scale model aircraft, provides information on the post-stall and spin-entry characteristics of full-scale aircraft. The instrumentation described provides measurements of flight parameters such as angle of attack and sideslip, airspeed, control-surface position, and three-axis rotation rates; these data are recorded on an onboard magnetic tape recorder. The proportional radio control system, which utilizes analog potentiometric signals generated from ground-based pilot inputs, and the ground-based system used in the flight operation are also described.

  20. F-15 HiDEC taxi on ramp at sunrise

    NASA Image and Video Library

    1991-09-23

    NASA's highly modified F-15A (Serial #71-0287) used for digital electronic flight and engine control systems research, at sunrise on the ramp at the Dryden Flight Research Facility, Edwards, California. The F-15 was called the HIDEC (Highly Integrated Digital Electronic Control) flight facility. Research programs flown on the testbed vehicle have demonstrated improved rates of climb, fuel savings, and engine thrust by optimizing systems performance. The aircraft also tested and evaluated a computerized self-repairing flight control system for the Air Force that detects damaged or failed flight control surfaces. The system then reconfigures undamaged control surfaces so the mission can continue or the aircraft is landed safely.

  1. Control of thermal balance by a liquid circulating garment based on a mathematical representation of the human thermoregulatory system. Ph.D. Thesis - California Univ., Berkeley

    NASA Technical Reports Server (NTRS)

    Kuznetz, L. H.

    1976-01-01

    Test data and a mathematical model of the human thermoregulatory system were used to investigate control of thermal balance by means of a liquid circulating garment (LCG). The test data were derived from five series of experiments in which environmental and metabolic conditions were varied parametrically as a function of several independent variables, including LCG flowrate, LCG inlet temperature, net environmental heat exchange, surrounding gas ventilation rate, ambient pressure, metabolic rate, and subjective/obligatory cooling control. The resultant data were used to relate skin temperature to LCG water temperature and flowrate, to assess a thermal comfort band, to demonstrate the relationship between metabolic rate and LCG heat dissipation, and so forth. The usefulness of the mathematical model as a tool for data interpretation and for generation of trends and relationships among the various physiological parameters was also investigated and verified.

  2. An analysis of landing rates and separations at the Dallas/Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Erzberger, Heinz

    1996-01-01

    Advanced air traffic management systems such as the Center/TRACON Automation System (CTAS) should yield a wide range of benefits, including reduced aircraft delays and controller workload. To determine the traffic-flow benefits achievable from future terminal airspace automation, live radar information was used to perform an analysis of current aircraft landing rates and separations at the Dallas/Fort Worth International Airport. Separation statistics that result when controllers balance complex control procedural constraints in order to maintain high landing rates are presented. In addition, the analysis estimates the potential for airport capacity improvements by determining the unused landing opportunities that occur during rush traffic periods. Results suggest a large potential for improving the accuracy and consistency of spacing between arrivals on final approach, and they support earlier simulation findings that improved air traffic management would increase capacity and reduce delays.

  3. The effects of receiving room dimensions and absorption in the measurement of impact insulation class (IIC) rating

    NASA Astrophysics Data System (ADS)

    Su, Rose Mary; Tocci, Gregory

    2005-09-01

    The measurement of the Impact Insulation Class (IIC) rating of any floor/ceiling construction requires the use of a certified laboratory space. In a recent investigation into the IIC rating of a new floor system, several tests were conducted in a certified laboratory. In many tests, the IIC rating was controlled by the 100-Hz 1/3-octave frequency band, despite changes in the floor/ceiling construction. The base floor/ceiling construction included a wood structural floor on open-web wood joists and a GWB ceiling below. This paper will investigate the possibility that room resonances influenced the IIC ratings of the several floor systems tested. These data will be compared with IIC data collected for the same floor construction with the GWB ceiling removed. The removal of the GWB ceiling increased the receiver room volume and exposed the glass fiber insulation to the receiver room, thus eliminating the control of the 100-Hz 1/3-octave band over the IIC rating.

  4. Method and apparatus for controlling fluid flow

    DOEpatents

    Miller, J.R.

    1980-06-27

    A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.

  5. Teleoperated position control of a PUMA robot

    NASA Technical Reports Server (NTRS)

    Austin, Edmund; Fong, Chung P.

    1987-01-01

    A laboratory distributed computer control teleoperator system is developed to support NASA's future space telerobotic operation. This teleoperator system uses a universal force-reflecting hand controller in the local iste as the operator's input device. In the remote site, a PUMA controller recieves the Cartesian position commands and implements PID control laws to position the PUMA robot. The local site uses two microprocessors while the remote site uses three. The processors communicate with each other through shared memory. The PUMA robot controller was interfaced through custom made electronics to bypass VAL. The development status of this teleoperator system is reported. The execution time of each processor is analyzed, and the overall system throughput rate is reported. Methods to improve the efficiency and performance are discussed.

  6. [Evaluation on application of China Disease Prevention and Control Information System of Hydatid Disease Ⅰ Current status at the provincial level].

    PubMed

    Zhi-Hua, Zhang; Qing, Yu; Tian, Tian; Wei-Ping, Wu; Ning, Xiao

    2016-03-31

    To evaluate the application status of China Disease Prevention and Control Information System of Hydatid Disease, in which questions existed are summarized in order to promote the system update. A questionnaire was designed and distributed to Inner Mongolia, Sichuan, Tibet, Gansu, Qinghai, Ningxia, Xinjiang and Xinjiang Production and Construction Corps to evaluate the application status of China Disease Prevention and Control Information System of Hydatid Disease assistant with telephone. The recovery rate of questionnaires was 87.5%. The statistics of closed questions showed that national application rate of the China Disease Prevention and Control Information System of Hydatid Disease was 100%, of which 15.3% were low frequency users, 57.1% believed the system was necessary, 28.6% considered it was dispensable, and 14.3% believed that it was totally unnecessary. The statistics of open-ended questions indicated that 6 endemic regions suggested to increase the guidance and training, while 4 endemic regions had opinions on sharing the information of the national infectious disease reporting systems and hydatid disease prevention and control information system, and the opinions on turning monthly report to quarterly report, and increasing statistics and analysis module, and 3 endemic regions deemed that the system had logic errors and defects. The problems of the system are mainly focused on the existence of systemic deficiencies and logic errors, lacking of statistical parameters and corresponding analysis function module, and lacking of the guidance and training, which limits the use of the system. Therefore, these problems should be resolved.

  7. Design of a CAN bus interface for photoelectric encoder in the spaceflight camera

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Wan, Qiu-hua; She, Rong-hong; Zhao, Chang-hai; Jiang, Yong

    2009-05-01

    In order to make photoelectric encoder usable in a spaceflight camera which adopts CAN bus as the communication method, CAN bus interface of the photoelectric encoder is designed in this paper. CAN bus interface hardware circuit of photoelectric encoder consists of CAN bus controller SJA 1000, CAN bus transceiver TJA1050 and singlechip. CAN bus interface controlling software program is completed in C language. A ten-meter shield twisted pair line is used as the transmission medium in the spaceflight camera, and speed rate is 600kbps.The experiments show that: the photoelectric encoder with CAN bus interface which has the advantages of more reliability, real-time, transfer rate and transfer distance overcomes communication line's shortcomings of classical photoelectric encoder system. The system works well in automatic measuring and controlling system.

  8. STV engine design considerations

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The topics covered include the following: (1) engine design criteria and issues; (2) design requirements for man rating; (3) test requirements for man rating; (4) design requirements for space basing; (5) engine operation requirements; (6) health monitoring; (7) lunar transfer vehicle (LTV) feed system; (8) lunar excursion vehicle (LEV) propellant system; (9) area ratio gimbal angle limits; (10) reaction control system; and (11) engine configuration and characteristics. This document is presented in viewgraph form.

  9. [Morbidity among forestry workers].

    PubMed

    Rafalski, H; Bernacki, K

    1981-01-01

    The past and presently diagnosed diseases (excluding vibration disease and occupational hearing impairment) were analysed in 1105 sawers operating combustion drive mechanic saws and in 295 controls. The greatest rate, both in the sawers and controls, was that of the diseases of respiratory tract, circulatory system and osseo -- articulo -- muscular system, nervous system and sense organs. These constituted 86% of all diseases that afflicted sawers and controls. No specific general morbidity accompanying vibration disease or occupational hearing impairment was found in the sawers exposed to noise and vibration.

  10. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  11. Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.

    PubMed

    Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min

    2014-01-01

    An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.

  12. Evaluating the effect of the new incentive system for high-risk pressure ulcer patients on wound healing and cost-effectiveness: a cohort study.

    PubMed

    Sanada, Hiromi; Nakagami, Gojiro; Mizokami, Yuko; Minami, Yukiko; Yamamoto, Aya; Oe, Makoto; Kaitani, Toshiko; Iizaka, Shinji

    2010-03-01

    To evaluate the effectiveness and cost-effectiveness of new incentive system for pressure ulcer management, which focused on skilled nurse staffing in terms of rate of healing and medical costs. A prospective cohort study included two types of groups: 39 institutions, which introduced the new incentive system, and 20 non-introduced groups (control). Sixty-seven patients suffering from severe pressure ulcers in the introduced group and 38 patients in the non-introduced group were included. Wound healing and medical costs were monitored weekly for three weeks by their skilled nurses in charge. Healing status and related medical costs. The introduced group showed significantly higher rate of healing compared with the control group at each weekly assessment. Multiple regression analysis revealed that the introduction of the new incentive system was independently associated with the faster healing rate (beta=3.44, P<.001). The budget impact analysis demonstrated that introducing this system could reduce cost of treating severe pressure ulcers by 1.776 billion yen per year. The new incentive system for the management of pressure ulcers, which focused on staffing with skilled nurses can improve healing rate with reduced medical cost. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Nitrogen removal characteristics of enhanced in situ indigenous aerobic denitrification bacteria for micro-polluted reservoir source water.

    PubMed

    Zhou, Shilei; Huang, Tinglin; Zhang, Haihan; Zeng, Mingzheng; Liu, Fei; Bai, Shiyuan; Shi, Jianchao; Qiu, Xiaopeng; Yang, Xiao

    2016-02-01

    Indigenous oligotrophic aerobic denitrifiers nitrogen removal characteristics, community metabolic activity and functional genes were analyzed in a micro-polluted reservoir. The results showed that the nitrate in the enhanced system decreased from 1.71±0.01 to 0.80±0.06mg/L, while the control system did little to remove and there was no nitrite accumulation. The total nitrogen (TN) removal rate of the enhanced system reached 38.33±1.50% and the TN removal rate of surface sediment in the enhanced system reached 23.85±2.52%. TN removal in the control system experienced an 85.48±2.37% increase. The densities of aerobic denitrifiers in the enhanced system ranged from 2.24×10(5) to 8.13×10(7)cfu/mL. The abundance of nirS and nirK genes in the enhanced system were higher than those of in the control system. These results suggest that the enhanced in situ indigenous aerobic denitrifiers have potential applications for the bioremediation of micro-polluted reservoir system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Dynamic soft variable structure control of singular systems

    NASA Astrophysics Data System (ADS)

    Liu, Yunlong; Zhang, Caihong; Gao, Cunchen

    2012-08-01

    The dynamic soft variable structure control (VSC) of singular systems is discussed in this paper. The definition of soft VSC and the design of its controller modes are given. The stability of singular systems with the dynamic soft VSC is proposed. The dynamic soft variable structure controller is designed, and the concrete algorithm on the dynamic soft VSC is given. The dynamic soft VSC of singular systems which was developed for the purpose of intentionally precluding chattering, achieving high regulation rates and shortening settling times enhanced the dynamic quality of the systems. It is illustrated the feasibility and validity of the proposed strategy by a simulation example, and an outlook on its auspicious further development is presented.

  15. Multiple target laser ablation system

    DOEpatents

    Mashburn, Douglas N.

    1996-01-01

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film.

  16. 40 CFR 63.4500 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) for which you use the compliant material option or the emission rate without add-on controls option... § 63.4490 at all times. (2) Any coating operation(s) for which you use the emission rate with add-on... for emission capture systems and add-on control devices required by § 63.4492 at all times except...

  17. 40 CFR 63.4500 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) for which you use the compliant material option or the emission rate without add-on controls option... § 63.4490 at all times. (2) Any coating operation(s) for which you use the emission rate with add-on... for emission capture systems and add-on control devices required by § 63.4492 at all times except...

  18. 40 CFR 63.3900 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation(s) for which you use the compliant material option or the emission rate without add-on controls... § 63.3890 at all times. (2) Any coating operation(s) for which you use the emission rate with add-on... for emission capture systems and add-on control devices required by § 63.3892 at all times except...

  19. 40 CFR 63.4500 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) for which you use the compliant material option or the emission rate without add-on controls option... § 63.4490 at all times. (2) Any coating operation(s) for which you use the emission rate with add-on... for emission capture systems and add-on control devices required by § 63.4492 at all times except...

  20. 40 CFR 63.3900 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operation(s) for which you use the compliant material option or the emission rate without add-on controls... § 63.3890 at all times. (2) Any coating operation(s) for which you use the emission rate with add-on... for emission capture systems and add-on control devices required by § 63.3892 at all times except...

  1. 40 CFR 63.3900 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation(s) for which you use the compliant material option or the emission rate without add-on controls... § 63.3890 at all times. (2) Any coating operation(s) for which you use the emission rate with add-on... for emission capture systems and add-on control devices required by § 63.3892 at all times except...

  2. 40 CFR 63.3900 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) for which you use the compliant material option or the emission rate without add-on controls option... § 63.3890 at all times. (2) Any coating operation(s) for which you use the emission rate with add-on... for emission capture systems and add-on control devices required by § 63.3892 at all times except...

  3. 40 CFR 63.3900 - What are my general requirements for complying with this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) for which you use the compliant material option or the emission rate without add-on controls option... § 63.3890 at all times. (2) Any coating operation(s) for which you use the emission rate with add-on... for emission capture systems and add-on control devices required by § 63.3892 at all times except...

  4. Infant diet sets the tone for parasympathetic regulation of resting heart rate: Development of vagal tone from 3 months to 2 years

    USDA-ARS?s Scientific Manuscript database

    The parasympathetic nervous system (PS) influences are critical in the autonomic control of the heart. To examine how early postnatal diet affects PS development, we used a measure of tonic PS control of cardiac activity, vagal tone, derived from resting heart rate recordings in 158 breastfed (BF), ...

  5. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  6. Requirements and Sizing Investigation for the Constellation Space Suit Portable Life Support System Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory A.; Paul, Heather L.; Waguespack, Glenn M.

    2010-01-01

    This presentation summarized the results of a trade study that evaluated whether trace contaminant control within the Constellation Spacesuit PLSS could be achieved without a Trace Contaminant Control System (TCCS) by relying on suit leakage, ullage loss from the carbon dioxide and humidity control system, and other factors. Mallory Jennings and Dr. Glenn Waguespack studied trace contaminant generation rates to verify that values reflected the latest designs for Constellation spacesuit system pressure garment materials and PLSS hardware. They also calculated TCCS sizing and conducted a literature survey to review the latest developments in trace contaminant technologies.

  7. Development of an osmotic pump system for controlled delivery of diclofenac sodium.

    PubMed

    Emara, L H; Taha, N F; Badr, R M; Mursi, N M

    2012-10-01

    Based on an elementary osmotic pump, controlled release systems of diclofenac sodium (DS) were designed to deliver the drug in a zero-order release pattern. Osmotic pump tablets containing 100 mg DS were prepared and coated with either semipermeable (SPM) or microporous (PM) membranes. The tablet coats were composed of hydrophobic triacetin (TA) or hydrophilic polyethylene glycol 400 (PEG 400) incorporated in cellulose acetate (CA) solution, for SPM and PM, respectively. Variable tablet core compositions such as swelling polymers (PEO and HPMC) and osmotic agents (lactose, NaCl, and KCl) were studied. An optimized, sensitive and well controlled in vitro release design, based on the flow-through cell (FTC), was utilized to discriminate between preparations. The results revealed that the presence of PEG 400 in the coating membrane accelerated the drug release rate, while TA suppressed the release rate of DS. In the case of SPM, the amount of DS released was inversely proportional to the membrane thickness, where 5% (w/w) weight gain gave a higher DS release rate than 10% (w/w). Results of different tablet core compositions revealed that the release rate of DS decreased as PEO molecular weight increased. HPMC K15M showed the lowest DS release rate. The presence of lactose, KCl, or NaCl pronouncedly affected DS release rate depending on polymer type in the core. Scanning electron microscopy (SEM) confirmed formation of pores in the membrane that accounts for faster DS release rate. These results revealed that DS could be formulated as an osmotic pump system with a prolonged, zero-order release pattern.

  8. Simulation of regional ground-water flow in the Cambrian-Ordovician aquifer system in the northern Midwest, United States: in Regional aquifer-system analysis

    USGS Publications Warehouse

    Mandle, R.J.; Kontis, A.L.

    1992-01-01

    Results of variable-density simulations indicate that the rate of ground-water movement is small in areas where ground water is highly mineralized. The rates and directions are controlled by the intrinsic permeability of the rock, freshwater head gradients, and gravitational force.

  9. Impact of Pubertal Development and Physical Activity on Heart Rate Variability in Overweight and Obese Children in Taiwan

    ERIC Educational Resources Information Center

    Chen, Su-Ru; Chiu, Hung-Wen; Lee, Yann-Jinn; Sheen, Tzong-Chi; Jeng, Chii

    2012-01-01

    Child obesity is frequently associated with dysfunction of autonomic nervous system. Children in pubertal development were suggested to be vulnerable to autonomic nervous system problems such as decrease of heart rate variability from dysregulation of metabolic control. This study explored the influence of pubertal development on autonomic nervous…

  10. Feedback enhanced plasma spray tool

    DOEpatents

    Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee

    2005-11-22

    An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.

  11. Basic Research in Digital Stochastic Model Algorithmic Control.

    DTIC Science & Technology

    1980-11-01

    IDCOM Description 115 8.2 Basic Control Computation 117 8.3 Gradient Algorithm 119 8.4 Simulation Model 119 8.5 Model Modifications 123 8.6 Summary 124...constraints, and 3) control traJectorv comouta- tion. 2.1.1 Internal Model of the System The multivariable system to be controlled is represented by a...more flexible and adaptive, since the model , criteria, and sampling rates can be adjusted on-line. This flexibility comes from the use of the impulse

  12. General, database-driven fast-feedback system for the Stanford Linear Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouse, F.; Allison, S.; Castillo, S.

    A new feedback system has been developed for stabilizing the SLC beams at many locations. The feedback loops are designed to sample and correct at the 60 Hz repetition rate of the accelerator. Each loop can be distributed across several of the standard 80386 microprocessors which control the SLC hardware. A new communications system, KISNet, has been implemented to pass signals between the microprocessors at this rate. The software is written in a general fashion using the state space formalism of digital control theory. This allows a new loop to be implemented by just setting up the online database andmore » perhaps installing a communications link. 3 refs., 4 figs.« less

  13. Tracking and data relay satellite system - NASA's new spacecraft data acquisition system

    NASA Technical Reports Server (NTRS)

    Schneider, W. C.; Garman, A. A.

    1979-01-01

    This paper describes NASA's new spacecraft acquisition system provided by the Tracking and Data Relay Satellite System (TDRSS). Four satellites in geostationary orbit and a ground terminal will provide complete tracking, telemetry, and command service for all of NASA's orbital satellites below a 12,000 km altitude. Western Union will lease the system, operate the ground terminal and provide operational satellite control. NASA's network control center will be the focal point for scheduling user services and controlling the interface between TDRSS and the NASA communications network, project control centers, and data processing. TDRSS single access user spacecraft data systems will be designed for time shared data relay support, and reimbursement policy and rate structure for non-NASA users are being developed.

  14. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...

  15. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...

  16. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...

  17. 14 CFR 25.657 - Hinges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Surfaces § 25.657 Hinges. (a) For control surface hinges, including ball, roller, and self-lubricated bearing hinges, the approved rating of... hinge line. [Amdt. 25-23, 35 FR 5674, Apr. 8, 1970] Control Systems ...

  18. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Lumpkin, Forrest E., III; Gati, Frank; Yuko, James R.; Motil, Brian J.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module was performed using MSC Patran/Pthermal. The obtained temperature results showed that thermal protection is necessary because of significant heating from the plume.

  19. Shot-noise dominant regime of a nanoparticle in a laser beam

    NASA Astrophysics Data System (ADS)

    Zhong, Changchun; Robicheaux, Francis

    2017-04-01

    The technique of laser levitation of nanoparticles has become increasingly promising in the study of cooling and controlling mesoscopic quantum systems. Unlike a mechanical system, the levitated nanoparticle is less exposed to thermalization and decoherence due to the absence of direct contact with a thermal environment. In ultrahigh vacuum, the dominant source of decoherence comes from the unavoidable photon recoil from the optical trap which sets an ultimate bound for the control of levitated systems. In this paper, we study the shot noise heating and the parametric feedback cooling of an optically trapped anisotropic nanoparticle in the laser shot noise dominant regime. The rotational trapping frequency and shot noise heating rate have a dependence on the shape of the trapped particle. For an ellipsoidal particle, the ratio of the axis lengths and the overall size controls the shot noise heating rate relative to the rotational frequency. For a near spherical nanoparticle, the effective heating rate for the rotational degrees of freedom is smaller than that for translation suggesting that the librational ground state may be easier to achieve than the vibrational ground state.

  20. The 18th Aerospace Mechanisms Symposium

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics concerning aerospace mechanisms, their functional performance, and design specifications are presented. Discussed subjects include the design and development of release mechanisms, actuators, linear driver/rate controllers, antenna and appendage deployment systems, position control systems, and tracking mechanisms for antennas and solar arrays. Engine design, spaceborne experiments, and large space structure technology are also examined.

  1. Bonding Pictures: Affective Ratings Are Specifically Associated to Loneliness But Not to Empathy

    PubMed Central

    Silva, Heraldo D.; Campagnoli, Rafaela R.; Mota, Bruna Eugênia F.; Araújo, Cássia Regina V.; Álvares, Roberta Sônia R.; Mocaiber, Izabela; Rocha-Rego, Vanessa; Volchan, Eliane; Souza, Gabriela G. L.

    2017-01-01

    Responding to pro-social cues plays an important adaptive role in humans. Our aims were (i) to create a catalog of bonding and matched-control pictures to compare the emotional reports of valence and arousal with the International Affective Picture System (IAPS) pictures; (ii) to verify sex influence on the valence and arousal of bonding and matched-control pictures; (iii) to investigate if empathy and loneliness traits exert a specific influence on emotional reports for the bonding pictures. To provide a finer tool for social interaction studies, the present work defined two new sets of pictures consisting of “interacting dyads” (Bonding: N = 70) and matched controls “non-interacting dyads” (Controls: N = 70). The dyads could be either a child and an adult, or two children. Participants (N = 283, 182 women) were divided in 10 groups for the experimental sessions. The task was to rate the hedonic valence and emotional arousal of bonding and controls; and of pleasant, neutral, and unpleasant pictures from the IAPS. Effects of social-related traits, empathy and loneliness, on affective ratings were tested. Participants rated bonding pictures as more pleasant and arousing than control ones. Ratings did not differentiate bonding from IAPS pleasant pictures. Control pictures showed lower ratings than pleasant but higher ratings than neutral IAPS pictures. Women rated bonding and control pictures as more positive than men. There was no sex difference for arousal ratings. High empathic participants rated bonding and control pictures higher than low empathic participants. Also, they rated pleasant IAPS pictures more positive and arousing; and unpleasant pictures more negative and arousing than the less empathic ones. Loneliness trait, on the other hand, affected very specifically the ratings of bonding pictures; lonelier participants rated them less pleasant and less arousing than less lonely. Loneliness trait did not modulate ratings of other categories. In conclusion, high empathy seems related to emotional strength in general, while high loneliness seems to weaken the engagement in social interaction cues. PMID:28740473

  2. Bonding Pictures: Affective Ratings Are Specifically Associated to Loneliness But Not to Empathy.

    PubMed

    Silva, Heraldo D; Campagnoli, Rafaela R; Mota, Bruna Eugênia F; Araújo, Cássia Regina V; Álvares, Roberta Sônia R; Mocaiber, Izabela; Rocha-Rego, Vanessa; Volchan, Eliane; Souza, Gabriela G L

    2017-01-01

    Responding to pro-social cues plays an important adaptive role in humans. Our aims were (i) to create a catalog of bonding and matched-control pictures to compare the emotional reports of valence and arousal with the International Affective Picture System (IAPS) pictures; (ii) to verify sex influence on the valence and arousal of bonding and matched-control pictures; (iii) to investigate if empathy and loneliness traits exert a specific influence on emotional reports for the bonding pictures. To provide a finer tool for social interaction studies, the present work defined two new sets of pictures consisting of "interacting dyads" (Bonding: N = 70) and matched controls "non-interacting dyads" (Controls: N = 70). The dyads could be either a child and an adult, or two children. Participants ( N = 283, 182 women) were divided in 10 groups for the experimental sessions. The task was to rate the hedonic valence and emotional arousal of bonding and controls; and of pleasant, neutral, and unpleasant pictures from the IAPS. Effects of social-related traits, empathy and loneliness, on affective ratings were tested. Participants rated bonding pictures as more pleasant and arousing than control ones. Ratings did not differentiate bonding from IAPS pleasant pictures. Control pictures showed lower ratings than pleasant but higher ratings than neutral IAPS pictures. Women rated bonding and control pictures as more positive than men. There was no sex difference for arousal ratings. High empathic participants rated bonding and control pictures higher than low empathic participants. Also, they rated pleasant IAPS pictures more positive and arousing; and unpleasant pictures more negative and arousing than the less empathic ones. Loneliness trait, on the other hand, affected very specifically the ratings of bonding pictures; lonelier participants rated them less pleasant and less arousing than less lonely. Loneliness trait did not modulate ratings of other categories. In conclusion, high empathy seems related to emotional strength in general, while high loneliness seems to weaken the engagement in social interaction cues.

  3. Flow Distribution Control Characteristics in Marine Gas Turbine Waste-Heat Recovery Systems. Phase I. Flow Distribution Characteristics and Control in Diffusers.

    DTIC Science & Technology

    1981-08-01

    provide the lowest rate of momentum outflow and thus yield maximum diffuser efficiency. In their study, Wolf and Johnston (Ref. 1.12) used screens made...other words, the uniform velocity at the diffuser exit implies the lowest exit velocity attainable for a given flow rate and lowest rate of momentum ... momentum , and energy and the equation of state. The procedures of manipulating these partial differential iations into an analytical model for analyzing

  4. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  5. Control techniques to improve Space Shuttle solid rocket booster separation

    NASA Technical Reports Server (NTRS)

    Tomlin, D. D.

    1983-01-01

    The present Space Shuttle's control system does not prevent the Orbiter's main engines from being in gimbal positions that are adverse to solid rocket booster separation. By eliminating the attitude error and attitude rate feedback just prior to solid rocket booster separation, the detrimental effects of the Orbiter's main engines can be reduced. In addition, if angular acceleration feedback is applied, the gimbal torques produced by the Orbiter's engines can reduce the detrimental effects of the aerodynamic torques. This paper develops these control techniques and compares the separation capability of the developed control systems. Currently with the worst case initial conditions and each Shuttle system dispersion aligned in the worst direction (which is more conservative than will be experienced in flight), the solid rocket booster has an interference with the Shuttle's external tank of 30 in. Elimination of the attitude error and attitude rate feedback reduces that interference to 19 in. Substitution of angular acceleration feedback reduces the interference to 6 in. The two latter interferences can be eliminated by atess conservative analysis techniques, that is, by using a root sum square of the system dispersions.

  6. Dynamic Response of Control Servo System Installed in NAES-Equipped SB2C-5 Airplane (BuAer No. 83135)

    NASA Technical Reports Server (NTRS)

    Smaus, Louis H.; Stewart, Elwood C.

    1950-01-01

    Dynamic--response measurements for various conditions of displacement and rate signal input, sensitivity setting, and simulated hinge moment were made of the three control-surface servo systems of an NAES-equipped remote-controlled airplane while on the ground. The basic components of the servo systems are those of the General Electric Company type G-1 autopilot using electrical signal. sources, solenoid-operated valves, and hydraulic pistons. The test procedures and difficulties are discussed, Both frequency and transient-response data, are presented and comparisons are made. The constants describing the servo system, the undamped natural frequency, and the damping ratio, are determined by several methods. The response of the system with the addition of airframe rate signal is calculated. The transfer function of the elevator surface, linkage, and cable system is obtained. The agreement between various methods of measurement and calculation is considered very good. The data are complete enough and in such form that they may be used directly with the frequency-response data of an airplane to predict the stability of the autopilot-airplane combination.

  7. Heart Rate and Reinforcement Sensitivity in ADHD

    ERIC Educational Resources Information Center

    Luman, Marjolein; Oosterlaan, Jaap; Hyde, Christopher; van Meel, Catharina S.; Sergeant, Joseph A.

    2007-01-01

    Background: Both theoretical and clinical accounts of attention-deficit/hyperactivity disorder (ADHD) implicate a dysfunctional reinforcement system. This study investigated heart rate parameters in response to feedback associated with reward and response cost in ADHD children and controls aged 8 to 12. Methods: Heart rate responses (HRRs)…

  8. Two different approaches for a control law of single gimbal control moment gyros

    NASA Technical Reports Server (NTRS)

    Schiehlen, W. O.

    1972-01-01

    In the field of momentum exchange attitude control systems, single gimbal control moment gyros (SGCMG) are of increasing interest. A gimbal angle approach and a gimbal rate approach are presented for the SGCMG control law including the singularity avoidance. Both approaches are compared and some illustrative examples are given.

  9. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish

    PubMed Central

    Monteiro, Diana A.; Taylor, Edwin W.; Sartori, Marina R.; Cruz, André L.; Rantin, Francisco T.; Leite, Cleo A. C.

    2018-01-01

    The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems. PMID:29507882

  10. Cardiorespiratory interactions previously identified as mammalian are present in the primitive lungfish.

    PubMed

    Monteiro, Diana A; Taylor, Edwin W; Sartori, Marina R; Cruz, André L; Rantin, Francisco T; Leite, Cleo A C

    2018-02-01

    The present study has revealed that the lungfish has both structural and functional features of its system for physiological control of heart rate, previously considered solely mammalian, that together generate variability (HRV). Ultrastructural and electrophysiological investigation revealed that the nerves connecting the brain to the heart are myelinated, conferring rapid conduction velocities, comparable to mammalian fibers that generate instantaneous changes in heart rate at the onset of each air breath. These respiration-related changes in beat-to-beat cardiac intervals were detected by complex analysis of HRV and shown to maximize oxygen uptake per breath, a causal relationship never conclusively demonstrated in mammals. Cardiac vagal preganglionic neurons, responsible for controlling heart rate via the parasympathetic vagus nerve, were shown to have multiple locations, chiefly within the dorsal vagal motor nucleus that may enable interactive control of the circulatory and respiratory systems, similar to that described for tetrapods. The present illustration of an apparently highly evolved control system for HRV in a fish with a proven ancient lineage, based on paleontological, morphological, and recent genetic evidence, questions much of the anthropocentric thinking implied by some mammalian physiologists and encouraged by many psychobiologists. It is possible that some characteristics of mammalian respiratory sinus arrhythmia, for which functional roles have been sought, are evolutionary relics that had their physiological role defined in ancient representatives of the vertebrates with undivided circulatory systems.

  11. The State Sets the Rate: The Relationship Among State-Specific College Binge Drinking, State Binge Drinking Rates, and Selected State Alcohol Control Policies

    PubMed Central

    Nelson, Toben F.; Naimi, Timothy S.; Brewer, Robert D.; Wechsler, Henry

    2005-01-01

    Objectives. We assessed the relationship between college binge drinking, binge drinking in the general population, and selected alcohol control policies. Methods. We analyzed binge drinking rates from 2 national surveys, the Har-vard School of Public Health College Alcohol Study and the Centers for Disease Control and Prevention’s Behavioral Risk Factor Surveillance System. Binge drinking data were linked to a summary measure of 7 salient alcohol control policies and a rating of resources devoted to law enforcement. Results. State-level college and adult binge drinking rates were strongly correlated (Pearson correlation coefficient=0.43; P<.01). Attending college in states with the lowest binge drinking rates (adjusted odds ratio [OR]=0.63; 95% confidence interval [CI]=0.41, 0.97) and presence of more stringent alcohol control policies (adjusted OR=0.57; 95% CI=0.33, 0.97) were independent predictors of student binge drinking, after adjusting for state law enforcement and individual-, college-, and state-level covariates. Conclusions. State of residence is a predictor of binge drinking by college students. State-level alcohol control policies may help reduce binge drinking among college students and in the general population. PMID:15727974

  12. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    PubMed

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  13. [Off-line control of runoff pollution by filtering ditch-pond system in urban tourist areas].

    PubMed

    Chen, Qing-Feng; Shan, Bao-Qing; Yin, Cheng-Qing; Hu, Cheng-Xiao

    2007-10-01

    An off-line filtering ditch-pond system for controlling storm runoff pollution in urban tourist areas was developed, which could retain the first flush effectively, resulting in the decrease of pollutant concentration and suspended solid average grain size, and the improvement of pollutant retention in runoff. This system could be an effective treatment system for storm runoff pollution, particularly for the scarcity of available land use in urban areas. In 2005, the yearly retention rates of TSS, COD, TN and TP were 86.4%, 85.5%, 83.9% and 82.9%, and during a storm event on June 26, the retention rates of runoff volume, TSS, COD, TN and TP were 67.9%, 97.0%, 89.2%, 94.9% and 96.2%, respectively. This system could also retain most of the suspended solids in runoff.

  14. Knowledge system and method for simulating chemical controlled release device performance

    DOEpatents

    Cowan, Christina E.; Van Voris, Peter; Streile, Gary P.; Cataldo, Dominic A.; Burton, Frederick G.

    1991-01-01

    A knowledge system for simulating the performance of a controlled release device is provided. The system includes an input device through which the user selectively inputs one or more data parameters. The data parameters comprise first parameters including device parameters, media parameters, active chemical parameters and device release rate; and second parameters including the minimum effective inhibition zone of the device and the effective lifetime of the device. The system also includes a judgemental knowledge base which includes logic for 1) determining at least one of the second parameters from the release rate and the first parameters and 2) determining at least one of the first parameters from the other of the first parameters and the second parameters. The system further includes a device for displaying the results of the determinations to the user.

  15. Enhanced Engine Control for Emergency Operation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.

    2012-01-01

    C-MAPSS40k engine simulation has been developed and is available to the public. The authenticity of the engine performance and controller enabled the development of realistic enhanced control modes through controller modification alone. Use of enhanced control modes improved stability and control of an impaired aircraft. - Fast Response is useful for manual manipulation of the throttles - Use of Fast Response improved stability as part of a yaw rate feedback system. - Use of Overthrust shortened takeoff distance, but was generally useful in flight, too. Initial lack of pilot familiarity resulted in discomfort, especially with yaw rate feedback, but that was the only drawback, overall the pilot found the enhanced modes very helpful.

  16. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototypemore » measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s -1 (12.6 km h -1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.« less

  17. System selects framing rate for spectrograph camera

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Circuit using zero-order light is reflected to a photomultiplier in the incoming radiation of a spectrograph monitor to provide an error signal which controls the advancing and driving rate of the film through the camera.

  18. Stability Assessment of a System Comprising a Single Machine and Inverter with Scalable Ratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Lin, Yashen; Gevorgian, Vahan

    From the inception of power systems, synchronous machines have acted as the foundation of large-scale electrical infrastructures and their physical properties have formed the cornerstone of system operations. However, power electronics interfaces are playing a growing role as they are the primary interface for several types of renewable energy sources and storage technologies. As the role of power electronics in systems continues to grow, it is crucial to investigate the properties of bulk power systems in low inertia settings. In this paper, we assess the properties of coupled machine-inverter systems by studying an elementary system comprised of a synchronous generator,more » three-phase inverter, and a load. Furthermore, the inverter model is formulated such that its power rating can be scaled continuously across power levels while preserving its closed-loop response. Accordingly, the properties of the machine-inverter system can be assessed for varying ratios of machine-to-inverter power ratings and, hence, differing levels of inertia. After linearizing the model and assessing its eigenvalues, we show that system stability is highly dependent on the interaction between the inverter current controller and machine exciter, thus uncovering a key concern with mixed machine-inverter systems and motivating the need for next-generation grid-stabilizing inverter controls.« less

  19. SODR Memory Control Buffer Control ASIC

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1994-01-01

    The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.

  20. Remote radio control of insect flight.

    PubMed

    Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M

    2009-01-01

    We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.

  1. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed, although the leakage rates were not quantitatively predicted with a high degree of accuracy. This model could be useful in providing valuable design information for future actively controlled mechanical seals.

  2. Intelligent herbicide application system for reduced herbicide vegetation control : phase II-commercialization

    DOT National Transportation Integrated Search

    2008-12-01

    This report describes the development of a commercial prototype intelligent herbicide application system : (IHAS). The improved design incorporates a parallel add-on type fluid handling system to allow existing : variable-rate herbicide injecti...

  3. An all digital low data rate communication system

    NASA Technical Reports Server (NTRS)

    Chen, C.-H.; Fan, M.

    1973-01-01

    The advent of digital hardwares has made it feasible to implement many communication system components digitally. With the exception of frequency down conversion, the proposed low data rate communication system uses digital hardware completely. Although the system is designed primarily for deep space communications with large frequency uncertainty and low signal-to-noise ratio, it is also suitable for other low data rate applications with time-shared operation among a number of channels. Emphasis is placed on the fast Fourier transform receiver and the automatic frequency control via digital filtering. The speed available from the digital system allows sophisticated signal processing to reduce frequency uncertainty and to increase the signal-to-noise ratio.

  4. Recent advances of controlled drug delivery using microfluidic platforms.

    PubMed

    Sanjay, Sharma T; Zhou, Wan; Dou, Maowei; Tavakoli, Hamed; Ma, Lei; Xu, Feng; Li, XiuJun

    2018-03-15

    Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Programmable temperature control system for biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  6. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  7. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  8. Intelligent Robotic Systems Study (IRSS), phase 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Under the Intelligent Robotics System Study (IRSS) contract, a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). The controller built for the PFMA provides localized position based force control, teleoperation and advanced path recording and playback capabilities. Various hand controllers can be used with the system in conjunction with a synthetic time delay capability to provide a realistic test bed for typical satellite servicing tasks. The configuration of the IRSS system is illustrated and discussed. The PFMA has six computer controllable degrees of freedom (DOF) plus a seventh manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Because the PFMA was not developed to operate in a gravity field, but rather in space, it is counter balanced at the shoulder, elbow and wrist and a spring counterbalance has been added near the wrist to provide additional support. Built with long slender intra-joint linkages, the PFMA has a workspace nearly 2 meters deep and possesses sufficient dexterity to perform numerous satellite servicing tasks. The manipulator is arranged in a shoulder-yaw, pitch, elbow-pitch, and wrist-pitch, yaw, roll configuration, with an indexable shoulder roll joint. Digital control of the PFMA is implemented using a variety of single board computers developed by Heurikon Corporation and other manufacturers. The IRSS controller is designed to be a multi-rate, multi-tasking system. Independent joint servos run at a 134 Hz rate and position based impedance control functions at 67 Hz. Autonomous path generation and hand controller inputs are processed at a 33 Hz.

  9. Evaluation of heart rhythm variability and arrhythmia in children with systemic and localized scleroderma.

    PubMed

    Wozniak, Jacek; Dabrowski, Rafal; Luczak, Dariusz; Kwiatkowska, Malgorzata; Musiej-Nowakowska, Elzbieta; Kowalik, Ilona; Szwed, Hanna

    2009-01-01

    To evaluate possible disturbances in autonomic regulation and cardiac arrhythmias in children with localized and systemic scleroderma. There were 40 children included in the study: 20 with systemic and 20 with localized scleroderma. The control group comprised 20 healthy children. In 24-hour Holter recording, the average rate of sinus rhythm was significantly higher in the groups with systemic and localized scleroderma than in the control group, but there was no significant difference between them. The variability of heart rhythm in both groups was significantly decreased. In the group with systemic scleroderma, single supraventricular ectopic beats were observed in 20% and runs were seen in 40% of patients. In the group with localized scleroderma, supraventricular single ectopic beats occurred in 35% of patients and runs in 45% of those studied. Ventricular arrhythmia occurred in 2 children with systemic scleroderma, but in 1 child, it was complex. The most frequent cardiac arrhythmias in both types of scleroderma in children were of supraventricular origin, whereas ventricular arrhythmias did not occur very often. There were no significant differences in autonomic disturbances manifesting as a higher heart rate and decreased heart rate variability between localized and systemic scleroderma.

  10. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Abraham, Martin

    1993-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  11. A population management system for improving colorectal cancer screening in a primary care setting.

    PubMed

    Wu, Charlotte A; Mulder, Amara L; Zai, Adrian H; Hu, Yuanshan; Costa, Manuela; Tishler, Lori Wiviott; Saltzman, John R; Ellner, Andrew L; Bitton, Asaf

    2016-06-01

    Provision of colorectal cancer (CRC) screening in primary care is suboptimal; failure to observe screening guidelines poses unnecessary risks to patients and doctors. Implement a population management system for CRC screening; evaluate impact on compliance with evidence-based guidelines. A quasi-experimental, prospective quality improvement study design using pre-post-analyses with concurrent controls. Six suites within an academic primary care practice. 5320 adults eligible for CRC screening treated by 70 doctors. In three intervention suites, doctors reviewed real-time rosters of patients due for CRC screening and chose practice delegate outreach or default reminder letter. Delegates tracked overdue patients, made outreach calls, facilitated test ordering, obtained records and documented patient deferral, exclusion or decline. In three control suites, doctors followed usual preventive care practices. CRC screening compliance (including documented decline, deferral or exclusion) and CRC screening completion rates over 5 months. At baseline, there was no significant difference in CRC screening compliance (I: 80.4% and C: 79.6%, P = 0.439) and CRC screening completion rates (I: 78.3% and C: 77.3%, P = 0.398) between intervention and control groups. Post-intervention, compliance rates (I: 88.1% and C: 80.5%, P < 0.01) and completion rates (I: 81.0% and C: 78.1%, P < 0.05) were significantly higher in the intervention group. A population management system using closed-loop communication may improve CRC screening compliance and completion rates within academic primary care practices. Team-based care using well-designed IT systems can enable sharing of patient care responsibilities and improve patient outcomes. © 2015 John Wiley & Sons, Ltd.

  12. Control methods and systems for indirect evaporative coolers

    DOEpatents

    Woods, Jason; Kozubal, Erik

    2015-09-22

    A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.

  13. Ares I Reaction Control System Propellant Feedline Decontamination Modeling

    NASA Technical Reports Server (NTRS)

    Pasch, James J.

    2010-01-01

    The objective of the work presented here is to quantify the effects of purge gas temperature, pressure, and mass flow rate on Hydrazine (Hz) decontamination rates of the Ares I Roll Control System and Reaction Control System. A survey of experts in this field revealed the absence of any decontamination rate prediction models. Three basic decontamination methods were identified for analysis and modeling. These include low pressure eduction, high flow rate purge, and pulse purge. For each method, an approach to predict the Hz mass transfer rate, as a function of system pressure, temperature, and purge gas mass flow rate, is developed based on the applicable physics. The models show that low pressure eduction is two orders of magnitude more effective than the high velocity purge, which in turn is two orders of magnitude more effective than the pure diffusion component of pulse purging of deadheads. Eduction subjects the system to low pressure conditions that promote the extraction of Hz vapors. At 120 F, Hz is saturated at approximately 1 psia. At lower pressures and 120 F, Hz will boil, which is an extremely efficient means to remove liquid Hz. The Hz boiling rate is predicted by equating the rate at which energy is added to the saturated liquid Hz through heaters at the tube outer wall with the energy removed from the liquid through evaporation. Boil-off fluxes were predicted by iterating through the range of local pressures with limits set by the minimum allowed pressure of 0.2 psia and maximum allowed wall temperature of 120 F established by the heaters, which gives a saturation pressure of approximately 1.0 psia. Figure 1 shows the resulting boil-off fluxes as a function of local eduction pressure. As depicted in figure 1, the flux is a strong inverse function of eduction pressure, and that minimizing the eduction pressure maximizes the boil-off flux. Also, higher outer wall temperatures lead to higher boil-off fluxes and allow for boil-off over a greater range of eduction pressures.

  14. Controlling methicillin-resistant Staphylococcus aureus by stepwise implementation of preventive strategies in a university hospital: impact of a link-nurse system on the basis of multidisciplinary approaches.

    PubMed

    Miyachi, Hayato; Furuya, Hiroyuki; Umezawa, Kazuo; Itoh, Yumiko; Ohshima, Toshio; Miyamoto, Motoaki; Asai, Satomi

    2007-03-01

    Current approaches in the control of methicillin-resistant Staphylococcus aureus (MRSA) in the large tertiary referral hospital have not been universally successful. The trend of MRSA rates and their relationship with stepwise implementation of preventive strategies in Tokai University Hospital during a 76-month period from September 1998 to December 2004, was retrospectively analyzed with a quasi-experimental design. Implementation of strategies including a feedback process with case and epidemic reporting, an infection control team and office, and a preventive guideline for MRSA did not result in reduction in monthly MRSA rates in the hospital, as analyzed with Shewhart u charts. When infection control link nurses were organized and their activities became full-scale, there appeared significant reduction in arithmetic mean of the monthly rates of MRSA from 6.3% to 5.0% in June 2002. Meanwhile the mean values for monthly counts of new MRSA cases also dropped in 15 of 25 wards/units in June 2002, as analyzed with Exponentially Weighted Moving Average charts. Concurrently, there was a significant increase (17.3%) in the monthly consumption of handwashing liquid plain soap. Thereafter the MRSA rates remained low for 2 years within three standard deviations. The sustained reduction of MRSA rates in the hospital can be related to introduction of the infection control link-nurse system on the basis of continuous enforcement of basic and multidisciplinary approaches such as hand-hygiene compliance.

  15. Effects of potentised substances on growth rate of the water plant Lemna gibba L.

    PubMed

    Scherr, Claudia; Simon, Meinhard; Spranger, Jörg; Baumgartner, Stephan

    2009-04-01

    This study investigated, whether the growth rate of Lemna gibba L. (duckweed) can be influenced by the application of homeopathic potencies of gibberellic acid, kinetin, argentum nitricum, and lemna minor. Duckweed was grown in either potencies (14x-30x, decimal steps) or water controls (unsuccussed and succussed) over seven days. Frond (leaf-like structure) growth was measured using a non-destructive image analysis system. Growth rates were calculated for three time intervals (0-7, 0-3, 3-7 days). Five to six independent, randomized and blinded experiments were analysed for each of the four tested substances. Water control experiments were performed repeatedly to test the reliability of the experimental set-up (systematic negative controls). The systematic negative control experiments did not yield any significant effects. Hence, false positive results could be excluded. The test system had a low coefficient of variation (1.5%). Out of the four tested substances gibberellic acid had the most pronounced effect (p=0.0002, F-test) on the main outcome parameter frond growth rate (r(area) day 0-7). Potency levels 15x, 17x, 18x, 23x and 24x reduced growth rate of Lemna gibba (p<0.05 against the pooled water control, LSD test). Lemna gibba may be considered as a suitable test organism for further studies on the efficacy of homeopathic potencies. Evidence accumulates, that adjacent potency levels may strongly differ in their biological activity. Potential consequences for therapeutical application might be worth investigating.

  16. Interplay of node connectivity and epidemic rates in the dynamics of epidemic networks

    DOE PAGES

    Kostova, Tanya

    2010-07-09

    We present and analyze a discrete-time susceptible-infected epidemic network model which represents each host as a separate entity and allows heterogeneous hosts and contacts. We establish a necessary and sufficient condition for global stability of the disease-free equilibrium of the system (defined as epidemic controllability) which defines the epidemic reproduction number of the network. When this condition is not fulfilled, we show that the system has a unique, locally stable equilibrium. As a result, we further derive sufficient conditions for epidemic controllability in terms of the epidemic rates and the network topology.

  17. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  18. 49 CFR 236.503 - Automatic brake application; initiation when predetermined rate of speed exceeded.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... predetermined rate of speed exceeded. 236.503 Section 236.503 Transportation Other Regulations Relating to... § 236.503 Automatic brake application; initiation when predetermined rate of speed exceeded. An automatic train control system shall operate to initiate an automatic brake application when the speed of...

  19. 49 CFR 236.503 - Automatic brake application; initiation when predetermined rate of speed exceeded.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... predetermined rate of speed exceeded. 236.503 Section 236.503 Transportation Other Regulations Relating to... § 236.503 Automatic brake application; initiation when predetermined rate of speed exceeded. An automatic train control system shall operate to initiate an automatic brake application when the speed of...

  20. Multiple target laser ablation system

    DOEpatents

    Mashburn, D.N.

    1996-01-09

    A laser ablation apparatus and method are provided in which multiple targets consisting of material to be ablated are mounted on a movable support. The material transfer rate is determined for each target material, and these rates are stored in a controller. A position detector determines which target material is in a position to be ablated, and then the controller controls the beam trigger timing and energy level to achieve a desired proportion of each constituent material in the resulting film. 3 figs.

Top