Sample records for rate controlling processes

  1. Statistical process control methods allow the analysis and improvement of anesthesia care.

    PubMed

    Fasting, Sigurd; Gisvold, Sven E

    2003-10-01

    Quality aspects of the anesthetic process are reflected in the rate of intraoperative adverse events. The purpose of this report is to illustrate how the quality of the anesthesia process can be analyzed using statistical process control methods, and exemplify how this analysis can be used for quality improvement. We prospectively recorded anesthesia-related data from all anesthetics for five years. The data included intraoperative adverse events, which were graded into four levels, according to severity. We selected four adverse events, representing important quality and safety aspects, for statistical process control analysis. These were: inadequate regional anesthesia, difficult emergence from general anesthesia, intubation difficulties and drug errors. We analyzed the underlying process using 'p-charts' for statistical process control. In 65,170 anesthetics we recorded adverse events in 18.3%; mostly of lesser severity. Control charts were used to define statistically the predictable normal variation in problem rate, and then used as a basis for analysis of the selected problems with the following results: Inadequate plexus anesthesia: stable process, but unacceptably high failure rate; Difficult emergence: unstable process, because of quality improvement efforts; Intubation difficulties: stable process, rate acceptable; Medication errors: methodology not suited because of low rate of errors. By applying statistical process control methods to the analysis of adverse events, we have exemplified how this allows us to determine if a process is stable, whether an intervention is required, and if quality improvement efforts have the desired effect.

  2. Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Tianyou; Jia, Yao; Wang, Hong

    The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperaturemore » are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.« less

  3. Observer-based perturbation extremum seeking control with input constraints for direct-contact membrane distillation process

    NASA Astrophysics Data System (ADS)

    Eleiwi, Fadi; Laleg-Kirati, Taous Meriem

    2018-06-01

    An observer-based perturbation extremum seeking control is proposed for a direct-contact membrane distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D advection-diffusion equation model which has pump flow rates as process inputs. The objective of the controller is to optimise the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analysed, and simulations based on real DCMD process parameters for each control input are provided.

  4. Statistical process control charts for monitoring military injuries.

    PubMed

    Schuh, Anna; Canham-Chervak, Michelle; Jones, Bruce H

    2017-12-01

    An essential aspect of an injury prevention process is surveillance, which quantifies and documents injury rates in populations of interest and enables monitoring of injury frequencies, rates and trends. To drive progress towards injury reduction goals, additional tools are needed. Statistical process control charts, a methodology that has not been previously applied to Army injury monitoring, capitalise on existing medical surveillance data to provide information to leadership about injury trends necessary for prevention planning and evaluation. Statistical process control Shewhart u-charts were created for 49 US Army installations using quarterly injury medical encounter rates, 2007-2015, for active duty soldiers obtained from the Defense Medical Surveillance System. Injuries were defined according to established military injury surveillance recommendations. Charts display control limits three standard deviations (SDs) above and below an installation-specific historical average rate determined using 28 data points, 2007-2013. Charts are available in Army strategic management dashboards. From 2007 to 2015, Army injury rates ranged from 1254 to 1494 unique injuries per 1000 person-years. Installation injury rates ranged from 610 to 2312 injuries per 1000 person-years. Control charts identified four installations with injury rates exceeding the upper control limits at least once during 2014-2015, rates at three installations exceeded the lower control limit at least once and 42 installations had rates that fluctuated around the historical mean. Control charts can be used to drive progress towards injury reduction goals by indicating statistically significant increases and decreases in injury rates. Future applications to military subpopulations, other health outcome metrics and chart enhancements are suggested. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. How To Better Track Effective School Indicators: The Control Chart Techniques.

    ERIC Educational Resources Information Center

    Coutts, Douglas

    1998-01-01

    Control charts are practical tools to monitor various school indicators (attendance rates, standardized test scores, grades, and graduation rates) by displaying data on the same scale over time. This article shows how principals can calculate the upper natural-process limit, lower natural-process limit, and upper control limit for attendance. (15…

  6. Endocrine Secretory Reserve and Proinsulin Processing in Recipients of Islet of Langerhans Versus Whole Pancreas Transplants

    PubMed Central

    Elkhafif, Nabeel M.; Borot, Sophie; Morel, Philippe; Demuylder-Mischler, Sandrine; Giovannoni, Laurianne; Toso, Christian; Bosco, Domenico; Berney, Thierry

    2013-01-01

    OBJECTIVE β-Cells have demonstrated altered proinsulin processing after islet transplantation. We compare β-cell metabolic responses and proinsulin processing in pancreas and islet transplant recipients with respect to healthy control subjects. RESEARCH DESIGN AND METHODS We studied 15 islet and 32 pancreas transplant recipients. Islet subjects were subdivided into insulin-requiring (IR-ISL, n = 6) and insulin-independent (II-ISL, n = 9) groups. Ten healthy subjects served as control subjects. Subjects were administered an intravenous arginine stimulation test, and insulin, C-peptide, total proinsulin, intact proinsulin, and proinsulin fragment levels were determined from serum samples. Acute insulin response (AIR) and proinsulin processing rates were calculated. RESULTS We found that basal insulin and C-peptide levels were higher in the pancreas group than in all other groups. II-ISL patients had basal insulin and C-peptide levels similar to healthy control subjects. The IR-ISL group had significantly lower AIRs than all other groups. Basal processing rates were higher in the pancreas and II-ISL groups than in healthy control subjects and the IR-ISL group. After arginine stimulation, all groups had elevated processing rates, with the exception of the IR-ISL group. CONCLUSIONS Our data suggest that II-ISL transplant recipients can maintain basal metabolic parameters similar to healthy control subjects at the cost of a higher rate of proinsulin processing. IR-ISL transplant recipients, on the other hand, demonstrate both lower insulin response and lower basal rates of proinsulin processing even after arginine stimulation. PMID:24041681

  7. Hand controller commonality evaluation process

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Bierschwale, John M.; Wilmington, Robert P.; Adam, Susan C.; Diaz, Manuel F.; Jensen, Dean G.

    1990-01-01

    A hand controller evaluation process has been developed to determine the appropriate hand controller configurations for supporting remotely controlled devices. These devices include remote manipulator systems (RMS), dexterous robots, and remotely-piloted free flyers. Standard interfaces were developed to evaluate six different hand controllers in three test facilities including dynamic computer simulations, kinematic computer simulations, and physical simulations. The hand controllers under consideration were six degree-of-freedom (DOF) position and rate minimaster and joystick controllers, and three-DOF rate controllers. Task performance data, subjective comments, and anthropometric data obtained during tests were used for controller configuration recommendations to the SSF Program.

  8. How can survival processing improve memory encoding?

    PubMed

    Luo, Meng; Geng, Haiyan

    2013-11-01

    We investigated the psychological mechanism of survival processing advantage from the perspective of false memory in two experiments. Using a DRM paradigm in combination with analysis based on signal detection theory, we were able to separately examine participants' utilization of verbatim representation and gist representation. Specifically, in Experiment 1, participants rated semantically related words in a survival scenario for a survival condition but rated pleasantness of words in the same DRM lists for a non-survival control condition. The results showed that participants demonstrated more gist processing in the survival condition than in the pleasantness condition; however, the degree of item-specific processing in the two encoding conditions did not significantly differ. In Experiment 2, the control task was changed to a category rating task, in which participants were asked to make category ratings of words in the category lists. We found that the survival condition involved more item-specific processing than did the category condition, but we found no significant difference between the two encoding conditions at the level of gist processing. Overall, our study demonstrates that survival processing can simultaneously promote gist and item-specific representations. When the control tasks only promoted either item-specific representation or gist representation, memory advantages of survival processing occurred.

  9. Development of an intelligent system for cooling rate and fill control in GMAW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.

    1992-09-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less

  10. Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.

    1992-01-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding proceduresmore » detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.« less

  11. Control structures for high speed processors

    NASA Technical Reports Server (NTRS)

    Maki, G. K.; Mankin, R.; Owsley, P. A.; Kim, G. M.

    1982-01-01

    A special processor was designed to function as a Reed Solomon decoder with throughput data rate in the Mhz range. This data rate is significantly greater than is possible with conventional digital architectures. To achieve this rate, the processor design includes sequential, pipelined, distributed, and parallel processing. The processor was designed using a high level language register transfer language. The RTL can be used to describe how the different processes are implemented by the hardware. One problem of special interest was the development of dependent processes which are analogous to software subroutines. For greater flexibility, the RTL control structure was implemented in ROM. The special purpose hardware required approximately 1000 SSI and MSI components. The data rate throughput is 2.5 megabits/second. This data rate is achieved through the use of pipelined and distributed processing. This data rate can be compared with 800 kilobits/second in a recently proposed very large scale integration design of a Reed Solomon encoder.

  12. Rapid control and feedback rates enhance neuroprosthetic control

    PubMed Central

    Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.

    2017-01-01

    Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms. PMID:28059065

  13. Rapid control and feedback rates enhance neuroprosthetic control

    NASA Astrophysics Data System (ADS)

    Shanechi, Maryam M.; Orsborn, Amy L.; Moorman, Helene G.; Gowda, Suraj; Dangi, Siddharth; Carmena, Jose M.

    2017-01-01

    Brain-machine interfaces (BMI) create novel sensorimotor pathways for action. Much as the sensorimotor apparatus shapes natural motor control, the BMI pathway characteristics may also influence neuroprosthetic control. Here, we explore the influence of control and feedback rates, where control rate indicates how often motor commands are sent from the brain to the prosthetic, and feedback rate indicates how often visual feedback of the prosthetic is provided to the subject. We developed a new BMI that allows arbitrarily fast control and feedback rates, and used it to dissociate the effects of each rate in two monkeys. Increasing the control rate significantly improved control even when feedback rate was unchanged. Increasing the feedback rate further facilitated control. We also show that our high-rate BMI significantly outperformed state-of-the-art methods due to higher control and feedback rates, combined with a different point process mathematical encoding model. Our BMI paradigm can dissect the contribution of different elements in the sensorimotor pathway, providing a unique tool for studying neuroprosthetic control mechanisms.

  14. Highly Controlled Codeposition Rate of Organolead Halide Perovskite by Laser Evaporation Method.

    PubMed

    Miyadera, Tetsuhiko; Sugita, Takeshi; Tampo, Hitoshi; Matsubara, Koji; Chikamatsu, Masayuki

    2016-10-05

    Organolead-halide perovskites can be promising materials for next-generation solar cells because of its high power conversion efficiency. The method of precise fabrication is required because both solution-process and vacuum-process fabrication of the perovskite have problems of controllability and reproducibility. Vacuum deposition process was expected to achieve precise control; however, vaporization of amine compound significantly degrades the controllability of deposition rate. Here we achieved the reduction of the vaporization by implementing the laser evaporation system for the codeposition of perovskite. Locally irradiated continuous-wave lasers on the source materials realized the reduced vaporization of CH 3 NH 3 I. The deposition rate was stabilized for several hours by adjusting the duty ratio of modulated laser based on proportional-integral control. Organic-photovoltaic-type perovskite solar cells were fabricated by codeposition of PbI 2 and CH 3 NH 3 I. A power-conversion efficiency of 16.0% with reduced hysteresis was achieved.

  15. Effects of mass loading on dayside solar wind-magnetosphere interactions

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Brambles, O.; Wiltberger, M. J.; Lyon, J.; Lotko, W.

    2016-12-01

    Satellite observations have shown that terrestrial-sourced plasmas mass load the dayside magnetopause and cause reductions in local reconnection rates. Whether the integrated dayside reconnection rate is affected by these local mass-loading processes is still an open question. Several mechanisms have been proposed to describe the control of dayside reconnection, including the local-control and global-control hypotheses. We have conducted a series of controlled numerical simulations to investigate the response of dayside solar wind-magnetopshere (SW-M) coupling to mass loading processes. Our simulation results show that the coupled SW-M system may exhibit both local and global control behaviors depending on the amount of mass loading. With a small amount of mass loading, the changes in the local reconnection rate does not affect magnetosheath properties and the geoeffective length in the upstream solar wind, resulting in the same integrated dayside reconnection rate. With a large amount of mass loading, the magnetosheath properties and the geoeffective length are significantly modified by slowing down the local reconnection rate, resulting in a significant reduction in the integrated dayside reconnection rate. The response of magnetosheath properties to mass loading is expected from the Cassak-Shay asymmetric reconnection theory through conservation of energy. The physical origin of the transition regime between local and global control is qualitatively explained. The parameters that determine the transition regime depend on the location, spatial extension and density of the mass loading process.

  16. Ratings of perceived exertion by women with internal or external locus of control.

    PubMed

    Hassmén, P; Koivula, N

    1996-10-01

    Ratings of perceived exertion are frequently used to estimate the strain and effort experienced subjectively by individuals during various forms of physical activity. A number of factors, both physiological and psychological in origin, have been suggested to work as modifiers of the exertion perceived by the individual. It has been reported in nonsport-related research that individuals with an internal locus of control seem to pay more attention to relevant information and use the available information more adequately than individuals with an external locus of control. The reputed inferior information-processing abilities of externals compared with internals could possibly also influence the ratings of perceived exertion, with externals being less accurate in their ratings. Whether locus of control might be such a factor was investigated. Fifty women worked on an ergometer cycle at four different work loads. The results showed statistically significant differences in subjective ratings of perceived exertion between externals and internals, especially at heavier work loads. Such differences might be because of unequal information-processing abilities, as the observed discrepancies occurred at higher work intensities, when more cues are available for processing.

  17. Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope.

    PubMed

    Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook

    2016-04-20

    A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments.

  18. A quality improvement project to improve the Medicare and Medicaid Services (CMS) sepsis bundle compliance rate in a large healthcare system.

    PubMed

    Raschke, Robert A; Groves, Robert H; Khurana, Hargobind S; Nikhanj, Nidhi; Utter, Ethel; Hartling, Didi; Stoffer, Brenda; Nunn, Kristina; Tryon, Shona; Bruner, Michelle; Calleja, Maria; Curry, Steven C

    2017-01-01

    Sepsis is a leading cause of mortality and morbidity in hospitalised patients. The Centers for Medicare and Medicaid Services (CMS) mandated that US hospitals report sepsis bundle compliance rate as a quality process measure in October 2015. The specific aim of our study was to improve the CMS sepsis bundle compliance rate from 30% to 40% across 20 acute care hospitals in our healthcare system within 1 year. The study included all adult inpatients with sepsis sampled according to CMS specifications from October 2015 to September 2016. The CMS sepsis bundle compliance rate was tracked monthly using statistical process control charting. A baseline rate of 28.5% with 99% control limits was established. We implemented multiple interventions including computerised decision support systems (CDSSs) to increase compliance with the most commonly missing bundle elements. Compliance reached 42% (99% statistical process control limits 18.4%-38.6%) as CDSS was implemented system-wide, but this improvement was not sustained after CMS changed specifications of the outcome measure. Difficulties encountered elucidate shortcomings of our study methodology and of the CMS sepsis bundle compliance rate as a quality process measure.

  19. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, K.L.; Baum, C.C.; Jones, R.D.

    1997-08-19

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.

  20. Adaptive model predictive process control using neural networks

    DOEpatents

    Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.

    1997-01-01

    A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.

  1. Continuous magnetic separator and process

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  2. Powder Flux Regulation in the Laser Material Deposition Process

    NASA Astrophysics Data System (ADS)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  3. Modeling the rate-controlled sorption of hexavalent chromium

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1985-01-01

    Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.

  4. Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Piunovskiy, A. B., E-mail: piunov@liv.ac.uk

    2016-08-15

    In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures ofmore » the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.« less

  5. Method of controlling a resin curing process. [for fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Webster, Charles Neal (Inventor); Scott, Robert O. (Inventor)

    1989-01-01

    The invention relates to an analytical technique for controlling the curing process of fiber-reinforced composite materials that are formed using thermosetting resins. The technique is the percent gel method and involves development of a time-to-gel equation as a function of temperature. From this equation a rate-of-gel equation is then determined, and a percent gel is calculated which is the product of rate-of-gel times time. Percent gel accounting is used to control the proper pressure application point in an autoclave cure process to achieve desired properties in a production composite part.

  6. Dynamic control of remelting processes

    DOEpatents

    Bertram, Lee A.; Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.; Evans, David G.

    2000-01-01

    An apparatus and method of controlling a remelting process by providing measured process variable values to a process controller; estimating process variable values using a process model of a remelting process; and outputting estimated process variable values from the process controller. Feedback and feedforward control devices receive the estimated process variable values and adjust inputs to the remelting process. Electrode weight, electrode mass, electrode gap, process current, process voltage, electrode position, electrode temperature, electrode thermal boundary layer thickness, electrode velocity, electrode acceleration, slag temperature, melting efficiency, cooling water temperature, cooling water flow rate, crucible temperature profile, slag skin temperature, and/or drip short events are employed, as are parameters representing physical constraints of electroslag remelting or vacuum arc remelting, as applicable.

  7. Composite-Metal-Matrix Arc-Spray Process

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J.

    1987-01-01

    Arc-spray "monotape" process automated, low in cost, and produces at high rate. Ideal for development of new metal-matrix composites. "Monotape" reproducible and of high quality. Process carried out in controlled gas environment with programmable matrix-deposition rates, resulting in significant cost saving

  8. Integrated optical sensor

    DOEpatents

    Watkins, Arthur D.; Smartt, Herschel B.; Taylor, Paul L.

    1994-01-01

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  9. Integrated optical sensor

    DOEpatents

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  10. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, Herschel B.; Einerson, Carolyn J.; Watkins, Arthur D.

    1989-01-01

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  11. Design and Verification of a Digital Controller for a 2-Piece Hemispherical Resonator Gyroscope

    PubMed Central

    Lee, Jungshin; Yun, Sung Wook; Rhim, Jaewook

    2016-01-01

    A Hemispherical Resonator Gyro (HRG) is the Coriolis Vibratory Gyro (CVG) that measures rotation angle or angular velocity using Coriolis force acting the vibrating mass. A HRG can be used as a rate gyro or integrating gyro without structural modification by simply changing the control scheme. In this paper, differential control algorithms are designed for a 2-piece HRG. To design a precision controller, the electromechanical modelling and signal processing must be pre-performed accurately. Therefore, the equations of motion for the HRG resonator with switched harmonic excitations are derived with the Duhamel Integral method. Electromechanical modeling of the resonator, electric module and charge amplifier is performed by considering the mode shape of a thin hemispherical shell. Further, signal processing and control algorithms are designed. The multi-flexing scheme of sensing, driving cycles and x, y-axis switching cycles is appropriate for high precision and low maneuverability systems. The differential control scheme is easily capable of rejecting the common mode errors of x, y-axis signals and changing the rate integrating mode on basis of these studies. In the rate gyro mode the controller is composed of Phase-Locked Loop (PLL), amplitude, quadrature and rate control loop. All controllers are designed on basis of a digital PI controller. The signal processing and control algorithms are verified through Matlab/Simulink simulations. Finally, a FPGA and DSP board with these algorithms is verified through experiments. PMID:27104539

  12. A first-principle model of 300 mm Czochralski single-crystal Si production process for predicting crystal radius and crystal growth rate

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongchao; Seto, Tatsuru; Kim, Sanghong; Kano, Manabu; Fujiwara, Toshiyuki; Mizuta, Masahiko; Hasebe, Shinji

    2018-06-01

    The Czochralski (CZ) process is the dominant method for manufacturing large cylindrical single-crystal ingots for the electronics industry. Although many models and control methods for the CZ process have been proposed, they were only tested with small equipment and only a few industrial application were reported. In this research, we constructed a first-principle model for controlling industrial CZ processes that produce 300 mm single-crystal silicon ingots. The developed model, which consists of energy, mass balance, hydrodynamic, and geometrical equations, calculates the crystal radius and the crystal growth rate as output variables by using the heater input, the crystal pulling rate, and the crucible rise rate as input variables. To improve accuracy, we modeled the CZ process by considering factors such as changes in the positions of the crucible and the melt level. The model was validated with the operation data from an industrial 300 mm CZ process. We compared the calculated and actual values of the crystal radius and the crystal growth rate, and the results demonstrated that the developed model simulated the industrial process with high accuracy.

  13. 3D Printing Optical Engine for Controlling Material Microstructure

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei

    Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.

  14. Complex numerical responses to top-down and bottom-up processes in vertebrate populations.

    PubMed Central

    Sinclair, A R E; Krebs, Charles J

    2002-01-01

    Population growth rate is determined in all vertebrate populations by food supplies, and we postulate bottom-up control as the universal primary standard. But this primary control system can be overridden by three secondary controls: top-down processes from predators, social interactions within the species and disturbances. Different combinations of these processes affect population growth rates in different ways. Thus, some relationships between growth rate and density can be hyperbolic or even have multiple nodes. We illustrate some of these in marsupial, ungulate and rabbit populations. Complex interactions between food, predators, environmental disturbance and social behaviour produce the myriad observations of population growth in nature, and we need to develop generalizations to classify populations. Different animal groups differ in the combination of these four processes that affect them, in their growth rates and in their vulnerability to extinction. Because conservation and management of populations depend critically on what factors drive population growth, we need to develop universal generalizations that will relieve us from the need to study every single population before we can make recommendations for management. PMID:12396514

  15. A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.

    PubMed

    Robles, A; Latrille, E; Ruano, M V; Steyer, J P

    2017-01-01

    The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.

  16. TOC, ATP AND RESPIRATION RATE AS CONTROL PARAMETERS FOR THE ACTIVATED SLUDGE PROCESS

    EPA Science Inventory

    This research was conducted to determine the feasibility of using TOC, ATP and respiration rates as tools for controlling a complete mix activated sludge plant handling a significant amount of industrial waste. Control methodology was centered on using F/M ratio which was determi...

  17. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  18. Levels-of-processing effects on a task of olfactory naming.

    PubMed

    Royet, Jean-Pierre; Koenig, Olivier; Paugam-Moisy, Helene; Puzenat, Didier; Chasse, Jean-Luc

    2004-02-01

    The effects of odor processing were investigated at various analytical levels, from simple sensory analysis to deep or semantic analysis, on a subsequent task of odor naming. Students (106 women, 23.6 +/- 5.5 yr. old; 65 men, 25.1 +/- 7.1 yr. old) were tested. The experimental procedure included two successive sessions, a first session to characterize a set of 30 odors with criteria that used various depths of processing and a second session to name the odors as quickly as possible. Four processing conditions rated the odors using descriptors before naming the odor. The control condition did not rate the odors before naming. The processing conditions were based on lower-level olfactory judgments (superficial processing), higher-level olfactory-gustatory-somesthetic judgments (deep processing), and higher-level nonolfactory judgments (Deep-Control processing, with subjects rating odors with auditory and visual descriptors). One experimental condition successively grouped lower- and higher-level olfactory judgments (Superficial-Deep processing). A naming index which depended on response accuracy and the subjects' response time were calculated. Odor naming was modified for 18 out of 30 odorants as a function of the level of processing required. For 94.5% of significant variations, the scores for odor naming were higher following those tasks for which it was hypothesized that the necessary olfactory processing was carried out at a deeper level. Performance in the naming task was progressively improved as follows: no rating of odors, then superficial, deep-control, deep, and superficial-deep processings. These data show that the deepest olfactory encoding was later associated with progressively higher performance in naming.

  19. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  20. Dynamic Exergy Method for Evaluating the Control and Operation of Oxy-Combustion Boiler Island Systems.

    PubMed

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang; Liang, Zhiwu

    2017-01-03

    Exergy-based methods are widely applied to assess the performance of energy conversion systems; however, these methods mainly focus on a certain steady-state and have limited applications for evaluating the control impacts on system operation. To dynamically obtain the thermodynamic behavior and reveal the influences of control structures, layers and loops, on system energy performance, a dynamic exergy method is developed, improved, and applied to a complex oxy-combustion boiler island system for the first time. The three most common operating scenarios are studied, and the results show that the flow rate change process leads to less energy consumption than oxygen purity and air in-leakage change processes. The variation of oxygen purity produces the largest impact on system operation, and the operating parameter sensitivity is not affected by the presence of process control. The control system saves energy during flow rate and oxygen purity change processes, while it consumes energy during the air in-leakage change process. More attention should be paid to the oxygen purity change because it requires the largest control cost. In the control system, the supervisory control layer requires the greatest energy consumption and the largest control cost to maintain operating targets, while the steam control loops cause the main energy consumption.

  1. Annual Statement of Assurance. Fiscal Year 1991

    DTIC Science & Technology

    1991-01-01

    risk) assessment rating process. In orientation sessions, we made a pointed effort to emphasize the statutory root of the IMC Program. We undertook... rating process. Training in the development of the management control plan was also provided using examples and a sample format. To illustrate the...application of IMC principles to the risk rating process, a case study approach was presented in a workshop mode with questions and answers following

  2. High-performance data processing using distributed computing on the SOLIS project

    NASA Astrophysics Data System (ADS)

    Wampler, Stephen

    2002-12-01

    The SOLIS solar telescope collects data at a high rate, resulting in 500 GB of raw data each day. The SOLIS Data Handling System (DHS) has been designed to quickly process this data down to 156 GB of reduced data. The DHS design uses pools of distributed reduction processes that are allocated to different observations as needed. A farm of 10 dual-cpu Linux boxes contains the pools of reduction processes. Control is through CORBA and data is stored on a fibre channel storage area network (SAN). Three other Linux boxes are responsible for pulling data from the instruments using SAN-based ringbuffers. Control applications are Java-based while the reduction processes are written in C++. This paper presents the overall design of the SOLIS DHS and provides details on the approach used to control the pooled reduction processes. The various strategies used to manage the high data rates are also covered.

  3. Why care about linear hair growth rates (LHGR)? a study using in vivo imaging and computer assisted image analysis after manual processing (CAIAMP) in unaffected male controls and men with male pattern hair loss (MPHL).

    PubMed

    Van Neste, Dominique

    2014-01-01

    The words "hair growth" frequently encompass many aspects other than just growth. Report on a validation method for precise non-invasive measurement of thickness together with linear hair growth rates of individual hair fibres. To verify the possible correlation between thickness and linear growth rate of scalp hair in male pattern hair loss as compared with healthy male controls. To document the process of validation of hair growth measurement from in vivo image capturing and manual processing, followed by computer assisted image analysis. We analysed 179 paired images obtained with the contrast-enhanced-phototrichogram method with exogen collection (CE-PTG-EC) in 13 healthy male controls and in 87 men with male pattern hair loss (MPHL). There was a global positive correlation between thickness and growth rate (ANOVA; p<0.0001) and a statistically significantly (ANOVA; p<0.0005) slower growth rate in MPHL as compared with equally thick hairs from controls. Finally, the growth rate recorded in the more severe patterns was significantly (ANOVA; P ≤ 0.001) reduced compared with equally thick hair from less severely affected MPHL or controls subjects. Reduced growth rate, together with thinning and shortening of the anagen phase duration in MPHL might contribute together to the global impression of decreased hair volume on the top of the head. Amongst other structural and functional parameters characterizing hair follicle regression, linear hair growth rate warrants further investigation, as it may be relevant in terms of self-perception of hair coverage, quantitative diagnosis and prognostic factor of the therapeutic response.

  4. Use of ventilator associated pneumonia bundle and statistical process control chart to decrease VAP rate in Syria.

    PubMed

    Alsadat, Reem; Al-Bardan, Hussam; Mazloum, Mona N; Shamah, Asem A; Eltayeb, Mohamed F E; Marie, Ali; Dakkak, Abdulrahman; Naes, Ola; Esber, Faten; Betelmal, Ibrahim; Kherallah, Mazen

    2012-10-01

    Implementation of ventilator associated pneumonia (VAP) bundle as a performance improvement project in the critical care units for all mechanically ventilated patients aiming to decrease the VAP rates. VAP bundle was implemented in 4 teaching hospitals after educational sessions and compliance rates along with VAP rates were monitored using statistical process control charts. VAP bundle compliance rates were steadily increasing from 33 to 80% in hospital 1, from 33 to 86% in hospital 2 and from 83 to 100% in hospital 3 during the study period. The VAP bundle was not applied in hospital 4 therefore no data was available. A target level of 95% was reached only in hospital 3. This correlated with a decrease in VAP rates from 30 to 6.4 per 1000 ventilator days in hospital 1, from 12 to 4.9 per 1000 ventilator days in hospital 3, whereas VAP rate failed to decrease in hospital 2 (despite better compliance) and it remained high around 33 per 1000 ventilator days in hospital 4 where VAP bundle was not implemented. VAP bundle has performed differently in different hospitals in our study. Prevention of VAP requires a multidimensional strategy that includes strict infection control interventions, VAP bundle implementation, process and outcome surveillance and education.

  5. What controls deposition rate in electron-beam chemical vapor deposition?

    PubMed

    White, William B; Rykaczewski, Konrad; Fedorov, Andrei G

    2006-08-25

    The key physical processes governing electron-beam-assisted chemical vapor deposition are analyzed via a combination of theoretical modeling and supporting experiments. The scaling laws that define growth of the nanoscale deposits are developed and verified using carefully designed experiments of carbon deposition from methane onto a silicon substrate. The results suggest that the chamber-scale continuous transport of the precursor gas is the rate controlling process in electron-beam chemical vapor deposition.

  6. Aeration control of thermophilic aerobic digestion using fluorescence monitoring.

    PubMed

    Kim, Young-Kee; Oh, Byung-Keun

    2009-01-01

    The thermophilic aerobic digestion (TAD) process is recognized as an effective method for rapid waste activated sludge (WAS) degradation and the deactivation of pathogenic microorganisms. Yet, high energy costs due to heating and aeration have limited the commercialization of economical TAD processes. Previous research on autothermal thermophilic aerobic digestion (ATAD) has already reduced the heating cost. However, only a few studies have focused on reducing the aeration cost. Therefore, this study applied a two-step aeration control strategy to a fill-and-draw mode semicontinuous TAD process. The NADH-dependent fluorescence was monitored throughout the TAD experiment, and the aeration rate shifted according to the fluorescence intensity. As a result, the simple two-step aeration control operation achieved a 20.3% reduction in the total aeration, while maintaining an effective and stable operation. It is also expected that more savings can be achieved with a further reduction of the lower aeration rate or multisegmentation of the aeration rate.

  7. Real time closed loop control of an Ar and Ar/O2 plasma in an ICP

    NASA Astrophysics Data System (ADS)

    Faulkner, R.; Soberón, F.; McCarter, A.; Gahan, D.; Karkari, S.; Milosavljevic, V.; Hayden, C.; Islyaikin, A.; Law, V. J.; Hopkins, M. B.; Keville, B.; Iordanov, P.; Doherty, S.; Ringwood, J. V.

    2006-10-01

    Real time closed loop control for plasma assisted semiconductor manufacturing has been the subject of academic research for over a decade. However, due to process complexity and the lack of suitable real time metrology, progress has been elusive and genuine real time, multi-input, multi-output (MIMO) control of a plasma assisted process has yet to be successfully implemented in an industrial setting. A Splasma parameter control strategy T is required to be adopted whereby process recipes which are defined in terms of plasma properties such as critical species densities as opposed to input variables such as rf power and gas flow rates may be transferable between different chamber types. While PIC simulations and multidimensional fluid models have contributed considerably to the basic understanding of plasmas and the design of process equipment, such models require a large amount of processing time and are hence unsuitable for testing control algorithms. In contrast, linear dynamical empirical models, obtained through system identification techniques are ideal in some respects for control design since their computational requirements are comparatively small and their structure facilitates the application of classical control design techniques. However, such models provide little process insight and are specific to an operating point of a particular machine. An ideal first principles-based, control-oriented model would exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This paper will discuss the development of such a first-principles based, control-oriented model of a laboratory inductively coupled plasma chamber. The model consists of a global model of the chemical kinetics coupled to an analytical model of power deposition. Dynamics of actuators including mass flow controllers and exhaust throttle are included and sensor characteristics are also modelled. The application of this control-oriented model to achieve multivariable closed loop control of specific species e.g. atomic Oxygen and ion density using the actuators rf power, Oxygen and Argon flow rates, and pressure/exhaust flow rate in an Ar/O2 ICP plasma will be presented.

  8. Dynamic Modeling of the Main Blow in Basic Oxygen Steelmaking Using Measured Step Responses

    NASA Astrophysics Data System (ADS)

    Kattenbelt, Carolien; Roffel, B.

    2008-10-01

    In the control and optimization of basic oxygen steelmaking, it is important to have an understanding of the influence of control variables on the process. However, important process variables such as the composition of the steel and slag cannot be measured continuously. The decarburization rate and the accumulation rate of oxygen, which can be derived from the generally measured waste gas flow and composition, are an indication of changes in steel and slag composition. The influence of the control variables on the decarburization rate and the accumulation rate of oxygen can best be determined in the main blow period. In this article, the measured step responses of the decarburization rate and the accumulation rate of oxygen to step changes in the oxygen blowing rate, lance height, and the addition rate of iron ore during the main blow are presented. These measured step responses are subsequently used to develop a dynamic model for the main blow. The model consists of an iron oxide and a carbon balance and an additional equation describing the influence of the lance height and the oxygen blowing rate on the decarburization rate. With this simple dynamic model, the measured step responses can be explained satisfactorily.

  9. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian J.

    2016-08-30

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  10. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim [Minnetonka, MN; Aristidou, Aristos [Maple Grove, MN; Rush, Brian [Minneapolis, MN

    2011-05-10

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  11. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Hoek, Van; Pim, Aristidou [Minnetonka, MN; Aristos, Rush [Maple Grove, MN; Brian, [Minneapolis, MN

    2007-06-19

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  12. Fermentation process using specific oxygen uptake rates as a process control

    DOEpatents

    Van Hoek, Pim; Aristidou, Aristos; Rush, Brian

    2014-09-09

    Specific oxygen uptake (OUR) is used as a process control parameter in fermentation processes. OUR is determined during at least the production phase of a fermentation process, and process parameters are adjusted to maintain the OUR within desired ranges. The invention is particularly applicable when the fermentation is conducted using a microorganism having a natural PDC pathway that has been disrupted so that it no longer functions. Microorganisms of this sort often produce poorly under strictly anaerobic conditions. Microaeration controlled by monitoring OUR allows the performance of the microorganism to be optimized.

  13. Measuring and improving the quality of postoperative epidural analgesia for major abdominal surgery using statistical process control charts.

    PubMed

    Duncan, Fiona; Haigh, Carol

    2013-10-01

    To explore and improve the quality of continuous epidural analgesia for pain relief using Statistical Process Control tools. Measuring the quality of pain management interventions is complex. Intermittent audits do not accurately capture the results of quality improvement initiatives. The failure rate for one intervention, epidural analgesia, is approximately 30% in everyday practice, so it is an important area for improvement. Continuous measurement and analysis are required to understand the multiple factors involved in providing effective pain relief. Process control and quality improvement Routine prospectively acquired data collection started in 2006. Patients were asked about their pain and side effects of treatment. Statistical Process Control methods were applied for continuous data analysis. A multidisciplinary group worked together to identify reasons for variation in the data and instigated ideas for improvement. The key measure for improvement was a reduction in the percentage of patients with an epidural in severe pain. The baseline control charts illustrated the recorded variation in the rate of several processes and outcomes for 293 surgical patients. The mean visual analogue pain score (VNRS) was four. There was no special cause variation when data were stratified by surgeons, clinical area or patients who had experienced pain before surgery. Fifty-seven per cent of patients were hypotensive on the first day after surgery. We were able to demonstrate a significant improvement in the failure rate of epidurals as the project continued with quality improvement interventions. Statistical Process Control is a useful tool for measuring and improving the quality of pain management. The applications of Statistical Process Control methods offer the potential to learn more about the process of change and outcomes in an Acute Pain Service both locally and nationally. We have been able to develop measures for improvement and benchmarking in routine care that has led to the establishment of a national pain registry. © 2013 Blackwell Publishing Ltd.

  14. Opportunities to improve the conversion of food waste to lactate: Fine-tuning secondary factors.

    PubMed

    RedCorn, Raymond; Engelberth, Abigail S

    2017-11-01

    Extensive research has demonstrated the potential for bioconversion of food waste to lactate, with major emphasis on adjusting temperature, pH, and loading rate of the fermentation. Each of these factors has a significant effect on lactate production; however, additional secondary factors have received little attention. Here we investigate three additional factors where opportunities exist for process improvement: freezing of samples during storage, discontinuous pH control, and holdover of fermentation broth between fermentations. Freezing samples prior to fermentation was shown to reduce the production rate of lactate by 8%, indicating freeze-thaw should be avoided in experiments. Prior work indicated a trade-off in pH control strategies, where discontinuous pH control correlated with higher lactate accumulation while continuous pH control correlated with higher production rate. Here we demonstrate that continuous pH control can achieve both higher lactate accumulation and higher production rate. Finally, holding over fermentation broth was shown to be a simple method to improve production rate (by 18%) at high food waste loading rates (>140 g volatile solids L -1 ) but resulted in lower lactate accumulation (by 17%). The results inform continued process improvements within the waste treatment of food waste through fermentation to lactic acid.

  15. Deterministic Computer-Controlled Polishing Process for High-Energy X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Speegle, Chet; Ramsey, Brian

    2010-01-01

    A deterministic computer-controlled polishing process for large X-ray mirror mandrels is presented. Using tool s influence function and material removal rate extracted from polishing experiments, design considerations of polishing laps and optimized operating parameters are discussed

  16. Trickling Filters. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Richwine, Reynold D.

    The textual material for a unit on trickling filters is presented in this student manual. Topic areas discussed include: (1) trickling filter process components (preliminary treatment, media, underdrain system, distribution system, ventilation, and secondary clarifier); (2) operational modes (standard rate filters, high rate filters, roughing…

  17. Impact of hospital care on incidence of bloodstream infection: the evaluation of processes and indicators in infection control study.

    PubMed Central

    Kritchevsky, S. B.; Braun, B. I.; Wong, E. S.; Solomon, S. L.; Steele, L.; Richards, C.; Simmons, B. P.

    2001-01-01

    The Evaluation of Processes and Indicators in Infection Control (EPIC) study assesses the relationship between hospital care and rates of central venous catheter-associated primary bacteremia in 54 intensive-care units (ICUs) in the United States and 14 other countries. Using ICU rather than the patient as the primary unit of statistical analysis permits evaluation of factors that vary at the ICU level. The design of EPIC can serve as a template for studies investigating the relationship between process and event rates across health-care institutions. PMID:11294704

  18. 40 CFR 63.1333 - Additional requirements for performance testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... paragraphs (b)(1) and (b)(2) of this section. ER19JN00.041 Where: ERMBS = Emission rate of organic HAP or TOC from continuous process vents, kg/Mg product. Ei = Emission rate of organic HAP or TOC from continuous... hours in a year for control device j. Ei=Mass rate of TOC or total organic HAP at the inlet of control...

  19. Quality Improvement in Surgery Combining Lean Improvement Methods with Teamwork Training: A Controlled Before-After Study

    PubMed Central

    Robertson, Eleanor; Morgan, Lauren; New, Steve; Pickering, Sharon; Hadi, Mohammed; Collins, Gary; Rivero Arias, Oliver; Griffin, Damian; McCulloch, Peter

    2015-01-01

    Background To investigate the effectiveness of combining teamwork training and lean process improvement, two distinct approaches to improving surgical safety. We conducted a controlled interrupted time series study in a specialist UK Orthopaedic hospital incorporating a plastic surgery team (which received the intervention) and an Orthopaedic theatre team acting as a control. Study Design We used a 3 month intervention with 3 months data collection period before and after it. A combined teamwork training and lean process improvement intervention was delivered by an experienced specialist team. Before and after the intervention we evaluated team non-technical skills using NOTECHS II, technical performance using the glitch rate and WHO checklist compliance using a simple 3 point scale. We recorded complication rate, readmission rate and length of hospital stay data for 6 months before and after the intervention. Results In the active group, but not the control group, full compliance with WHO Time Out (T/O) increased from 14 to 71% (p = 0.032), Sign Out attempt rate (S/O) increased from 0% to 50% (p<0.001) and Oxford NOTECHS II scores increased after the intervention (P = 0.058). Glitch rate decreased in the active group and increased in the control group (p = 0.001). Complications and length of stay appeared to rise in the control group and fall in the active group. Conclusions Combining teamwork training and systems improvement enhanced both technical and non-technical operating team process measures, and were associated with a trend to better safety outcome measures in a controlled study comparison. We suggest that approaches which address both system and culture dimensions of safety may prove valuable in reducing risks to patients. PMID:26381643

  20. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    PubMed

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Rapid permeation measurement system for the production control of monolayer and multilayer films

    NASA Astrophysics Data System (ADS)

    Botos, J.; Müller, K.; Heidemeyer, P.; Kretschmer, K.; Bastian, M.; Hochrein, T.

    2014-05-01

    Plastics have been used for packaging films for a long time. Until now the development of new formulations for film applications, including process optimization, has been a time-consuming and cost-intensive process for gases like oxygen (O2) or carbon dioxide (CO2). By using helium (He) the permeation measurement can be accelerated from hours or days to a few minutes. Therefore a manometric measuring system for tests according to ISO 15105-1 is coupled with a mass spectrometer to determine the helium flow rate and to calculate the helium permeation rate. Due to the accelerated determination the permeation quality of monolayer and multilayer films can be measured atline. Such a system can be used to predict for example the helium permeation rate of filled polymer films. Defined quality limits for the permeation rate can be specified as well as the prompt correction of process parameters if the results do not meet the specification. This method for process control was tested on a pilot line with a corotating twin-screw extruder for monolayer films. Selected process parameters were varied iteratively without changing the material formulation to obtain the best process parameter set and thus the lowest permeation rate. Beyond that the influence of different parameters on the helium permeation rate was examined on monolayer films. The results were evaluated conventional as well as with artificial neuronal networks in order to determine the non-linear correlation between all process parameters.

  2. Different slopes for different folks: alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks.

    PubMed

    Mathewson, Kyle E; Basak, Chandramallika; Maclin, Edward L; Low, Kathy A; Boot, Walter R; Kramer, Arthur F; Fabiani, Monica; Gratton, Gabriele

    2012-12-01

    We hypothesized that control processes, as measured using electrophysiological (EEG) variables, influence the rate of learning of complex tasks. Specifically, we measured alpha power, event-related spectral perturbations (ERSPs), and event-related brain potentials during early training of the Space Fortress task, and correlated these measures with subsequent learning rate and performance in transfer tasks. Once initial score was partialled out, the best predictors were frontal alpha power and alpha and delta ERSPs, but not P300. By combining these predictors, we could explain about 50% of the learning rate variance and 10%-20% of the variance in transfer to other tasks using only pretraining EEG measures. Thus, control processes, as indexed by alpha and delta EEG oscillations, can predict learning and skill improvements. The results are of potential use to optimize training regimes. Copyright © 2012 Society for Psychophysiological Research.

  3. A state observer for using a slow camera as a sensor for fast control applications

    NASA Astrophysics Data System (ADS)

    Gahleitner, Reinhard; Schagerl, Martin

    2013-03-01

    This contribution concerns about a problem that often arises in vision based control, when a camera is used as a sensor for fast control applications, or more precisely, when the sample rate of the control loop is higher than the frame rate of the camera. In control applications for mechanical axes, e.g. in robotics or automated production, a camera and some image processing can be used as a sensor to detect positions or angles. The sample time in these applications is typically in the range of a few milliseconds or less and this demands the use of a camera with a high frame rate up to 1000 fps. The presented solution is a special state observer that can work with a slower and therefore cheaper camera to estimate the state variables at the higher sample rate of the control loop. To simplify the image processing for the determination of positions or angles and make it more robust, some LED markers are applied to the plant. Simulation and experimental results show that the concept can be used even if the plant is unstable like the inverted pendulum.

  4. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials.

    PubMed

    Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan

    2013-05-13

    Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.

  5. Recursive least squares estimation and its application to shallow trench isolation

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Qin, S. Joe; Bode, Christopher A.; Purdy, Matthew A.

    2003-06-01

    In recent years, run-to-run (R2R) control technology has received tremendous interest in semiconductor manufacturing. One class of widely used run-to-run controllers is based on the exponentially weighted moving average (EWMA) statistics to estimate process deviations. Using an EWMA filter to smooth the control action on a linear process has been shown to provide good results in a number of applications. However, for a process with severe drifts, the EWMA controller is insufficient even when large weights are used. This problem becomes more severe when there is measurement delay, which is almost inevitable in semiconductor industry. In order to control drifting processes, a predictor-corrector controller (PCC) and a double EWMA controller have been developed. Chen and Guo (2001) show that both PCC and double-EWMA controller are in effect Integral-double-Integral (I-II) controllers, which are able to control drifting processes. However, since offset is often within the noise of the process, the second integrator can actually cause jittering. Besides, tuning the second filter is not as intuitive as a single EWMA filter. In this work, we look at an alternative way Recursive Least Squares (RLS), to estimate and control the drifting process. EWMA and double-EWMA are shown to be the least squares estimate for locally constant mean model and locally constant linear trend model. Then the recursive least squares with exponential factor is applied to shallow trench isolation etch process to predict the future etch rate. The etch process, which is a critical process in the flash memory manufacturing, is known to suffer from significant etch rate drift due to chamber seasoning. In order to handle the metrology delay, we propose a new time update scheme. RLS with the new time update method gives very good result. The estimate error variance is smaller than that from EWMA, and mean square error decrease more than 10% compared to that from EWMA.

  6. Part height control of laser metal additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Herng

    Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type, and part design, the values of each of which may change during the LMD process. Using a mathematical model to build a generic equation that predicts the deposition's layer thickness is difficult due to these complex parameters. In this thesis, we propose a simple method that utilizes a single device. This device uses a pyrometer to monitor the current build height, thereby allowing the layer thickness to be controlled during the LMD process. This method also helps the LMD system to build parts even with complex parameters and to increase material efficiency.

  7. Ultrahigh-Repetition Pulse Train with Absolute-Phase Control Produced by AN Adiabatic Raman Process

    NASA Astrophysics Data System (ADS)

    Katsuragawa, M.; Suzuki, T.; Shiraga, K.; Arakawa, M.; Onose, T.; Yokoyama, K.; Hong, F. L.; Misawa, K.

    2010-02-01

    We describe the generation of an ultrahigh-repetition-rate train of ultrashort pulses on the basis of an adiabatic Raman process. We also describe recent progress in studies toward the ultimate regime: realization of an ultrahigh-repetition-rate train of monocycle pulses with control of the absolute phase. We comment on the milestones expected in the near future in terms of the study of such novel light sources and the new field of optical science stimulated by their development.

  8. Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production.

    PubMed

    Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee

    2010-01-01

    Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.

  9. Statistical Process Control Charts for Measuring and Monitoring Temporal Consistency of Ratings

    ERIC Educational Resources Information Center

    Omar, M. Hafidz

    2010-01-01

    Methods of statistical process control were briefly investigated in the field of educational measurement as early as 1999. However, only the use of a cumulative sum chart was explored. In this article other methods of statistical quality control are introduced and explored. In particular, methods in the form of Shewhart mean and standard deviation…

  10. Quantification of the oxygen uptake rate in a dissolved oxygen controlled oscillating jet-driven microbioreactor.

    PubMed

    Kirk, Timothy V; Marques, Marco Pc; Radhakrishnan, Anand N Pallipurath; Szita, Nicolas

    2016-03-01

    Microbioreactors have emerged as a new tool for early bioprocess development. The technology has advanced rapidly in the last decade and obtaining real-time quantitative data of process variables is nowadays state of the art. In addition, control over process variables has also been achieved. The aim of this study was to build a microbioreactor capable of controlling dissolved oxygen (DO) concentrations and to determine oxygen uptake rate in real time. An oscillating jet driven, membrane-aerated microbioreactor was developed without comprising any moving parts. Mixing times of ∼7 s, and k L a values of ∼170 h -1 were achieved. DO control was achieved by varying the duty cycle of a solenoid microvalve, which changed the gas mixture in the reactor incubator chamber. The microbioreactor supported Saccharomyces cerevisiae growth over 30 h and cell densities of 6.7 g dcw L -1 . Oxygen uptake rates of ∼34 mmol L -1 h -1 were achieved. The results highlight the potential of DO-controlled microbioreactors to obtain real-time information on oxygen uptake rate, and by extension on cellular metabolism for a variety of cell types over a broad range of processing conditions. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  11. On the efficacy of using the transfer-controlled procedure during periods of STP processor overloads in SS7 networks

    NASA Astrophysics Data System (ADS)

    Rumsewicz, Michael

    1994-04-01

    In this paper, we examine call completion performance, rather than message throughput, in a Common Channel Signaling network in which the processing resources, and not transmission resources, of a Signaling Transfer Point (STP) are overloaded. Specifically, we perform a transient analysis, via simulation, of a network consisting of a single Central Processor-based STP connecting many local exchanges. We consider the efficacy of using the Transfer Controlled (TFC) procedure when the network call attempt rate exceeds the processing capability of the STP. We find the following: (1) the success of the control depends critically on the rate at which TFC's are sent; (2) use of the TFC procedure in theevent of processor overload can provide reasonable call completion rates.

  12. Speed-accuracy trade-off in skilled typewriting: decomposing the contributions of hierarchical control loops.

    PubMed

    Yamaguchi, Motonori; Crump, Matthew J C; Logan, Gordon D

    2013-06-01

    Typing performance involves hierarchically structured control systems: At the higher level, an outer loop generates a word or a series of words to be typed; at the lower level, an inner loop activates the keystrokes comprising the word in parallel and executes them in the correct order. The present experiments examined contributions of the outer- and inner-loop processes to the control of speed and accuracy in typewriting. Experiments 1 and 2 involved discontinuous typing of single words, and Experiments 3 and 4 involved continuous typing of paragraphs. Across experiments, typists were able to trade speed for accuracy but were unable to type at rates faster than 100 ms/keystroke, implying limits to the flexibility of the underlying processes. The analyses of the component latencies and errors indicated that the majority of the trade-offs were due to inner-loop processing. The contribution of outer-loop processing to the trade-offs was small, but it resulted in large costs in error rate. Implications for strategic control of automatic processes are discussed. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  13. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 2: The Influence of Formulation Parameters on Drug Release.

    PubMed

    Dereymaker, Aswin; Pelgrims, Jirka; Engelen, Frederik; Adriaensens, Peter; Van den Mooter, Guy

    2017-04-03

    This study aimed to investigate the pharmaceutical performance of an indomethacin-polyvinylpyrrolidone (PVP) glass solution applied using fluid bed processing as a layer on inert sucrose spheres and subsequently top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) on the diffusion and release behavior were also considered. In addition, the role of a charge interaction between drug and controlled release polymer on the release was investigated. Diffusion experiments pointed to the influence of pore former concentration, rate controlling polymer type, and coating solvent on the permeability of the controlled release membranes. This can be translated to drug release tests, which show the potential of diffusion tests as a preliminary screening test and that diffusion is the main factor influencing release. Drug release tests also showed the effect of coating layer thickness. A charge interaction between INDO and ERL was demonstrated, but this had no negative effect on drug release. The higher diffusion and release observed in ERL-based rate controlling membranes was explained by a higher hydrophilicity, compared to EC.

  14. Response inhibition, preattentive processing, and sex difference in young children: an event-related potential study.

    PubMed

    Liu, Tongran; Xiao, Tong; Shi, Jiannong

    2013-02-13

    Response inhibition and preattentive processing are two important cognitive abilities for child development, and the current study adopted both behavioral and electrophysiological protocols to examine whether young children's response inhibition correlated with their preattentive processing. A Go/Nogo task was used to explore young children's response inhibition performances and an Oddball task with event-related potential recordings was used to measure their preattentive processing. The behavioral results showed that girls committed significantly fewer commission error rates, which showed that girls had stronger inhibition control abilities than boys. Girls also achieved higher d' scores in the Go/Nogo task, which indicated that they were more sensitive to the stimulus signals than boys. Although the electrophysiological results of preattentive processing did not show any sex differences, the correlation patterns between children's response inhibition and preattentive processing were different between these two groups: the neural response speed of preattentive processing (mismatch negativity peak latency) negatively correlated with girls' commission error rates and positively correlated with boys' correct hit rates. The current findings supported that the preattentive processing correlated with human inhibition control performances, and further showed that girls' better inhibition responses might be because of the influence of their preattentive processing.

  15. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  16. Patterning of alloy precipitation through external pressure

    NASA Astrophysics Data System (ADS)

    Franklin, Jack A.

    Due to the nature of their microstructure, alloyed components have the benefit of meeting specific design goals across a wide range of electrical, thermal, and mechanical properties. In general by selecting the correct alloy system and applying a proper heat treatment it is possible to create a metallic sample whose properties achieve a unique set of design requirements. This dissertation presents an innovative processing technique intended to control both the location of formation and the growth rates of precipitates within metallic alloys in order to create multiple patterned areas of unique microstructure within a single sample. Specific experimental results for the Al-Cu alloy system will be shown. The control over precipitation is achieved by altering the conventional heat treatment process with an external surface load applied to selected locations during the quench and anneal. It is shown that the applied pressures affect both the rate and directionality of the atomic diffusion in regions close to the loaded surfaces. The control over growth rates is achieved by altering the enthalpic energy required for successful diffusion between lattice sites. Changes in the local chemical free energy required to direct the diffusion of atoms are established by introducing a non-uniform elastic strain energy field within the samples created by the patterned surface pressures. Either diffusion rates or atomic mobility can be selected as the dominating control process by varying the quench rate; with slower quenches having greater control over the mobility of the alloying elements. Results have shown control of Al2Cu precipitation over 100 microns on mechanically polished surfaces. Further experimental considerations presented will address consistency across sample ensembles. This includes repeatable pressure loading conditions and the chemical interaction between any furnace environments and both the alloy sample and metallic pressure loading devices.

  17. General purpose rocket furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1979-01-01

    A multipurpose furnace for space vehicles used for material processing experiments in an outer space environment is described. The furnace contains three separate cavities designed to process samples of the widest possible range of materials and thermal requirements. Each cavity contains three heating elements capable of independent function under the direction of an automatic and programmable control system. A heat removable mechanism is also provided for each cavity which operates in conjunction with the control system for establishing an isothermally heated cavity or a wide range of thermal gradients and cool down rates. A monitoring system compatible with the rocket telemetry provides furnace performance and sample growth rate data throughout the processing cycle.

  18. Sequential control of step-bunching during graphene growth on SiC (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Jianfeng; Kusunoki, Michiko; Yasui, Osamu

    2016-08-22

    We have investigated the relation between the step-bunching and graphene growth phenomena on an SiC substrate. We found that only a minimum amount of step-bunching occurred during the graphene growth process with a high heating rate. On the other hand, a large amount of step-bunching occurred using a slow heating process. These results indicated that we can control the degree of step-bunching during graphene growth by controlling the heating rate. We also found that graphene coverage suppressed step bunching, which is an effective methodology not only in the graphene technology but also in the SiC-based power electronics.

  19. 40 CFR Appendix A to Subpart Ddddd... - Methodology and Criteria for Demonstrating Eligibility for the Health-Based Compliance Alternatives

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rate, type of control devices, process parameters (e.g., maximum heat input), and non-process... control systems (if applicable) and explain why the conditions are worst-case. (c) Number of test runs... located at the outlet of the control device and prior to any releases to the atmosphere. (e) Collection of...

  20. 40 CFR Appendix A to Subpart Ddddd... - Methodology and Criteria for Demonstrating Eligibility for the Health-Based Compliance Alternatives

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rate, type of control devices, process parameters (e.g., maximum heat input), and non-process... control systems (if applicable) and explain why the conditions are worst-case. (c) Number of test runs... located at the outlet of the control device and prior to any releases to the atmosphere. (e) Collection of...

  1. 40 CFR Appendix A to Subpart Ddddd... - Methodology and Criteria for Demonstrating Eligibility for the Health-Based Compliance Alternatives

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rate, type of control devices, process parameters (e.g., maximum heat input), and non-process... control systems (if applicable) and explain why the conditions are worst-case. (c) Number of test runs... located at the outlet of the control device and prior to any releases to the atmosphere. (e) Collection of...

  2. Bimanual tapping of a syncopated rhythm reveals hemispheric preferences for relative movement frequencies.

    PubMed

    Pflug, Anja; Gompf, Florian; Kell, Christian Alexander

    2017-08-01

    In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Controlling the nitrite:ammonium ratio in a SHARON reactor in view of its coupling with an Anammox process.

    PubMed

    Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A

    2006-01-01

    The combined SHARON-Anammox process for treating wastewater streams with high ammonia load is the focus of this paper. In particular, partial nitritation in the SHARON reactor should be performed to such an extent that a nitrite:ammonium ratio is generated which is optimal for full conversion in an Anammox process. In the simulation studies performed in this contribution, the nitrite:ammonium ratio produced in a SHARON process with fixed volume, as well as its effect on the subsequent Anammox process, is examined for realistic influent conditions and considering both direct and indirect pH effects on the SHARON process. Several possible operating modes for the SHARON reactor, differing in control strategies for O2, pH and the produced nitrite:ammonium ratio and based on regulating the air flow rate and/or acid/base addition, are systematically evaluated. The results are quantified through an operating cost index. Best results are obtained by means of cascade feedback control of the SHARON effluent nitrite:ammonium ratio through setting an O2 set-point that is tracked by adjusting the air flow rate, combined with single loop pH control through acid/base addition.

  4. The influence of cold on the recovery of three neuromuscular blocking agents in man.

    PubMed

    England, A J; Wu, X; Richards, K M; Redai, I; Feldman, S A

    1996-03-01

    The Arrhenius hypothesis suggests that change in temperature has a less marked effect on the rate of physical processes than on biological reactions. We have investigated the process underlying recovery from neuromuscular block in man by studying the effect of cooling on the rate of recovery from depolarising and non-depolarising block. Vecuronium, rocuronium and decamethonium (C10) neuromuscular block were investigated using the isolated forearm technique on awake human volunteers. In these experiments, one arm was cooled whilst the other was used as control. Moderate hypothermia decreased the rate of recovery from all three agents, but this was significantly less marked with the depolarising drug. The mean Q10 (the anticipated change in rate of a reaction across of 10 degrees C temperature gradient) of the rate of recovery for vecuronium was 3.21, rocuronium 2.86 and decamethonium 1.29. This suggests a different process in the recovery of these two types of drug. According to the Arrhenius hypothesis this would suggest that the recovery from non-depolarising drugs is likely to involve a biochemical mechanism and that recovery from decamethonium is controlled by a physical process.

  5. Load-Dependent Interference of Deep Brain Stimulation of the Subthalamic Nucleus with Switching from Automatic to Controlled Processing During Random Number Generation in Parkinson's Disease.

    PubMed

    Williams, Isobel Anne; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan

    2015-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) ameliorates the motor symptoms of Parkinson's disease (PD). However, some aspects of executive control are impaired with STN DBS. We tested the prediction that (i) STN DBS interferes with switching from automatic to controlled processing during fast-paced random number generation (RNG) (ii) STN DBS-induced cognitive control changes are load-dependent. Fifteen PD patients with bilateral STN DBS performed paced-RNG, under three levels of cognitive load synchronised with a pacing stimulus presented at 1, 0.5 and 0.33 Hz (faster rates require greater cognitive control), with DBS on or off. Measures of output randomness were calculated. Countscore 1 (CS1) indicates habitual counting in steps of one (CS1). Countscore 2 (CS2) indicates a more controlled strategy of counting in twos. The fastest rate was associated with an increased CS1 score with STN DBS on compared to off. At the slowest rate, patients had higher CS2 scores with DBS off than on, such that the differences between CS1 and CS2 scores disappeared. We provide evidence for a load-dependent effect of STN DBS on paced RNG in PD. Patients could switch to more controlled RNG strategies during conditions of low cognitive load at slower rates only when the STN stimulators were off, but when STN stimulation was on, they engaged in more automatic habitual counting under increased cognitive load. These findings are consistent with the proposal that the STN implements a switch signal from the medial frontal cortex which enables a shift from automatic to controlled processing.

  6. Load-Dependent Interference of Deep Brain Stimulation of the Subthalamic Nucleus with Switching from Automatic to Controlled Processing During Random Number Generation in Parkinson’s Disease

    PubMed Central

    Williams, Isobel Anne; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan

    2015-01-01

    Background: Deep brain stimulation of the subthalamic nucleus (STN DBS) ameliorates the motor symptoms of Parkinson’s disease (PD). However, some aspects of executive control are impaired with STN DBS. Objective: We tested the prediction that (i) STN DBS interferes with switching from automatic to controlled processing during fast-paced random number generation (RNG) (ii) STN DBS-induced cognitive control changes are load-dependent. Methods: Fifteen PD patients with bilateral STN DBS performed paced-RNG, under three levels of cognitive load synchronised with a pacing stimulus presented at 1, 0.5 and 0.33 Hz (faster rates require greater cognitive control), with DBS on or off. Measures of output randomness were calculated. Countscore 1 (CS1) indicates habitual counting in steps of one (CS1). Countscore 2 (CS2) indicates a more controlled strategy of counting in twos. Results: The fastest rate was associated with an increased CS1 score with STN DBS on compared to off. At the slowest rate, patients had higher CS2 scores with DBS off than on, such that the differences between CS1 and CS2 scores disappeared. Conclusions: We provide evidence for a load-dependent effect of STN DBS on paced RNG in PD. Patients could switch to more controlled RNG strategies during conditions of low cognitive load at slower rates only when the STN stimulators were off, but when STN stimulation was on, they engaged in more automatic habitual counting under increased cognitive load. These findings are consistent with the proposal that the STN implements a switch signal from the medial frontal cortex which enables a shift from automatic to controlled processing. PMID:25720447

  7. Prevention of Salmonella cross-contamination in an oilmeal manufacturing plant.

    PubMed

    Morita, T; Kitazawa, H; Iida, T; Kamata, S

    2006-08-01

    The mechanisms of Salmonella contamination in an oilmeal plant were investigated and the basic data were collected in order to achieve control of Salmonella in oilmeal. Salmonella was detected in all contamination vectors and environmental factors investigated, namely: operators, processing floor, dust in the air and rodents. In particular, high concentrations of Salmonella were detected on the processing floor of the manufacturing area, which has high oil content. Steam was the most effective disinfection method used for the processing floor, as the effects of heat sterilization and disinfection may work in tandem. In addition, restricting the movement of operators of the production chain remarkably reduced Salmonella contamination, even in areas of otherwise high contamination. Within the oilmeal plant, high Salmonella contamination rates for the processing floor represent the greatest risk of contamination of oilmeal via operators, dust in the air and rodents. Therefore, control of the processing floor is the most important means for reducing the oilmeal contamination rate. Specific Salmonella control methods for oilmeal plants have been established.

  8. Amplifying genetic logic gates.

    PubMed

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  9. Self-Evaluation Processes in Life Satisfaction: Uncovering Measurement Non-Equivalence and Age-Related Differences

    ERIC Educational Resources Information Center

    Heidemeier, Heike; Staudinger, Ursula M.

    2012-01-01

    This study demonstrates how self-evaluation processes explain subgroup differences in ratings of life satisfaction (population heterogeneity). Life domains differ with regard to the constraints they impose on beliefs in internal control. We hypothesized that these differences are linked with cognitive biases in ratings of life satisfaction. In…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobo, R.; Revah, S.; Viveros-Garcia, T.

    An analysis of the local processes occurring in a trickle-bed bioreactor (TBB) with a first-order bioreaction shows that the identification of the TBB operating regime requires knowledge of the substrate concentration in the liquid phase. If the substrate liquid concentration is close to 0, the rate-controlling step is mass transfer at the gas-liquid interface; when it is close to the value in equilibrium with the gas phase, the controlling step is the phenomena occurring in the biofilm, CS{sub 2} removal rate data obtained in a TBB with a Thiobacilii consortia biofilm are analyzed to obtain the mass transfer and kineticmore » parameters, and to show that the bioreactor operates in a regime mainly controlled by mass transfer. A TBB model with two experimentally determined parameters is developed and used to show how the bioreactor size depends on the rate-limiting step, the absorption factor, the substrate fractional conversion, and on the gas and liquid contact pattern. Under certain conditions, the TBB size is independent of the flowing phases` contact pattern. The model effectively describes substrate gas and liquid concentration data for mass transfer and biodegradation rate controlled processes.« less

  11. Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Razak, M. A.; Rani, A. M. A.; Saad, N. M.; Littlefair, G.; Aliyu, A. A.

    2018-04-01

    Biomedical implant can be divided into permanent and temporary employment. The duration of a temporary implant applied to children and adult is different due to different bone healing rate among the children and adult. Magnesium and its alloys are compatible for the biodegradable implanting application. Nevertheless, it is difficult to control the degradation rate of magnesium alloy to suit the application on both the children and adult. Powder mixed electrical discharge machining (PM-EDM) method, a modified EDM process, has high capability to improve the EDM process efficiency and machined surface quality. The objective of this paper is to establish a formula to control the degradation rate of magnesium alloy using the PM-EDM method. The different corrosion rate of machined surface is hypothesized to be obtained by having different combinations of PM-EDM operation inputs. PM-EDM experiments are conducted using an opened-loop PM-EDM system and the in-vitro corrosion tests are carried out on the machined surface of each specimen. There are four operation inputs investigated in this study which are zinc powder concentration, peak current, pulse on-time and pulse off-time. The results indicate that zinc powder concentration is significantly affecting the response with 2 g/l of zinc powder concentration obtaining the lowest corrosion rate. The high localized temperature at the cutting zone in spark erosion process causes some of the zinc particles get deposited on the machined surface, hence improving the surface characteristics. The suspended zinc particles in the dielectric fluid have also improve the sparking efficiency and the uniformity of sparks distribution. From the statistical analysis, a formula was developed to control the corrosion rate of magnesium alloy within the range from 0.000183 mm/year to 0.001528 mm/year.

  12. Seismic behaviour of mountain belts controlled by plate convergence rate

    NASA Astrophysics Data System (ADS)

    Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras V.; Pranger, Casper C.

    2018-01-01

    The relative contribution of tectonic and kinematic processes to seismic behaviour of mountain belts is still controversial. To understand the partitioning between these processes we developed a model that simulates both tectonic and seismic processes in a continental collision setting. These 2D seismo-thermo-mechanical (STM) models obtain a Gutenberg-Richter frequency-magnitude distribution due to spontaneous events occurring throughout the orogen. Our simulations suggest that both the corresponding slope (b value) and maximum earthquake magnitude (MWmax) correlate linearly with plate convergence rate. By analyzing 1D rheological profiles and isotherm depths we demonstrate that plate convergence rate controls the brittle strength through a rheological feedback with temperature and strain rate. Faster convergence leads to cooler temperatures and also results in more larger seismogenic domains, thereby increasing both MWmax and the relative number of large earthquakes (decreasing b value). This mechanism also predicts a more seismogenic lower crust, which is confirmed by a transition from uni- to bi-modal hypocentre depth distributions in our models. This transition and a linear relation between convergence rate and b value and MWmax is supported by our comparison of earthquakes recorded across the Alps, Apennines, Zagros and Himalaya. These results imply that deformation in the Alps occurs in a more ductile manner compared to the Himalayas, thereby reducing its seismic hazard. Furthermore, a second set of experiments with higher temperature and different orogenic architecture shows the same linear relation with convergence rate, suggesting that large-scale tectonic structure plays a subordinate role. We thus propose that plate convergence rate, which also controls the average differential stress of the orogen and its linear relation to the b value, is the first-order parameter controlling seismic hazard of mountain belts.

  13. Biotic and abiotic degradation of CL-20 and RDX in soils.

    PubMed

    Crocker, Fiona H; Thompson, Karen T; Szecsody, James E; Fredrickson, Herbert L

    2005-01-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically attenuated soil controls were used to separate abiotic processes from biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d(-1)) and biologically attenuated soil controls (0.003 < k < 0.277 d(-1)). The addition of glucose to biologically active soil microcosms significantly increased CL-20 degradation rates (0.068 < k < 1.22 d(-1)). Extents of mineralization of (14)C-CL-20 to (14)CO(2) in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d(-1)) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d(-1). Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.

  14. A comparison of ultrasound-augmented and conventional leaching of silver from sintering dust using acidic thiourea.

    PubMed

    Chang, Jun; Zhang, Er-Dong; Zhang, Li-Bo; Peng, Jin-Hui; Zhou, Jun-Wen; Srinivasakannan, C; Yang, Chang-Jiang

    2017-01-01

    In the process of steel manufacture, up to ten millions of tons of sintering dust (SD) are produced annually in China, which contain noble metals such as Ag. Therefore, recovery of silver (Ag) from SD could be a potential economic and environmental activity. The purpose of this article is to generate information about reaction kinetics of silver leaching with thiourea from SD, comparing the conventional and ultrasonic-augment leaching. The effects of various control parameters such as the ultrasound power, particle size, leaching temperature and thiourea concentration on leaching rate of silver were studied. The results showed 89% silver recovery for conventional process against 95% for ultrasound assisted leaching. The ultrasonic wave increased the leaching rate and shorten the reaction time. The rate controlling step was analyzed using shrinking core model and the rate controlling step is identified to be the diffusion through the product layer in both conventional and ultrasonic-augment leaching processes. The activation energies were estimated to be 28.01kJ/mol and 18.19kJ/mol, and the reaction order were 0.89 and 0.71, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A novel frame-level constant-distortion bit allocation for smooth H.264/AVC video quality

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zhuang, Xinhua

    2009-01-01

    It is known that quality fluctuation has a major negative effect on visual perception. In previous work, we introduced a constant-distortion bit allocation method [1] for H.263+ encoder. However, the method in [1] can not be adapted to the newest H.264/AVC encoder directly as the well-known chicken-egg dilemma resulted from the rate-distortion optimization (RDO) decision process. To solve this problem, we propose a new two stage constant-distortion bit allocation (CDBA) algorithm with enhanced rate control for H.264/AVC encoder. In stage-1, the algorithm performs RD optimization process with a constant quantization QP. Based on prediction residual signals from stage-1 and target distortion for smooth video quality purpose, the frame-level bit target is allocated by using a close-form approximations of ratedistortion relationship similar to [1], and a fast stage-2 encoding process is performed with enhanced basic unit rate control. Experimental results show that, compared with original rate control algorithm provided by H.264/AVC reference software JM12.1, the proposed constant-distortion frame-level bit allocation scheme reduces quality fluctuation and delivers much smoother PSNR on all testing sequences.

  16. Solidification in direct metal deposition by LENS processing

    NASA Astrophysics Data System (ADS)

    Hofmeister, William; Griffith, Michelle

    2001-09-01

    Thermal imaging and metallographic analysis were used to study Laser Engineered Net Shaping (LENS™) processing of 316 stainless steel and H13 tool steel. The cooling rates at the solid-liquid interface were measured over a range of conduction conditions. The length scale of the molten zone controls cooling rates during solidification in direct metal deposition. In LENS processing, the molten zone ranges from 0.5 mm in length to 1.5 mm, resulting in cooling rates at the solid-liquid interface ranging from 200 6,000 Ks-1.

  17. Event-driven time-optimal control for a class of discontinuous bioreactors.

    PubMed

    Moreno, Jaime A; Betancur, Manuel J; Buitrón, Germán; Moreno-Andrade, Iván

    2006-07-05

    Discontinuous bioreactors may be further optimized for processing inhibitory substrates using a convenient fed-batch mode. To do so the filling rate must be controlled in such a way as to push the reaction rate to its maximum value, by increasing the substrate concentration just up to the point where inhibition begins. However, an exact optimal controller requires measuring several variables (e.g., substrate concentrations in the feed and in the tank) and also good model knowledge (e.g., yield and kinetic parameters), requirements rarely satisfied in real applications. An environmentally important case, that exemplifies all these handicaps, is toxicant wastewater treatment. There the lack of online practical pollutant sensors may allow unforeseen high shock loads to be fed to the bioreactor, causing biomass inhibition that slows down the treatment process and, in extreme cases, even renders the biological process useless. In this work an event-driven time-optimal control (ED-TOC) is proposed to circumvent these limitations. We show how to detect a "there is inhibition" event by using some computable function of the available measurements. This event drives the ED-TOC to stop the filling. Later, by detecting the symmetric event, "there is no inhibition," the ED-TOC may restart the filling. A fill-react cycling then maintains the process safely hovering near its maximum reaction rate, allowing a robust and practically time-optimal operation of the bioreactor. An experimental study case of a wastewater treatment process application is presented. There the dissolved oxygen concentration was used to detect the events needed to drive the controller. (c) 2006 Wiley Periodicals, Inc.

  18. Processing and memory for emotional and neutral material in amyotrophic lateral sclerosis

    PubMed Central

    Cuddy, Marion; Papps, Benjamin J.; Thambisetty, Madhav; Leigh, P. Nigel; Goldstein, Laura H.

    2018-01-01

    Several studies have reported changes in emotional memory and processing in people with ALS (pwALS). In this study, we sought to analyse differences in emotional processing and memory between pwALS and healthy controls and to investigate the relationship between emotional memory and self-reported depression. Nineteen pwALS and 19 healthy controls were assessed on measures of emotional processing, emotional memory, verbal memory and depression. Although pwALS and controls did not differ significantly on measures of emotional memory, a subgroup of patients performed poorly on an emotional recognition task. With regard to emotional processing, pwALS gave significantly stronger ratings of emotional valence to positive words than to negative words. Higher ratings of emotional words were associated with better recall in controls but not pwALS. Self-reported depression and emotional processing or memory variables were not associated in either group. In conclusion, the results from this small study suggest that a subgroup of pwALS may show weakened ‘emotional enhancement’, although in the current sample this may reflect general memory impairment rather than specific changes in emotional memory. Nonetheless, different patterns of processing of emotionally-salient material by pwALS may have care and management-related implications. PMID:22873560

  19. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.

    PubMed

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-20

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.

  20. Integer, fractional, and anomalous quantum Hall effects explained with Eyring's rate process theory and free volume concept.

    PubMed

    Hao, Tian

    2017-02-22

    The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.

  1. Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron.

    PubMed

    Zhou, Jun; Sun, Qianyu; Chen, Dan; Wang, Hongyu; Yang, Kai

    2017-10-01

    In this study, the hydrogenotrophic denitrifying bacterium Ochrobactrum anthropi was added in to the process of nitrate removal by starch-stabilized nanoscale zero valent iron (nZVI) to minimize undesirable ammonium. The ammonium control performance and cooperative mechanism of this combined process were investigated, and batch experiments were conducted to discuss the effects of starch-stabilized nZVI dose, biomass, and pH on nitrate reduction and ammonium control of this system. The combined system achieved satisfactory performance because the anaerobic iron corrosion process generates H 2 , which is used as an electron donor for the autohydrogenotrophic bacterium Ochrobactrum anthropi to achieve the autohydrogenotrophic denitrification process converting nitrate to N 2 . When starch-stabilized nZVI dose was increased from 0.5 to 2.0 g/L, nitrate reduction rate gradually increased, and ammonium yield also increased from 9.40 to 60.51 mg/L. Nitrate removal rate gradually decreased and ammonium yield decreased from 14.93 to 2.61 mg/L with initial OD 600 increasing from 0.015 to 0.080. The abiotic Fe 0 reduction process played a key role in nitrate removal in an acidic environment and generated large amounts of ammonium. Meanwhile, the nitrate removal rate decreased and ammonium yield also reduced in an alkaline environment.

  2. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal rate constant for water indicating significant sediment resuspension episodes. It appears that these sediment resuspension events are aperiodic and control the loading and the chemical retention capability of Piedmont Pond for N,P,TOC. These calculated rate constants reflect the differing internal loading processes for each component and suggest means and mechanisms for the use of ponds in water quality management.

  3. Development of extended release dosage forms using non-uniform drug distribution techniques.

    PubMed

    Huang, Kuo-Kuang; Wang, Da-Peng; Meng, Chung-Ling

    2002-05-01

    Development of an extended release oral dosage form for nifedipine using the non-uniform drug distribution matrix method was conducted. The process conducted in a fluid bed processing unit was optimized by controlling the concentration gradient of nifedipine in the coating solution and the spray rate applied to the non-pareil beads. The concentration of nifedipine in the coating was controlled by instantaneous dilutions of coating solution with polymer dispersion transported from another reservoir into the coating solution at a controlled rate. The USP dissolution method equipped with paddles at 100 rpm in 0.1 N hydrochloric acid solution maintained at 37 degrees C was used for the evaluation of release rate characteristics. Results indicated that (1) an increase in the ethyl cellulose content in the coated beads decreased the nifedipine release rate, (2) incorporation of water-soluble sucrose into the formulation increased the release rate of nifedipine, and (3) adjustment of the spray coating solution and the transport rate of polymer dispersion could achieve a dosage form with a zero-order release rate. Since zero-order release rate and constant plasma concentration were achieved in this study using the non-uniform drug distribution technique, further studies to determine in vivo/in vitro correlation with various non-uniform drug distribution dosage forms will be conducted.

  4. Extreme Metal Music and Anger Processing

    PubMed Central

    Sharman, Leah; Dingle, Genevieve A.

    2015-01-01

    The claim that listening to extreme music causes anger, and expressions of anger such as aggression and delinquency have yet to be substantiated using controlled experimental methods. In this study, 39 extreme music listeners aged 18–34 years were subjected to an anger induction, followed by random assignment to 10 min of listening to extreme music from their own playlist, or 10 min silence (control). Measures of emotion included heart rate and subjective ratings on the Positive and Negative Affect Scale (PANAS). Results showed that ratings of PANAS hostility, irritability, and stress increased during the anger induction, and decreased after the music or silence. Heart rate increased during the anger induction and was sustained (not increased) in the music condition, and decreased in the silence condition. PANAS active and inspired ratings increased during music listening, an effect that was not seen in controls. The findings indicate that extreme music did not make angry participants angrier; rather, it appeared to match their physiological arousal and result in an increase in positive emotions. Listening to extreme music may represent a healthy way of processing anger for these listeners. PMID:26052277

  5. Control of the exercise hyperpnoea in humans: a modeling perspective.

    PubMed

    Ward, S A

    2000-09-01

    Models of the exercise hyperpnoea have classically incorporated elements of proportional feedback (carotid and medullary chemosensory) and feedforward (central and/or peripheral neurogenic) control. However, the precise details of the control process remain unresolved, reflecting in part both technical and interpretational limitations inherent in isolating putative control mechanisms in the intact human, and also the challenges to linear control theory presented by multiple-input integration, especially with regard to the ventilatory and gas-exchange complexities encountered at work rates which engender a metabolic acidosis. While some combination of neurogenic, chemoreflex and circulatory-coupled processes are likely to contribute to the control, the system appears to evidence considerable redundancy. This, coupled with the lack of appreciable error signals in the mean levels of arterial blood gas tensions and pH over a wide range of work rates, has motivated the formulation of innovative control models that reflect not only spatial interactions but also temporal interactions (i.e. memory). The challenge is to discriminate between robust competing control models that: (a) integrate such processes within plausible physiological equivalents; and (b) account for both the dynamic and steady-state system response over a range of exercise intensities. Such models are not yet available.

  6. Anoxic control of odour and corrosion from sewer networks.

    PubMed

    Yang, W; Vollertsen, J; Hvitved-Jacobsen, T

    2004-01-01

    Anoxic processes can effectively control odour and corrosion in sewer networks. However, the absence of fundamental knowledge on the kinetics of anoxic transformation of sewage prevents the engineering applications of anoxic control in sewers. This paper focuss on a basic understanding of the anoxic transformations needed for a conceptual simulation of the water phase processes. Experiments conducted in batch reactors have shown that nitrite builds up in wastewater during denitrification. Part of the nitrate-reducing biomass is capable of utilizing nitrite after nitrate is depleted. Compared with aerobic transformation, anoxic processes have low values of maximum growth rate of the biomass and also a low endogenous respiration rate. Heterotrophic yield determined under anoxic conditions, at level of 0.25 mmol e-eq (mmol e-eq)(-1), accounted for less than 40% of the corresponding aerobic values.

  7. Long-term health experience of jet engine manufacturing workers: VIII. glioblastoma incidence in relation to workplace experiences with parts and processes.

    PubMed

    Marsh, Gary M; Youk, Ada O; Buchanich, Jeanine M; Downing, Sarah; Kennedy, Kathleen J; Esmen, Nurtan A; Hancock, Roger P; Lacey, Steven E; Pierce, Jennifer S; Fleissner, Mary Lou

    2013-06-01

    To determine whether glioblastoma (GB) incidence rates among jet engine manufacturing workers were associated with workplace experiences with specific parts produced and processes performed. Subjects were 210,784 workers employed between 1952 and 2001. We conducted nested case-control and cohort incidence studies with focus on 277 GB cases. We estimated time experienced with 16 part families, 4 process categories, and 32 concurrent part-process combinations with 20 or more GB cases. In both the cohort and case-control studies, none of the part families, process categories, or both considered was associated with increased GB risk. If not due to chance alone, the not statistically significantly elevated GB rates in the North Haven plant may reflect external occupational factors or nonoccupational factors unmeasured in the current evaluation.

  8. Speed isn’t everything: Complex processing speed measures mask individual differences and developmental changes in executive control

    PubMed Central

    Cepeda, Nicholas J.; Blackwell, Katharine A.; Munakata, Yuko

    2012-01-01

    The rate at which people process information appears to influence many aspects of cognition across the lifespan. However, many commonly accepted measures of “processing speed” may require goal maintenance, manipulation of information in working memory, and decision-making, blurring the distinction between processing speed and executive control and resulting in overestimation of processing-speed contributions to cognition. This concern may apply particularly to studies of developmental change, as even seemingly simple processing speed measures may require executive processes to keep children and older adults on task. We report two new studies and a re-analysis of a published study, testing predictions about how different processing speed measures influence conclusions about executive control across the life span. We find that the choice of processing speed measure affects the relationship observed between processing speed and executive control, in a manner that changes with age, and that choice of processing speed measure affects conclusions about development and the relationship among executive control measures. Implications for understanding processing speed, executive control, and their development are discussed. PMID:23432836

  9. The Coupled Photothermal Reaction and Transport in a Laser Additive Metal Nanolayer Simultaneous Synthesis and Pattering for Flexible Electronics.

    PubMed

    Tsai, Song-Ling; Liu, Yi-Kai; Pan, Heng; Liu, Chien-Hung; Lee, Ming-Tsang

    2016-01-08

    The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively deposits target material in a preselected pattern on the substrate. In this study, we experimentally investigated the effect of the processing parameters and type and concentration of the additive solvent on the properties and growth rate of the resulting metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with substantial viscosity yield metal films with superior physical properties. A numerical analysis was also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena and the effects on the metal film growth rate. To complete the simulation, the optical properties of the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of the temperature field and the thermally induced flow associated with the moving heat source are discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A semi-empirical model for estimating the metal film growth rate using this process was developed based on these results. From the experimental and numerical results, it is seen that, owing to the increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP process controls the thickness and improves the uniformity of the fabricated metal film. The growth rate and resulting thickness of the metal film can also be regulated by adjustment of the processing parameters, and thus can be utilized for controllable additive nano/microfabrication.

  10. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization.

    PubMed

    Kastner, Elisabeth; Kaur, Randip; Lowry, Deborah; Moghaddam, Behfar; Wilkinson, Alexander; Perrie, Yvonne

    2014-12-30

    Microfluidics has recently emerged as a new method of manufacturing liposomes, which allows for reproducible mixing in miliseconds on the nanoliter scale. Here we investigate microfluidics-based manufacturing of liposomes. The aim of these studies was to assess the parameters in a microfluidic process by varying the total flow rate (TFR) and the flow rate ratio (FRR) of the solvent and aqueous phases. Design of experiment and multivariate data analysis were used for increased process understanding and development of predictive and correlative models. High FRR lead to the bottom-up synthesis of liposomes, with a strong correlation with vesicle size, demonstrating the ability to in-process control liposomes size; the resulting liposome size correlated with the FRR in the microfluidics process, with liposomes of 50 nm being reproducibly manufactured. Furthermore, we demonstrate the potential of a high throughput manufacturing of liposomes using microfluidics with a four-fold increase in the volumetric flow rate, maintaining liposome characteristics. The efficacy of these liposomes was demonstrated in transfection studies and was modelled using predictive modeling. Mathematical modelling identified FRR as the key variable in the microfluidic process, with the highest impact on liposome size, polydispersity and transfection efficiency. This study demonstrates microfluidics as a robust and high-throughput method for the scalable and highly reproducible manufacture of size-controlled liposomes. Furthermore, the application of statistically based process control increases understanding and allows for the generation of a design-space for controlled particle characteristics. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Cognitive demands and the relationship between age and workload in apron control.

    PubMed

    Müller, Andreas; Petru, Raluca; Angerer, Peter

    2011-01-01

    Apron controllers (ACs) determine the taxiways for aircraft entering the apron area until they reach their parking positions and vice versa. The aims of this study were to identify age-sensitive job requirements of apron control (Study 1), and to investigate the relationship between age of ACs and their workload (Study 2). Study 1: There were 14 experienced ACs who assessed the job requirements of apron control with the Fleishman-Job Analyses Survey. Additionally, during one shift, the number of parallel processed traffic data sets (indicating memory-load) and the number of delivered radio messages (indicating processing speed requirements) were assessed. Study 2: There were 30 ACs (age: 23-51 yr) who volunteered for trials during late shifts at an international airport. ACs assessed their subjective workload (NASA-Task Load Index) at four times during the shift and carried out an attention test (d2) before and after the shift. Moreover, their heart rate was assessed during the shift and in a reference period. Study 1: Results indicate that apron control requires especially high levels of memory-load and processing speed. Study 2: Hierarchical regression analyses revealed a u-shaped relationship between age and subjective workload (beta = 0.59) as well as heart rate (beta = 0.33). Up to the age of about 35-37 yr, workload and heart rate decreased with age, but afterwards the relationship became positive. There was no association between chronological age and attention performance. There is a need for age adequate job design in apron control that should especially aim at the reduction of memory-load and processing speed.

  12. Searching for the Self: An Identity Control Theory Approach to Triggers of Occupational Exploration

    ERIC Educational Resources Information Center

    Anderson, Katherine L.; Mounts, Nina S.

    2012-01-01

    Identity control theory researchers have found evidence for two processes of identity development (identity defense and identity change) and have theorized a third process (identity exploration). College students (N = 123) self-rated as high or low in occupational identity certainty and importance received self-discrepant feedback to induce…

  13. Using the Multipole Resonance Probe to Stabilize the Electron Density During a Reactive Sputter Process

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter

    2015-09-01

    Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.

  14. Biogasification of papaya processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, P.Y.; Weitzenhoff, M.H.; Moy, J.H.

    1984-01-01

    Biogasification of papaya processing wastes for pollution control and energy utilization is feasible. The biogasification process with sludge recycling permits smaller reactor volume without any deterioration of CH4 production rate and CH4 content. Appropriate design and operational criteria for biogasification processing of papaya wastes were developed.

  15. Process-based principles for restoring river ecosystems

    Treesearch

    Timothy J. Beechie; David A. Sear; Julian D. Olden; George R. Pess; John M. Buffington; Hamish Moir; Philip Roni; Michael M. Pollock

    2010-01-01

    Process-based restoration aims to reestablish normative rates and magnitudes of physical, chemical, and biological processes that sustain river and floodplain ecosystems. Ecosystem conditions at any site are governed by hierarchical regional, watershed, and reach-scale processes controlling hydrologic and sediment regimes; floodplain and aquatic habitat...

  16. A self-regulating biomolecular comparator for processing oscillatory signals

    PubMed Central

    Agrawal, Deepak K.; Franco, Elisa; Schulman, Rebecca

    2015-01-01

    While many cellular processes are driven by biomolecular oscillators, precise control of a downstream on/off process by a biochemical oscillator signal can be difficult: over an oscillator's period, its output signal varies continuously between its amplitude limits and spends a significant fraction of the time at intermediate values between these limits. Further, the oscillator's output is often noisy, with particularly large variations in the amplitude. In electronic systems, an oscillating signal is generally processed by a downstream device such as a comparator that converts a potentially noisy oscillatory input into a square wave output that is predominantly in one of two well-defined on and off states. The comparator's output then controls downstream processes. We describe a method for constructing a synthetic biochemical device that likewise produces a square-wave-type biomolecular output for a variety of oscillatory inputs. The method relies on a separation of time scales between the slow rate of production of an oscillatory signal molecule and the fast rates of intermolecular binding and conformational changes. We show how to control the characteristics of the output by varying the concentrations of the species and the reaction rates. We then use this control to show how our approach could be applied to process different in vitro and in vivo biomolecular oscillators, including the p53-Mdm2 transcriptional oscillator and two types of in vitro transcriptional oscillators. These results demonstrate how modular biomolecular circuits could, in principle, be combined to build complex dynamical systems. The simplicity of our approach also suggests that natural molecular circuits may process some biomolecular oscillator outputs before they are applied downstream. PMID:26378119

  17. Exploring perceived control and self-rated health in re-admissions among younger adults: A retrospective study.

    PubMed

    Gabay, Gillie

    2016-05-01

    Although health promotion calls for patient empowerment, it is not integrated in reducing re-admissions. This study examines the link among patient perceived control, self-rated health and fewer hospital re-admissions. An empirical explorative retrospective cross-sectional study with 208 respondents aged 40-65 with poor health and identical health plans. All measures hold good psychometric properties. Self-rated health was strongly related to fewer re-admissions. Perceived control moderated the relationship between self-rated health and fewer re-admissions. Perceived control and self-rated health, together, contributed 5.2% to the variance in re-admissions. Perceived control and perceived health status each explained a different share of the variance of re-admissions. Together, these perceptions reduced re-admissions by .40. Patient-clinician communication upon discharge may be a new direction to reduce re-admissions, improve delivery of care and promote health. To reduce re-admissions, managements need to invest in restructuring the patient discharge process. A physician-patient dialogue shaping patient perceptions about their health status, perceived room for health improvement, and available internal and external resources may make a difference. Findings stress the need to allocate more time and resources for discharge communication processes and for physician training on psycho-social skills that may empower patients upon discharge. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Implementation of an adaptive controller for the startup and steady-state running of a biomethanation process operated in the CSTR mode.

    PubMed

    Renard, P; Van Breusegem, V; Nguyen, M T; Naveau, H; Nyns, E J

    1991-10-20

    An adaptive control algorithm has been implemented on a biomethanation process to maintain propionate concentration, a stable variable, at a given low value, by steering the dilution rate. It was thereby expected to ensure the stability of the process during the startup and during steady-state running with an acceptable performance. The methane pilot reactor was operated in the completely mixed, once-through mode and computer-controlled during 161 days. The results yielded the real-life validation of the adaptive control algorithm, and documented the stability and acceptable performance expected.

  19. Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater.

    PubMed

    Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi

    2018-05-18

    In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1  d -1 in the control compared to 2.36 g L -1  d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Laser Hot Wire Process: A Novel Process for Near-Net Shape Fabrication for High-Throughput Applications

    NASA Astrophysics Data System (ADS)

    Kottman, Michael; Zhang, Shenjia; McGuffin-Cawley, James; Denney, Paul; Narayanan, Badri K.

    2015-03-01

    The laser hot wire process has gained considerable interest for additive manufacturing applications, leveraging its high deposition rate, low dilution, thermal stability, and general metallurgical control including the ability to introduce and preserve desired meta-stable phases. Recent advancements in closed-loop process control and laser technology have increased productivity, process stability, and control of deposit metallurgy. The laser hot wire process has shown success in several applications: repairing and rejuvenating casting dies, depositing a variety of alloys including abrasion wear-resistant overlays with solid and tubular wires, and producing low-dilution (<5%) nickel alloy overlays for corrosion applications. The feasibility of fabricating titanium buildups is being assessed for aerospace applications.

  1. GHG emissions during the high-rate production of compost using standard and advanced aeration strategies.

    PubMed

    Puyuelo, B; Gea, T; Sánchez, A

    2014-08-01

    In this study, we have evaluated different strategies for the optimization of the aeration during the active thermophilic stage of the composting process of source-selected Organic Fraction of Municipal Solid Waste (or biowaste) using reactors at bench scale (50L). These strategies include: typical cyclic aeration, oxygen feedback controller and a new self-developed controller based on the on-line maximization of the oxygen uptake rate (OUR) during the process. Results highlight differences found in the emission of most representative greenhouse gases (GHG) emitted from composting (methane and nitrous oxide) as well as in gases typically related to composting odor problems (ammonia as typical example). Specifically, the cyclic controller presents emissions that can double that of OUR controller, whereas oxygen feedback controller shows a better performance with respect to the cyclic controller. A new parameter, the respiration index efficiency, is presented to quantitatively evaluate the GHG emissions and, in consequence, the main negative environmental impact of the composting process. Other aspects such as the stability of the compost produced and the consumption of resources are also evaluated for each controller. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Practical and Theoretical Requirements for Controlling Rater Stringency in Peer Review.

    ERIC Educational Resources Information Center

    Cason, Gerald J.; Cason, Carolyn L.

    This study describes a computer based, performance rating information processing system, performance rating theory, and programs for the application of the theory to obtain ratings free from the effects of reviewer stringency in reviewing abstracts of conference papers. Originally, the Performance Rating (PR) System was used to evaluate the…

  3. Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stermer, D.L.; Gale, L.G.

    1989-03-01

    Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less

  4. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  5. Predictive displays for a process-control schematic interface.

    PubMed

    Yin, Shanqing; Wickens, Christopher D; Helander, Martin; Laberge, Jason C

    2015-02-01

    Our objective was to examine the extent to which increasing precision of predictive (rate of change) information in process control will improve performance on a simulated process-control task. Predictive displays have been found to be useful in process control (as well as aviation and maritime industries). However, authors of prior research have not examined the extent to which predictive value is increased by increasing predictor resolution, nor has such research tied potential improvements to changes in process control strategy. Fifty nonprofessional participants each controlled a simulated chemical mixture process (honey mixer simulation) that simulated the operations found in process control. Participants in each of five groups controlled with either no predictor or a predictor ranging in the resolution of prediction of the process. Increasing detail resolution generally increased the benefit of prediction over the control condition although not monotonically so. The best overall performance, combining quality and predictive ability, was obtained by the display of intermediate resolution. The two displays with the lowest resolution were clearly inferior. Predictors with higher resolution are of value but may trade off enhanced sensitivity to variable change (lower-resolution discrete state predictor) with smoother control action (higher-resolution continuous predictors). The research provides guidelines to the process-control industry regarding displays that can most improve operator performance.

  6. Low-damage direct patterning of silicon oxide mask by mechanical processing

    PubMed Central

    2014-01-01

    To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891

  7. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOEpatents

    Knight, James A.; Gorton, Charles W.

    1990-01-02

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  8. Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction

    DOE PAGES

    Edmundson, S.; Huesemann, M.; Kruk, R.; ...

    2017-07-25

    Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day -1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day -1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant reduction in media cost and improves the prospects for industrial scale, algae-based biofuels.« less

  9. Phosphorus and nitrogen recycle following algal bio-crude production via continuous hydrothermal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmundson, S.; Huesemann, M.; Kruk, R.

    Phosphorus and nitrogen are essential components of microalgal growth media. Critical to a wide range of biochemical processes, they commonly limit primary productivity. Recycling elemental phosphorus and fixed nitrogen after fuel conversion via hydrothermal liquefaction (HTL) of algae biomass reduces the need for mined phosphorus and synthetic nitrogen resources. We used scenedesmus obliquus DOE 0152.Z and Chlorella sorokiniana DOE1412 as test organisms in assessing nutrient recycle of phosphorus from filtered solids collected downstream of the HTL reactor and nitrogen collected from the aqueous phase after gravimetric biocrude separation. Maximum specific growth rates were measured in growth media using HTL wastemore » as the sole source of either phosphorus or nitrogen and were compared to an algal growth medium control (BG-11). The maximum specific growth rate of both organisms in the recycled phosphorus medium were nearly identical to rates observed in the control medium. Both organisms showed significantly reduced growth rates in the recycled nitrogen medium. C. sorokiniana DOE1412 adapted after several days of exposure whereas S. obliquus DOE0152.Z exhibited poor adaptability to the recycled nitrogen medium. After adaptation, growth rates observed with C. sorokiniana DOE1412 in the recycled nitrogen medium were 3.02 (± 0.13) day -1, 89% of the control medium (3.40 ± 0.21). We further tested maximum specific growth rates of C. sorokiniana DOE1412 in a medium derived entirely from HTL byproducts, completely replacing all components including nitrogen and phosphorus. In this medium we observed rates of 2.70 ± 0.05 day -1, 79% of the control. By adding trace metals to this recycled medium we improved growth rates significantly to 3.10 ± 0.10, 91% of the control, which indicates a critical element is lost in the conversion process. Recycling elemental resources such as phosphorus and nitrogen from the HTL biofuel conversion process can provide a significant reduction in media cost and improves the prospects for industrial scale, algae-based biofuels.« less

  10. A new method to process testicular sperm: combining enzymatic digestion, accumulation of spermatozoa, and stimulation of motility.

    PubMed

    Wöber, Martina; Ebner, Thomas; Steiner, Sarah L; Strohmer, Heinz; Oppelt, Peter; Plas, Eugen; Obruca, Andreas

    2015-03-01

    In azoospermia processing of the TESE material often results in a sample of reduced purity. This prospective study was set up to clarify whether a combination of enzymatic digestion, density gradient centrifugation and stimulation of motility (where indicated) is a feasible option in TESE patients. A total of 63 samples (showing spermatozoa) were processed by the present tripartite processing method. The resulting sperm sample of high purity was directly used for ICSI and subsequent cryopreservation when quality of the accumulated sperm sample allowed for it (n = 39 cycles). Compared to the control group blastocyst formation rate in the present tripartite processing technique was significantly (P < 0.01) higher (55.2 vs. 43.7%). Fertilization rates differed significantly (P < 0.001) between cases in which motile sperm could be used (58.4%) compared to ICSI with immotile sperm (45.0%). Clinical pregnancy rate per transfer was 40.0% (24/60) using fresh and 21.6% (8/37) with cryopreserved TESE material. The calculated live birth rates were 31.7 and 21.6%, respectively. Thirty-five healthy children were born. A comparison with a control group suggests that the present approach using standardized ready-to-use products is efficient and reliable. Presumably healthy live births further indicate the safety of the procedure.

  11. Predictive control of hollow-fiber bioreactors for the production of monoclonal antibodies.

    PubMed

    Dowd, J E; Weber, I; Rodriguez, B; Piret, J M; Kwok, K E

    1999-05-20

    The selection of medium feed rates for perfusion bioreactors represents a challenge for process optimization, particularly in bioreactors that are sampled infrequently. When the present and immediate future of a bioprocess can be adequately described, predictive control can minimize deviations from set points in a manner that can maximize process consistency. Predictive control of perfusion hollow-fiber bioreactors was investigated in a series of hybridoma cell cultures that compared operator control to computer estimation of feed rates. Adaptive software routines were developed to estimate the current and predict the future glucose uptake and lactate production of the bioprocess at each sampling interval. The current and future glucose uptake rates were used to select the perfusion feed rate in a designed response to deviations from the set point values. The routines presented a graphical user interface through which the operator was able to view the up-to-date culture performance and assess the model description of the immediate future culture performance. In addition, fewer samples were taken in the computer-estimated cultures, reducing labor and analytical expense. The use of these predictive controller routines and the graphical user interface decreased the glucose and lactate concentration variances up to sevenfold, and antibody yields increased by 10% to 43%. Copyright 1999 John Wiley & Sons, Inc.

  12. Ground robotic measurement of aeolian processes

    USDA-ARS?s Scientific Manuscript database

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These d...

  13. Collaboration processes and perceived effectiveness of integrated care projects in primary care: a longitudinal mixed-methods study.

    PubMed

    Valentijn, Pim P; Ruwaard, Dirk; Vrijhoef, Hubertus J M; de Bont, Antoinette; Arends, Rosa Y; Bruijnzeels, Marc A

    2015-10-09

    Collaborative partnerships are considered an essential strategy for integrating local disjointed health and social services. Currently, little evidence is available on how integrated care arrangements between professionals and organisations are achieved through the evolution of collaboration processes over time. The first aim was to develop a typology of integrated care projects (ICPs) based on the final degree of integration as perceived by multiple stakeholders. The second aim was to study how types of integration differ in changes of collaboration processes over time and final perceived effectiveness. A longitudinal mixed-methods study design based on two data sources (surveys and interviews) was used to identify the perceived degree of integration and patterns in collaboration among 42 ICPs in primary care in The Netherlands. We used cluster analysis to identify distinct subgroups of ICPs based on the final perceived degree of integration from a professional, organisational and system perspective. With the use of ANOVAs, the subgroups were contrasted based on: 1) changes in collaboration processes over time (shared ambition, interests and mutual gains, relationship dynamics, organisational dynamics and process management) and 2) final perceived effectiveness (i.e. rated success) at the professional, organisational and system levels. The ICPs were classified into three subgroups with: 'United Integration Perspectives (UIP)', 'Disunited Integration Perspectives (DIP)' and 'Professional-oriented Integration Perspectives (PIP)'. ICPs within the UIP subgroup made the strongest increase in trust-based (mutual gains and relationship dynamics) as well as control-based (organisational dynamics and process management) collaboration processes and had the highest overall effectiveness rates. On the other hand, ICPs with the DIP subgroup decreased on collaboration processes and had the lowest overall effectiveness rates. ICPs within the PIP subgroup increased in control-based collaboration processes (organisational dynamics and process management) and had the highest effectiveness rates at the professional level. The differences across the three subgroups in terms of the development of collaboration processes and the final perceived effectiveness provide evidence that united stakeholders' perspectives are achieved through a constructive collaboration process over time. Disunited perspectives at the professional, organisation and system levels can be aligned by both trust-based and control-based collaboration processes.

  14. Metals processing control by counting molten metal droplets

    DOEpatents

    Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.

    2000-01-01

    Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

  15. A meta-analysis of inhibitory-control deficits in patients diagnosed with Alzheimer's dementia.

    PubMed

    Kaiser, Anna; Kuhlmann, Beatrice G; Bosnjak, Michael

    2018-05-10

    The authors conducted meta-analyses to determine the magnitude of performance impairments in patients diagnosed with Alzheimer's dementia (AD) compared with healthy aging (HA) controls on eight tasks commonly used to measure inhibitory control. Response time (RT) and error rates from a total of 64 studies were analyzed with random-effects models (overall effects) and mixed-effects models (moderator analyses). Large differences between AD patients and HA controls emerged in the basic inhibition conditions of many of the tasks with AD patients often performing slower, overall d = 1.17, 95% CI [0.88-1.45], and making more errors, d = 0.83 [0.63-1.03]. However, comparably large differences were also present in performance on many of the baseline control-conditions, d = 1.01 [0.83-1.19] for RTs and d = 0.44 [0.19-0.69] for error rates. A standardized derived inhibition score (i.e., control-condition score - inhibition-condition score) suggested no significant mean group difference for RTs, d = -0.07 [-0.22-0.08], and only a small difference for errors, d = 0.24 [-0.12-0.60]. Effects systematically varied across tasks and with AD severity. Although the error rate results suggest a specific deterioration of inhibitory-control abilities in AD, further processes beyond inhibitory control (e.g., a general reduction in processing speed and other, task-specific attentional processes) appear to contribute to AD patients' performance deficits observed on a variety of inhibitory-control tasks. Nonetheless, the inhibition conditions of many of these tasks well discriminate between AD patients and HA controls. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Evolution and Control of 2219 Aluminum Microstructural Features Through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  17. Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System

    PubMed Central

    Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui

    2016-01-01

    To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833

  18. Redox Control For Hanford HLW Feeds VSL-12R2530-1, REV 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Matlack, Keith S.; Pegg, Ian L.

    2012-12-13

    The principal objectives of this work were to investigate the effects of processing simulated Hanford HLW at the estimated maximum concentrations of nitrates and oxalates and to identify strategies to mitigate any processing issues resulting from high concentrations of nitrates and oxalates. This report provides results for a series of tests that were performed on the DM10 melter system with simulated C-106/AY-102 HLW. The tests employed simulated HLW feeds containing variable amounts of nitrates and waste organic compounds corresponding to maximum concentrations proj ected for Hanford HLW streams in order to determine their effects on glass production rate, processing characteristics,more » glass redox conditions, melt pool foaming, and the tendency to form secondary phases. Such melter tests provide information on key process factors such as feed processing behavior, dynamic effects during processing, processing rates, off-gas amounts and compositions, foaming control, etc., that cannot be reliably obtained from crucible melts.« less

  19. Selective sequential precipitation of dissolved metals in mine drainage from coal mine

    NASA Astrophysics Data System (ADS)

    Yim, Giljae; Bok, Songmin; Ji, Sangwoo; Oh, Chamteut; Cheong, Youngwook; Han, Youngsoo; Ahn, Joosung

    2017-04-01

    In abandoned mines in Korea, a large amount of mine drainage continues to flow out and spread pollution. In purification of the mine drainage a massive amount of sludge is generated as waste. Since this metal sludge contains high Fe, Al and Mn oxides, developing the treatment method to recover homogeneous individual metal with high purity may beneficial to recycle waste metals as useful resources and reduce the amount of sludge production. In this regard, we established a dissolved metals selective precipitation process to treat Waryong Industry's mine drainage. The process that selectively precipitates metals dissolved in mine drainage is a continuous Fe-buffer-Al process, and each process consists of the neutralization tank, the coagulation tank, and the settling tank. Based on this process, this study verified the operational applicability of the Fe and Al selective precipitation. Our previous study revealed that high-purity Fe and Al precipitates could be recovered at a flow rate of 1.5 ton/day, while the lower purity was achieved when the rate was increased to about 3 ton/day due to the difficulty in reagent dosage control. In the current study was conducted to increase the capacity of the system to recover Fe and Al as high-purity precipitates at a flow rate of 10 ton/day with the ensured continuous operations by introducing an automatic reagent injection system. The previous study had a difficulty in controlling the pH and operating system continuously due to the manually controlled reagent injection system. To upgrade this and ensure the optimal pH in a stable way, a continuous reagent injection system was installed. The result of operation of the 10 ton/day system confirmed that the scaled-up process could maintain the stable recovery rates and purities of precipitates on site.

  20. Chlorination Kinetics of Titanium Nitride for Production of Titanium Tetrachloride from Nitrided Ilmenite

    NASA Astrophysics Data System (ADS)

    Ahmadi, Eltefat; Rezan, Sheikh Abdul; Baharun, Norlia; Ramakrishnan, Sivakumar; Fauzi, Ahmad; Zhang, Guangqing

    2017-10-01

    The kinetics of chlorination of titanium nitride (TiN) was investigated in the temperature range of 523 K to 673 K (250 °C to 400 °C). The results showed that the extent of chlorination slightly increased with increasing temperature and decreasing particle size of titanium nitride at constant flow rate of N2-Cl2 gas mixture. At 523 K (250 °C), the extent of chlorination was 85.6 pct in 60 minutes whereas at 673 K (400 °C), it was 97.7 pct investigated by weight loss measurement and confirmed by ICP analyses. The experimental results indicated that a shrinking unreacted core model with mixed-control mechanism governed the chlorination rate. It was observed that the surface chemical reaction of chlorine gas on the surface of TiN particles was rate controlling in the initial stage and, during later stage, internal (pore) diffusion through the intermediate product layer was rate controlling step. Overall the process follows the mixed-control model incorporating both chemical reaction and internal diffusion control. The activation energy for the chlorination of TiN was found to be about 10.97 kJ mol-1. In processing TiCl4 from TiN and TiO0.02C0.13N0.85, the solids involved in the chlorination process were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectrometer (EDX). The SEM/EDX results demonstrated the consumption of TiN particles with extent of chlorination that showed shrinking core behavior.

  1. Frontal Alpha Oscillations and Attentional Control: A Virtual Reality Neurofeedback Study.

    PubMed

    Berger, Anna M; Davelaar, Eddy J

    2018-05-15

    Two competing views about alpha oscillations suggest that cortical alpha reflect either cortical inactivity or cortical processing efficiency. We investigated the role of alpha oscillations in attentional control, as measured with a Stroop task. We used neurofeedback to train 22 participants to increase their level of alpha amplitude. Based on the conflict/control loop theory, we selected to train prefrontal alpha and focus on the Gratton effect as an index of deployment of attentional control. We expected an increase or a decrease in the Gratton effect with increase in neural learning depending on whether frontal alpha oscillations reflect cortical idling or enhanced processing efficiency, respectively. In order to induce variability in neural learning beyond natural occurring individual differences, we provided half of the participants with feedback on alpha amplitude in a 3-dimensional (3D) virtual reality environment and the other half received feedback in a 2D environment. Our results showed variable neural learning rates, with larger rates in the 3D compared to the 2D group, corroborating prior evidence of individual differences in EEG-based learning and the influence of a virtual environment. Regression analyses revealed a significant association between the learning rate and changes on deployment of attentional control, with larger learning rates being associated with larger decreases in the Gratton effect. This association was not modulated by feedback medium. The study supports the view of frontal alpha oscillations being associated with efficient neurocognitive processing and demonstrates the utility of neurofeedback training in addressing theoretical questions in the non-neurofeedback literature. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. [Anaerobic membrane bioreactors for treating agricultural and food processing wastewater at high strength].

    PubMed

    Wei, Yuan-Song; Yu, Da-Wei; Cao, Lei

    2014-04-01

    As the second largest amounts of COD discharged in 41 kinds of industrial wastewater, it is of great urgency for the agricultural and food processing industry to control water pollution and reduce pollutants. Generally the agricultural and food processing industrial wastewater with high strength COD of 8 000-30 000 mg x L(-1), is mainly treated with anaerobic and aerobic processes in series, but which exists some issues of long process, difficult maintenance and high operational costs. Through coupling anaerobic digestion and membrane separation together, anaerobic membrane bioreactor (AnMBR) has typical advantages of high COD removal efficiency (92%-99%), high COD organic loading rate [2.3-19.8 kg x (m3 x d)(-1)], little sludge discharged (SRT > 40 d) and low cost (HRT of 8-12 h). According to COD composition of high strength industrial wastewater, rate-limiting step of methanation could be either hydrolysis and acidification or methanogenesis. Compared with aerobic membrane bioreactor (MBR), membrane fouling of AnMBR is more complicated in characterization and more difficult in control. Measures for membrane fouling control of AnMBR are almost the same as those of MBR, including cross flow, air sparging and membrane relaxation. For meeting discharging standard of food processing wastewater with high strength, AnMBR is a promising technology with very short process, by enhancing COD removal efficiency, controlling membrane fouling and improving energy recovery.

  3. Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts

    PubMed Central

    Backhausen, Lea L.; Herting, Megan M.; Buse, Judith; Roessner, Veit; Smolka, Michael N.; Vetter, Nora C.

    2016-01-01

    In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g., FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e., determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here, we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies. PMID:27999528

  4. 49 CFR Appendix B to Part 385 - Explanation of Safety Rating Process

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... operational controls. These are indicative of breakdowns in a carrier's management controls. An example of a... are those identified as such where noncompliance relates to management and/or operational controls. These are indicative of breakdowns in a carrier's management controls. An example of a critical...

  5. 49 CFR Appendix B to Part 385 - Explanation of Safety Rating Process

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... operational controls. These are indicative of breakdowns in a carrier's management controls. An example of a... are those identified as such where noncompliance relates to management and/or operational controls. These are indicative of breakdowns in a carrier's management controls. An example of a critical...

  6. Landslides and rock fall processes in the proglacial area of the Gepatsch glacier, Tyrol, Austria - Quantitative assessment of controlling factors and process rates

    NASA Astrophysics Data System (ADS)

    Vehling, Lucas; Rohn, Joachim; Moser, Michael

    2013-04-01

    Due to the rapid deglaciation since 1850, lithological structures and topoclimatic factors, mass movements like rock fall, landslides and complex processes are important contributing factors to sediment transport and modification of the earth's surface in the steep, high mountain catchment of the Gepatsch reservoir. Contemporary geotechnical processes, mass movement deposits, their source areas, and controlling factors like material properties and relief parameters are mapped in the field, on Orthofotos and on digital elevation models. The results are presented in an Arc-Gis based geotechnical map. All mapped mass movements are stored in an Arc-Gis geodatabase and can be queried regarding properties, volume and controlling factors, so that statistical analyses can be conducted. The assessment of rock wall retreat rates is carried out by three different methods in multiple locations, which differ in altitude, exposition, lithology and deglaciation time: Firstly, rock fall processes and rates are investigated in detail on five rock fall collector nets with an overall size of 750 m2. Rock fall particles are gathered, weighed and grain size distribution is detected by sieving and measuring the diameter of the particles to distinct between rock fall processes and magnitudes. Rock wall erosion processes like joint formation and expansions are measured with high temporal resolution by electrical crack meters, together with rock- and air temperature. Secondly, in cooperation with the other working groups in the PROSA project, rock fall volumes are determined with multitemporal terrestrial laserscanning from several locations. Lately, already triggered rock falls are accounted by mapping the volume of the deposit and calculating of the bedrock source area. The deposition time span is fixed by consideration of the late Holocene lateral moraines and analysing historical aerial photographs, so that longer term rock wall retreat rates can be calculated. In order to limit homogenous bedrock sections for calculating specific rock wall retreat rates and to extrapolate the local determinated rock wall retreat rates to larger scale, bedrock areas will be divided into units of similar morphodynamic intensities which will be therefore classified by a rock mass strength (RMS) system. The RMS-System contains lithological and topoclimatic factors but also takes the measured rock wall retreat rates into account.

  7. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  8. Fluidized bed selective pyrolysis of coal

    DOEpatents

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  9. Temperature and melt solid interface control during crystal growth

    NASA Technical Reports Server (NTRS)

    Batur, Celal

    1990-01-01

    Findings on the adaptive control of a transparent Bridgman crystal growth furnace are summarized. The task of the process controller is to establish a user specified axial temperature profile by controlling the temperatures in eight heating zones. The furnace controller is built around a computer. Adaptive PID (Proportional Integral Derivative) and Pole Placement control algorithms are applied. The need for adaptive controller stems from the fact that the zone dynamics changes with respect to time. The controller was tested extensively on the Lead Bromide crystal growth. Several different temperature profiles and ampoule's translational rates are tried. The feasibility of solid liquid interface quantification by image processing was determined. The interface is observed by a color video camera and the image data file is processed to determine if the interface is flat, convex or concave.

  10. Goal selection versus process control in a brain-computer interface based on sensorimotor rhythms.

    PubMed

    Royer, Audrey S; He, Bin

    2009-02-01

    In a brain-computer interface (BCI) utilizing a process control strategy, the signal from the cortex is used to control the fine motor details normally handled by other parts of the brain. In a BCI utilizing a goal selection strategy, the signal from the cortex is used to determine the overall end goal of the user, and the BCI controls the fine motor details. A BCI based on goal selection may be an easier and more natural system than one based on process control. Although goal selection in theory may surpass process control, the two have never been directly compared, as we are reporting here. Eight young healthy human subjects participated in the present study, three trained and five naïve in BCI usage. Scalp-recorded electroencephalograms (EEG) were used to control a computer cursor during five different paradigms. The paradigms were similar in their underlying signal processing and used the same control signal. However, three were based on goal selection, and two on process control. For both the trained and naïve populations, goal selection had more hits per run, was faster, more accurate (for seven out of eight subjects) and had a higher information transfer rate than process control. Goal selection outperformed process control in every measure studied in the present investigation.

  11. Feedback enhanced plasma spray tool

    DOEpatents

    Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee

    2005-11-22

    An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.

  12. Sensitivity to musical emotion is influenced by tonal structure in congenital amusia.

    PubMed

    Jiang, Cunmei; Liu, Fang; Wong, Patrick C M

    2017-08-08

    Emotional communication in music depends on multiple attributes including psychoacoustic features and tonal system information, the latter of which is unique to music. The present study investigated whether congenital amusia, a lifelong disorder of musical processing, impacts sensitivity to musical emotion elicited by timbre and tonal system information. Twenty-six amusics and 26 matched controls made tension judgments on Western (familiar) and Indian (unfamiliar) melodies played on piano and sitar. Like controls, amusics used timbre cues to judge musical tension in Western and Indian melodies. While controls assigned significantly lower tension ratings to Western melodies compared to Indian melodies, thus showing a tonal familiarity effect on tension ratings, amusics provided comparable tension ratings for Western and Indian melodies on both timbres. Furthermore, amusics rated Western melodies as more tense compared to controls, as they relied less on tonality cues than controls in rating tension for Western melodies. The implications of these findings in terms of emotional responses to music are discussed.

  13. Development of a low-pressure materials pre-treatment process for improved energy efficiency

    NASA Astrophysics Data System (ADS)

    Lee, Kwanghee; You, Byung Don

    2017-09-01

    Low pressure materials pre-treatment process has been developed as an alternative to the existing high-temperature sludge drying, limestone calcination, and limonite dehydroxylation. Using the thermodynamic equilibrium relationship between temperature and pressure represented by the Clausius-Clapeyron equation, the operational temperature of these reactions could be lowered at reduced pressure for increased energy efficiency. For industrial sludge drying, the evaporation rate was controlled by interfacial kinetics showing a constant rate with time and significant acceleration in the reaction could be observed with reduced pressure. At this modified reaction rate under low pressure, the rate was also partially controlled by mass transfer. Temperature of limestone calcination was lowered, but the reaction was limited at the calculated equilibrium temperature of the Clausius-Clapeyron equation and slightly higher temperatures were required. The energy consumption during limestone calcination and limonite dehydroxylation were evaluated, where lower processing pressures could enhance the energy efficiency for limestone calcination, but limonite dehydroxylation could not achieve energy-savings due to the greater power consumption of the vacuum pump under lower pressure and reduced temperatures.

  14. Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants.

    PubMed

    Chatterjee, Abhijit; Voter, Arthur F

    2010-05-21

    We present a novel computational algorithm called the accelerated superbasin kinetic Monte Carlo (AS-KMC) method that enables a more efficient study of rare-event dynamics than the standard KMC method while maintaining control over the error. In AS-KMC, the rate constants for processes that are observed many times are lowered during the course of a simulation. As a result, rare processes are observed more frequently than in KMC and the time progresses faster. We first derive error estimates for AS-KMC when the rate constants are modified. These error estimates are next employed to develop a procedure for lowering process rates with control over the maximum error. Finally, numerical calculations are performed to demonstrate that the AS-KMC method captures the correct dynamics, while providing significant CPU savings over KMC in most cases. We show that the AS-KMC method can be employed with any KMC model, even when no time scale separation is present (although in such cases no computational speed-up is observed), without requiring the knowledge of various time scales present in the system.

  15. Vote Stuffing Control in IPTV-based Recommender Systems

    NASA Astrophysics Data System (ADS)

    Bhatt, Rajen

    Vote stuffing is a general problem in the functioning of the content rating-based recommender systems. Currently IPTV viewers browse various contents based on the program ratings. In this paper, we propose a fuzzy clustering-based approach to remove the effects of vote stuffing and consider only the genuine ratings for the programs over multiple genres. The approach requires only one authentic rating, which is generally available from recommendation system administrators or program broadcasters. The entire process is automated using fuzzy c-means clustering. Computational experiments performed over one real-world program rating database shows that the proposed approach is very efficient for controlling vote stuffing.

  16. Size and shape tunability of self-assembled InAs/GaAs nanostructures through the capping rate

    NASA Astrophysics Data System (ADS)

    Utrilla, Antonio D.; Grossi, Davide F.; Reyes, Daniel F.; Gonzalo, Alicia; Braza, Verónica; Ben, Teresa; González, David; Guzman, Alvaro; Hierro, Adrian; Koenraad, Paul M.; Ulloa, Jose M.

    2018-06-01

    The practical realization of epitaxial quantum dot (QD) nanocrystals led before long to impressive experimental advances in optoelectronic devices, as well as to the emergence of new technological fields. However, the necessary capping process is well-known to hinder a precise control of the QD morphology and therefore of the possible electronic structure required for certain applications. A straightforward approach is shown to tune the structural and optical properties of InAs/GaAs QDs without the need for any capping material different from GaAs or annealing process. The mere adjust of the capping rate allows controlling kinetically the QD dissolution process induced by the surface In-Ga intermixing taking place during overgrowth, determining the final metastable structure. While low capping rates make QDs evolve into more thermodynamically favorable quantum ring structures, increasing capping rates help preserve the QD height and shape, simultaneously improving the luminescence properties. Indeed, a linear relationship between capping rate and QD height is found, resulting in a complete preservation of the original QD geometry for rates above ∼2.0 ML s-1. In addition, the inhibition of In diffusion from the QDs top to the areas in between them yields thinner WLs, what could improve the performance of several QD-based optoelectronic devices.

  17. Propagation of measurement accuracy to biomass soft-sensor estimation and control quality.

    PubMed

    Steinwandter, Valentin; Zahel, Thomas; Sagmeister, Patrick; Herwig, Christoph

    2017-01-01

    In biopharmaceutical process development and manufacturing, the online measurement of biomass and derived specific turnover rates is a central task to physiologically monitor and control the process. However, hard-type sensors such as dielectric spectroscopy, broth fluorescence, or permittivity measurement harbor various disadvantages. Therefore, soft-sensors, which use measurements of the off-gas stream and substrate feed to reconcile turnover rates and provide an online estimate of the biomass formation, are smart alternatives. For the reconciliation procedure, mass and energy balances are used together with accuracy estimations of measured conversion rates, which were so far arbitrarily chosen and static over the entire process. In this contribution, we present a novel strategy within the soft-sensor framework (named adaptive soft-sensor) to propagate uncertainties from measurements to conversion rates and demonstrate the benefits: For industrially relevant conditions, hereby the error of the resulting estimated biomass formation rate and specific substrate consumption rate could be decreased by 43 and 64 %, respectively, compared to traditional soft-sensor approaches. Moreover, we present a generic workflow to determine the required raw signal accuracy to obtain predefined accuracies of soft-sensor estimations. Thereby, appropriate measurement devices and maintenance intervals can be selected. Furthermore, using this workflow, we demonstrate that the estimation accuracy of the soft-sensor can be additionally and substantially increased.

  18. Infrared Thermography For Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Lucky, Brian D.; Spiegel, Lyle B.; Hudyma, Russell M.

    1992-01-01

    Infrared imaging and image-data-processing system shows temperatures of joint during welding and provides data from which rates of heating and cooling determined. Information used to control welding parameters to ensure reliable joints, in materials which microstructures and associated metallurgical and mechanical properties depend strongly on rates of heating and cooling. Applicable to variety of processes, including tungsten/inert-gas welding; plasma, laser, and resistance welding; cutting; and brazing.

  19. Yaw rate control of an air bearing vehicle

    NASA Technical Reports Server (NTRS)

    Walcott, Bruce L.

    1989-01-01

    The results of a 6 week project which focused on the problem of controlling the yaw (rotational) rate the air bearing vehicle used on NASA's flat floor facility are summarized. Contained within is a listing of the equipment available for task completion and an evaluation of the suitability of this equipment. The identification (modeling) process of the air bearing vehicle is detailed as well as the subsequent closed-loop control strategy. The effectiveness of the solution is discussed and further recommendations are included.

  20. Microeconomics of process control in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.

    2003-06-01

    Process window control enables accelerated design-rule shrinks for both logic and memory manufacturers, but simple microeconomic models that directly link the effects of process window control to maximum profitability are rare. In this work, we derive these links using a simplified model for the maximum rate of profit generated by the semiconductor manufacturing process. We show that the ability of process window control to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process variation at the lot, wafer, x-wafer, x-field, and x-chip levels. We conclude that x-wafer and x-field CD control strategies will be critical enablers of density, performance and optimum profitability at the 90 and 65nm technology nodes. These analyses correlate well with actual factory data and often identify millions of dollars in potential incremental revenue and cost savings. As an example, we show that a scatterometry-based CD Process Window Monitor is an economically justified, enabling technology for the 65nm node.

  1. Control of a metalorganic chemical vapor deposition process for improved composition and thickness precision in compound semiconductors

    NASA Astrophysics Data System (ADS)

    Gaffney, Monique Suzanne

    1998-11-01

    Metalorganic chemical vapor deposition (MOCVD) is a process used to manufacture electronic and optoelectronic devices that has traditionally lacked real-time growth monitoring and control. Controlling the growth rate and composition using the existing sensors, as well as advanced monitoring systems developed in-house, is shown to improve device quality. Specific MOCVD growth objectives are transformed into controller performance goals. Group III bubbler concentration variations, which perturb both growth rate and composition precision, are identified to be the primary disturbances. First a feed forward control system was investigated, which used an ultrasonic concentration monitor, located upstream in the process. This control strategy resulted in improved regulation of the gallium delivery rate by cancelling the sensed gallium bubbler concentration disturbances via the injection mass flow controller. The controller performance is investigated by growing GaInAs/InP superlattices. Results of growths performed under normal operating conditions and also under large perturbations include X-ray diffraction from the samples as well as real-time sensor signal data. High quality superlattices that display up to eight orders of satellite peaks are obtained under the feed forward compensation scheme, demonstrating improved layer-to-layer reproducibility of thickness and composition. The success of the feed forward control demonstration led to the development of a more complex downstream feedback control system. An ultraviolet absorption monitor was fabricated and retrofitted as a feedback control signal. A control-oriented model of the downstream process was developed for the feedback controller synthesis. Although challenged with both the photolysis and multi-gas detection issues common to UV absorption monitors, closed loop control with the UV sensor was performed and proved to be an effective method of disturbance rejection. An InP/GaInAs test structure was grown under both open and closed loop conditions. During the growth of a bulk GaInAs layer, an indium concentration disturbance was injected by way of the bubbler pressure control valve. The controller goal was to reject this concentration disturbance. The UV absorption real-time data, as well as both X-ray diffraction and photoluminescence post-growth sample measurements were used to evaluate the controller performance. All results indicate that the closed loop control system greatly improved the quality of the perturbed growth.

  2. Controlling the Release of Indomethacin from Glass Solutions Layered with a Rate Controlling Membrane Using Fluid-Bed Processing. Part 1: Surface and Cross-Sectional Chemical Analysis.

    PubMed

    Dereymaker, Aswin; Scurr, David J; Steer, Elisabeth D; Roberts, Clive J; Van den Mooter, Guy

    2017-04-03

    Fluid bed coating has been shown to be a suitable manufacturing technique to formulate poorly soluble drugs in glass solutions. Layering inert carriers with a drug-polymer mixture enables these beads to be immediately filled into capsules, thus avoiding additional, potentially destabilizing, downstream processing. In this study, fluid bed coating is proposed for the production of controlled release dosage forms of glass solutions by applying a second, rate controlling membrane on top of the glass solution. Adding a second coating layer adds to the physical and chemical complexity of the drug delivery system, so a thorough understanding of the physical structure and phase behavior of the different coating layers is needed. This study aimed to investigate the surface and cross-sectional characteristics (employing scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS)) of an indomethacin-polyvinylpyrrolidone (PVP) glass solution, top-coated with a release rate controlling membrane consisting of either ethyl cellulose or Eudragit RL. The implications of the addition of a pore former (PVP) and the coating medium (ethanol or water) were also considered. In addition, polymer miscibility and the phase analysis of the underlying glass solution were investigated. Significant differences in surface and cross-sectional topography of the different rate controlling membranes or the way they are applied (solution vs dispersion) were observed. These observations can be linked to the polymer miscibility differences. The presence of PVP was observed in all rate controlling membranes, even if it is not part of the coating solution. This could be attributed to residual powder presence in the coating chamber. The distribution of PVP among the sample surfaces depends on the concentration and the rate controlling polymer used. Differences can again be linked to polymer miscibility. Finally, it was shown that the underlying glass solution layer remains amorphous after coating of the rate controlling membrane, whether formed from an ethanol solution or an aqueous dispersion.

  3. Cluster randomized trial assessing the effects of rapid ethical assessment on informed consent comprehension in a low-resource setting.

    PubMed

    Addissie, Adamu; Abay, Serebe; Feleke, Yeweyenhareg; Newport, Melanie; Farsides, Bobbie; Davey, Gail

    2016-07-12

    Maximizing comprehension is a major challenge for informed consent processes in low-literacy and resource-limited settings. Application of rapid qualitative assessments to improve the informed consent process is increasingly considered useful. This study assessed the effects of Rapid Ethical Assessment (REA) on comprehension, retention and quality of the informed consent process. A cluster randomized trial was conducted among participants of HPV sero-prevalence study in two districts of Northern Ethiopia, in 2013. A total of 300 study participants, 150 in the intervention and 150 in the control group, were included in the study. For the intervention group, the informed consent process was designed with further revisions based on REA findings. Informed consent comprehension levels and quality of the consent process were measured using the Modular Informed Consent Comprehension Assessment (MICCA) and Quality of Informed Consent (QuIC) process assessment tools, respectively. Study recruitment rates were 88.7 % and 80.7 % (p = 0.05), while study retention rates were 85.7 % and 70.3 % (p < 0.005) for the intervention and control groups respectively. Overall, the mean informed consent comprehension scores for the intervention and control groups were 73.1 % and 45.2 %, respectively, with a mean difference in comprehension score of 27.9 % (95 % CI 24.0 % - 33.4 %; p < 0.001,). Mean scores for quality of informed consent for the intervention and control groups were 89.1 % and 78.5 %, respectively, with a mean difference of 10.5 % (95 % CI 6.8 -14.2 %; p < 0.001). Levels of informed consent comprehension, quality of the consent process, study recruitment and retention rates were significantly improved in the intervention group. We recommend REA as a potential modality to improve informed consent comprehension and quality of informed consent process in low resource settings.

  4. Viscoelastic behavior of basaltic ash from Stromboli volcano inferred from intermittent compression experiments

    NASA Astrophysics Data System (ADS)

    Kurokawa, A. K.; Miwa, T.; Okumura, S.; Uesugi, K.

    2017-12-01

    After ash-dominated Strombolian eruption, considerable amount of ash falls back to the volcanic conduit forming a dense near-surface region compacted by weights of its own and other fallback clasts (Patrick et al., 2007). Gas accumulation below this dense cap causes a substantial increase in pressure within the conduit, causing the volcanic activity to shift to the preliminary stages of a forthcoming eruption (Del Bello et al., 2015). Under such conditions, rheology of the fallback ash plays an important role because it controls whether the fallback ash can be the cap. However, little attention has been given to the point. We examined the rheology of ash collected at Stromboli volcano via intermittent compression experiments changing temperature and compression time/rate. The ash deformed at a constant rate during compression process, and then it was compressed without any deformation during rest process. The compression and rest processes repeated during each experiment to see rheological variations with progression of compaction. Viscoelastic changes during the experiment were estimated by Maxwell model. The results show that both elasticity and viscosity increases with decreasing porosity. On the other hand, the elasticity shows strong rate-dependence in the both compression and rest processes while the viscosity dominantly depends on the temperature, although the compression rate also affects the viscosity in the case of the compression process. Thus, the ash behaves either elastically or viscously depending on experimental process, temperature, and compression rate/time. The viscoelastic characteristics can be explained by magnitude relationships between the characteristic relaxation times and times for compression and rest processes. This indicates that the balance of the time scales is key to determining the rheological characteristics and whether the ash behaves elastically or viscously may control cyclic Strombolian eruptions.

  5. An fMRI study into emotional processing in Parkinson's disease: Does increased medial prefrontal activation compensate for striatal dysfunction?

    PubMed

    Moonen, Anja J H; Weiss, Peter H; Wiesing, Michael; Weidner, Ralph; Fink, Gereon R; Reijnders, Jennifer S A M; Weber, Wim M; Leentjens, Albert F G

    2017-01-01

    Apart from a progressive decline of motor functions, Parkinson's disease (PD) is also characterized by non-motor symptoms, including disturbed processing of emotions. This study aims at assessing emotional processing and its neurobiological correlates in PD with the focus on how medicated Parkinson patients may achieve normal emotional responsiveness despite basal ganglia dysfunction. Nineteen medicated patients with mild to moderate PD (without dementia or depression) and 19 matched healthy controls passively viewed positive, negative, and neutral pictures in an event-related blood oxygen level-dependent functional magnetic resonance imaging study (BOLD-fMRI). Individual subjective ratings of valence and arousal levels for these pictures were obtained right after the scanning. Parkinson patients showed similar valence and arousal ratings as controls, denoting intact emotional processing at the behavioral level. Yet, Parkinson patients showed decreased bilateral putaminal activation and increased activation in the right dorsomedial prefrontal cortex (PFC), compared to controls, both most pronounced for highly arousing emotional stimuli. Our findings revealed for the first time a possible compensatory neural mechanism in Parkinson patients during emotional processing. The increased medial PFC activity may have modulated emotional responsiveness in patients via top-down cognitive control, therewith restoring emotional processing at the behavioral level, despite striatal dysfunction. These results may impact upon current treatment strategies of affective disorders in PD as patients may benefit from this intact or even compensatory influence of prefrontal areas when therapeutic strategies are applied that rely on cognitive control to modulate disturbed processing of emotions.

  6. Speed Isn't Everything: Complex Processing Speed Measures Mask Individual Differences and Developmental Changes in Executive Control

    ERIC Educational Resources Information Center

    Cepeda, Nicholas J.; Blackwell, Katharine A.; Munakata, Yuko

    2013-01-01

    The rate at which people process information appears to influence many aspects of cognition across the lifespan. However, many commonly accepted measures of "processing speed" may require goal maintenance, manipulation of information in working memory, and decision-making, blurring the distinction between processing speed and executive…

  7. Surface processes in an active rift setting: a source to sink approach from the Sperchios delta, central Greece

    NASA Astrophysics Data System (ADS)

    Pechlivanidou, Sofia; Cowie, Patience; Gawthorpe, Rob

    2015-04-01

    This study presents an integrated source to sink approach to understand the controls on the distribution of sediments source areas, sediment routing and downstream fining in the Sperchios rift system, central Greece. The Sperchios Rift forms an active half-graben basin, which is controlled by major NW-SE trending faults. Detailed sedimentological analysis (grain size, macro/micro faunal, geochemical and mineral magnetic analysis) in conjunction with 14C age constraints reveal the stratigraphic evolution of the Sperchios delta, located at the eastern part of the rift, including the presence of a Holocene transgressive - regressive wedge overlying Late Pleistocene alluvial deposits. The process-based stratigraphic model SedFlux2D is used to simulate the delta evolution and model scenarios are compared with the measured data. A series of sensitivity tests are used to explore uncertainties associated with variations in sediment supply, tectonic subsidence rate, and Holocene relative sea level. We discuss the effects of the major controls, in particular the rate of relative sea-level rise and tectonic subsidence rate, on accommodation creation and thus delta architecture in this active rift setting during the Holocene. The transition from transgression to regression is found to be mainly controlled by the slowing rate of relative sea level rise that occurred approximately 5500 kyrs ago. Finally, we compare the sediment volumes and grain size variations preserved in the Sperchios delta to onshore erosion rates inferred from data collected on bedrock erodibility, measurements of downstream fining, as well as stream-power/transport capacity for both transverse and axial drainage networks. This comparison, when combined with information on relative uplift/subsidence patterns due to active extensional tectonics, allows us to develop a semi-quantitative, process-based source-to-sink model for this area.

  8. Smith predictor with sliding mode control for processes with large dead times

    NASA Astrophysics Data System (ADS)

    Mehta, Utkal; Kaya, İbrahim

    2017-11-01

    The paper discusses the Smith Predictor scheme with Sliding Mode Controller (SP-SMC) for processes with large dead times. This technique gives improved load-disturbance rejection with optimum input control signal variations. A power rate reaching law is incorporated in the sporadic part of sliding mode control such that the overall performance recovers meaningfully. The proposed scheme obtains parameter values by satisfying a new performance index which is based on biobjective constraint. In simulation study, the efficiency of the method is evaluated for robustness and transient performance over reported techniques.

  9. An in vitro test bench reproducing coronary blood flow signals.

    PubMed

    Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory

    2015-08-07

    It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.

  10. Severe postpartum haemorrhage after vaginal delivery: a statistical process control chart to report seven years of continuous quality improvement.

    PubMed

    Dupont, Corinne; Occelli, Pauline; Deneux-Tharaux, Catherine; Touzet, Sandrine; Duclos, Antoine; Bouvier-Colle, Marie-Hélène; Rudigoz, René-Charles; Huissoud, Cyril

    2014-07-01

    Severe postpartum haemorrhage after vaginal delivery: a statistical process control chart to report seven years of continuous quality improvement To use statistical process control charts to describe trends in the prevalence of severe postpartum haemorrhage after vaginal delivery. This assessment was performed 7 years after we initiated a continuous quality improvement programme that began with regular criteria-based audits Observational descriptive study, in a French maternity unit in the Rhône-Alpes region. Quarterly clinical audit meetings to analyse all cases of severe postpartum haemorrhage after vaginal delivery and provide feedback on quality of care with statistical process control tools. The primary outcomes were the prevalence of severe PPH after vaginal delivery and its quarterly monitoring with a control chart. The secondary outcomes included the global quality of care for women with severe postpartum haemorrhage, including the performance rate of each recommended procedure. Differences in these variables between 2005 and 2012 were tested. From 2005 to 2012, the prevalence of severe postpartum haemorrhage declined significantly, from 1.2% to 0.6% of vaginal deliveries (p<0.001). Since 2010, the quarterly rate of severe PPH has not exceeded the upper control limits, that is, been out of statistical control. The proportion of cases that were managed consistently with the guidelines increased for all of their main components. Implementation of continuous quality improvement efforts began seven years ago and used, among other tools, statistical process control charts. During this period, the prevalence of severe postpartum haemorrhage after vaginal delivery has been reduced by 50%. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Plan delivery quality assurance for CyberKnife: Statistical process control analysis of 350 film-based patient-specific QAs.

    PubMed

    Bellec, J; Delaby, N; Jouyaux, F; Perdrieux, M; Bouvier, J; Sorel, S; Henry, O; Lafond, C

    2017-07-01

    Robotic radiosurgery requires plan delivery quality assurance (DQA) but there has never been a published comprehensive analysis of a patient-specific DQA process in a clinic. We proposed to evaluate 350 consecutive film-based patient-specific DQAs using statistical process control. We evaluated the performance of the process to propose achievable tolerance criteria for DQA validation and we sought to identify suboptimal DQA using control charts. DQAs were performed on a CyberKnife-M6 using Gafchromic-EBT3 films. The signal-to-dose conversion was performed using a multichannel-correction and a scanning protocol that combined measurement and calibration in a single scan. The DQA analysis comprised a gamma-index analysis at 3%/1.5mm and a separate evaluation of spatial and dosimetric accuracy of the plan delivery. Each parameter was plotted on a control chart and control limits were calculated. A capability index (Cpm) was calculated to evaluate the ability of the process to produce results within specifications. The analysis of capability showed that a gamma pass rate of 85% at 3%/1.5mm was highly achievable as acceptance criteria for DQA validation using a film-based protocol (Cpm>1.33). 3.4% of DQA were outside a control limit of 88% for gamma pass-rate. The analysis of the out-of-control DQA helped identify a dosimetric error in our institute for a specific treatment type. We have defined initial tolerance criteria for DQA validations. We have shown that the implementation of a film-based patient-specific DQA protocol with the use of control charts is an effective method to improve patient treatment safety on CyberKnife. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Facial affect processing in social anxiety disorder with early onset: evidence of an intensity amplification bias.

    PubMed

    Schwab, Daniela; Schienle, Anne

    2018-06-01

    The present event-related potential (ERP) study investigated for the first time whether children with early-onset social anxiety disorder (SAD) process affective facial expressions of varying intensities differently than non-anxious controls. Participants were 15 SAD patients and 15 non-anxious controls (mean age of 9 years). They were presented with schematic faces displaying anger and happiness at four intensity levels (25%, 50%, 75%, and 100%), as well as with neutral faces. ERPs in early and later time windows (P100, N170, late positivity [LP]), as well as affective ratings (valence and arousal) for the faces, were recorded. SAD patients rated the faces as generally more arousing, regardless of the type of emotion and intensity. Moreover, they displayed enhanced right-parietal LP (350-650 ms). Both arousal ratings and LP reflect stimulus intensity. Therefore, this study provides first evidence of an intensity amplification bias in pediatric SAD during facial affect processing.

  13. Event-related brain potentials and affective responses to threat in spider/snake-phobic and non-phobic subjects.

    PubMed

    Miltner, Wolfgang H R; Trippe, Ralf H; Krieschel, Silke; Gutberlet, Ingmar; Hecht, Holger; Weiss, Thomas

    2005-07-01

    We investigated cortical responses and valence/arousal ratings of spider phobic, snake phobic, and healthy subjects while they were processing feared, fear-relevant, emotional neutral, and pleasant stimuli. Results revealed significantly larger amplitudes of late ERP components (P3 and late positive complex, LPC) but not of early components (N1, P2, N2) in phobics when subjects were processing feared stimuli. This fear-associated increase of amplitudes of late ERP components in phobic subjects was maximal at centro-parietal and occipital brain sites. Furthermore, phobics but not controls rated feared stimuli to be more negative and arousing than fear-relevant, emotional neutral, and pleasant stimuli. Since late ERP components and valence/arousal ratings were only significantly increased when phobic subjects but not when healthy controls were processing feared stimuli, the present data suggest that P3 and LPC amplitudes represent useful neural correlates of the emotional significance and meaning of stimuli.

  14. Impaired reading comprehension in schizophrenia: evidence for underlying phonological processing deficits.

    PubMed

    Arnott, Wendy; Sali, Lauren; Copland, David

    2011-05-15

    The present study examined reading ability in high functioning people with schizophrenia. To this end, 16 people with schizophrenia who were living in the community and 12 matched controls completed tests of passage reading (comprehension, accuracy, and rate), word recognition, and phonological processing (phonological awareness, phonological memory and rapid naming) and ratings of reading self-concept and practices. Performance of the participants with schizophrenia was impaired relative to control participants on reading comprehension and rapid naming and relative to the population norms on phonological awareness, and rapid naming. In addition, self-rating data revealed that participants with schizophrenia had poorer perceptions of their reading ability and engaged in reading activities less frequently than their control counterparts. Consistent with earlier research, significant correlations were found between phonological awareness and reading comprehension. These findings expand on previous research in the area to suggest that community-based individuals with schizophrenia experience problems with reading comprehension that may have a phonological basis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Assessment of tobacco smoke effects on neonatal cardiorespiratory control using a semi-automated processing approach.

    PubMed

    Al-Omar, Sally; Le Rolle, Virginie; Beuchée, Alain; Samson, Nathalie; Praud, Jean-Paul; Carrault, Guy

    2018-05-10

    A semi-automated processing approach was developed to assess the effects of early postnatal environmental tobacco smoke (ETS) on the cardiorespiratory control of newborn lambs. The system consists of several steps beginning with artifact rejection, followed by the selection of stationary segments, and ending with feature extraction. This approach was used in six lambs exposed to 20 cigarettes/day for the first 15 days of life, while another six control lambs were exposed to room air. On postnatal day 16, electrocardiograph and respiratory signals were obtained from a 6-h polysomnographic recording. The effects of postnatal ETS exposure on heart rate variability, respiratory rate variability, and cardiorespiratory interrelations were explored. The unique results suggest that early postnatal ETS exposure increases respiratory rate variability and decreases the coupling between cardiac and respiratory systems. Potentially harmful consequences in early life include unstable breathing and decreased adaptability of cardiorespiratory function, particularly during early life challenges, such as prematurity or viral infection. Graphical abstract ᅟ.

  16. Behavior-dependent specialization of identified hippocampal interneurons

    PubMed Central

    Lapray, Damien; Lasztoczi, Balint; Lagler, Michael; Viney, Tim James; Katona, Linda; Valenti, Ornella; Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas

    2012-01-01

    A large variety of GABAergic interneurons control information processing in hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information-processing during behavior is not known. We employed a novel technique for recording and labeling interneurons and pyramidal cells in drug-free, freely-moving rats. Recorded parvalbumin-expressing basket interneurons innervate somata and proximal pyramidal cell dendrites, whereas nitric-oxide-synthase- and neuropeptide-Y-expressing ivy cells provide synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket but not ivy cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently-firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thus differentially controlling network activity during behavior. PMID:22864613

  17. The interaction of host genetics and disease processes in chronic livestock disease: a simulation model of ovine footrot.

    PubMed

    Russell, V N L; Green, L E; Bishop, S C; Medley, G F

    2013-03-01

    A stochastic, individual-based, simulation model of footrot in a flock of 200 ewes was developed that included flock demography, disease processes, host genetic variation for traits influencing infection and disease processes, and bacterial contamination of the environment. Sensitivity analyses were performed using ANOVA to examine the contribution of unknown parameters to outcome variation. The infection rate and bacterial death rate were the most significant factors determining the observed prevalence of footrot, as well as the heritability of resistance. The dominance of infection parameters in determining outcomes implies that observational data cannot be used to accurately estimate the strength of genetic control of underlying traits describing the infection process, i.e. resistance. Further work will allow us to address the potential for genetic selection to control ovine footrot. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Quantitative assessment of hit detection and confirmation in single and duplicate high-throughput screenings.

    PubMed

    Wu, Zhijin; Liu, Dongmei; Sui, Yunxia

    2008-02-01

    The process of identifying active targets (hits) in high-throughput screening (HTS) usually involves 2 steps: first, removing or adjusting for systematic variation in the measurement process so that extreme values represent strong biological activity instead of systematic biases such as plate effect or edge effect and, second, choosing a meaningful cutoff on the calculated statistic to declare positive compounds. Both false-positive and false-negative errors are inevitable in this process. Common control or estimation of error rates is often based on an assumption of normal distribution of the noise. The error rates in hit detection, especially false-negative rates, are hard to verify because in most assays, only compounds selected in primary screening are followed up in confirmation experiments. In this article, the authors take advantage of a quantitative HTS experiment in which all compounds are tested 42 times over a wide range of 14 concentrations so true positives can be found through a dose-response curve. Using the activity status defined by dose curve, the authors analyzed the effect of various data-processing procedures on the sensitivity and specificity of hit detection, the control of error rate, and hit confirmation. A new summary score is proposed and demonstrated to perform well in hit detection and useful in confirmation rate estimation. In general, adjusting for positional effects is beneficial, but a robust test can prevent overadjustment. Error rates estimated based on normal assumption do not agree with actual error rates, for the tails of noise distribution deviate from normal distribution. However, false discovery rate based on empirically estimated null distribution is very close to observed false discovery proportion.

  19. Improved Blood Pressure Control Associated With a Large-Scale Hypertension Program

    PubMed Central

    Jaffe, Marc G.; Lee, Grace A.; Young, Joseph D.; Sidney, Stephen; Go, Alan S.

    2014-01-01

    Importance Hypertension control for large populations remains a major challenge. Objective To describe a large-scale hypertension program in northern California and to compare rates of hypertension control of the program to statewide and national estimates. Design, Setting, and Patients The Kaiser Permanente Northern California (KPNC) Hypertension program included a multi-faceted approach to blood pressure control. Patients identified with hypertension within an integrated health care delivery system in northern California from 2001–2009 were included. The comparison group included insured patients in California between 2006–2009 who were included in the Healthcare Effectiveness Data and Information Set (HEDIS) commercial measurement by California health insurance plans participating in the National Committee for Quality Assurance (NQCA) quality measure reporting process. A secondary comparison group was the reported national mean NCQA HEDIS commercial rates of hypertension control from 2001–2009 from health plans that participated in the NQCA HEDIS quality measure reporting process. Main Outcome Measure Hypertension control as defined by NCQA HEDIS. Results The KPNC hypertension registry established in 2001 included 349,937 patients and grew to 652,763 by 2009. The NCQA HEDIS commercial measurement for hypertension control increased from 44% to 80% during the study period. In contrast, the national mean NCQA HEDIS commercial measurement increased modestly from 55.4% to 64.1%. California mean NCQA HEDIS commercial rates of hypertension were similar to those reported nationally from 2006–2009. (63.4% to 69.4%). Conclusion and Relevance Among adults diagnosed with hypertension, implementation of a large-scale hypertension program was associated with a significant increase in hypertension control compared with state and national control rates. PMID:23989679

  20. Graphene growth process modeling: a physical-statistical approach

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Huang, Qiang

    2014-09-01

    As a zero-band semiconductor, graphene is an attractive material for a wide variety of applications such as optoelectronics. Among various techniques developed for graphene synthesis, chemical vapor deposition on copper foils shows high potential for producing few-layer and large-area graphene. Since fabrication of high-quality graphene sheets requires the understanding of growth mechanisms, and methods of characterization and control of grain size of graphene flakes, analytical modeling of graphene growth process is therefore essential for controlled fabrication. The graphene growth process starts with randomly nucleated islands that gradually develop into complex shapes, grow in size, and eventually connect together to cover the copper foil. To model this complex process, we develop a physical-statistical approach under the assumption of self-similarity during graphene growth. The growth kinetics is uncovered by separating island shapes from area growth rate. We propose to characterize the area growth velocity using a confined exponential model, which not only has clear physical explanation, but also fits the real data well. For the shape modeling, we develop a parametric shape model which can be well explained by the angular-dependent growth rate. This work can provide useful information for the control and optimization of graphene growth process on Cu foil.

  1. 40 CFR 63.496 - Back-end process provisions-procedures to determine compliance using control or recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... total organic HAP (or TOC, minus methane and ethane) emissions in all process vent streams and primary... TOC (minus methane and ethane) may be measured instead of total organic HAP. (C) The mass rates shall... and outlet of the control device shall be the sum of all total organic HAP (or TOC, minus methane and...

  2. Efficacious insect and disease control with laser-guided air-assisted sprayer

    USDA-ARS?s Scientific Manuscript database

    Efficacy of a newly developed air-assisted variable-rate sprayer was investigated for the control of arthropod pests and plant diseases in six commercial fields. The sprayer was integrated with a high-speed laser scanning sensor, a custom-designed signal processing program, an automatic flow control...

  3. 49 CFR Appendix B to Part 385 - Explanation of Safety Rating Process

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-employment controlled substance test result (critical). § 382.303(a)Failing to conduct post accident testing... controls in place that function effectively to ensure acceptable compliance with the applicable safety... are those identified as such where noncompliance relates to management and/or operational controls...

  4. 49 CFR Appendix B to Part 385 - Explanation of Safety Rating Process

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-employment controlled substance test result (critical). § 382.303(a)Failing to conduct post accident testing... controls in place that function effectively to ensure acceptable compliance with the applicable safety... are those identified as such where noncompliance relates to management and/or operational controls...

  5. Rapid process for producing transparent, monolithic porous glass

    DOEpatents

    Coronado, Paul R [Livermore, CA

    2006-02-14

    A process for making transparent porous glass monoliths from gels. The glass is produced much faster and in much larger sizes than present technology for making porous glass. The process reduces the cost of making large porous glass monoliths because: 1) the process does not require solvent exchange nor additives to the gel to increase the drying rates, 2) only moderate temperatures and pressures are used so relatively inexpensive equipment is needed, an 3) net-shape glass monoliths are possible using this process. The process depends on the use of temperature to control the partial pressure of the gel solvent in a closed vessel, resulting in controlled shrinking during drying.

  6. Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: rate-dependent elastic modulus of live cells.

    PubMed

    Ren, Juan; Yu, Shiyan; Gao, Nan; Zou, Qingze

    2013-11-01

    In this paper, a control-based approach to replace the conventional method to achieve accurate indentation quantification is proposed for nanomechanical measurement of live cells using atomic force microscope. Accurate indentation quantification is central to probe-based nanomechanical property measurement. The conventional method for in-liquid nanomechanical measurement of live cells, however, fails to accurately quantify the indentation as effects of the relative probe acceleration and the hydrodynamic force are not addressed. As a result, significant errors and uncertainties are induced in the nanomechanical properties measured. In this paper, a control-based approach is proposed to account for these adverse effects by tracking the same excitation force profile on both a live cell and a hard reference sample through the use of an advanced control technique, and by quantifying the indentation from the difference of the cantilever base displacement in these two measurements. The proposed control-based approach not only eliminates the relative probe acceleration effect with no need to calibrate the parameters involved, but it also reduces the hydrodynamic force effect significantly when the force load rate becomes high. We further hypothesize that, by using the proposed control-based approach, the rate-dependent elastic modulus of live human epithelial cells under different stress conditions can be reliably quantified to predict the elasticity evolution of cell membranes, and hence can be used to predict cellular behaviors. By implementing the proposed approach, the elastic modulus of HeLa cells before and after the stress process were quantified as the force load rate was changed over three orders of magnitude from 0.1 to 100 Hz, where the amplitude of the applied force and the indentation were at 0.4-2 nN and 250-450 nm, respectively. The measured elastic modulus of HeLa cells showed a clear power-law dependence on the load rate, both before and after the stress process. Moreover, the elastic modulus of HeLa cells was substantially reduced by two to five times due to the stress process. Thus, our measurements demonstrate that the control-based protocol is effective in quantifying and characterizing the evolution of nanomechanical properties during the stress process of live cells.

  7. Review of problems in application of supersonic combustion

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1977-01-01

    The problem of air-breathing engines capable of flying at very high Mach numbers is described briefly. Possible performance of supersonic combustion ramjets is outlined briefly and the supersonic combustion process is described. Two mechanisms of combustion are outlined: one is supersonic combustion controlled by convection process, and the second is controlled by diffusion. The parameters related to the combustion process are discussed in detail. Data and analyses of reaction rates and mixing phenomena are represented; the flame mechanism is discussed, and experimental results are presented.

  8. Challenges to a blow/fill/seal process with airborne microorganisms having different resistances to dry heat.

    PubMed

    Poisson, Patrick; Sinclair, Colin S; Tallentire, Alan

    2006-01-01

    Controlled challenges with air dispersed microorganisms having widely different resistances to dry heat, carried out on 624 BFS machine processing growth medium, have shown that higher the heat resistance, the greater the extent of vial contamination. Differences in heat resistance affected also the extent of vial contamination when parison and vial formation were knowingly manipulated through changes made to each of three process variables, provision of ballooning air, mould vacuum delay, and parison extrusion rate. The findings demonstrate that, in this investigational system, exposure of challenge micoorganisms to heat inherent in the process has a controlling influence on vial contamination, an influence that could also control microbiological risk in production environments.

  9. The optimal dissolved oxygen profile in a nitrifying activated sludge process - comparisons with ammonium feedback control.

    PubMed

    Amand, L; Carlsson, B

    2013-01-01

    Ammonium feedback control is increasingly used to determine the dissolved oxygen (DO) set-point in aerated activated sludge processes for nitrogen removal. This study compares proportional-integral (PI) ammonium feedback control with a DO profile created from a mathematical minimisation of the daily air flow rate. All simulated scenarios are set to reach the same treatment level of ammonium, based on a daily average concentration. The influent includes daily variations only and the model has three aerated zones. Comparisons are made at different plant loads and DO concentrations, and the placement of the ammonium sensor is investigated. The results show that ammonium PI control can achieve the best performance if the DO set-point is limited at a maximum value and with little integral action in the controller. Compared with constant DO control the best-performing ammonium controller can achieve 1-3.5% savings in the air flow rate, while the optimal solution can achieve a 3-7% saving. Energy savings are larger when operating at higher DO concentrations.

  10. Recent topographic evolution and erosion of the deglaciated Washington Cascades inferred from a stochastic landscape evolution model

    NASA Astrophysics Data System (ADS)

    Moon, S.; Shelef, E.; Hilley, G. E.

    2013-12-01

    The Washington Cascades is currently in topographic and erosional disequilibrium after deglaciation occurred around 11- 17 ka ago. The topography still shows the features inherited from prior alpine glacial processes (e.g., cirques, steep side-valleys, and flat valley bottoms), though postglacial processes are currently denuding this landscape. Our previous study in this area calculated the thousand-year-timescale denudation rates using cosmogenic 10Be concentration (CRN-denudation rates), and showed that they were ~ four times higher than million-year-timescale uplift rates. In addition, the spatial distribution of denudation rates showed a good correlation with a factor-of-ten variation in precipitation. We interpreted this correlation as reflecting the sensitivity of landslide triggering in over-steepened deglaciated topography to precipitation, which produced high denudation rates in wet areas that experienced frequent landsliding. We explored this interpretation using a model of postglacial surface processes that predicts the evolution of the topography and denudation rates within the deglaciated Washington Cascades. Specifically, we used the model to understand the controls on and timescales of landscape response to changes in the surface process regime after deglaciation. The postglacial adjustment of this landscape is modeled using a geomorphic-transport-law-based numerical model that includes processes of river incision, hillslope diffusion, and stochastic landslides. The surface lowering due to landslides is parameterized using a physically-based slope stability model coupled to a stochastic model of the generation of landslides. The model parameters of river incision and stochastic landslides are calibrated based on the rates and distribution of thousand-year-timescale denudation rates measured from cosmogenic 10Be isotopes. The probability distribution of model parameters required to fit the observed denudation rates shows comparable ranges from previous studies in similar rock types and climatic conditions. The calibrated parameters suggest that the dominant sediment source of river sediments originates from stochastic landslides. The magnitude of landslide denudation rates is determined by failure density (similar to landslide frequency), while their spatial distribution is largely controlled by precipitation and slope angles. Simulation results show that denudation rates decay over time and take approximately 130-180 ka to reach steady-state rates. This response timescale is longer than glacial/interglacial cycles, suggesting that frequent climatic perturbations during the Quaternary may prevent these types of landscapes from reaching a dynamic equilibrium with postglacial processes.

  11. Differential Influence of Safe Versus Threatening Facial Expressions on Decision-Making during an Inhibitory Control Task in Adolescence and Adulthood

    PubMed Central

    Cohen-Gilbert, JE; Killgore, WDS; White, CN; Schwab, ZJ; Crowley, DJ; Covell, MJ; Sneider, JT; Silveri, MM

    2015-01-01

    Social cognition matures dramatically during adolescence and into early adulthood, supported by continued improvements in inhibitory control. During this time, developmental changes in interpreting and responding to social signals such as facial expressions also occur. In the present study, subjects performed a Go No-Go task that required them to respond or inhibit responding based on threat or safety cues present in facial expressions. Subjects (N = 112) were divided into three age groups: adolescent (12–15 years), emerging adult (18–25 years) and adult (26–44 years). Analyses revealed a significant improvement in accuracy on No-Go trials, but not Go trials, during both safe and threat face conditions, with changes evident through early adulthood. In order to better identify the decision-making processes responsible for these changes in inhibitory control, a drift diffusion model (DDM) was fit to the accuracy and reaction time data, generating measures of caution, response bias, nondecision time (encoding + motor response), and drift rate (face processing efficiency). Caution and nondecision time both increased significantly with age while bias towards the Go response decreased. Drift rate analyses revealed significant age-related improvements in the ability to map threat faces to a No-Go response while drift rates on all other trial types were equivalent across age groups. These results suggest both stimulus-independent and stimulus-dependent processes contribute to improvements in inhibitory control in adolescence with processing of negative social cues being specifically impaired by self-regulatory demands. Findings from this novel investigation of emotional responsiveness integrated with inhibitory control may provide useful insights about healthy development that can be applied to better understanding adolescent risk taking behavior and the elevated incidence of related forms of psychopathology during this period of life. PMID:24387267

  12. Application of a simplified mathematical model to estimate the effect of forced aeration on composting in a closed system.

    PubMed

    Bari, Quazi H; Koenig, Albert

    2012-11-01

    The aeration rate is a key process control parameter in the forced aeration composting process because it greatly affects different physico-chemical parameters such as temperature and moisture content, and indirectly influences the biological degradation rate. In this study, the effect of a constant airflow rate on vertical temperature distribution and organic waste degradation in the composting mass is analyzed using a previously developed mathematical model of the composting process. The model was applied to analyze the effect of two different ambient conditions, namely, hot and cold ambient condition, and four different airflow rates such as 1.5, 3.0, 4.5, and 6.0 m(3) m(-2) h(-1), respectively, on the temperature distribution and organic waste degradation in a given waste mixture. The typical waste mixture had 59% moisture content and 96% volatile solids, however, the proportion could be varied as required. The results suggested that the model could be efficiently used to analyze composting under variable ambient and operating conditions. A lower airflow rate around 1.5-3.0 m(3) m(-2) h(-1) was found to be suitable for cold ambient condition while a higher airflow rate around 4.5-6.0 m(3) m(-2) h(-1) was preferable for hot ambient condition. The engineered way of application of this model is flexible which allows the changes in any input parameters within the realistic range. It can be widely used for conceptual process design, studies on the effect of ambient conditions, optimization studies in existing composting plants, and process control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. A robust variable sampling time BLDC motor control design based upon μ-synthesis.

    PubMed

    Hung, Chung-Wen; Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach.

  14. A Robust Variable Sampling Time BLDC Motor Control Design Based upon μ-Synthesis

    PubMed Central

    Yen, Jia-Yush

    2013-01-01

    The variable sampling rate system is encountered in many applications. When the speed information is derived from the position marks along the trajectory, one would have a speed dependent sampling rate system. The conventional fixed or multisampling rate system theory may not work in these cases because the system dynamics include the uncertainties which resulted from the variable sampling rate. This paper derived a convenient expression for the speed dependent sampling rate system. The varying sampling rate effect is then translated into multiplicative uncertainties to the system. The design then uses the popular μ-synthesis process to achieve a robust performance controller design. The implementation on a BLDC motor demonstrates the effectiveness of the design approach. PMID:24327804

  15. The endpoint detection technique for deep submicrometer plasma etching

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Du, Zhi-yun; Zeng, Yong; Lan, Zhong-went

    2009-07-01

    The availability of reliable optical sensor technology provides opportunities to better characterize and control plasma etching processes in real time, they could play a important role in endpoint detection, fault diagnostics and processes feedback control and so on. The optical emission spectroscopy (OES) method becomes deficient in the case of deep submicrometer gate etching. In the newly developed high density inductively coupled plasma (HD-ICP) etching system, Interferometry endpoint (IEP) is introduced to get the EPD. The IEP fringe count algorithm is investigated to predict the end point, and then its signal is used to control etching rate and to call end point with OES signal in over etching (OE) processes step. The experiment results show that IEP together with OES provide extra process control margin for advanced device with thinner gate oxide.

  16. Neural processing of food and emotional stimuli in adolescent and adult anorexia nervosa patients.

    PubMed

    Horndasch, Stefanie; Roesch, Julie; Forster, Clemens; Dörfler, Arnd; Lindsiepe, Silja; Heinrich, Hartmut; Graap, Holmer; Moll, Gunther H; Kratz, Oliver

    2018-01-01

    A constant preoccupation with food and restrictive eating are main symptoms of anorexia nervosa (AN). Imaging studies revealed aberrant neural activation patterns in brain regions processing hedonic and reward reactions as well as-potentially aversive-emotions. An imbalance between so called "bottom-up" and "top-down" control areas is discussed. The present study is focusing on neural processing of disease-specific food stimuli and emotional stimuli and its developmental course in adolescent and adult AN patients and could offer new insight into differential mechanisms underlying shorter or more chronic disease. 33 adolescents aged 12-18 years (15 AN patients, 18 control participants) and 32 adult women (16 AN patients, 16 control participants) underwent functional magnetic resonance imaging (fMRI, 3T high-field scanner) while watching pictures of high and low-calorie food and affective stimuli. Afterwards, they rated subjective valence of each picture. FMRI data analysis was performed using a region of interest based approach. Pictures of high-calorie food items were rated more negatively by AN patients. Differences in activation between patients and controls were found in "bottom up" and "top down" control areas for food stimuli and in several emotion processing regions for affective stimuli which were more pronounced in adolescents than in adults. A differential pattern was seen for food stimuli compared to generally emotion eliciting stimuli. Adolescents with AN show reduced processing of affective stimuli and enhanced activation of regions involved in "bottom up" reward processing and "top down" control as well as the insula with regard to food stimuli with a focus on brain regions which underlie changes during adolescent development. In adults less clear and less specific activation differences were present, pointing towards a high impact that regions undergoing maturation might have on AN symptoms.

  17. Mechanisms of microgravity flame spread over a thin solid fuel - Oxygen and opposed flow effects

    NASA Technical Reports Server (NTRS)

    Olson, S. L.

    1991-01-01

    Microgravity tests varying oxygen concentration and forced flow velocity have examined the importance of transport processes on flame spread over very thin solid fuels. Flame spread rates, solid phase temperature profiles and flame appearance for these tests are measured. A flame spread map is presented which indicates three distinct regions where different mechanisms control the flame spread process. In the near-quenching region (very low characteristic relative velocities) a new controlling mechanism for flame spread - oxidizer transport-limited chemical reaction - is proposed. In the near-limit, blowoff region, high opposed flow velocities impose residence time limitations on the flame spread process. A critical characteristic relative velocity line between the two near-limit regions defines conditions which result in maximum flammability both in terms of a peak flame spread rate and minimum oxygen concentration for steady burning. In the third region, away from both near-limit regions, the flame spread behavior, which can accurately be described by a thermal theory, is controlled by gas-phase conduction.

  18. Recognition of facial emotions among maltreated children with high rates of post-traumatic stress disorder

    PubMed Central

    Masten, Carrie L.; Guyer, Amanda E.; Hodgdon, Hilary B.; McClure, Erin B.; Charney, Dennis S.; Ernst, Monique; Kaufman, Joan; Pine, Daniel S.; Monk, Christopher S.

    2008-01-01

    Objective The purpose of this study is to examine processing of facial emotions in a sample of maltreated children showing high rates of post-traumatic stress disorder (PTSD). Maltreatment during childhood has been associated independently with both atypical processing of emotion and the development of PTSD. However, research has provided little evidence indicating how high rates of PTSD might relate to maltreated children’s processing of emotions. Method Participants’ reaction time and labeling of emotions were measured using a morphed facial emotion identification task. Participants included a diverse sample of maltreated children with and without PTSD and controls ranging in age from 8 to 15 years. Maltreated children had been removed from their homes and placed in state custody following experiences of maltreatment. Diagnoses of PTSD and other disorders were determined through combination of parent, child, and teacher reports. Results Maltreated children displayed faster reaction times than controls when labeling emotional facial expressions, and this result was most pronounced for fearful faces. Relative to children who were not maltreated, maltreated children both with and without PTSD showed enhanced response times when identifying fearful faces. There was no group difference in labeling of emotions when identifying different facial emotions. Conclusions Maltreated children show heightened ability to identify fearful faces, evidenced by faster reaction times relative to controls. This association between maltreatment and atypical processing of emotion is independent of PTSD diagnosis. PMID:18155144

  19. Conducting the train of thought: working memory capacity, goal neglect, and mind wandering in an executive-control task.

    PubMed

    McVay, Jennifer C; Kane, Michael J

    2009-01-01

    On the basis of the executive-attention theory of working memory capacity (WMC; e.g., M. J. Kane, A. R. A. Conway, D. Z. Hambrick, & R. W. Engle, 2007), the authors tested the relations among WMC, mind wandering, and goal neglect in a sustained attention to response task (SART; a go/no-go task). In 3 SART versions, making conceptual versus perceptual processing demands, subjects periodically indicated their thought content when probed following rare no-go targets. SART processing demands did not affect mind-wandering rates, but mind-wandering rates varied with WMC and predicted goal-neglect errors in the task; furthermore, mind-wandering rates partially mediated the WMC-SART relation, indicating that WMC-related differences in goal neglect were due, in part, to variation in the control of conscious thought.

  20. Improvements to quality of needle coke by controlled carbonized conditions

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Lou, Bin; Yu, Ran; Chen, Qingtai; Li, Zhiheng; Zhang, Yadong

    2018-06-01

    In this study, the selected aromatic-rich fraction derived from hydrocracking tail oil was carbonized and further improvement in the quality of resultant coke was achieved by promoting temperature at the solidification stage. In comparison with conventional process carried out isothermally and isobarically, the coupling analysis between formation and subsequent uni-axial orientation of mesophase textures during the controlled process was systematically discussed on the basis of the mutual relevance among mesophase texture evolution, gas evolution rate and solidification rate of intermediates. The results show that on the premise that formation of bulk mesophase, appropriate rate of gas evolution at a right time of solidification contributes to fine produces fine fibrous mesophase aligned uni-axially and less pores. Moreover, the intermediates with solidification index of 2˜6 are suitable for deformation induced by gas evolution.

  1. On-Line Control of Glucose Concentration in High-Yielding Mammalian Cell Cultures Enabled Through Oxygen Transfer Rate Measurements.

    PubMed

    Goldrick, Stephen; Lee, Kenneth; Spencer, Christopher; Holmes, William; Kuiper, Marcel; Turner, Richard; Farid, Suzanne S

    2018-04-01

    Glucose control is vital to ensure consistent growth and protein production in mammalian cell cultures. The typical fed-batch glucose control strategy involving bolus glucose additions based on infrequent off-line daily samples results in cells experiencing significant glucose concentration fluctuations that can influence product quality and growth. This study proposes an on-line method to control and manipulate glucose utilizing readily available process measurements. The method generates a correlation between the cumulative oxygen transfer rate and the cumulative glucose consumed. This correlation generates an on-line prediction of glucose that has been successfully incorporated into a control algorithm manipulating the glucose feed-rate. This advanced process control (APC) strategy enables the glucose concentration to be maintained at an adjustable set-point and has been found to significantly reduce the deviation in glucose concentration in comparison to conventional operation. This method has been validated to produce various therapeutic proteins across cell lines with different glucose consumption demands and is successfully demonstrated on micro (15 mL), laboratory (7 L), and pilot (50 L) scale systems. This novel APC strategy is simple to implement and offers the potential to significantly enhance the glucose control strategy for scales spanning micro-scale systems through to full scale industrial bioreactors. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Dynamic Modelling of the DEP Controlled Boiling in a Microchannel

    NASA Astrophysics Data System (ADS)

    Lackowski, Marcin; Kwidzinski, Roman

    2018-04-01

    The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.

  3. Facile Synthesis of Nb3Sn Via a Hydrogen Reduction Process

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Jiao, Shuqiang; Zhang, Long; Li, Yanxiang; Zhu, Hongmin

    2017-02-01

    A controllable and facile process for the preparation of Nb3Sn intermetallic compound nanopowders using NbCl5 and SnCl2 vapors reduced by hydrogen has been developed. The vaporizing rates of the two chlorides are controlled by measuring their mass loss as a function of carrier gas (argon) flow rate at certain vaporization temperatures, respectively. X-ray diffraction (XRD) patterns indicate that hydrogenous Nb3Sn products are obtained under the vaporizing rate of 0.155 g min-1 for NbCl5 and 0.036 g min-1 for SnCl2 with the hydrogen flow rate of 2100 ml min-1 at 1273 K (1000 °C). Results of semi-quantitative analysis by X-ray fluorescence (XRF) demonstrate that the atomic ratio of Nb to Sn in the as-synthesized products is 3.48:1, and the content of (Nb + Sn) is taken up to 89.61 wt pct from the total weight of the products. The products can be purified by vacuum heat treatment. Images of transmission electron microscopy (TEM) show that the products are homogenous particles with a mean diameter of 31 nm. In addition, the reaction ratio of the chlorides and the powder yield are controllable by hydrogen flow rate.

  4. Spatial variation in microbial processes controlling carbon mineralization within soils and sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendorf, Scott; Kleber, Markus; Nico, Peter

    Soils have a defining role in global carbon cycling, having one of the largest dynamic stocks of C on earth—3300 Pg of C are stored in soils, which is three-times the amount stored in the atmosphere and more than the terrestrial land plants. An important control on soil organic matter (SOM) quantities is the mineralization rate. It is well recognized that the rate and extent of SOM mineralization is affected by climatic factors and mineral-organic matter associations. What remained elusive is to what extent constraints on microbial metabolism induced by the respiratory pathway, and specifically the electron acceptor in respiration,more » control overall rates of carbon mineralization in soils. Therefore, physical factors limiting oxygen diffusion such as soil texture and aggregate size (soil structure) may therefore be central controls on C mineralization rates. The goal of our research was therefore to determine if variations in microbial metabolic rates induced by anaerobic microsites in soils are a major control on SOM mineralization rates and thus storage. We performed a combination of laboratory experiments and field investigations will be performed to fulfill our research objectives. We used laboratory studies to examine fundamental factors of respiratory constraints (i.e., electron acceptor) on organic matter mineralization rates. We ground our laboratory studies with both manipulation of field samples and in-field measurements. Selection of the field sites is guided by variation in soil texture and structure while having (other environmental/soil factors constant. Our laboratory studies defined redox gradients and variations in microbial metabolism operating at the aggregate-scale (cm-scale) within soils using a novel constructed diffusion reactor. We further examined micro-scale variation in terminal electron accepting processes and resulting C mineralization rates within re-packed soils. A major outcome of our research is the ability to quantitatively place the importance of aggregate-based heterogeneity in microbial redox processes and the resulting lack of oxygen on the rate of carbon mineralization. Collectively, our research shows that anaerobic microsites are prevalent in soils and are important regulators of soil carbon persistence, shifting microbial metabolism to less efficient anaerobic respiration and selectively protecting otherwise bioavailable, reduced organic compounds such as lipids and waxes from decomposition. Further, shifting from anaerobic to aerobic conditions leads to a 10-fold increase in volume-specific mineralization rate, illustrating the sensitivity of anaerobically protected carbon to disturbance. Vulnerability of anaerobically protected carbon to future climate or land use change thus constitutes a yet unrecognized soil carbon-climate feedback that should be incorporated into terrestrial ecosystem models.« less

  5. Feasibility of a randomized controlled trial to evaluate the impact of decision boxes on shared decision-making processes.

    PubMed

    Giguere, Anik Mc; Labrecque, Michel; Légaré, France; Grad, Roland; Cauchon, Michel; Greenway, Matthew; Haynes, R Brian; Pluye, Pierre; Syed, Iqra; Banerjee, Debi; Carmichael, Pierre-Hugues; Martin, Mélanie

    2015-02-25

    Decision boxes (DBoxes) are two-page evidence summaries to prepare clinicians for shared decision making (SDM). We sought to assess the feasibility of a clustered Randomized Controlled Trial (RCT) to evaluate their impact. A convenience sample of clinicians (nurses, physicians and residents) from six primary healthcare clinics who received eight DBoxes and rated their interest in the topic and satisfaction. After consultations, their patients rated their involvement in decision-making processes (SDM-Q-9 instrument). We measured clinic and clinician recruitment rates, questionnaire completion rates, patient eligibility rates, and estimated the RCT needed sample size. Among the 20 family medicine clinics invited to participate in this study, four agreed to participate, giving an overall recruitment rate of 20%. Of 148 clinicians invited to the study, 93 participated (63%). Clinicians rated an interest in the topics ranging 6.4-8.2 out of 10 (with 10 highest) and a satisfaction with DBoxes of 4 or 5 out of 5 (with 5 highest) for 81% DBoxes. For the future RCT, we estimated that a sample size of 320 patients would allow detecting a 9% mean difference in the SDM-Q-9 ratings between our two arms (0.02 ICC; 0.05 significance level; 80% power). Clinicians' recruitment and questionnaire completion rates support the feasibility of the planned RCT. The level of interest of participants for the DBox topics, and their level of satisfaction with the Dboxes demonstrate the acceptability of the intervention. Processes to recruit clinics and patients should be optimized.

  6. Prospective multicentre study in intensive care units in five cities from the Kingdom of Saudi Arabia: Impact of the International Nosocomial Infection Control Consortium (INICC) multidimensional approach on rates of central line-associated bloodstream infection.

    PubMed

    Al-Abdely, Hail M; Alshehri, Areej Dhafer; Rosenthal, Victor Daniel; Mohammed, Yassir Khidir; Banjar, Weam; Orellano, Pablo Wenceslao; Assiri, Abdullah Mufareh; Kader, Nahla Moustafa Abedel; Enizy, Hessa Abdullah Al; Mohammed, Diaa Abdullah; Al-Awadi, Duaa Khalil; Cabato, Analen Fabros; Wasbourne, Maria; Saliya, Randa; Aromin, Rosita Gasmin; Ubalde, Evangelina Balon; Diab, Hanan Hanafy; Alkamaly, Modhi Abdullah; Alanazi, Nawal Mohammed; Hassan Assiry, Ibtesam Yahia; Molano, Apsia Musa; Flores Baldonado, Celia; Al-Azhary, Mohamed; Al Atawi, Sharifa; Molano, Apsia Musa; Al Adwani, Fatima Mohammad; Casuyon Pahilanga, Arlu Marie; Nakhla, Raslan; Al Adwani, Fatma Mohammad; Nair, Deepa Sasithran; Sindayen, Grace; Malificio, Annalyn Amor; Helali, Najla Jameel; Al Dossari, Haya Barjas; Kelany, Ashraf; Algethami, Abdulmajid Ghowaizi; Yanne, Leigh; Tan, Avigail; Babu, Sheema; Abduljabbar, Shatha Mohammad; Bukhari, Syed Zahid; Basri, Roaa Hasan; Mushtaq, Jeyashri Jaji; Rushdi, Hala; Turkistani, Abdullah Abdulaziz; Gonzales Celiz, Jerlie Mae; Al Raey, Mohammed Abdullah; Al-Zaydani Asiri, Ibrahim Am; Aldarani, Saeed Ali; Laungayan Cortez, Elizabeth; Demaisip, Nadia Lynette; Aziz, Misbah Rehman; Omer Abdul Aziz, Ali; Al Manea, Batool; Samy, Eslam; Al-Dalaton, Mervat; Alaliany, Mohammed Jkedeb

    2017-01-01

    To analyse the impact of the International Nosocomial Infection Control Consortium (INICC) Multidimensional Approach (IMA) and INICC Surveillance Online System (ISOS) on central line-associated bloodstream infection (CLABSI) rates in five intensive care units (ICUs) from October 2013 to September 2015. Prospective, before-after surveillance study of 3769 patients hospitalised in four adult ICUs and one paediatric ICU in five hospitals in five cities. During baseline, we performed outcome and process surveillance of CLABSI applying CDC/NHSN definitions. During intervention, we implemented IMA and ISOS, which included: (1) a bundle of infection prevention practice interventions; (2) education; (3) outcome surveillance; (4) process surveillance; (5) feedback on CLABSI rates and consequences; and (6) performance feedback of process surveillance. Bivariate and multivariate regression analyses were performed. During baseline, 4468 central line (CL) days and 31 CLABSIs were recorded, accounting for 6.9 CLABSIs per 1000 CL-days. During intervention, 12,027 CL-days and 37 CLABSIs were recorded, accounting for 3.1 CLABSIs per 1000 CL-days. The CLABSI rate was reduced by 56% (incidence-density rate, 0.44; 95% confidence interval, 0.28-0.72; P = 0.001). Implementing IMA through ISOS was associated with a significant reduction in the CLABSI rate in the ICUs of Saudi Arabia.

  7. Hydrologic controls on nitrogen cycling processes and functional gene abundance in sediments of a groundwater flow-through lake

    USGS Publications Warehouse

    Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.

    2016-01-01

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  8. Hydrologic Controls on Nitrogen Cycling Processes and Functional Gene Abundance in Sediments of a Groundwater Flow-Through Lake.

    PubMed

    Stoliker, Deborah L; Repert, Deborah A; Smith, Richard L; Song, Bongkeun; LeBlanc, Denis R; McCobb, Timothy D; Conaway, Christopher H; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B

    2016-04-05

    The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.

  9. Control of Wave Propagation and Effect of Kerr Nonlinearity on Group Index

    NASA Astrophysics Data System (ADS)

    Hazrat, Ali; Ziauddin; Iftikhar, Ahmed

    2013-07-01

    We use four-level atomic system and control the wave propagation via forbidden decay rate. The Raman gain process becomes dominant on electromagnetically induced transparency (EIT) medium by increasing the forbidden decay rate via increasing the number of atoms [G.S. Agarwal and T.N. Dey, Phys. Rev. A 74 (2006) 043805 and K. Harada, T. Kanbashi, and M. Mitsunaga, Phys. Rev. A 73 (2006) 013803]. The behavior of wave propagation is dramatically changed from normal (subluminal) to anomalous (superluminal) dispersion by increasing the forbidden decay rate. The system can also give a control over the group velocity of the light propagating through the medium via Kerr field.

  10. Word processing during reading sentences in patients with schizophrenia: evidences from the eyetracking technique.

    PubMed

    Fernández, Gerardo; Sapognikoff, Marcelo; Guinjoan, Salvador; Orozco, David; Agamennoni, Osvaldo

    2016-07-01

    The current study analyze the effect of word properties (i.e., word length, word frequency and word predictability) on the eye movement behavior of patients with schizophrenia (SZ) compared to age-matched controls. 18 SZ patients and 40 age matched controls participated in the study. Eye movements were recorded during reading regular sentences by using the eyetracking technique. Eye movement analyses were performed using linear mixed models. Analysis of eye movements revealed that patients with SZ decreased the amount of single fixations, increased their total number of second pass fixations compared with healthy individuals (Controls). In addition, SZ patients showed an increase in gaze duration, compared to Controls. Interestingly, the effects of current word frequency and current word length processing were similar in Controls and SZ patients. The high rate of second pass fixations and its low rate in single fixation might reveal impairments in working memory when integrating neighbor words. In contrast, word frequency and length processing might require less complex mechanisms, which were functioning in SZ patients. To the best of our knowledge, this is the first study measuring how patients with SZ process dynamically well-defined words embedded in regular sentences. The findings suggest that evaluation of the resulting changes in eye movement behavior may supplement current symptom-based diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Study on optimum technological conditions of ore sintering flue gas desulfurization by using poor manganese

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Li, S. E.; Long, Z. G.; Wu, F. Z.; Cui, T. M.; Zhou, X. Z.

    2017-11-01

    Orthogonal experiments were conducted to study the effect of each single factor on the desulfurization rate and leaching rate of Mn2+ to obtain improved process parameters. The results showed that the use of pyrolusite flue gas and the process method of by-product MnSO4 can not only effectively remove the sulfur in the gas, thereby controlling environmental pollution, but can also recover sulfur.

  12. Cardiopulmonary data-acquisition system

    NASA Technical Reports Server (NTRS)

    Crosier, W. G.; Reed, R. A.

    1981-01-01

    Computerized system controls and monitors bicycle and treadmill cardiovascular stress tests. It acquires and reduces stress data and displays heart rate, blood pressure, workload, respiratory rate, exhaled-gas composition, and other variables. Data are printed on hard-copy terminal every 30 seconds for quick operator response to patient. Ergometer workload is controlled in real time according to experimental protocol. Collected data are stored directly on tape in analog form and on floppy disks in digital form for later processing.

  13. Attentional and physiological processing of food images in functional dyspepsia patients: A pilot study.

    PubMed

    Lee, In-Seon; Preissl, Hubert; Giel, Katrin; Schag, Kathrin; Enck, Paul

    2018-01-23

    The food-related behavior of functional dyspepsia has been attracting more interest of late. This pilot study aims to provide evidence of the physiological, emotional, and attentional aspects of food processing in functional dyspepsia patients. The study was performed in 15 functional dyspepsia patients and 17 healthy controls after a standard breakfast. We measured autonomic nervous system activity using skin conductance response and heart rate variability, emotional response using facial electromyography, and visual attention using eyetracking during the visual stimuli of food/non-food images. In comparison to healthy controls, functional dyspepsia patients showed a greater craving for food, a decreased intake of food, more dyspeptic symptoms, lower pleasantness rating of food images (particularly of high fat), decreased low frequency/high frequency ratio of heart rate variability, and suppressed total processing time of food images. There were no significant differences of skin conductance response and facial electromyography data between groups. The results suggest that high level cognitive functions rather than autonomic and emotional mechanisms are more liable to function differently in functional dyspepsia patients. Abnormal dietary behavior, reduced subjective rating of pleasantness and visual attention to food should be considered as important pathophysiological characteristics in functional dyspepsia.

  14. Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei

    2011-12-01

    Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h

  15. Pilots Rate Augmented Generalized Predictive Control for Reconfiguration

    NASA Technical Reports Server (NTRS)

    Soloway, Don; Haley, Pam

    2004-01-01

    The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.

  16. Nanoparticles and Ocean Optics

    DTIC Science & Technology

    2005-09-30

    ANSI Std Z39-18 control infection by the dilution process. Subsequent dilution experiments used eukaryotic hosts ( Emiliania huxleyi) and its...Results of dilution experiment with Emiliania huxleyi (strain 88E) and its virus. In this experiment, infection rate is controlled by the dilution

  17. Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method

    NASA Astrophysics Data System (ADS)

    Ahmadi, Shahrokh; Afzalzadeh, Reza

    2016-07-01

    This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.

  18. Experience with dynamic reinforcement rates decreases resistance to extinction.

    PubMed

    Craig, Andrew R; Shahan, Timothy A

    2016-03-01

    The ability of organisms to detect reinforcer-rate changes in choice preparations is positively related to two factors: the magnitude of the change in rate and the frequency with which rates change. Gallistel (2012) suggested similar rate-detection processes are responsible for decreases in responding during operant extinction. Although effects of magnitude of change in reinforcer rate on resistance to extinction are well known (e.g., the partial-reinforcement-extinction effect), effects of frequency of changes in rate prior to extinction are unknown. Thus, the present experiments examined whether frequency of changes in baseline reinforcer rates impacts resistance to extinction. Pigeons pecked keys for variable-interval food under conditions where reinforcer rates were stable and where they changed within and between sessions. Overall reinforcer rates between conditions were controlled. In Experiment 1, resistance to extinction was lower following exposure to dynamic reinforcement schedules than to static schedules. Experiment 2 showed that resistance to presession feeding, a disruptor that should not involve change-detection processes, was unaffected by baseline-schedule dynamics. These findings are consistent with the suggestion that change detection contributes to extinction. We discuss implications of change-detection processes for extinction of simple and discriminated operant behavior and relate these processes to the behavioral-momentum based approach to understanding extinction. © 2016 Society for the Experimental Analysis of Behavior.

  19. Experimental characterization and modeling for the growth rate of oxide coatings from liquid solutions of metalorganic precursors by ultrasonic pulsed injection in a cold-wall low-pressure reactor

    NASA Astrophysics Data System (ADS)

    Krumdieck, Susan Pran

    Several years ago, a method for depositing ceramic coatings called the Pulsed-MOCVD system was developed by the Raj group at Cornell University in association with Dr. Harvey Berger and Sono-Tek Corporation. The process was used to produce epitaxial thin films of TiO2 on sapphire substrates under conditions of low pressure, relatively high temperature, and very low growth rate. The system came to CU-Boulder when Professor Raj moved here in 1997. It is quite a simple technique and has several advantages over typical CVD systems. The purpose of this dissertation is two-fold; (1) understand the chemical processes, thermodynamics, and kinetics of the Pulsed-MOCVD technique, and (2) determine the possible applications by studying the film structure and morphology over the entire range of deposition conditions. Polycrystalline coatings of ceramic materials were deposited on nickel in the low-pressure, cold-wall reactor from metalorganic precursors, titanium isopropoxide, and a mixture of zirconium isopropoxide and yttria isopropoxide. The process utilized pulsed liquid injection of a dilute precursor solution with atomization by ultrasonic nozzle. Thin films (less than 1mum) with fine-grained microstructure and thick coatings (up to 1mum) with columnar-microstructure were deposited on heated metal substrates by thermal decomposition of a single liquid precursor. The influence of each of the primary deposition parameters, substrate temperature, total flow rate, and precursor concentration on growth rate, conversion efficiency and morphology were investigated. The operating conditions were determined for kinetic, mass transfer, and evaporation process control regimes. Kinetic controlled deposition was found to produce equiaxed morphology while mass transfer controlled deposition produced columnar morphology. A kinetic model of the deposition process was developed and compared to data for deposition of TiO2 from Ti(OC3H7) 4 precursor. The results demonstrate that growth rate and morphology over the range of process operating conditions would make the Pulsed-MOCVD system suitable for application of thermal barrier coatings, electrical insulating layers, corrosion protection coatings, and the electrolyte layers in solid oxide fuel cells.

  20. Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes

    PubMed Central

    Cash, Derek J.; Hess, George P.

    1980-01-01

    Two molecular processes, the binding of acetylcholine to the membrane-bound acetylcholine receptor protein and the receptor-controlled flux rates of specific inorganic ions, are essential in determining the electrical membrane potential of nerve and muscle cells. The measurements reported establish the relationship between the two processes: the acetylcholine receptor-controlled transmembrane ion flux of 86Rb+ and the concentration of carbamoylcholine, a stable analog of acetylcholine. A 200-fold concentration range of carbamoylcholine was used. The flux was measured in the millisecond-to-minute time region by using a quench flow technique with membrane vesicles prepared from the electric organ of Electrophorus electricus in eel Ringer's solution at pH 7.0 and 1°C. The technique makes possible the study of the transmembrane transport of specific ions, with variable known internal and external ion concentrations, in a system in which a determinable number of receptors is exposed to a known concentration of ligand. The response curve of ion flux to ligand was sigmoidal with an average maximum rate of 84 sec-1. Carbamoylcholine induced inactivation of the receptor with a maximum rate of 2.7 sec-1 and a different ligand dependence so that it was fast relative to ion flux at low ligand concentration but slow relative to ion flux at high ligand concentration. The simplest model that fits the data consists of receptor in the active and inactive states in ligand-controlled equilibria. Receptor inactivation occurs with one or two ligand molecules bound. For channel opening, two ligand molecules bound to the active state are required, and cooperativity results from the channel opening process itself. With carbamoylcholine, apparently, the equilibrium position for the channel opening step is only one-fourth open. The integrated rate equation, based on the model, predicts the time dependence of receptor-controlled ion flux over the concentration range of carbamoylcholine investigated. The values of the constants in the rate equation form the basis for predicting receptor-controlled changes in the transmembrane potential of cells and the conditions leading to transmission of signals between cells. PMID:6928684

  1. The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Chamberlain, C. P.

    2010-12-01

    Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and long flow paths suggesting that the particular hydrologic setting of a landscape will be the underlying control on the chemical fluxes. As such, we reinterpret the large chemical fluxes that are observed in active mountain belts, like the Himalaya, to be primarily controlled by the long reactive flow paths created by the steep terrain coupled with high amounts of precipitation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, V.E.

    Naturally occurring radioactivity was measured in the atmospheric emissions and process materials of a thermal phosphate (elemental phosphorus) plant. Representative exhaust stack samples were collected from each process in the plant. The phosphate ore contained 12 to 20 parts per million uranium. Processes, emission points, and emission controls are described. Radioactivity concentrations and emission rates from the sources sampled are given.

  3. 49 CFR Appendix B to Part 385 - Explanation of Safety Rating Process

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... substance test result (critical). § 382.303(a)Failing to conduct post accident testing on driver for alcohol... operational controls. These are indicative of breakdowns in a carrier's management controls. An example of a... relates to management and/or operational controls. These are indicative of breakdowns in a carrier's...

  4. 76 FR 31242 - Revisions to the California State Implementation Plan, Santa Barbara County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... BTU/hr and internal combustion engines with a rated brake horse power of 50 or greater. Under... Process Heaters. SBCAPCD 333 Control of Emissions 06/19/08 10/20/08 from Reciprocating Internal Combustion..., ``Control of Emissions from Reciprocating Internal Combustion Engines,'' adopted on June 19, 2008...

  5. Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.

    PubMed

    Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He

    2010-01-01

    For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method. 2009 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Method for measuring and controlling beam current in ion beam processing

    DOEpatents

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  7. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process.

    PubMed

    Anzehaee, Mohammad Mousavi; Haeri, Mohammad

    2011-07-01

    New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A Soft Sensor for Bioprocess Control Based on Sequential Filtering of Metabolic Heat Signals

    PubMed Central

    Paulsson, Dan; Gustavsson, Robert; Mandenius, Carl-Fredrik

    2014-01-01

    Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel. PMID:25264951

  9. A soft sensor for bioprocess control based on sequential filtering of metabolic heat signals.

    PubMed

    Paulsson, Dan; Gustavsson, Robert; Mandenius, Carl-Fredrik

    2014-09-26

    Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel.

  10. A novel spatter detection algorithm based on typical cellular neural network operations for laser beam welding processes

    NASA Astrophysics Data System (ADS)

    Nicolosi, L.; Abt, F.; Blug, A.; Heider, A.; Tetzlaff, R.; Höfler, H.

    2012-01-01

    Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.

  11. Cantilever epitaxial process

    DOEpatents

    Ashby, Carol I.; Follstaedt, David M.; Mitchell, Christine C.; Han, Jung

    2003-07-29

    A process of growing a material on a substrate, particularly growing a Group II-VI or Group III-V material, by a vapor-phase growth technique where the growth process eliminates the need for utilization of a mask or removal of the substrate from the reactor at any time during the processing. A nucleation layer is first grown upon which a middle layer is grown to provide surfaces for subsequent lateral cantilever growth. The lateral growth rate is controlled by altering the reactor temperature, pressure, reactant concentrations or reactant flow rates. Semiconductor materials, such as GaN, can be produced with dislocation densities less than 10.sup.7 /cm.sup.2.

  12. Modeling the Hydrologic Processes of a Permeable Pavement System

    EPA Science Inventory

    A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has be...

  13. Some effects of overall rate of earning reinforcers on run lengths and visit durations.

    PubMed

    Macdonall, James S

    2006-07-01

    In a concurrent schedule, responding at each alternative is controlled by a pair of schedules that arrange reinforcers for staying at that alternative and reinforcers for switching to the other alternative. Each pair of schedules operates only while at the associated alternative. When only one pair of stay and switch schedules is presented, the rates of earning reinforcers for staying divided by the rates of earning reinforcers for switching controls the mean number responses in a visit and the mean duration of visits. The purpose of the present experiment was to see whether the sum of the rates of earning stay and switch reinforcers changed the way that run length and visit duration were affected by the ratio of the rates of stay to switch reinforcers. Rats were exposed to pairs of stay and switch schedules that varied both the ratio of the rates of earning stay and switch reinforcers and the sum of the rates of earning stay and switch reinforcers. Run lengths and visit durations were joint functions of the ratio of the rates of earning stay and switch reinforcers and the sum of the rates of earning stay and switch reinforcers. These results shows that the effect of the ratio of the sum of the rates of earning stay and switch reinforcers results from processes operating at the alternative, rather than from processes operating at both alternatives.

  14. [Application of laboratory information system in the management of the key indicators of quality inspection].

    PubMed

    Guo, Ye; Chen, Qian; Wu, Wei; Cui, Wei

    2015-03-31

    To establish a system of monitoring the key indicator of quality for inspection (KIQI) on a laboratory information system (LIS), and to have a better management of KIQI. Clinical sample made in PUMCH were collected during the whole of 2014. Next, interactive input program were designed to accomplish data collecting of the disqualification rate of samples, the mistake rate of samples and the occasions of losing samples, etc. Then, a series moment of sample collection, laboratory sample arrived, sample test, sample check, response to critical value, namely, trajectory information left on LIS were recorded and the qualification rate of TAT, the notification rate of endangering result were calculated. Finally, the information about quality control were collected to build an internal quality control database and the KIQI, such as the out-of-control rate of quality control and the total error of test items were monitored. The inspection of the sample management shows the disqualification rates in 2014 were all below the target, but the rates in January and February were a little high and the rates of four wards were above 2%. The mistake rates of samples was 0.47 cases/10 000 cases, attaining the target (< 2 cases/10 000 cases). Also, there was no occasion of losing samples in 2014, attaining the target too. The inspection of laboratory reports shows the qualification rates of TAT was within the acceptable range (> 95%), however the rates of blood routine in November (94.75%) was out of range. We have solved the problem by optimizing the processes. The notification rate of endangering result attained the target (≥ 98%), while the rate of timely notification is needed to improve. Quality inspection shows the CV of APTT in August (5.02%) was rising significantly, beyond the accepted CV (5.0%). We have solved the problem by changing the reagent. The CV of TT in 2014 were all below the allowable CV, thus the allowable CV of the next year lower to 10%. It is an objective and effective method to manage KIQI with the powerful management mode of database and information process capability on LIS.

  15. Effects of stressor controllability on psychophysiological, cognitive and behavioural responses in patients with major depression and dysthymia

    PubMed Central

    Diener, C.; Kuehner, C.; Brusniak, W.; Struve, M.; Flor, H.

    2009-01-01

    Background The experience of uncontrollability and helplessness in the face of stressful life events is regarded as an important determinant in the development and maintenance of depression. The inability to successfully deal with stressors might be linked to dysfunctional prefrontal functioning. We assessed cognitive, behavioural and physiological effects of stressor uncontrollability in depressed and healthy individuals. In addition, relationships between altered cortical processing and cognitive vulnerability traits of depression were analysed. Method A total of 26 unmedicated depressed patients and 24 matched healthy controls were tested in an expanded forewarned reaction (S1–S2) paradigm. In a factorial design, stressor controllability varied across three consecutive conditions: (a) control, (b) loss of control and (c) restitution of control. Throughout the experiment, error rates, ratings of controllability, arousal, emotional valence and helplessness were assessed together with the post-imperative negative variation (PINV) of the electroencephalogram. Results Depressed participants showed an enhanced frontal PINV as an electrophysiological index of altered information processing during both loss of control and restitution of control. They also felt more helpless than controls. Furthermore, frontal PINV magnitudes were associated with habitual rumination in the depressed subsample. Conclusions These findings indicate that depressed patients are more susceptible to stressor uncontrollability than healthy subjects. Moreover, the experience of uncontrollability seems to bias subsequent information processing in a situation where control is objectively re-established. Alterations in prefrontal functioning appear to contribute to this vulnerability and are also linked to trait markers of depression. PMID:18466665

  16. Heat and mass transfer models to understand the drying mechanisms of a porous substrate.

    PubMed

    Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti

    2016-02-01

    While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

  17. Modeling hydrologic controls on sulfur processes in sulfate-impacted wetland and stream sediments

    NASA Astrophysics Data System (ADS)

    Ng, G.-H. C.; Yourd, A. R.; Johnson, N. W.; Myrbo, A. E.

    2017-09-01

    Recent studies show sulfur redox processes in terrestrial settings are more important than previously considered, but much remains uncertain about how these processes respond to dynamic hydrologic conditions in natural field settings. We used field observations from a sulfate-impacted wetland and stream in the mining region of Minnesota (USA) to calibrate a reactive transport model and evaluate sulfur and coupled geochemical processes under contrasting hydrogeochemical scenarios. Simulations of different hydrological conditions showed that flux and chemistry differences between surface water and deeper groundwater strongly control hyporheic zone geochemical profiles. However, model results for the stream channel versus wetlands indicate sediment organic carbon content to be the more important driver of sulfate reduction rates. A complex nonlinear relationship between sulfate reduction rates and geochemical conditions is apparent from the model's higher sensitivity to sulfate concentrations in settings with higher organic content. Across all scenarios, simulated e- balance results unexpectedly showed that sulfate reduction dominates iron reduction, which is contrary to the traditional thermodynamic ladder but corroborates recent experimental findings by Hansel et al. (2015) that "cryptic" sulfur cycling could drive sulfate reduction in preference over iron reduction. Following the thermodynamic ladder, our models shows that high surface water sulfate slows methanogenesis in shallow sediments, but field observations suggest that sulfate reduction may not entirely suppress methane. Overall, our results show that sulfate reduction may serve as a major component making up and influencing terrestrial redox processes, with dynamic hyporheic fluxes controlling sulfate concentrations and reaction rates, especially in high organic content settings.

  18. Impairment in Emotional Modulation of Attention and Memory in Schizophrenia

    PubMed Central

    Walsh-Messinger, Julie; Ramirez, Paul Michael; Wong, Philip; Antonius, Daniel; Aujero, Nicole; McMahon, Kevin; Opler, Lewis A.; Malaspina, Dolores

    2014-01-01

    Emotion plays a critical role in cognition and goal-directed behavior via complex interconnections between the emotional and motivational systems. It has been hypothesized that the impairment in goal-directed behavior widely noted in schizophrenia may result from defects in the interaction between the neural (ventral) emotional system and (rostral) cortical processes. The present study examined the impact of emotion on attention and memory in schizophrenia. Twenty-five individuals with schizophrenia related psychosis and 25 healthy control subjects were administered a computerized task in which they were asked to search for target images during a rapid serial visual presentation of pictures. Target stimuli were either positive, negative, or neutral images presented at either 200ms or 700ms lag. Additionally, a visual hedonics task was used to assess differences between the schizophrenia group and controls on ratings of valence and arousal from the picture stimuli. Compared to controls, individuals with schizophrenia detected fewer emotional images under both the 200ms and 700ms lag conditions. Multivariate analyses showed that the schizophrenia group also detected fewer positive images under the 700 lag condition and fewer negative images under the 200 lag condition. Individuals with schizophrenia reported higher pleasantness and unpleasantness ratings than controls in response to neutral stimuli, while controls reported higher arousal ratings for neutral and positive stimuli compared to the schizophrenia group. These results highlight dysfunction in the neural modulation of emotion, attention, and cortical processing in schizophrenia, adding to the growing but mixed body of literature on emotion processing in the disorder. PMID:24910446

  19. Impairment in emotional modulation of attention and memory in schizophrenia.

    PubMed

    Walsh-Messinger, Julie; Ramirez, Paul Michael; Wong, Philip; Antonius, Daniel; Aujero, Nicole; McMahon, Kevin; Opler, Lewis A; Malaspina, Dolores

    2014-08-01

    Emotion plays a critical role in cognition and goal-directed behavior via complex interconnections between the emotional and motivational systems. It has been hypothesized that the impairment in goal-directed behavior widely noted in schizophrenia may result from defects in the interaction between the neural (ventral) emotional system and (rostral) cortical processes. The present study examined the impact of emotion on attention and memory in schizophrenia. Twenty-five individuals with schizophrenia related psychosis and 25 healthy control subjects were administered a computerized task in which they were asked to search for target images during a Rapid Serial Visual Presentation of pictures. Target stimuli were either positive or negative, or neutral images presented at either 200ms or 700ms lag. Additionally, a visual hedonic task was used to assess differences between the schizophrenia group and controls on ratings of valence and arousal from the picture stimuli. Compared to controls, individuals with schizophrenia detected fewer emotional images under both the 200ms and 700ms lag conditions. Multivariate analyses showed that the schizophrenia group also detected fewer positive images under the 700ms lag condition and fewer negative images under the 200ms lag condition. Individuals with schizophrenia reported higher pleasantness and unpleasantness ratings than controls in response to neutral stimuli, while controls reported higher arousal ratings for neutral and positive stimuli compared to the schizophrenia group. These results highlight dysfunction in the neural modulation of emotion, attention, and cortical processing in schizophrenia, adding to the growing but mixed body of literature on emotion processing in the disorder. Published by Elsevier B.V.

  20. Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review

    NASA Astrophysics Data System (ADS)

    Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.

    2018-06-01

    Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.

  1. Real-Time Variable Rate Spraying in Orchards and Vineyards: A Review

    NASA Astrophysics Data System (ADS)

    Wandkar, Sachin Vilas; Bhatt, Yogesh Chandra; Jain, H. K.; Nalawade, Sachin M.; Pawar, Shashikant G.

    2018-02-01

    Effective and efficient use of pesticides in the orchards is of concern since many years. With the conventional constant rate sprayers, equal dose of pesticide is applied to each tree. Since, there is great variation in size and shape of each tree in the orchard, trees gets either oversprayed or undersprayed. Real-time variable rate spraying technology offers pesticide application in accordance with tree size. With the help of suitable sensors, tree characteristics such as canopy volume, foliage density, etc. can be acquired and with the micro-processing unit coupled with proper algorithm, flow of electronic proportional valves can be controlled thus, controlling the flow rate of nozzles according to tree characteristics. Also, sensors can help in the detection of spaces in-between trees which allows to control the spray in spaces. Variable rate spraying helps in achieving precision in spraying operation especially inside orchards. This paper reviews the real-time variable rate spraying technology and efforts made by the various researchers for real-time variable application in the orchards and vineyards.

  2. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, M.; Kondo, M.; Noda, N.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel ismore » limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)« less

  3. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  4. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.

    PubMed

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  5. An optimizing start-up strategy for a bio-methanator.

    PubMed

    Sbarciog, Mihaela; Loccufier, Mia; Vande Wouwer, Alain

    2012-05-01

    This paper presents an optimizing start-up strategy for a bio-methanator. The goal of the control strategy is to maximize the outflow rate of methane in anaerobic digestion processes, which can be described by a two-population model. The methodology relies on a thorough analysis of the system dynamics and involves the solution of two optimization problems: steady-state optimization for determining the optimal operating point and transient optimization. The latter is a classical optimal control problem, which can be solved using the maximum principle of Pontryagin. The proposed control law is of the bang-bang type. The process is driven from an initial state to a small neighborhood of the optimal steady state by switching the manipulated variable (dilution rate) from the minimum to the maximum value at a certain time instant. Then the dilution rate is set to the optimal value and the system settles down in the optimal steady state. This control law ensures the convergence of the system to the optimal steady state and substantially increases its stability region. The region of attraction of the steady state corresponding to maximum production of methane is considerably enlarged. In some cases, which are related to the possibility of selecting the minimum dilution rate below a certain level, the stability region of the optimal steady state equals the interior of the state space. Aside its efficiency, which is evaluated not only in terms of biogas production but also from the perspective of treatment of the organic load, the strategy is also characterized by simplicity, being thus appropriate for implementation in real-life systems. Another important advantage is its generality: this technique may be applied to any anaerobic digestion process, for which the acidogenesis and methanogenesis are, respectively, characterized by Monod and Haldane kinetics.

  6. Potential use of advanced process control for safety purposes during attack of a process plant.

    PubMed

    Whiteley, James R

    2006-03-17

    Many refineries and commodity chemical plants employ advanced process control (APC) systems to improve throughputs and yields. These APC systems utilize empirical process models for control purposes and enable operation closer to constraints than can be achieved with traditional PID regulatory feedback control. Substantial economic benefits are typically realized from the addition of APC systems. This paper considers leveraging the control capabilities of existing APC systems to minimize the potential impact of a terrorist attack on a process plant (e.g., petroleum refinery). Two potential uses of APC are described. The first is a conventional application of APC and involves automatically moving the process to a reduced operating rate when an attack first begins. The second is a non-conventional application and involves reconfiguring the APC system to optimize safety rather than economics. The underlying intent in both cases is to reduce the demands on the operator to allow focus on situation assessment and optimal response planning. An overview of APC is provided along with a brief description of the modifications required for the proposed new applications of the technology.

  7. Active chatter suppression with displacement-only measurement in turning process

    NASA Astrophysics Data System (ADS)

    Ma, Haifeng; Wu, Jianhua; Yang, Liuqing; Xiong, Zhenhua

    2017-08-01

    Regenerative chatter is a major hindrance for achieving high quality and high production rate in machining processes. Various active controllers have been proposed to mitigate chatter. However, most of existing controllers were developed on the basis of multi-states feedback of the system and state observers were usually needed. Moreover, model parameters of the machining process (mass, damping and stiffness) were required in existing active controllers. In this study, an active sliding mode controller, which employs a dynamic output feedback sliding surface for the unmatched condition and an adaptive law for disturbance estimation, is designed, analyzed, and validated for chatter suppression in turning process. Only displacement measurement is required by this approach. Other sensors and state observers are not needed. Moreover, it facilitates a rapid implementation since the designed controller is established without using model parameters of the turning process. Theoretical analysis, numerical simulations and experiments on a computer numerical control (CNC) lathe are presented. It shows that the chatter can be substantially attenuated and the chatter-free region can be significantly expanded with the presented method.

  8. Trace chemical contaminant generation rates for spacecraft contamination control system design

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1995-01-01

    A spacecraft presents a unique design challenge with respect to providing a comfortable environment in which people can live and work. All aspects of the spacecraft environmental design including the size of the habitable volume, its temperature, relative humidity, and composition must be considered to ensure the comfort and health of the occupants. The crew members and the materials selected for outfitting the spacecraft play an integral part in designing a habitable spacecraft because material offgassing and human metabolism are the primary sources for continuous trace chemical contaminant generation onboard a spacecraft. Since these contamination sources cannot be completely eliminated, active control processes must be designed and deployed onboard the spacecraft to ensure an acceptably clean cabin atmosphere. Knowledge of the expected rates at which contaminants are generated is very important to the design of these processes. Data from past spacecraft missions and human contaminant production studies have been analyzed to provide this knowledge. The resulting compilation of contaminants and generation rates serve as a firm basis for past, present, and future contamination control system designs for space and aeronautics applications.

  9. Quality control process improvement of flexible printed circuit board by FMEA

    NASA Astrophysics Data System (ADS)

    Krasaephol, Siwaporn; Chutima, Parames

    2018-02-01

    This research focuses on the quality control process improvement of Flexible Printed Circuit Board (FPCB), centred around model 7-Flex, by using Failure Mode and Effect Analysis (FMEA) method to decrease proportion of defective finished goods that are found at the final inspection process. Due to a number of defective units that were found at the final inspection process, high scraps may be escaped to customers. The problem comes from poor quality control process which is not efficient enough to filter defective products from in-process because there is no In-Process Quality Control (IPQC) or sampling inspection in the process. Therefore, the quality control process has to be improved by setting inspection gates and IPCQs at critical processes in order to filter the defective products. The critical processes are analysed by the FMEA method. IPQC is used for detecting defective products and reducing chances of defective finished goods escaped to the customers. Reducing proportion of defective finished goods also decreases scrap cost because finished goods incur higher scrap cost than work in-process. Moreover, defective products that are found during process can reflect the abnormal processes; therefore, engineers and operators should timely solve the problems. Improved quality control was implemented for 7-Flex production lines from July 2017 to September 2017. The result shows decreasing of the average proportion of defective finished goods and the average of Customer Manufacturers Lot Reject Rate (%LRR of CMs) equal to 4.5% and 4.1% respectively. Furthermore, cost saving of this quality control process equals to 100K Baht.

  10. Preliminary control system design and analysis for the Space Station Furnace Facility thermal control system

    NASA Technical Reports Server (NTRS)

    Jackson, M. E.

    1995-01-01

    This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.

  11. Mechanics of wafer bonding: Effect of clamping

    NASA Astrophysics Data System (ADS)

    Turner, K. T.; Thouless, M. D.; Spearing, S. M.

    2004-01-01

    A mechanics-based model is developed to examine the effects of clamping during wafer bonding processes. The model provides closed-form expressions that relate the initial geometry and elastic properties of the wafers to the final shape of the bonded pair and the strain energy release rate at the interface for two different clamping configurations. The results demonstrate that the curvature of bonded pairs may be controlled through the use of specific clamping arrangements during the bonding process. Furthermore, it is demonstrated that the strain energy release rate depends on the clamping configuration and that using applied loads usually leads to an undesirable increase in the strain energy release rate. The results are discussed in detail and implications for process development and bonding tool design are highlighted.

  12. Polarization control of spontaneous emission for rapid quantum-state initialization

    NASA Astrophysics Data System (ADS)

    DiLoreto, C. S.; Rangan, C.

    2017-04-01

    We propose an efficient method to selectively enhance the spontaneous emission rate of a quantum system by changing the polarization of an incident control field, and exploiting the polarization dependence of the system's spontaneous emission rate. This differs from the usual Purcell enhancement of spontaneous emission rates as it can be selectively turned on and off. Using a three-level Λ system in a quantum dot placed in between two silver nanoparticles and a linearly polarized, monochromatic driving field, we present a protocol for rapid quantum state initialization, while maintaining long coherence times for control operations. This process increases the overall amount of time that a quantum system can be effectively utilized for quantum operations, and presents a key advance in quantum computing.

  13. Metered oxygen supply aids treatment of domestic sewage

    NASA Technical Reports Server (NTRS)

    Weliky, N.; Hooper, T. J.; Silverman, H. P.

    1972-01-01

    Microbiological fixed-bed process was developed in which supplementary oxygen required by microbial species is supplied by electrochemical device. Rate of addition of oxygen to waste treatment process is controlled to maintain aerobic metabolism and prevent anaerobic metabolisms which produce odorous or toxic products.

  14. Interpretative bias in spider phobia: Perception and information processing of ambiguous schematic stimuli.

    PubMed

    Haberkamp, Anke; Schmidt, Filipp

    2015-09-01

    This study investigates the interpretative bias in spider phobia with respect to rapid visuomotor processing. We compared perception, evaluation, and visuomotor processing of ambiguous schematic stimuli between spider-fearful and control participants. Stimuli were produced by gradually morphing schematic flowers into spiders. Participants rated these stimuli related to their perceptual appearance and to their feelings of valence, disgust, and arousal. Also, they responded to the same stimuli within a response priming paradigm that measures rapid motor activation. Spider-fearful individuals showed an interpretative bias (i.e., ambiguous stimuli were perceived as more similar to spiders) and rated spider-like stimuli as more unpleasant, disgusting, and arousing. However, we observed no differences between spider-fearful and control participants in priming effects for ambiguous stimuli. For non-ambiguous stimuli, we observed a similar enhancement for phobic pictures as has been reported previously for natural images. We discuss our findings with respect to the visual representation of morphed stimuli and to perceptual learning processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Oscillatory support for rapid frequency change processing in infants.

    PubMed

    Musacchia, Gabriella; Choudhury, Naseem A; Ortiz-Mantilla, Silvia; Realpe-Bonilla, Teresa; Roesler, Cynthia P; Benasich, April A

    2013-11-01

    Rapid auditory processing and auditory change detection abilities are crucial aspects of speech and language development, particularly in the first year of life. Animal models and adult studies suggest that oscillatory synchrony, and in particular low-frequency oscillations play key roles in this process. We hypothesize that infant perception of rapid pitch and timing changes is mediated, at least in part, by oscillatory mechanisms. Using event-related potentials (ERPs), source localization and time-frequency analysis of event-related oscillations (EROs), we examined the neural substrates of rapid auditory processing in 4-month-olds. During a standard oddball paradigm, infants listened to tone pairs with invariant standard (STD, 800-800 Hz) and variant deviant (DEV, 800-1200 Hz) pitch. STD and DEV tone pairs were first presented in a block with a short inter-stimulus interval (ISI) (Rapid Rate: 70 ms ISI), followed by a block of stimuli with a longer ISI (Control Rate: 300 ms ISI). Results showed greater ERP peak amplitude in response to the DEV tone in both conditions and later and larger peaks during Rapid Rate presentation, compared to the Control condition. Sources of neural activity, localized to right and left auditory regions, showed larger and faster activation in the right hemisphere for both rate conditions. Time-frequency analysis of the source activity revealed clusters of theta band enhancement to the DEV tone in right auditory cortex for both conditions. Left auditory activity was enhanced only during Rapid Rate presentation. These data suggest that local low-frequency oscillatory synchrony underlies rapid processing and can robustly index auditory perception in young infants. Furthermore, left hemisphere recruitment during rapid frequency change discrimination suggests a difference in the spectral and temporal resolution of right and left hemispheres at a very young age. © 2013 Elsevier Ltd. All rights reserved.

  16. National audit of the sensitivity of double-contrast barium enema for colorectal carcinoma, using control charts For the Royal College of Radiologists Clinical Radiology Audit Sub-Committee.

    PubMed

    Tawn, D J; Squire, C J; Mohammed, M A; Adam, E J

    2005-05-01

    To audit the sensitivity of double-contrast barium enema (DCBE) for colorectal carcinoma, as currently practised in UK departments of radiology. As part of its programme of national audits, the Royal College of Radiologists Clinical Radiology Audit Sub-Committee undertook a retrospective audit of the sensitivity of DCBE for colorectal carcinoma during 2002. The following targets were set: demonstration of a lesion > or =95%; correct identification as a carcinoma > or =90%. Across the UK, 131 departments took part in the audit, involving 5454 examinations. The mean demonstration rate was 92.9% and the diagnosis rate was 85.9%, slightly below the targets set. The equivocal rate (lesion demonstrated, but not defined as malignant) was 6.9%, the perception failure rate was 2.8% and the technical failure rate was 4.4%. Control-chart methodology was used to analyze the data and to identify any departments whose performance was consistent with special-cause variation. When compared with the diagnosis rate (84.6%) and demonstration rate (92.7%) reported in the Wessex Audit 1995, [Thomas RD, Fairhurst JJ, Frost RA. Wessex regional audit: barium enema in colo-rectal carcinoma. Clin Radiol 1995;50:647-50.] a similar level of performance was observed in the NHS today, implying that the basic process for undertaking and reporting DCBE has remained relatively unchanged over the last few years. Improvement in the future will require fundamental changes to the process of reporting DCBE, in order to minimize the perception failure rate and accurately to describe lesions, so reducing the equivocal rate. Control-chart methodology has a useful role in identifying strategies to deliver continual improvement.

  17. Design and implementation of multichannel global active structural acoustic control for a device casing

    NASA Astrophysics Data System (ADS)

    Mazur, Krzysztof; Wrona, Stanislaw; Pawelczyk, Marek

    2018-01-01

    The paper presents the idea and discussion on implementation of multichannel global active noise control systems. As a test plant an active casing is used. It has been developed by the authors to reduce device noise directly at the source by controlling vibration of its casing. To provide global acoustic effect in the whole environment, where the device operates, it requires a number of secondary sources and sensors for each casing wall, thus making the whole active control structure complicated, i.e. with a large number of interacting channels. The paper discloses all details concerning hardware setup and efficient implementation of control algorithms for the multichannel case. A new formulation is presented to introduce the distributed version of the Switched-error Filtered-reference Least Mean Squares (FXLMS) algorithm together with adaptation rate enhancement. The convergence rate of the proposed algorithm is compared with original Multiple-error FXLMS. A number of hints followed from many years of authors' experience on microprocessor control systems design and signal processing algorithms optimization are presented. They can be used for various active control and signal processing applications, both for academic research and commercialization.

  18. Fast packet switching algorithms for dynamic resource control over ATM networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, R.P.; Keattihananant, P.; Chang, T.

    1996-12-01

    Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less

  19. Chemistry and technology of radiation processed composite materials

    NASA Astrophysics Data System (ADS)

    Czvikovszky, T.

    Composite materials of synthetics (based on monomers, oligomers and thermoplastics) and of natural polymers (wood and other fibrous cellulosics) prepared by radiation processing, offer valuable structural materials with enhanced coupling forces between the components. The applied polymer chemistry of such composites shows several common features with that of radiation grafting. E.g. the polymerization rate of oligomer-monomer mixtures in wood remains in most cases proportional to the square-root of the initiating dose-rate, just as in the simultaneous grafting, demonstrating that the chain termination kinetics remain regularly bimolecular in the corresponding dose-rate ranges. In the processing experiences of such composites, low dose requirement, easy process-control, and good technical feasibility have been found for composites of wood with oligomer-monomer mixtures, for coconut fibres with unsaturated polyesters and for pretreated wood fibre with polypropylene.

  20. Analytical design of an industrial two-term controller for optimal regulatory control of open-loop unstable processes under operational constraints.

    PubMed

    Tchamna, Rodrigue; Lee, Moonyong

    2018-01-01

    This paper proposes a novel optimization-based approach for the design of an industrial two-term proportional-integral (PI) controller for the optimal regulatory control of unstable processes subjected to three common operational constraints related to the process variable, manipulated variable and its rate of change. To derive analytical design relations, the constrained optimal control problem in the time domain was transformed into an unconstrained optimization problem in a new parameter space via an effective parameterization. The resulting optimal PI controller has been verified to yield optimal performance and stability of an open-loop unstable first-order process under operational constraints. The proposed analytical design method explicitly takes into account the operational constraints in the controller design stage and also provides useful insights into the optimal controller design. Practical procedures for designing optimal PI parameters and a feasible constraint set exclusive of complex optimization steps are also proposed. The proposed controller was compared with several other PI controllers to illustrate its performance. The robustness of the proposed controller against plant-model mismatch has also been investigated. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    NASA Astrophysics Data System (ADS)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  2. A unified method for evaluating real-time computer controllers: A case study. [aircraft control

    NASA Technical Reports Server (NTRS)

    Shin, K. G.; Krishna, C. M.; Lee, Y. H.

    1982-01-01

    A real time control system consists of a synergistic pair, that is, a controlled process and a controller computer. Performance measures for real time controller computers are defined on the basis of the nature of this synergistic pair. A case study of a typical critical controlled process is presented in the context of new performance measures that express the performance of both controlled processes and real time controllers (taken as a unit) on the basis of a single variable: controller response time. Controller response time is a function of current system state, system failure rate, electrical and/or magnetic interference, etc., and is therefore a random variable. Control overhead is expressed as a monotonically nondecreasing function of the response time and the system suffers catastrophic failure, or dynamic failure, if the response time for a control task exceeds the corresponding system hard deadline, if any. A rigorous probabilistic approach is used to estimate the performance measures. The controlled process chosen for study is an aircraft in the final stages of descent, just prior to landing. First, the performance measures for the controller are presented. Secondly, control algorithms for solving the landing problem are discussed and finally the impact of the performance measures on the problem is analyzed.

  3. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers

    NASA Astrophysics Data System (ADS)

    Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan

    2015-12-01

    Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts.

  4. Evaluation of marsh development processes at Fire Island National Seashore: Recent and historic perspectives

    USGS Publications Warehouse

    Roman, C.T.; King, D.R.; Cahoon, D.R.; Lynch, J.C.; Appleby, P.G.

    2007-01-01

    Purpose and significance of the study: Salt marshes are dynamic environments, increasing in vertical elevation and migrating, often landward, as sea level rises. With sea level rise greater than marsh elevation increase, marshes can be submerged, marsh soils become waterlogged, and plant growth becomes stressed, often resulting in conversion of vegetation-dominated marsh to mudflat or open water habitat. Given that the rate of sea level rise is expected to accelerate over the next century and that some marshes in the northeast are becoming submerged (e.g., Jamaica Bay, NY), it is important to understand the processes that control marsh development. More specifically, the objectives of this project were to quantify vertical marsh elevation change in relation to recent rates of sea-level rise and to investigate factors or processes that are most influential in controlling the development and maintenance of Fire Island salt marshes.

  5. Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.

  6. Cooperative polymerization of α-helices induced by macromolecular architecture

    NASA Astrophysics Data System (ADS)

    Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun

    2017-07-01

    Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.

  7. Microeconomics of advanced process window control for 50-nm gates

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  8. Non-Fluvial Controls of Erosion, Sediment Transport and Fluvial Morphology in a mid-Atlantic Piedmont Watershed, White Clay Creek, Pennsylvania, U.S.A.

    NASA Astrophysics Data System (ADS)

    McCarthy, K.; Affinito, R. A.; Pizzuto, J. E.; Stotts, S.; Henry, T.; Krauthauser, M.; O'Neal, M. A.

    2017-12-01

    Quantifying contemporary sediment budgets is essential for restoration and ecosystem management of mid-Atlantic watersheds, but relevant processes and controls are poorly understood. In the 153 km2 White Clay Creek watershed in southeastern Pennsylvania, longitudinal profiles reflect migration of knickpoints though bedrock over Quaternary timescales. In bank exposures along stream valleys, saprolite, bedrock, and matrix-supported cobbly and bouldery diamicton (likely colluvial) commonly underlie finer-grained clay, silt, sand, and gravel deposits of valley floor depositional environments. Overbank sedimentation rates were quantified by measuring the thickness of sediment deposited over the roots of floodplain trees. The sampled trees range in age from 25-270 years with median sediment accumulation rates of approximately 2 mm/yr (range 0-10 mm/yr). Rates of bank retreat (measured from historical aerial imagery or root-exposure dendrochronology) vary from 6-36 cm/yr, with median rates of 10 cm/yr. While bank erosion rates are subject to a variety of controls, including channel curvature, the density of riparian trees, and freeze-thaw processes, the strongest influence appears to be the grain size and thickness of bouldery diamicton exposed along the toes of retreating banks. Cobbles and boulders supplied by eroding diamicton also mantle the bed of the channel, such that 33- 80% of the bed material remains immobile at bankfull stage. A conceptual model of fluvial processes and sediment budgets for these channels must account for the watershed's history of changing climate, tectonics, and land use, requiring mapping of bedrock, colluvium, former mill dam sediments, and other non-alluvial deposits and controls. Efforts to apply hydraulic geometry principles (requiring a precise adjustment to contemporary hydraulic and sediment regime) or to treat these channels as traditional "threshold" rivers are unlikely to be successful.

  9. Prospective multicentre study in intensive care units in five cities from the Kingdom of Saudi Arabia: Impact of the International Nosocomial Infection Control Consortium (INICC) multidimensional approach on rates of central line-associated bloodstream infection

    PubMed Central

    Al-Abdely, Hail M; Alshehri, Areej Dhafer; Rosenthal, Victor Daniel; Mohammed, Yassir Khidir; Banjar, Weam; Orellano, Pablo Wenceslao; Assiri, Abdullah Mufareh; Kader, Nahla Moustafa Abedel; Enizy, Hessa Abdullah Al; Mohammed, Diaa Abdullah; Al-Awadi, Duaa Khalil; Cabato, Analen Fabros; Wasbourne, Maria; Saliya, Randa; Aromin, Rosita Gasmin; Ubalde, Evangelina Balon; Diab, Hanan Hanafy; Alkamaly, Modhi Abdullah; Alanazi, Nawal Mohammed; Hassan Assiry, Ibtesam Yahia; Molano, Apsia Musa; Flores Baldonado, Celia; Al-Azhary, Mohamed; Al Atawi, Sharifa; Molano, Apsia Musa; Al Adwani, Fatima Mohammad; Casuyon Pahilanga, Arlu Marie; Nakhla, Raslan; Al Adwani, Fatma Mohammad; Nair, Deepa Sasithran; Sindayen, Grace; Malificio, Annalyn Amor; Helali, Najla Jameel; Al Dossari, Haya Barjas; Kelany, Ashraf; Algethami, Abdulmajid Ghowaizi; Yanne, Leigh; Tan, Avigail; Babu, Sheema; Abduljabbar, Shatha Mohammad; Bukhari, Syed Zahid; Basri, Roaa Hasan; Mushtaq, Jeyashri Jaji; Rushdi, Hala; Turkistani, Abdullah Abdulaziz; Gonzales Celiz, Jerlie Mae; Al Raey, Mohammed Abdullah; Al-Zaydani Asiri, Ibrahim AM; Aldarani, Saeed Ali; Laungayan Cortez, Elizabeth; Demaisip, Nadia Lynette; Aziz, Misbah Rehman; Omer Abdul Aziz, Ali; Al Manea, Batool; Samy, Eslam; Al-Dalaton, Mervat; Alaliany, Mohammed Jkedeb

    2016-01-01

    Objective: To analyse the impact of the International Nosocomial Infection Control Consortium (INICC) Multidimensional Approach (IMA) and INICC Surveillance Online System (ISOS) on central line-associated bloodstream infection (CLABSI) rates in five intensive care units (ICUs) from October 2013 to September 2015. Design: Prospective, before-after surveillance study of 3769 patients hospitalised in four adult ICUs and one paediatric ICU in five hospitals in five cities. During baseline, we performed outcome and process surveillance of CLABSI applying CDC/NHSN definitions. During intervention, we implemented IMA and ISOS, which included: (1) a bundle of infection prevention practice interventions; (2) education; (3) outcome surveillance; (4) process surveillance; (5) feedback on CLABSI rates and consequences; and (6) performance feedback of process surveillance. Bivariate and multivariate regression analyses were performed. Results: During baseline, 4468 central line (CL) days and 31 CLABSIs were recorded, accounting for 6.9 CLABSIs per 1000 CL-days. During intervention, 12,027 CL-days and 37 CLABSIs were recorded, accounting for 3.1 CLABSIs per 1000 CL-days. The CLABSI rate was reduced by 56% (incidence-density rate, 0.44; 95% confidence interval, 0.28–0.72; P = 0.001). Conclusions: Implementing IMA through ISOS was associated with a significant reduction in the CLABSI rate in the ICUs of Saudi Arabia. PMID:28989500

  10. Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Miller, R. H.; Nehl, T. W.; Nyamusa, T. A.

    1983-01-01

    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp.

  11. Infective endocarditis detection through SPECT/CT images digital processing

    NASA Astrophysics Data System (ADS)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  12. Cooling the vertical surface by conditionally single pulses

    NASA Astrophysics Data System (ADS)

    Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor

    2017-10-01

    You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.

  13. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-08-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major ``off-the-shelf`` components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  14. An integrated optical sensor for GMAW feedback control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P.L.; Watkins, A.D.; Larsen, E.D.

    1992-01-01

    The integrated optical sensor (IOS) is a multifunction feedback control sensor for arc welding, that is computer automated and independent of significant operator interaction. It is based on three major off-the-shelf'' components: a charged coupled device (CCD) camera, a diode laser, and a processing computer. The sensor head is compact and lightweight to avoid interference with weld head mobility, hardened to survive the harsh operating environment, and free of specialized cooling and power requirements. The sensor is positioned behind the GMAW torch and measures weld pool position and width, standoff distance, and postweld centerline cooling rate. Weld pool position andmore » width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint, thus allowing compensation for such phenomena as arc blow. Sensor stand off distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to infer the final metallurgical state of the weld bead and heat affected zone, thereby providing a means of controlling post weld mechanical properties.« less

  15. Cognitive Risk Factors for Specific Learning Disorder: Processing Speed, Temporal Processing, and Working Memory.

    PubMed

    Moll, Kristina; Göbel, Silke M; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J

    2016-01-01

    High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD: processing speed, temporal processing, and working memory. Since attention problems frequently co-occur with learning disorders, the study examined whether these three factors, which are known to be associated with attention problems, account for the comorbidity between these disorders. The sample comprised 99 primary school children in four groups: children with RD, children with MD, children with both disorders (RD+MD), and typically developing children (TD controls). Measures of processing speed, temporal processing, and memory were analyzed in a series of ANCOVAs including attention ratings as covariate. All three risk factors were associated with poor attention. After controlling for attention, associations with RD and MD differed: Although deficits in verbal memory were associated with both RD and MD, reduced processing speed was related to RD, but not MD; and the association with RD was restricted to processing speed for familiar nameable symbols. In contrast, impairments in temporal processing and visuospatial memory were associated with MD, but not RD. © Hammill Institute on Disabilities 2014.

  16. Conflict and performance monitoring throughout the lifespan: An event-related potential (ERP) and temporospatial component analysis.

    PubMed

    Clawson, Ann; Clayson, Peter E; Keith, Cierra M; Catron, Christina; Larson, Michael J

    2017-03-01

    Cognitive control includes higher-level cognitive processes used to evaluate environmental conflict. Given the importance of cognitive control in regulating behavior, understanding the developmental course of these processes may contribute to a greater understanding of normal and abnormal development. We examined behavioral (response times [RTs], error rates) and event-related potential data (N2, error-related negativity [ERN], correct-response negativity [CRN], error positivity [Pe]) during a flanker task in cross-sectional groups of 45 youth (ages 8-18), 52 younger adults (ages 20-28), and 58 older adults (ages 56-91). Younger adults displayed the most efficient processing, including significantly reduced CRN and N2 amplitude, increased Pe amplitude, and significantly better task performance than youth or older adults (e.g., faster RTs, fewer errors). Youth displayed larger CRN and N2, attenuated Pe, and significantly worse task performance than younger adults. Older adults fell either between youth and younger adults (e.g., CRN amplitudes, N2 amplitudes) or displayed neural and behavioral performance that was similar to youth (e.g., Pe amplitudes, error rates). These findings point to underdeveloped neural and cognitive processes early in life and reduced efficiency in older adulthood, contributing to poor implementation and modulation of cognitive control in response to conflict. Thus, cognitive control processing appears to reach peak performance and efficiency in younger adulthood, marked by improved task performance with less neural activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Proceedings of the Symposium on Psychology in the Department of Defense (13th) Held in Colorado Springs, Colorado on 15-17 April 1992

    DTIC Science & Technology

    1992-04-17

    decreased to roughly the level of the control group. This reduction holds for the remainder of the training program. Also important in these data was...the actual world results being modeled . Benefits of Applying the Conant-Ashby Theorem The primary problem associated with system (process) control is...rating of performance, and a rating of others’ performance, on ten-point Likert scales. 62 Results The data were analyzed at three levels :

  18. Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.

  19. Utilisation of chip thickness models in grinding

    NASA Astrophysics Data System (ADS)

    Singleton, Roger

    Grinding is now a well established process utilised for both stock removal and finish applications. Although significant research is performed in this field, grinding still experiences problems with burn and high forces which can lead to poor quality components and damage to equipment. This generally occurs in grinding when the process deviates from its safe working conditions. In milling, chip thickness parameters are utilised to predict and maintain process outputs leading to improved control of the process. This thesis looks to further the knowledge of the relationship between chip thickness and the grinding process outputs to provide an increased predictive and maintenance modelling capability. Machining trials were undertaken using different chip thickness parameters to understand how these affect the process outputs. The chip thickness parameters were maintained at different grinding wheel diameters for a constant productivity process to determine the impact of chip thickness at a constant material removal rate.. Additional testing using a modified pin on disc test rig was performed to provide further information on process variables. The different chip thickness parameters provide control of different process outputs in the grinding process. These relationships can be described using contact layer theory and heat flux partitioning. The contact layer is defined as the immediate layer beneath the contact arc at the wheel workpiece interface. The size of the layer governs the force experienced during the process. The rate of contact layer removal directly impacts the net power required from the system. It was also found that the specific grinding energy of a process is more dependent on the productivity of a grinding process rather than the value of chip thickness. Changes in chip thickness at constant material removal rate result in microscale changes in the rate of contact layer removal when compared to changes in process productivity. This is a significant piece of information in relation to specific grinding energy where conventional theory states it is primarily dependent on chip thickness..

  20. Active control of complex, multicomponent self-assembly processes

    NASA Astrophysics Data System (ADS)

    Schulman, Rebecca

    The kinetics of many complex biological self-assembly processes such as cytoskeletal assembly are precisely controlled by cells. Spatiotemporal control over rates of filament nucleation, growth and disassembly determine how self-assembly occurs and how the assembled form changes over time. These reaction rates can be manipulated by changing the concentrations of the components needed for assembly by activating or deactivating them. I will describe how we can use these principles to design driven self-assembly processes in which we assemble and disassemble multiple types of components to create micron-scale networks of semiflexible filaments assembled from DNA. The same set of primitive components can be assembled into many different, structures depending on the concentrations of different components and how designed, DNA-based chemical reaction networks manipulate these concentrations over time. These chemical reaction networks can in turn interpret environmental stimuli to direct complex, multistage response. Such a system is a laboratory for understanding complex active material behaviors, such as metamorphosis, self-healing or adaptation to the environment that are ubiquitous in biological systems but difficult to quantitatively characterize or engineer.

  1. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments

    NASA Astrophysics Data System (ADS)

    Segarra, Katherine E. A.; Comerford, Christopher; Slaughter, Julia; Joye, Samantha B.

    2013-08-01

    Methane, a powerful greenhouse gas, is both produced and consumed in anoxic coastal sediments via microbial processes. Although the anaerobic oxidation of methane (AOM) is almost certainly an important process in coastal freshwater and salt marsh sediments, the factors that control the rates and pathways of AOM in these habitats are poorly understood. Here, we present the first direct measurements of AOM activity in freshwater (0 PSU) and brackish (25 PSU) wetland sediments. Despite disparate sulfate concentrations, both environments supported substantial rates of AOM. Higher sulfate reduction (SR) rates were measured in the freshwater site and SR at both sites was of sufficient magnitude to support the observed AOM activity. Laboratory incubations of freshwater and brackish tidal, wetland sediments amended with either nothing [control], sulfate, nitrate, manganese oxide (birnessite) or iron oxide (ferrihydrite) and supplied with a methane headspace were used to evaluate the impact(s) of electron acceptor availability on potential AOM rates. Maximum AOM rates in brackish slurries occurred in the sulfate amendments. In contrast, addition of sulfate and several possible electron acceptors to the freshwater slurries decreased AOM rates relative to the control. High ratios of AOM activity relative to SR activity in the nitrate, birnessite, and ferrihydrite treatments of both the brackish and freshwater slurries provided evidence of AOM decoupled from SR. This study demonstrates that both freshwater and brackish coastal wetland sediments support considerable rates of anaerobic methanotrophy and provides evidence for sulfate-independent AOM that may be coupled to nitrate, iron, or manganese reduction in both environments.

  2. Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Gorman-Lewis, D.

    2013-12-01

    Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics. Additional analyses including Mg concentrations, microprobe and BET analyses support mineral dissolution rate calculations and stoichiometry considerations. All experimental assays containing endospores show increased forsterite dissolution rates relative to abiotic controls. Forsterite dissolution rates increased by approximately one order of magnitude in dialysis bound, biotic experiments relative to abiotic assays. Homogenous biotic assays exhibited a more complex dissolution rate profile that changes over time. All microbially mediated forsterite dissolution rates returned to abiotic control rates after 10 to 15 days of incubation. This shift in dissolution rate likely corresponds to maximum endospore surface adsorption capacity. The Bacillus subtilis endospore surface serves as a first-order proxy for studying the effect of metabolizing microbe surfaces on silicate dissolution rates. Comparisons with published abiotic, microbial, and organic acid mediated forsterite dissolution rates will provide insight on the importance of bacterial surfaces in primary mineral dissolution processes.

  3. High Rate Digital Demodulator ASIC

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  4. Anthropogenic control on geomorphic process rates: can we slow down the erosion rates? (Geomorphology Outstanding Young Scientist Award & Penck Lecture)

    NASA Astrophysics Data System (ADS)

    Vanacker, V.

    2012-04-01

    The surface of the Earth is changing rapidly, largely in response to anthropogenic perturbation. Direct anthropogenic disturbance of natural environments may be much larger in many places than the (projected) indirect effects of climate change. There is now large evidence that humans have significantly altered geomorphic process rates, mainly through changes in vegetation composition, density and cover. While much attention has been given to the impact of vegetation degradation on geomorphic process rates, I suggest that the pathway of restoration is equally important to investigate. First, vegetation recovery after crop abandonment has a rapid and drastic impact on geomorphic process rates. Our data from degraded catchments in the tropical Andes show that erosion rates can be reduced by up to 100 times when increasing the protective vegetation cover. During vegetation restoration, the combined effects of the reduction in surface runoff, sediment production and hydrological connectivity are stronger than the individual effects together. Therefore, changes in erosion and sedimentation during restoration are not simply the reverse of those observed during degradation. Second, anthropogenic perturbation causes a profound but often temporary change in geomorphic process rates. Reconstruction of soil erosion rates in Spain shows us that modern erosion rates in well-vegetated areas are similar to long-term rates, despite evidence of strong pulses in historical erosion rates after vegetation clearance and agriculture. The soil vegetation system might be resilient to short pulses of accelerated erosion (and deposition), as there might exist a dynamic coupling between soil erosion and production also in degraded environments.

  5. Quality improvement through implementation of discharge order reconciliation.

    PubMed

    Lu, Yun; Clifford, Pamela; Bjorneby, Andreas; Thompson, Bruce; VanNorman, Samuel; Won, Katie; Larsen, Kevin

    2013-05-01

    A coordinated multidisciplinary process to reduce medication errors related to patient discharges to skilled-nursing facilities (SNFs) is described. After determining that medication errors were a frequent cause of readmission among patients discharged to SNFs, a medical center launched a two-phase quality-improvement project focused on cardiac and medical patients. Phase one of the project entailed a three-month failure modes and effects analysis of existing procedures discharge, followed by the development and pilot testing of a multidisciplinary, closed-loop workflow process involving staff and resident physicians, clinical nurse coordinators, and clinical pharmacists. During pilot testing of the new workflow process, the rate of discharge medication errors involving SNF patients was tracked, and data on medication-related readmissions in a designated intervention group (n = 87) and a control group of patients (n = 1893) discharged to SNFs via standard procedures during a nine-month period were collected, with the data stratified using severity of illness (SOI) classification. Analysis of the collected data indicated a cumulative 30-day medication-related readmission rate for study group patients in the minor, moderate, and major SOI categories of 5.4% (4 of 74 patients), compared with a rate of 9.5% (169 of 1780 patients) in the control group. In phase 2 of the project, the revised SNF discharge medication reconciliation procedure was implemented throughout the hospital; since hospitalwide implementation of the new workflow, the readmission rate for SNF patients has been maintained at about 6.7%. Implementing a standardized discharge order reconciliation process that includes pharmacists led to decreased readmission rates and improved care for patients discharged to SNFs.

  6. Nondimensional parameter for conformal grinding: combining machine and process parameters

    NASA Astrophysics Data System (ADS)

    Funkenbusch, Paul D.; Takahashi, Toshio; Gracewski, Sheryl M.; Ruckman, Jeffrey L.

    1999-11-01

    Conformal grinding of optical materials with CNC (Computer Numerical Control) machining equipment can be used to achieve precise control over complex part configurations. However complications can arise due to the need to fabricate complex geometrical shapes at reasonable production rates. For example high machine stiffness is essential, but the need to grind 'inside' small or highly concave surfaces may require use of tooling with less than ideal stiffness characteristics. If grinding generates loads sufficient for significant tool deflection, the programmed removal depth will not be achieved. Moreover since grinding load is a function of the volumetric removal rate the amount of load deflection can vary with location on the part, potentially producing complex figure errors. In addition to machine/tool stiffness and removal rate, load generation is a function of the process parameters. For example by reducing the feed rate of the tool into the part, both the load and resultant deflection/removal error can be decreased. However this must be balanced against the need for part through put. In this paper a simple model which permits combination of machine stiffness and process parameters into a single non-dimensional parameter is adapted for a conformal grinding geometry. Errors in removal can be minimized by maintaining this parameter above a critical value. Moreover, since the value of this parameter depends on the local part geometry, it can be used to optimize process settings during grinding. For example it may be used to guide adjustment of the feed rate as a function of location on the part to eliminate figure errors while minimizing the total grinding time required.

  7. Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers

    NASA Astrophysics Data System (ADS)

    Attal, Mikaël; Lavé, Jérôme

    2009-12-01

    In actively eroding landscapes, fluvial abrasion modifies the characteristics of the sediment carried by rivers and consequently has a direct impact on the ability of mountain rivers to erode their bedrock and on the characteristics and volume of the sediment exported from upland catchments. In this experimental study, we use a novel flume replicating hydrodynamic conditions prevailing in mountain rivers to investigate the role played by different controlling variables on pebble abrasion during fluvial transport. Lithology controls abrasion rates and processes, with differences in abrasion rates exceeding two orders of magnitude. Attrition as well as breaking and splitting are efficient processes in reducing particle size. Mass loss by attrition increases with particle velocity but is weakly dependent on particle size. Fragment production is enhanced by the use of large particles, high impact velocities and the presence of joints. Based on our experimental results, we extrapolate a preliminary generic relationship between pebble attrition rate and transport stage (τ*/τ*c), where τ* = fluvial Shields stress and τ*c = critical Shields stress for incipient pebble motion. This relationship predicts that attrition rates are independent of transport stage for (τ*/τ*c) ≤ 3 and increase linearly with transport stage beyond this value. We evaluate the extent to which abrasion rates control downstream fining in several different natural settings. A simplified model predicts that the most resistant lithologies control bed load flux and fining ratio and that the concavity of transport-limited river profiles should rarely exceed 0.25 in the absence of deposition and sorting.

  8. Growth control of the eukaryote cell: a systems biology study in yeast.

    PubMed

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David Cj; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom Pj; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell.

  9. Growth control of the eukaryote cell: a systems biology study in yeast

    PubMed Central

    Castrillo, Juan I; Zeef, Leo A; Hoyle, David C; Zhang, Nianshu; Hayes, Andrew; Gardner, David CJ; Cornell, Michael J; Petty, June; Hakes, Luke; Wardleworth, Leanne; Rash, Bharat; Brown, Marie; Dunn, Warwick B; Broadhurst, David; O'Donoghue, Kerry; Hester, Svenja S; Dunkley, Tom PJ; Hart, Sarah R; Swainston, Neil; Li, Peter; Gaskell, Simon J; Paton, Norman W; Lilley, Kathryn S; Kell, Douglas B; Oliver, Stephen G

    2007-01-01

    Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate) on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth) is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for the design of genome-scale systems biology models of the eukaryotic cell. PMID:17439666

  10. The use of test structures for reliability prediction and process control of integrated circuits and photovoltaics

    NASA Astrophysics Data System (ADS)

    Trachtenberg, I.

    How a reliability model might be developed with new data from accelerated stress testing, failure mechanisms, process control monitoring, and test structure evaluations is illustrated. The effects of the acceleration of temperature on operating life is discussed. Test structures that will further accelerate the failure rate are discussed. Corrosion testing is addressed. The uncoated structure is encapsulated in a variety of mold compounds and subjected to pressure-cooker testing.

  11. A diffusive ink transport model for lipid dip-pen nanolithography

    NASA Astrophysics Data System (ADS)

    Urtizberea, A.; Hirtz, M.

    2015-09-01

    Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04352b

  12. Effect of acute heat stress and slaughter processing on poultry meat quality and postmortem carbohydrate metabolism.

    PubMed

    Wang, R H; Liang, R R; Lin, H; Zhu, L X; Zhang, Y M; Mao, Y W; Dong, P C; Niu, L B; Zhang, M H; Luo, X

    2017-03-01

    This study investigated the effects of acute heat stress and slaughter processing on poultry meat quality and carbohydrate metabolism. Broilers (200) were randomly divided into 2 groups receiving heat stress (HS; 36°C for one h), compared to a non-stressed control (C). At slaughter, each group was further divided into 2 groups for slaughter processing (L = laboratory; F = commercial factory). L group breasts were removed immediately after bleeding without carcass scalding or defeathering, and stored at 4°C. F group broilers were scalded (60°C, 45 s) after bleeding and defeathering. Then the breasts were removed and cooled in ice water until the core temperature was ≤4°C. Rates of Pectoralis core temperature and pH decline were changed by slaughter processing, but only HS affected ultimate pH in group L. HS muscles had higher L* values (P < 0.05) than controls at 24 h postmortem. Laboratory processing "hot-deboning" increased drip loss, which resulted in a lower cooked loss (P < 0.05). Postmortem glycolysis was affected only by HS. The speed of lactic acid accumulation and glycogen degradation was faster in the HS group than controls at 5 min postmortem. During storage the glycolysis rates were not different (P > 0.05). Sarcoplasmic protein solubility was higher in F processed birds (P < 0.05). HS decreased the solubility of myofibrillar and total protein in the L-slaughtered birds. Thus, HS caused a higher frequency of accelerated muscle glycolysis than controls. Factory processing (chilling) could not completely eliminate the effects of accelerated glycolysis caused by pre-slaughter HS. © 2016 Poultry Science Association Inc.

  13. Biogeochemical controls on mercury methylation in the Allequash Creek wetland.

    PubMed

    Creswell, Joel E; Shafer, Martin M; Babiarz, Christopher L; Tan, Sue-Zanne; Musinsky, Abbey L; Schott, Trevor H; Roden, Eric E; Armstrong, David E

    2017-06-01

    We measured mercury methylation potentials and a suite of related biogeochemical parameters in sediment cores and porewater from two geochemically distinct sites in the Allequash Creek wetland, northern Wisconsin, USA. We found a high degree of spatial variability in the methylation rate potentials but no significant differences between the two sites. We identified the primary geochemical factors controlling net methylmercury production at this site to be acid-volatile sulfide, dissolved organic carbon, total dissolved iron, and porewater iron(II). Season and demethylation rates also appear to regulate net methylmercury production. Our equilibrium speciation modeling demonstrated that sulfide likely regulated methylation rates by controlling the speciation of inorganic mercury and therefore its bioavailability to methylating bacteria. We found that no individual geochemical parameter could explain a significant amount of the observed variability in mercury methylation rates, but we found significant multivariate relationships, supporting the widely held understanding that net methylmercury production is balance of several simultaneously occurring processes.

  14. High-rate activated sludge system for carbon management--Evaluation of crucial process mechanisms and design parameters.

    PubMed

    Jimenez, Jose; Miller, Mark; Bott, Charles; Murthy, Sudhir; De Clippeleir, Haydee; Wett, Bernhard

    2015-12-15

    The high-rate activated sludge (HRAS) process is a technology suitable for the removal and redirection of organics from wastewater to energy generating processes in an efficient manner. A HRAS pilot plant was operated under controlled conditions resulting in concentrating the influent particulate, colloidal, and soluble COD to a waste solids stream with minimal energy input by maximizing sludge production, bacterial storage, and bioflocculation. The impact of important process parameters such as solids retention time (SRT), hydraulic residence time (HRT) and dissolved oxygen (DO) levels on the performance of a HRAS system was demonstrated in a pilot study. The results showed that maximum removal efficiencies of soluble COD were reached at a DO > 0.3 mg O2/L, SRT > 0.5 days and HRT > 15 min which indicates that minimizing the oxidation of the soluble COD in the high-rate activated sludge process is difficult. The study of DO, SRT and HRT exhibited high degree of impact on the colloidal and particulate COD removal. Thus, more attention should be focused on controlling the removal of these COD fractions. Colloidal COD removal plateaued at a DO > 0.7 mg O2/L, SRT > 1.5 days and HRT > 30 min, similar to particulate COD removal. Concurrent increase in extracellular polymers (EPS) production in the reactor and the association of particulate and colloidal material into sludge flocs (bioflocculation) indicated carbon capture by biomass. The SRT impacted the overall mass and energy balance of the high-rate process indicating that at low SRT conditions, lower COD mineralization or loss of COD content occurred. In addition, the lower SRT conditions resulted in higher sludge yields and higher COD content in the WAS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Environmental release of chemicals and reproductive ecology.

    PubMed Central

    Bajaj, J S; Misra, A; Rajalakshmi, M; Madan, R

    1993-01-01

    Reproductive ecology is defined as "the study of causes and mechanisms of the effects of environmental risk factors on reproductive health and the methods of their prevention and management." Major areas of concern, within the purview of this paper, relate to adverse pregnancy outcomes, effects on target tissues in the male and the female, and alterations in the control and regulatory mechanisms of reproductive processes. Teratogenic potential of chemicals, released as a result of accidents and catastrophes, is of critical significance. Congenital Minamata disease is due to transplacental fetal toxicity caused by accidental ingestion of methyl mercury. Generalized disorders of ectodermal tissue following prenatal exposure to polychlorinated biphenyls have been reported in Taiwan and Japan. The Bhopal gas disaster, a catastrophic industrial accident, was due to a leak of toxic gas, methyl isocyanate (MIC), in the pesticide manufacturing process. The outcome of pregnancy was studied in female survivors of MIC exposure. The spontaneous abortion rate was nearly four times more common in the affected areas as compared to the control area (24.2% versus 5.6%; p < 0.0001). Furthermore, while stillbirth rate was found to be similar in the affected and control areas, the perinatal and neonatal mortality rates were observed to be higher in the affected area. The rate of congenital malformations in the affected and control areas did not show any significant difference. Chromosomal aberrations and sister chromatid exchange (SCE) frequencies were investigated in human survivors of exposure. The observed SCE frequencies in control and exposed groups indicated that mutagenesis has been induced. Strategies for the management, prediction, and preventability of such disasters are outlined. PMID:8243381

  16. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

    DOE PAGES

    Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.; ...

    2018-05-18

    Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less

  17. Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiaoli; Cohen, Matthew J.; Martin, Jonathan B.

    Here, chemical weathering of bedrock plays an essential role in the formation and evolution of Earth's critical zone. Over geologic time, the negative feedback between temperature and chemical weathering rates contributes to the regulation of Earth climate. The challenge of understanding weathering rates and the resulting evolution of critical zone structures lies in complicated interactions and feedbacks among environmental variables, local ecohydrologic processes, and soil thickness, the relative importance of which remains unresolved. We investigate these interactions using a reactive-transport kinetics model, focusing on a low-relief, wetland-dominated karst landscape (Big Cypress National Preserve, South Florida, USA) as a case study.more » Across a broad range of environmental variables, model simulations highlight primary controls of climate and soil biological respiration, where soil thickness both supplies and limits transport of biologically derived acidity. Consequently, the weathering rate maximum occurs at intermediate soil thickness. The value of the maximum weathering rate and the precise soil thickness at which it occurs depend on several environmental variables, including precipitation regime, soil inundation, vegetation characteristics, and rate of groundwater drainage. Simulations for environmental conditions specific to Big Cypress suggest that wetland depressions in this landscape began to form around beginning of the Holocene with gradual dissolution of limestone bedrock and attendant soil development, highlighting large influence of age-varying soil thickness on weathering rates and consequent landscape development. While climatic variables are often considered most important for chemical weathering, our results indicate that soil thickness and biotic activity are equally important. Weathering rates reflect complex interactions among soil thickness, climate, and local hydrologic and biotic processes, which jointly shape the supply and delivery of chemical reactants, and the resulting trajectories of critical zone and karst landscape development.« less

  18. Tracking spatial variation in river load from Andean highlands to inter-Andean valleys

    NASA Astrophysics Data System (ADS)

    Tenorio, Gustavo E.; Vanacker, Veerle; Campforts, Benjamin; Álvarez, Lenín; Zhiminaicela, Santiago; Vercruysse, Kim; Molina, Armando; Govers, Gerard

    2018-05-01

    Mountains play an important role in the denudation of continents and transfer erosion and weathering products to lowlands and oceans. The rates at which erosion and weathering processes take place in mountain regions have a substantial impact on the morphology and biogeochemistry of downstream reaches and lowlands. The controlling factors of physical erosion and chemical weathering and the coupling between the two processes are not yet fully understood. In this study, we report physical erosion and chemical weathering rates for five Andean catchments located in the southern Ecuadorian Andes and investigate their mutual interaction. During a 4-year monitoring period, we sampled river water at biweekly intervals, and we analyzed water samples for major ions and suspended solids. We derived the total annual dissolved, suspended sediment, and ionic loads from the flow frequency curves and adjusted rating curves and used the dissolved and suspended sediment yields as proxies for chemical weathering and erosion rates. In the 4-year period of monitoring, chemical weathering exceeds physical erosion in the high Andean catchments. Whereas physical erosion rates do not exceed 30 t km-2 y-1 in the relict glaciated morphology, chemical weathering rates range between 22 and 59 t km-2 y-1. The variation in chemical weathering is primarily controlled by intrinsic differences in bedrock lithology. Land use has no discernible impact on the weathering rate but leads to a small increase in base cation concentrations because of fertilizer leaching in surface water. When extending our analysis with published data on dissolved and suspended sediment yields from the northern and central Andes, we observe that the river load composition strongly changes in the downstream direction, indicating large heterogeneity of weathering processes and rates within large Andean basins.

  19. Improving inferior vena cava filter retrieval rates with the define, measure, analyze, improve, control methodology.

    PubMed

    Sutphin, Patrick D; Reis, Stephen P; McKune, Angie; Ravanzo, Maria; Kalva, Sanjeeva P; Pillai, Anil K

    2015-04-01

    To design a sustainable process to improve optional inferior vena cava (IVC) filter retrieval rates based on the Define, Measure, Analyze, Improve, Control (DMAIC) methodology of the Six Sigma process improvement paradigm. DMAIC, an acronym for Define, Measure, Analyze, Improve, and Control, was employed to design and implement a quality improvement project to increase IVC filter retrieval rates at a tertiary academic hospital. Retrievable IVC filters were placed in 139 patients over a 2-year period. The baseline IVC filter retrieval rate (n = 51) was reviewed through a retrospective analysis, and two strategies were devised to improve the filter retrieval rate: (a) mailing of letters to clinicians and patients for patients who had filters placed within 8 months of implementation of the project (n = 43) and (b) a prospective automated scheduling of a clinic visit at 4 weeks after filter placement for all new patients (n = 45). The effectiveness of these strategies was assessed by measuring the filter retrieval rates and estimated increase in revenue to interventional radiology. IVC filter retrieval rates increased from a baseline of 8% to 40% with the mailing of letters and to 52% with the automated scheduling of a clinic visit 4 weeks after IVC filter placement. The estimated revenue per 100 IVC filters placed increased from $2,249 to $10,518 with the mailing of letters and to $17,022 with the automated scheduling of a clinic visit. Using the DMAIC methodology, a simple and sustainable quality improvement intervention was devised that markedly improved IVC filter retrieval rates in eligible patients. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.

  20. Progressive freezing and sweating in a test unit

    NASA Astrophysics Data System (ADS)

    Ulrich, J.; Özoğuz, Y.

    1990-01-01

    Crystallization from melts is applied in several fields like waste water treatment, fruit juice or liquid food concentration and purification of organic chemicals. Investigations to improve the understanding, the performance and the control of the process have been carried out. The experimental unit used a vertical tube with a falling film on the outside. With an specially designed measuring technique process controlling parameters have been studied. The results demonstrate the dependency of those parameters upon each other and indicate the way to control the process by controlling the dominant parameter. This is the growth rate of the crystal coat. A further purification of the crystal layer can be achieved by introducing the procedure of sweating, which is a controlled partial melting of the crystal coat. Here again process parameters have been varied and results are presented. The strong effect upon the final purity of the product by an efficient executed sweating which is effectively tuned on the crystallization procedure should save crystallization steps, energy and time.

  1. Differential influence of safe versus threatening facial expressions on decision-making during an inhibitory control task in adolescence and adulthood.

    PubMed

    Cohen-Gilbert, J E; Killgore, W D S; White, C N; Schwab, Z J; Crowley, D J; Covell, M J; Sneider, J T; Silveri, M M

    2014-03-01

    Social cognition matures dramatically during adolescence and into early adulthood, supported by continued improvements in inhibitory control. During this time, developmental changes in interpreting and responding to social signals such as facial expressions also occur. In the present study, subjects performed a Go No-Go task that required them to respond or inhibit responding based on threat or safety cues present in facial expressions. Subjects (N = 112) were divided into three age groups: adolescent (12-15 years), emerging adult (18-25 years) and adult (26-44 years). Analyses revealed a significant improvement in accuracy on No-Go trials, but not Go trials, during both safe and threat face conditions, with changes evident through early adulthood. In order to better identify the decision-making processes responsible for these changes in inhibitory control, a drift diffusion model (DDM) was fit to the accuracy and reaction time data, generating measures of caution, response bias, nondecision time (encoding + motor response), and drift rate (face processing efficiency). Caution and nondecision time both increased significantly with age while bias towards the Go response decreased. Drift rate analyses revealed significant age-related improvements in the ability to map threat faces to a No-Go response while drift rates on all other trial types were equivalent across age groups. These results suggest that both stimulus-independent and stimulus-dependent processes contribute to improvements in inhibitory control in adolescence with processing of negative social cues being specifically impaired by self-regulatory demands. Findings from this novel investigation of emotional responsiveness integrated with inhibitory control may provide useful insights about healthy development that can be applied to better understand adolescent risk-taking behavior and the elevated incidence of related forms of psychopathology during this period of life. © 2014 John Wiley & Sons Ltd.

  2. Neural processing of food and emotional stimuli in adolescent and adult anorexia nervosa patients

    PubMed Central

    Forster, Clemens; Dörfler, Arnd; Lindsiepe, Silja; Heinrich, Hartmut; Graap, Holmer; Moll, Gunther H.; Kratz, Oliver

    2018-01-01

    Background A constant preoccupation with food and restrictive eating are main symptoms of anorexia nervosa (AN). Imaging studies revealed aberrant neural activation patterns in brain regions processing hedonic and reward reactions as well as–potentially aversive–emotions. An imbalance between so called “bottom-up” and “top-down” control areas is discussed. The present study is focusing on neural processing of disease-specific food stimuli and emotional stimuli and its developmental course in adolescent and adult AN patients and could offer new insight into differential mechanisms underlying shorter or more chronic disease. Methods 33 adolescents aged 12–18 years (15 AN patients, 18 control participants) and 32 adult women (16 AN patients, 16 control participants) underwent functional magnetic resonance imaging (fMRI, 3T high-field scanner) while watching pictures of high and low-calorie food and affective stimuli. Afterwards, they rated subjective valence of each picture. FMRI data analysis was performed using a region of interest based approach. Results Pictures of high-calorie food items were rated more negatively by AN patients. Differences in activation between patients and controls were found in “bottom up” and “top down” control areas for food stimuli and in several emotion processing regions for affective stimuli which were more pronounced in adolescents than in adults. Conclusion A differential pattern was seen for food stimuli compared to generally emotion eliciting stimuli. Adolescents with AN show reduced processing of affective stimuli and enhanced activation of regions involved in “bottom up” reward processing and “top down” control as well as the insula with regard to food stimuli with a focus on brain regions which underlie changes during adolescent development. In adults less clear and less specific activation differences were present, pointing towards a high impact that regions undergoing maturation might have on AN symptoms. PMID:29579064

  3. Differences in cumulus cells gene expression between modified natural and stimulated in vitro fertilization cycles.

    PubMed

    Papler, Tanja Burnik; Bokal, Eda Vrtačnik; Tacer, Klementina Fon; Juvan, Peter; Virant Klun, Irma; Devjak, Rok

    2014-01-01

    The aim of our study was to determine whether there are any differences in the cumulus cell gene expression profile of mature oocytes derived from modified natural IVF and controlled ovarian hyperstimulation cycles and if these changes could help us understand why modified natural IVF has lower success rates. Cumulus cells surrounding mature oocytes that developed to morulae or blastocysts on day 5 after oocyte retrieval were submitted to microarray analysis. The obtained data were then validated using quantitative real-time PCR. There were 66 differentially expressed genes between cumulus cells of modified natural IVF and controlled ovarian hyperstimulation cycles. Gene ontology analysis revealed the oxidation-reduction process, glutathione metabolic process, xenobiotic metabolic process and gene expression were significantly enriched biological processes in MNIVF cycles. Among differentially expressed genes we observed a large group of small nucleolar RNA's whose role in folliculogenesis has not yet been established. The increased expression of genes involved in the oxidation-reduction process probably points to hypoxic conditions in modified natural IVF cycles. This finding opens up new perspectives for the establishment of the potential role that oxidation-reduction processes have in determining success rates of modified natural IVF.

  4. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    USDA-ARS?s Scientific Manuscript database

    The gas-permeable membrane process can recover ammonia from wastewater with high nitrogen load, reducing pollution whilst converting ammonia into an ammonium salt fertilizer. The process involves manure pH control to increase ammonium (NH4) recovery rate that is normally carried out using an alkali....

  5. 76 FR 22662 - Notice of Intent To Apply Certain Supervisory Guidance to Savings and Loan Holding Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... information that is used to assess inherent risks and internal control processes. Such activities include... management and information systems; and internal controls. The financial condition rating is supported by... appropriate standards of capitalization, liquidity, and risk management consistent with the principles of...

  6. Emotional Processing in High-Functioning Autism--Physiological Reactivity and Affective Report

    ERIC Educational Resources Information Center

    Bolte, Sven; Feineis-Matthews, Sabine; Poustka, Fritz

    2008-01-01

    This study examined physiological response and affective report in 10 adult individuals with autism and 10 typically developing controls. An emotion induction paradigm using stimuli from the International Affective Picture System was applied. Blood pressure, heart and self-ratings of experienced valence (pleasure), arousal and dominance (control)…

  7. 40 CFR 60.560 - Applicability and designation of affected facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (including expandable polystyrene) manufacturing processes, the affected facilities are each group of...) shall be used to determine the control of emissions from the facility. Table 2—Maximum Uncontrolled... rate of a vent stream to the atmosphere that would occur in the absence of any add-on control devices...

  8. 40 CFR 60.560 - Applicability and designation of affected facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (including expandable polystyrene) manufacturing processes, the affected facilities are each group of...) shall be used to determine the control of emissions from the facility. Table 2—Maximum Uncontrolled... rate of a vent stream to the atmosphere that would occur in the absence of any add-on control devices...

  9. Self-Correcting Electronically-Scanned Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Gross, C.; Basta, T.

    1982-01-01

    High-data-rate sensor automatically corrects for temperature variations. Multichannel, self-correcting pressure sensor can be used in wind tunnels, aircraft, process controllers and automobiles. Offers data rates approaching 100,000 measurements per second with inaccuracies due to temperature shifts held below 0.25 percent (nominal) of full scale over a temperature span of 55 degrees C.

  10. Gene regulation of UDP-galactose synthesis and transport: Potential rate limiting processes in initiation of milk production in humans

    USDA-ARS?s Scientific Manuscript database

    Lactose synthesis is believed to be rate-limiting for milk production. However, understanding the molecular events controlling lactose synthesis in humans is still rudimentary. We have utilized our established model of the RNA isolated from breast milk fat globule from 7 healthy exclusively breastfe...

  11. Economic Statistical Design of Integrated X-bar-S Control Chart with Preventive Maintenance and General Failure Distribution

    PubMed Central

    Caballero Morales, Santiago Omar

    2013-01-01

    The application of Preventive Maintenance (PM) and Statistical Process Control (SPC) are important practices to achieve high product quality, small frequency of failures, and cost reduction in a production process. However there are some points that have not been explored in depth about its joint application. First, most SPC is performed with the X-bar control chart which does not fully consider the variability of the production process. Second, many studies of design of control charts consider just the economic aspect while statistical restrictions must be considered to achieve charts with low probabilities of false detection of failures. Third, the effect of PM on processes with different failure probability distributions has not been studied. Hence, this paper covers these points, presenting the Economic Statistical Design (ESD) of joint X-bar-S control charts with a cost model that integrates PM with general failure distribution. Experiments showed statistically significant reductions in costs when PM is performed on processes with high failure rates and reductions in the sampling frequency of units for testing under SPC. PMID:23527082

  12. SUBSA and PFMI Transparent Furnace Systems Currently in use in the International Space Station Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Gilley, Scott; Ostrogorsky, Aleksander; Grugel, Richard; Smith, Guy; Luz, Paul

    2003-01-01

    The Solidification Using a Baffle in Sealed Ampoules (SUBSA) and Pore Formation and Mobility Investigation (PFMI) furnaces were developed for operation in the International Space Station (ISS) Microgravity Science Glovebox (MSG). Both furnaces were launched to the ISS on STS-111, June 4, 2002, and are currently in use on orbit. The SUBSA furnace provides a maximum temperature of 850 C and can accommodate a metal sample as large as 30 cm long and 12mm in diameter. SUBSA utilizes a gradient freeze process with a minimum cooldown rate of 0.5C per min, and a stability of +/- 0.15C. An 8 cm long transparent gradient zone coupled with a Cohu 3812 camera and quartz ampoule allows for observation and video recording of the solidification process. PFMI is a Bridgman type furnace that operates at a maximum temperature of 130C and can accommodate a sample 23cm long and 10mm in diameter. Two Cohu 3812 cameras mounted 90 deg apart move on a separate translation system which allows for viewing of the sample in the transparent hot zone and gradient zone independent of the furnace translation rate and direction. Translation rates for both the cameras and furnace can be specified from 0.5micrometers/sec to 100 micrometers/sec with a stability of +/-5%. The two furnaces share a Process Control Module (PCM) which controls the furnace hardware, a Data Acquisition Pad (DaqPad) which provides signal condition of thermal couple data, and two Cohu 3812 cameras. The hardware and software allow for real time monitoring and commanding of critical process control parameters. This paper will provide a detailed explanation of the SUBSA and PFMI systems along with performance data and some preliminary results from completed on-orbit processing runs.

  13. Therapist Multicultural Competence, Asian American Participants’ Cultural Values, and Counseling Process

    PubMed Central

    Wang, Shihwe; Kim, Bryan S. K.

    2011-01-01

    Asian Americans drop out of mental health treatment at a high rate. This problem could be addressed by enhancing therapists’ multicultural competence and by examining clients’ cultural attitudes that may affect the counseling process. In the present study, we used a video analogue design with a sample of 113 Asian American college students to examine these possibilities. The result from a t test showed that the session containing therapist multicultural competencies received higher ratings than the session without therapist multicultural competence. In addition, correlational analyses showed that participant values acculturation was positively associated with participant ratings of counseling process, while the value of emotional self-control was negatively correlated. The results of a hierarchical multiple regression analysis did not support any interaction effects among the independent variables on counseling process. All of these findings could contribute to the field of multicultural competence research and have implications for therapist practices and training. PMID:21490875

  14. Model of epidemic control based on quarantine and message delivery

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Tianfang; Qin, Xiaomeng

    2016-09-01

    The model provides two novel strategies for the preventive control of epidemic diseases. One approach is related to the different isolating rates in latent period and invasion period. Experiments show that the increasing of isolating rates in invasion period, as long as over 0.5, contributes little to the preventing of epidemic; the improvement of isolation rate in latent period is key to control the disease spreading. Another is a specific mechanism of message delivering and forwarding. Information quality and information accumulating process are also considered there. Macroscopically, diseases are easy to control as long as the immune messages reach a certain quality. Individually, the accumulating messages bring people with certain immunity to the disease. Also, the model is performed on the classic complex networks like scale-free network and small-world network, and location-based social networks. Results show that the proposed measures demonstrate superior performance and significantly reduce the negative impact of epidemic disease.

  15. Mimicking aphasic semantic errors in normal speech production: evidence from a novel experimental paradigm.

    PubMed

    Hodgson, Catherine; Lambon Ralph, Matthew A

    2008-01-01

    Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study utilised a novel method- tempo picture naming. Experiment 1 showed that, compared to standard deadline naming tasks, participants made more errors on the tempo picture naming tasks. Further, RTs were longer and more errors were produced to living items than non-living items a pattern seen in both semantic dementia and semantically-impaired stroke aphasic patients. Experiment 2 showed that providing the initial phoneme as a cue enhanced performance whereas providing an incorrect phonemic cue further reduced performance. These results support the contention that the tempo picture naming paradigm reduces the time allowed for controlled semantic processing causing increased error rates. This experimental procedure would, therefore, appear to mimic the performance of aphasic patients with multi-modal semantic impairment that results from poor semantic control rather than the degradation of semantic representations observed in semantic dementia [Jefferies, E. A., & Lambon Ralph, M. A. (2006). Semantic impairment in stoke aphasia vs. semantic dementia: A case-series comparison. Brain, 129, 2132-2147]. Further implications for theories of semantic cognition and models of speech processing are discussed.

  16. A Poor Relationship Between Sea Level and Deep-Water Sand Delivery

    NASA Astrophysics Data System (ADS)

    Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier

    2018-08-01

    The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.

  17. Decreasing patient identification band errors by standardizing processes.

    PubMed

    Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie

    2013-04-01

    Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P < .001) and was maintained for 8 months. Standardization of ID bands and labels in conjunction with other interventions resulted in a statistical decrease in ID band error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.

  18. Thermal sensors to control polymer forming. Challenge and solutions

    NASA Astrophysics Data System (ADS)

    Lemeunier, F.; Boyard, N.; Sarda, A.; Plot, C.; Lefèvre, N.; Petit, I.; Colomines, G.; Allanic, N.; Bailleul, J. L.

    2017-10-01

    Many thermal sensors are already used, for many years, to better understand and control material forming processes, especially polymer processing. Due to technical constraints (high pressure, sealing, sensor dimensions…) the thermal measurement is often performed in the tool or close its surface. Thus, it only gives partial and disturbed information. Having reliable information about the heat flux exchanges between the tool and the material during the process would be very helpful to improve the control of the process and to favor the development of new materials. In this work, we present several sensors developed in labs to study the molding steps in forming processes. The analysis of the obtained thermal measurements (temperature, heat flux) shows the required sensitivity threshold of sensitivity of thermal sensors to be able to detect on-line the rate of thermal reaction. Based on these data, we will present new sensor designs which have been patented.

  19. Proportional integral derivative, modeling and ways of stabilization for the spark plasma sintering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manière, Charles; Lee, Geuntak; Olevsky, Eugene A.

    The stability of the proportional–integral–derivative (PID) control of temperature in the spark plasma sintering (SPS) process is investigated. The PID regulations of this process are tested for different SPS tooling dimensions, physical parameters conditions, and areas of temperature control. It is shown that the PID regulation quality strongly depends on the heating time lag between the area of heat generation and the area of the temperature control. Tooling temperature rate maps are studied to reveal potential areas for highly efficient PID control. The convergence of the model and experiment indicates that even with non-optimal initial PID coefficients, it is possiblemore » to reduce the temperature regulation inaccuracy to less than 4 K by positioning the temperature control location in highly responsive areas revealed by the finite-element calculations of the temperature spatial distribution.« less

  20. Proportional integral derivative, modeling and ways of stabilization for the spark plasma sintering process

    DOE PAGES

    Manière, Charles; Lee, Geuntak; Olevsky, Eugene A.

    2017-04-21

    The stability of the proportional–integral–derivative (PID) control of temperature in the spark plasma sintering (SPS) process is investigated. The PID regulations of this process are tested for different SPS tooling dimensions, physical parameters conditions, and areas of temperature control. It is shown that the PID regulation quality strongly depends on the heating time lag between the area of heat generation and the area of the temperature control. Tooling temperature rate maps are studied to reveal potential areas for highly efficient PID control. The convergence of the model and experiment indicates that even with non-optimal initial PID coefficients, it is possiblemore » to reduce the temperature regulation inaccuracy to less than 4 K by positioning the temperature control location in highly responsive areas revealed by the finite-element calculations of the temperature spatial distribution.« less

  1. Sensory Processing in Preterm Preschoolers and Its Association with Executive Function

    PubMed Central

    Adams, Jenna N.; Feldman, Heidi M.; Huffman, Lynne C.; Loe, Irene M.

    2015-01-01

    Background Symptoms of abnormal sensory processing have been related to preterm birth, but have not yet been studied specifically in preterm preschoolers. The degree of association between sensory processing and other domains is important for understanding the role of sensory processing symptoms in the development of preterm children. Aims To test two related hypotheses: (1) preterm preschoolers have more sensory processing symptoms than full term preschoolers and (2) sensory processing is associated with both executive function and adaptive function in preterm preschoolers. Study Design Cross-sectional study Subjects Preterm children (≤34 weeks of gestation; n = 54) and full term controls (≥37 weeks of gestation; n = 73) ages 3-5 years. Outcome Measures Sensory processing was assessed with the Short Sensory Profile. Executive function was assessed with (1) parent ratings on the Behavior Rating Inventory of Executive Function- Preschool version and (2) a performance-based battery of tasks. Adaptive function was assessed with the Vineland Adaptive Behavior Scales-II. Results Preterm preschoolers showed significantly more sensory symptoms than full term controls. A higher percentage of preterm than full term preschoolers had elevated numbers of sensory symptoms (37% vs. 12%). Sensory symptoms in preterm preschoolers were associated with scores on executive function measures, but were not significantly associated with adaptive function. Conclusions Preterm preschoolers exhibited more sensory symptoms than full term controls. Preterm preschoolers with elevated numbers of sensory symptoms also showed executive function impairment. Future research should further examine whether sensory processing and executive function should be considered independent or overlapping constructs. PMID:25706317

  2. Low cost solar array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.

  3. Standards for the Analysis and Processing of Surface-Water Data and Information Using Electronic Methods

    USGS Publications Warehouse

    Sauer, Vernon B.

    2002-01-01

    Surface-water computation methods and procedures are described in this report to provide standards from which a completely automated electronic processing system can be developed. To the greatest extent possible, the traditional U. S. Geological Survey (USGS) methodology and standards for streamflow data collection and analysis have been incorporated into these standards. Although USGS methodology and standards are the basis for this report, the report is applicable to other organizations doing similar work. The proposed electronic processing system allows field measurement data, including data stored on automatic field recording devices and data recorded by the field hydrographer (a person who collects streamflow and other surface-water data) in electronic field notebooks, to be input easily and automatically. A user of the electronic processing system easily can monitor the incoming data and verify and edit the data, if necessary. Input of the computational procedures, rating curves, shift requirements, and other special methods are interactive processes between the user and the electronic processing system, with much of this processing being automatic. Special computation procedures are provided for complex stations such as velocity-index, slope, control structures, and unsteady-flow models, such as the Branch-Network Dynamic Flow Model (BRANCH). Navigation paths are designed to lead the user through the computational steps for each type of gaging station (stage-only, stagedischarge, velocity-index, slope, rate-of-change in stage, reservoir, tide, structure, and hydraulic model stations). The proposed electronic processing system emphasizes the use of interactive graphics to provide good visual tools for unit values editing, rating curve and shift analysis, hydrograph comparisons, data-estimation procedures, data review, and other needs. Documentation, review, finalization, and publication of records are provided for with the electronic processing system, as well as archiving, quality assurance, and quality control.

  4. The prevalence of visual hallucinations in non-affective psychosis, and the role of perception and attention.

    PubMed

    van Ommen, M M; van Beilen, M; Cornelissen, F W; Smid, H G O M; Knegtering, H; Aleman, A; van Laar, T

    2016-06-01

    Little is known about visual hallucinations (VH) in psychosis. We investigated the prevalence and the role of bottom-up and top-down processing in VH. The prevailing view is that VH are probably related to altered top-down processing, rather than to distorted bottom-up processing. Conversely, VH in Parkinson's disease are associated with impaired visual perception and attention, as proposed by the Perception and Attention Deficit (PAD) model. Auditory hallucinations (AH) in psychosis, however, are thought to be related to increased attention. Our retrospective database study included 1119 patients with non-affective psychosis and 586 controls. The Community Assessment of Psychic Experiences established the VH rate. Scores on visual perception tests [Degraded Facial Affect Recognition (DFAR), Benton Facial Recognition Task] and attention tests [Response Set-shifting Task, Continuous Performance Test-HQ (CPT-HQ)] were compared between 75 VH patients, 706 non-VH patients and 485 non-VH controls. The lifetime VH rate was 37%. The patient groups performed similarly on cognitive tasks; both groups showed worse perception (DFAR) than controls. Non-VH patients showed worse attention (CPT-HQ) than controls, whereas VH patients did not perform differently. We did not find significant VH-related impairments in bottom-up processing or direct top-down alterations. However, the results suggest a relatively spared attentional performance in VH patients, whereas face perception and processing speed were equally impaired in both patient groups relative to controls. This would match better with the increased attention hypothesis than with the PAD model. Our finding that VH frequently co-occur with AH may support an increased attention-induced 'hallucination proneness'.

  5. Hazard Identification, Risk Assessment, and Control Measures as an Effective Tool of Occupational Health Assessment of Hazardous Process in an Iron Ore Pelletizing Industry.

    PubMed

    Rout, B K; Sikdar, B K

    2017-01-01

    With the growing numbers of iron ore pelletization industries in India, various impacts on environment and health in relation to the workplace will rise. Therefore, understanding the hazardous process is crucial in the development of effective control measures. Hazard Identification, Risk Assessment, and Control measures (HIRAC) acts as an effective tool of Occupational Health Assessment. The aim of the study was to identify all the possible hazards at different workplaces of an iron ore pelletizing industry, to conduct an occupational health risk assessment, to calculate the risk rating based on the risk matrix, and to compare the risk rating before and after the control measures. The research was a cross-sectional study done from March to December 2015 in an iron ore pelletizing industry located in Odisha, India. Data from the survey were collected by inspecting the workplace, responses of employees regarding possible hazards in their workplace, reviewing department procedure manual, work instructions, standard operating procedure, previous incident reports, material safety data sheet, first aid/injury register, and health record of employees. A total of 116 hazards were identified. Results of the paired-sample's t -test showed that mean risk rating differs before taking control measures (M = 9.13, SD = 5.99) and after taking control measures (M = 2.80, SD = 1.38) at the 0.0001 level of significance ( t = 12.6428, df = 115, N = 116, P < 0.0001, 95% CI for mean difference 5.34 to 7.32). On an average, risk reduction was about 6.33 points lower after taking control measures. The hazards having high-risk rating and above were reduced to a level considered As Low as Reasonably Practicable (ALARP) when the control measures were applied, thereby reducing the occurrence of injury or disease in the workplace.

  6. Controls of nitrogen cycling evaluated along a well-characterized climate gradient.

    PubMed

    von Sperber, Christian; Chadwick, Oliver A; Casciotti, Karen L; Peay, Kabir G; Francis, Christopher A; Kim, Amy E; Vitousek, Peter M

    2017-04-01

    The supply of nitrogen (N) constrains primary productivity in many ecosystems, raising the question "what controls the availability and cycling of N"? As a step toward answering this question, we evaluated N cycling processes and aspects of their regulation on a climate gradient on Kohala Volcano, Hawaii, USA. The gradient extends from sites receiving <300 mm/yr of rain to those receiving >3,000 mm/yr, and the pedology and dynamics of rock-derived nutrients in soils on the gradient are well understood. In particular, there is a soil process domain at intermediate rainfall within which ongoing weathering and biological uplift have enriched total and available pools of rock-derived nutrients substantially; sites at higher rainfall than this domain are acid and infertile as a consequence of depletion of rock-derived nutrients, while sites at lower rainfall are unproductive and subject to wind erosion. We found elevated rates of potential net N mineralization in the domain where rock-derived nutrients are enriched. Higher-rainfall sites have low rates of potential net N mineralization and high rates of microbial N immobilization, despite relatively high rates of gross N mineralization. Lower-rainfall sites have moderately low potential net N mineralization, relatively low rates of gross N mineralization, and rates of microbial N immobilization sufficient to sequester almost all the mineral N produced. Bulk soil δ 15 N also varied along the gradient, from +4‰ at high rainfall sites to +14‰ at low rainfall sites, indicating differences in the sources and dynamics of soil N. Our analysis shows that there is a strong association between N cycling and soil process domains that are defined using soil characteristics independent of N along this gradient, and that short-term controls of N cycling can be understood in terms of the supply of and demand for N. © 2017 by the Ecological Society of America.

  7. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) larvae and functional bacteria.

    PubMed

    Xiao, Xiaopeng; Mazza, Lorenzo; Yu, Yongqiang; Cai, Minmin; Zheng, Longyu; Tomberlin, Jeffery K; Yu, Jeffrey; van Huis, Arnold; Yu, Ziniu; Fasulo, Salvatore; Zhang, Jibin

    2018-07-01

    A chicken manure management process was carried out through co-conversion of Hermetia illucens L. larvae (BSFL) with functional bacteria for producing larvae as feed stuff and organic fertilizer. Thirteen days co-conversion of 1000 kg of chicken manure inoculated with one million 6-day-old BSFL and 10 9  CFU Bacillus subtilis BSF-CL produced aging larvae, followed by eleven days of aerobic fermentation inoculated with the decomposing agent to maturity. 93.2 kg of fresh larvae were harvested from the B. subtilis BSF-CL-inoculated group, while the control group only harvested 80.4 kg of fresh larvae. Chicken manure reduction rate of the B. subtilis BSF-CL-inoculated group was 40.5%, while chicken manure reduction rate of the control group was 35.8%. The weight of BSFL increased by 15.9%, BSFL conversion rate increased by 12.7%, and chicken manure reduction rate increased by 13.4% compared to the control (no B. subtilis BSF-CL). The residue inoculated with decomposing agent had higher maturity (germination index >92%), compared with the no decomposing agent group (germination index ∼86%). The activity patterns of different enzymes further indicated that its production was more mature and stable than that of the no decomposing agent group. Physical and chemical production parameters showed that the residue inoculated with the decomposing agent was more suitable for organic fertilizer than the no decomposing agent group. Both, the co-conversion of chicken manure by BSFL with its synergistic bacteria and the aerobic fermentation with the decomposing agent required only 24 days. The results demonstrate that co-conversion process could shorten the processing time of chicken manure compared to traditional compost process. Gut bacteria could enhance manure conversion and manure reduction. We established efficient manure co-conversion process by black soldier fly and bacteria and harvest high value-added larvae mass and biofertilizer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Topics investigated include: measurements of transistor delay time; application of the infrared response technique to the study of radiation-damaged, lithium-drifted silicon detectors; and identification of a condition that minimizes wire flexure and reduces the failure rate of wire bonds in transistors and integrated circuits under slow thermal cycling conditions. Supplementary data concerning staff, standards committee activities, technical services, and publications are included as appendixes.

  9. Computer model of one-dimensional equilibrium controlled sorption processes

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1984-01-01

    A numerical solution to the one-dimensional solute-transport equation with equilibrium-controlled sorption and a first-order irreversible-rate reaction is presented. The computer code is written in FORTRAN language, with a variety of options for input and output for user ease. Sorption reactions include Langmuir, Freundlich, and ion-exchange, with or without equal valance. General equations describing transport and reaction processes are solved by finite-difference methods, with nonlinearities accounted for by iteration. Complete documentation of the code, with examples, is included. (USGS)

  10. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  11. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2000-01-01

    A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  12. Development of Process Analytical Technology (PAT) methods for controlled release pellet coating.

    PubMed

    Avalle, P; Pollitt, M J; Bradley, K; Cooper, B; Pearce, G; Djemai, A; Fitzpatrick, S

    2014-07-01

    This work focused on the control of the manufacturing process for a controlled release (CR) pellet product, within a Quality by Design (QbD) framework. The manufacturing process was Wurster coating: firstly layering active pharmaceutical ingredient (API) onto sugar pellet cores and secondly a controlled release (CR) coating. For each of these two steps, development of a Process Analytical Technology (PAT) method is discussed and also a novel application of automated microscopy as the reference method. Ultimately, PAT methods should link to product performance and the two key Critical Quality Attributes (CQAs) for this CR product are assay and release rate, linked to the API and CR coating steps respectively. In this work, the link between near infra-red (NIR) spectra and those attributes was explored by chemometrics over the course of the coating process in a pilot scale industrial environment. Correlations were built between the NIR spectra and coating weight (for API amount), CR coating thickness and dissolution performance. These correlations allow the coating process to be monitored at-line and so better control of the product performance in line with QbD requirements. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Intelligent process control of fiber chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jones, John Gregory

    Chemical Vapor Deposition (CVD) is a widely used process for the application of thin films. In this case, CVD is being used to apply a thin film interface coating to single crystal monofilament sapphire (Alsb2Osb3) fibers for use in Ceramic Matrix Composites (CMC's). The hot-wall reactor operates at near atmospheric pressure which is maintained using a venturi pump system. Inert gas seals obviate the need for a sealed system. A liquid precursor delivery system has been implemented to provide precise stoichiometry control. Neural networks have been implemented to create real-time process description models trained using data generated based on a Navier-Stokes finite difference model of the process. Automation of the process to include full computer control and data logging capability is also presented. In situ sensors including a quadrupole mass spectrometer, thermocouples, laser scanner, and Raman spectrometer have been implemented to determine the gas phase reactants and coating quality. A fuzzy logic controller has been developed to regulate either the gas phase or the in situ temperature of the reactor using oxygen flow rate as an actuator. Scanning electron microscope (SEM) images of various samples are shown. A hierarchical control structure upon which the control structure is based is also presented.

  14. [Investigation on production process quality control of traditional Chinese medicine--Banlangen granule as an example].

    PubMed

    Tan, Manrong; Yan, Dan; Qiu, Lingling; Chen, Longhu; Yan, Yan; Jin, Cheng; Li, Hanbing; Xiao, Xiaohe

    2012-04-01

    For the quality management system of herbal medicines, intermediate and finished products it exists the " short board" effect of methodologies. Based on the concept of process control, new strategies and new methods of the production process quality control had been established with the consideration of the actual production of traditional Chinese medicine an the characteristics of Chinese medicine. Taking Banlangen granule as a practice example, which was effective and widespread application, character identification, determination of index components, chemical fingerprint and biometrics technology were sequentially used respectively to assess the quality of Banlangen herbal medicines, intermediate (water extraction and alcohol precipitation) and finished product. With the transfer rate of chemical information and biological potency as indicators, the effectiveness and transmission of the above different assessments and control methods had been researched. And ultimately, the process quality control methods of Banlangen granule, which were based on chemical composition analysis-biometric analysis, had been set up. It can not only validly solute the current status that there were many manufacturers varying quality of Banlangen granule, but also ensure and enhance its clinical efficacy. Furthermore it provided a foundation for the construction of the quality control of traditional Chinese medicine production process.

  15. Impact of a multidimensional infection control strategy on catheter-associated urinary tract infection rates in the adult intensive care units of 15 developing countries: findings of the International Nosocomial Infection Control Consortium (INICC).

    PubMed

    Rosenthal, V D; Todi, S K; Álvarez-Moreno, C; Pawar, M; Karlekar, A; Zeggwagh, A A; Mitrev, Z; Udwadia, F E; Navoa-Ng, J A; Chakravarthy, M; Salomao, R; Sahu, S; Dilek, A; Kanj, S S; Guanche-Garcell, H; Cuéllar, L E; Ersoz, G; Nevzat-Yalcin, A; Jaggi, N; Medeiros, E A; Ye, G; Akan, Ö A; Mapp, T; Castañeda-Sabogal, A; Matta-Cortés, L; Sirmatel, F; Olarte, N; Torres-Hernández, H; Barahona-Guzmán, N; Fernández-Hidalgo, R; Villamil-Gómez, W; Sztokhamer, D; Forciniti, S; Berba, R; Turgut, H; Bin, C; Yang, Y; Pérez-Serrato, I; Lastra, C E; Singh, S; Ozdemir, D; Ulusoy, S

    2012-10-01

    We aimed to evaluate the impact of a multidimensional infection control strategy for the reduction of the incidence of catheter-associated urinary tract infection (CAUTI) in patients hospitalized in adult intensive care units (AICUs) of hospitals which are members of the International Nosocomial Infection Control Consortium (INICC), from 40 cities of 15 developing countries: Argentina, Brazil, China, Colombia, Costa Rica, Cuba, India, Lebanon, Macedonia, Mexico, Morocco, Panama, Peru, Philippines, and Turkey. We conducted a prospective before-after surveillance study of CAUTI rates on 56,429 patients hospitalized in 57 AICUs, during 360,667 bed-days. The study was divided into the baseline period (Phase 1) and the intervention period (Phase 2). In Phase 1, active surveillance was performed. In Phase 2, we implemented a multidimensional infection control approach that included: (1) a bundle of preventive measures, (2) education, (3) outcome surveillance, (4) process surveillance, (5) feedback of CAUTI rates, and (6) feedback of performance. The rates of CAUTI obtained in Phase 1 were compared with the rates obtained in Phase 2, after interventions were implemented. We recorded 253,122 urinary catheter (UC)-days: 30,390 in Phase 1 and 222,732 in Phase 2. In Phase 1, before the intervention, the CAUTI rate was 7.86 per 1,000 UC-days, and in Phase 2, after intervention, the rate of CAUTI decreased to 4.95 per 1,000 UC-days [relative risk (RR) 0.63 (95% confidence interval [CI] 0.55-0.72)], showing a 37% rate reduction. Our study showed that the implementation of a multidimensional infection control strategy is associated with a significant reduction in the CAUTI rate in AICUs from developing countries.

  16. Optimal control of nutrition restricted dynamics model of Microalgae biomass growth model

    NASA Astrophysics Data System (ADS)

    Ratianingsih, R.; Azim; Nacong, N.; Resnawati; Mardlijah; Widodo, B.

    2017-12-01

    The biomass of the microalgae is very potential to be proposed as an alternative renewable energy resources because it could be extracted into lipid. Afterward, the lipid could be processed to get the biodiesel or bioethanol. The extraction of the biomass on lipid synthesis process is very important to be studied because the process just gives some amount of lipid. A mathematical model of restricted microalgae biomass growth just gives 1/3 proportion of lipid with respect to the biomass in the synthesis process. An optimal control is designed to raise the ratio between the number of lipid formation and the microalgae biomass to be used in synthesis process. The minimum/ Pontryagin maximum principle is used to get the optimal lipid production. The simulation shows that the optimal lipid formation could be reach by simultaneously controlling the carbon dioxide, in the respiration and photosynthesis the process, and intake nutrition rates of liquid waste and urea substrate. The production of controlled microalgae lipid could be increase 6.5 times comparing to the uncontrolled one.

  17. An Event-Related Potential Study on the Effects of Cannabis on Emotion Processing

    PubMed Central

    Troup, Lucy J.; Bastidas, Stephanie; Nguyen, Maia T.; Andrzejewski, Jeremy A.; Bowers, Matthew; Nomi, Jason S.

    2016-01-01

    The effect of cannabis on emotional processing was investigated using event-related potential paradigms (ERPs). ERPs associated with emotional processing of cannabis users, and non-using controls, were recorded and compared during an implicit and explicit emotional expression recognition and empathy task. Comparisons in P3 component mean amplitudes were made between cannabis users and controls. Results showed a significant decrease in the P3 amplitude in cannabis users compared to controls. Specifically, cannabis users showed reduced P3 amplitudes for implicit compared to explicit processing over centro-parietal sites which reversed, and was enhanced, at fronto-central sites. Cannabis users also showed a decreased P3 to happy faces, with an increase to angry faces, compared to controls. These effects appear to increase with those participants that self-reported the highest levels of cannabis consumption. Those cannabis users with the greatest consumption rates showed the largest P3 deficits for explicit processing and negative emotions. These data suggest that there is a complex relationship between cannabis consumption and emotion processing that appears to be modulated by attention. PMID:26926868

  18. Adaptive memory: the survival scenario enhances item-specific processing relative to a moving scenario.

    PubMed

    Burns, Daniel J; Hart, Joshua; Griffith, Samantha E; Burns, Amy D

    2013-01-01

    Nairne, Thompson, and Pandeirada (2007) found that retention of words rated for their relevance to survival is superior to that of words encoded under numerous other deep processing conditions. They suggested that our memory systems might have evolved to confer an advantage for survival-relevant information. Burns, Burns, and Hwang (2011) suggested a two-process explanation of the proximate mechanisms responsible for the survival advantage. Whereas most control tasks encourage only one type of processing, the survival task encourages both item-specific and relational processing. They found that when control tasks encouraged both types of processing, the survival processing advantage was eliminated. However, none of their control conditions included non-survival scenarios (e.g., moving, vacation, etc.), so it is not clear how this two-process explanation would explain the survival advantage when scenarios are used as control conditions. The present experiments replicated the finding that the survival scenario improves recall relative to a moving scenario in both a between-lists and within-list design and also provided evidence that this difference was accompanied by an item-specific processing difference, not a difference in relational processing. The implications of these results for several existing accounts of the survival processing effect are discussed.

  19. Method and system for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data

    NASA Technical Reports Server (NTRS)

    Lewis, Mark David (Inventor); Seal, Michael R. (Inventor); Hood, Kenneth Brown (Inventor); Johnson, James William (Inventor)

    2007-01-01

    Remotely sensed spectral image data are used to develop a Vegetation Index file which represents spatial variations of actual crop vigor throughout a field that is under cultivation. The latter information is processed to place it in a format that can be used by farm personnel to correlate and calibrate it with actually observed crop conditions existing at control points within the field. Based on the results, farm personnel formulate a prescription request, which is forwarded via email or FTP to a central processing site, where the prescription is prepared. The latter is returned via email or FTP to on-side farm personnel, who can load it into a controller on a spray rig that directly applies inputs to the field at a spatially variable rate.

  20. Method and apparatus for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data

    NASA Technical Reports Server (NTRS)

    Hood, Kenneth Brown (Inventor); Johnson, James William (Inventor); Seal, Michael R. (Inventor); Lewis, Mark David (Inventor)

    2004-01-01

    Remotely sensed spectral image data are used to develop a Vegetation Index file which represents spatial variations of actual crop vigor throughout a field that is under cultivation. The latter information is processed to place it in a format that can be used by farm personnel to correlate and calibrate it with actually observed crop conditions existing at control points within the field. Based on the results, farm personnel formulate a prescription request, which is forwarded via email or FTP to a central processing site, where the prescription is prepared. The latter is returned via email or FTP to on-side farm personnel, who can load it into a controller on a spray rig that directly applies inputs to the field at a spatially variable rate.

  1. A neural network controller for automated composite manufacturing

    NASA Technical Reports Server (NTRS)

    Lichtenwalner, Peter F.

    1994-01-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.

  2. Effect of Voltage and Flow Rate Electrospinning Parameters on Polyacrylonitrile Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Bakar, S. S. S.; Fong, K. C.; Eleyas, A.; Nazeri, M. F. M.

    2018-03-01

    Currently, electrospinning is a very famous technique and widely used for forming polymer nanofibers. In this paper, the Polyacrylonitrile (PAN) nanofibers were prepared in concentration of 10wt% with varied processing parameters that can affect the properties of PAN fiber in term of fiber diameter and electrical conductivity was presented. Voltage of 10, 15 and 20 kV with PAN flow rate of 1 electrospun PAN fibers were then undergo pyrolysis at 800°C for 30 minutes. The resultant PAN nanofibers were then analysed by SEM, XRD and four point probe test after pyrolysis process. SEM image show continuos uniform and smooth surface fibrous structure of electrospun PAN fibers with average diameter of 1.81 μm. The fiber morphology is controlled by manipulating the processing parameters of electrospinning process. The results showed that the resistance of electrospun PAN fibers decreases as the processing parameter changes by increasing the applied voltage and flow rate of electrospinning.

  3. Emotion processing deficits in alexithymia and response to a depth of processing intervention.

    PubMed

    Constantinou, Elena; Panayiotou, Georgia; Theodorou, Marios

    2014-12-01

    Findings on alexithymic emotion difficulties have been inconsistent. We examined potential differences between alexithymic and control participants in general arousal, reactivity, facial and subjective expression, emotion labeling, and covariation between emotion response systems. A depth of processing intervention was introduced. Fifty-four participants (27 alexithymic), selected using the Toronto Alexithymia Scale-20, completed an imagery experiment (imagining joy, fear and neutral scripts), under instructions for shallow or deep emotion processing. Heart rate, skin conductance, facial electromyography and startle reflex were recorded along with subjective ratings. Results indicated hypo-reactivity to emotion among high alexithymic individuals, smaller and slower startle responses, and low covariation between physiology and self-report. No deficits in facial expression, labeling and emotion ratings were identified. Deep processing was associated with increased physiological reactivity and lower perceived dominance and arousal in high alexithymia. Findings suggest a tendency for avoidance of intense, unpleasant emotions and less defensive action preparation in alexithymia. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Evaluation of feedback interventions for improving the quality assurance of cancer screening in Japan: study design and report of the baseline survey.

    PubMed

    Machii, Ryoko; Saika, Kumiko; Higashi, Takahiro; Aoki, Ayako; Hamashima, Chisato; Saito, Hiroshi

    2012-02-01

    The importance of quality assurance in cancer screening has recently gained increasing attention in Japan. To evaluate and improve quality, checklists and process indicators have been developed. To explore effective methods of enhancing quality in cancer screening, we started a randomized control study of the methods of evaluation and feedback for cancer control from 2009 to 2014. We randomly assigned 1270 municipal governments, equivalent to 71% of all Japanese municipal governments that performed screening programs, into three groups. The high-intensity intervention groups (n = 425) were individually evaluated using both checklist performance and process indicator values, while the low-intensity intervention groups (n= 421) were individually evaluated on the basis of only checklist performance. The control group (n = 424) received only a basic report that included the national average of checklist performance scores. We repeated the survey for each municipality's quality assurance activity performance using checklists and process indicators. In this paper, we report our study design and the result of the baseline survey. The checklist adherence rates were especially low in the checklist elements related to invitation of individuals, detailed monitoring of process indicators such as cancer detection rates according to screening histories and appropriate selection of screening facilities. Screening rate and percentage of examinees who underwent detailed examination tended to be lower for large cities when compared with smaller cities for all cancer sites. The performance of the Japanese cancer screening program in 2009 was identified for the first time.

  5. A rugged landscape model for self-organization and emergent leadership in creative problem solving and production groups.

    PubMed

    Guastello, Stephen J; Craven, Joanna; Zygowicz, Karen M; Bock, Benjamin R

    2005-07-01

    The process by which an initially leaderless group differentiates into one containing leadership and secondary role structures was examined using the swallowtail catastrophe model and principles of selforganization. The objectives were to identify the control variables in the process of leadership emergence in creative problem solving groups and production groups. In the first of two experiments, groups of university students (total N = 114) played a creative problem solving game. Participants later rated each other on leadership behavior, styles, and variables related to the process of conversation. A performance quality measure was included also. Control parameters in the swallowtail catastrophe model were identified through a combination of factor analysis and nonlinear regression. Leaders displayed a broad spectrum of behaviors in the general categories of Controlling the Conversation and Creativity in their role-play. In the second experiment, groups of university students (total N = 197) engaged in a laboratory work experiment that had a substantial production goal component. The same system of ratings and modeling strategy was used along with a work production measure. Leaders in the production task emerged to the extent that they exhibited control over both the creative and production aspects of the task, they could keep tension low, and the externally imposed production goals were realistic.

  6. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    NASA Astrophysics Data System (ADS)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  7. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process.

    PubMed

    Jin, Huaiping; Chen, Xiangguang; Yang, Jianwen; Wu, Lei; Wang, Li

    2014-11-01

    The lack of accurate process models and reliable online sensors for substrate measurements poses significant challenges for controlling substrate feeding accurately, automatically and optimally in fed-batch fermentation industries. It is still a common practice to regulate the feeding rate based upon manual operations. To address this issue, a hybrid intelligent control method is proposed to enable automatic substrate feeding. The resulting control system consists of three modules: a presetting module for providing initial set-points; a predictive module for estimating substrate concentration online based on a new time interval-varying soft sensing algorithm; and a feedback compensator using expert rules. The effectiveness of the proposed approach is demonstrated through its successful applications to the industrial fed-batch chlortetracycline fermentation process. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Probing into the effectiveness of self-isolation policies in epidemic control

    NASA Astrophysics Data System (ADS)

    Crokidakis, Nuno; Duarte Queirós, Sílvio M.

    2012-06-01

    In this work, we inspect the reliability of controlling and quelling an epidemic disease mimicked by a susceptible-infected-susceptible (SIS) model defined on a complex network by means of current and implementable quarantine and isolation policies. Specifically, we consider that each individual in the network is originally linked to individuals of two types: members of the same household and acquaintances. The topology of this network evolves, taking into account a probability q that aims at representing the quarantine or isolation process in which the connection with acquaintances is severed according to standard policies of control of epidemics. Within current policies of self-isolation and standard infection rates, our results show that the propagation is either only controllable for hypothetical rates of compliance or not controllable at all.

  9. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    DOE PAGES

    Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...

    2016-05-24

    We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less

  10. Thin Film Deposition Using Energetic Ions

    PubMed Central

    Manova, Darina; Gerlach, Jürgen W.; Mändl, Stephan

    2010-01-01

    One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. PMID:28883323

  11. The Influence of Endogenous and Exogenous Spatial Attention on Decision Confidence.

    PubMed

    Kurtz, Phillipp; Shapcott, Katharine A; Kaiser, Jochen; Schmiedt, Joscha T; Schmid, Michael C

    2017-07-25

    Spatial attention allows us to make more accurate decisions about events in our environment. Decision confidence is thought to be intimately linked to the decision making process as confidence ratings are tightly coupled to decision accuracy. While both spatial attention and decision confidence have been subjected to extensive research, surprisingly little is known about the interaction between these two processes. Since attention increases performance it might be expected that confidence would also increase. However, two studies investigating the effects of endogenous attention on decision confidence found contradictory results. Here we investigated the effects of two distinct forms of spatial attention on decision confidence; endogenous attention and exogenous attention. We used an orientation-matching task, comparing the two attention conditions (endogenous and exogenous) to a control condition without directed attention. Participants performed better under both attention conditions than in the control condition. Higher confidence ratings than the control condition were found under endogenous attention but not under exogenous attention. This finding suggests that while attention can increase confidence ratings, it must be voluntarily deployed for this increase to take place. We discuss possible implications of this relative overconfidence found only during endogenous attention with respect to the theoretical background of decision confidence.

  12. Role of N-methyl-2-pyrrolidone for preparation of Fe3O4@SiO2 controlled the shell thickness

    NASA Astrophysics Data System (ADS)

    Wee, Sung-Bok; Oh, Hyeon-Cheol; Kim, Tae-Gyun; An, Gye-Seok; Choi, Sung-Churl

    2017-04-01

    We developed a simple and novel approach for the synthesis of Fe3O4@SiO2 nanoparticles with controlled shell thickness, and studied the mechanism. The introduction of N-methyl-2-pyrrolidone (NMP) led to trapping of monomer nuclei in single shell and controlled the shell thickness. Fe3O4@SiO2 controlled the shell thickness, showing a high magnetization value (64.47 emu/g). Our results reveal the role and change in the chemical structure of NMP during the core-shell synthesis process. NMP decomposed to 4-aminobutanoic acid in alkaline condition and decreased the hydrolysis rate of the silica coating process.

  13. Implementation and benefits of advanced process control for lithography CD and overlay

    NASA Astrophysics Data System (ADS)

    Zavyalova, Lena; Fu, Chong-Cheng; Seligman, Gary S.; Tapp, Perry A.; Pol, Victor

    2003-05-01

    Due to the rapidly reduced imaging process windows and increasingly stingent device overlay requirements, sub-130 nm lithography processes are more severely impacted than ever by systamic fault. Limits on critical dimensions (CD) and overlay capability further challenge the operational effectiveness of a mix-and-match environment using multiple lithography tools, as such mode additionally consumes the available error budgets. Therefore, a focus on advanced process control (APC) methodologies is key to gaining control in the lithographic modules for critical device levels, which in turn translates to accelerated yield learning, achieving time-to-market lead, and ultimately a higher return on investment. This paper describes the implementation and unique challenges of a closed-loop CD and overlay control solution in high voume manufacturing of leading edge devices. A particular emphasis has been placed on developing a flexible APC application capable of managing a wide range of control aspects such as process and tool drifts, single and multiple lot excursions, referential overlay control, 'special lot' handling, advanced model hierarchy, and automatic model seeding. Specific integration cases, including the multiple-reticle complementary phase shift lithography process, are discussed. A continuous improvement in the overlay and CD Cpk performance as well as the rework rate has been observed through the implementation of this system, and the results are studied.

  14. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.

    PubMed

    Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M

    2011-01-15

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.

  15. Clinical performance of a new blood control peripheral intravenous catheter: A prospective, randomized, controlled study.

    PubMed

    Seiberlich, Laura E; Keay, Vanessa; Kallos, Stephane; Junghans, Tiffany; Lang, Eddy; McRae, Andrew D

    2016-03-01

    The performance of a new safety peripheral intravenous catheter (PIVC) that contains a blood control feature in the hub (blood control) was compared against the current hospital standard without blood control (standard). In this prospective, non-blinded trial, patients were randomized 1:1 to receive either device. Insertions were performed and rated by emergency room nurses. Primary endpoints included clinical acceptability, incidence of blood leakage, and risk of blood exposure. Secondary endpoints were digital compression, insertion success, and usability. 15 clinicians performed 152 PIVC insertions (73 blood control, 79 standard). Clinical acceptability of the blood control device (100%) was non-inferior to the standard (98.7%) (p < 0.0001). The blood control device had a lower incidence of blood leakage (14.1% vs 68.4%), was superior in eliminating the risk of blood exposure (93.9% vs 19.1%) and the need for digital compression (95.3% vs 19.1%), while maintaining non-inferior insertion success rates (95.9% vs 93.7%) and usability ratings (p < 0.0001). In comparison with the hospital-standard, the new safety PIVC with integrated blood control valve had similar clinical acceptability ratings yet demonstrated superior advantages to both clinicians and patients to decrease blood leakage and the clinician's risk of blood exposure, during the insertion process. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Modern Deposition Rates and Patterns of Carbon Burial in Southern Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Ramirez, M. T.; Allison, M. A.; Vetter, L.; Cui, X.; Bianchi, T. S.; Smith, R. W.; Savage, C.; Schüller, S.

    2016-02-01

    Fjords have been recognized as a hotspot of organic carbon burial, as they accumulate a disproportionate quantity of organic carbon given their areal extent in comparison to other marine settings. However, organic carbon is buried in context with other biogenic and mineral sediments, so localized sedimentation processes play a critical role in determining rates of organic carbon burial. Therefore, it is important to assess the local sources and processes responsible for depositing inorganic sediment as a control on the burial of organic carbon. Here we evaluate three fjords in southern New Zealand that are not glaciated, with a sedimentary system that is dominantly controlled by terrigenous input at fjord heads, reworking of sediments over fjord-mouth sills, and landslide events from the steep fjord walls. Sediment cores were collected throughout the three southernmost fjord systems of Fiordland, New Zealand, and analyzed to determine sedimentary fabric, mass accumulation rates, and organic carbon content. Sediment mass accumulation rates from 210Pb geochronology range up to 500 mg/cm2/yr in proximal and distal areas of the fjords, with lower rates (below 200 mg/cm2/yr) in medial reaches, where terrestrial and marine sediment input is minimal. X-radiographs and 210Pb downcore activity trends show evidence of both mass wasting and surface-sediment bioturbation operating throughout the fjords. Percent organic carbon displays a negative correlation with mass accumulation rate and thickness of the sediment surface mixed layer. Rates of organic carbon accumulation ranged from 3.97 to 21.59 mg/cm2/yr, with a mean of 13.41 mg/cm2/yr. Organic carbon accumulation rates are dependent on the sediment accumulation rate and the percent organic carbon of the sediment. Our results highlight the importance of spatial variability in sedimentation processes and rates within fjords when evaluating organic carbon burial in these systems.

  17. When do glaciated landscapes form?

    NASA Astrophysics Data System (ADS)

    Koppes, M. N.

    2015-12-01

    Glacial erosion is a fundamental link between climate and the tectonic and surface processes that create topography. Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice masses, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, from the modern to orogenic. Recent numerical modeling efforts have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple index that relates erosion rate to ice dynamics. To provide a quantitative test of the links between glacial erosion, sliding and ice discharge, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes, from Patagonia to the Antarctic Peninsula. We find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 in Patagonia to 0.01-<0.1 mm yr-1 in the AP, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theories of glacial erosion. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold decrease in long-term relative to modern erosion rates may in part reflect the temporal averaging of temperate and polar conditions over the lifecycle of these glaciers. Hence, climatic variation, more than the extent of ice cover or tectonic changes, controls the pace at which glaciers shape mountains.

  18. Findings of the International Nosocomial Infection Control Consortium (INICC), Part I: Effectiveness of a multidimensional infection control approach on catheter-associated urinary tract infection rates in pediatric intensive care units of 6 developing countries.

    PubMed

    Rosenthal, Victor D; Ramachandran, Bala; Dueñas, Lourdes; Alvarez-Moreno, Carlos; Navoa-Ng, J A; Armas-Ruiz, Alberto; Ersoz, Gulden; Matta-Cortés, Lorena; Pawar, Mandakini; Nevzat-Yalcin, Ata; Rodríguez-Ferrer, Marena; Bran de Casares, Ana Concepción; Linares, Claudia; Villanueva, Victoria D; Campuzano, Roberto; Kaya, Ali; Rendon-Campo, Luis Fernando; Gupta, Amit; Turhan, Ozge; Barahona-Guzmán, Nayide; de Jesús-Machuca, Lilian; Tolentino, María Corazon V; Mena-Brito, Jorge; Kuyucu, Necdet; Astudillo, Yamileth; Saini, Narinder; Gunay, Nurgul; Sarmiento-Villa, Guillermo; Gumus, Eylul; Lagares-Guzmán, Alfredo; Dursun, Oguz

    2012-07-01

    A before-after prospective surveillance study to assess the impact of a multidimensional infection control approach for the reduction of catheter-associated urinary tract infection (CAUTI) rates. Pediatric intensive care units (PICUs) of hospital members of the International Nosocomial Infection Control Consortium (INICC) from 10 cities of the following 6 developing countries: Colombia, El Salvador, India, Mexico, Philippines, and Turkey. PICU inpatients. We performed a prospective active surveillance to determine rates of CAUTI among 3,877 patients hospitalized in 10 PICUs for a total of 27,345 bed-days. The study was divided into a baseline period (phase 1) and an intervention period (phase 2). In phase 1, surveillance was performed without the implementation of the multidimensional approach. In phase 2, we implemented a multidimensional infection control approach that included outcome surveillance, process surveillance, feedback on CAUTI rates, feedback on performance, education, and a bundle of preventive measures. The rates of CAUTI obtained in phase 1 were compared with the rates obtained in phase 2, after interventions were implemented. During the study period, we recorded 8,513 urinary catheter (UC) days, including 1,513 UC-days in phase 1 and 7,000 UC-days in phase 2. In phase 1, the CAUTI rate was 5.9 cases per 1,000 UC-days, and in phase 2, after implementing the multidimensional infection control approach for CAUTI prevention, the rate of CAUTI decreased to 2.6 cases per 1,000 UC-days (relative risk, 0.43 [95% confidence interval, 0.21-1.0]), indicating a rate reduction of 57%. Our findings demonstrated that implementing a multidimensional infection control approach is associated with a significant reduction in the CAUTI rate of PICUs in developing countries.

  19. On the analysis of EEG power, frequency and asymmetry in Parkinson's disease during emotion processing.

    PubMed

    Yuvaraj, Rajamanickam; Murugappan, Murugappan; Mohamed Ibrahim, Norlinah; Iqbal, Mohd; Sundaraj, Kenneth; Mohamad, Khairiyah; Palaniappan, Ramaswamy; Mesquita, Edgar; Satiyan, Marimuthu

    2014-04-09

    While Parkinson's disease (PD) has traditionally been described as a movement disorder, there is growing evidence of disruption in emotion information processing associated with the disease. The aim of this study was to investigate whether there are specific electroencephalographic (EEG) characteristics that discriminate PD patients and normal controls during emotion information processing. EEG recordings from 14 scalp sites were collected from 20 PD patients and 30 age-matched normal controls. Multimodal (audio-visual) stimuli were presented to evoke specific targeted emotional states such as happiness, sadness, fear, anger, surprise and disgust. Absolute and relative power, frequency and asymmetry measures derived from spectrally analyzed EEGs were subjected to repeated ANOVA measures for group comparisons as well as to discriminate function analysis to examine their utility as classification indices. In addition, subjective ratings were obtained for the used emotional stimuli. Behaviorally, PD patients showed no impairments in emotion recognition as measured by subjective ratings. Compared with normal controls, PD patients evidenced smaller overall relative delta, theta, alpha and beta power, and at bilateral anterior regions smaller absolute theta, alpha, and beta power and higher mean total spectrum frequency across different emotional states. Inter-hemispheric theta, alpha, and beta power asymmetry index differences were noted, with controls exhibiting greater right than left hemisphere activation. Whereas intra-hemispheric alpha power asymmetry reduction was exhibited in patients bilaterally at all regions. Discriminant analysis correctly classified 95.0% of the patients and controls during emotional stimuli. These distributed spectral powers in different frequency bands might provide meaningful information about emotional processing in PD patients.

  20. Photosynthesis, growth and survival of the Mediterranean seagrass Posidonia oceanica in response to simulated salinity increases in a laboratory mesocosm system

    NASA Astrophysics Data System (ADS)

    Marín-Guirao, Lázaro; Sandoval-Gil, José M.; Ruíz, Juan M.; Sánchez-Lizaso, José L.

    2011-04-01

    This study aims to examine the effect of increased salinity on the photosynthetic activity of the Mediterranean seagrass Posidonia oceanica in a laboratory mesocosm system. To do this, large rhizome fragments were transplanted in a mesocosm laboratory system and maintained at 37 (ambient salinity, control treatment), 39, 41 and 43 (hypersaline treatments) for 47 days. Pigment content, light absorption, photosynthetic characteristics (derived from P vs. E curves and fluorescence parameters), and shoot size, growth rates and net shoot change were determined at the end of the experimental period. Both net and gross photosynthetic rates of plants under hypersaline conditions were significantly reduced, with rates some 25-33% and 13-20% lower than in control plants. The pigment content (Chl a, Chl b, Chl b:Chl a molar ratio, total carotenoids and carotenoids:Chl a ratio), leaf absorptance and maximum quantum yield of PSII ( F v/ F m) of control plants showed little or no changes under hypersaline conditions, which suggests that alterations to the capacity of the photosynthetic apparatus to capture and process light were not responsible for the reduced photosynthetic rates. In contrast, dark respiration rates increased substantially, with mean values up to 98% higher than in control leaves. These results suggest that the respiratory demands of the osmoregulatory process are likely to be responsible for the observed decrease in photosynthetic rates, although alterations to photosynthetic carbon assimilation and reduction could also be involved. As a consequence, leaf carbon balance was considerably impaired and leaf growth rates decreased as salinity increased above the ambient (control) salinity. No significant differences were found in the percentage of net shoot change, but mean values were clearly negative at salinity levels of 41 and 43. Results presented here indicate that photosynthesis of P. oceanica is highly sensitive to hypersaline stress and that it likely account for the decline in leaf growth and shoot survival reported in this and previous studies in response to even small increments of the ambient salinity.

  1. Modeling laser velocimeter signals as triply stochastic Poisson processes

    NASA Technical Reports Server (NTRS)

    Mayo, W. T., Jr.

    1976-01-01

    Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.

  2. Accelerated dissolution testing for controlled release microspheres using the flow-through dissolution apparatus.

    PubMed

    Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C

    2009-01-01

    Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.

  3. Linking soil DOC production rates and transport processes from landscapes to sub-basin scales

    NASA Astrophysics Data System (ADS)

    Tian, Y. Q.; Yu, Q.; Li, J.; Ye, C.

    2014-12-01

    Recent research rejects the traditional perspective that dissolved organic carbon (DOC) component in global carbon cycle are simply trivial, and in fact evidence demonstrates that lakes likely mediate carbon dynamics on a global scale. Riverine and estuarine carbon fluxes play a critical role in transporting and recycling carbon and nutrients, not only within watersheds but in their receiving waters. However, the underlying mechanisms that drive carbon fluxes, from land to rivers, lake and oceans, remain poorly understood. This presentation will report a research result of the scale-dependent DOC production rate in coastal watersheds and DOC transport processes in estuarine regions. We conducted a series of controlled experiments and field measurements for examining biogeochemical, biological, and geospatial variables that regulate downstream processing on global-relevant carbon fluxes. Results showed that increased temperatures and raised soil moistures accelerate decomposition rates of organic matter with significant variations between vegetation types. The measurements at meso-scale ecosystem demonstrated a good correlation to bulk concentration of DOC monitored in receiving waters at the outlets of sub-basins (R2 > 0.65). These field and experimental measurements improved the model of daily carbon exports through below-ground processes as a function of the organic matter content of surface soils, forest litter supply, and temperature. The study demonstrated a potential improvement in modeling the co-variance of CDOM and DOC with the unique terrestrial sources. This improvement indicated a significant promise for monitoring riverine and estuarine carbon flux from satellite images. The technical innovations include deployments of 1) mini-ecosystem (mesocosms) with soil as replicate controlled experiments for DOC production and leaching rates, and 2) aquatic mesocosms for co-variances of DOC and CDOM endmembers, and an instrumented incubation experiment for determining degradation rates.

  4. What explains between-school differences in rates of sexual experience?

    PubMed Central

    Henderson, Marion; Butcher, Isabella; Wight, Daniel; Williamson, Lisa; Raab, Gillian

    2008-01-01

    Background Schools have the potential to influence their pupils' behaviour through the school's social organisation and culture, as well as through the formal curriculum. This paper provides the first attempt to explain the differences between schools in rates of reported heterosexual sexual experience amongst 15 and 16 year olds. It first examined whether variations in rates of sexual experience remained after controlling for the known predictors of sexual activity. It then examined whether these residuals, or 'school effects', were attributable to processes within the school, or were more likely to reflect characteristics of the neighbourhood. Methods Longitudinal survey data from 4,926 pupils in 24 Scottish schools were linked to qualitative and quantitative data on school processes including quality of relationships (staff-pupil, etc), classroom discipline, organisation of Personal and Social Education, school appearance and pupil morale. Multi-level modelling was used to test a range of models and the resulting 'school effects' were then interpreted using the process data. Results Overall, 42% of girls and 33% of boys reported experience of sexual intercourse, with rates by school ranging from 23% to 61%. When individual socio-economic and socio-cultural factors were taken into account the school variation dropped sharply, though pupils' attitudes and aspirations had little effect. There was very little correlation between boys' and girls' rates of sexual experience by school, after controlling for known predictors of sexual activity. Girls were more influenced by individual socio-economic factors than boys. School-level socio-economic factors were predictive even after taking account of individual socio-cultural factors, suggesting that the wider socio-economic environment further influenced young people's sexual experience. Conclusion Importantly, school processes did not explain the variation between schools in sexual experience. Rather, the variation may have been due to neighbourhood culture. PMID:18261205

  5. Strength and Deformation Rate of Plate Boundaries: The Rheological Effects of Grain Size Reduction, Structure, and Serpentinization.

    NASA Astrophysics Data System (ADS)

    Montesi, L.; Gueydan, F.

    2016-12-01

    Global strain rate maps reveal 1000-fold contrasts between plate interiors, oceanic or continental diffuse plate boundaries and narrow plate boundaries. Here, we show that rheological models based on the concepts of shear zone localization and the evolution of rock structure upon strain can explain these strain rate contrasts. Ductile shear zones constitute a mechanical paradox in the lithosphere. As every plastic deformation mechanism is strain-rate-hardening, ductile rocks are expected to deform at low strain rate and low stress (broad zone of deformation). Localized ductile shear zones require either a localized forcing (locally high stress) or a thermal or structural anomaly in the shear zone; either can be inherited or develop progressively as rocks deform. We previously identified the most effective process at each depth level of the lithosphere. In the upper crust and middle crust, rocks fabric controls localization. Grain size reduction is the most efficient mechanism in the uppermost mantle. This analysis can be generalized to consider a complete lithospheric section. We assume strain rate does not vary with depth and that the depth-integrated strength of the lithospheric does not change over time, as the total force is controlled by external process such as mantle convection and plate and slab buoyancy. Reducing grain size from a coarse value typical of undeformed peridotite to a value in agreement with the stress level (piezometer) while letting that stress vary from depth to depth (the integrated stress remains the same) increases the lithospheric strain rate by about a factor of 1000. This can explain the development of diffuse plate boundaries. The slightly higher strain rate of continental plate boundary may reflect development of a layered rock fabric in the middle crust. Narrow plate boundaries require additional weakening process. The high heat flux near mid-ocean ridge implies a thin lithosphere, which enhances stress (for constant integrated stress). While this can increase strain rate by another factor of 1000, another process must generate the lithospheric thickness variation in the first place. One possibility is serpentinization, which reduces the strength of the brittle crust, especially when coupled with the development of a fabric in brittle faults.

  6. The mechanism of grain growth in ceramics

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1972-01-01

    The theory of grain boundary migration as a thermally activated process is reviewed, the basic mechanisms in ceramics being the same as in metals. However, porosity and non-stochiometry in ceramic materials give an added dimension to the theory and make quantitative treatment of real systems rather complex. Grain growth is a result of several simultaneous (and sometimes interacting) processes; these are most easily discussed separately, but the overall rate depends on their interaction. Sufficient insight into the nature of rate controlling diffusion mechanisms is necessary before a qualitative understanding of boundary mobility can be developed.

  7. Cognitive Processing Therapy for Veterans with Military-Related Posttraumatic Stress Disorder

    ERIC Educational Resources Information Center

    Monson, Candice M.; Schnurr, Paula P.; Resick, Patricia A.; Friedman, Matthew J.; Young-Xu, Yinong; Stevens, Susan P.

    2006-01-01

    Sixty veterans (54 men, 6 women) with chronic military-related posttraumatic stress disorder (PTSD) participated in a wait-list controlled trial of cognitive processing therapy (CPT). The overall dropout rate was 16.6% (20% from CPT, 13% from waiting list). Random regression analyses of the intention-to-treat sample revealed significant…

  8. Process for Preparing Microcapsules Having Gelatin Walls Crosslinked with Quinone.

    DTIC Science & Technology

    A process for conveniently producing microcapsules containing a gelatin wall crosslinked with quinone and a core of an active compound such as a...provides microcapsules of excellent strength, storage stability, and resistance to aqueous exposure, such that the rate of release of the fouling reducing agent can be controlled with precision. jg

  9. Utilization of pyrosequencing to monitor the microbiome dynamics of probiotic treated poultry (Gallus gallus domesticus) during downstream poultry processing

    USDA-ARS?s Scientific Manuscript database

    Antibiotic growth promoters that have been historically employed to control pathogens and increase the rate of animal development for human consumption are currently banned in many countries. Probiotics have been proposed as an alternative to control pathogenic bacteria. Traditional culture method...

  10. Subliminal cues bias perception of facial affect in patients with social phobia: evidence for enhanced unconscious threat processing

    PubMed Central

    Jusyte, Aiste; Schönenberg, Michael

    2014-01-01

    Socially anxious individuals have been shown to exhibit altered processing of facial affect, especially expressions signaling threat. Enhanced unaware processing has been suggested an important mechanism which may give rise to anxious conscious cognition and behavior. This study investigated whether individuals with social anxiety disorder (SAD) are perceptually more vulnerable to the biasing effects of subliminal threat cues compared to healthy controls. In a perceptual judgment task, 23 SAD and 23 matched control participants were asked to rate the affective valence of parametrically manipulated affective expressions ranging from neutral to angry. Each trial was preceded by subliminal presentation of an angry/neutral cue. The SAD group tended to rate target faces as “angry” when the preceding subliminal stimulus was angry vs. neutral, while healthy participants were not biased by the subliminal stimulus presentation. The perceptual bias in SAD was also associated with higher reaction time latencies in the subliminal angry cue condition. The results provide further support for enhanced unconscious threat processing in SAD individuals. The implications for etiology, maintenance, and treatment of SAD are discussed. PMID:25136307

  11. Subliminal cues bias perception of facial affect in patients with social phobia: evidence for enhanced unconscious threat processing.

    PubMed

    Jusyte, Aiste; Schönenberg, Michael

    2014-01-01

    Socially anxious individuals have been shown to exhibit altered processing of facial affect, especially expressions signaling threat. Enhanced unaware processing has been suggested an important mechanism which may give rise to anxious conscious cognition and behavior. This study investigated whether individuals with social anxiety disorder (SAD) are perceptually more vulnerable to the biasing effects of subliminal threat cues compared to healthy controls. In a perceptual judgment task, 23 SAD and 23 matched control participants were asked to rate the affective valence of parametrically manipulated affective expressions ranging from neutral to angry. Each trial was preceded by subliminal presentation of an angry/neutral cue. The SAD group tended to rate target faces as "angry" when the preceding subliminal stimulus was angry vs. neutral, while healthy participants were not biased by the subliminal stimulus presentation. The perceptual bias in SAD was also associated with higher reaction time latencies in the subliminal angry cue condition. The results provide further support for enhanced unconscious threat processing in SAD individuals. The implications for etiology, maintenance, and treatment of SAD are discussed.

  12. Controlled encoding strategies in memory tests in lithium patients.

    PubMed

    Opgenoorth, E; Karlick-Bolten, E

    1986-03-01

    The "levels of processing" theory (Craik and Lockhart) and "dual coding" theory (Paivio) provide new aspects for clinical memory research work. Therefore, an incidental learning paradigm on the basis of these two theoretical approaches was chosen to test aspects of memory performances with lithium therapy. Results of two experiments, with controlled non-semantic processing (rating experiment "comparison of size") and additive semantic processing (rating "living--non-living") indicate a slight reduction in recall (Fig. 1) and recognition performance (Fig. 2) in lithium patients. Effects on encoding strategies are of equal quality in patients and healthy subjects (Tab. 1, 2) but performance differs between both groups: poorer systematic benefit from within code repetitions ("word-word" items, "picture-picture" items) and dual coding (repeated variable item presentation "picture-word") is obtained. The less efficient encoding strategies in the speeded task are discussed with respect to cognitive rigidity and slowing of performance by emotional states. This investigation of so-called "memory deficits" with lithium is an attempt to explore impairments at an early stage of processing; the characterization of the perceptual cognitive analysis seems useful for further clinical research work on this topic.

  13. Effects of Plant Traits on Ecosystem and Regional Processes: a Conceptual Framework for Predicting the Consequences of Global Change

    PubMed Central

    CHAPIN, F. STUART

    2003-01-01

    Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. PMID:12588725

  14. Spatial and Temporal Patterns of Nitrification Rates in Forested Floodplain Wetland Soils of Upper Mississippi River Pool 8, Journal Article

    EPA Science Inventory

    Overbank flooding is thought to be a critical process controlling nitrogen retention and cycling. In this study we investigated the effects of season and flood frequency on soil nitrification rates at ten sites in forested floodplains of Upper Mississippi River, Pool 8...A rough ...

  15. THE ROLE OF NATURAL BIOLOGICAL PROCESSES IN THE NATURAL ATTENUATION OF CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    As a practical matter, the time required for a site to reach cleanup goals is controlled by the rate of natural attenuation of the source of contamination, not the rate of natural attenuation of the contaminants once they are in the ground. As a consequence, in the USA the most ...

  16. Results of a multicentre randomised controlled trial of statistical process control charts and structured diagnostic tools to reduce ward-acquired meticillin-resistant Staphylococcus aureus: the CHART Project.

    PubMed

    Curran, E; Harper, P; Loveday, H; Gilmour, H; Jones, S; Benneyan, J; Hood, J; Pratt, R

    2008-10-01

    Statistical process control (SPC) charts have previously been advocated for infection control quality improvement. To determine their effectiveness, a multicentre randomised controlled trial was undertaken to explore whether monthly SPC feedback from infection control nurses (ICNs) to healthcare workers of ward-acquired meticillin-resistant Staphylococcus aureus (WA-MRSA) colonisation or infection rates would produce any reductions in incidence. Seventy-five wards in 24 hospitals in the UK were randomised into three arms: (1) wards receiving SPC chart feedback; (2) wards receiving SPC chart feedback in conjunction with structured diagnostic tools; and (3) control wards receiving neither type of feedback. Twenty-five months of pre-intervention WA-MRSA data were compared with 24 months of post-intervention data. Statistically significant and sustained decreases in WA-MRSA rates were identified in all three arms (P<0.001; P=0.015; P<0.001). The mean percentage reduction was 32.3% for wards receiving SPC feedback, 19.6% for wards receiving SPC and diagnostic feedback, and 23.1% for control wards, but with no significant difference between the control and intervention arms (P=0.23). There were significantly more post-intervention 'out-of-control' episodes (P=0.021) in the control arm (averages of 0.60, 0.28, and 0.28 for Control, SPC and SPC+Tools wards, respectively). Participants identified SPC charts as an effective communication tool and valuable for disseminating WA-MRSA data.

  17. Defining the best quality-control systems by design and inspection.

    PubMed

    Hinckley, C M

    1997-05-01

    Not all of the many approaches to quality control are equally effective. Nonconformities in laboratory testing are caused basically by excessive process variation and mistakes. Statistical quality control can effectively control process variation, but it cannot detect or prevent most mistakes. Because mistakes or blunders are frequently the dominant source of nonconformities, we conclude that statistical quality control by itself is not effective. I explore the 100% inspection methods essential for controlling mistakes. Unlike the inspection techniques that Deming described as ineffective, the new "source" inspection methods can detect mistakes and enable corrections before nonconformities are generated, achieving the highest degree of quality at a fraction of the cost of traditional methods. Key relationships between task complexity and nonconformity rates are also described, along with cultural changes that are essential for implementing the best quality-control practices.

  18. Real-time feedback control of twin-screw wet granulation based on image analysis.

    PubMed

    Madarász, Lajos; Nagy, Zsombor Kristóf; Hoffer, István; Szabó, Barnabás; Csontos, István; Pataki, Hajnalka; Démuth, Balázs; Szabó, Bence; Csorba, Kristóf; Marosi, György

    2018-06-04

    The present paper reports the first dynamic image analysis-based feedback control of continuous twin-screw wet granulation process. Granulation of the blend of lactose and starch was selected as a model process. The size and size distribution of the obtained particles were successfully monitored by a process camera coupled with an image analysis software developed by the authors. The validation of the developed system showed that the particle size analysis tool can determine the size of the granules with an error of less than 5 µm. The next step was to implement real-time feedback control of the process by controlling the liquid feeding rate of the pump through a PC, based on the real-time determined particle size results. After the establishment of the feedback control, the system could correct different real-life disturbances, creating a Process Analytically Controlled Technology (PACT), which guarantees the real-time monitoring and controlling of the quality of the granules. In the event of changes or bad tendencies in the particle size, the system can automatically compensate the effect of disturbances, ensuring proper product quality. This kind of quality assurance approach is especially important in the case of continuous pharmaceutical technologies. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding

    PubMed Central

    KEANE, M.; SIERT, A.; STONE, S.; CHEN, B.; SLAVEN, J.; CUMPSTON, A.; ANTONINI, J.

    2015-01-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr6+) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr6+ fractions were measured in the fumes; fume generation rates, Cr6+ generation rates, and Cr6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr6+ ranged from 69 to 7800 μg/min, and Cr6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr6+ (ppm) in the fume did not necessarily correlate with the Cr6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). Conclusion: The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use. PMID:26690276

  20. Impact of a multidimensional infection control approach on catheter-associated urinary tract infection rates in an adult intensive care unit in Lebanon: International Nosocomial Infection Control Consortium (INICC) findings.

    PubMed

    Kanj, Souha S; Zahreddine, Nada; Rosenthal, Victor Daniel; Alamuddin, Lamia; Kanafani, Zeina; Molaeb, Bassel

    2013-09-01

    The objective of this study was to assess the impact of a multidimensional infection control approach for the reduction of catheter-associated urinary tract infection (CAUTI) in an adult intensive care unit (ICU) of a hospital member of the International Nosocomial Infection Control Consortium (INICC) in Lebanon. A before-after prospective active surveillance study was carried out to determine rates of CAUTI in 1506 ICU patients, hospitalized during 10 291 bed-days. The study period was divided into two phases: phase 1 (baseline) and phase 2 (intervention). During phase 1, surveillance was performed applying the definitions of the US Centers for Disease Control and Prevention National Healthcare Safety Network (CDC/NHSN). In phase 2, we adopted a multidimensional approach that included: (1) a bundle of infection control interventions, (2) education, (3) surveillance of CAUTI rates, (4) feedback on CAUTI rates, (5) process surveillance, and (6) performance feedback. We used random effects Poisson regression to account for clustering of CAUTI rates across time-periods. We recorded a total of 9829 urinary catheter-days: 306 in phase 1 and 9523 in phase 2. The rate of CAUTI was 13.07 per 1000 urinary catheter-days in phase 1, and was decreased by 83% in phase 2 to 2.21 per 1000 urinary catheter-days (risk ratio 0.17; 95% confidence interval 0.06-0.5; p=0.0002). Our multidimensional approach was associated with a significant reduction in the CAUTI rate. Copyright © 2013. Published by Elsevier Ltd.

  1. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE PAGES

    Li, Jing; He, Kai; Meng, Qingping; ...

    2016-09-15

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  2. Kinetic phase evolution of spinel cobalt oxide during lithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; He, Kai; Meng, Qingping

    Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less

  3. Transition from global to local control of dayside reconnection from ionospheric-sourced mass loading

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Brambles, O. J.; Cassak, P. A.; Ouellette, J. E.; Wiltberger, M.; Lotko, W.; Lyon, J. G.

    2017-09-01

    We have conducted a series of controlled numerical simulations to investigate the response of dayside reconnection to idealized, ionosphere-sourced mass loading processes to determine whether they affect the integrated dayside reconnection rate. Our simulation results show that the coupled solar wind-magnetosphere system may exhibit both local and global control behaviors depending on the amount of mass loading. With a small amount of mass loading, the changes in local reconnection rate affects magnetosheath properties only weakly and the geoeffective length in the upstream solar wind is essentially unchanged, resulting in the same integrated dayside reconnection rate. With a large amount of mass loading, however, the magnetosheath properties and the geoeffective length are significantly affected by slowing down the local reconnection rate, resulting in an increase of the magnetic pressure in the magnetosheath, with a significant reduction in the geoeffective length in the upstream solar wind and in the integrated dayside reconnection rate. In this controlled simulation setup, the behavior of dayside reconnection potential is determined by the role of the enhanced magnetic pressure in the magnetospheath due to magnetospheric mass loading. The reconnection potential starts to decrease significantly when the enhanced magnetic pressure alters the thickness of the magnetosheath.

  4. Real-time assessment of critical quality attributes of a continuous granulation process.

    PubMed

    Fonteyne, Margot; Vercruysse, Jurgen; Díaz, Damián Córdoba; Gildemyn, Delphine; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2013-02-01

    There exists the intention to shift pharmaceutical manufacturing of solid dosage forms from traditional batch production towards continuous production. The currently applied conventional quality control systems, based on sampling and time-consuming off-line analyses in analytical laboratories, would annul the advantages of continuous processing. It is clear that real-time quality assessment and control is indispensable for continuous production. This manuscript evaluates strengths and weaknesses of several complementary Process Analytical Technology (PAT) tools implemented in a continuous wet granulation process, which is part of a fully continuous from powder-to-tablet production line. The use of Raman and NIR-spectroscopy and a particle size distribution analyzer is evaluated for the real-time monitoring of critical parameters during the continuous wet agglomeration of an anhydrous theophylline- lactose blend. The solid state characteristics and particle size of the granules were analyzed in real-time and the critical process parameters influencing these granule characteristics were identified. The temperature of the granulator barrel, the amount of granulation liquid added and, to a lesser extent, the powder feed rate were the parameters influencing the solid state of the active pharmaceutical ingredient (API). A higher barrel temperature and a higher powder feed rate, resulted in larger granules.

  5. Hunger and satiety in anorexia nervosa: fMRI during cognitive processing of food pictures.

    PubMed

    Santel, Stephanie; Baving, Lioba; Krauel, Kerstin; Münte, Thomas F; Rotte, Michael

    2006-10-09

    Neuroimaging studies of visually presented food stimuli in patients with anorexia nervosa have demonstrated decreased activations in inferior parietal and visual occipital areas, and increased frontal activations relative to healthy persons, but so far no inferences could be drawn with respect to the influence of hunger or satiety. Thirteen patients with AN and 10 healthy control subjects (aged 13-21) rated visual food and non-food stimuli for pleasantness during functional magnetic resonance imaging (fMRI) in a hungry and a satiated state. AN patients rated food as less pleasant than controls. When satiated, AN patients showed decreased activation in left inferior parietal cortex relative to controls. When hungry, AN patients displayed weaker activation of the right visual occipital cortex than healthy controls. Food stimuli during satiety compared with hunger were associated with stronger right occipital activation in patients and with stronger activation in left lateral orbitofrontal cortex, the middle portion of the right anterior cingulate, and left middle temporal gyrus in controls. The observed group differences in the fMRI activation to food pictures point to decreased food-related somatosensory processing in AN during satiety and to attentional mechanisms during hunger that might facilitate restricted eating in AN.

  6. Selecting Processes to Minimize Hexavalent Chromium from Stainless Steel Welding: Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium in stainless steel welding fumes.

    PubMed

    Keane, M; Siert, A; Stone, S; Chen, B; Slaven, J; Cumpston, A; Antonini, J

    2012-09-01

    Eight welding processes/shielding gas combinations were assessed for generation of hexavalent chromium (Cr 6+ ) in stainless steel welding fumes. The processes examined were gas metal arc welding (GMAW) (axial spray, short circuit, and pulsed spray modes), flux cored arc welding (FCAW), and shielded metal arc welding (SMAW). The Cr 6+ fractions were measured in the fumes; fume generation rates, Cr 6+ generation rates, and Cr 6+ generation rates per unit mass of welding wire were determined. A limited controlled comparison study was done in a welding shop including SMAW, FCAW, and three GMAW methods. The processes studied were compared for costs, including relative labor costs. Results indicate the Cr 6+ in the fume varied widely, from a low of 2800 to a high of 34,000 ppm. Generation rates of Cr 6+ ranged from 69 to 7800 μg/min, and Cr 6+ generation rates per unit of wire ranged from 1 to 270 μg/g. The results of field study were similar to the findings in the laboratory. The Cr 6+ (ppm) in the fume did not necessarily correlate with the Cr 6+ generation rate. Physical properties were similar for the processes, with mass median aerodynamic diameters ranging from 250 to 336 nm, while the FCAW and SMAW fumes were larger (360 and 670 nm, respectively). The pulsed axial spray method was the best choice of the processes studied based on minimal fume generation, minimal Cr 6+ generation, and cost per weld. This method is usable in any position, has a high metal deposition rate, and is relatively simple to learn and use.

  7. Inattentive behaviour is associated with poor working memory and slow processing speed in very pre-term children in middle childhood.

    PubMed

    Mulder, Hanna; Pitchford, Nicola J; Marlow, Neil

    2011-03-01

    BACKGROUND. Problem behaviour is common following pre-term birth, but the underlying nature of these difficulties is not well known. AIMS. We sought to establish the mechanisms underpinning behavioural difficulties in very pre-term (VPT) children in middle childhood by comparing their performance to that of term born peers on tasks of working memory, inhibition, and processing speed, and relating these to parent and teacher assessments of their behaviour. Particular focus was given to inattention and overactive/impulsive behaviour, as these behaviours have been associated with different neuropsychological problems in term children. SAMPLES. A group of VPT children (gestational age < 31 weeks, N= 56) aged 9-10 years and term controls (N= 22) participated in the study. METHOD. Children were assessed with measures of working memory, inhibition, and processing speed. Parents and teachers reported behavioural problems using the Strengths and Difficulties Questionnaire and two additional scales measuring overactive/impulsive behaviour and inattention. RESULTS. Results revealed increased rates of problem behaviour in VPT compared to term children for parent-rated total difficulties, hyperactivity, emotional problems, peer problems, prosocial behaviour, overactive/impulsive behaviour, and parent- and teacher-rated inattention. Processing speed and working memory, but not inhibition, were significantly related to inattentive and overactive/impulsive behaviour. CONCLUSIONS. The increased rates of inattention and overactive/impulsive behaviour in VPT children may be explained by impairment in processing speed and working memory. Expected links between overactive/impulsive behaviour and inhibitory control were not identified, suggesting the nature of such difficulties may be different in VPT compared to term children. © 2010 The British Psychological Society.

  8. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed

    USGS Publications Warehouse

    Rocca, Jennifer D.; Hall, Edward K.; Lennon, Jay T.; Evans, Sarah E.; Waldrop, Mark P.; Cotner, James B.; Nemergut, Diana R.; Graham, Emily B.; Wallenstein, Matthew D.

    2015-01-01

    For any enzyme-catalyzed reaction to occur, the corresponding protein-encoding genes and transcripts are necessary prerequisites. Thus, a positive relationship between the abundance of gene or transcripts and corresponding process rates is often assumed. To test this assumption, we conducted a meta-analysis of the relationships between gene and/or transcript abundances and corresponding process rates. We identified 415 studies that quantified the abundance of genes or transcripts for enzymes involved in carbon or nitrogen cycling. However, in only 59 of these manuscripts did the authors report both gene or transcript abundance and rates of the appropriate process. We found that within studies there was a significant but weak positive relationship between gene abundance and the corresponding process. Correlations were not strengthened by accounting for habitat type, differences among genes or reaction products versus reactants, suggesting that other ecological and methodological factors may affect the strength of this relationship. Our findings highlight the need for fundamental research on the factors that control transcription, translation and enzyme function in natural systems to better link genomic and transcriptomic data to ecosystem processes.

  9. Study program for encapsulation materials interface for low cost silicon solar array

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Lunsden, J. B., III; Leung, C.

    1980-01-01

    An atmospheric corrosion model was developed and verified by five months of corrosion rate and climatology data acquired at the Mead, Nebraska LSA test site. Atmospheric corrosion rate monitors (ACM) show that moisture condensation probability and ionic conduction at the corroding surface or interface are controlling factors in corrosion rate. Protection of the corroding surface by encapsulant was shown by the ACM recordings to be maintained, independent of climatology, over the five months outdoor exposure period. The macroscopic corrosion processes which occur at Mead are shown to be reproduced in the climatology simulator. Controlled experiments with identical moisture and temperature aging cycles show that UV radiation causes corrosion while UV shielding inhibits LSA corrosion.

  10. Investigation of wear land and rate of locally made HSS cutting tool

    NASA Astrophysics Data System (ADS)

    Afolalu, S. A.; Abioye, A. A.; Dirisu, J. O.; Okokpujie, I. P.; Ajayi, O. O.; Adetunji, O. R.

    2018-04-01

    Production technology and machining are inseparable with cutting operation playing important roles. Investigation of wear land and rate of cutting tool developed locally (C=0.56%) with an HSS cutting tool (C=0.65%) as a control was carried out. Wear rate test was carried out using Rotopol -V and Impact tester. The samples (12) of locally made cutting tools and one (1) sample of a control HSS cutting tool were weighed to get the initial weight and grit was fixed at a point for the sample to revolve at a specific time of 10 mins interval. Approach of macro transfer particles that involved mechanism of abrasion and adhesion which was termed as mechanical wear to handle abrasion adhesion processes was used in developing equation for growth wear at flank. It was observed from the wear test that best minimum wear rate of 1.09 × 10-8 and 2.053 × 10-8 for the tools developed and control were measured. MATLAB was used to simulate the wear land and rate under different conditions. Validated results of both the experimental and modeling showed that cutting speed has effect on wear rate while cutting time has predicted measure on wear land. Both experimental and modeling result showed best performances of tools developed over the control.

  11. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    PubMed

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle formation from the as-deposited Au film. The byproduct of self-catalyzed In 2 Se 3 nanoplates can be inhibited by lowering the precursors and growth temperatures.

  12. Impact of an International Nosocomial Infection Control Consortium multidimensional approach on catheter-associated urinary tract infections in adult intensive care units in the Philippines: International Nosocomial Infection Control Consortium (INICC) findings.

    PubMed

    Navoa-Ng, Josephine Anne; Berba, Regina; Rosenthal, Victor D; Villanueva, Victoria D; Tolentino, María Corazon V; Genuino, Glenn Angelo S; Consunji, Rafael J; Mantaring, Jacinto Blas V

    2013-10-01

    To assess the impact of a multidimensional infection control approach on the reduction of catheter-associated urinary tract infection (CAUTI) rates in adult intensive care units (AICUs) in two hospitals in the Philippines that are members of the International Nosocomial Infection Control Consortium. This was a before-after prospective active surveillance study to determine the rates of CAUTI in 3183 patients hospitalized in 4 ICUS over 14,426 bed-days. The study was divided into baseline and intervention periods. During baseline, surveillance was performed using the definitions of the US Centers for Disease Control and Prevention and the National Healthcare Safety Network (CDC/NHSN). During intervention, we implemented a multidimensional approach that included: (1) a bundle of infection control interventions, (2) education, (3) surveillance of CAUTI rates, (4) feedback on CAUTI rates, (5) process surveillance and (6) performance feedback. We used random effects Poisson regression to account for the clustering of CAUTI rates across time. We recorded 8720 urinary catheter (UC)-days: 819 at baseline and 7901 during intervention. The rate of CAUTI was 11.0 per 1000 UC-days at baseline and was decreased by 76% to 2.66 per 1000 UC-days during intervention [rate ratio [RR], 0.24; 95% confidence interval [CI], 0.11-0.53; P-value, 0.0001]. Our multidimensional approach was associated with a significant reduction in the CAUTI rates in the ICU setting of a limited-resource country. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  13. The role of microscaffold properties in controlling the collagen assembly in 3D dermis equivalent using modular tissue engineering.

    PubMed

    Imparato, Giorgia; Urciuolo, Francesco; Casale, Costantino; Netti, Paolo A

    2013-10-01

    The realization of thick and viable tissues equivalents in vitro is one of the mayor challenges in tissue engineering, in particular for their potential use in tissue-on-chip technology. In the present study we succeeded in creating 3D viable dermis equivalent tissue, via a bottom-up method, and proved that the final properties, in terms of collagen assembly and organization of the 3D tissue, are tunable and controllable by micro-scaffold properties and degradation rate. Gelatin porous microscaffolds with controlled stiffness and degradation rate were realized by changing the crosslinking density through different concentrations of glyceraldehyde. Results showed that by modulating the crosslinking density of the gelatin microscaffolds it is possible to guide the process of collagen deposition and assembly within the extracellular space and match the processes of scaffold degradation, cell traction and tissue maturation to obtain firmer collagen network able to withstand the effect of contraction. © 2013 Published by Elsevier Ltd.

  14. New S control chart using skewness correction method for monitoring process dispersion of skewed distributions

    NASA Astrophysics Data System (ADS)

    Atta, Abdu; Yahaya, Sharipah; Zain, Zakiyah; Ahmed, Zalikha

    2017-11-01

    Control chart is established as one of the most powerful tools in Statistical Process Control (SPC) and is widely used in industries. The conventional control charts rely on normality assumption, which is not always the case for industrial data. This paper proposes a new S control chart for monitoring process dispersion using skewness correction method for skewed distributions, named as SC-S control chart. Its performance in terms of false alarm rate is compared with various existing control charts for monitoring process dispersion, such as scaled weighted variance S chart (SWV-S); skewness correction R chart (SC-R); weighted variance R chart (WV-R); weighted variance S chart (WV-S); and standard S chart (STD-S). Comparison with exact S control chart with regards to the probability of out-of-control detections is also accomplished. The Weibull and gamma distributions adopted in this study are assessed along with the normal distribution. Simulation study shows that the proposed SC-S control chart provides good performance of in-control probabilities (Type I error) in almost all the skewness levels and sample sizes, n. In the case of probability of detection shift the proposed SC-S chart is closer to the exact S control chart than the existing charts for skewed distributions, except for the SC-R control chart. In general, the performance of the proposed SC-S control chart is better than all the existing control charts for monitoring process dispersion in the cases of Type I error and probability of detection shift.

  15. Fungi: Strongmen of the Underground.

    ERIC Educational Resources Information Center

    Morrell, Patricia D.; Morrell, Jeffrey J.

    1999-01-01

    Presents an activity that stresses the role of fungi and decomposers, highlights the rapidity by which they complete this process, and allows students to experiment with ways to control the rate of decomposition. (CCM)

  16. A novel model-based control strategy for aerobic filamentous fungal fed-batch fermentation processes.

    PubMed

    Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Cassells, Benny; Sin, Gürkan; Gernaey, Krist V

    2017-07-01

    A novel model-based control strategy has been developed for filamentous fungal fed-batch fermentation processes. The system of interest is a pilot scale (550 L) filamentous fungus process operating at Novozymes A/S. In such processes, it is desirable to maximize the total product achieved in a batch in a defined process time. In order to achieve this goal, it is important to maximize both the product concentration, and also the total final mass in the fed-batch system. To this end, we describe the development of a control strategy which aims to achieve maximum tank fill, while avoiding oxygen limited conditions. This requires a two stage approach: (i) calculation of the tank start fill; and (ii) on-line control in order to maximize fill subject to oxygen transfer limitations. First, a mechanistic model was applied off-line in order to determine the appropriate start fill for processes with four different sets of process operating conditions for the stirrer speed, headspace pressure, and aeration rate. The start fills were tested with eight pilot scale experiments using a reference process operation. An on-line control strategy was then developed, utilizing the mechanistic model which is recursively updated using on-line measurements. The model was applied in order to predict the current system states, including the biomass concentration, and to simulate the expected future trajectory of the system until a specified end time. In this way, the desired feed rate is updated along the progress of the batch taking into account the oxygen mass transfer conditions and the expected future trajectory of the mass. The final results show that the target fill was achieved to within 5% under the maximum fill when tested using eight pilot scale batches, and over filling was avoided. The results were reproducible, unlike the reference experiments which show over 10% variation in the final tank fill, and this also includes over filling. The variance of the final tank fill is reduced by over 74%, meaning that it is possible to target the final maximum fill reproducibly. The product concentration achieved at a given set of process conditions was unaffected by the control strategy. Biotechnol. Bioeng. 2017;114: 1459-1468. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. A Binaural CI Research Platform for Oticon Medical SP/XP Implants Enabling ITD/ILD and Variable Rate Processing

    PubMed Central

    Adiloğlu, K.; Herzke, T.

    2015-01-01

    We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. PMID:26721923

  18. A Binaural CI Research Platform for Oticon Medical SP/XP Implants Enabling ITD/ILD and Variable Rate Processing.

    PubMed

    Backus, B; Adiloğlu, K; Herzke, T

    2015-12-30

    We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. © The Author(s) 2015.

  19. Biowaste home composting: experimental process monitoring and quality control.

    PubMed

    Tatàno, Fabio; Pagliaro, Giacomo; Di Giovanni, Paolo; Floriani, Enrico; Mangani, Filippo

    2015-04-01

    Because home composting is a prevention option in managing biowaste at local levels, the objective of the present study was to contribute to the knowledge of the process evolution and compost quality that can be expected and obtained, respectively, in this decentralized option. In this study, organized as the research portion of a provincial project on home composting in the territory of Pesaro-Urbino (Central Italy), four experimental composters were first initiated and temporally monitored. Second, two small sub-sets of selected provincial composters (directly operated by households involved in the project) underwent quality control on their compost products at two different temporal steps. The monitored experimental composters showed overall decreasing profiles versus composting time for moisture, organic carbon, and C/N, as well as overall increasing profiles for electrical conductivity and total nitrogen, which represented qualitative indications of progress in the process. Comparative evaluations of the monitored experimental composters also suggested some interactions in home composting, i.e., high C/N ratios limiting organic matter decomposition rates and final humification levels; high moisture contents restricting the internal temperature regime; nearly horizontal phosphorus and potassium evolutions contributing to limit the rates of increase in electrical conductivity; and prolonged biowaste additions contributing to limit the rate of decrease in moisture. The measures of parametric data variability in the two sub-sets of controlled provincial composters showed decreased variability in moisture, organic carbon, and C/N from the seventh to fifteenth month of home composting, as well as increased variability in electrical conductivity, total nitrogen, and humification rate, which could be considered compatible with the respective nature of decreasing and increasing parameters during composting. The modeled parametric kinetics in the monitored experimental composters, along with the evaluation of the parametric central tendencies in the sub-sets of controlled provincial composters, all indicate that 12-15 months is a suitable duration for the appropriate development of home composting in final and simultaneous compliance with typical reference limits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Age and expertise effects in aviation decision making and flight control in a flight simulator.

    PubMed

    Kennedy, Quinn; Taylor, Joy L; Reade, Gordon; Yesavage, Jerome A

    2010-05-01

    Age (due to declines in cognitive abilities necessary for navigation) and level of aviation expertise are two factors that may affect aviation performance and decision making under adverse weather conditions. We examined the roles of age, expertise, and their relationship on aviation decision making and flight control performance during a flight simulator task. Seventy-two IFR-rated general aviators, aged 19-79 yr, made multiple approach, holding pattern entry, and landing decisions while navigating under Instrument Flight Rules weather conditions. Over three trials in which the fog level varied, subjects decided whether or not to land the aircraft. They also completed two holding pattern entries. Subjects' flight control during approaches and holding patterns was measured. Older pilots (41+ yr) were more likely than younger pilots to land when visibility was inadequate (older pilots' mean false alarm rate: 0.44 vs 0.25). They also showed less precise flight control for components of the approach, performing 0.16 SD below mean approach scores. Expertise attenuated an age-related decline in flight control during holding patterns: older IFR/CFI performed 0.73 SD below mean score; younger IFR/CFI, younger CFII/ATP, older CFII/ATP: 0.32, 0.26, 0.03 SD above mean score. Additionally, pilots with faster processing speed (by median split) had a higher mean landing decision false alarm rate (0.42 vs 0.28), yet performed 0.14 SD above the mean approach control score. Results have implications regarding specialized training for older pilots and for understanding processes involved in older adults' real world decision making and performance.

  1. Perception of men's beauty and attractiveness by women with low sexual desire.

    PubMed

    Ferdenzi, Camille; Delplanque, Sylvain; Vorontsova-Wenger, Olga; Pool, Eva; Bianchi-Demicheli, Francesco; Sander, David

    2015-04-01

    Despite the high prevalence of hypoactive sexual desire disorder (HSDD), especially among women, this sexual disorder remains poorly understood. Among the multiple factors possibly involved in HSDD, particularities in the cognitive evaluations of social stimuli need to be better characterized. Especially, beauty and attractiveness judgments, two dimensions of interpersonal perception that are related but differ on their underlying motivational aspects, may vary according to the level of sexual desire. The main goal of this study was to investigate whether women with and without HSDD differ in their evaluations of beauty and attractiveness of men's faces and voices. Young women from the general population (controls, n = 16) and with HSDD (patients, n = 16) took part in the study. They were presented with a series of neutral/nonerotic voices and faces of young men from the GEneva Faces And Voices database. Ratings of beauty (i.e., assessments of aesthetic pleasure) and of attractiveness (i.e., assessments of the personal propensity to feel attracted to someone) and the frequency to which the participants pressed a key to see or listen to each stimulus again were the main outcome measures. Ratings of attractiveness were lower than ratings of beauty in both groups of women. The dissociation between beauty and attractiveness was larger in women with HSDD than in control participants. Patients gave lower attractiveness ratings than the controls and replayed the stimuli significantly less often. These results suggest that women with HSDD are characterized by specific alterations of the motivational component of men's perception, very early in the process of interpersonal relationships. Our findings have significant implications, both in better understanding the specific cognitive processes underlying hypoactive sexual desire and more largely the evaluative processes involved in human mate choice. © 2014 International Society for Sexual Medicine.

  2. Evolution and Control of 2219 Aluminum Microstructural Features through Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  3. A research factory for polymer microdevices: muFac

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.; Hardt, David E.; Hale, Melinda; Zarrouati, Nadege

    2010-02-01

    As part of our research on the manufacturing science of micron scale polymer-based devices, an automated production cell has been developed to explore its use in a volume manufacturing environment. This "micro-factory" allows the testing of models and hardware that have resulted from research on material characterization and simulation, tooling and equipment design and control, and process control and metrology. More importantly it has allowed us to identify the problems that exist between and within unit-processes. This paper details our efforts to produce basic micro-fluidic products in high volume at acceptable production rates and quality levels. The device chosen for our first product is a simple binary micromixer with 40×50 micron channel cross section manufactured by embossing of PMMA. The processes in the cell include laser cutting and drilling, hot embossing, thermal bonding and high-speed inspection of the components. Our goal is to create a "lights-out" factory that can make long production runs (e.g. an 8 hour shift) at high rates (Takt time of less than 3 minutes) with consistent quality. This contrasts with device foundries where prototypes in limited quantities but with high variety are the goal. Accordingly, rate and yield are dominant factors in this work, along with the need for precise material handling strategies. Production data will be presented to include process run charts, sampled functional testing of the products and measures of the overall system throughput.

  4. Heart rate variability and cognitive processing: The autonomic response to task demands.

    PubMed

    Luque-Casado, Antonio; Perales, José C; Cárdenas, David; Sanabria, Daniel

    2016-01-01

    This study investigated variations in heart rate variability (HRV) as a function of cognitive demands. Participants completed an execution condition including the psychomotor vigilance task, a working memory task and a duration discrimination task. The control condition consisted of oddball versions (participants had to detect the rare event) of the tasks from the execution condition, designed to control for the effect of the task parameters (stimulus duration and stimulus rate) on HRV. The NASA-TLX questionnaire was used as a subjective measure of cognitive workload across tasks and conditions. Three major findings emerged from this study. First, HRV varied as a function of task demands (with the lowest values in the working memory task). Second, and crucially, we found similar HRV values when comparing each of the tasks with its oddball control equivalent, and a significant decrement in HRV as a function of time-on-task. Finally, the NASA-TLX results showed larger cognitive workload in the execution condition than in the oddball control condition, and scores variations as a function of task. Taken together, our results suggest that HRV is highly sensitive to overall demands of sustained attention over and above the influence of other cognitive processes suggested by previous literature. In addition, our study highlights a potential dissociation between objective and subjective measures of mental workload, with important implications in applied settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Designing degradable hydrogels for orthogonal control of cell microenvironments

    PubMed Central

    Kharkar, Prathamesh M.

    2013-01-01

    Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications. PMID:23609001

  6. Diffusion of Siderophile Elements in Fe Metal: Application to Zoned Metal Grains in Chondrites

    NASA Technical Reports Server (NTRS)

    Righter, K.; Campbell, A. J.; Humajun, M.

    2003-01-01

    The distribution of highly siderophile elements (HSE) in planetary materials is controlled mainly by metal. Diffusion processes can control the distribution or re-distribution of these elements within metals, yet there is little systematic or appropriate diffusion data that can be used to interpret HSE concentrations in such metals. Because our understanding of isotope chronometry, redox processes, kamacite/taenite-based cooling rates, and metal grain zoning would be enhanced with diffusion data, we have measured diffusion coefficients for Ni, Co, Ga, Ge, Ru, Pd, Ir and Au in Fe metal from 1200 to 1400 C and 1 bar and 10 kbar. These new data on refractory and volatile siderophile elements are used to evaluate the role of diffusional processes in controlling zoning patterns in metal-rich chondrites.

  7. Species associations overwhelm abiotic conditions to dictate the structure and function of wood-decay fungal communities.

    PubMed

    Maynard, Daniel S; Covey, Kristofer R; Crowther, Thomas W; Sokol, Noah W; Morrison, Eric W; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2018-04-01

    Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions. © 2018 by the Ecological Society of America.

  8. Firmware Development Improves System Efficiency

    NASA Technical Reports Server (NTRS)

    Chern, E. James; Butler, David W.

    1993-01-01

    Most manufacturing processes require physical pointwise positioning of the components or tools from one location to another. Typical mechanical systems utilize either stop-and-go or fixed feed-rate procession to accomplish the task. The first approach achieves positional accuracy but prolongs overall time and increases wear on the mechanical system. The second approach sustains the throughput but compromises positional accuracy. A computer firmware approach has been developed to optimize this point wise mechanism by utilizing programmable interrupt controls to synchronize engineering processes 'on the fly'. This principle has been implemented in an eddy current imaging system to demonstrate the improvement. Software programs were developed that enable a mechanical controller card to transmit interrupts to a system controller as a trigger signal to initiate an eddy current data acquisition routine. The advantages are: (1) optimized manufacturing processes, (2) increased throughput of the system, (3) improved positional accuracy, and (4) reduced wear and tear on the mechanical system.

  9. Mechanistic, kinetic, and processing aspects of tungsten chemical mechanical polishing

    NASA Astrophysics Data System (ADS)

    Stein, David

    This dissertation presents an investigation into tungsten chemical mechanical polishing (CMP). CMP is the industrially predominant unit operation that removes excess tungsten after non-selective chemical vapor deposition (CVD) during sub-micron integrated circuit (IC) manufacture. This work explores the CMP process from process engineering and fundamental mechanistic perspectives. The process engineering study optimized an existing CMP process to address issues of polish pad and wafer carrier life. Polish rates, post-CMP metrology of patterned wafers, electrical test data, and synergy with a thermal endpoint technique were used to determine the optimal process. The oxidation rate of tungsten during CMP is significantly lower than the removal rate under identical conditions. Tungsten polished without inhibition during cathodic potentiostatic control. Hertzian indenter model calculations preclude colloids of the size used in tungsten CMP slurries from indenting the tungsten surface. AFM surface topography maps and TEM images of post-CMP tungsten do not show evidence of plow marks or intergranular fracture. Polish rate is dependent on potassium iodate concentration; process temperature is not. The colloid species significantly affects the polish rate and process temperature. Process temperature is not a predictor of polish rate. A process energy balance indicates that the process temperature is predominantly due to shaft work, and that any heat of reaction evolved during the CMP process is negligible. Friction and adhesion between alumina and tungsten were studied using modified AFM techniques. Friction was constant with potassium iodate concentration, but varied with applied pressure. This corroborates the results from the energy balance. Adhesion between the alumina and the tungsten was proportional to the potassium iodate concentration. A heuristic mechanism, which captures the relationship between polish rate, pressure, velocity, and slurry chemistry, is presented. In this mechanism, the colloid reacts with the chemistry of the slurry to produce active sites. These active sites become inactive by removing tungsten from the film. The process repeats when then inactive sites are reconverted to active sites. It is shown that the empirical form of the heuristic mechanism fits all of the data obtained. The mechanism also agrees with the limiting cases that were investigated.

  10. Enhanced Traceability for Bulk Processing of Sentinel-Derived Information Products

    NASA Astrophysics Data System (ADS)

    Lankester, Thomas; Hubbard, Steven; Knowelden, Richard

    2016-08-01

    The advent of widely available, systematically acquired and advanced Earth observations from the Sentinel platforms is spurring development of a wide range of derived information products. Whilst welcome, this rapid rate of development inevitably leads to some processing instability as algorithms and production steps are required to evolve accordingly. To mitigate this instability, the provenance of EO-derived information products needs to be traceable and transparent.Airbus Defence and Space (Airbus DS) has developed the Airbus Processing Cloud (APC) as a virtualised processing farm for bulk production of EO-derived data and information products. The production control system of the APC transforms internal configuration control information into an INSPIRE metadata file containing a stepwise set of processing steps and data source elements that provide the complete and transparent provenance of each product generated.

  11. An investigation of the effect of processing conditions on the lamellar and spherulitic morphology of polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Xie, Yuping; Akpalu, Yvonne A.

    2007-03-01

    Polyhydroxyalkanoates (PHAs) have recently attracted much interest because of their biodegradability and biocompatibility. Since the ultimate properties of polymers can be controlled by processing conditions, particularly cooling rates, the systematic and thorough understanding of the effects of cooling rates on the final morphology and the resulting mechanical properties of PHAs is necessary and important. In this presentation, the lamellar (tens of nanometers), fibrillar (several hundred nanometers) and spherulitic (˜μm) morphologies of poly (3-hydroxybutyric acid) (PHB) and the copolymer poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) crystallized under different cooling rates were studied using small angle X-ray scattering, ultra small angle X-ray scattering, and polarized optical microscopy, respectively. The morphology was observed to depend strongly on cooling rate. The influence of cooling rate on the morphology and mechanical properties such as toughness, tensile strength and overall stress-strain behavior will be discussed.

  12. Plant litter decomposition and nutrient release in peatlands

    NASA Astrophysics Data System (ADS)

    Bragazza, Luca; Buttler, Alexandre; Siegenthaler, Andy; Mitchell, Edward A. D.

    Decomposition of plant litter is a crucial process in controlling the carbon balance of peatlands. Indeed, as long as the rate of litter decomposition remains lower than the rate of above- and belowground litter production, a net accumulation of peat and, thus, carbon will take place. In addition, decomposition controls the release of important nutrients such as nitrogen, phosphorus, and potassium, the availability of which affects the structure and the functioning of plant communities. This chapter describes the role of the main drivers in affecting mass loss and nutrient release from recently deposited plant litter. In particular, the rate of mass loss of Sphagnum litter and vascular plant litter is reviewed in relation to regional climatic conditions, aerobic/anaerobic conditions, and litter chemistry. The rate of nutrient release is discussed in relation to the rate of mass loss and associated litter chemistry by means of a specific case study.

  13. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method

    PubMed Central

    Wada, Takao; Ueda, Noriaki

    2013-01-01

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature. PMID:23674843

  14. Flow behavior in liquid molding

    NASA Technical Reports Server (NTRS)

    Hunston, D.; Phelan, F.; Parnas, R.

    1992-01-01

    The liquid molding (LM) process for manufacturing polymer composites with structural properties has the potential to significantly lower fabrication costs and increase production rates. LM includes both resin transfer molding and structural reaction injection molding. To achieve this potential, however, the underlying science base must be improved to facilitate effective process optimization and implementation of on-line process control. The National Institute of Standards and Technology (NIST) has a major program in LM that includes materials characterization, process simulation models, on-line process monitoring and control, and the fabrication of test specimens. The results of this program are applied to real parts through cooperative projects with industry. The key feature in the effort is a comprehensive and integrated approach to the processing science aspects of LM. This paper briefly outlines the NIST program and uses several examples to illustrate the work.

  15. Accumulation of neutral mutations in growing cell colonies with competition.

    PubMed

    Sorace, Ron; Komarova, Natalia L

    2012-12-07

    Neutral mutations play an important role in many biological processes including cancer initiation and progression, the generation of drug resistance in bacterial and viral diseases as well as cancers, and the development of organs in multicellular organisms. In this paper we study how neutral mutants are accumulated in nonlinearly growing colonies of cells subject to growth constraints such as crowding or lack of resources. We investigate different types of growth control which range from "division-controlled" to "death-controlled" growth (and various mixtures of both). In division-controlled growth, the burden of handling overcrowding lies with the process of cell-divisions, the divisions slow down as the carrying capacity is approached. In death-controlled growth, it is death rate that increases to slow down expansion. We show that division-controlled growth minimizes the number of accumulated mutations, and death-controlled growth corresponds to the maximum number of mutants. We check that these results hold in both deterministic and stochastic settings. We further develop a general (deterministic) theory of neutral mutations and achieve an analytical understanding of the mutant accumulation in colonies of a given size in the absence of back-mutations. The long-term dynamics of mutants in the presence of back-mutations is also addressed. In particular, with equal forward- and back-mutation rates, if division-controlled and a death-controlled types are competing for space and nutrients, cells obeying division-controlled growth will dominate the population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Neural correlates of the essence of conscious conflict: fMRI of sustaining incompatible intentions.

    PubMed

    Gray, Jeremy R; Bargh, John A; Morsella, Ezequiel

    2013-09-01

    The study of intrapsychic conflict has long been central to many key theories about the control of behavior. More recently, by focusing on the nature of conflicting processes in the brain, investigators have revealed great insights about controlled versus automatic processes and the nature of self-control. Despite these advances, many theories of cognitive control or self-control remain agnostic about the function of subjective awareness (i.e., basic consciousness). Why people consciously experience some conflicts in the nervous system but not others remains a mystery. One hypothesis is that people become conscious only of conflicts involving competition for the control of skeletal muscle. To test one aspect of this larger hypothesis, in the present study, 14 participants were trained to introspect the feeling of conflict (the urge to make an error during a Stroop color-word interference task) and then were asked to introspect in the same way while sustaining simple compatible and incompatible intentions during fMRI scanning (to move a finger left or right). As predicted, merely sustaining incompatible skeletomotor intentions prior to their execution produced stronger systematic changes in subjective experience than sustaining compatible intentions, as indicated by self-report ratings obtained in the scanner. Similar ratings held for a modified Stroop-like task when contrasting incompatible versus compatible trials also during fMRI scanning. We use subjective ratings as the basis of parametric analyses of fMRI data, focusing a priori on the brain regions involved in action-related urges (e.g., parietal cortex) and cognitive control (e.g., dorsal anterior cingulate cortex, lateral PFC). The results showed that subjective conflict from sustaining incompatible intentions was consistently related to activity in the left post-central gyrus.

  17. Mimicking Aphasic Semantic Errors in Normal Speech Production: Evidence from a Novel Experimental Paradigm

    ERIC Educational Resources Information Center

    Hodgson, Catherine; Lambon Ralph, Matthew A.

    2008-01-01

    Semantic errors are commonly found in semantic dementia (SD) and some forms of stroke aphasia and provide insights into semantic processing and speech production. Low error rates are found in standard picture naming tasks in normal controls. In order to increase error rates and thus provide an experimental model of aphasic performance, this study…

  18. Oxygen Uptake. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Wooley, John F.

    Biological waste treatment in the activated sludge process is based on the ability of microorganisms to use dissolved oxygen in breaking down soluble organic substances. The oxygen uptake test is a means of measuring the respiration rate of microorganisms in this process. Designed for individuals who have completed National Pollutant Discharge…

  19. Geophysical study of the structure and processes of the continental convergence zones: Alpine-Himalayan Belt

    NASA Technical Reports Server (NTRS)

    Toksoz, M. Nafi; Molnar, Peter

    1988-01-01

    Intracontinental deformation occurrence and the processes and physical parameters that control the rates and styles of deformation were examined. Studies addressing specific mechanical aspects of deformation were reviewed and the studies of deformation and of the structure of specific areas were studied considering the strength of the material and the gravitational effect.

  20. 40 CFR 65.158 - Performance test procedures for control devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... simultaneously from multiple loading arms, each run shall represent at least one complete tank truck or tank car... the combustion air or as a secondary fuel into a boiler or process heater with a design capacity less... corrected to 3 percent oxygen if a combustion device is the control device. (A) The emission rate correction...

  1. Development of a digital video-microscopy technique to study lactose crystallisation kinetics in situ.

    PubMed

    Arellano, María Paz; Aguilera, José Miguel; Bouchon, Pedro

    2004-11-15

    Polarised light microscopy was employed non-invasively to monitor lactose crystallisation from non-seeded supersaturated solutions in real time. Images were continuously recorded, processed and characterised by image analysis, and the results were compared with those obtained by refractometry. Three crystallisation temperatures (10, 20 and 30 degrees C) and three different levels of initial relative supersaturation (C/C(s)=1.95; 2.34; 3.15) were investigated. Induction times using the imaging technique proved to be substantially lower than those determined using refractive index. Lactose crystals were isolated digitally to determine geometrical parameters of interest, such as perimeter, diameter, area, roundness and Feret mean, and to derive crystal growth rates. Mean growth rates obtained for single crystals were fitted to a combined mass transfer model (R(2)=0.9766). The model allowed the effects of temperature and supersaturation on crystallisation rate to be clearly identified. It also suggested that, in this set of experiments, surface integration seemed to be the rate controlling step. It is believed that a similar experimental set-up could be implemented in a real food system to characterise a particular process where crystallisation control is of interest and where traditional techniques are difficult to implement.

  2. pH controls over methanogenesis and iron reduction along soil depth profile in Arctic tundra

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Gu, B.; Wullschleger, S. D.; Graham, D. E.

    2017-12-01

    Increasing soil temperature in the Arctic is expected to accelerate rates of soil organic matter decomposition. However, the magnitude of this impact is uncertain due to the many physical, chemical, and biological processes that control the decomposition pathways. Varying soil redox conditions present a key control over pathways of organic matter decomposition by diverting the flow of reductants among different electron accepting processes and further driving acid-base reactions that alter soil pH. In this study we investigated the pH controls over anaerobic carbon mineralization, methanogenesis, Fe(III) reduction and the interplay between these processes across a range of pH and redox conditions. pH manipulation experiments were conducted by incubating soils representing organic, mineral, cryoturbated transitional layers and permafrost. In the experiments we sought to understand (1) if methanogenesis or Fe(III) reduction had similar pH optima; (2) if this pH response also occurs at `upstream' fermentation process; and (3) if pH alters organo-mineral association or organic matter sorption and desorption and its availability for microbial degradation. Our preliminary results suggest that the common bell-shaped pH response curve provides a good fit for both Fe(III) reduction and methanogenesis, with optimum pH at 6.0-7.0. Exceptions to this were found in transitional layer where methanogenesis rates positively correlated with increasing pH, with maximum rates measured at pH 8.5. It is likely that the transitional layer harbors distinct groups of methanogens that prefer a high pH. Variations in the optimum pH of Fe(III) reduction and methanogenesis may play a significant role in regulating organic matter decomposition pathways and thus greenhouse gas production in thawing soils. These results support biogeochemical modeling efforts to accurately simulate organic matter decomposition under changing redox and pH conditions.

  3. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOEpatents

    van den Engh, Gerrit J.; Stokdijk, Willem

    1992-01-01

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate.

  4. Remote Neural Pendants In A Welding-Control System

    NASA Technical Reports Server (NTRS)

    Venable, Richard A.; Bucher, Joseph H.

    1995-01-01

    Neural network integrated circuits enhance functionalities of both remote terminals (called "pendants") and communication links, without necessitating installation of additional wires in links. Makes possible to incorporate many features into pendant, including real-time display of critical welding parameters and other process information, capability for communication between technician at pendant and host computer or technician elsewhere in system, and switches and potentiometers through which technician at pendant exerts remote control over such critical aspects of welding process as current, voltage, rate of travel, flow of gas, starting, and stopping. Other potential manufacturing applications include control of spray coating and of curing of composite materials. Potential nonmanufacturing uses include remote control of heating, air conditioning, and lighting in electrically noisy and otherwise hostile environments.

  5. Instrumentation, control, and automation for submerged anaerobic membrane bioreactors.

    PubMed

    Robles, Ángel; Durán, Freddy; Ruano, María Victoria; Ribes, Josep; Rosado, Alfredo; Seco, Aurora; Ferrer, José

    2015-01-01

    A submerged anaerobic membrane bioreactor (AnMBR) demonstration plant with two commercial hollow-fibre ultrafiltration systems (PURON®, Koch Membrane Systems, PUR-PSH31) was designed and operated for urban wastewater treatment. An instrumentation, control, and automation (ICA) system was designed and implemented for proper process performance. Several single-input-single-output (SISO) feedback control loops based on conventional on-off and PID algorithms were implemented to control the following operating variables: flow-rates (influent, permeate, sludge recycling and wasting, and recycled biogas through both reactor and membrane tanks), sludge wasting volume, temperature, transmembrane pressure, and gas sparging. The proposed ICA for AnMBRs for urban wastewater treatment enables the optimization of this new technology to be achieved with a high level of process robustness towards disturbances.

  6. Formation of Hot Tear Under Controlled Solidification Conditions

    NASA Astrophysics Data System (ADS)

    Subroto, Tungky; Miroux, Alexis; Bouffier, Lionel; Josserond, Charles; Salvo, Luc; Suéry, Michel; Eskin, Dmitry G.; Katgerman, Laurens

    2014-06-01

    Aluminum alloy 7050 is known for its superior mechanical properties, and thus finds its application in aerospace industry. Vertical direct-chill (DC) casting process is typically employed for producing such an alloy. Despite its advantages, AA7050 is considered as a "hard-to-cast" alloy because of its propensity to cold cracking. This type of cracks occurs catastrophically and is difficult to predict. Previous research suggested that such a crack could be initiated by undeveloped hot tears (microscopic hot tear) formed during the DC casting process if they reach a certain critical size. However, validation of such a hypothesis has not been done yet. Therefore, a method to produce a hot tear with a controlled size is needed as part of the verification studies. In the current study, we demonstrate a method that has a potential to control the size of the created hot tear in a small-scale solidification process. We found that by changing two variables, cooling rate and displacement compensation rate, the size of the hot tear during solidification can be modified in a controlled way. An X-ray microtomography characterization technique is utilized to quantify the created hot tear. We suggest that feeding and strain rate during DC casting are more important compared with the exerted force on the sample for the formation of a hot tear. In addition, we show that there are four different domains of hot-tear development in the explored experimental window—compression, microscopic hot tear, macroscopic hot tear, and failure. The samples produced in the current study will be used for subsequent experiments that simulate cold-cracking conditions to confirm the earlier proposed model.

  7. Industrial antifoam agents impair ethanol fermentation and induce stress responses in yeast cells.

    PubMed

    Nielsen, Jens Christian; Senne de Oliveira Lino, Felipe; Rasmussen, Thomas Gundelund; Thykær, Jette; Workman, Christopher T; Basso, Thiago Olitta

    2017-11-01

    The Brazilian sugarcane industry constitutes one of the biggest and most efficient ethanol production processes in the world. Brazilian ethanol production utilizes a unique process, which includes cell recycling, acid wash, and non-aseptic conditions. Process characteristics, such as extensive CO 2 generation, poor quality of raw materials, and frequent contaminations, all lead to excessive foam formation during fermentations, which is treated with antifoam agents (AFA). In this study, we have investigated the impact of industrial AFA treatments on the physiology and transcriptome of the industrial ethanol strain Saccharomyces cerevisiae CAT-1. The investigated AFA included industrially used AFA acquired from Brazilian ethanol plants and commercially available AFA commonly used in the fermentation literature. In batch fermentations, it was shown that industrial AFA compromised growth rates and glucose uptake rates, while commercial AFA had no effect in concentrations relevant for defoaming purposes. Industrial AFA were further tested in laboratory scale simulations of the Brazilian ethanol production process and proved to decrease cell viability compared to the control, and the effects were intensified with increasing AFA concentrations and exposure time. Transcriptome analysis showed that AFA treatments induced additional stress responses in yeast cells compared to the control, shown by an up-regulation of stress-specific genes and a down-regulation of lipid biosynthesis, especially ergosterol. By documenting the detrimental effects associated with chemical AFA, we highlight the importance of developing innocuous systems for foam control in industrial fermentation processes.

  8. The study of optimization on process parameters of high-accuracy computerized numerical control polishing

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu

    2017-09-01

    Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.

  9. ADHD performance reflects inefficient but not impulsive information processing: a diffusion model analysis.

    PubMed

    Metin, Baris; Roeyers, Herbert; Wiersema, Jan R; van der Meere, Jaap J; Thompson, Margaret; Sonuga-Barke, Edmund

    2013-03-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with performance deficits across a broad range of tasks. Although individual tasks are designed to tap specific cognitive functions (e.g., memory, inhibition, planning, etc.), these deficits could also reflect general effects related to either inefficient or impulsive information processing or both. These two components cannot be isolated from each other on the basis of classical analysis in which mean reaction time (RT) and mean accuracy are handled separately. Seventy children with a diagnosis of combined type ADHD and 50 healthy controls (between 6 and 17 years) performed two tasks: a simple two-choice RT (2-CRT) task and a conflict control task (CCT) that required higher levels of executive control. RT and errors were analyzed using the Ratcliff diffusion model, which divides decisional time into separate estimates of information processing efficiency (called "drift rate") and speed-accuracy tradeoff (SATO, called "boundary"). The model also provides an estimate of general nondecisional time. Results were the same for both tasks independent of executive load. ADHD was associated with lower drift rate and less nondecisional time. The groups did not differ in terms of boundary parameter estimates. RT and accuracy performance in ADHD appears to reflect inefficient rather than impulsive information processing, an effect independent of executive function load. The results are consistent with models in which basic information processing deficits make an important contribution to the ADHD cognitive phenotype. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. Examination of the semi-automatic calculation technique of vegetation cover rate by digital camera images.

    NASA Astrophysics Data System (ADS)

    Takemine, S.; Rikimaru, A.; Takahashi, K.

    The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed

  11. Methods for increasing the rate of anammox attachment in a sidestream deammonification MBBR.

    PubMed

    Klaus, Stephanie; McLee, Patrick; Schuler, Andrew J; Bott, Charles

    2016-01-01

    Deammonification (partial nitritation-anammox) is a proven process for the treatment of high-nitrogen waste streams, but long startup time is a known drawback of this technology. In a deammonification moving bed biofilm reactor (MBBR), startup time could potentially be decreased by increasing the attachment rate of anammox bacteria (AMX) on virgin plastic media. Previous studies have shown that bacterial adhesion rates can be increased by surface modification or by the development of a preliminary biofilm. This is the first study on increasing AMX attachment rates in a deammonification MBBR using these methods. Experimental media consisted of three different wet-chemical surface treatments, and also media transferred from a full-scale mainstream fully nitrifying integrated fixed-film activated sludge (IFAS) reactor. Following startup of a full-scale deammonification reactor, the experimental media were placed in the full-scale reactor and removed for activity rate measurements and biomass testing after 1 and 2 months. The media transferred from the IFAS process exhibited a rapid increase in AMX activity rates (1.1 g/m(2)/day NH(4)(+) removal and 1.4 g/m(2)/day NO(2)(-) removal) as compared to the control (0.2 g/m(2)/day NH(4)(+) removal and 0.1 g/m(2)/day NO(2)(-) removal) after 1 month. Two out of three of the surface modifications resulted in significantly higher AMX activity than the control at 1 and 2 months. No nitrite oxidizing bacteria activity was detected in either the surface modified media or IFAS media batch tests. The results indicate that startup time of a deammonification MBBR could potentially be decreased through surface modification of the plastic media or through the transfer of media from a mature IFAS process.

  12. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation

    USGS Publications Warehouse

    McKee, K.L.; Cahoon, D.R.; Feller, Ilka C.

    2007-01-01

    Aim The long-term stability of coastal ecosystems such as mangroves and salt marshes depends upon the maintenance of soil elevations within the intertidal habitat as sea level changes. We examined the rates and processes of peat formation by mangroves of the Caribbean Region to better understand biological controls on habitat stability. Location Mangrove-dominated islands on the Caribbean coasts of Belize, Honduras and Panama were selected as study sites. Methods Biological processes controlling mangrove peat formation were manipulated (in Belize) by the addition of nutrients (nitrogen or phosphorus) to Rhizophora mangle (red mangrove), and the effects on the dynamics of soil elevation were determined over a 3-year period using rod surface elevation tables (RSET) and marker horizons. Peat composition and geological accretion rates were determined at all sites using radiocarbon-dated cores. Results The addition of nutrients to mangroves caused significant changes in rates of mangrove root accumulation, which influenced both the rate and direction of change in elevation. Areas with low root input lost elevation and those with high rates gained elevation. These findings were consistent with peat analyses at multiple Caribbean sites showing that deposits (up to 10 m in depth) were composed primarily of mangrove root matter. Comparison of radiocarbon-dated cores at the study sites with a sea-level curve for the western Atlantic indicated a tight coupling between peat building in Caribbean mangroves and sea-level rise over the Holocene. Main conclusions Mangroves common to the Caribbean region have adjusted to changing sea level mainly through subsurface accumulation of refractory mangrove roots. Without root and other organic inputs, submergence of these tidal forests is inevitable due to peat decomposition, physical compaction and eustatic sea-level rise. These findings have relevance for predicting the effects of sea-level rise and biophysical processes on tropical mangrove ecosystems.

  13. Soil Production and Erosion on a Low-Relief, Soil-Mantled Landscape in the Pinaleno Mountains, Arizona

    NASA Astrophysics Data System (ADS)

    Foster, M.; Whipple, K. X.; Heimsath, A. M.; Jungers, M.

    2014-12-01

    Soil thickness plays an essential role in hydrology, ecology, biogeochemistry, and erosion and transport processes at the Earth's surface. Controls on soil production rate set this important characteristic, however, relative roles of these controls have not been quantitatively assessed. I take advantage of uniform lithology and climate on anenigmatic perched, low-relief high elevation landscape in the Pinaleno Mountains in southeastern Arizona to examine controls of formation and preservation of the upper, low-relief soil mantled landscape. This landscape is sharply bounded on all sides by steep, rugged terrain where soil cover is patchy but pervasive. Knickpoints appear along channel profiles around the edges of the low-relief landscape, suggesting a transient response to some tectonic disturbance, either due to rock uplift and basin subsidence during Basin and Range tectonic forcing, or more recent base-level drop in adjacent drainage systems. Slow erosion rates recently measured along the flanks of this range support the hypothesis that this upper transient surface has been preserved after a late Miocene-Pliocene basin and range disturbance that has since been followed by slow topographic decay. To shed light on the processes driving weathering, soil production and erosion in this landscape that maintains steep, rocky catchments only below knickpoints on channels draining the upper low-relief landscape, we utilize high-resolution soil thickness measurements coupled with terrestrial cosmogenic nuclide soil production rate measurements. In order to determine soil thicknesses at the high-resolution scale useful to describe hillslope process, we utilize shallow seismic survey data, calibrated by soil pit measurements of soil down through saprolite and fractured bedrock. Broadly applicable, these high-resolution soil thickness measurements coupled with soil production and erosion rate data can be useful disentangle relationships among catchment-mean erosion rate, mean soil thickness, and soil production efficiency.

  14. Rare behavior of growth processes via umbrella sampling of trajectories

    NASA Astrophysics Data System (ADS)

    Klymko, Katherine; Geissler, Phillip L.; Garrahan, Juan P.; Whitelam, Stephen

    2018-03-01

    We compute probability distributions of trajectory observables for reversible and irreversible growth processes. These results reveal a correspondence between reversible and irreversible processes, at particular points in parameter space, in terms of their typical and atypical trajectories. Thus key features of growth processes can be insensitive to the precise form of the rate constants used to generate them, recalling the insensitivity to microscopic details of certain equilibrium behavior. We obtained these results using a sampling method, inspired by the "s -ensemble" large-deviation formalism, that amounts to umbrella sampling in trajectory space. The method is a simple variant of existing approaches, and applies to ensembles of trajectories controlled by the total number of events. It can be used to determine large-deviation rate functions for trajectory observables in or out of equilibrium.

  15. Supercritical fluid particle design for poorly water-soluble drugs (review).

    PubMed

    Sun, Yongda

    2014-01-01

    Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.

  16. Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    PubMed Central

    Crawford, Forrest W.; Suchard, Marc A.

    2011-01-01

    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with n current particles, a new particle is born with instantaneous rate λn and a particle dies with instantaneous rate μn. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics. PMID:21984359

  17. Major depression is associated with impaired processing of emotion in music as well as in facial and vocal stimuli.

    PubMed

    Naranjo, C; Kornreich, C; Campanella, S; Noël, X; Vandriette, Y; Gillain, B; de Longueville, X; Delatte, B; Verbanck, P; Constant, E

    2011-02-01

    The processing of emotional stimuli is thought to be negatively biased in major depression. This study investigates this issue using musical, vocal and facial affective stimuli. 23 depressed in-patients and 23 matched healthy controls were recruited. Affective information processing was assessed through musical, vocal and facial emotion recognition tasks. Depression, anxiety level and attention capacity were controlled. The depressed participants demonstrated less accurate identification of emotions than the control group in all three sorts of emotion-recognition tasks. The depressed group also gave higher intensity ratings than the controls when scoring negative emotions, and they were more likely to attribute negative emotions to neutral voices and faces. Our in-patient group might differ from the more general population of depressed adults. They were all taking anti-depressant medication, which may have had an influence on their emotional information processing. Major depression is associated with a general negative bias in the processing of emotional stimuli. Emotional processing impairment in depression is not confined to interpersonal stimuli (faces and voices), being also present in the ability to feel music accurately. © 2010 Elsevier B.V. All rights reserved.

  18. The biology of small, introduced populations, with special reference to biological control

    PubMed Central

    Fauvergue, Xavier; Vercken, Elodie; Malausa, Thibaut; Hufbauer, Ruth A

    2012-01-01

    Populations are introduced into novel environments in different contexts, one being the biological control of pests. Despite intense efforts, less than half introduced biological control agents establish. Among the possible approaches to improve biological control, one is to better understand the processes that underpin introductions and contribute to ecological and evolutionary success. In this perspective, we first review the demographic and genetic processes at play in small populations, be they stochastic or deterministic. We discuss the theoretical outcomes of these different processes with respect to individual fitness, population growth rate, and establishment probability. Predicted outcomes differ subtly in some cases, but enough so that the evaluating results of introductions have the potential to reveal which processes play important roles in introduced populations. Second, we attempt to link the theory we have discussed with empirical data from biological control introductions. A main result is that there are few available data, but we nonetheless report on an increasing number of well-designed, theory-driven, experimental approaches. Combining demography and genetics from both theoretical and empirical perspectives highlights novel and exciting avenues for research on the biology of small, introduced populations, and great potential for improving both our understanding and practice of biological control. PMID:22949919

  19. Perceiving pain in others: validation of a dual processing model.

    PubMed

    McCrystal, Kalie N; Craig, Kenneth D; Versloot, Judith; Fashler, Samantha R; Jones, Daniel N

    2011-05-01

    Accurate perception of another person's painful distress would appear to be accomplished through sensitivity to both automatic (unintentional, reflexive) and controlled (intentional, purposive) behavioural expression. We examined whether observers would construe diverse behavioural cues as falling within these domains, consistent with cognitive neuroscience findings describing activation of both automatic and controlled neuroregulatory processes. Using online survey methodology, 308 research participants rated behavioural cues as "goal directed vs. non-goal directed," "conscious vs. unconscious," "uncontrolled vs. controlled," "fast vs. slow," "intentional (deliberate) vs. unintentional," "stimulus driven (obligatory) vs. self driven," and "requiring contemplation vs. not requiring contemplation." The behavioural cues were the 39 items provided by the PROMIS pain behaviour bank, constructed to be representative of the diverse possibilities for pain expression. Inter-item correlations among rating scales provided evidence of sufficient internal consistency justifying a single score on an automatic/controlled dimension (excluding the inconsistent fast vs. slow scale). An initial exploratory factor analysis on 151 participant data sets yielded factors consistent with "controlled" and "automatic" actions, as well as behaviours characterized as "ambiguous." A confirmatory factor analysis using the remaining 151 data sets replicated EFA findings, supporting theoretical predictions that observers would distinguish immediate, reflexive, and spontaneous reactions (primarily facial expression and paralinguistic features of speech) from purposeful and controlled expression (verbal behaviour, instrumental behaviour requiring ongoing, integrated responses). There are implicit dispositions to organize cues signaling pain in others into the well-defined categories predicted by dual process theory. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. Impact of a multidimensional infection control approach on central line-associated bloodstream infections rates in adult intensive care units of 8 cities of Turkey: findings of the International Nosocomial Infection Control Consortium (INICC)

    PubMed Central

    2013-01-01

    Background Central line-associated bloodstream infections (CLABs) have long been associated with excess lengths of stay, increased hospital costs and mortality attributable to them. Different studies from developed countries have shown that practice bundles reduce the incidence of CLAB in intensive care units. However, the impact of the bundle strategy has not been systematically analyzed in the adult intensive care unit (ICU) setting in developing countries, such as Turkey. The aim of this study is to analyze the impact of the International Nosocomial Infection Control Consortium (INICC) multidimensional infection control approach to reduce the rates of CLAB in 13 ICUs of 13 INICC member hospitals from 8 cities of Turkey. Methods We conducted active, prospective surveillance before-after study to determine CLAB rates in a cohort of 4,017 adults hospitalized in ICUs. We applied the definitions of the CDC/NHSN and INICC surveillance methods. The study was divided into baseline and intervention periods. During baseline, active outcome surveillance of CLAB rates was performed. During intervention, the INICC multidimensional approach for CLAB reduction was implemented and included the following measures: 1- bundle of infection control interventions, 2- education, 3- outcome surveillance, 4- process surveillance, 5- feedback of CLAB rates, and 6- performance feedback on infection control practices. CLAB rates obtained in baseline were compared with CLAB rates obtained during intervention. Results During baseline, 3,129 central line (CL) days were recorded, and during intervention, we recorded 23,463 CL-days. We used random effects Poisson regression to account for clustering of CLAB rates within hospital across time periods. The baseline CLAB rate was 22.7 per 1000 CL days, which was decreased during the intervention period to 12.0 CLABs per 1000 CL days (IRR 0.613; 95% CI 0.43 – 0.87; P 0.007). This amounted to a 39% reduction in the incidence rate of CLAB. Conclusions The implementation of multidimensional infection control approach was associated with a significant reduction in the CLAB rates in adult ICUs of Turkey, and thus should be widely implemented. PMID:23641950

  1. Evocative gene–environment correlation in the mother–child relationship: A twin study of interpersonal processes

    PubMed Central

    KLAHR, ASHLEA M.; THOMAS, KATHERINE M.; HOPWOOD, CHRISTOPHER J.; KLUMP, KELLY L.; BURT, S. ALEXANDRA

    2014-01-01

    The behavior genetic literature suggests that genetically influenced characteristics of the child elicit specific behaviors from the parent. However, little is known about the processes by which genetically influenced child characteristics evoke parental responses. Interpersonal theory provides a useful framework for identifying reciprocal behavioral processes between children and mothers. The theory posits that, at any given moment, interpersonal behavior varies along the orthogonal dimensions of warmth and control and that the interpersonal behavior of one individual tends to elicit corresponding or contrasting behavior from the other (i.e., warmth elicits warmth, whereas control elicits submission). The current study thus examined these dimensions of interpersonal behavior as they relate to the parent–child relationship in 546 twin families. A computer joystick was used to rate videos of mother–child interactions in real time, yielding information on mother and child levels of warmth and control throughout the interaction. Analyses indicated that maternal control, but not maternal warmth, was influenced by evocative gene–environment correlational processes, such that genetic influences on maternal control and child control were largely overlapping. Moreover, these common genetic influences were present both cross-sectionally and over the course of the interaction. Such findings not only confirm the presence of evocative gene–environment correlational processes in the mother–child relationship but also illuminate at least one of the specific interpersonal behaviors that underlie this evocative process. PMID:23398756

  2. Quality Control of High-Dose-Rate Brachytherapy: Treatment Delivery Analysis Using Statistical Process Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Able, Charles M., E-mail: cable@wfubmc.edu; Bright, Megan; Frizzell, Bart

    Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles withmore » 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.« less

  3. On the analysis of EEG power, frequency and asymmetry in Parkinson’s disease during emotion processing

    PubMed Central

    2014-01-01

    Objective While Parkinson’s disease (PD) has traditionally been described as a movement disorder, there is growing evidence of disruption in emotion information processing associated with the disease. The aim of this study was to investigate whether there are specific electroencephalographic (EEG) characteristics that discriminate PD patients and normal controls during emotion information processing. Method EEG recordings from 14 scalp sites were collected from 20 PD patients and 30 age-matched normal controls. Multimodal (audio-visual) stimuli were presented to evoke specific targeted emotional states such as happiness, sadness, fear, anger, surprise and disgust. Absolute and relative power, frequency and asymmetry measures derived from spectrally analyzed EEGs were subjected to repeated ANOVA measures for group comparisons as well as to discriminate function analysis to examine their utility as classification indices. In addition, subjective ratings were obtained for the used emotional stimuli. Results Behaviorally, PD patients showed no impairments in emotion recognition as measured by subjective ratings. Compared with normal controls, PD patients evidenced smaller overall relative delta, theta, alpha and beta power, and at bilateral anterior regions smaller absolute theta, alpha, and beta power and higher mean total spectrum frequency across different emotional states. Inter-hemispheric theta, alpha, and beta power asymmetry index differences were noted, with controls exhibiting greater right than left hemisphere activation. Whereas intra-hemispheric alpha power asymmetry reduction was exhibited in patients bilaterally at all regions. Discriminant analysis correctly classified 95.0% of the patients and controls during emotional stimuli. Conclusion These distributed spectral powers in different frequency bands might provide meaningful information about emotional processing in PD patients. PMID:24716619

  4. Reaction Rate of Ti0.18Zr0.84Cr1.0Fe0.7Mn0.3Cu0.057 to Use for the Heat Driven Type Compact Metal Hydride Refrigerator

    NASA Astrophysics Data System (ADS)

    Bae, Sang-Chul; Katsuta, Masafumi

    Our final goal of this study is to develop the heat driven type compact metal hydride (MH) refrigeration system for the vending machine and the show case, and to attain a refrigeration temperature of 243 K by using a heat source of about 423K. The reaction rate of the MH to use for the heat source, MH used for heat source is studied firstly because the MH refrigeration system consists of two MHs, one is used for the heat source and the other is used for the cooling load extracting. As for the reaction rate in the hydriding process, initially, a rapid surface reaction, governed by the relation 1-(1-F )1/3=kht . After the MH surface has been covered by hydride, the reaction becomes diffusion controlled with the relation 1-3(1-F ' )2/3+2(1-F ' )=k'ht . The reaction rates, kh and k'h , are exponentially proportional to the pressure difference and increase with temperature. And, as for the dehydriding process, it is found out that the rate-controlling step is uniquely diffusion reaction. The dehydriding reaction rate is exponentially proportional to the pressure difference and the initial reacted fraction, and increases with temperature. Finally, on the basis of these experimental results, the brand new rate correlations are reasonably derived. The predicted results for this correlation are in successfully agreement with the experimental ones.

  5. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle

    PubMed Central

    Kinsey, Stephen T.; Locke, Bruce R.; Dillaman, Richard M.

    2011-01-01

    Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction–diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction–diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle. PMID:21177946

  6. Forced, not voluntary, exercise improves motor function in Parkinson's disease patients.

    PubMed

    Ridgel, Angela L; Vitek, Jerrold L; Alberts, Jay L

    2009-01-01

    Animal studies indicate forced exercise (FE) improves overall motor function in Parkinsonian rodents. Global improvements in motor function following voluntary exercise (VE) are not widely reported in human Parkinson's disease (PD) patients. The aim of this study was to compare the effects of VE and FE on PD symptoms, motor function, and bimanual dexterity. Ten patients with mild to moderate PD were randomly assigned to complete 8 weeks of FE or VE. With the assistance of a trainer, patients in the FE group pedaled at a rate 30% greater than their preferred voluntary rate, whereas patients in the VE group pedaled at their preferred rate. Aerobic intensity for both groups was identical, 60% to 80% of their individualized training heart rate. Aerobic fitness improved for both groups. Following FE, Unified Parkinson's Disease Rating Scale (UPDRS) motor scores improved 35%, whereas patients completing VE did not exhibit any improvement. The control and coordination of grasping forces during the performance of a functional bimanual dexterity task improved significantly for patients in the FE group, whereas no changes in motor performance were observed following VE. Improvements in clinical measures of rigidity and bradykinesia and biomechanical measures of bimanual dexterity were maintained 4 weeks after FE cessation. Aerobic fitness can be improved in PD patients following both VE and FE interventions. However, only FE results in significant improvements in motor function and bimanual dexterity. Biomechanical data indicate that FE leads to a shift in motor control strategy, from feedback to a greater reliance on feedforward processes, which suggests FE may be altering central motor control processes.

  7. Voltage-controlled magnetization switching in MRAMs in conjunction with spin-transfer torque and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Munira, Kamaram; Pandey, Sumeet C.; Kula, Witold; Sandhu, Gurtej S.

    2016-11-01

    Voltage-controlled magnetic anisotropy (VCMA) effect has attracted a significant amount of attention in recent years because of its low cell power consumption during the anisotropy modulation of a thin ferromagnetic film. However, the applied voltage or electric field alone is not enough to completely and reliably reverse the magnetization of the free layer of a magnetic random access memory (MRAM) cell from anti-parallel to parallel configuration or vice versa. An additional symmetry-breaking mechanism needs to be employed to ensure the deterministic writing process. Combinations of voltage-controlled magnetic anisotropy together with spin-transfer torque (STT) and with an applied magnetic field (Happ) were evaluated for switching reliability, time taken to switch with low error rate, and energy consumption during the switching process. In order to get a low write error rate in the MRAM cell with VCMA switching mechanism, a spin-transfer torque current or an applied magnetic field comparable to the critical current and field of the free layer is necessary. In the hybrid processes, the VCMA effect lowers the duration during which the higher power hungry secondary mechanism is in place. Therefore, the total energy consumed during the hybrid writing processes, VCMA + STT or VCMA + Happ, is less than the energy consumed during pure spin-transfer torque or applied magnetic field switching.

  8. Effects of video-based therapy preparation targeting experiential acceptance or the therapeutic alliance.

    PubMed

    Johansen, Ayna B; Lumley, Mark; Cano, Annmarie

    2011-06-01

    Preparation for psychotherapy may enhance the psychotherapeutic process, reduce drop-outs, and improve outcomes, but the effective mechanisms of such preparation are poorly understood. Previous studies have rarely targeted specific processes that are associated with positive therapy outcomes. This randomized experiment compared the effects of preparatory videos that targeted either the Therapeutic Alliance, Experiential Acceptance, or a Control video on early therapeutic process variables in 105 patients seen in individual therapy. Participants watched the videos just before their first therapy session. No significant differences were found between the Alliance and Experiential Acceptance videos on patient recommendations, immediate affective reactions, or working alliance and attrition after the first session. However, the Therapeutic Alliance video produced an immediate increase in negative mood relative to the Control video, whereas the Experiential acceptance video produced a slight increase in positive mood relative to the Alliance video. Surprisingly, patients who viewed the Alliance video were rated significantly lower than the control group on therapist-rated alliance after the first session. These findings suggest there may be specific process effects in the early phase of treatment based on the type of pretraining material used, and also indicate that video-based pretraining efforts could be counterproductive. Furthermore, this research contributes to the literature by providing insights into methodological considerations for future work on the use of technology in psychotherapy and challenges associated with preparing people for successful psychotherapy.

  9. New type of dummy layout pattern to control ILD etch rate

    NASA Astrophysics Data System (ADS)

    Pohland, Oliver; Spieker, Julie; Huang, Chih-Ta; Govindaswamy, Srikanth; Balasinski, Artur

    2007-12-01

    Adding dummy features (waffles) to drawn geometries of the circuit layout is a common practice to improve its manufacturability. As an example, local dummy pattern improves MOSFET line and space CD control by adjusting short range optical proximity and reducing the aggressiveness of its correction features (OPC) to widen the lithography process window. Another application of dummy pattern (waffles) is to globally equalize layout pattern density, to reduce long-range inter-layer dielectric (ILD) thickness variations after the CMP process and improve contact resistance uniformity over the die area. In this work, we discuss a novel type of dummy pattern with a mid-range interaction distance, to control the ILD composition driven by its deposition and etch process. This composition is reflected on sidewall spacers and depends on the topography of the underlying poly pattern. During contact etch, it impacts the etch rate of the ILD. As a result, the deposited W filling the damascene etched self-aligned trench contacts in the ILD may electrically short to the underlying gates in the areas of isolated poly. To mitigate the dependence of the ILD composition on poly pattern distribution, we proposed a special dummy feature generation with the interaction range defined by the ILD deposition and etch process. This helped equalize mid-range poly pattern density without disabling the routing capability with damascene trench contacts in the periphery which would have increased the layout footprint.

  10. Investigation of the difficulties associated with the use of lead telluride and other II - IV compounds for thin film thermistors

    NASA Technical Reports Server (NTRS)

    Mclennan, W. D.

    1975-01-01

    The fabrication of thermistors was investigated for use as atmospheric temperature sensors in meteorological rocket soundings. The final configuration of the thin film thermistor is shown. The composition and primary functions of the six layers of the sensor are described. A digital controller for thin film deposition control is described which is capable of better than .1 A/sec rate control. The computer program modules for digital control of thin film deposition processing are included.

  11. Calculating Percent Gel For Process Control

    NASA Technical Reports Server (NTRS)

    Webster, Charles Neal; Scott, Robert O.

    1988-01-01

    Reaction state of thermosetting resin tracked to assure desired properties. Rate of gel determined as function of temperature by measuring time to gel of part of graphite fabric impregnated with Hexcel R120 (or equivalent) phenolic resin.

  12. Process- and controller-adaptations determine the physiological effects of cold acclimation.

    PubMed

    Werner, Jürgen

    2008-09-01

    Experimental results on physiological effects of cold adaptation seem confusing and apparently incompatible with one another. This paper will explain that a substantial part of such a variety of results may be deduced from a common functional concept. A core/shell treatment ("model") of the thermoregulatory system is used with mean body temperature as the controlled variable. Adaptation, as a higher control level, is introduced into the system. Due to persistent stressors, either the (heat transfer) process or the controller properties (parameters) are adjusted (or both). It is convenient to call the one "process adaptation" and the other "controller adaptation". The most commonly demonstrated effect of autonomic cold acclimation is a change in the controller threshold. The analysis shows that this necessarily means a lowering of body temperature because of a lowered metabolic rate. This explains experimental results on both Europeans in the climatic chamber and Australian Aborigines in a natural environment. Exclusive autonomic process adaptation occurs in the form of a better insulation. The analysis explains why the post-adaptive steady-state can only be achieved, if the controller system reduces metabolism and why in spite of this the new state is inevitably characterized by a rise in body temperature. If both process and controller adaptations are simultaneously present, there may be not any change of body temperature at all, e.g., as demonstrated in animal experiments. Whether this kind of adaptation delivers a decrease, an increase or no change of mean body temperature, depends on the proportion of process and controller adaptation.

  13. Use of a fluidized bed for the thermal and chemicothermal treatment of metals

    NASA Astrophysics Data System (ADS)

    Varygin, N. N.; Ol'shanov, E. Ya.

    1971-06-01

    An investigation of the heat processes in a fluidized bed shows that this unit has a high heating rate and cooling rate, and allows direct control in the process of heat treatment; chemicothermal processing is speeded up 3-5 times. Examples of experimental-industrial and industrial use show the advantages of using the fluidized bed for rapid nonoxidative heating for thermal processing and pressure processing, and also for replacing expensive salt and metal baths. The use of the fluidized bed is promising for heating temperature-sensitive aluminum and other nonferrous alloys, and for heat processing refractory metals, and alloys [45], etc. It is desirable to use the fluidized bed as the cooling medium to achieve optimum cooling with reduced stresses in components of especially complex configuration. It would be promising to use the fluidized bed for carrying out chemicothermal processing and for creating new processes (including surface saturation with rare metals), especially with the application of electrical, and possibly strong magnetic, fields.

  14. Design of a Single-Cell Positioning Controller Using Electroosmotic Flow and Image Processing

    PubMed Central

    Ay, Chyung; Young, Chao-Wang; Chen, Jhong-Yin

    2013-01-01

    The objective of the current research was not only to provide a fast and automatic positioning platform for single cells, but also improved biomolecular manipulation techniques. In this study, an automatic platform for cell positioning using electroosmotic flow and image processing technology was designed. The platform was developed using a PCI image acquisition interface card for capturing images from a microscope and then transferring them to a computer using human-machine interface software. This software was designed by the Laboratory Virtual Instrument Engineering Workbench, a graphical language for finding cell positions and viewing the driving trace, and the fuzzy logic method for controlling the voltage or time of an electric field. After experiments on real human leukemic cells (U-937), the success of the cell positioning rate achieved by controlling the voltage factor reaches 100% within 5 s. A greater precision is obtained when controlling the time factor, whereby the success rate reaches 100% within 28 s. Advantages in both high speed and high precision are attained if these two voltage and time control methods are combined. The control speed with the combined method is about 5.18 times greater than that achieved by the time method, and the control precision with the combined method is more than five times greater than that achieved by the voltage method. PMID:23698272

  15. Analysis of Operational Parameters Affecting the Sulfur Content in Hot Metal of the COREX Process

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Wang, Laixin; Kou, Mingyin; Wang, Yujue; Zhang, Jiacong

    2017-02-01

    The COREX process, which has obvious advantages in environment protection, still has some disadvantages. It has a higher sulfur content in hot metal (HM) than the blast furnace has. In the present work, the distribution and transfer of sulfur in the COREX have been analyzed and several operational parameters related to the sulfur content in HM ([pct S]) have been obtained. Based on this, the effects of the coal rate, slag ratio, temperature of HM, melting rate, binary basicity ( R 2), the ratio of MgO/Al2O3, utilization of reducing gas, top gas consumption per ton burden solid, metallization rate, oxidation degree of reducing gas, and coal and DRI distribution index on the sulfur content in HM are investigated. What's more, a linear model has been developed and subsequently used for predicting and controlling the S content in HM of the COREX process.

  16. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  17. Randomized controlled study of the safety and efficacy of nitrous oxide-sedated endoscopic ultrasound-guided fine needle aspiration for digestive tract diseases.

    PubMed

    Wang, Cai-Xia; Wang, Jian; Chen, Yuan-Yuan; Wang, Jia-Ni; Yu, Xin; Yang, Feng; Sun, Si-Yu

    2016-12-14

    To evaluate the efficacy and safety of nitrous oxide-sedated endoscopic ultrasound-guided fine needle aspiration. Enrolled patients were divided randomly into an experimental group (inhalation of nitrous oxide) and a control group (inhalation of pure oxygen) and heart rate, blood oxygen saturation, blood pressure, electrocardiogram (ECG) changes, and the occurrence of complications were monitored and recorded. All patients and physicians completed satisfaction questionnaires about the examination and scored the process using a visual analog scale. There was no significant difference in heart rate, blood oxygen saturation, blood pressure, ECG changes, or complication rate between the two groups of patients ( P > 0.05). However, patient and physician satisfaction were both significantly higher in the nitrous oxide compared with the control group ( P < 0.05). Nitrous oxide-sedation is a safe and effective option for patients undergoing endoscopic ultrasound-guided fine needle aspiration.

  18. Angular dependence of etch rates in the etching of poly-Si and fluorocarbon polymer using SF6, C4F8, and O2 plasmas

    NASA Astrophysics Data System (ADS)

    Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo

    2004-05-01

    The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF6/poly-Si, a SF6/fluorocarbon polymer, an O2/fluorocarbon polymer, and a C4F8/Si. In the case of SF6/poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O2/polymer decreased and eventually reached much lower values than the cosine values at angles between 30° and 70° when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF6/polymer showed a weak dependence on the process variables. In the case of C4F8/Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed. .

  19. Neural control of heart rate: the role of neuronal networking.

    PubMed

    Kember, G; Armour, J A; Zamir, M

    2011-05-21

    Neural control of heart rate, particularly its sympathetic component, is generally thought to reside primarily in the central nervous system, though accumulating evidence suggests that intrathoracic extracardiac and intrinsic cardiac ganglia are also involved. We propose an integrated model in which the control of heart rate is achieved via three neuronal "levels" representing three control centers instead of the conventional one. Most importantly, in this model control is effected through networking between neuronal populations within and among these layers. The results obtained indicate that networking serves to process demands for systemic blood flow before transducing them to cardiac motor neurons. This provides the heart with a measure of protection against the possibility of "overdrive" implied by the currently held centrally driven system. The results also show that localized networking instabilities can lead to sporadic low frequency oscillations that have the characteristics of the well-known Mayer waves. The sporadic nature of Mayer waves has been unexplained so far and is of particular interest in clinical diagnosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Postural control under clinorotation in upside-down catfish, Synodontis nigriventris.

    PubMed

    Ohnishi, K; Takahashi, A; Koyama, M; Ohnishi, T

    1996-12-01

    The upside-down catfish Synodontis nigriventris has a unique habit of swimming and resting upside-down in free water. This behavior leads to the assumption that the catfish has a specific gravity information processing system. We examined the postural control behaviors in the catfish under clinorotation which is usually used for producing pseudo-microgravity. Synodontis nigriventris kept its body posture at a stable area of the rotated flask in which the catfish was kept, when it was clinorotated at the rate of 60 rpm. In contrast to Synodontis nigriventris, a related species, Corydoras paleatus, did not show such steady postural control. When the flask was rotated at a lower rate of 30 rpm or a higher rate of 100 rpm, Synodontis nigriventris as well as Corydoras paleatus showed a considerable disturbed control of body posture. In this condition, they were frequently rotated with the flask. These findings suggest that Synodontis nigriventris has a high ability to keep upside-down posture and the gravity sensation in this catfish is likely to contribute to its different postural control from that of many other fishes.

  1. The Canadian effort to prevent and control hypertension: can other countries adopt Canadian strategies?

    PubMed

    Campbell, Norm R C; Sheldon, Tobe

    2010-07-01

    To indicate the key elements of current Canadian programs to treat and control hypertension. In the early 1990s Canada had a hypertension treatment and control rate of 13%. A Canadian strategy to prevent and control hypertension was developed and a coalition of national organizations and volunteers formed to develop increasingly extensive programs. The Canadian effort was largely based on annually updated hypertension management recommendations, an integrated and extensive hypertension knowledge translation program and an increasingly comprehensive outcomes assessment program. After the start of the annual process in 1999, there were very large increases in diagnosis and hypertension treatment coupled with dropping rates of cardiovascular disease. More recent initiatives include an extensive education program for the public and people with hypertension, a program to reduce dietary salt and a funded leadership position. The treatment and control rate increased to 66% when last assessed (2007-2009). The study describes important aspects of the Canadian hypertension management programs to aid those wishing to develop similar programs. Many of the programs could be fully or partially implemented by other countries.

  2. Dynamic control of nutrient-removal from industrial wastewater in a sequencing batch reactor, using common and low-cost online sensors.

    PubMed

    Dries, Jan

    2016-01-01

    On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.

  3. Analysis of cache for streaming tape drive

    NASA Technical Reports Server (NTRS)

    Chinnaswamy, V.

    1993-01-01

    A tape subsystem consists of a controller and a tape drive. Tapes are used for backup, data interchange, and software distribution. The backup operation is addressed. During a backup operation, data is read from disk, processed in CPU, and then sent to tape. The processing speeds of a disk subsystem, CPU, and a tape subsystem are likely to be different. A powerful CPU can read data from a fast disk, process it, and supply the data to the tape subsystem at a faster rate than the tape subsystem can handle. On the other hand, a slow disk drive and a slow CPU may not be able to supply data fast enough to keep a tape drive busy all the time. The backup process may supply data to tape drive in bursts. Each burst may be followed by an idle period. Depending on the nature of the file distribution in the disk, the input stream to the tape subsystem may vary significantly during backup. To compensate for these differences and optimize the utilization of a tape subsystem, a cache or buffer is introduced in the tape controller. Most of the tape drives today are streaming tape drives. A streaming tape drive goes into reposition when there is no data from the controller. Once the drive goes into reposition, the controller can receive data, but it cannot supply data to the tape drive until the drive completes its reposition. A controller can also receive data from the host and send data to the tape drive at the same time. The relationship of cache size, host transfer rate, drive transfer rate, reposition, and ramp up times for optimal performance of the tape subsystem are investigated. Formulas developed will also show the advantages of cache watermarks to increase the streaming time of the tape drive, maximum loss due to insufficient cache, tradeoffs between cache and reposition times and the effectiveness of cache on a streaming tape drive due to idle times or interruptions due in host transfers. Several mathematical formulas are developed to predict the performance of the tape drive. Some examples are given illustrating the usefulness of these formulas. Finally, a summary and some conclusions are provided.

  4. Correlation of dissolution and disintegration results for an immediate-release tablet.

    PubMed

    Nickerson, Beverly; Kong, Angela; Gerst, Paul; Kao, Shangming

    2018-02-20

    The drug release rate of a rapidly dissolving immediate-release tablet formulation with a highly soluble drug is proposed to be controlled by the disintegration rate of the tablet. Disintegration and dissolution test methods used to evaluate the tablets were shown to discriminate manufacturing process differences and compositionally variant tablets. In addition, a correlation was established between disintegration and dissolution. In accordance with ICH Q6A, this work demonstrates that disintegration in lieu of dissolution is suitable as the drug product quality control method for evaluating this drug product. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Glycemic Control Associated With Secure Patient-Provider Messaging Within a Shared Electronic Medical Record

    PubMed Central

    Harris, Lynne T.; Koepsell, Thomas D.; Haneuse, Sebastien J.; Martin, Diane P.; Ralston, James D.

    2013-01-01

    OBJECTIVE To study differences in glycemic control and HbA1c testing associated with use of secure electronic patient-provider messaging. We hypothesized that messaging use would be associated with better glycemic control and a higher rate of adherence to HbA1c testing recommendations. RESEARCH DESIGN AND METHODS Retrospective observational study of secure messaging at Group Health, a large nonprofit health care system. Our analysis included adults with diabetes who had registered for access to a shared electronic medical record (SMR) between 2003 and 2006. We fit log-linear regression models, using generalized estimating equations, to estimate the adjusted rate ratio of meeting three indicators of glycemic control (HbA1c <7%, HbA1c <8%, and HbA1c >9%) and HbA1c testing adherence by level of previous messaging use. Multiple imputation and inverse probability weights were used to account for missing data. RESULTS During the study period, 6,301 adults with diabetes registered for access to the SMR. Of these individuals, 74% used messaging at least once during that time. Frequent use of messaging during the previous calendar quarter was associated with a higher rate of good glycemic control (HbA1c <7%: rate ratio, 1.26 [95% CI, 1.15–1.37]) and a higher rate testing adherence (1.20 [1.15–1.25]). CONCLUSIONS Among SMR users, recent and frequent messaging use was associated with better glycemic control and a higher rate of HbA1c testing adherence. These results suggest that secure messaging may facilitate important processes of care and help some patients to achieve or maintain adequate glycemic control. PMID:23628618

  6. United States Air Force Research Initiation Program for 1988. Volume 3

    DTIC Science & Technology

    1990-04-01

    Assignment for Dr. Kenneth M. Sobel Flight Control Design 210-9MG-035 90 Comparative Burning Rates and Duplex Dr. Forrest Thomas (1987) Loads of Solid...Patterson Air Force Base. The test configuration has been designed for injecting fuel droplets in a well controlled laminar on well-characterized turbulent...its counter response may be significant, our system has thus achieved some measure of control over when non -critical processing is actually performed

  7. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  8. Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Lee, Hee-Keun; Chun, Kwang-San; Park, Sang-Hyeon; Kang, Chung-Yun

    2015-07-01

    Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG) hybrid (PMH) welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

  9. Development and simulation of microfluidic Wheatstone bridge for high-precision sensor

    NASA Astrophysics Data System (ADS)

    Shipulya, N. D.; Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-08-01

    In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the “etching in microchannel” technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction in the bridge microchannel. The advantage of our approach is the ability to work without any control valves and other active electronic systems, which are usually used for bridge balancing. The geometrical configuration of microchannels was selected based on the analytical estimations. A detailed 3D numerical model was based on Navier-Stokes equations for a laminar fluid flow at low Reynolds numbers. We investigated the behavior of the Wheatstone bridge under different process conditions; found a relation between the channel resistance and flow rate through the bridge; and calculated the pressure drop across the system under different total flow rates and viscosities. Finally, we describe a high-precision microfluidic pressure sensor that employs the Wheatstone bridge and discuss other applications in complex precision microfluidic systems.

  10. Emotional responses associated with self-face processing in individuals with autism spectrum disorders: an fMRI study.

    PubMed

    Morita, Tomoyo; Kosaka, Hirotaka; Saito, Daisuke N; Ishitobi, Makoto; Munesue, Toshio; Itakura, Shoji; Omori, Masao; Okazawa, Hidehiko; Wada, Yuji; Sadato, Norihiro

    2012-01-01

    Individuals with autism spectrum disorders (ASD) show impaired emotional responses to self-face processing, but the underlying neural bases are unclear. Using functional magnetic resonance imaging, we investigated brain activity when 15 individuals with high-functioning ASD and 15 controls rated the photogenicity of self-face images and photographs of others' faces. Controls showed a strong correlation between photogenicity ratings and extent of embarrassment evoked by self-face images; this correlation was weaker among ASD individuals, indicating a decoupling between the cognitive evaluation of self-face images and emotional responses. Individuals with ASD demonstrated relatively low self-related activity in the posterior cingulate cortex (PCC), which was related to specific autistic traits. There were significant group differences in the modulation of activity by embarrassment ratings in the right insular (IC) and lateral orbitofrontal cortices. Task-related activity in the right IC was lower in the ASD group. The reduced activity in the right IC for self-face images was associated with weak coupling between cognitive evaluation and emotional responses to self-face images. The PCC is responsible for self-referential processing, and the IC plays a role in emotional experience. Dysfunction in these areas could contribute to the lack of self-conscious behaviors in response to self-reflection in ASD individuals.

  11. Enhancement of heat transfer rate on phase change materials with thermocapillary flows

    NASA Astrophysics Data System (ADS)

    Madruga, Santiago; Mendoza, Carolina

    2017-04-01

    We carry out simulations of the melting process on the phase change material n-octadecane in squared geometries in the presence of natural convection and including thermocapillary effects. We show how the introduction of thermocapillary effects enhances the heat transfer rate, being the effect especially relevant for small Bond numbers. Thus induction of Marangoni flows results in a useful mechanism to enhance the typical slow heat transfer rate of paraffin waxes in applications of energy storage or passive control management.

  12. Role of a Streambed's Benthic Biolayer in Enhancing Chemical Reactions in Hyporheic Flow

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.

    2016-12-01

    Chemical processing of metals, nutrients, and organic compounds occurs throughout natural waters, however the rate of reactions often is greater at the streambed interface compared with surface water or deeper groundwater. Hydrologic exchange across the sediment interface brings reactive solutes and fine particulate organic matter from surface waters into contact with the streambed biolayer, a zone with algae and other living microflora and fauna, microbial communities, and reactive geochemical coatings on granular sediments. Compared with surface water or deeper hyporheic sediments, the intrinsic rate of reactions may be stimulated in biolayers because of higher rates of metabolic processing and associated redox reactions. Also, hydrologic transport may enhance reaction rates by relieving potential transport limitations through the re-supply of reactive substrates from surface water. As a result the chemical processing that occurs in the biolayer may far exceed processing that occurs in deeper hyporheic flow. Here I highlight new understanding of enhancement of reaction rates and their hydrologic and biogeochemical controls in streambed biolayers compared with hyporheic flow as a whole. The approach distinguishes and quantifies reaction limitation and transport limitation both at the centimeter-scale within the hyporheic zone and at the river network scale where the effect of streambed reactions accumulates and influences downstream water quality.

  13. Orion MPCV GN and C End-to-End Phasing Tests

    NASA Technical Reports Server (NTRS)

    Neumann, Brian C.

    2013-01-01

    End-to-end integration tests are critical risk reduction efforts for any complex vehicle. Phasing tests are an end-to-end integrated test that validates system directional phasing (polarity) from sensor measurement through software algorithms to end effector response. Phasing tests are typically performed on a fully integrated and assembled flight vehicle where sensors are stimulated by moving the vehicle and the effectors are observed for proper polarity. Orion Multi-Purpose Crew Vehicle (MPCV) Pad Abort 1 (PA-1) Phasing Test was conducted from inertial measurement to Launch Abort System (LAS). Orion Exploration Flight Test 1 (EFT-1) has two end-to-end phasing tests planned. The first test from inertial measurement to Crew Module (CM) reaction control system thrusters uses navigation and flight control system software algorithms to process commands. The second test from inertial measurement to CM S-Band Phased Array Antenna (PAA) uses navigation and communication system software algorithms to process commands. Future Orion flights include Ascent Abort Flight Test 2 (AA-2) and Exploration Mission 1 (EM-1). These flights will include additional or updated sensors, software algorithms and effectors. This paper will explore the implementation of end-to-end phasing tests on a flight vehicle which has many constraints, trade-offs and compromises. Orion PA-1 Phasing Test was conducted at White Sands Missile Range (WSMR) from March 4-6, 2010. This test decreased the risk of mission failure by demonstrating proper flight control system polarity. Demonstration was achieved by stimulating the primary navigation sensor, processing sensor data to commands and viewing propulsion response. PA-1 primary navigation sensor was a Space Integrated Inertial Navigation System (INS) and Global Positioning System (GPS) (SIGI) which has onboard processing, INS (3 accelerometers and 3 rate gyros) and no GPS receiver. SIGI data was processed by GN&C software into thrust magnitude and direction commands. The processing changes through three phases of powered flight: pitchover, downrange and reorientation. The primary inputs to GN&C are attitude position, attitude rates, angle of attack (AOA) and angle of sideslip (AOS). Pitch and yaw attitude and attitude rate responses were verified by using a flight spare SIGI mounted to a 2-axis rate table. AOA and AOS responses were verified by using a data recorded from SIGI movements on a robotic arm located at NASA Johnson Space Center. The data was consolidated and used in an open-loop data input to the SIGI. Propulsion was the Launch Abort System (LAS) Attitude Control Motor (ACM) which consisted of a solid motor with 8 nozzles. Each nozzle has active thrust control by varying throat area with a pintle. LAS ACM pintles are observable through optically transparent nozzle covers. SIGI movements on robot arm, SIGI rate table movements and LAS ACM pintle responses were video recorded as test artifacts for analysis and evaluation. The PA-1 Phasing Test design was determined based on test performance requirements, operational restrictions and EGSE capabilities. This development progressed during different stages. For convenience these development stages are initial, working group, tiger team, Engineering Review Team (ERT) and final.

  14. Enhancing quality of carbon nanotubes through a real-time controlled CVD process with application to next-generation nanosystems

    NASA Astrophysics Data System (ADS)

    Laxminarayana, Karthik; Jalili, Nader

    2004-07-01

    Nanocrystals and nanostructures will be the building blocks for future materials that will exhibit enhanced or entirely new combinations of properties with tremendous opportunity for novel technologies that can have far-reaching impact on our society. It is, however, realized that a major challenge for the near future is the design, synthesis and integration of nanostructures to develop functional nanosystems. In view of this, this exploratory research seeks to facilitate the development of a controlled and deterministic framework for nanomanufacturing of nanotubes as the most suitable choice among nanostructures for a plethora of potential applications in areas such as nanoelectronic devices, biological probes, fuel cell electrodes, supercapacitors and filed emission devices. Specifically, this paper proposes to control and maintain the most common nanotube growth parameters (i.e., reaction temperature and gas flow rate) through both software and hardware modifications. The influence of such growth parameters in a CVD process on some of the most vital and crucial aspects of nanotubes (e.g., length, diameter, yield, growth rate and structure) can be utilized to arrive at some unique and remarkable properties for the nanotubes. The objective here is, therefore, to control the process parameters to pinpoint accuracy, which would enable us to fabricate nanotubes having the desired properties and thereby maximize their ability to function at its fullest potential. To achieve this and in order to provide for experimental validation of the proposed research program, an experimental test-bed using the nanotube processing test chamber and a mechatronics workstation are being constructed.

  15. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    PubMed

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    NASA Astrophysics Data System (ADS)

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-03-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

  17. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    PubMed Central

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-01-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587

  18. High data volume and transfer rate techniques used at NASA's image processing facility

    NASA Technical Reports Server (NTRS)

    Heffner, P.; Connell, E.; Mccaleb, F.

    1978-01-01

    Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.

  19. Evidences for dry deintercalation in layered compounds upon controlled surface charging in x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Feldman, Y.; Zak, A.; Tenne, R.; Cohen, H.

    2003-09-01

    Pronounced surface diffusion is observed during x-ray photoelectron spectroscopy measurements of 2H platelets and inorganic fullerene-like (IF) MS2 (M=W,Mo) powders, intercalated with alkaline (A=K,Na) elements. Using controlled surface charging the intercalants migrate towards the surface, where they oxidize. This dry deintercalation is controllable via external charging parameters, yet showing that internal chemical and structural parameters play an important role in the process. Diffusion rates out of 2H matrixes are generally higher than in corresponding IF samples. Clear differences are also found between Mo and W-based systems. Application of this approach into surface modification and processing is proposed.

  20. Modeling the Impact of Heterogeneous Spatial Distribution of Soil Microbes on Pesticide Biodegradation at the Centimeter Scale

    NASA Astrophysics Data System (ADS)

    Babey, T.; De Dreuzy, J. R.; Pinheiro, M.; Garnier, P.; Vieublé-Gonod, L.; Rapaport, A.

    2015-12-01

    Micro-organisms and substrates may be heterogeneously distributed in soils. This repartition as well as transport mechanisms bringing them into contact are expected to impact the biodegradation rates. Pinheiro et al [2015] have measured in cm-large reconstructed soil cores the fate of an injection of 2,4-D pesticide for different injection conditions and initial distributions of soil pesticide degraders. Through the calibration of a reactive transport model of these experiments, we show that: i) biodegradation of diffusion-controlled pesticide fluxes is favored by a high Damköhler number (high reaction rate compared to flux rate); ii) abiotic sorption processes are negligible and do not interact strongly with biodegradation; iii) biodegradation is primarily governed by the initial repartition of pesticide and degraders for diffusion-controlled transport, as diffusion greatly limits the flux of pesticide reaching the microbial hotspot due to dilution. These results suggest that for biodegradation to be substantial, a spatial heterogeneity in the repartition of microbes and substrate has to be associated with intermittent and fast transport processes to mix them.

  1. Holistic Facial Composite Construction and Subsequent Lineup Identification Accuracy: Comparing Adults and Children.

    PubMed

    Davis, Josh P; Thorniley, Sarah; Gibson, Stuart; Solomon, Chris

    2016-01-01

    When the police have no suspect, they may ask an eyewitness to construct a facial composite of that suspect from memory. Faces are primarily processed holistically, and recently developed computerized holistic facial composite systems (e.g., EFIT-V) have been designed to match these processes. The reported research compared children aged 6-11 years with adults on their ability to construct a recognizable EFIT-V composite. Adult constructor's EFIT-Vs received significantly higher composite-suspect likeness ratings from assessors than children's, although there were some notable exceptions. In comparison to adults, the child constructors also overestimated the composite-suspect likeness of their own EFIT-Vs. In a second phase, there were no differences between adult controls and constructors in correct identification rates from video lineups. However, correct suspect identification rates by child constructors were lower than those of child controls, suggesting that a child's memory for the suspect can be adversely influenced by composite construction. Nevertheless, all child constructors coped with the demands of the EFIT-V system, and the implications for research, theory, and the criminal justice system practice are discussed.

  2. [A field study of tundra plant litter decomposition rate via mass loss and carbon dioxide emission: the role of biotic and abiotic controls, biotope, season of year, and spatial-temporal scale].

    PubMed

    Pochikalov, A V; Karelin, D V

    2014-01-01

    Although many recently published original papers and reviews deal with plant matter decomposition rates and their controls, we are still very short in understanding of these processes in boreal and high latiude plant communities, especially in permafrost areas of our planet. First and foremost, this is holds true for winter period. Here, we present the results of 2-year field observations in south taiga and south shrub tundra ecosystems in European Russia. We pioneered in simultaneous application of two independent methods: classic mass loss estimation by litter-bag technique, and direct measurement of CO2 emission (respiration) of the same litter bags with different types of dead plant matter. Such an approach let us to reconstruct intra-seasonal dynamics of decomposition rates of the main tundra litter fractions with high temporal resolution, to estimate the partial role of different seasons and defragmentation in the process of plant matter decomposition, and to determine its factors under different temporal scale.

  3. Anxiety, inhibition, efficiency, and effectiveness. An investigation using antisaccade task.

    PubMed

    Derakshan, Nazanin; Ansari, Tahereh L; Hansard, Miles; Shoker, Leor; Eysenck, Michael W

    2009-01-01

    Effects of anxiety on the antisaccade task were assessed. Performance effectiveness on this task (indexed by error rate) reflects a conflict between volitional and reflexive responses resolved by inhibitory processes (Hutton, S. B., & Ettinger, U. (2006). The antisaccade task as a research tool in psychopathology: A critical review. Psychophysiology, 43, 302-313). However, latency of the first correct saccade reflects processing efficiency (relationship between performance effectiveness and use of resources). In two experiments, high-anxious participants had longer correct antisaccade latencies than low-anxious participants and this effect was greater with threatening cues than positive or neutral ones. The high- and low-anxious groups did not differ in terms of error rate in the antisaccade task. No group differences were found in terms of latency or error rate in the prosaccade task. These results indicate that anxiety affects performance efficiency but not performance effectiveness. The findings are interpreted within the context of attentional control theory (Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7 (2), 336-353).

  4. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... minimum pressure drop and liquid flow-rate at or above the operating levels established during the... leak detection system alarm does not sound more than 5 percent of the operating time during a 6-month... control Maintain the minimum sorbent or carbon injection rate at or above the operating levels established...

  5. 40 CFR Table 3 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Mercury Emission Limits and Boilers and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... minimum pressure drop and liquid flow-rate at or above the operating levels established during the... leak detection system alarm does not sound more than 5 percent of the operating time during a 6-month... control Maintain the minimum sorbent or carbon injection rate at or above the operating levels established...

  6. Space Shuttle Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Moore, Dennis; Phelps, Jack; Perkins, Fred

    2010-01-01

    RSRM is a highly reliable human-rated Solid Rocket Motor: a) Largest diameter SRM to achieve flight status; b) Only human-rated SRM. RSRM reliability achieved by: a)Applying special attention to Process Control, Testing, and Postflight; b) Communicating often; c) Identifying and addressing issues in a disciplined approach; d) Identifying and fully dispositioning "out-of-family" conditions; e) Addressing minority opinions; and f) Learning our lessons.

  7. Study of connected system of automatic control of load and operation efficiency of a steam boiler with extremal controller on a simulation model

    NASA Astrophysics Data System (ADS)

    Sabanin, V. R.; Starostin, A. A.; Repin, A. I.; Popov, A. I.

    2017-02-01

    The problems of operation effectiveness increase of steam boilers are considered. To maintain the optimum fuel combustion modes, it is proposed to use an extremal controller (EC) determining the value of airflow rate, at which the boiler generating the desired amount of heat will consume a minimum amount of fuel. EC sets the determined value of airflow rate to airflow rate controller (ARC). The test results of numerical simulation dynamic nonlinear model of steam boiler with the connected system of automatic control of load and combustion efficiency using EC are presented. The model is created in the Simulink modeling package of MATLAB software and can be used to optimize the combustion modes. Based on the modeling results, the conclusion was drawn about the possibility in principle of simultaneously boiler load control and optimizing by EC the combustion modes when changing the fuel combustion heat and the boiler characteristics and its operating mode. It is shown that it is possible to automatically control the operation efficiency of steam boilers when using EC without applying the standard flue gas analyzers. The article considers the numerical simulation dynamic model of steam boiler with the schemes of control of fuel consumption and airflow rate, the steam pressure and EC; the purpose of using EC in the scheme with linear controllers and the requirements to the quality of its operation; the results of operation of boiler control schemes without EC with estimation of influence of roughness of thermal mode maps on the nature of static and dynamic connection of the control units of fuel consumption and airflow rate; the phase trajectories and the diagrams of transient processes occurring in the control scheme with EC with stepped changing the fuel quality and boiler characteristics; analysis of modeling results and prospects for using EC in the control schemes of boilers.

  8. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    DTIC Science & Technology

    2016-03-25

    electrochemical reaction rates of processes that drive corrosion, e.g. the oxygen reduction reaction (ORR). To this end, we have used reactive...elements on the kinetics of oxygen reduction reaction catalyzed on titanium oxide in order to develop new approaches for controlling galvanic corrosion... consumption of anions in reactions with metal cations can deplete the electrolyte. However, in the atmospheric electrolyte, the electrolyte

  9. An alternative arrangement of metered dosing fluid using centrifugal pump

    NASA Astrophysics Data System (ADS)

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.

  10. A fuzzy logic approach to control anaerobic digestion.

    PubMed

    Domnanovich, A M; Strik, D P; Zani, L; Pfeiffer, B; Karlovits, M; Braun, R; Holubar, P

    2003-01-01

    One of the goals of the EU-Project AMONCO (Advanced Prediction, Monitoring and Controlling of Anaerobic Digestion Process Behaviour towards Biogas Usage in Fuel Cells) is to create a control tool for the anaerobic digestion process, which predicts the volumetric organic loading rate (Bv) for the next day, to obtain a high biogas quality and production. The biogas should contain a high methane concentration (over 50%) and a low concentration of components toxic for fuel cells, e.g. hydrogen sulphide, siloxanes, ammonia and mercaptanes. For producing data to test the control tool, four 20 l anaerobic Continuously Stirred Tank Reactors (CSTR) are operated. For controlling two systems were investigated: a pure fuzzy logic system and a hybrid-system which contains a fuzzy based reactor condition calculation and a hierachial neural net in a cascade of optimisation algorithms.

  11. An on-line modified least-mean-square algorithm for training neurofuzzy controllers.

    PubMed

    Tan, Woei Wan

    2007-04-01

    The problem hindering the use of data-driven modelling methods for training controllers on-line is the lack of control over the amount by which the plant is excited. As the operating schedule determines the information available on-line, the knowledge of the process may degrade if the setpoint remains constant for an extended period. This paper proposes an identification algorithm that alleviates "learning interference" by incorporating fuzzy theory into the normalized least-mean-square update rule. The ability of the proposed methodology to achieve faster learning is examined by employing the algorithm to train a neurofuzzy feedforward controller for controlling a liquid level process. Since the proposed identification strategy has similarities with the normalized least-mean-square update rule and the recursive least-square estimator, the on-line learning rates of these algorithms are also compared.

  12. Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Balan, A. V.; Shivasankaran, N.; Magibalan, S.

    2018-04-01

    Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.

  13. Emotion Awareness Predicts Body Mass Index Percentile Trajectories in Youth.

    PubMed

    Whalen, Diana J; Belden, Andy C; Barch, Deanna; Luby, Joan

    2015-10-01

    To examine the rate of change in body mass index (BMI) percentile across 3 years in relation to emotion identification ability and brain-based reactivity in emotional processing regions. A longitudinal sample of 202 youths completed 3 functional magnetic resonance imaging-based facial processing tasks and behavioral emotion differentiation tasks. We examined the rate of change in the youth's BMI percentile as a function of reactivity in emotional processing brain regions and behavioral emotion identification tasks using multilevel modeling. Lower correct identification of both happiness and sadness measured behaviorally predicted increases in BMI percentile across development, whereas higher correct identification of both happiness and sadness predicted decreases in BMI percentile, while controlling for children's pubertal status, sex, ethnicity, IQ score, exposure to antipsychotic medication, family income-to-needs ratio, and externalizing, internalizing, and depressive symptoms. Greater neural activation in emotional reactivity regions to sad faces also predicted increases in BMI percentile during development, also controlling for the aforementioned covariates. Our findings provide longitudinal developmental data demonstrating links between both emotion identification ability and greater neural reactivity in emotional processing regions with trajectories of BMI percentiles across childhood. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Old/New Effect of Digital Memory Retrieval in Chinese Dyscalculia.

    PubMed

    Wang, Enguo; Du, Chenguang; Ma, Yujun

    This study reports the neurophysiological and behavioral correlates of digital memory retrieval features in Chinese individuals with and without dyscalculia. A total of 18 children with dyscalculia (ages 11.5-13.5) and 18 controls were tested, and their event-related potentials were digitally recorded simultaneously with behavior measurement. Behavioral data showed that the dyscalculia group had lower hit rates and higher false rates than the control group. The electroencephalography results showed that both groups had a significant old/new effect and that this effect was greater in the control group. In the 300 to 400 ms processing stages, both groups showed significant differences in digital memory retrieval in the frontal regions. In the 400 to 500 and 500 to 600 ms epochs, the old/new effect in the control group was significantly greater than it was in the dyscalculia group at the frontal, central, and parietal regions. In the 600 to 700 ms processing stages, both groups showed significant differences in digital memory retrieval in the frontal, central, parietal, and occipital regions. These results suggest that individuals with dyscalculia exhibit impaired digital memory retrieval. Extraction failure may be an important cause of calculation difficulties.

  15. Scaling-up vaccine production: implementation aspects of a biomass growth observer and controller.

    PubMed

    Soons, Zita I T A; van den IJssel, Jan; van der Pol, Leo A; van Straten, Gerrit; van Boxtel, Anton J B

    2009-04-01

    This study considers two aspects of the implementation of a biomass growth observer and specific growth rate controller in scale-up from small- to pilot-scale bioreactors towards a feasible bulk production process for whole-cell vaccine against whooping cough. The first is the calculation of the oxygen uptake rate, the starting point for online monitoring and control of biomass growth, taking into account the dynamics in the gas-phase. Mixing effects and delays are caused by amongst others the headspace and tubing to the analyzer. These gas phase dynamics are modelled using knowledge of the system in order to reconstruct oxygen consumption. The second aspect is to evaluate performance of the monitoring and control system with the required modifications of the oxygen consumption calculation on pilot-scale. In pilot-scale fed-batch cultivation good monitoring and control performance is obtained enabling a doubled concentration of bulk vaccine compared to standard batch production.

  16. Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Reynolds, Anthony

    2015-05-25

    Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient atmore » the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.« less

  17. Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony P.

    2015-05-01

    Process design and implementation in friction-stir welding (FSW) is mostly dependent on empirical information. Basic science of FSW and processing can only be complete when fundamental interrelationships between the process control parameters and response variables and the resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters such as tool rotation, translation rates, and forge axis force have complicated and interactive relationships to process-response variables such as peak temperature and time at temperature. Of primary influence on the other process-response parameters are temperature and its gradient in the deformation and heat-affected zones. Through a review of pertinent works in the literature and results from boundary condition experiments performed in precipitation-hardening aluminum alloys, this article partially elucidates the nature and effects of temperature transients caused by variation of thermal boundaries in FSW.

  18. [INVITED] Evaluation of process observation features for laser metal welding

    NASA Astrophysics Data System (ADS)

    Tenner, Felix; Klämpfl, Florian; Nagulin, Konstantin Yu.; Schmidt, Michael

    2016-06-01

    In the present study we show how fast the fluid dynamics change when changing the laser power for different feed rates during laser metal welding. By the use of two high-speed cameras and a data acquisition system we conclude how fast we have to image the process to measure the fluid dynamics with a very high certainty. Our experiments show that not all process features which can be measured during laser welding do represent the process behavior similarly well. Despite the good visibility of the vapor plume the monitoring of its movement is less suitable as an input signal for a closed-loop control. The features measured inside the keyhole show a good correlation with changes of process parameters. Due to its low noise, the area of the keyhole opening is well suited as an input signal for a closed-loop control of the process.

  19. Controlled electromigration protocol revised

    NASA Astrophysics Data System (ADS)

    Zharinov, Vyacheslav S.; Baumans, Xavier D. A.; Silhanek, Alejandro V.; Janssens, Ewald; Van de Vondel, Joris

    2018-04-01

    Electromigration has evolved from an important cause of failure in electronic devices to an appealing method, capable of modifying the material properties and geometry of nanodevices. Although this technique has been successfully used by researchers to investigate low dimensional systems and nanoscale objects, its low controllability remains a serious limitation. This is in part due to the inherent stochastic nature of the process, but also due to the inappropriate identification of the relevant control parameters. In this study, we identify a suitable process variable and propose a novel control algorithm that enhances the controllability and, at the same time, minimizes the intervention of an operator. As a consequence, the algorithm facilitates the application of electromigration to systems that require exceptional control of, for example, the width of a narrow junction. It is demonstrated that the electromigration rate can be stabilized on pre-set values, which eventually defines the final geometry of the electromigrated structures.

  20. Identification and control of a multizone crystal growth furnace

    NASA Technical Reports Server (NTRS)

    Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.; Singh, N. B.

    1992-01-01

    This paper presents an intelligent adaptive control system for the control of a solid-liquid interface of a crystal while it is growing via directional solidification inside a multizone transparent furnace. The task of the process controller is to establish a user-specified axial temperature profile and to maintain a desirable interface shape. Both single-input-single-output and multi-input-multi-output adaptive pole placement algorithms have been used to control the temperature. Also described is an intelligent measurement system to assess the shape of the crystal while it is growing. A color video imaging system observes the crystal in real time and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.

Top