Science.gov

Sample records for rate pulse operation

  1. Investigation of component failure rates for pulsed versus steady state tokamak operation

    SciTech Connect

    Cadwallader, L.C.

    1992-07-01

    This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments.

  2. Longitudinally excited CO2 laser with short laser pulse operating at high repetition rate

    NASA Astrophysics Data System (ADS)

    Li, Jianhui; Uno, Kazuyuki; Akitsu, Tetsuya; Jitsuno, Takahisa

    2016-11-01

    A short-pulse longitudinally excited CO2 laser operating at a high repetition rate was developed. The discharge tube was made of a 45 cm-long or 60 cm-long dielectric tube with an inner diameter of 16 mm and two metallic electrodes at the ends of the tube. The optical cavity was formed by a ZnSe output coupler with a reflectivity of 85% and a high-reflection mirror. Mixed gas (CO2:N2:He = 1:1:2) was flowed into the discharge tube. A high voltage of about 33 kV with a rise time of about 200 ns was applied to the discharge tube. At a repetition rate of 300 Hz and a gas pressure of 3.4 kPa, the 45 cm-long discharge tube produced a short laser pulse with a laser pulse energy of 17.5 mJ, a spike pulse energy of 0.2 mJ, a spike width of 153 ns, and a pulse tail length of 90 μs. The output power was 5.3 W. The laser pulse waveform did not depend on the repetition rate, but the laser beam profile did. At a low repetition rate of less than 50 Hz, the laser beam had a doughnut-like shape. However, at a high repetition rate of more than 150 Hz, the discharge concentrated at the center of the discharge tube, and the intensity at the center of the laser beam was higher. The laser beam profile depended on the distribution of the discharge. An output power of 7.0 W was achieved by using the 60 cm-long tube.

  3. Shutdown Dose Rate Analysis for the long-pulse D-D Operation Phase in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Jin Hun; Han, Jung-Hoon; Kim, D. H.; Joo, K. S.; Hwang, Y. S.

    2017-09-01

    KSTAR is a medium size fully superconducting tokamak. The deuterium-deuterium (D-D) reaction in the KSTAR tokamak generates neutrons with a peak yield of 3.5x1016 per second through a pulse operation of 100 seconds. The effect of neutron generation from full D-D high power KSTAR operation mode to the machine, such as activation, shutdown dose rate, and nuclear heating, are estimated for an assurance of safety during operation, maintenance, and machine upgrade. The nuclear heating of the in-vessel components, and neutron activation of the surrounding materials have been investigated. The dose rates during operation and after shutdown of KSTAR have been calculated by a 3D CAD model of KSTAR with the Monte Carlo code MCNP5 (neutron flux and decay photon), the inventory code FISPACT (activation and decay photon) and the FENDL 2.1 nuclear data library.

  4. PULSE RATE DIVIDER

    DOEpatents

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  5. Initial operation of a pulse-burst laser system for high-repetition-rate Thomson scatteringa)

    NASA Astrophysics Data System (ADS)

    Harris, W. S.; Den Hartog, D. J.; Hurst, N. C.

    2010-10-01

    A pulse-burst laser has been installed for Thomson scattering measurements on the Madison Symmetric Torus reversed-field pinch. The laser design is a master-oscillator power-amplifier. The master oscillator is a commercial Nd:YVO4 laser (1064 nm) which is capable of Q-switching at frequencies between 5 and 250 kHz. Four Nd:YAG (yttrium aluminum garnet) amplifier stages are in place to amplify the Nd:YVO4 emission. Single pulses through the Nd:YAG amplifier stages gives energies up to 1.5 J and the gain for each stage has been measured. Repetitive pulsing at 10 kHz has also been performed for 2 ms bursts, giving average pulse energies of 0.53 J with ΔE /E of 4.6%, where ΔE is the standard deviation between pulses. The next step will be to add one of two Nd:glass (silicate) amplifier stages to produce final pulse energies of 1-2 J for bursts up to 250 kHz.

  6. All about Heart Rate (Pulse)

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More All About Heart Rate (Pulse) Updated:Aug 22,2017 ... Blood Pressure is Diagnosed BP vs. Heart Rate All About Heart Rate (Pulse) Low Blood Pressure Resistant ...

  7. All about Heart Rate (Pulse)

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More All About Heart Rate (Pulse) Updated:Apr 19,2016 ... are the Symptoms of High Blood Pressure? 7 All About Heart Rate (Pulse) 8 Tachycardia | Fast Heart ...

  8. Pulsed-dose-rate peri-operative brachytherapy as an interstitial boost in organ-sparing treatment of breast cancer

    PubMed Central

    Jaśkiewicz, Janusz; Dziadziuszko, Rafał; Jassem, Jacek

    2016-01-01

    Purpose To evaluate peri-operative multicatheter interstitial pulsed-dose-rate brachytherapy (PDR-BT) with an intra-operative catheter placement to boost the tumor excision site in breast cancer patients treated conservatively. Material and methods Between May 2002 and October 2008, 96 consecutive T1-3N0-2M0 breast cancer patients underwent breast-conserving therapy (BCT) including peri-operative PDR-BT boost, followed by whole breast external beam radiotherapy (WBRT). The BT dose of 15 Gy (1 Gy/pulse/h) was given on the following day after surgery. Results No increased bleeding or delayed wound healing related to the implants were observed. The only side effects included one case of temporary peri-operative breast infection and 3 cases of fat necrosis, both early and late. In 11 patients (11.4%), subsequent WBRT was omitted owing to the final pathology findings. These included eight patients who underwent mastectomy due to multiple adverse prognostic pathological features, one case of lobular carcinoma in situ, and two cases with no malignant tumor. With a median follow-up of 12 years (range: 7-14 years), among 85 patients who completed BCT, there was one ipsilateral breast tumor and one locoregional nodal recurrence. Six patients developed distant metastases and one was diagnosed with angiosarcoma within irradiated breast. The actuarial 5- and 10-year disease free survival was 90% (95% CI: 84-96%) and 87% (95% CI: 80-94%), respectively, for the patients with invasive breast cancer, and 91% (95% CI: 84-97%) and 89% (95% CI: 82-96%), respectively, for patients who completed BCT. Good cosmetic outcome by self-assessment was achieved in 58 out of 64 (91%) evaluable patients. Conclusions Peri-operative PDR-BT boost with intra-operative tube placement followed by EBRT is feasible and devoid of considerable toxicity, and provides excellent long-term local control. However, this strategy necessitates careful patient selection and histological confirmation of primary

  9. Tunable GHz pulse repetition rate operation in high-power TEM(00)-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking.

    PubMed

    Huang, Y J; Tzeng, Y S; Tang, C Y; Huang, Y P; Chen, Y F

    2012-07-30

    We report on a high-power diode-pumped self-mode-locked Nd:YLF laser with the pulse repetition rate up to several GHz. A novel tactic is developed to efficiently select the output polarization state for achieving the stable TEM(00)-mode self-mode-locked operations at 1053 nm and 1047 nm, respectively. At an incident pump power of 6.93 W and a pulse repetition rate of 2.717 GHz, output powers as high as 2.15 W and 1.35 W are generated for the σ- and π-polarization, respectively. We experimentally find that decreasing the separation between the gain medium and the input mirror not only brings in the pulse shortening thanks to the enhanced effect of the spatial hole burning, but also effectively introduces the effect of the spectral filtering to lead the Nd:YLF laser to be in a second harmonic mode-locked status. Consequently, pulse durations as short as 8 ps and 8.5 ps are obtained at 1053 nm and 1047 nm with a pulse repetition rate of 5.434 GHz.

  10. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    NASA Astrophysics Data System (ADS)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-09-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.

  11. 3.7 GHz repetition rate operated narrow-bandwidth picosecond pulsed Yb fiber amplifier with an all-fiber multiplier

    NASA Astrophysics Data System (ADS)

    Wei, K. H.; Wen, R. H.; Guo, Y.

    2016-04-01

    A high power picosecond pulsed Yb fiber amplifier with a pulse repetition rate of 3.7 GHz is experimentally demonstrated. The seed is a gain switched distributed Bragg reflection (DBR) structured laser diode (LD) with a pulse duration of 130 ps and a repetition rate of 460 MHz. The pulse repetition rate is increased to 3.7 GHz by introducing an all-fiber multiplier, which is composed of four 2  ×  2 structured fiber couplers. The multiplied pulse train is amplified to 81 W through two stage Yb fiber amplifiers.

  12. Pulse width-pulse rate modulator

    NASA Technical Reports Server (NTRS)

    Cooke, W. A.

    1971-01-01

    Attitude control system designed for rockets regulates duty cycle of pneumatic valves so less fuel is required. Operation time of each valve is directly proportional to error signal and the dead band about a null is controlled by independently adjustable threshold circuits.

  13. Nova pulse power design and operational experience

    SciTech Connect

    Whitham, K.; Larson, D.; Merritt, B.; Christie, D.

    1987-01-01

    Nova is a 100 TW Nd/sup + +/ solid state laser designed for experiments with laser fusion at Lawrence Livermore National Laboratory (LLNL). The pulsed power for Nova includes a 58 MJ capacitor bank driving 5336 flashlamps with millisecond pulses and subnanosecond high voltages for electro optics. This paper summarizes the pulsed power designs and the operational experience to date.

  14. Nova pulse power design and operational experience

    NASA Astrophysics Data System (ADS)

    Whitham, K.; Larson, D.; Merritt, B.; Christie, D.

    1987-01-01

    Nova is a 100 TW Nd++ solid state laser designed for experiments with laser fusion at Lawrence Livermore National Laboratory (LLNL). The pulsed power for Nova includes a 58 MJ capacitor bank driving 5336 flashlamps with millisecond pulses and subnanosecond high voltages for electro optics. This paper summarizes the pulsed power designs and the operational experience to date.

  15. Pulsed Operation of an Ion Accelerator

    NASA Technical Reports Server (NTRS)

    Wirz, Richard; Gamero-Castano, Manuel; Goebel, Dan

    2009-01-01

    Electronic circuitry has been devised to enable operation of an ion accelerator in either a continuous mode or a highpeak power, low-average-power pulsed mode. In the original intended application, the ion accelerator would be used as a spacecraft thruster and the pulse mode would serve to generate small increments of impulse for precise control of trajectories and attitude. The present electronic drive circuitry generates the extraction voltage in pulses. Pulse-width modulation can affect rapid, fine control of time-averaged impulse or ion flux down to a minimum level much lower than that achievable in continuous operation.

  16. Note: Emittance measurements of intense pulsed proton beam for different pulse length and repetition rate

    SciTech Connect

    Miracoli, R.; Gammino, S.; Celona, L.; Mascali, D.; Castro, G.; Gobin, R.; Delferriere, O.; Adroit, G.; Senee, F.; Ciavola, G.

    2012-05-15

    The high intensity ion source (SILHI), in operation at CEA-Saclay, has been used to produce a 90 mA pulsed proton beam with pulse length and repetition rates suitable for the European Spallation Source (ESS) linac. Typical r-r{sup '} rms normalized emittance values smaller than 0.2{pi} mm mrad have been measured for operation in pulsed mode (0.01 < duty cycle < 0.15 and 1 ms < pulse duration < 10 ms) that are relevant for the design update of the Linac to be used at the ESS in Lund.

  17. Heart-rate pulse-shift detector

    NASA Technical Reports Server (NTRS)

    Anderson, M.

    1974-01-01

    Detector circuit accurately separates and counts phase-shift pulses over wide range of basic pulse-rate frequency, and also provides reasonable representation of full repetitive EKG waveform. Single telemeter implanted in small animal monitors not only body temperature but also animal movement and heart rate.

  18. Stably operating pulse combustor and method

    DOEpatents

    Zinn, B.T.; Reiner, D.

    1990-05-29

    A pulse combustor apparatus is described which is adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation. 4 figs.

  19. Stably operating pulse combustor and method

    DOEpatents

    Zinn, Ben T.; Reiner, David

    1990-01-01

    A pulse combustor apparatus adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation.

  20. Association between heart rate variability and manual pulse rate.

    PubMed

    Hart, John

    2013-09-01

    One model for neurological assessment in chiropractic pertains to autonomic variability, tested commonly with heart rate variability (HRV). Since HRV may not be convenient to use on all patient visits, more user-friendly methods may help fill-in the gaps. Accordingly, this study tests the association between manual pulse rate and heart rate variability. The manual rates were also compared to the heart rate derived from HRV. Forty-eight chiropractic students were examined with heart rate variability (SDNN and mean heart rate) and two manual radial pulse rate measurements. Inclusion criteria consisted of participants being chiropractic students. Exclusion criteria for 46 of the participants consisted of a body mass index being greater than 30, age greater than 35, and history of: a) dizziness upon standing, b) treatment of psychiatric disorders, and c) diabetes. No exclusion criteria were applied to the remaining two participants who were also convenience sample volunteers. Linear associations between the manual pulse rate methods and the two heart rate variability measures (SDNN and mean heart) were tested with Pearson's correlation and simple linear regression. Moderate strength inverse (expected) correlations were observed between both manual pulse rate methods and SDNN (r = -0.640, 95% CI -0.781, -0.435; r = -0.632, 95% CI -0.776, -0.425). Strong direct (expected) relationships were observed between the manual pulse rate methods and heart rate derived from HRV technology (r = 0.934, 95% CI 0.885, 0.962; r = 0.941, 95% CI 0.897, 0.966). Manual pulse rates may be a useful option for assessing autonomic variability. Furthermore, this study showed a strong relationship between manual pulse rates and heart rate derived from HRV technology.

  1. Physical Attributes of Pulse Jet Mixer Operation

    SciTech Connect

    Kuhn, William L.; Rector, David R.; Bamberger, Judith A.; Minette, Michael J.

    2013-07-07

    Vessels mixed using pulse jet mixers that produce a periodic, rather than steady, flow present challenges with respect to modeling slurry mixing. A PJM is a cylindrical tank within the mixed tank that has a conical bottom with an orifice through which process fluid cyclically enters and is expelled forcefully by pressurizing the air space above the liquid in the PJM. Between pulses, some of the solids settle from the slurry, which nominally is a failure in mixing, but during the pulses (if operated to attain bottom clearing conditions), all of the solids are resuspended and made available for processing or transfer. Overall, mixing is successful if the solids are processed and removed from the vessel as needed when averaged over repeated PJM cycles. This paper describes the physics of pulse jet mixing process based on physical observation during experiments and analysis of experimental concentration profile data obtained during the mixing cycle.

  2. Coupling effects of the number of pulses, pulse repetition rate and fluence during laser PMMA ablation

    NASA Astrophysics Data System (ADS)

    Liu, Z. Q.; Feng, Y.; Yi, X.-S.

    2000-10-01

    Poly(methyl methacrylate) (PMMA) was ablated using a 248-nm long-pulsed KrF excimer laser operating at a pulse repetition rate (PRR) of 2 and 10 Hz, and fluence varying from 0.4 to 2 J/cm 2. The coupling effects of multiple shots, PRR, and fluence are found and discussed on the etching depth data and topography of PMMA. An increase in either PRR, or fluence or the number of pulses can accelerate the etching efficiency in terms of ablation rate, as a result of strengthened thermal effects. Quality of the craters such as roughness, porosity and contamination is sensitively dependent on the specific laser operating conditions. Basically, increasing the PRR and the number of pulses gives rise to a crater with smoother and less porous bottom.

  3. An Experiment on Repetitive Pulse Operation of Microwave Rocket

    SciTech Connect

    Oda, Yasuhisa; Shibata, Teppei; Komurasaki, Kimiya; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi

    2008-04-28

    Microwave Rocket was operated with repetitive pulses. The microwave rocket model with forced breathing system was used. The pressure history in the thruster was measured and the thrust impulse was deduced. As a result, the impulse decreased at second pulse and impulses at latter pulses were constant. The dependence of the thrust performance on the partial filling rate of the thruster was compared to the thrust generation model based on the shock wave driven by microwave plasma. The experimental results showed good agreement to the predicted dependency.

  4. High rate pulse processing algorithms for microcalorimeters

    SciTech Connect

    Rabin, Michael; Hoover, Andrew S; Bacrania, Mnesh K; Tan, Hui; Breus, Dimitry; Henning, Wolfgang; Sabourov, Konstantin; Collins, Jeff; Warburton, William K; Dorise, Bertrand; Ullom, Joel N

    2009-01-01

    It has been demonstrated that microcalorimeter spectrometers based on superconducting transition-edge-sensor can readily achieve sub-100 eV energy resolution near 100 keV. However, the active volume of a single microcalorimeter has to be small to maintain good energy resolution, and pulse decay times are normally in the order of milliseconds due to slow thermal relaxation. Consequently, spectrometers are typically built with an array of microcalorimeters to increase detection efficiency and count rate. Large arrays, however, require as much pulse processing as possible to be performed at the front end of the readout electronics to avoid transferring large amounts of waveform data to a host computer for processing. In this paper, they present digital filtering algorithms for processing microcalorimeter pulses in real time at high count rates. The goal for these algorithms, which are being implemented in the readout electronics that they are also currently developing, is to achieve sufficiently good energy resolution for most applications while being (a) simple enough to be implemented in the readout electronics and (b) capable of processing overlapping pulses and thus achieving much higher output count rates than the rates that existing algorithms are currently achieving. Details of these algorithms are presented, and their performance was compared to that of the 'optimal filter' that is the dominant pulse processing algorithm in the cryogenic-detector community.

  5. Conversion of continuous-direct-current TIG welder to pulse-arc operation

    NASA Technical Reports Server (NTRS)

    Lien, D. R.

    1969-01-01

    Electronics package converts a continuous-dc tungsten-inert gas welder for pulse-arc operation. Package allows presetting of the pulse rate, duty cycle, and current value, and enables welding of various alloys and thicknesses of materials.

  6. Recycle Rate in a Pulsed, Optically Pumped Rubidium Laser

    SciTech Connect

    Miller, Wooddy S.; Sulham, Clifford V.; Holtgrave, Jeremy C.; Perram, Glen P.

    2010-10-08

    A pulsed, optically pumped rubidium laser operating in analogy to the diode pumped alkali laser (DPAL) system at pump intensities as high as 750 kW/cm{sup 2} has been demonstrated with output energies of up to 13 {mu}J/pulse. Output energy is dramatically limited by spin-orbit relaxation rates under these high intensity pump conditions. More than 250 photons are available for every rubidium atom in the pumped volume, requiring a high number of cycles per atom during the 2-8 ns duration of the pump pulse. At 550 Torr of ethane, the spin-orbit relaxation rate is too slow to effectively utilize all the incident pump photons. Indeed, a linear dependence of output energy on pump pulse duration for fixed pump energy is demonstrated.

  7. Continuously-variable rate pulse combustion apparatus

    SciTech Connect

    Thrasher, W.H.; Wells, G.J.

    1991-02-19

    This patent describes continuously-variable rate pulse combustion apparatus. It comprises: a main burner; a primary burner; main fuel supply means; primary fuel supply means; main air supply means; primary air supply means; combustion chamber means; exhaust means; inlet air decoupling means; main inlet air means; primary inlet air means; and main valve means.

  8. Reliability and validity of a smartphone pulse rate application for the assessment of resting and elevated pulse rate.

    PubMed

    Mitchell, Katy; Graff, Megan; Hedt, Corbin; Simmons, James

    2016-08-01

    Purpose/hypothesis: This study was designed to investigate the test-retest reliability, concurrent validity, and the standard error of measurement (SEm) of a pulse rate assessment application (Azumio®'s Instant Heart Rate) on both Android® and iOS® (iphone operating system) smartphones as compared to a FT7 Polar® Heart Rate monitor. Number of subjects: 111.

  9. Pulse transducer with artifact signal attenuator. [heart rate sensors

    NASA Technical Reports Server (NTRS)

    Cash, W. H., Jr.; Polhemus, J. T. (Inventor)

    1980-01-01

    An artifact signal attenuator for a pulse rate sensor is described. The circuit for attenuating background noise signals is connected with a pulse rate transducer which has a light source and a detector for light reflected from blood vessels of a living body. The heart signal provided consists of a modulated dc signal voltage indicative of pulse rate. The artifact signal resulting from light reflected from the skin of the body comprises both a constant dc signal voltage and a modulated dc signal voltage. The amplitude of the artifact signal is greater and the frequency less than that of the heart signal. The signal attenuator circuit includes an operational amplifier for canceling the artifact signal from the output signal of the transducer and has the capability of meeting packaging requirements for wrist-watch-size packages.

  10. Operations and management of government-owned - contractor-operated microwave exposure facility. Volume 2. Pulsed microwave effects on rat blood pressure and heart rate. Final report, 1 March 1985-2 January 1988

    SciTech Connect

    Johnson, C.E.; Brown, D.; Bassen, H.; Bates, F.

    1988-02-28

    Using a specialized waveguide exposure system, the head and neck of 15 Sprague-Dawley rats were selectively exposed to 1250-MHz pulsed microwaves. Blood pressure, heart rate, and temperature were continually recorded. Statistical analysis of the physiological parameters that were recorded continuously revealed that during the exposure the animals exhibited no statistically significant change in core or head temperature, while heart rate decreased over 20%. The mean blood pressure remained constant but exhibited a sinusoidal undulation during exposure that was disassociated from heart rate. Cardiovascular parameters returned to normal soon after cessation of exposure. In summary, statistically significant changes were recorded concomitant with microwave exposure. Blood pressure exhibited a heretofore unreported oscillation, disassociated from heart rate. It is possible that this microwave reaction is mediated via baroreceptor cardiodepressor mechanisms.

  11. Modeling of Multi-Tube Pulse Detonation Engine Operation

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present paper explores some preliminary issues concerning the operational characteristics of multiple-tube pulsed detonation engines (PDEs). The study is based on a two-dimensional analysis of the first-pulse operation of two detonation tubes exhausting through a common nozzle. Computations are first performed to assess isolated tube behavior followed by results for multi-tube flow phenomena. The computations are based on an eight-species, finite-rate transient flow-field model. The results serve as an important precursor to understanding appropriate propellant fill procedures and shock wave propagation in multi-tube, multi-dimensional simulations. Differences in behavior between single and multi-tube PDE models are discussed, The influence of multi-tube geometry and the preferred times for injecting the fresh propellant mixture during multi-tube PDE operation are studied.

  12. Count rate limitations in pulsed accelerator fields

    SciTech Connect

    Justus, Alan L

    2010-12-15

    This paper discusses various concepts involved in the counting losses of pulse-counting health physics instrumentation when used within the pulsed radiation environments of typical accelerator fields, in order to pre-establish appropriate limitations in use. Discussed are the 'narrow' pulse and the 'wide' pulse cases, the special effect of neutron moderating assemblies, and the effect of pulse microstructure on the counting losses of the pulse-counting instrumentation. Examples are provided which highlight the various concepts and limitations.

  13. Properties of water surface discharge at different pulse repetition rates

    SciTech Connect

    Ruma,; Yoshihara, K.; Hosseini, S. H. R. Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  14. Analysis of folded pulse forming line operation.

    PubMed

    Domonkos, M T; Watrous, J; Parker, J V; Cavazos, T; Slenes, K; Heidger, S; Brown, D; Wilson, D

    2014-09-01

    A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.

  15. Assessment of pulse rate variability by the method of pulse frequency demodulation

    PubMed Central

    Hayano, Junichiro; Barros, Allan Kardec; Kamiya, Atsunori; Ohte, Nobuyuki; Yasuma, Fumihiko

    2005-01-01

    Background Due to its easy applicability, pulse wave has been proposed as a surrogate of electrocardiogram (ECG) for the analysis of heart rate variability (HRV). However, its smoother waveform precludes accurate measurement of pulse-to-pulse interval by fiducial-point algorithms. Here we report a pulse frequency demodulation (PFDM) technique as a method for extracting instantaneous pulse rate function directly from pulse wave signal and its usefulness for assessing pulse rate variability (PRV). Methods Simulated pulse wave signals with known pulse interval functions and actual pulse wave signals obtained from 30 subjects with a trans-dermal pulse wave device were analyzed by PFDM. The results were compared with heart rate and HRV assessed from simultaneously recorded ECG. Results Analysis of simulated data revealed that the PFDM faithfully demodulates source interval function with preserving the frequency characteristics of the function, even when the intervals fluctuate rapidly over a wide range and when the signals include fluctuations in pulse height and baseline. Analysis of actual data revealed that individual means of low and high frequency components of PRV showed good agreement with those of HRV (intraclass correlation coefficient, 0.997 and 0.981, respectively). Conclusion The PFDM of pulse wave signal provides a reliable assessment of PRV. Given the popularity of pulse wave equipments, PFDM may open new ways to the studies of long-term assessment of cardiovascular variability and dynamics. PMID:16259639

  16. Volunteer Work, Religious Commitment, and Resting Pulse Rates.

    PubMed

    Krause, Neal; Ironson, Gail; Hill, Peter C

    2017-04-01

    Research indicates that greater involvement in volunteer activities is associated with better health. We aim to contribute to this literature in two ways. First, rather than rely on self-reports of health, measured resting pulse rates serve as the dependent variable. Second, an effort is made to see if religious commitment moderates the relationship between volunteering and resting pulse rates. Data that come from a recent nationwide survey (N = 2265) suggest that volunteer work is associated with lower resting pulse rates. The results also reveal that the relationship between engaging in volunteer work and resting pulse rates improves among study participants who are more deeply committed to religion.

  17. Pulsed operation of a superconductive electromagnetic gradiometer

    SciTech Connect

    Czipott, P.V.; Podney, W.N. )

    1991-03-01

    This paper reports on an electromagnetic gradiometer (EMG) which combines a superconducting quantum interference device (SQUID) gradiometer with an active magnetic source for use as an ultrasensitive metal detector. The source drives electrical eddy currents in conductive targets, and the gradiometer detects the magnetic gradient of the induced currents. In earlier work, we demonstrated performance using a sinusoidally oscillating source. Here we report first performance tests of an EMG configuration using a pulsed source. Eddy currents persist in metallic targets between pulses and so make them visible to the receiver. Because the receiver only looks between pulses, when the source is off, it is immune to noise from source interference.

  18. [Trends in operative delivery rates].

    PubMed

    Vetr, M

    2009-10-01

    The aim of this study was to identify trends in operative vaginal delivery rates and caesarean sections at Faculty Hospital in Olomouc and comparing with mean results of the Czech Republic. Retrospective epidemiological study. Gynaecology and Obstetrics Clinic Medical Faculty Palacky University and Faculty Hospital in Olomouc. Analysis of data drawn from obstetric medical records from 1. 1. 1993 to 31. 12. 2008--rating the frequency, evolutionary trends and associated risk factors. In this time period 26,679 children born, by caesarean section 5,916 (22.2%), ventouse 759 (2.8%) and forceps 526 (2.0%). The frequency of vaginal operations is higher than the average of the Czech Republic and from second half 90s of the 20th century no more increased. For caesarean section, however, is an upward trend (P for trend = 0.035, Cox-Stuart test). The increasing proportion of complex of 4 risk factors on the frequency of caesareans: 1 low birth weight below 2.5 kg (32.2%), 2 multiple pregnancy (18%), 3 caesareans in history (15.5%), 4 mothers over the age of 35 years (11.2%). Cumulative share of all four factors in the total number of abdominal delivery has reached a mean of 52.91% (95% CI 49.58-56.24), median = 53.75 (97.9% CI 48.64-57.32). Analysis of the development of operational termination of pregnancy confirms the significantly higher frequency of operational interventions in Olomouc compared to an average of the Czech Republic. Changes in risk profile of patients (often referred to the demographic factors) is not enough to explain the causes of the rising frequency of caesareans. The increase of invasive obstetrics undoubtedly contributes to changes in obstetric practice.

  19. Working group summary report on effects of pulsed operation

    SciTech Connect

    Gabriel, T.A.; Ni, L.

    1996-06-01

    In a short pulsed spallation neutron source, extremely high energy ({approx_gt}1 GeV) proton beam pulses are injected into a liquid metal target in a very short period of time ({approximately}1 {mu}sec) at a high repetition rate ({approximately}50 Hertz). The beam energy will be deposited in the target materials (such as mercury or lead) and converted into heat. It causes a sudden temperature rise and resulting pressure wave. This pressure wave travels through the liquid, reaches the steel container wall and may possibly lead to material damage due to induced stress. Almost all participants agreed that the shock problem due to the short pulse operation in the liquid metal target could be serious and could present a challenging problem. It was determined that the following points need to be addressed: (1) equation of state for mercury (2) code validation and benchmark experiments (3) shock effects on the entire target system (4) two phase flow by gas injection. All these investigations should be carried out in the framework of international cooperation. Two small scaled Hg pressure pulse tests are planned at ORNL to provide insight into the pressure wave propagation and thermal shock effects. One experiment will use exploding wires to generate the pulse pressure, the other the electron beam at ORELA. Also PSI, LANL, CERN (ISOLDE facility), INR and IPPE could contribute to the experimental methods for producing shock. The necessary R&D for bubble injection might be performed at PSI, RIGA, ORNL or Ben-Gurion University. All of the above experiments can possibly yield benchmarking data which is absolutely necessary for code validation.

  20. Pulsed Detonation Operation of an Axial Turbine

    NASA Astrophysics Data System (ADS)

    Munday, David; St. George, Andrew; Driscoll, Robert; Gutmark, Ephraim; Gas Dynamics and Propulsion Lab Team

    2013-11-01

    A detonation is by its nature a more thermodynamically efficient combustion mode than deflagration. Several attempts are underway to integrate detonating combustion into turbomachines in order to realize the increased efficiency available, save resources and reduce emissions. One approach to this challenge is to employ pulsed detonations as from pulsed detonation engines (PDEs) and use the pulsed outflow to drive a turbine. The difficulty with this approach is that turbines, especially the more efficient axial turbines suffer in efficiency when their inflow is pulsed. At present there is not even a commonly acknowledged turbine efficiency measure which works reasonably for a pulsed input. The present work investigates the efficiency of an axial turbine with pulsed flow. Initial tests are performed with non-combusting flow in order to study the influence of pulsation on the turbine performance. This cold flow will admit a broader range of instrumentation which can be inserted within the turbine. This allows time-resolved measure of the flow angles which have a pronounced effect on the turbine performance. Later tests with detonating inflow yield global measures and these are compared to the non-combusting results. Work sponsored by Innovative Scientific Solutions, Inc.

  1. Experience of Pseudospark Switch Operation in Pulse Power Applications

    NASA Astrophysics Data System (ADS)

    Voitenko, N. V.; Yudin, A. S.; Kuznetsova, N. S.; Bochkov, V. D.

    2015-11-01

    The paper demonstrates the results of TDIl-200k/25SN-P pseudospark switch (PSS) developed by Russian company "Pulsed Technologies Ltd" application. PSS was used in pulsed power unit intended for electric-discharge fracture of rocks and concrete blocks and splitting off from monolith. The pulsed power unit has a pulse current generator with the capacity of 560 μF, stored energy of up to 63 kJ, operating voltage of up to15 kV, current pulse amplitude of up to 200 kA and pulse duration more than 200 μsec. The study also shows the current waveforms determined in the short-circuit experiment of the pulse current generator and in the experiments of the electric-discharge fragmentation of concrete at the charging voltage of 13 kV. PSS was operated in ringing single-pulse mode with the exceedance of more than two maximum permissible parameters: current pulse amplitude, current pulse duration and maximum pulse energy. Internal electrode erosion of PSS is shown and possible reasons of asymmetric current feed are discussed.

  2. An IMPATT diode for the pulsed mode of operation

    NASA Astrophysics Data System (ADS)

    Zemliak, A. M.; Roman, A. E.

    1991-10-01

    The features of the pulsed mode of operation of IMPATT diodes are analyzed, and factors that hamper the practical application of pulsed diodes are determined. A special doping profile for a pulsed IMPATT diode is proposed which makes it possible to enhance the intrapulse stability of the frequency and amplitude of the generated microwave signal as well as the electronic efficiency of the diode. The method proposed here was used for the practical engineering design of millimeter-wave IMPATT diodes.

  3. Innovative phase shifter for pulse tube operating below 10 K

    NASA Astrophysics Data System (ADS)

    Duval, Jean-Marc; Charles, Ivan; Daniel, Christophe; André, Jérôme

    2016-09-01

    Stirling type pulse tubes are classically based on the use of an inertance phase shifter to optimize their cooling power. The limitations of the phase shifting capabilities of these inertances have been pointed out in various studies. These limitations are particularly critical for low temperature operation, typically below about 50 K. An innovative phase shifter using an inertance tube filled with liquid, or fluid with high density or low viscosity, and separated by a sealed metallic diaphragm has been conceived and tested. This device has been characterized and validated on a dedicated test bench. Operation on a 50-80 K pulse tube cooler and on a low temperature (below 8 K) pulse tube cooler have been demonstrated and have validated the device in operation. These developments open the door for efficient and compact low temperature Stirling type pulse tube coolers. The possibility of long life operation has been experimentally verified and a design for space applications is proposed.

  4. Cryogenic pellet production developments for long-pulse plasma operation

    SciTech Connect

    Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.

    2014-01-29

    Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.

  5. Pen harvester for powering a pulse rate sensor

    NASA Astrophysics Data System (ADS)

    Bedekar, Vishwas; Oliver, Josiah; Priya, Shashank

    2009-05-01

    Rapid developments in the area of micro-sensors for various applications such as structural health monitoring, bio-chemical sensors and pressure sensors have increased the demand for portable, low cost, high efficiency energy harvesting devices. In this paper, we describe the scheme for powering a pulse rate sensor with a vibration energy harvester integrated inside a pen commonly carried by humans in the pocket close to the heart. Electromagnetic energy harvesting was selected in order to achieve high power at lower frequencies. The prototype pen harvester was found to generate 3 mW at 5 Hz and 1 mW at 3.5 Hz operating under displacement amplitude of 16 mm (corresponding to an acceleration of approximately 1.14 grms at 5 Hz and 0.56 grms at 3.5 Hz, respectively). A comprehensive mathematical modelling and simulations were performed in order to optimize the performance of the vibration energy harvester. The integrated pen harvester prototype was found to generate continuous power of 0.46-0.66 mW under normal human actions such as jogging and jumping which is enough for a small scale pulse rate sensor.

  6. Long pulse, multi-MW operation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Hoang, G. T.

    2005-09-01

    Long pulse operation on Tore Supra has now entered a new phase, characterised by the use of heating power level in excess of 10 MW, during pulses lasting several tens of resistive times. This has been made possible by the combined use of 3 radiofrequency heating and current drive systems, at the ion cyclotron frequency (9 MW coupled to the plasma at 57 MHz), the lower hybrid frequency (3 MW at 3.7 GHz) and the electron cyclotron frequency (0.7 MW at 118 GHz). Key technological and physics issues related to long pulse operation, required for a reactor, are addressed.

  7. Laser nanoablation of diamond surface at high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Kononenko, V. V.; Gololobov, V. M.; Pashinin, V. P.; Konov, V. I.

    2016-10-01

    The chemical etching of the surface of a natural diamond single crystal irradiated by subpicosecond laser pulses with a high repetition rate (f ≤slant 500 {\\text{kHz}}) in air is experimentally investigated. The irradiation has been performed by the second-harmonic (515 {\\text{nm}}) radiation of a disk Yb : YAG laser. Dependences of the diamond surface etch rate on the laser energy density and pulse repetition rate are obtained.

  8. Pulsed infrared laser irradiation of biological tissue: effect of pulse duration and repetition rate

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Chundru, Ravi K.; Samanani, Salim A.; Tibbetts, Todd A.; Welch, Ashley J.

    1993-07-01

    Pulsed laser ablation is a trade off between minimizing thermal damage (for relatively long pulses) and mechanical damage (for relatively short pulses) to tissue adjacent to the ablation crater. Often it is not known what the optimal laser parameters are for a specific application, since clinically used parameters have at least partially been dictated by physical limitations of the laser devices. We recently obtained a novel type of cryogenic continuous wave holmium:YAG laser ((lambda) equals 2.09 micrometers ) with a galvanometric drive outcouple mirror that acts as a Q-switch. This unique device provides pulse repetition rates from a few Hz up to kHz and the pulse length is variable from microsecond(s) to ms. The effect of pulse duration and repetition rate on the thermal response of chicken breast is documented using temperature measurements with a thermal camera. We varied the pulse width from 10 microsecond(s) to 5 ms and fond that these pulse durations can be considered impulses of thermalized optical energy. In this paper some theoretical considerations of the pulse length will be described that support the experimental data. It was also found that even at 1 pulse per second thermal superposition occurs, indicating a much longer thermal relaxation time than predicted by a simple time constant model.

  9. Performance scaling of inductive pulsed plasma thrusters with coil angle and pulse rate

    NASA Astrophysics Data System (ADS)

    Martin, A. K.

    2016-01-01

    A circuit model for an inductive pulsed plasma thruster was developed in order to investigate the performance of thrusters with conical coils; the model can accommodate cone-angles from 0° (a straight theta-pinch coil) to 90° (a planar coil). The plasma is treated as a deformable slug that moves both radially and axially in response to the force applied by the coil. The radial equation of motion includes a restoring force due to the plasma pressure, which is derived under the assumption that the electron population is isothermal, while the ions are isothermal, adiabatic, or shock-heated depending on the magnitude and sign of the radial velocity. The inductance of the coil and the plasma slug, and their mutual inductance, was determined using QuickField. A local maximum in efficiency and specific impulse was found for angles less than 90° however the absolute maximum for both these quantities occurs at 90°. High pulse-rate operation was found to yield dynamic efficiencies (excluding ionization cost) as high as 60-70% for I SP in the range of 3000-5000 s, even for a device with modest jet-power (5 kW). This mode of operation also permits elimination of the pulsed gas valve, which would be a significant system-level simplification. An alternate mode of inductive recapture, in which the current is interrupted at the second zero-crossing, was found to result in a sacrifice of only 1-2% in efficiency, while offering other significant system-level benefits for this kind of thruster.

  10. KAPTURE-2. A picosecond sampling system for individual THz pulses with high repetition rate

    NASA Astrophysics Data System (ADS)

    Müller, A.-S.

    2017-01-01

    This paper presents a novel data acquisition system for continuous sampling of ultra-short pulses generated by terahertz (THz) detectors. Karlsruhe Pulse Taking Ultra-fast Readout Electronics (KAPTURE) is able to digitize pulse shapes with a sampling time down to 3 ps and pulse repetition rates up to 500 MHz. KAPTURE has been integrated as a permanent diagnostic device at ANKA and is used for investigating the emitted coherent synchrotron radiation in the THz range. A second version of KAPTURE has been developed to improve the performance and flexibility. The new version offers a better sampling accuracy for a pulse repetition rate up to 2 GHz. The higher data rate produced by the sampling system is processed in real-time by a heterogeneous FPGA and GPU architecture operating up to 6.5 GB/s continuously. Results in accelerator physics will be reported and the new design of KAPTURE be discussed.

  11. A long-pulse repetitive operation magnetically insulated transmission line oscillator.

    PubMed

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  12. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    SciTech Connect

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-15

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  13. A long-pulse repetitive operation magnetically insulated transmission line oscillator

    NASA Astrophysics Data System (ADS)

    Fan, Yu-Wei; Zhong, Hui-Huang; Zhang, Jian-De; Shu, Ting; Liu, Jin Liang

    2014-05-01

    The improved magnetically insulated transmission line oscillator (MILO) is a gigawatt-class L-band high power microwave tube. It has allowed us to generate 3.1 GW pulse of 40 ns duration in the single-pulse operation and 500 MW pulse of 25 ns duration in the repetition rate operation. However, because of the severe impedance mismatch, the power conversion efficiency is only about 4% in the repetition rate operation. In order to eliminate the impedance mismatch and obtain repetitive long-pulse high-power microwave (HPM), a series of experiments are carried out and the recent progress is presented in this paper. In the single-pulse operation, when the diode voltage is 466 kV and current is 41.6 kA, the radiated microwave power is above 2.2 GW, the pulse duration is above 102 ns, the microwave frequency is about 1.74 GHz, and the power conversion efficiency is about 11.5%. In the repetition rate operation, under the condition of the diode voltage about 400 kV, beam current about 38 kA, the radiated microwave power is about 1.0 GW, the pulse duration is about 85 ns. Moreover, the radiated microwave power and the pulse duration decline little by little when the shot numbers increase gradually. The experimental results show that the impedance matching is a vital factor for HPM systems and one of the major technical challenges is to improve the cathode for the repetition rate operation MILO.

  14. Pulsed interrupter and method of operation

    DOEpatents

    Drake, Joel Lawton; Kratz, Robert

    2015-06-09

    Some embodiments provide interrupter systems comprising: a first electrode; a second electrode; a piston movably located at a first position and electrically coupled with the first and second electrodes establishing a closed state, the piston comprises an electrical conductor that couples with the first and second electrodes providing a conductive path; an electromagnetic launcher configured to, when activated, induce a magnetic field pulse causing the piston to move away from the electrical coupling with the first and second electrodes establishing an open circuit between the first and second electrodes; and a piston control system comprising a piston arresting system configured to control a deceleration of the piston following the movement of the piston induced by the electromagnetic launcher such that the piston is not in electrical contact with at least one of the first electrode and the second electrode when in the open state.

  15. A gigawatt level repetitive rate adjustable magnetic pulse compressor

    NASA Astrophysics Data System (ADS)

    Li, Song; Gao, Jing-Ming; Yang, Han-Wu; Qian, Bao-Liang; Li, Ze-Xin

    2015-08-01

    In this paper, a gigawatt level repetitive rate adjustable magnetic pulse compressor is investigated both numerically and experimentally. The device has advantages of high power level, high repetitive rate achievability, and long lifetime reliability. Importantly, dominate parameters including the saturation time, the peak voltage, and even the compression ratio can be potentially adjusted continuously and reliably, which significantly expands the applicable area of the device and generators based on it. Specifically, a two-stage adjustable magnetic pulse compressor, utilized for charging the pulse forming network of a high power pulse generator, is designed with different compression ratios of 25 and 18 through an optimized design process. Equivalent circuit analysis shows that the modification of compression ratio can be achieved by just changing the turn number of the winding. At the same time, increasing inductance of the grounded inductor will decrease the peak voltage and delay the charging process. Based on these analyses, an adjustable compressor was built and studied experimentally in both the single shot mode and repetitive rate mode. Pulses with peak voltage of 60 kV and energy per pulse of 360 J were obtained in the experiment. The rise times of the pulses were compressed from 25 μs to 1 μs and from 18 μs to 1 μs, respectively, at repetitive rate of 20 Hz with good repeatability. Experimental results show reasonable agreement with analyses.

  16. High-gradient, pulsed operation of superconducting niobium cavities

    SciTech Connect

    Campisi, I.E.; Farkas, Z.D.

    1984-02-01

    Tests performed on several Niobium TM/sub 010/ cavities at frequencies of about 2856 MHz using a high-power, pulsed method indicate that, at the end of the charging pulse, peak surface magnetic fields of up to approx. 1300 Oe, corresponding to a peak surface electric field of approx. 68 MV/m, can be reached at 4.2/sup 0/K without appreciable average losses. Further studies of the properties of superconductors under pulsed operation might shed light on fundamental properties of rf superconductivity, as well as lead to the possibility of applying the pulse method to the operation of high-gradient linear colliders. 7 references, 30 figures, 2 tables.

  17. Double and multi-pulsed operations of inductive plasma sources

    NASA Astrophysics Data System (ADS)

    Anderson, M.; Bystritskii, V.; Walters, J. K.

    2005-06-01

    This paper describes the study of double and multi-pulsed operations of two inductive plasma sources (IPS) for the generation of intense ion/plasma flows. Due to its simplicity and high efficiency, as compared to conventional coaxial J×B plasma sources, the IPS looks promising for a variety of applications that require a multi-pulse mode of operation, such as: intense plasma and ion beams [15th International Conference on High-Power Particle Beams, St. Petersburg, Russia, July 2004]; high current pulsed Hall accelerators [Plasma Phys. Rep. 29 (2003) 261]; spacecraft propulsion [AIP Conf. Proc. 608 (2002) 627] and the formation of field-reversed configurations by colliding current carrying plasma tori in magnetic fusion devices [Nucl. Fusion 39 (1999) 2001]. Design, projected parameters and initial test results for several modifications of the IPS, including characteristics of the generated plasma flows, are given. The density and temperature ranged between 10 12 and 10 15 cm -3 and 2 and 10 eV, respectively. Plasma transport velocities were measured between (1-5)×10 6 cm/s. The multi-pulse mode produced a train of pulses with frequencies up to 10 kHz for several milliseconds at power levels of (1-2)×10 7 W and several joules of deposited energy per pulse. The potential and limitations of double and multi-pulse modes of the IPS are also discussed.

  18. Impulse regime CRLH resonator for tunable pulse rate multiplication

    NASA Astrophysics Data System (ADS)

    Gómez-DíAz, J. S.; Alvarez-Melcon, A.; Gupta, S.; Caloz, C.

    2009-08-01

    A novel tunable microwave broadband resonator, inspired from optical laser systems, is presented. In contrast to usual harmonic resonators, the proposed device is based on broadband composite right/left handed metamaterial lines. This line, configured as a resonator, provides nonuniform spectral resonances due to the nonlinear nature of its dispersion curve. This is exploited in the impulse regime, where the input pulse spectrum is discretized inside the resonator, with different spectral separation as a function of the carrier frequency. This discretization leads to a pulse periodicity in time, with a tunable output time period. On the basis of the new broadband resonator features, a pulse rate multiplication device is proposed. This device provides an increase in the repetition rate of a periodic input pulse, with the additional advantage of repetition rate tunability.

  19. SETI Pulse Detection Algorithm: Analysis of False-alarm Rates

    NASA Technical Reports Server (NTRS)

    Levitt, B. K.

    1983-01-01

    Some earlier work by the Search for Extraterrestrial Intelligence (SETI) Science Working Group (SWG) on the derivation of spectrum analyzer thresholds for a pulse detection algorithm based on an analysis of false alarm rates is extended. The algorithm previously analyzed was intended to detect a finite sequence of i periodically spaced pulses that did not necessarily occupy the entire observation interval. This algorithm would recognize the presence of such a signal only if all i-received pulse powers exceeded a threshold T(i): these thresholds were selected to achieve a desired false alarm rate, independent of i. To simplify the analysis, it was assumed that the pulses were synchronous with the spectrum sample times. This analysis extends the earlier effort to include infinite and/or asynchronous pulse trains. Furthermore, to decrease the possibility of missing an extraterrestrial intelligence signal, the algorithm was modified to detect a pulse train even if some of the received pulse powers fall below the threshold. The analysis employs geometrical arguments that make it conceptually easy to incorporate boundary conditions imposed on the derivation of the false alarm rates. While the exact results can be somewhat complex, simple closed form approximations are derived that produce a negligible loss of accuracy.

  20. Transient thermal analysis of semiconductor diode lasers under pulsed operation

    NASA Astrophysics Data System (ADS)

    Veerabathran, G. K.; Sprengel, S.; Karl, S.; Andrejew, A.; Schmeiduch, H.; Amann, M.-C.

    2017-02-01

    Self-heating in semiconductor lasers is often assumed negligible during pulsed operation, provided the pulses are `short'. However, there is no consensus on the upper limit of pulse width for a given device to avoid-self heating. In this paper, we present an experimental and theoretical analysis of the effect of pulse width on laser characteristics. First, a measurement method is introduced to study thermal transients of edge-emitting lasers during pulsed operation. This method can also be applied to lasers that do not operate in continuous-wave mode. Secondly, an analytical thermal model is presented which is used to fit the experimental data to extract important parameters for thermal analysis. Although commercial numerical tools are available for such transient analyses, this model is more suitable for parameter extraction due to its analytical nature. Thirdly, to validate this approach, it was used to study a GaSb-based inter-band laser and an InP-based quantum cascade laser (QCL). The maximum pulse-width for less than 5% error in the measured threshold currents was determined to be 200 and 25 ns for the GaSb-based laser and QCL, respectively.

  1. [Pulsed-dose rate brachytherapy in cervical cancers: why, how?].

    PubMed

    Mazeron, R; Dumas, I; Martin, V; Martinetti, F; Benhabib-Boukhelif, W; Gensse, M-C; Chargari, C; Guemnie-Tafo, A; Haie-Méder, C

    2014-10-01

    The end of the production of 192 iridium wires terminates low dose rate brachytherapy and requires to move towards pulsed-dose rate or high-dose rate brachytherapy. In the case of gynecological cancers, technical alternatives exist, and many teams have already taken the step of pulsed-dose rate for scientific reasons. Using a projector source is indeed a prerequisite for 3D brachytherapy, which gradually installs as a standard treatment in the treatment of cervical cancers. For other centers, this change implies beyond investments in equipment and training, organizational consequences to ensure quality.

  2. Improvement in the statistical operation of a Blumlein pulse forming line in bipolar pulse mode

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. I.; Isakova, Y. I.; Khaylov, I. P.

    2014-07-01

    The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1-1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250-300 kV) and bipolar-pulse mode with the first negative (300-600 ns, 100-150 kV) followed by a second positive (120 ns, 250-300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode the shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1σ) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3-4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9-0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same.

  3. Improvement in the statistical operation of a Blumlein pulse forming line in bipolar pulse mode

    SciTech Connect

    Pushkarev, A. I. Isakova, Y. I.; Khaylov, I. P.

    2014-07-15

    The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1–1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250–300 kV) and bipolar-pulse mode with the first negative (300–600 ns, 100–150 kV) followed by a second positive (120 ns, 250–300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode the shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1σ) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3–4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9–0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same.

  4. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, J.; Da Silva, L.B.; Matthews, D.L.; Glinsky, M.E.; Stuart, B.C.; Perry, M.D.; Feit, M.D.; Rubenchik, A.M.

    1998-02-24

    A method and apparatus are disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment. 8 figs.

  5. Ultrashort pulse high repetition rate laser system for biological tissue processing

    DOEpatents

    Neev, Joseph; Da Silva, Luiz B.; Matthews, Dennis L.; Glinsky, Michael E.; Stuart, Brent C.; Perry, Michael D.; Feit, Michael D.; Rubenchik, Alexander M.

    1998-01-01

    A method and apparatus is disclosed for fast, efficient, precise and damage-free biological tissue removal using an ultrashort pulse duration laser system operating at high pulse repetition rates. The duration of each laser pulse is on the order of about 1 fs to less than 50 ps such that energy deposition is localized in a small depth and occurs before significant hydrodynamic motion and thermal conduction, leading to collateral damage, can take place. The depth of material removed per pulse is on the order of about 1 micrometer, and the minimal thermal and mechanical effects associated with this ablation method allows for high repetition rate operation, in the region 10 to over 1000 Hertz, which, in turn, achieves high material removal rates. The input laser energy per ablated volume of tissue is small, and the energy density required to ablate material decreases with decreasing pulse width. The ablation threshold and ablation rate are only weakly dependent on tissue type and condition, allowing for maximum flexibility of use in various biological tissue removal applications. The use of a chirped-pulse amplified Titanium-doped sapphire laser is disclosed as the source in one embodiment.

  6. A Pulse Rate Estimation Algorithm Using PPG and Smartphone Camera.

    PubMed

    Siddiqui, Sarah Ali; Zhang, Yuan; Feng, Zhiquan; Kos, Anton

    2016-05-01

    The ubiquitous use and advancement in built-in smartphone sensors and the development in big data processing have been beneficial in several fields including healthcare. Among the basic vitals monitoring, pulse rate monitoring is the most important healthcare necessity. A multimedia video stream data acquired by built-in smartphone camera can be used to estimate it. In this paper, an algorithm that uses only smartphone camera as a sensor to estimate pulse rate using PhotoPlethysmograph (PPG) signals is proposed. The results obtained by the proposed algorithm are compared with the actual pulse rate and the maximum error found is 3 beats per minute. The standard deviation in percentage error and percentage accuracy is found to be 0.68 % whereas the average percentage error and percentage accuracy is found to be 1.98 % and 98.02 % respectively.

  7. Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator.

    PubMed

    Lee, Ju-Yeon; Jang, Min; Shin, Sang-Hoon

    2017-01-01

    Pulse diagnosis is important in oriental medicine. The purpose of this study is explaining the mechanisms of pulse with a cardiovascular simulator. The simulator is comprised of the pulse generating part, the vessel part, and the measurement part. The pulse generating part was composed of motor, slider-crank mechanism, and piston pump. The vessel part, which was composed with the aorta and a radial artery, was fabricated with silicon to implement pulse wave propagation. The pulse parameters, such as the depth, rate, shape, and strength, were simulated. With changing the mean pressure, the floating pulse and the sunken pulse were generated. The change of heart rate generated the slow pulse and the rapid pulse. The control of the superposition time of the reflected wave generated the string-like pulse and the slippery pulse. With changing the pulse pressure, the vacuous pulse and the replete pulse were generated. The generated pulses showed good agreements with the typical pulses.

  8. Study on the Depth, Rate, Shape, and Strength of Pulse with Cardiovascular Simulator

    PubMed Central

    Lee, Ju-Yeon; Jang, Min

    2017-01-01

    Pulse diagnosis is important in oriental medicine. The purpose of this study is explaining the mechanisms of pulse with a cardiovascular simulator. The simulator is comprised of the pulse generating part, the vessel part, and the measurement part. The pulse generating part was composed of motor, slider-crank mechanism, and piston pump. The vessel part, which was composed with the aorta and a radial artery, was fabricated with silicon to implement pulse wave propagation. The pulse parameters, such as the depth, rate, shape, and strength, were simulated. With changing the mean pressure, the floating pulse and the sunken pulse were generated. The change of heart rate generated the slow pulse and the rapid pulse. The control of the superposition time of the reflected wave generated the string-like pulse and the slippery pulse. With changing the pulse pressure, the vacuous pulse and the replete pulse were generated. The generated pulses showed good agreements with the typical pulses. PMID:28246538

  9. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    PubMed

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  10. Pulsed operation of low-power plasma thruster

    NASA Astrophysics Data System (ADS)

    Bugrova, A. I.; Desyatskov, A. V.; Korobkin, Yu. V.; Lipatov, A. S.; Kharchevnikov, V. K.

    2010-10-01

    Integral and local characteristics of the laboratory model of a low-power plasma thruster operating in a pulsed regime have been experimentally studied. Rectangular pulses of discharge current with the leading and trailing fronts not exceeding 1 ms have been obtained. At an average supplied electric power of ˜150 W, the propulsion efficiency amounted to 35%. The plasma concentration, electron temperature, and potential distributions in the output plasma jet have been measured using an electric probe. These measurements showed that a well formed plasma jet with a small divergence angle exists behind the thruster edge.

  11. Pulse operation of semiconductor laser with nonlinear optical feedback

    NASA Astrophysics Data System (ADS)

    Guignard, Celine; Besnard, Pascal; Mihaescu, Adrian; MacDonald, K. F.; Pochon, Sebastien; Zheludev, Nikolay I.

    2004-09-01

    A semiconductor laser coupled to a gallium-made non linear mirror may exhibit pulse regime. In order to better understand this coupled cavity, stationary solutions and dynamics are described following the standard Lang and Kobayashi equations for a semiconductor laser submitted to nonlinear optical feedback. It is shown that the nonlinearity distorts the ellipse on which lied the stationary solutions, with a ``higher'' part corresponding to lower reflectivity and a ``lower'' part to higher reflectivity. Bifurcation diagrams and nonlinear analysis are presented while the conditions for pulsed operation are discussed.

  12. Comparison of pulse rate variability and heart rate variability for high frequency content estimation.

    PubMed

    Logier, R; De Jonckheere, J; Dassonneville, A; Jeanne, M

    2016-08-01

    Heart Rate Variability (HRV) analysis can be of precious help in most of clinical situations because it is able to quantify the Autonomic Nervous System (ANS) activity. The HRV high frequency (HF) content, related to the parasympathetic tone, reflects the ANS response to an external stimulus responsible of pain, stress or various emotions. We have previously developed the Analgesia Nociception Index (ANI), based on HRV high frequency content estimation, which quantifies continuously the vagal tone in order to guide analgesic drug administration during general anesthesia. This technology has been largely validated during the peri-operative period. Currently, ANI is obtained from a specific algorithm analyzing a time series representing successive heart periods measured on the electrocardiographic (ECG) signal. In the perspective of widening the application fields of this technology, in particular for homecare monitoring, it has become necessary to simplify signal acquisition by using e.g. a pulse plethysmographic (PPG) sensor. Even if Pulse Rate Variability (PRV) analysis issued from PPG sensors has been shown to be unreliable and a bad predictor of HRV analysis results, we have compared PRV and HRV both estimated by ANI as well as HF and HF/(HF+LF) spectral analysis on both signals.

  13. High-repetition-rate pulse-burst laser for Thomson scattering on the MST reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Morton, L. A.; Parke, E.; Den Hartog, D. J.

    2013-11-01

    A new, high-repetition-rate pulse-burst laser system for the MST Thomson scattering diagnostic has operated with 2 J pulses at repetition rates up to 75 kHz within a burst. The 1064 nm laser currently employs a q-switched, diode pumped Nd:YVO4 master oscillator, four Nd:YAG amplifier stages, and a Nd:glass amplifier, with plans for an additional Nd:glass amplifier. The laser can maintain 1.5-2 J pulses in two operating modes: either at a uniform repetition rate of 5-10 kHz (sustained for 5-8 ms), or reach rates of up to 75 kHz in pulse-burst operation (for 10 bursts of 15 pulses each), limited by flashlamp explosion energy and wall loading. The full system, including an additional Nd:glass amplifier, is designed to produce bursts of 2 J pulses at a repetition rate of at least 250 kHz. Custom programmable square-pulse power supplies drive the amplifier flashlamps, providing fine control of pulse timing, duration, and repetition, and allow for pulse-burst operation. The new laser system integrates with the same collection optics and detectors as used by the previous MST Thomson laser: 21 spatial points across the MST minor radius, filter polychromators with 6 to 8 channels (10 eV-5 keV range), avalanche photodiode detectors, and 1 GSample/s/channel digitization. Use of the previous pulse-burst laser continues concurrently with new laser development. Additional notes on optimization of flashlamp simmering will also be covered, showing that an increase in simmer currents can improve pulse-to-pulse energy consistency on both the new and older lasers.

  14. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations.

  15. Influence of Pulse Bursts on the Specific Removal Rate for Ultra-fast Pulsed Laser Micromachining of Copper

    NASA Astrophysics Data System (ADS)

    Kramer, Thorsten; Neuenschwander, Beat; Jäggi, Beat; Remund, Stefan; Hunziker, Urs; Zürcher, Josef

    Compared to single pulses the utilization of pulse bursts on steel samples was reported to be more efficient. But with regards to the specific removal rate it can be shown that a maximum value is achieved when the applied peak fluence equals exp(2) times the threshold fluence. The higher reported efficiency is caused by the reduced energy of the single pulses nearer to the optimum value. Recent investigations on the application of pulse bursts on copper samples suggest an interaction of the single pulses in a pulse burst in terms of the specific removal rate. The specific removal rate drops to less than 50% for a 2-pulse-burst consisting of two pulses of identical pulse energy, whereas the maximum specific removal rate for a 3-pulse-burst exceeds that of a single pulse by approx. 20%. The results of investigations on the variation of pulse energy for 2-pulse-bursts and 3-pulse-bursts regarding specific removal rate and surface quality are presented.

  16. High voltage high repetition rate pulse using Marx topology

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Kashapov, N.

    2015-06-01

    The paper describes Marx topology using MOSFET transistors. Marx circuit with 10 stages has been done, to obtain pulses about 5.5KV amplitude, and the width of the pulses was about 30μsec with a high repetition rate (PPS > 100), Vdc = 535VDC is the input voltage for supplying the Marx circuit. Two Ferrite ring core transformers were used to control the MOSFET transistors of the Marx circuit (the first transformer to control the charging MOSFET transistors, the second transformer to control the discharging MOSFET transistors).

  17. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  18. Relationship between Resting Pulse Rate and Lipid Metabolic Dysfunctions in Chinese Adults Living in Rural Areas

    PubMed Central

    Wang, Chong-jian; Li, Yu-qian; Li, Lin-lin; Wang, Ling; Zhao, Jing-zhi; You, Ai-guo; Guo, Yi-rui; Li, Wen-jie

    2012-01-01

    Background Resting pulse rate has been observed to be associated with cardiovascular diseases. However, its association with lipid metabolic dysfunctions remains unclear, especially resting pulse rate as an indicator for identifying the risk of lipid metabolic dysfunctions. The purpose of this study was to examine the association between resting pulse rate and lipid metabolic dysfunctions, and then evaluate the feasibility of resting pulse rate as an indicator for screening the risk of lipid metabolic dysfunctions. Methods A cross-sectional survey was performed, and 16,926 subjects were included in this study from rural community residents aged 35–78 years. Resting pulse rate and relevant covariates were collected from a standard questionnaire. The fasting blood samples were collected and measured for lipid profile. Predictive performance was analyzed by receiver operating characteristic (ROC) curve. Results A significant correlation was observed between resting pulse rate and TC (r = 0.102, P = 0.001), TG (r = 0.182, P = 0.001), and dyslipidemia (r = 0.037, P = 0.008). In the multivariate models, the adjusted odds ratios for hypercholesterolemia (from 1.07 to 1.15), hypertriglyceridemia (1.11 to 1.16), low HDL hypercholesterolemia (1.03 to 1.06), high LDL hypercholesterolemia (0.92 to 1.14), and dyslipidemia (1.04 to 1.07) were positively increased across quartiles of resting pulse rate (P for trend <0.05). The ROC curve indicated that resting pulse rate had low sensitivity (78.95%, 74.18%, 51.54%, 44.39%, and 54.22%), specificity (55.88%, 59.46%, 57.27%, 65.02%, and 60.56%), and the area under ROC curve (0.70, 0.69, 0.54, 0.56, and 0.58) for identifying the risk of hypercholesterolemia, hypertriglyceridemia, low HDL hypercholesterolemia, high LDL hypercholesterolemia, and dyslipidemia, respectively. Conclusion Fast resting pulse rate was associated with a moderate increased risk of lipid metabolic dysfunctions in rural adults. However

  19. Relationship between resting pulse rate and lipid metabolic dysfunctions in Chinese adults living in rural areas.

    PubMed

    Wang, Chong-jian; Li, Yu-qian; Li, Lin-lin; Wang, Ling; Zhao, Jing-zhi; You, Ai-guo; Guo, Yi-rui; Li, Wen-jie

    2012-01-01

    Resting pulse rate has been observed to be associated with cardiovascular diseases. However, its association with lipid metabolic dysfunctions remains unclear, especially resting pulse rate as an indicator for identifying the risk of lipid metabolic dysfunctions. The purpose of this study was to examine the association between resting pulse rate and lipid metabolic dysfunctions, and then evaluate the feasibility of resting pulse rate as an indicator for screening the risk of lipid metabolic dysfunctions. A cross-sectional survey was performed, and 16,926 subjects were included in this study from rural community residents aged 35-78 years. Resting pulse rate and relevant covariates were collected from a standard questionnaire. The fasting blood samples were collected and measured for lipid profile. Predictive performance was analyzed by receiver operating characteristic (ROC) curve. A significant correlation was observed between resting pulse rate and TC (r = 0.102, P = 0.001), TG (r = 0.182, P = 0.001), and dyslipidemia (r = 0.037, P = 0.008). In the multivariate models, the adjusted odds ratios for hypercholesterolemia (from 1.07 to 1.15), hypertriglyceridemia (1.11 to 1.16), low HDL hypercholesterolemia (1.03 to 1.06), high LDL hypercholesterolemia (0.92 to 1.14), and dyslipidemia (1.04 to 1.07) were positively increased across quartiles of resting pulse rate (P for trend <0.05). The ROC curve indicated that resting pulse rate had low sensitivity (78.95%, 74.18%, 51.54%, 44.39%, and 54.22%), specificity (55.88%, 59.46%, 57.27%, 65.02%, and 60.56%), and the area under ROC curve (0.70, 0.69, 0.54, 0.56, and 0.58) for identifying the risk of hypercholesterolemia, hypertriglyceridemia, low HDL hypercholesterolemia, high LDL hypercholesterolemia, and dyslipidemia, respectively. Fast resting pulse rate was associated with a moderate increased risk of lipid metabolic dysfunctions in rural adults. However, resting pulse rate as an indicator has limited potential for

  20. Efficient potassium diode pumped alkali laser operating in pulsed mode.

    PubMed

    Zhdanov, Boris V; Rotondaro, Matthew D; Shaffer, Michael K; Knize, Randall J

    2014-07-14

    This paper presents the results of our experiments on the development of an efficient hydrocarbon free diode pumped alkali laser based on potassium vapor buffered by He gas at 600 Torr. A slope efficiency of more than 50% was demonstrated with a total optical conversion efficiency of 30%. This result was achieved by using a narrowband diode laser stack as the pump source. The stack was operated in pulsed mode to avoid limiting thermal effects and ionization.

  1. Safe Operation and Alignment of the Variable Pulse Width Laser at the US Army Research Laboratory

    DTIC Science & Technology

    2016-02-01

    pulse at pulse widths between 50 µs to 10 ms. Maximum energy output is only achieved by proper alignment and laser operation. This report provides...not included in the operator’s manual. 15. SUBJECT TERMS pulse width, laser energy , laser alignment, peak power, laser operation 16. SECURITY...Acknowledgments v 1. Introduction 1 2. Energy Output of the Variable Pulse Width Laser 1 3. Operation of the Variable Pulse Width Laser 2 4

  2. Effects of pulse rate on threshold and dynamic range in Clarion cochlear-implant users (L)

    NASA Astrophysics Data System (ADS)

    Kreft, Heather A.; Donaldson, Gail S.; Nelson, David A.

    2004-05-01

    The effects of pulse rate on absolute threshold (THS), maximum acceptable loudness (MAL), and dynamic range (DR) were evaluated in 15 Clarion cochlear implant users. A wider range of pulse rates was assessed than in previous studies, and subjects with both standard and perimodiolar electrode arrays were tested. THS and MAL decreased with pulse rate, and DR increased with pulse rate, for pulse rates between 200 and 6500 pulses per second (pps). However, slopes of THS-vs-pulse rate and MAL-vs-pulse rate functions became shallower above 3250 pps. Subjects with standard electrode arrays had similar THSs as subjects with perimodiolar electrode arrays at all pulse rates. In contrast, subjects with standard arrays had significantly higher MALs and larger DRs than subjects with perimodiolar arrays, and these differences became larger with increasing pulse rate.

  3. Nonthermal Biological Treatments Using Discharge Plasma Produced by Pulsed Power 2.Generation Technologies of High Repetition Rate Pulsed Power

    NASA Astrophysics Data System (ADS)

    Sakugawa, Takashi

    Recently, high repetition rate, long lifetime, and high reliability pulsed power generators have been developed using semiconductor switches. We have studied and developed an all solid-state pulsed power generator for industrial applications such as a high repetition rate pulsed gas laser and a pulsed ozonizer. Recently, semiconductor power device technology has improved the performance of fast high-power switching devices. However, the semiconductor switch is still not sufficient to drive the pulse laser and the pulse ozonizer directly. Therefore, the semiconductor switch can be used in practical application with the assistance of a magnetic switch and a gate driving technique. This all solid-state generator consists of a semiconductor switch and a magnetic switch. The progress of high repetition rate pulsed power generators is reviewed herein, with particular emphasis on pulse power conditioning by solid-state switching techniques.

  4. A short pulse, high rep-rate microdischarge VUV source

    NASA Astrophysics Data System (ADS)

    Stephens, Jacob; Fierro, Andrew; Dickens, James; Neuber, Andreas; CenterPulsed Power; Power Electronics Team

    2013-09-01

    A MOSFET based high voltage pulser is utilized to excite a microdischarge (MD), or microdischarge array (MDA) with pulsed voltages of up to 1 kV, with risetime and FWHM on the order of 10 ns and 30 ns, respectively. Additionally, the pulser is capable of pulsing at rep-rates in excess of 35 MHz. However, for these experiments the rep-rate was set on the order of 1 MHz, so as to limit excess energy deposition into the background gas and optimize the energy efficiency of VUV generation. Using VUV capable spectral diagnostics, the VUV emission of the MDs for various pressures (50-800 + Torr) and gases, focused on argon, argon-hydrogen mixtures, and neon-hydrogen mixtures (all of which provide strong emission at λ < 130 nm) is studied, for pulsed, MHz rep-rated excitation. Using a photomultiplier tube the time dependent behavior of the VUV emission is characterized and compared to results from transient fluid modeling of the MDA. For instance, the MDA turn-on time is recorded to be about 15 ns, which matches the full plasma development time in the model, and the MDA self- capacitance largely determines the turn-off behavior. This research was supported by an AFOSR grant on the Physics of Distributed Plasma Discharges and fellowships from the National Physical Sciences Consortium, supported by Sandia National Laboratories.

  5. Multi-rate soliton pulse train generator based on novel fiber optic components

    NASA Astrophysics Data System (ADS)

    Sova, Raymond Michael

    As data rates for communication, signal processing, and optical sensing systems increase beyond 50 Gb/sec, ultra-fast optical pulse train generators will play a key role in their development. In this research, an all-fiber optical soliton pulse train generator is developed that operates at discrete rates from 50 to 400 Gb/sec with stable subpicosecond pulses. It is based on the following three novel fiber optic components: (1) all-fiber birefringence filter, (2) dual-wavelength fiber ring laser and (3) fiber-based soliton pulse train generation and compression stage. A multi-segment birefringence comb filter is developed to provide discrete tuning of the free spectral range from 0.8 to 3.2 nm and continuous tuning of the absolute position of the transmission peaks over the entire free spectral range. Two, three and four segment filters are constructed and implemented in Lyot and Lyot-Sagnac filter configurations to demonstrate the tuning properties and provide compound filters for use in the dual-wavelength fiber ring laser. Theoretical transmission functions are derived for two-segment filters. The experimental results are in excellent agreement with theoretical models based on the Jones matrix technique. The dual-wavelength laser consists of a PM amplifier, the tunable birefringence filter and a high-Q filter based on saturable absorber properties of un-pumped Erbium-doped fiber. Tunable compound birefringence filters are designed to operate the dual-wavelength laser over the entire erbium amplifier gain region (1530 to 1565 nm) with discrete tuning of the channel separation from 0.8 to 3.2 nm. Stable tunable dual-wavelength single-longitudinal mode operation is demonstrated and initial laser properties such as dual-relaxation oscillations, laser linewidth, polarization, and multi-wavelength stability are characterized. Induced modulation instability in optical fiber is used to generate pulse trains from the fiber ring laser output signal. Through modeling, the

  6. PIN-diode diagnostics of pulsed electron beam for high repetition rate mode

    NASA Astrophysics Data System (ADS)

    Egorov, Ivan; Xiao, Yu; Poloskov, Artem

    2017-05-01

    This work describes the operating principle and test results of the diagnostics for measuring the pulsed electron beam parameters under repetitive operation mode. The diagnostics is based on a PIN-diode, which is used as a bremsstrahlung detector. The signal from a PIN-diode was converted to a pseudo constant voltage signal which can be measured by a conventional voltmeter. Then the signal acquired by the voltmeter was compared with a reference signal indicating the normal operating regime of the accelerator, thus information about the shot-to-shot reproducibility of the electron beam parameters was given. The system was developed and tested for the ASTRA-M accelerator with the following operating parameters: 470 kV accelerating voltage, 120 ns beam duration and up to 50 pulses per second repetition rate.

  7. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing.

    PubMed

    Tang, Qi-Jie; Yang, Dong-Xu; Wang, Jian; Feng, Yi; Zhang, Hong-Fei; Chen, Teng-Yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  8. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing

    NASA Astrophysics Data System (ADS)

    Tang, Qi-jie; Yang, Dong-xu; Wang, Jian; Feng, Yi; Zhang, Hong-fei; Chen, Teng-yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  9. Mid-infrared pulsed fiber lasers operating at 3μm region

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Li, Jianfeng; Yu, Luohong; Zhang, Zhiyao; Li, Heping; Zhou, Xiaojun

    2014-11-01

    Mid-infrared pulsed fiber laser with centered wavelength from 2 to 5 μm have attracted substantial attention owing to their potential applications in defence, laser microsurgery, material processing, nonlinear frequency conversion, etc. We demonstrated our recent achievements at 3 μm pulsed fiber lasers by utilizing Q-switching method. Firstly, a cascaded dual wavelength actively Q-switched Ho3+-doped ZBLAN fiber was reported by inserting an external electrically driven acoustic-optical modulator (AOM) into the cavity. The 3.0 μm and 2.07 μm pulse trains were achieved with a μs level time delay corresponding to the pulse energy of 29 μJ and 7 μJ, pulse duration of 380 ns and 260 ns, respectively. The narrower pulse width in this case compared to that in passively Q-switched fiber lasers can be attributed to the much higher modulation depth of AOM. Using a reversely designed semiconductor saturable mirror (SESAM) as the saturable absorber (SA), we presented a passively Q-switched Ho3+-doped ZBLAN fiber laser operating at ~2971 nm, the obtained maximum pulse energy of 6.65 μJ only limited by the maximum pump power was also the highest level from passively Q-switched fiber lasers at this wavelength range, and corresponding pulse repetition rate and duration were 47.6 kHz and 1.68 μs, respectively. Then using a Fe2+: ZnSe crystal with an initial transmission of 69 % as the SA, a passively Q-switched Ho3+-doped ZBLAN fiber laser operating at 2970.3 nm was also achieved. The obtained pulse duration and repetition rate were 1.92 μs and 62.74 kHz, respectively with an output power of 266 mW and a pulse energy of 4.24 μJ. The further performance improvements were possible because they were just limited by the maximum pump power. To sum up, the above achievements would be beneficial for further development of mid-infrared pulsed fiber lasers.

  10. Pulse structure dependence of proton spin polarization rate

    NASA Astrophysics Data System (ADS)

    Kawahara, Tomomi; Uesaka, Tomohiro; Shimizu, Youhei; Sakaguchi, Satoshi; Wakui, Takashi

    2009-10-01

    A polarized proton solid target for RI beam experiments has been developed at Center for Nuclear Study, University of Tokyo [1]. The proton is polarized by transferring population difference in photo-excited triplet states of aromatic molecule. Through this method proton polarization of about 20% have been obtained at 0.1 T and in 100 K. Although this target has been successfully applied to RI beam experiments [2,3], further improvement in the polarization is desirable for future applications. To pursuit possible improvement in photo-excitation power, we have examined pulse-structure dependence of proton polarization rate. The excitation light is provided by a cw Ar-ion laser and pulsed by an optical chopper. We have found that proton polarization depends strongly on the pulse structure and the optimum condition is found to be a duty factor of 50% and a repetition frequency of 10 kHz. At this condition, the polarization rate can be increased by a factor 2.5 or more compared with the old settings, where a duty factor and a repetition frequency were 5% and 2.5 kHz, respectively. [1] T. Wakui et al., Nucl. Instrum. Methods A 550 (2005) 521. [2] M. Hatano et al., Eur. Phys. J. A 25 (2005) 255. [3] S. Sakaguchi et al., CNS Annual Report 2006 (2007).

  11. 2 µm femtosecond fiber laser at low repetition rate and high pulse energy.

    PubMed

    Yang, Lih-Mei; Wan, Peng; Protopopov, Vladimir; Liu, Jian

    2012-02-27

    In the paper, a 2 µm high energy fs fiber laser is presented based on Tm doped fiber at a low repetition rate. The seed laser was designed to generate pulse train at 2 µm at a pulse repetition rate of 2.5 MHz. The low repetition rate seed oscillator eliminated extra devices such as AO pulse picker. Two-stage fiber amplifier was used to boost pulse energy to 0.65 µJ with chirped pulse amplification.

  12. Rapid vaporization of kidney stones, ex vivo, using a Thulium fiber laser at pulse rates up to 500 Hz with a stone basket

    NASA Astrophysics Data System (ADS)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Holmium:YAG laser (λ = 2120 nm) is currently the preferred laser for fragmenting kidney stones in the clinic. However, this laser has some limitations, including operation at low pulse rates and a multimode spatial beam profile which prohibits its use with smaller, more flexible optical fibers. Our laboratory is studying the Thulium fiber laser (λ = 1908 nm) as an alternative lithotripter. The TFL has several advantages, including lower stone ablation thresholds, use with smaller and more flexible fibers, and operation at arbitrary pulse lengths and pulse rates. Previous studies have reported increased stone ablation rates with TFL operation at higher pulse rates, however, stone retropulsion remains an obstacle to even more efficient stone ablation. This study explores TFL operation at high pulse rates in combination with a stone stabilization device (e.g. stone basket) for improved efficiency. A TFL beam with pulse energy of 35 mJ, pulse duration of 500-μs, and pulse rates of 10-500 Hz was coupled into 100-μm-core, low-OH, silica fibers, in contact mode with uric acid and calcium oxalate monohydrate stones, ex vivo. TFL operation at 500 Hz produced UA and COM stone ablation rates up to 5.0 mg/s and 1.3 mg/s, respectively. High TFL pulse rates produced increased stone ablation rates sufficient for use in the clinic.

  13. Contamination removal rates in pulsed and steady-flow aquifer sparging

    SciTech Connect

    Payne, F.C.; Blaske, A.R.; VanHouten, G.A.

    1995-12-31

    A field experiment was conducted to determine whether pulsed-injection aquifer sparging induced greater mass transfer of trichloroethylene (TCE) than steady-flow sparge air injection in the same location. Current literature indicates that, despite an increase in air-water interfacial surface area induced by sparge air injection, mass transfer of volatile contaminants from aqueous to gaseous phase is limited by aqueous-phase diffusion rates. It was hypothesized that pulsed sparge air injection would induce bulk water movement, minimizing the mass transfer rate limitation caused by aqueous-phase diffusion. This effect was expected to be observed through an increase in the rate of TCE concentration reductions as the experimental system shifted from steady to pulsed-flow operation. Experimental results showed highly variable groundwater TCE concentrations during steady-flow operations. Average TCE concentrations increased slightly during the steady-flow trials at both 1.5- and 3.0-m radial distances from the sparge well, but the increases were not significant. During the pulsed-flow trial, a significant decline in TCE concentrations was observed at the 1.5-m radius. At the 3.0-m radius, a slight decline was observed, which was not significant.

  14. Cellular response to high pulse repetition rate nanosecond pulses varies with fluorescent marker identity.

    PubMed

    Steelman, Zachary A; Tolstykh, Gleb P; Beier, Hope T; Ibey, Bennett L

    2016-09-23

    Nanosecond electric pulses (nsEP's) are a well-studied phenomena in biophysics that cause substantial alterations to cellular membrane dynamics, internal biochemistry, and cytoskeletal structure, and induce apoptotic and necrotic cell death. While several studies have attempted to measure the effects of multiple nanosecond pulses, the effect of pulse repetition rate (PRR) has received little attention, especially at frequencies greater than 100 Hz. In this study, uptake of Propidium Iodide, FM 1-43, and YO-PRO-1 fluorescent dyes in CHO-K1 cells was monitored across a wide range of PRRs (5 Hz-500 KHz) using a laser-scanning confocal microscope in order to better understand how high frequency repetition rates impact induced biophysical changes. We show that frequency trends depend on the identity of the dye under study, which could implicate transmembrane protein channels in the uptake response due to their chemical selectivity. Finally, YO-PRO-1 fluorescence was monitored in the presence of Gadolinium (Gd(3+)), Ruthenium Red, and in calcium-free solution to elucidate a mechanism for its unique frequency trend. Published by Elsevier Inc.

  15. MICROCALORIMETER SPECTROSCOPY AT HIGH PULSE RATES: A MULTI-PULSE FITTING TECHNIQUE

    SciTech Connect

    Fowler, J. W.; Alpert, B. K.; Doriese, W. B.; Joe, Y. I.; O’Neil, G. C.; Swetz, D. S.; Ullom, J. N.; Fischer, D. A.; Jaye, C.

    2015-08-15

    Transition Edge Sensor microcalorimeters can measure X-ray and gamma-ray energies with very high energy resolution and high photon-collection efficiency. For this technology to reach its full potential in future X-ray observatories, each sensor must be able to measure hundreds or even thousands of photon energies per second. Current “optimal filtering” approaches to achieve the best possible energy resolution work only for photons that are well isolated in time, a requirement which is in direct conflict with the need for high-rate measurements. We describe a new analysis procedure to allow fitting for the pulse height of all photons even in the presence of heavy pulse pile-up. In the limit of isolated pulses, the technique reduces to standard optimal filtering with long records. We employ reasonable approximations to the noise covariance function in order to render this procedure computationally viable even for very long data records. The technique is employed to analyze X-ray emission spectra at 600 eV and 6 keV at rates up to 250 counts s{sup −1} in microcalorimeters having exponential signal decay times of approximately 1.2 ms.

  16. Microcalorimeter Spectroscopy at High Pulse Rates: A Multi-pulse Fitting Technique

    NASA Astrophysics Data System (ADS)

    Fowler, J. W.; Alpert, B. K.; Doriese, W. B.; Fischer, D. A.; Jaye, C.; Joe, Y. I.; O'Neil, G. C.; Swetz, D. S.; Ullom, J. N.

    2015-08-01

    Transition Edge Sensor microcalorimeters can measure X-ray and gamma-ray energies with very high energy resolution and high photon-collection efficiency. For this technology to reach its full potential in future X-ray observatories, each sensor must be able to measure hundreds or even thousands of photon energies per second. Current “optimal filtering” approaches to achieve the best possible energy resolution work only for photons that are well isolated in time, a requirement which is in direct conflict with the need for high-rate measurements. We describe a new analysis procedure to allow fitting for the pulse height of all photons even in the presence of heavy pulse pile-up. In the limit of isolated pulses, the technique reduces to standard optimal filtering with long records. We employ reasonable approximations to the noise covariance function in order to render this procedure computationally viable even for very long data records. The technique is employed to analyze X-ray emission spectra at 600 eV and 6 keV at rates up to 250 counts s-1 in microcalorimeters having exponential signal decay times of approximately 1.2 ms.

  17. Residual gas analysis for long-pulse, advanced tokamak operation.

    PubMed

    Klepper, C C; Hillis, D L; Bucalossi, J; Douai, D; Oddon, P; Vartanian, S; Colas, L; Manenc, L; Pégourié, B

    2010-10-01

    A shielded residual gas analyzer (RGA) system on Tore Supra can function during plasma operation and is set up to monitor the composition of the neutral gas in one of the pumping ducts of the toroidal pumped limited. This "diagnostic RGA" has been used in long-pulse (up to 6 min) discharges for continuous monitoring of up to 15 masses simultaneously. Comparison of the RGA-measured evolution of the H(2)/D(2) isotopic ratio in the exhaust gas to that measured by an energetic neutral particle analyzer in the plasma core provides a way to monitor the evolution of particle balance. RGA monitoring of corrective H(2) injection to maintain proper minority heating is providing a database for improved ion cyclotron resonance heating, potentially with RGA-base feedback control. In very long pulses (>4 min) absence of significant changes in the RGA-monitored, hydrocarbon particle pressures is an indication of proper operation of the actively cooled, carbon-based plasma facing components. Also H(2) could increase due to thermodesorption of overheated plasma facing components.

  18. Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication.

    PubMed

    Chen, Jian; Sickler, Jason W; Fendel, Peter; Ippen, Erich P; Kärtner, Franz X; Wilken, Tobias; Holzwarth, Ronald; Hänsch, Theodor W

    2008-05-01

    Generation of low-timing-jitter 150 fs pulse trains at 1560 nm with 2 GHz repetition rate is demonstrated by locking a 200 MHz fundamental polarization additive-pulse mode-locked erbium fiber laser to high-finesse external Fabry-Perot cavities. The timing jitter and relative intensity noise of the repetition-rate multiplied pulse train are investigated.

  19. NOx diesel exhaust treatment using a pulsed corona discharge: the pulse repetition rate effect

    NASA Astrophysics Data System (ADS)

    Yankelevich, Y.; Wolf, M.; Baksht, R.; Pokryvailo, A.; Vinogradov, J.; Rivin, B.; Sher, E.

    2007-05-01

    The pulsed corona offers real promise for degradation of pollutants in gas and water streams. This paper presents a study of NOx removal from diesel exhaust. Special emphasis is laid on the investigation of the dependence of the NO removal rate and efficiency on the pulse repetition rate (PRR). A nanosecond solid state power supply (45 kV, 60 ns, up to 1 kHz) was used for driving the corona reactor. A Mitsubishi 10 kW 3-cylinder diesel-generator engine with a total volume of 1300 cm3 was used as a source of exhaust gas. At an NO removal rate of 35% the NO removal efficiency was 53 g kW-1h-1 for PRR = 500 Hz and the initial NO concentration was 375 ppm. A semi-empirical expression for the corona reactor removal efficiency related both to PRR and to the residence time is presented. The removal efficiency decreases with increasing PRR at constant flow rate or constant residence time. This expression demonstrates reasonable agreement between the calculation results and the experimental data.

  20. Commissioning of a kW-class nanosecond pulsed DPSSL operating at 105 J, 10 Hz

    NASA Astrophysics Data System (ADS)

    Mason, Paul; Divoký, Martin; Butcher, Thomas; Pilař, Jan; Ertel, Klaus; Hanuš, Martin; De Vido, Mariastefania; Banerjee, Saumyabrata; Phillips, Jonathan; Smith, Jodie; Hollingham, Ian; Muresan, Mihai-George; Landowski, Brian; Suarez-Merchan, Jorge; Thomas, Adrian; Dominey, Mark; Benson, Luke; Lintern, Andrew; Costello, Billy; Tomlinson, Stephanie; Blake, Steve; Tyldesley, Mike; Lucianetti, Antonio; Hernandez-Gomez, Cristina; Edwards, Chris; Mocek, Tomas; Collier, John

    2017-05-01

    In this paper we present details of the commissioning of DiPOLE100, a kW-class nanosecond pulsed diode pumped solid state laser (DPSSL), at the HiLASE Centre at Dolní Břežany in the Czech Republic. The laser system, built at the Central Laser Facility (CLF), was dismantled, packaged, shipped and reassembled at HiLASE over a 12 month period by a collaborative team from the CLF and HiLASE. First operation of the laser at the end of 2016 demonstrated amplification of 10 ns pulses at 10 Hz pulse repetition rate to an energy of 105 J at 1029.5 nm, representing the world's first kW average power, high-energy, nanosecond pulsed DPSSL. To date DiPOLE100 has been operated for over 2.5 hours at energies in excess of 100 J at 10 Hz, corresponding to nearly 105 shots, and has demonstrated long term energy stability of less than 1% RMS for continuous operation over 1 hour. This confirms the power scalability of multislab cryogenic gas-cooled amplifier technology and demonstrates its potential as a laser driver for next generation scientific, industrial, and medical applications.

  1. Pulse wave transit time for monitoring respiration rate.

    PubMed

    Johansson, A; Ahlstrom, C; Lanne, T; Ask, P

    2006-06-01

    In this study, we investigate the beat-to-beat respiratory fluctuations in pulse wave transit time (PTT) and its subcomponents, the cardiac pre-ejection period (PEP) and the vessel transit time (VTT) in ten healthy subjects. The three transit times were found to fluctuate in pace with respiration. When applying a simple breath detecting algorithm, 88% of the breaths seen in a respiration air-flow reference could be detected correctly in PTT. Corresponding numbers for PEP and VTT were 76 and 81%, respectively. The performance during hypo- and hypertension was investigated by invoking blood pressure changes. In these situations, the error rates in breath detection were significantly higher. PTT can be derived from signals already present in most standard monitoring set-ups. The transit time technology thus has prospects to become an interesting alternative for respiration rate monitoring.

  2. 1030-nm diode-laser-based light source delivering pulses with nanojoule energies and picosecond duration adjustable by mode locking or pulse gating operation

    NASA Astrophysics Data System (ADS)

    Klehr, A.; Liero, A.; Wenzel, H.; Bugge, F.; Brox, O.; Fricke, J.; Ressel, P.; Knigge, A.; Heinrich, W.; Tränkle, G.

    2017-02-01

    A new compact 1030 nm picosecond light source which can be switched between pulse gating and mode locking operation is presented. It consists of a multi-section distributed Bragg reflector (DBR) laser, an ultrafast multisection optical gate and a flared power amplifier (PA), mounted together with high frequency electronics and optical elements on a 5×4 cm micro bench. The master oscillator (MO) is a 10 mm long ridge wave-guide (RW) laser consisting of 200 μm long saturable absorber, 1500 μm long gain, 8000 μm long cavity, 200 μm long DBR and 100 μm long monitor sections. The 2 mm long optical gate consisting of several RW sections is monolithically integrated with the 4 mm long gain-guided tapered amplifier on a single chip. The light source can be switched between pulse gating and passive mode locking operation. For pulse gating all sections of the MO (except of the DBR and monitor sections) are forward biased and driven by a constant current. By injecting electrical pulses into one section of the optical gate the CW beam emitted by the MO is converted into a train of optical pulses with adjustable widths between 250 ps and 1000 ps. Peak powers of 20 W and spectral linewidths in the MHz range are achieved. Shorter pulses with widths between 4 ps and 15 ps and peak powers up to 50 W but larger spectral widths of about 300 pm are generated by mode locking where the saturable absorber section of the MO is reversed biased. The repetition rate of 4.2 GHz of the pulse train emitted by the MO can be reduced to values between 1 kHz and 100 MHz by utilizing the optical gate as pulse picker. The pulse-to-pulse distance can be controlled by an external trigger source.

  3. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    SciTech Connect

    Young, W. C. Den Hartog, D. J.

    2014-11-15

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality over a pulsing sequence.

  4. Pulsed magnetic field-electron cyclotron resonance ion source operation

    SciTech Connect

    Muehle, C.; Ratzinger, U.; Joest, G.; Leible, K.; Schennach, S.; Wolf, B.H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. {copyright} {ital 1996 American Institute of Physics.}

  5. Effects of frame rate and image resolution on pulse rate measured using multiple camera imaging photoplethysmography

    NASA Astrophysics Data System (ADS)

    Blackford, Ethan B.; Estepp, Justin R.

    2015-03-01

    Non-contact, imaging photoplethysmography uses cameras to facilitate measurements including pulse rate, pulse rate variability, respiration rate, and blood perfusion by measuring characteristic changes in light absorption at the skin's surface resulting from changes in blood volume in the superficial microvasculature. Several factors may affect the accuracy of the physiological measurement including imager frame rate, resolution, compression, lighting conditions, image background, participant skin tone, and participant motion. Before this method can gain wider use outside basic research settings, its constraints and capabilities must be well understood. Recently, we presented a novel approach utilizing a synchronized, nine-camera, semicircular array backed by measurement of an electrocardiogram and fingertip reflectance photoplethysmogram. Twenty-five individuals participated in six, five-minute, controlled head motion artifact trials in front of a black and dynamic color backdrop. Increasing the input channel space for blind source separation using the camera array was effective in mitigating error from head motion artifact. Herein we present the effects of lower frame rates at 60 and 30 (reduced from 120) frames per second and reduced image resolution at 329x246 pixels (one-quarter of the original 658x492 pixel resolution) using bilinear and zero-order downsampling. This is the first time these factors have been examined for a multiple imager array and align well with previous findings utilizing a single imager. Examining windowed pulse rates, there is little observable difference in mean absolute error or error distributions resulting from reduced frame rates or image resolution, thus lowering requirements for systems measuring pulse rate over sufficient length time windows.

  6. High energy pulsed inductive thruster modeling operating with ammonia propellant

    SciTech Connect

    Mikellides, Pavlos G.; Villarreal, James K.

    2007-11-15

    Numerical modeling of the pulsed inductive thruster operating with ammonia propellant at high energy levels, utilized a time-dependent, two-dimensional, and axisymmetric magnetohydrodynamics code to provide bilateral validation of experiment and theory and offer performance insights for improved designs. The power circuit model was augmented by a plasma voltage algorithm that accounts for the propellant's time-dependent resistance and inductance to properly account for plasma dynamics and was verified using available analytic solutions of two idealized plasma problems. Comparisons of the predicted current waveforms to experimental data exhibited excellent agreement for the initial half-period, essentially capturing the dominant acceleration phase. Further validation proceeded by comparisons of the impulse for three different energy levels, 2592, 4050, and 4608 J and a wide range of propellant mass values. Predicted impulse captured both trends and magnitudes measured experimentally for nominal operation. Interpretation of the modeling results in conjunction to experimental observations further confirm the critical mass phenomenon beyond which efficiency degrades due to elevated internal energy mode deposition and anomalous operation.

  7. Theory and Practice in ICRF Antennas for Long Pulse Operation

    SciTech Connect

    Colas, L.; Bremond, S.; Mitteau, R.; Chantant, M.; Goniche, M.; Basiuk, V.; Bosia, G.; Gunn, J.P.

    2005-09-26

    Long plasma discharges on the Tore Supra (TS) tokamak were extended in 2004 towards higher powers and plasma densities by combined Lower Hybrid (LH) and Ion Cyclotron Range of Frequencies (ICRF) waves. RF pulses of 20sx8MW and 60sx4MW were produced. TS is equipped with 3 ICRF antennas, whose front faces are ready for CW operation. This paper reports on their behaviour over high power long pulses, as observed with infrared (IR) thermography and calorimetric measurements. Edge parasitic losses, although modest, are concentrated on a small surface and can raise surface temperatures close to operational limits. A complex hot spot pattern was revealed with at least 3 physical processes involved : convected power, electron acceleration in the LH near field, and a RF-specific phenomenon compatible with RF sheaths. LH coupling was also perturbed in the antenna shadow. This was attributed to RF-induced DC ExB0 convection. This motivated sheath modelling in two directions. First, the 2D topology of RF potentials was investigated in relation with the RF current distribution over the antenna, via a Green's function formalism and full-wave calculation using the ICANT code. In front of phased arrays of straps, convective cells were interpreted using the RF current profiles of strip line theory. Another class of convective cells, specific to antenna box corners, was evidenced for the first time. Within 1D sheath models assuming independent flux tubes, RF and rectified DC potentials are proportional. 2D fluid models couple nearby flux tubes via transverse polarisation currents. Unexpectedly this does not necessarily smooth RF potential maps. Peak DC potentials can even be enhanced. The experience gained on TS and the numerical tools are valuable for designing steady state high power antennas for next step devices. General rules to reduce RF potentials as well as concrete design options are discussed.

  8. Performance comparison of RZ pulse formats in PDM-16QAM high rates transmissions with optical pre-filtering

    NASA Astrophysics Data System (ADS)

    Silva, E. P.; Carvalho, L. H. H.; Lopes, M. L.; Ribeiro, V. B.; Bordonalli, A. C.; Oliveira, J. C. R. F.

    2013-01-01

    The digitally modulated signals spectral density depends directly on pulse format used for information symbols transmission. The modulated signal spectral occupancy can be modified according to the channel frequency response to facilitate information retrieval at the receiver. New generation of coherent optical transmission systems operating at high rates are subject to various bandwidth restrictions aspects, such as electronic components limitations and optical filtering via ROADMs deployed on networks. As noted in technical literature, the RZ pulse formats have some advantages compared to traditional NRZ pulses in optical fiber transmissions. In particular, RZ pulses have a better performance in situations where nonlinear effects of the fiber severely impact the quality of transmission. Among other situations, this occurs in systems that employ modulation formats for high order QAM (16QAM, 64QAM, etc.). Moreover, since RZ pulses have shorter duty cycle, temporal spread of the transmitted symbols causes less performance degradation due to ISI compared with NRZ pulses. This report presents results of experiments carried out in a 226 km recirculation loop, to evaluate the performance of NRZ, RZ 67%, 50% RZ and RZ 33% pulse shapes in a transmission of DP-16QAM (or PDM-16QAM). As application it is proposed and experimentally demonstrated a transmission system that employ 28 GBaud dual carrier PDM-16QAM channels operating with a total line rate of 448 Gb/s each, utilizing RZ pulse format and carrier narrow pre-filtering to increase spectral efficiency of transmission, aggregating a 400G channel in a 75 GHz WDM grid.

  9. Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz.

    PubMed

    Finger, Johannes; Reininghaus, Martin

    2014-07-28

    We report on the effect of pulse to pulse interactions during percussion drilling of steel using high power ps-laser radiation with repetition rates of up to 10 MHz and high average powers up to 80 W. The ablation rate per pulse is measured as a function of the pulse repetition rate for four fluences ranging from 500 mJ/cm2 up to 1500 mJ/cm2. For every investigated fluence an abrupt increase of the ablation rate per pulse is observed at a distinctive repetition rate. The onset repetition rate for this effect is strongly dependent on the applied pulse fluence. The origin of the increase of the ablation rate is attributed to the emergence of a melt based ablation processes, as Laser Scanning Microscopy (LSM) images show the occurrence of melt ejected material surrounding the drilling holes. A semi empirical model based on classical heat conduction including heat accumulation as well as pulse-particle interactions is applied to enable quantitative conclusions on the origin of the observed data. In agreement with previous studies, the acquired data confirm the relevance of these two effects for the fundamental description of materials processing with ultra-short pulsed laser radiation at high repetition rates and high average power.

  10. Neodymium glass laser with a pulse energy of 220 J and a pulse repetition rate of 0.02 Hz

    SciTech Connect

    Kuzmin, A A; Kulagin, O V; Khazanov, Efim A; Shaykin, A A

    2013-07-31

    A compact neodymium glass laser with a pulse energy of 220 J and a record-high pulse repetition rate of 0.02 Hz (pulse duration 30 ns) is developed. Thermally induced phase distortions are compensated using wave phase conjugation. The integral depolarisation of radiation is decreased to 0.4% by using linear compensation schemes. The second harmonic of laser radiation can be used for pumping Ti : sapphire multipetawatt complexes. (letters)

  11. Comparison of pulse rate variability with heart rate variability during obstructive sleep apnea.

    PubMed

    Khandoker, Ahsan H; Karmakar, Chandan K; Palaniswami, Marimuthu

    2011-03-01

    We investigate whether pulse rate variability (PRV) extracted from finger photo-plethysmography (Pleth) waveforms can be the substitute of heart rate variability (HRV) from RR intervals of ECG signals during obstructive sleep apnea (OSA). Simultaneous measurements (ECG and Pleth) were taken from 29 healthy subjects during normal (undisturbed sleep) breathing and 22 patients with OSA during OSA events. Highly significant (p<0.01) correlations (1.0>r>0.95) were found between heart rate (HR) and pulse rate (PR). Bland-Altman plot of HR and PR shows good agreement (<5% difference). Comparison of 2 min recording epochs demonstrated significant differences (p<0.01) in time, frequency domains and complexity analysis, between normal and OSA events using PRV as well as HRV measures. Results suggest that both HRV and PRV indices could be used to distinguish OSA events from normal breathing during sleep. However, several variability measures (SDNN, RMSSD, HF power, LF/HF and sample entropy) of PR and HR were found to be significantly (p<0.01) different during OSA events. Therefore, we conclude that PRV provides accurate inter-pulse variability to measure heart rate variability under normal breathing in sleep but does not precisely reflect HRV in sleep disordered breathing. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. A short pulse (7 {mu}s FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    SciTech Connect

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; Janssen, Maurice H. M.; Ende, Daan A. van den; Groen, Wilhelm A.

    2009-11-15

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 {mu}s have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 {mu}m nozzle releases about 10{sup 16} particles/pulse and the beam brightness was estimated to be 4x10{sup 22} particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10{sup -6} Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow ({Delta}v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas

  13. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NASA Astrophysics Data System (ADS)

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A.; Groen, Wilhelm A.; Janssen, Maurice H. M.

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 μs have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 μm nozzle releases about 1016 particles/pulse and the beam brightness was estimated to be 4×1022 particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5×10-6 Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Δv /v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the cantilever

  14. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams.

    PubMed

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A; Groen, Wilhelm A; Janssen, Maurice H M

    2009-11-01

    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 micros have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 microm nozzle releases about 10(16) particles/pulse and the beam brightness was estimated to be 4x10(22) particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10(-6) Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Delta v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the

  15. High Repetition Rate Grazing Incidence Pumped X-ray Laser operating at 18.9 nm

    SciTech Connect

    Keenan, R; Dunn, J; Patel, P K; Price, D F; Smith, R F; Shlyaptsev, V N

    2004-05-11

    We have demonstrated a 10 Hz Ni-like Mo X-ray laser operating at 18.9 nm with 150 mJ total pump energy by employing a novel pumping scheme. The grazing incidence scheme is described, where a picosecond pulse is incident at a grazing angle to a Mo plasma column produced by a slab target irradiated by a 200 ps laser pulse. This scheme uses refraction of the short pulse at a pre-determined electron density to increase absorption to pump a specific gain region. The high efficiency inherent to this scheme allows a reduction in the pump energy where 70 mJ long pulse energy and 80 mJ short pulse energy are sufficient to produce lasing at a 10 Hz repetition rate. Under these conditions and by optimizing the delay between the pulses, we achieve strong amplification and saturation for 4 mm long targets.

  16. Femtosecond laser pulse shaping at megahertz rate via a digital micromirror device.

    PubMed

    Gu, Chenglin; Chang, Yina; Zhang, Dapeng; Cheng, Jiyi; Chen, Shih-Chi

    2015-09-01

    In this Letter, we present a scanner and digital micromirror device (DMD)-based ultrafast pulse shaper, i.e., S-DUPS, for programmable ultrafast pulse modulation, achieving a shaping rate of 2 MHz. To our knowledge, the S-DUPS is the fastest programmable pulse shaper reported to date. In the S-DUPS, the frequency spectrum of the input pulsed laser is first spread horizontally, and then mapped to a thin stripe on the DMD programmed with phase modulation patterns. A galvanometric scanner, synchronized with the DMD, subsequently scans the spectrum vertically on the DMD to achieve a shaping rate up to 10 s MHz. A grating pair and a cylindrical lens in front of the DMD compensate for the temporal and spatial dispersion of the system. To verify the concept, experiments were conducted with the DMD and the galvanometric scanner operated at 2 kHz and 1 kHz, respectively, achieving a 2 MHz speed for continuous group velocity dispersion tuning, as well as 2% efficiency. Up to 5% efficiency of S-DUPS can be expected with high efficiency gratings and optical components of proper coatings.

  17. Noncontact imaging photoplethysmography to effectively access pulse rate variability

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hu, Sijung; Azorin-Peris, Vicente; Kalawsky, Roy; Greenwald, Stephen

    2013-06-01

    Noncontact imaging photoplethysmography (PPG) can provide physiological assessment at various anatomical locations with no discomfort to the patient. However, most previous imaging PPG (iPPG) systems have been limited by a low sample frequency, which restricts their use clinically, for instance, in the assessment of pulse rate variability (PRV). In the present study, plethysmographic signals are remotely captured via an iPPG system at a rate of 200 fps. The physiological parameters (i.e., heart and respiration rate and PRV) derived from the iPPG datasets yield statistically comparable results to those acquired using a contact PPG sensor, the gold standard. More importantly, we present evidence that the negative influence of initial low sample frequency could be compensated via interpolation to improve the time domain resolution. We thereby provide further strong support for the low-cost webcam-based iPPG technique and, importantly, open up a new avenue for effective noncontact assessment of multiple physiological parameters, with potential applications in the evaluation of cardiac autonomic activity and remote sensing of vital physiological signs.

  18. Versatile analog pulse height computer performs real-time arithmetic operations

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Strauss, M. G.

    1967-01-01

    Multipurpose analog pulse height computer performs real-time arithmetic operations on relatively fast pulses. This computer can be used for identification of charged particles, pulse shape discrimination, division of signals from position sensitive detectors, and other on-line data reduction techniques.

  19. The effects of pulse rate, power, width and coding on signal detectability

    NASA Technical Reports Server (NTRS)

    Carter, D. A.

    1983-01-01

    The effects on the signal detectability of varying the pulse repetition rate (PRF), peak pulse power (p(pk)) and pulse width (tau(p)) (tp) are examined. Both coded and uncoded pulses are considered. The following quantities are assumed to be constant; (1) antenna area, (z)echo reflectivity, (3) Doppler shift, (4) spectral width, (5) spectral resolution, (6) effective sampling rate, and (7) total incoherent spectral averagaing time. The detectability is computed for two types of targets.

  20. Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser.

    PubMed

    Mangold, Mario; Zaugg, Christian A; Link, Sandro M; Golling, Matthias; Tilma, Bauke W; Keller, Ursula

    2014-03-10

    The high-power semiconductor laser studied here is a modelocked integrated external-cavity surface emitting laser (MIXSEL), which combines the gain of vertical-external-cavity surface-emitting lasers (VECSELs) with the saturable absorber of a semiconductor saturable absorber mirror (SESAM) in a single semiconductor layer stack. The MIXSEL concept allows for stable and self-starting fundamental passive modelocking in a simple straight cavity and the average power scaling is based on the semiconductor disk laser concept. Previously record-high average output power from an optically pumped MIXSEL was demonstrated, however the long pulse duration of 17 ps prevented higher pulse repetition rates and many interesting applications such as supercontinuum generation and broadband frequency comb generation. With a novel MIXSEL structure, the first femtosecond operation was then demonstrated just recently. Here we show that such a MIXSEL can also support pulse repetition rate scaling from ≈5 GHz to >100 GHz with excellent beam quality and high average output power, by mechanically changing the cavity length of the linear straight cavity and the output coupler. Up to a pulse repetition rate of 15 GHz we obtained average output power >1 W and pulse durations <4 ps. Furthermore we have been able to demonstrate the highest pulse repetition rate from any fundamentally modelocked semiconductor disk laser with 101.2 GHz at an average output power of 127 mW and a pulse duration of 570 fs.

  1. An Operational Wake Vortex Sensor Using Pulsed Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, D. Chi

    1998-01-01

    more recently, including a system developed by the MIT Lincoln Laboratory. This lidar has been used for detailed measurements of wake vortex velocities in support of wake vortex model validation. The first measurements of wake vortices using a pulsed, lidar were made by Coherent Technologies, Inc. (CTI) using a 2 micron solid-state, flashlamp-pumped system operating at 5 Hz. This system was first deployed at Denver's Stapleton Airport. Pulsed lidar has been selected as the baseline technology for an operational sensor due to its longer range capability.

  2. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    PubMed

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  3. Comment on 'Photoplethysmography sampling frequency: pilot assessment of how low can we go to analyze pulse rate variability with reliability?'

    PubMed

    Hejjel, László

    2017-10-12

    Accurate pulse rate detection is essential for reliable pulse rate variability analysis. On the other hand, minimizing the sampling frequency is essential to reduce the amounts of data and computational needs, and consequently power consumption of mobile/wearable devices extending their operating hours. Determining variability of physiological parameters needs a new paradigm since there is a limited possibility of calculating an average eliminating random error of measurement. Finding the optimal sampling rate depends on the actual investigation, the expected variability and variability-changes of the study-population. © 2017 Institute of Physics and Engineering in Medicine.

  4. Operational Characteristics of an SCR-Based Pulse Generating Circuit

    DTIC Science & Technology

    2014-12-01

    of the SCR in such a. circuit was investigated and the values of load resistance and capacitance varied to ascertain their role on the pulse-generat...circuit was investigated and the values of load resistance and capacitance varied to ascertain their role on the pulse-generating capability of the...19 A. REVERSE CURRENT OBSERVATIONS DURING SWITCHING .......19 B. EFFECT OF CAPACITANCE ON PULSING

  5. Radiobiological response to ultra-short pulsed megavoltage electron beams of ultra-high pulse dose rate.

    PubMed

    Beyreuther, Elke; Karsch, Leonhard; Laschinsky, Lydia; Leßmann, Elisabeth; Naumburger, Doreen; Oppelt, Melanie; Richter, Christian; Schürer, Michael; Woithe, Julia; Pawelke, Jörg

    2015-08-01

    In line with the long-term aim of establishing the laser-based particle acceleration for future medical application, the radiobiological consequences of the typical ultra-short pulses and ultra-high pulse dose rate can be investigated with electron delivery. The radiation source ELBE (Electron Linac for beams with high Brilliance and low Emittance) was used to mimic the quasi-continuous electron beam of a clinical linear accelerator (LINAC) for comparison with electron pulses at the ultra-high pulse dose rate of 10(10) Gy min(-1) either at the low frequency of a laser accelerator or at 13 MHz avoiding effects of prolonged dose delivery. The impact of pulse structure was analyzed by clonogenic survival assay and by the number of residual DNA double-strand breaks remaining 24 h after irradiation of two human squamous cell carcinoma lines of differing radiosensitivity. The radiation response of both cell lines was found to be independent from electron pulse structure for the two endpoints under investigation. The results reveal, that ultra-high pulse dose rates of 10(10) Gy min(-1) and the low repetition rate of laser accelerated electrons have no statistically significant influence (within the 95% confidence intervals) on the radiobiological effectiveness of megavoltage electrons.

  6. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    NASA Astrophysics Data System (ADS)

    Willert, C.; Stasicki, B.; Klinner, J.; Moessner, S.

    2010-07-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated.

  7. Attachable Pulse Sensors Integrated with Inorganic Optoelectronic Devices for Monitoring Heart Rates at Various Body Locations.

    PubMed

    Kim, Juho; Kim, Namyun; Kwon, Minjeong; Lee, Jongho

    2017-08-09

    Monitoring cardiovascular signals such as heart rate and blood flow provides critically important healthcare information about patients under medical care. However, when the sensors are worn for extended times, the sensors sometimes require higher mechanical compatibility with soft deformable tissues. In this paper, we report an attachable and flexible pulse sensor (bending radius: 2.4 mm), integrated with micro-inorganic photodetectors (thickness: 4.1 μm, photocurrent: 8.99 μA under 1.5 mW/cm(2)) and a red light emitting diode (620 nm), to monitor vital signals for extended times. Operating in a reflection mode, it can be attached and measure heart pulse waveforms from various locations on the human body including the finger, fingertip, nail, and forearm. The small form factor also enables integration on a finger ring. Electrical and mechanical performance assessments demonstrated the practical feasibility of the concept.

  8. High power high repetition rate VCSEL array side-pumped pulsed blue laser

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni

    2013-03-01

    High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.

  9. Optimization of Electrical Stimulus Pulse Parameter for Low-Power Operation of Retinal Prosthetic Device

    NASA Astrophysics Data System (ADS)

    Furumiya, Tetsuo; Yamamoto, Shinya; Kagawa, Keiichiro; Tokuda, Takashi; Nunoshita, Masahiro; Ohta, Jun

    2006-05-01

    In this paper, we describe the investigation of an electrical stimulus pulse parameter for use in a low-power retinal prosthesis. To obtain efficient stimulus pulse parameters, in vitro electrical stimulus experiments with a detached frog retina were performed using a fabricated pulse-frequency modulation (PFM) image sensor as a retinal prosthesis. The evaluated electrical stimulus pulse parameters were pulse duration, pulse amplitude, and the number of pulses. From the experiments, the firing rate of the retinal ganglion cells (retinal ganglion cells; RGCs) was observed to depend on the injection charge in single-pulse stimulation and the injection charge of the first pulse in pulse-train stimulation. In addition, pulse-train stimulation was found to have a RGC firing rate lower than that of single-pulse stimulation at the same injection charge. From power consumption measurements and an in vitro experiment, it was verified that the stimulus pulse of a short-pulse duration is suitable for use in a low-power retinal prosthesis.

  10. Improving Reliability of High Power Quasi-CW Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Operating high power laser diode arrays in long pulse regime of about 1 msec, which is required for pumping 2-micron thulium and holmium-based lasers, greatly limits their useful lifetime. This paper describes performance of laser diode arrays operating in long pulse mode and presents experimental data of the active region temperature and pulse-to-pulse thermal cycling that are the primary cause of their premature failure and rapid degradation. This paper will then offer a viable approach for determining the optimum design and operational parameters leading to the maximum attainable lifetime.

  11. Theory of repetitively pulsed operation of diode lasers subject to delayed feedback

    SciTech Connect

    Napartovich, A P; Sukharev, A G

    2015-03-31

    Repetitively pulsed operation of a diode laser with delayed feedback has been studied theoretically at varying feedback parameters and pump power levels. A new approach has been proposed that allows one to reduce the system of Lang–Kobayashi equations for a steady-state repetitively pulsed operation mode to a first-order nonlinear differential equation. We present partial solutions that allow the pulse shape to be predicted. (lasers)

  12. High Pulse Repetition Rate, Eye Safe, Visible Wavelength Lidar Systems: Design, Results and Potential

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Berkoff, Timothy; Welton, Elsworth; Campbell, James; OCStarr, David (Technical Monitor)

    2002-01-01

    In 1993 the first of the eye safe visible wavelength lidar systems known now as Micro Pulse Lidar (MPL) became operational. Since that time there have been several dozen of these systems produced and applied for full time profiling of atmospheric cloud and aerosol structure. There is currently an observational network of MPL sites to support global climate research. In the course of application of these instruments there have been significant improvements in understanding, design and performance of the systems. There are addition potential and applications beyond current practice for the high repetition rate, eye safe designs. The MPL network and the current capability, design and future potential of MPL systems are described.

  13. High Pulse Repetition Rate, Eye Safe, Visible Wavelength Lidar Systems: Design, Results and Potential

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Berkoff, Timothy; Welton, Elsworth; Campbell, James; OCStarr, David (Technical Monitor)

    2002-01-01

    In 1993 the first of the eye safe visible wavelength lidar systems known now as Micro Pulse Lidar (MPL) became operational. Since that time there have been several dozen of these systems produced and applied for full time profiling of atmospheric cloud and aerosol structure. There is currently an observational network of MPL sites to support global climate research. In the course of application of these instruments there have been significant improvements in understanding, design and performance of the systems. There are addition potential and applications beyond current practice for the high repetition rate, eye safe designs. The MPL network and the current capability, design and future potential of MPL systems are described.

  14. Pulse transit time and heart rate variability in sleep staging.

    PubMed

    Shahrbabaki, Sobhan Salari; Ahmed, Beena; Penzel, Thomas; Cvetkovic, Dean

    2016-08-01

    This paper presents a new and robust algorithm for detection of sleep stages by using the lead I of the Electrocardiography (ECG) and a fingertip Photoplethysmography (PPG) sensor, validated using multiple overnight PSG recordings consisting of 20 human subjects (9 insomniac and 11 healthy). Heart Rate Variability (HRV) and Pulse Transit Time (PTT) biomarkers which were extracted from ECG and PPG biosignals then employed to extract features. Distance Weighted k-Nearest Neighbours (DWk-NN) was used as classifier to differentiate sleep epochs. The validation of the algorithm was evaluated by Leave-One-Out-Cross-Validation method. The average accuracy of 73.4% with standard deviation of 6.4 was achieved while the algorithm could distinguish stages 2, 3 of non-rapid eye movement sleep by average sensitivity of almost 80%. The lowest mean sensitivity of 53% was for stage 1. These results demonstrate that an algorithm based on PTT and HRV spectral analysis is able to classify and distinguish sleep stages with high accuracy and sensitivity. In addition the proposed algorithm is capable to be improved and implemented as a wearable, comfortable and cheap instrument for sleep screening.

  15. Computer-Vision-Guided Human Pulse Rate Estimation: A Review.

    PubMed

    Sikdar, Arindam; Behera, Santosh Kumar; Dogra, Debi Prosad

    2016-01-01

    Human pulse rate (PR) can be estimated in several ways, including measurement instruments that directly count the PR through contact- and noncontact-based approaches. Over the last decade, computer-vision-assisted noncontact-based PR estimation has evolved significantly. Such techniques can be adopted for clinical purposes to mitigate some of the limitations of contact-based techniques. However, existing vision-guided noncontact-based techniques have not been benchmarked with respect to a challenging dataset. In view of this, we present a systematic review of such techniques implemented over a uniform computing platform. We have simultaneously recorded the PR and video of 14 volunteers. Five sets of data have been recorded for every volunteer using five different experimental conditions by varying the distance from the camera and illumination condition. Pros and cons of the existing noncontact image- and video-based PR techniques have been discussed with respect to our dataset. Experimental evaluation suggests that image- or video-based PR estimation can be highly effective for nonclinical purposes, and some of these approaches are very promising toward developing clinical applications. The present review is the first in this field of contactless vision-guided PR estimation research.

  16. Measuring pulse rate variability using long-range, non-contact imaging photoplethysmography.

    PubMed

    Blackford, Ethan B; Piasecki, Alyssa M; Estepp, Justin R

    2016-08-01

    Camera-based measurement of the blood volume pulse via non-contact, imaging photoplethysmography is a very popular approach for measuring pulse rate using a remote imaging sensor. Comparatively less attention has been paid to the usefulness of the method for measuring features of pulse rate variability, and even less focus has been put on the accuracy of any cardiac activity feature that can be achieved at long imager-to-subject distances. In this study, video was recorded from 19 participants, while at rest, at a distance of 25 meters from the imaging sensor. A digital camera was used to record video while cardiovascular measures of both electrical and optical physiological ground truth were recorded. Pulse rate data obtained from the imager using a common blind source separation and periodogram approach were compared to physiological ground truth signals. The quality of the recovered blood volume pulse morphology was sufficient to calculate time-domain measures of pulse rate using inter-pulse interval (IPI) time series. Following this, several features of pulse rate variability were calculated from the IPI time series and compared to those calculated from the corresponding physiological ground truth signals. Use of the time-domain data as compared to the periodogram approach to measure pulse rate reduced the error in the estimate from 1.6 to 0.2 beats per minute. Correlation analysis (r2) between the camera-based measures of pulse rate variability and ECG-derived heart rate variability ranged from 0.779 to 0.973; these results are of comparable outcome to those obtained at imager-to-subject distances of no more than 3 meters. This study demonstrates that pulse rates of less than one beat-per-minute error can be obtained when the recovered blood volume pulse morphology is of adequate quality to resolve systolic onsets for individual cardiac cycles. Further, this approach can yield data of very promising quality for estimating measures of pulse rate variability.

  17. High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Uprendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta; Petzar, Paul J.; Trieu, Bo C.; Lee, Hyung

    2009-01-01

    A high repetition rate, highly efficient, Q-switched 2-micron laser system as the transmitter of a coherent differential absorption lidar for CO2 measurement has been developed at NASA Langley Research Center. Such a laser transmitter is a master-slave laser system. The master laser operates in a single frequency, either on-line or off-line of a selected CO2 absorption line. The slave laser is a Q-switched ring-cavity Ho:YLF laser which is pumped by a Tm:fiber laser. The repetition rate can be adjusted from a few hundred Hz to 10 kHz. The injection seeding success rate is from 99.4% to 99.95%. For 1 kHz operation, the output pulse energy is 5.5mJ with the pulse length of approximately 50 ns. The optical-to-optical efficiency is 39% when the pump power is 14.5W. The measured standard deviation of the laser frequency jitter is about 3 MHz.

  18. Selective phonotaxis to high sound-pulse rate in the cricket Gryllus assimilis.

    PubMed

    Pollack, Gerald S; Kim, Jin Sung

    2013-04-01

    Calling song of the cricket Gryllus assimilis is unusual among Gryllus spp. in the high sound-pulse rate, ca. 80 Hz, within its chirps. We asked whether, as in other cricket species, females were able to analyze such a high pulse rate. In phonotaxis experiments, females failed to respond to stimuli with pulse rates substantially higher or lower than the species-typical value, demonstrating that they are indeed selective for this parameter. We also examined how pulse rate was represented by modulation in firing rate of the neuron AN1, the main carrier of information about cricket-song-like stimuli to the brain. For attractive stimuli, i.e. with high pulse rates, modulation of AN1 firing rate through time was surprisingly modest. This suggests that the brain circuits that analyze AN1 spike trains might be more sensitive to slight variations in AN1 firing rate than their counterparts in more slowly singing species.

  19. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes.

    PubMed

    Li, Jianfeng; Zhang, Zuxing; Sun, Zhongyuan; Luo, Hongyu; Liu, Yong; Yan, Zhijun; Mou, Chengbo; Zhang, Lin; Turitsyn, Sergei K

    2014-04-07

    A self-starting all-fiber passively mode-locked Tm(3+)-doped fiber laser based on nonlinear loop mirror (NOLM) is demonstrated. Stable soliton pulses centered at 2017.33 nm with 1.56 nm FWHM were produced at a repetition rate of 1.514 MHz with pulse duration of 2.8 ps and pulse energy of 83.8 pJ. As increased pump power, the oscillator can also operate at noise-like (NL) regime. Stable NL pulses with coherence spike width of 341 fs and pulse energy of up to 249.32 nJ was achieved at a center wavelength of 2017.24 nm with 21.33 nm FWHM. To the best of our knowledge, this is the first 2 µm region NOLM-based mode-locked fiber laser operating at two regimes with the highest single pulse energy for NL pulses.

  20. Comparison of Pulse Rate Variability and Heart Rate Variability for Hypoglycemia Syndrome.

    PubMed

    Okkesim, Şükrü; Çelik, Gamze; Yıldırım, Mustafa S; İlhan, Mahmut M; Karaman, Özcan; Taşan, Ertuğrul; Kara, Sadık

    2016-05-17

    Heart rate variability (HRV) is a signal obtained from RR intervals of electrocardiography (ECG) signals to evaluate the balance between the sympathetic nervous system and the parasympathetic nervous system; not only HRV but also pulse rate variability (PRV) extracted from finger pulse plethysmography (PPG) can reflect irregularities that may occur in heart rate and control procedures. The purpose of this study is to compare the HRV and PRV during hypoglycemia in order to evaluate the features that computed from PRV that can be used in detection of hypoglycemia. To this end, PRV and HRV of 10 patients who required testing with insulin-induced hypoglycemia (IIHT) in Clinics of Endocrinology and Metabolism Diseases of Bezm-i Alem University (Istanbul, Turkey), were obtained. The recordings were done at three stages: prior to IIHT, during the IIHT, and after the IIHT. We used Bland-Altman analysis for comparing the parameters and to evaluate the correlation between HRV and PRV if exists. Significant correlation (r > 0.90, p < 0.05) and close agreement were found between HRV and PRV for mean intervals, the root-mean square of the difference of successive intervals, standard deviation of successive intervals and the ratio of the low-to-high frequency power. In conclusion, all the features computed from PRV and HRV have close agreement and correlation according to Bland-Altman analyses' results and features computed from PRV can be used in detection of hypoglycemia.

  1. Note: Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints

    SciTech Connect

    Alpert, B. K.; Horansky, R. D.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Ullom, J. N.; Hoover, A. S.; Rabin, M. W.

    2013-05-15

    Microcalorimeter sensors operated near 0.1 K can measure the energy of individual x- and gamma-ray photons with significantly more precision than conventional semiconductor technologies. Both microcalorimeter arrays and higher per pixel count rates are desirable to increase the total throughput of spectrometers based on these devices. The millisecond recovery time of gamma-ray microcalorimeters and the resulting pulse pileup are significant obstacles to high per pixel count rates. Here, we demonstrate operation of a microcalorimeter detector at elevated count rates by use of convolution filters designed to be orthogonal to the exponential tail of a preceding pulse. These filters allow operation at 50% higher count rates than conventional filters while largely preserving sensor energy resolution.

  2. Speech perception performance as a function of stimulus pulse rate and processing strategy preference for the Cochlear Nucleus CI24RE device: relation to perceptual threshold and loudness comfort profiles.

    PubMed

    Battmer, Rolf-Dieter; Dillier, Norbert; Lai, Wai Kong; Begall, Klaus; Leypon, Elisabeth Estrada; González, Juan C Falcón; Manrique, Manuel; Morera, Constantino; Müller-Deile, Joachim; Wesarg, Thomas; Zarowski, Andrzej; Killian, Matthijs J; von Wallenberg, Ernst; Smoorenburg, Guido F

    2010-09-01

    Current cochlear implants can operate at high pulse rates. The effect of increasing pulse rate on speech performance is not yet clear. Habituation to low rates may affect the outcome. This paper presents the results of three subsequent studies using different experimental paradigms, applying the Nucleus CI24RE device, and conducted by ten European implant teams. Pulse rate per channel varied from 500 to 3500 pulses per second with ACE and from 1200 to 3500 pps with CIS strategy. The results showed that the first rate presented had little effect on the finally preferred rate. Lower rates were preferred. The effect of pulse rate on word scores of post-linguistic implantees was small; high rates tended to give lower scores. However, there were no significant differences between the word scores across subjects if collected at the individually preferred pulse rate. High pulse rates were preferred when the post-implantation threshold was low.

  3. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    SciTech Connect

    Prasetyaningrum, A. Ratnawati,; Jos, B.

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  4. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  5. Contact pulsed Nd:YAG ablation of human dentin: ablation rates and tissue effects

    NASA Astrophysics Data System (ADS)

    Harris, David M.; Yessik, Michael J.

    1994-09-01

    Dentin from freshly extracted human teeth was exposed to flashlamp pumped Nd:YAG pulses (100 microsecond(s) duration, 50 - 200 mJ/pulse) delivered through a flat cut fiberoptic in contact with the dentin surface. Ablation depth and volume were measured optically and confirmed with electron microscope morphometrics. Ablation depth increased with force applied at the fiber tip up to 5 - 10 g. Above this ablation depths were insensitive to applied force. Craters made in dental stone were deeper and narrower than those made in normal dentin. Ablation depths per pulse and volumes per pulse decrease as the number of pulses increase. This is more prominent for 200 mJ pulses. At 60 mJ the ablation depths are the same from 10 to 100 Hz repetition rates, although qualitative changes (collateral damage) are greater at higher repetition rates. A progressive increase in collateral damage is seen from the 1st through the 200th pulse.

  6. Highly stable self-pulsed operation of an Er:Lu2O3 ceramic laser at 2.7 µm

    NASA Astrophysics Data System (ADS)

    Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan

    2017-04-01

    We report on the highly stable self-pulsed operation of a 2.74 µm Er:Lu2O3 ceramic laser pumped by a wavelength locked narrow bandwidth 976 nm laser diode. The operating pulse repetition rate is continuously tunable from 126 kHz to 270 kHz depending on the pump power level. For 12.3 W of absorbed diode pump power, the Er:Lu2O3 ceramic laser generates 820 mW of average output power at a 270 kHz repetition rate and with a pulse duration of 183 ns. The corresponding pulse-to-pulse amplitude fluctuation is estimated to be less than 0.7%. In the continues-wave (CW) mode of operation, the laser yields over 1.3 W of output power with a slope efficiency of 11.9% with respect to the 976 nm pump power.

  7. Using a Calculated Pulse Rate with an Artificial Neural Network to Detect Irregular Interbeats.

    PubMed

    Yeh, Bih-Chyun; Lin, Wen-Piao

    2016-03-01

    Heart rate is an important clinical measure that is often used in pathological diagnosis and prognosis. Valid detection of irregular heartbeats is crucial in the clinical practice. We propose an artificial neural network using the calculated pulse rate to detect irregular interbeats. The proposed system measures the calculated pulse rate to determine an "irregular interbeat on" or "irregular interbeat off" event. If an irregular interbeat is detected, the proposed system produces a danger warning, which is helpful for clinicians. If a non-irregular interbeat is detected, the proposed system displays the calculated pulse rate. We include a flow chart of the proposed software. In an experiment, we measure the calculated pulse rates and achieve an error percentage of < 3% in 20 participants with a wide age range. When we use the calculated pulse rates to detect irregular interbeats, we find such irregular interbeats in eight participants.

  8. Measurement and modeling of pulsed microchannel plate operation (invited).

    PubMed

    Rochau, G A; Wu, M; Kruschwitz, C; Joseph, N; Moy, K; Bailey, J; Krane, M; Thomas, R; Nielsen, D; Tibbitts, A

    2008-10-01

    Microchannel plates (MCPs) are a standard detector for fast-framing x-ray imaging and spectroscopy of high-temperature plasmas. The MCP is coated with conductive striplines that carry short duration voltage pulses to control the timing and amplitude of the signal gain. This gain depends on the voltage to a large exponent so that small reflections or impedance losses along the striplines can have a significant impact on the position-dependent amplitude and pulse width of the gain. Understanding the pulsed gain response therefore requires careful measurements of the position- and time-dependent surface voltage coupled with detailed modeling of the resulting electron cascade. We present measurements and modeling of the time- and space-dependent gain response of MCP detectors designed for use at Sandia National Laboratories' Z facility. The pulsed gain response is understood through measurements using a high impedence probe to determine the voltage pulse propagating along the stripline surface. Coupling the surface voltage measurements with Monte Carlo calculations of the electron cascade in the MCP provides a prediction of the time- and position-dependent gain that agrees with measurements made on a subpicosecond UV laser source to within the 25% uncertainty in the simulations.

  9. High-intensity pulsed beam source with tunable operation mode

    NASA Astrophysics Data System (ADS)

    Nashilevskiy, A. V.; Kanaev, G. G.; Ezhov, V. V.; Shamanin, V. I.

    2017-05-01

    The report presents the design of an electron and an ion pulsed accelerator. The powerful high-voltage pulse generator of the accelerator and the vacuum bushing insulator is able to change the polarity of the output voltage. The low-inductance matching transformer provides an increase in the DFL output impedance by 4 times. The generator based on a high voltage pulse transformer and a pseudo spark switch is applied for DFL charging. The high-impedance magnetically insulated focusing diode with Br magnetic field and the “passive” anode was used to realize the ion beam generation mode. The plasma is formed on the surface of the anode caused by an electrical breakdown at the voltage edge pulse; as a result, the carbon ion and proton beam is generated. This beam has the following parameters: the current density is about 400 A/cm2 (in focus): the applied voltage is up to 450 kV. The accelerator is designed for the research on the interaction of the charged particle pulsed beams with materials and for the development of technological processes of a material modification.

  10. NO{sub x} and CO emissions from a pulse combustor operating in a lean premixed mode

    SciTech Connect

    Keller, J.O.; Bramlette, T.T.; Barr, P.K.; Alvarez, J.

    1993-04-01

    Emission levels below 5.0 ppM NO{sub x}, with corresponding levels of 75 ppM CO (corrected to 3% O{sub 2}), were achieved in a pulse combustor operating in a lean premixed mode. Both NO{sub x} and CO concentrations were invariant with the total mass flow rate, but NO{sub x} and CO concentrations did vary with the rate of microscopic mixing.

  11. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    DOEpatents

    Cowan, Jr., Maynard; Duggin, Billy W.; Widner, Melvin M.

    1992-01-01

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher.

  12. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    DOEpatents

    Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.

    1992-06-30

    An electromagnetic cylindrical projectile mass launcher and a method of operation is provided which includes a cylindrical projectile having a conducting armature, a cylindrical barrel in which the armature is received, a plurality of electromagnetic drive coil stages, a plurality of pulse energy sources, and a pulsed power arrangement for generating magnetic pulses forming a pulsed magnetic wave along the length of the launcher barrel. The pulsed magnetic wave provides a propelling force on the projectile along the drive coil. The pulsed magnetic wave of the drive coil stages is advanced along the armature faster than the projectile to thereby generate an induced current wave in the armature. The pulsed generation of the magnetic wave minimizes electromagnetic heating of the projectile and provides for smooth acceleration of the projectile through the barrel of the launcher. 2 figs.

  13. Method for generating high-energy and high repetition rate laser pulses from CW amplifiers

    SciTech Connect

    Zhang, Shukui

    2013-06-18

    A method for obtaining high-energy, high repetition rate laser pulses simultaneously using continuous wave (CW) amplifiers is described. The method provides for generating micro-joule level energy in pico-second laser pulses at Mega-hertz repetition rates.

  14. Long pulse, high power operation of the ELISE test facility

    NASA Astrophysics Data System (ADS)

    Wünderlich, D.; Kraus, W.; Fröschle, M.; Riedl, R.; Fantz, U.; Heinemann, B.

    2017-08-01

    The ion source of the ELISE test facility (0.9×1.0 m2 with an extraction area of 0.1 m2) has half the size of the ion source foreseen for the ITER NBI beam lines. Aim of ELISE is to demonstrate that such large RF driven negative ion sources can achieve the following parameters at a filling pressure of 0.3 Pa and for pulse lengths of up to one hour: extracted current densities of 28.5 mA/cm2 in deuterium and 33.0 mA/cm2 in hydrogen, a ratio of co-extracted electrons to extracted ions below one and deviations in the uniformity of the extracted beam of less than 10 %. From the results obtained at ELISE so far it can be deduced that for demonstrating the ITER parameters, an RF power of 80 kW/driver will be necessary, i.e. final aim is to demonstrate long pulses (up to one hour) at this power level and a stable source performance. The most crucial factor limiting the source performance during such pulses - in particular in deuterium - is a steady increase in the co-extracted electron current. This paper reports measures that counteract this steady increase, namely applying a dedicated long pulse caesium conditioning technique and modifying the filter field topology by adding strengthening external permanent magnets. Additionally, RF issues are discussed that prevented increasing the RF power towards the target value. Although it was not possible up to now to perform long pulses at 80 kW/driver, a significant improvement of the source performance and its stability are demonstrated. The latter allowed performing the very first 1 h deuterium pulse in ELISE.

  15. Possible repetitive pulse operation of diode-pumped alkali laser (DPAL)

    NASA Astrophysics Data System (ADS)

    Endo, Masamori

    2017-01-01

    A theoretical study has been conducted for investigating the possibility of a diode-pumped alkali laser (DPAL) operating in repetitive pulsed mode. A one-dimensional, time-dependent rate-equation simulation of a Cs DPAL was developed to calculate the dynamic behavior of the active medium when Q-switching or cavity dumping was applied. The simulation modeled our small-scale experimental apparatus. In the continuous-wave (CW) mode, the calculated output power was in good agreement with the experimental value. Q-switching was shown to be ineffective because of the short spontaneous lifetime of the active medium, on the order of 10 ns. On the other hand, cavity dumping was proven to be effective. In typical operational conditions, a 54 times increase in peak power with respect to the CW power was predicted.

  16. Megahertz rate Schlieren visualization of underexpanded, impinging jet using pulsed high power LED

    NASA Astrophysics Data System (ADS)

    Willert, Christian; Mitchell, Daniel; Soria, Julio

    2010-11-01

    Recent advances in light emitting diode (LED) technology has resulted in high power, single chip devices that provide luminous radiant fluxes exceeding several watts. Operated in pulsed current mode the instantaneous light emission of an LED can be further increased to levels comparable to that of photographic (xenon) flash units making it a suitable light source for Schlieren imaging. Compared to the commonly used xenon flash units an LED can be triggered within tens of nanoseconds at rise times on the order of 100 ns thereby enabling stroboscopic illumination at megahertz rates. In the present application the LED's driving electronics were synchronized to a high speed camera to provide time-resolved Schlieren images of an underexpanded free jet impinging on a flat plate (nozzle pressure ratio 2.0 to 5.2). The LED was pulsed in burst mode for 102 images at currents of up to 120 A at 500 ns per pulse. Compared to images obtained with a xenon white light flash the nearly monochromatic green light of the LED results in much crisper flow features with superior repeatability in intensity without any speckle artifacts commonly found with laser illumination.

  17. Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates.

    PubMed

    Gattass, Rafael R; Cerami, Loren R; Mazur, Eric

    2006-06-12

    Oscillator-only femtosecond laser micromachining enables the manufacturing of integrated optical components with circular transverse profiles in transparent materials. The circular profile is due to diffusion of heat accumulating at the focus. We control the heat diffusion by focusing bursts of femtosecond laser pulses at various repetition rates into sodalime glass. We investigate the effect the repetition rate and number of pulses on the size of the resulting structures. We identify the combinations of burst repetition rate and number of pulses within a burst for which accumulation of heat occurs. The threshold for heat accumulation depends on the number of pulses within a burst. The burst repetition rate and the number of pulses within a burst provide convenient control of the morphology of structures generated with high repetition rate femtosecond micromachining.

  18. Long-duration high-efficiency operation of a continuously pulsed copper laser utilizing copper bromide as a lasant

    NASA Technical Reports Server (NTRS)

    Chen, C. J.; Bhanji, A. M.; Russell, G. R.

    1978-01-01

    A copper laser utilizing copper bromide as a lasant and neon as the buffer gas has been operated at an average laser power of between 16 and 19.5 W for a period of 68 h. Lasing was attained at a pulsing rate of 16.7 kHz in a quartz discharge tube 2.5-cm in diameter with an electrode separation of 200 cm. The laser energy/pulse and peak power/pulse corresponding to an average power of 19.5 W are 1.2 mJ and 30 kW, respectively. The ratio of laser power at 510.6 and 578.2 nm varied from 3.9 to 1.1 corresponding to a total average laser power of 4 and 18 W, respectively. The highest wall plug and capacitor efficiency measured during 68 h of operation were 0.7 and 1.1%, respectively.

  19. High intensity heat-pulse source operates without cooling system

    NASA Technical Reports Server (NTRS)

    Russell, L. D.

    1970-01-01

    Tungsten-iodine quartz lamp with on-off control is mounted at focus of ellipsoidal reflector and shutter is mounted at conjugate focus. Flux sensor monitors lamp and actuates shutter which emits a heat pulse when the radiant flux builds up to requisite level.

  20. 14 CFR 35.5 - Propeller ratings and operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.5 Propeller ratings and operating limitations. (a) Propeller ratings and operating limitations must: (1) Be established by the applicant and approved by the... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller ratings and operating...

  1. Multi-Megamp, Multi-Terawatt Inductive Pulse Compression System Operation

    DTIC Science & Technology

    1981-06-01

    will be described. For single pulse operation driving very high energy density plasma loads, an electrically exploded conductor (fuse) opening...1380. - 3. W.L. Baker, et al, "Electromagnetic Implosion Generation of Pulsed High Energy Density Plasma ", J. Appl. Phys., 49, (1978) p 4694. 4. D.L

  2. A Robust Digital Autopilot for Spacecraft Equipped with Pulse-Operated Thrusters

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.; Flashner, H.

    1996-01-01

    The analysis and design of attitude control systems for spacecraft employing pulse-operated (on-off) thrusters is usually accomplished through a combination of modeling approximations and empirical techniques. In this paper a new thruster pulse-modulation scheme for pointing and tracking applications is developed from nonlinear control theory.

  3. Measurement and control of the frequency chirp rate of high-order harmonic pulses

    SciTech Connect

    Mauritsson, J.; Johnsson, P.; Lopez-Martens, R.; Varju, K.; L'Huillier, A.; Kornelis, W.; Biegert, J.; Keller, U.; Gaarde, M.B.; Schafer, K.J.

    2004-08-01

    We measure the chirp rate of harmonics 13 to 23 in argon by cross correlation with a 12 femtosecond probe pulse. Under low ionization conditions, we directly measure the negative chirp due to the atomic dipole phase, and show that an additional chirp on the pump pulse is transferred to the qth harmonic as q times the fundamental chirp. Our results are in accord with simulations using the experimentally measured 815 nm pump and probe pulses. The ability to measure and manipulate the harmonic chirp rate is essential for the characterization and optimization of attosecond pulse trains.

  4. Pulse repetition rate in a self-contained strontium ion laser

    SciTech Connect

    Soldatov, Anatolii N; Vasil'eva, Anna V; Polunin, Yurii P; Yudin, Nikolai A; Chebotarev, Gennady D; Latush, Evgeny L; Fesenko, A A

    2008-11-30

    The frequency and energy parameters of self-contained strontium ion laser ({lambda} = 1.033 and 1.091 {mu}m) are studied upon excitation by an additional pulse before each excitation pulse. The kinetics of processes in the active medium of this laser is numerically simulated. It is shown that the pulse repetition rate of the self-contained strontium laser can achieve {approx}1 MHz. It is found that the laser pulse energy in the first pulse and the average output power and efficiency increase in a certain range of time delays between the additional and excitation pulses, which is caused by the significant prepulse concentration of strontium ions which had no time to recombine. The outlook for the application of pulse trains to excite self-contained IR transitions in strontium ions is shown. (lasers)

  5. The relationship between rate of venous sampling and visible frequency of hormone pulses.

    PubMed

    De Nicolao, G; Guardabasso, V; Rocchetti, M

    1990-11-01

    In this paper, a stochastic model of episodic hormone secretion is used to quantify the effect of the sampling rate on the frequency of pulses that can be detected by objective computer methods in time series of plasma hormone concentrations. Occurrence times of secretion pulses are modeled as recurrent events, with interpulse intervals described by Erlang distributions. In this way, a variety of secretion patterns, ranging from Poisson events to periodic pulses, can be studied. The notion of visible and invisible pulses is introduced and the relationship between true pulses frequency and mean visible pulse frequency is analytically derived. It is shown that a given visible pulse frequency can correspond to two distinct true frequencies. In order to compensate for the 'invisibility error', an algorithm based on the analysis of the original series and its undersampled subsets is proposed and the derived computer program is tested on simulated and clinical data.

  6. Reliability of High Power Laser Diode Arrays Operating in Long Pulse Mode

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Barnes, Bruce W.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.; Baker, Nathaniel R.

    2006-01-01

    Reliability and lifetime of quasi-CW laser diode arrays are greatly influenced by their thermal characteristics. This paper examines the thermal properties of laser diode arrays operating in long pulse duration regime.

  7. Evaluation of catalyst for closed cycle operation of high energy pulsed CO2 lasers

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Miller, I. M.; Wood, G.; Schryer, D. R.; Hess, R. V.; Upchurch, B. T.

    1983-01-01

    Several catalyst materials have been tested for efficiency of converting CO and O2 to CO2 for use in a high energy CO2 laser. The composition of the gas mixtures was monitored by mass spectrometry and gas chromatography. A copper/copper oxide catalyst and a platinum/tin oxide catalyst were used for closed cycle operation of a CO2 laser (0.7 joules/pulse), operating at 10 pulses/sec.

  8. Screening of obstructive sleep apnoea: heart rate spectral analysis of nocturnal pulse oximetric recording.

    PubMed

    Zamarrón, C; Romero, P V; Gude, F; Amaro, A; Rodriguez, J R

    2001-09-01

    Using heart rate spectral analysis of nocturnal pulse oximetry, we prospectively evaluated the utility of this methodology in patients clinically suspected of having obstructive sleep apnoea (OSA). A hundred and ninety-seven outpatients referred with symptoms compatible with the diagnosis of OSA were studied. All participants had nocturnal pulse oximetry performed simultaneously with conventional polysomnography. Power density of heart rate obtained by nocturnal pulse oximetry was analysed using fast Fourier transformation of a Hamming-windowed signal. Recording test results were classified as abnormal (suspicion of OSA) in the presence of a peak in the periodogram between period boundaries 30-70 sec. A normal test result was defined as the absence of the 30-70 sec peak in the periodogram. The total area of the periodogram (S(TOT)), the area enclosed in the periodogram between the period boundaries 30-70 sec (S(30-70)), the area enclosed in the period boundaries 30-70 sec with respect to the total area of the periodogram (S) and the peak amplitude 30-70 sec (PA) were measured. The presence of a peak in the periodogram has a sensitivity of 81.3%, a specificity of 91.5% a positive predictive value of 89.1% and a negative predictive value of 85.1% for OSA diagnosis. The OSA patients were found to have higher values of S(TOT), S(30-70), S and PA than the non OSA patients. Receiver operating characteristics (ROC) curve was constructed at different thresholds of S(TOT), S(30-70) S and PA. For a PA threshold of 10(%)2, heart rate spectra analysis sensitivity for OSA was 58% and specificity was 92%. Furthermore, the positive and negative predictive values for diagnosis of OSA were 87 and 72% respectively. Apnoea hypopnea index (AHI) correlated significantly with S(TOT) (r=0.44; P<0.001), S(30-70) (r=0.59: P<0.001), S (r=0.58; P<0.001) and PA (r=0.58; P<0.001). According to our results, heart rate spectral analys s obtained by nocturnal pulse oximetry and identification of

  9. Bubble Pulse Cancelation in the Time-Frequency Domain Using Warping Operators

    NASA Astrophysics Data System (ADS)

    Niu, Hai-Qiang; Zhang, Ren-He; Li, Zheng-Lin; Guo, Yong-Gang; He, Li

    2013-08-01

    The received shock waves produced by explosive charges are often polluted by bubble pulses in underwater acoustic experiments. A method based on warping operators is proposed to cancel the bubble pulses in the time-frequency domain. This is applied to the explosive data collected during the Yellow Sea experiment in November 2000. The original received signal is first transformed into a warped signal by warping operators. Then, the warped signal is analyzed in the time-frequency domain. Due to the different features between the shock waves and the bubble pulses in the time-frequency domain for the warped signal, the bubble pulses can be easily filtered out. Furthermore, the shock waves in the original time domain can be retrieved by the inverse warping transformation. The autocorrelation functions and the time-frequency representation show that the bubble pulses can be canceled effectively.

  10. 615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate.

    PubMed

    Fischer, Jonathan; Heinrich, Alexander-Cornelius; Maier, Simon; Jungwirth, Julian; Brida, Daniele; Leitenstorfer, Alfred

    2016-01-15

    A combination of Er/Yb:fiber and Yb:thin-disk technology produces 615 fs pulses at 1030 nm with an average output power of 72 W. The regenerative amplifier allows variation of the repetition rate between 3 and 5 kHz with pulse energies from 13 to 17 mJ. A broadband and intense seed provided by the compact and versatile fiber front-end minimizes gain narrowing. The resulting sub-ps performance is ideal for nonlinear frequency conversion and pulse compression. Operating in the upper branch of a bifurcated pulse train, the system exhibits exceptional noise performance and stability.

  11. Optical pulse dynamics for quantum-dot logic operations in a photonic-crystal waveguide

    SciTech Connect

    Ma, Xun; John, Sajeev

    2011-11-15

    We numerically demonstrate all-optical logic operations with quantum dots (QDs) embedded in a bimodal photonic-crystal waveguide using Maxwell-Bloch equations in a slowly varying envelope approximation (SVEA). The two-level QD excitation level is controlled by one or more femtojoule optical driving pulses passing through the waveguide. Specific logic operations depend on the relative pulse strengths and their detunings from an inhomogeneouslly broadened (about 1% for QD transitions centered at 1.5 {mu}m) QD transition. This excitation controlled two-level medium then determines passage of subsequent probe optical pulses. Envelope equations for electromagnetic waves in the linear dispersion and cutoff waveguide modes are derived to simplify solution of the coupled Maxwell-Bloch equations in the waveguide. These determine the quantum mechanical evolution of the QD excitation and its polarization, driven by classical electromagnetic (EM) pulses near a sharp discontinuity in the EM density of states of the bimodal waveguide. Different configurations of the driving pulses lead to distinctive relations between driving pulse strength and probe pulse passage, representing all-optical logic and, or, and not operations. Simulation results demonstrate that such operations can be done on picosecond time scales and within a waveguide length of about 10 {mu}m in a photonic-band-gap (PBG) optical microchip.

  12. 14 CFR 33.7 - Engine ratings and operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) In determining the engine performance and operating limitations, the overall limits of accuracy of... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine ratings and operating limitations... AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES General § 33.7 Engine ratings and operating limitations...

  13. 14 CFR 33.7 - Engine ratings and operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) In determining the engine performance and operating limitations, the overall limits of accuracy of... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine ratings and operating limitations... AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES General § 33.7 Engine ratings and operating limitations...

  14. Stream segregation on a single electrode as a function of pulse rate in cochlear implant listeners.

    PubMed

    Duran, Sara I; Collins, Leslie M; Throckmorton, Chandra S

    2012-12-01

    While cochlear implants (CIs) usually provide high levels of speech recognition in quiet, speech recognition in noise remains challenging. To overcome these difficulties, it is important to understand how implanted listeners separate a target signal from interferers. Stream segregation has been studied extensively in both normal and electric hearing, as a function of place of stimulation. However, the effects of pulse rate, independent of place, on the perceptual grouping of sequential sounds in electric hearing have not yet been investigated. A rhythm detection task was used to measure stream segregation. The results of this study suggest that while CI listeners can segregate streams based on differences in pulse rate alone, the amount of stream segregation observed decreases as the base pulse rate increases. Further investigation of the perceptual dimensions encoded by the pulse rate and the effect of sequential presentation of different stimulation rates on perception could be beneficial for the future development of speech processing strategies for CIs.

  15. Study of Conical Pulsed Inductive Thruster with Multiple Modes of Operation

    NASA Technical Reports Server (NTRS)

    Miller, Robert; Eskridge, Richard; Martin, Adam; Rose, Frank

    2008-01-01

    An electrodeless, pulsed, inductively coupled thruster has several advantages over current electric propulsion designs. The efficiency of a pulsed inductive thruster is dependent upon the pulse characteristics of the device. Therefore, these thrusters are throttleable over a wide range of thrust levels by varying the pulse rate without affecting the thruster efficiency. In addition, by controlling the pulse energy and the mass bit together, the ISP of the thruster can also be varied with minimal efficiency loss over a wide range of ISP levels. Pulsed inductive thrusters will work with a multitude of propellants, including ammonia. Thus, a single pulsed inductive thruster could be used to handle a multitude of mission needs from high thrust to high ISP with one propulsion solution that would be variable in flight. A conical pulsed inductive lab thruster has been built to study this form of electric propulsion in detail. This thruster incorporates many advantages that are meant to enable this technology as a viable space propulsion technology. These advantages include incorporation of solid state switch technology for all switching needs of the thruster and pre-ionization of the propellant gas prior to acceleration. Pre-ionizing will significantly improve coupling efficiency between drive and bias fields and the plasma. This enables lower pulse energy levels without efficiency reduction. Pre-ionization can be accomplished at a small fraction of the drive pulse energy.

  16. Pulsed laser deposition of SrRuO3 thin-films: The role of the pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Schraknepper, H.; Bäumer, C.; Gunkel, F.; Dittmann, R.; De Souza, R. A.

    2016-12-01

    SrRuO3 thin-films were deposited with different pulse repetition rates, fdep, epitaxially on vicinal SrTiO3 substrates by means of pulsed laser deposition. The measurement of several physical properties (e.g., composition by means of X-ray photoelectron spectroscopy, the out-of-plane lattice parameter, the electric conductivity, and the Curie temperature) consistently reveals that an increase in laser repetition rate results in an increase in ruthenium deficiency in the films. By the same token, it is shown that when using low repetition rates, approaching a nearly stoichiometric cation ratio in SrRuO3 becomes feasible. Based on these results, we propose a mechanism to explain the widely observed Ru deficiency of SrRuO3 thin-films. Our findings demand these theoretical considerations to be based on kinetic rather than widely employed thermodynamic arguments.

  17. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    PubMed

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  18. Pulse-by-pulse multi-beam-line operation for x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Hara, Toru; Fukami, Kenji; Inagaki, Takahiro; Kawaguchi, Hideaki; Kinjo, Ryota; Kondo, Chikara; Otake, Yuji; Tajiri, Yasuyuki; Takebe, Hideki; Togawa, Kazuaki; Yoshino, Tatsuya; Tanaka, Hitoshi; Ishikawa, Tetsuya

    2016-02-01

    The parallel operation of plural undulator beam lines is an important means of improving the efficiency and usability of x-ray free-electron laser facilities. After the installation of a second undulator beam line (BL2) at SPring-8 Angstrom compact free-electron laser (SACLA), pulse-by-pulse switching between two beam lines was tested using kicker and dc twin-septum magnets. To maintain a compact size, all undulator beam lines at SACLA are designed to be placed within the same undulator hall located downstream of the accelerator. In order to ensure broad tunability of the laser wavelength, the electron bunches are accelerated to different beam energies optimized for the wavelengths of each beam line. In the demonstration, the 30 Hz electron beam was alternately deflected to two beam lines and simultaneous lasing was achieved with 15 Hz at each beam line. Since the electron beam was deflected twice by 3° in a dogleg to BL2, the coherent synchrotron radiation (CSR) effects became non-negligible. Currently in a wavelength range of 4-10 keV, a laser pulse energy of 100 - 150 μ J can be obtained with a reduced peak current of around 1 kA by alleviating the CSR effects. This paper reports the results and operational issues related to the multi-beam-line operation of SACLA.

  19. Low-intensity pulsed ultrasound treatment improved the rate of autograft peripheral nerve regeneration in rat

    PubMed Central

    Jiang, Wenli; Wang, Yuexiang; Tang, Jie; Peng, Jiang; Wang, Yu; Guo, Quanyi; Guo, Zhiyuan; Li, Pan; Xiao, Bo; Zhang, Jinxing

    2016-01-01

    Low intensity pulsed ultrasound (LIPUS) has been widely used in clinic for the treatment of repairing pseudarthrosis, bone fractures and of healing in various soft tissues. Some reports indicated that LIPUS accelerated peripheral nerve regeneration including Schwann cells (SCs) and injured nerves. But little is known about its appropriate intensities on autograft nerves. This study was to investigate which intensity of LIPUS improved the regeneration of gold standard postsurgical nerves in experimental rat model. Sprague-Dawley rats were made into 10 mm right side sciatic nerve reversed autologous nerve transplantation and randomly treated with 250 mW/cm2, 500 mW/cm2 or 750 mW/cm2 LIPUS for 2–12 weeks after operation. Functional and pathological results showed that LIPUS of 250 mW/cm2 significantly induced faster rate of axonal regeneration. This suggested that autograft nerve regeneration was improved. PMID:27102358

  20. Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps

    DOEpatents

    Thayer, III, William J.

    1990-01-01

    A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.

  1. Operational processing and cloud boundary detection from micro pulse lidar data

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Hlavka, Dennis L.; Spinhirne, James D.; Scott, V. Stanley., III; Turner, David D.

    1998-01-01

    Micro Pulse Lidar (MPL) was developed at NASA Goddard Space Flight Center (GSFC) as the result of research on space-borne lidar techniques. It was designed to provide continuous, unattended observations of all significant atmospheric cloud and aerosol structure with a rugged, compact system design and the benefit of eye safety (Spinhirne 1993). The significant eye safety feature is achieved by using low pulse energies and high pulse repetition rates compared to standard lidar systems. MPL systems use a diode pumped 10 microj, 2500 Hz doubled Nd:YLF laser. In addition, a solid state Geiger mode avalanche photo diode (GAPD) photon counting detector is used allowing for quantum efficiencies approaching 70%. Other design features have previously been noted by Spinhirne (1995). Though a commercially available instrument, with nearly 20 systems operating around the world, the most extensive MPL work has come from those operated by the Atmospheric Radiation Measurement (ARM) (Stokes and Schwartz 1994) program. The diverse ability of the instrument relating to the measurement of basic cloud macrophysical structure and both cloud and aerosol radiative properties well suits the ARM research philosophy. MPL data can be used to yield many parameters including cloud boundary heights to the limit of signal attenuation, cloud scattering cross sections and optical thicknesses, planetary boundary layer heights and aerosol scattering profiles, including those into the stratosphere in nighttime cases (Hlavka et al 1996). System vertical resolution ranges from 30 m to 300 m (i.e. high and low resolution respectively) depending on system design. The lidar research group at GSFC plays an advisory role in the operation, calibration and maintenance of NASA and ARM owned MPL systems. Over the past three years, processing software and system correction techniques have been developed in anticipation of the increasing population of systems amongst the community. Datasets produced by three ARM

  2. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  3. Operability of an Ejector Enhanced Pulse Combustor in a Gas Turbine Environment

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Dougherty, Kevin

    2008-01-01

    A pressure-gain combustor comprised of a mechanically valved, liquid fueled pulsejet, an ejector, and an enclosing shroud, was coupled to a small automotive turbocharger to form a self-aspirating, thrust producing gas turbine engine. The system was constructed in order to investigate issues associated with the interaction of pulsed combustion devices and turbomachinery. Installed instrumentation allowed for sensing of distributed low frequency pressure and temperature, high frequency pressure in the shroud, fuel flow rate, rotational speed, thrust, and laboratory noise. The engine ran successfully and reliably, achieving a sustained thrust of 5 to 6 lbf, and maintaining a rotor speed of approximately 90,000 rpm, with a combustor pressure gain of approximately 4 percent. Numerical simulations of the system without pressure-gain combustion indicated that the turbocharger would not operate. Thus, the new combustor represented a substantial improvement in system performance. Acoustic measurements in the shroud and laboratory indicated turbine stage sound pressure level attenuation of 20 dB. This is consistent with published results from detonative combustion experiments. As expected, the mechanical reed valves suffered considerable damage under the higher pressure and thermal loading characteristics of this system. This result underscores the need for development of more robust valve systems for this application. The efficiency of the turbomachinery components did not appear to be significantly affected by unsteadiness associated with pulsed combustion, though the steady component efficiencies were already low, and thus not expected to be particularly sensitive.

  4. Accurate modeling of high-repetition rate ultrashort pulse amplification in optical fibers

    PubMed Central

    Lindberg, Robert; Zeil, Peter; Malmström, Mikael; Laurell, Fredrik; Pasiskevicius, Valdas

    2016-01-01

    A numerical model for amplification of ultrashort pulses with high repetition rates in fiber amplifiers is presented. The pulse propagation is modeled by jointly solving the steady-state rate equations and the generalized nonlinear Schrödinger equation, which allows accurate treatment of nonlinear and dispersive effects whilst considering arbitrary spatial and spectral gain dependencies. Comparison of data acquired by using the developed model and experimental results prove to be in good agreement. PMID:27713496

  5. Beam Wiggler operating in high frequency and single-pulse modes

    NASA Astrophysics Data System (ADS)

    Goltsov, A. Y.; Kolomiysky, Arkadiy N.; Kovalsky, N. G.; Kryzhko, V. V.; Manes, Kenneth R.; Pergament, Michael I.

    1999-07-01

    The possibility to control an intensity distribution in the far field of a powerful laser system by rapid motion of a focal spot is considered. Quadruple electro optic deflector on the base of LiNgO3 crystal installed in resonance capacity with 1 cm clear aperture has been developed, constructed and tested both in high frequency and single pulse operation modes. The main parameters of the device are as follows: amplitude of the angular deflection +/- 4 dif. limits at 6.5 GHz operation frequency, total angular deflection 12 dif. limits in the single ns-pulse operation mode. Results of the Beam Wiggler dynamic testing are presented and discussed.

  6. Study on the steady operating state of a micro-pulse electron gun

    SciTech Connect

    Kui, Zhou; Xing, Luo; Xiangyang, Lu; Shengwen, Quan; Jifei, Zhao; Ziqin, Yang

    2014-09-15

    Micro-pulse electron gun (MPG) employs the basic concept of multipacting to produce high-current and short-pulse electron beams from a radio-frequency (RF) cavity. The concept of MPG has been proposed for more than two decades. However, the unstable operating state of MPG vastly obstructs its practical applications. This paper presents a study on the steady operating state of a micro-pulse electron gun with theory and experiments. The requirements for the steady operating state are proposed through the analysis of the interaction between the RF cavity and the beam load. Accordingly, a MPG cavity with the frequency of 2856 MHz has been designed, constructed, and tested. Some primary experiments have been finished. Both the unstable and stable operating states of the MPG have been observed. The stable output beam current has been detected at about 3.8 mA. Further experimental study is under way now.

  7. Emission properties of diode laser bars during pulsed high-power operation

    NASA Astrophysics Data System (ADS)

    Hempel, Martin; Tomm, Jens W.; Hennig, Petra; Elsaesser, Thomas

    2011-09-01

    High-power diode laser bars (cm-bars) are subjected to single pulse step tests carried out up to and beyond their ultimate limits of operation. Laser nearfields and thermal behaviour are monitored for pulse widths in the 10-100 µs range with streak- and thermo-cameras, respectively. Thresholds of catastrophic optical damage are determined, and their dependence on the length of the injected current pulses is explained qualitatively. This approach permits testing the hardness of facet coatings of cm-bars with or without consideration of accidental single pre-damaged emitter failure effects and thermal crosstalk between the emitters. This allows for the optimization of pulsed operation parameters, helps limiting sudden degradation and provides insight into the mechanisms governing the device emission behaviour at ultimate output powers.

  8. High-Repetition-Rate Grazing-Incidence Pumped X-Ray Laser Operating at 18.9 nm

    NASA Astrophysics Data System (ADS)

    Keenan, R.; Dunn, J.; Patel, P. K.; Price, D. F.; Smith, R. F.; Shlyaptsev, V. N.

    2005-03-01

    We have demonstrated a 10 Hz Ni-like Mo x-ray laser operating at 18.9 nm with 150 mJ total pump energy by employing a novel pumping scheme. The grazing-incidence scheme is described, where a picosecond pulse is incident at a grazing angle to a Mo plasma column produced by a slab target irradiated by a 200 ps laser pulse. This scheme uses refraction of the short pulse at a predetermined electron density to increase absorption to pump a specific gain region. The higher coupling efficiency inherent to this scheme allows a reduction in the pump energy where 70 mJ long pulse energy and 80 mJ short pulse energy are sufficient to produce lasing at a 10 Hz repetition rate. Under these conditions and by optimizing the delay between the pulses, we achieve strong amplification and close to saturation for 4 mm long targets.

  9. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis.

    PubMed

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas; Nilsson, Brian; Karamperis, Nikolaos; Kristensen, Bent; Ladefoged, Søren Daustrand; Hansen, Henrik Post

    2015-12-01

    If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect of reducing EBFR on BP exists and data are conflicting. The aim of this study was to evaluate the effect and the potential mechanism(s) involved by investigating the impact of changes in EBFR on BP, pulse rate (PR) and cardiac output (CO) in HD patients with arteriovenous-fistulas (AV-fistulas). We performed a randomized, crossover trial in 22 haemodynamically stable HD patients with AV-fistula. After a conventional HD session each patient was examined during EBFR of 200, 300 and 400 mL/min in random order. After 15 min when steady state was achieved CO, BP and PR were measured at each EFBR, respectively. Mean (SD) age was 71 (11) years. Systolic BP was significantly higher at an EBFR of 200 mL/min as compared with 300 mL/min [133 (23) versus 128 (24) mmHg; P < 0.05], but not as compared with 400 mL/min [133 (23) versus 130 (19) mmHg; P = 0.20]. At EBFR of 200, 300 and 400 mL/min diastolic BP, mean arterial pressure, PR and CO remained unchanged. Our study does not show any consistent trend in BP changes by a reduction in EBFR. Reduction in EBFR if BP falls during IDH is thus not supported. However, none of the patients experienced IDH. Further studies are required to evaluate the impact of changes in EBFR on BP during IDH. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  10. Joule heat-induced breakdown of organic thin-film devices under pulse operation

    NASA Astrophysics Data System (ADS)

    Yoshida, Kou; Matsushima, Toshinori; Shiihara, Yu; Kuwae, Hiroyuki; Mizuno, Jun; Adachi, Chihaya

    2017-05-01

    We investigated the influence of the substrate's thermal conductivities (k) and the widths of the electrical pulsespulse) on the maximum current densities (Jmax) in organic thin-film devices. We also estimated the temperature rise (ΔT) inside devices under the pulse operation using numerical calculations to interpret the observed differences in Jmax. For a long τpulse of 5 μs, Jmax is higher for devices with high-k sapphire substrates (around 1.2 kA/cm2) than devices with low-k plastic substrates (around 0.4 kA/cm2). This is because high-k sapphire substrates can work as heat sinks to relax ΔT for such a long τpulse. Operation of devices with high-k sapphire substrates for a short τpulse of 70 ns resulted in further relaxation of ΔT, leading to an increase of Jmax to around 5 kA/cm2. Interestingly, for such a short τpulse, devices with high-k sapphire and low-k plastic substrates showed similar Jmax and ΔT values, the reason for which may be that it is difficult for the generated Joule heat to travel to the substrate across a low-k organic layer within this short time.

  11. Multi-pulse operation of a super-radiant backward-wave oscillator

    SciTech Connect

    Bandurkin, I. V.; Savilov, A. V.

    2014-08-15

    Theory of a backward-wave electron oscillator operating in the non-stationary regime of super-radiation of short powerful rf pulses is developed. It is shown that there exist multi-frequency regimes of generation of either two-peak or three-peak output signal with different characteristic frequencies in every peak. The use of such regimes allows increasing the duration, the peak power, and the total energy of the output super-radiation rf pulse.

  12. Analytical results for the pulsed operation of high field constant stress coils

    NASA Astrophysics Data System (ADS)

    Vanbockstal, Luc; Askenazy, Salomon; Herlach, Fritz; Schneider-Muntau, Hans-Jorg

    1994-07-01

    Based on the analytical expressions for the radial current density in coils optimized for constant stress, the implications for pulsed operation are discussed; the pulse duration, peak power and energy are determined. A cut-off on the current density, which peaks at the inside of the coil, limits the localized heating and increases the pulse duration at the expense of center field or materials requirements. From the relation between strength, conductivity and cut-off level, optimal properties of construction materials are determined.

  13. Fuzzy entropy based motion artifact detection and pulse rate estimation for fingertip photoplethysmography.

    PubMed

    Paradkar, Neeraj; Chowdhury, Shubhajit Roy

    2014-01-01

    The paper presents a fingertip photoplethysmography (PPG) based technique to estimate the pulse rate of the subject. The PPG signal obtained from a pulse oximeter is used for the analysis. The input samples are corrupted with motion artifacts due to minor motion of the subjects. Entropy measure of the input samples is used to detect the motion artifacts and estimate the pulse rate. A three step methodology is adapted to identify and classify signal peaks as true systolic peaks or artifact. CapnoBase database and CSL Benchmark database are used to analyze the technique and pulse rate estimation was performed with positive predictive value and sensitivity figures of 99.84% and 99.32% respectively for CapnoBase and 98.83% and 98.84% for CSL database respectively.

  14. Ultrastable fiber amplifier delivering 145-fs pulses with 6-μJ energy at 10-MHz repetition rate.

    PubMed

    Wunram, Marcel; Storz, Patrick; Brida, Daniele; Leitenstorfer, Alfred

    2015-03-01

    A high-power femtosecond Yb:fiber amplifier operating with exceptional noise performance and long-term stability is demonstrated. It generates a 10-MHz train of 145-fs pulses at 1.03 μm with peak powers above 36 MW. The system features a relative amplitude noise of 1.5·10⁻⁶  Hz(-1/2) at 1 MHz and drifts of the 60-W average power below 0.3% over 72 hours of continuous operation. The passively phase-stable Er:fiber seed system provides ultrabroadband pulses that are synchronized at a repetition rate of 40 MHz. This combination aims at new schemes for sensitive experiments in ultrafast scientific applications.

  15. [Autoaggression and pulse rate--a longitudinal study].

    PubMed

    Rohmann, U H; Elbing, U; Hartmann, H

    1988-12-01

    This article presents a model of autoaggressive behavior in which a distinction is made between determining and maintaining factors. Specific environmental, in particular social, and organismic variables are linked to them. The two types of variables interact, thus causing or maintaining autoaggressive behavior. A theory of autoaggression must therefore rely on multicausal/multimodal explanations. A connection between autoaggression and a high level of arousal suggests itself. In this single-case longitudinal study a comparison was made between heart rate and frequency of autoaggressive behavior. High heart rates were found to be correlated with low frequencies of autoaggressive behavior and vice versa. Decreasing autoaggressive behavior was coupled with increasing muscle relaxation and increasing motor activity. However, abnormally high heart rates were associated with both low and high levels of motor activity.

  16. ATLAS trigger operations: Monitoring with ``Xmon'' rate prediction system

    NASA Astrophysics Data System (ADS)

    Aukerman, Andrew; Hong, Tae Min

    2017-01-01

    We present the operations and online monitoring with the ``Xmon'' rate prediction system for the trigger system at the ATLAS Experiment. A two-level trigger system reduces the LHC's bunch-crossing rate, 40 MHz at design capacity, to an average recording rate of about 1 kHz, while maintaining a high efficiency of selecting events of interest. The Xmon system uses the luminosity value to predict trigger rates that are, in turn, compared with incoming rates. The predictions rely on past runs to parameterize the luminosity dependency of the event rate for a trigger algorithm. Some examples are given to illustrate the performance of the tool during recent operations.

  17. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity.

    PubMed

    Salvi, Paolo; Palombo, Carlo; Salvi, Giovanni Matteo; Labat, Carlos; Parati, Gianfranco; Benetos, Athanase

    2013-12-01

    Several studies showed a positive association between heart rate and pulse wave velocity, a sensitive marker of arterial stiffness. However, no study involving a large population has specifically addressed the dependence of pulse wave velocity on different components of the cardiac cycle. The aim of this study was to explore in subjects of different age the link between pulse wave velocity with heart period (the reciprocal of heart rate) and the temporal components of the cardiac cycle such as left ventricular ejection time and diastolic time. Carotid-femoral pulse wave velocity was assessed in 3,020 untreated subjects (1,107 men). Heart period, left ventricular ejection time, diastolic time, and early-systolic dP/dt were determined by carotid pulse wave analysis with high-fidelity applanation tonometry. An inverse association was found between pulse wave velocity and left ventricular ejection time at all ages (<25 years, r(2) = 0.043; 25-44 years, r(2) = 0.103; 45-64 years, r(2) = 0.079; 65-84 years, r(2) = 0.044; ≥ 85 years, r(2) = 0.022; P < 0.0001 for all). A significant (P < 0.0001) negative but always weaker correlation between pulse wave velocity and heart period was also found, with the exception of the youngest subjects (P = 0.20). A significant positive correlation was also found between pulse wave velocity and dP/dt (P < 0.0001). With multiple stepwise regression analysis, left ventricular ejection time and dP/dt remained the only determinant of pulse wave velocity at all ages, whereas the contribution of heart period no longer became significant. Our data demonstrate that pulse wave velocity is more closely related to left ventricular systolic function than to heart period. This may have methodological and pathophysiological implications.

  18. Investigation of pulsed mode operation with the frequency tuned CAPRICE ECRIS

    SciTech Connect

    Maimone, F. Tinschert, K.; Endermann, M.; Hollinger, R.; Kondrashev, S.; Lang, R.; Mäder, J.; Patchakui, P. T.; Spädtke, P.

    2016-02-15

    In order to increase the intensity of the highly charged ions produced by the Electron Cyclotron Resonance Ion Sources (ECRISs), techniques like the frequency tuning and the afterglow mode have been developed and in this paper the effect on the ion production is shown for the first time when combining both techniques. Recent experimental results proved that the tuning of the operating frequency of the ECRIS is a promising technique to achieve higher ion currents of higher charge states. On the other hand, it is well known that the afterglow mode of the ECRIS operation can provide more intense pulsed ion beams in comparison with the continuous wave (cw) operation. These two techniques can be combined by pulsing the variable frequency signal driving the traveling wave tube amplifier which provides the high microwave power to the ECRIS. In order to analyze the effect of these two combined techniques on the ion source performance, several experiments were carried out on the pulsed frequency tuned CAPRICE (Compacte source A Plusiers Résonances Ionisantes Cyclotron Electroniques)-type ECRIS. Different waveforms and pulse lengths have been investigated under different settings of the ion source. The results of the pulsed mode have been compared with those of cw operation.

  19. Investigation of pulsed mode operation with the frequency tuned CAPRICE ECRIS.

    PubMed

    Maimone, F; Tinschert, K; Endermann, M; Hollinger, R; Kondrashev, S; Lang, R; Mäder, J; Patchakui, P T; Spädtke, P

    2016-02-01

    In order to increase the intensity of the highly charged ions produced by the Electron Cyclotron Resonance Ion Sources (ECRISs), techniques like the frequency tuning and the afterglow mode have been developed and in this paper the effect on the ion production is shown for the first time when combining both techniques. Recent experimental results proved that the tuning of the operating frequency of the ECRIS is a promising technique to achieve higher ion currents of higher charge states. On the other hand, it is well known that the afterglow mode of the ECRIS operation can provide more intense pulsed ion beams in comparison with the continuous wave (cw) operation. These two techniques can be combined by pulsing the variable frequency signal driving the traveling wave tube amplifier which provides the high microwave power to the ECRIS. In order to analyze the effect of these two combined techniques on the ion source performance, several experiments were carried out on the pulsed frequency tuned CAPRICE (Compacte source A Plusiers Résonances Ionisantes Cyclotron Electroniques)-type ECRIS. Different waveforms and pulse lengths have been investigated under different settings of the ion source. The results of the pulsed mode have been compared with those of cw operation.

  20. Long Pulse Operation on Tore-Supra: Towards Steady State

    SciTech Connect

    Moreau, P.; Bucalossi, J.; Brosset, C.; Dufour, E.; Loarer, T.; Monier-Garbet, P.; Pegourie, B.; Tsitrone, E.; Basiuk, V.; Bremond, S.; Chantant, M.; Colas, L.; Commaux, N.; Geraud, A.; Guirlet, R.; Gunn, J.; Hertout, P.; Hoang, G. T.; Kazarian, F.; Mazon, D.

    2006-01-15

    The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.

  1. Rate discrimination at low pulse rates in normal-hearing and cochlear implant listeners: Influence of intracochlear stimulation site.

    PubMed

    Stahl, Pierre; Macherey, Olivier; Meunier, Sabine; Roman, Stéphane

    2016-04-01

    Temporal pitch perception in cochlear implantees remains weaker than in normal hearing listeners and is usually limited to rates below about 300 pulses per second (pps). Recent studies have suggested that stimulating the apical part of the cochlea may improve the temporal coding of pitch by cochlear implants (CIs), compared to stimulating other sites. The present study focuses on rate discrimination at low pulse rates (ranging from 20 to 104 pps). Two experiments measured and compared pulse rate difference limens (DLs) at four fundamental frequencies (ranging from 20 to 104 Hz) in both CI and normal-hearing (NH) listeners. Experiment 1 measured DLs in users of the (Med-El CI, Innsbruck, Austria) device for two electrodes (one apical and one basal). In experiment 2, DLs for NH listeners were compared for unresolved harmonic complex tones filtered in two frequency regions (lower cut-off frequencies of 1200 and 3600 Hz, respectively) and for different bandwidths. Pulse rate discrimination performance was significantly better when stimulation was provided by the apical electrode in CI users and by the lower-frequency tone complexes in NH listeners. This set of data appears consistent with better temporal coding when stimulation originates from apical regions of the cochlea.

  2. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4μm with pulse duration of 26 μs

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-02-01

    Several studies over the past 20 years have identified that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-µs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase and the pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for TEA lasers and too short for RF-excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the J5-V laser for microvia drilling which can produce laser pulses greater than 100 mJ in energy at 9.4-μm with a pulse duration of 26-µs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate enamel and dentin. The onset of plasma shielding does not occur until the fluence exceeds 100 J/cm2 allowing efficient ablation at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions.

  3. High rate reactive magnetron sputter deposition of Al-doped ZnO with unipolar pulsing and impedance control system

    SciTech Connect

    Nishi, Yasutaka; Hirohata, Kento; Tsukamoto, Naoki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    Al-doped ZnO (AZO) films were deposited on quartz glass substrates, unheated and heated to 200 deg. C, using reactive sputtering with a special feedback system of discharge impedance combined with midfrequency pulsing. A planar Zn-Al alloy target was connected to the switching unit, which was operated in a unipolar pulse mode. The oxidation of the target surface was precisely controlled by a feedback system for the entire O{sub 2} flow ratio including ''the transition region''. The deposition rate was about 10-20 times higher than that for films deposited by conventional sputtering using an oxide target. A deposition rate of AZO films of 390 nm/min with a resistivity of 3.8x10{sup -4} {Omega} cm and a transmittance in the visible region of 85% was obtained when the films were deposited on glass substrates heated to 200 deg. C with a discharge power of 4 kW.

  4. Respiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals.

    PubMed

    Lázaro, Jesús; Nam, Yunyoung; Gil, Eduardo; Laguna, Pablo; Chon, Ki H

    2015-11-01

    A method for deriving respiratory rate from smartphone-camera-acquired pulse photoplethysmographic (SCPPG) signal is presented. Our method exploits respiratory information by examining the pulse wave velocity and dispersion from the SCPPG waveform and we term these indices as the pulse width variability (PWV). A method to combine information from several derived respiration signals is also presented and it is used to combine PWV information with other methods such as pulse amplitude variability (PAV), pulse rate variability (PRV), and respiration-induced amplitude and frequency modulations (AM and FM) in SCPPG signals.Evaluation is performed on a database containing SCPPG signals recorded from 30 subjects during controlled respiration experiments at rates from 0.2 to 0.6 Hz with an increment of 0.1 Hz, using three different devices: iPhone 4S, iPod 5, and HTC One M8. Results suggest that spontaneous respiratory rates (0.2-0.4 Hz) can be estimated from SCPPG signals by the PWV- and PRV-based methods with low relative error (median of order 0.5% and interquartile range of order 2.5%). The accuracy can be improved by combining PWV and PRV with other methods such as PAV, AM and/or FM methods. Combination of these methods yielded low relative error for normal respiratory rates, and maintained good performance at higher rates (0.5-0.6 Hz) when using the iPhone 4S or iPod 5 devices.

  5. Frequency-chirp rates of harmonics driven by a few-cycle pulse

    SciTech Connect

    Murakami, M.; Mauritsson, J.; Gaarde, M.B.

    2005-08-15

    We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. We also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time.

  6. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    SciTech Connect

    Höppner, H.; Tanikawa, T.; Schulz, M.; Riedel, R.; Teubner, U.; Faatz, B.; Tavella, F.

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.

  7. Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Si Fodil, Rachid; Amrani, Foued; Yang, Changxi; Kellou, Abdelhamid; Grelu, Ph.

    2016-07-01

    We experimentally investigate multipulse regimes obtained within a passively-mode-locked fiber laser that includes a Mach-Zehnder (MZ) interferometer. By adjusting the time delay imbalance of the MZ, ultrashort pulse trains at multi-GHz repetition rates are generated. We compare the observed dynamics with high-harmonic mode locking, and show that the multi-GHz pulse trains display an inherent instability, which has been overlooked. By using a recirculation loop containing the MZ, we demonstrate a significant improvement of the pulse train stability.

  8. Terahertz generation in GaN diodes operating in pulsed regime limited by self-heating

    NASA Astrophysics Data System (ADS)

    Barry, E. A.; Sokolov, V. N.; Kim, K. W.; Trew, R. J.

    2009-06-01

    The conditions for pulsed regime operation of terahertz power generation in vertical nanoscale GaN-based diodes are investigated via self-consistent simulation of the high-field electron transport in the active channel and thermal transport in the entire device structure. The combined electrothermal model allows for a detailed analysis of the dynamical local distributions of the electric field, drift-velocity, and lattice temperature. We show that stable generation is achievable with a self-heating limited output power of 2.25 W at an operation frequency of 0.71 THz for a pulse width of 3 ns with a few tens of nanosecond duty cycle.

  9. Generation of 30 microJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification.

    PubMed

    Stepanov, Andrei G; Bonacina, Luigi; Chekalin, Sergei V; Wolf, Jean-Pierre

    2008-11-01

    We report the generation of 30 microJ single-cycle terahertz pulses at 100 Hz repetition rate by phase-matched optical rectification in lithium niobate using 28 mJ femtosecond laser pulses. The phase-matching condition is achieved by tilting the laser pulse intensity front. Temporal, spectral, and propagation properties of the generated terahertz pulses are presented. In addition, we discuss possibilities for further increasing the energy of single-cycle terahertz pulses obtained by optical rectification.

  10. Generation of picosecond laser pulses at 1030 nm with gigahertz range continuously tunable repetition rate.

    PubMed

    Aubourg, Adrien; Lhermite, Jérôme; Hocquet, Steve; Cormier, Eric; Santarelli, Giorgio

    2015-12-01

    We report on a watt range laser system generating picosecond pulses using electro-optical modulation of a 1030 nm single frequency low noise laser diode. Its repetition rate is continuously tunable between 11 and 18 GHz. Over this range, output spectra and pulse characteristics are measured and compared with a numerical simulation. Finally, amplitude and residual phase noise measurements of the source are also presented.

  11. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    PubMed

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  12. Q-switched operation of a pulsed-laser-deposited Yb:Y(2)O(3) waveguide using graphene as a saturable absorber.

    PubMed

    Choudhary, Amol; Dhingra, Shonali; D'Urso, Brian; Parsonage, Tina L; Sloyan, Katherine A; Eason, Robert W; Shepherd, David P

    2014-08-01

    The first, to the best of our knowledge, Q-switched operation of a pulsed-laser-deposited waveguide laser is presented. A clad Yb:Y(2)O(3) waveguide was Q-switched using an output coupling mirror coated with a single layer of graphene deposited by atmospheric pressure chemical vapor deposition. During continuous-wave operation, a maximum power of 83 mW at a slope efficiency of 25% was obtained. During Q-switched operation, pulses as short as 98 ns were obtained at a repetition rate of 1.04 MHz and a central wavelength of 1030.8 nm.

  13. High-power, highly stable KrF laser with a 4-kHz pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; El'tsov, A. V.; Khristoforov, O. B.

    2015-08-01

    An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al2O3 ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energy is 160 mJ pulse-1, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ <= 0.7%) is achieved using an all-solid-state pump system.

  14. High-power, highly stable KrF laser with a 4-kHz pulse repetition rate

    SciTech Connect

    Borisov, V M; El'tsov, A V; Khristoforov, O B

    2015-08-31

    An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al{sub 2}O{sub 3} ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energy is 160 mJ pulse{sup -1}, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ ≤ 0.7%) is achieved using an all-solid-state pump system. (lasers)

  15. Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology

    PubMed Central

    Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng

    2016-01-01

    To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject’s wrist, the active antenna can monitor the pulse on the subject’s wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO’s output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information. PMID:27792176

  16. Hydrodynamic size distribution of gold nanoparticles controlled by repetition rate during pulsed laser ablation in water

    NASA Astrophysics Data System (ADS)

    Menéndez-Manjón, Ana; Barcikowski, Stephan

    2011-02-01

    Most investigations on the laser generation and fragmentation of nanoparticles focus on Feret particle size, although the hydrodynamic size of nanoparticles is of great importance, for example in biotechnology for diffusion in living cells, or in engineering, for a tuned rheology of suspensions. In this sense, the formation and fragmentation of gold colloidal nanoparticles using femtosecond laser ablation at variable pulse repetition rates (100-5000 Hz) in deionized water were investigated through their plasmon resonance and hydrodynamic diameter, measured by Dynamic Light Scattering. The increment of the repetition rate does not influence the ablation efficiency, but produces a decrease of the hydrodynamic diameter and blue-shift of the plasmon resonance of the generated gold nanoparticles. Fragmentation, induced by inter-pulse irradiation of the colloids was measured online, showing to be more effective low repetition rates. The pulse repetition rate is shown to be an appropriate laser parameter for hydrodynamic size control of nanoparticles without further influence on the production efficiency.

  17. Wrist Pulse Rate Monitor Using Self-Injection-Locked Radar Technology.

    PubMed

    Wang, Fu-Kang; Tang, Mu-Cyun; Su, Sheng-Chao; Horng, Tzyy-Sheng

    2016-10-26

    To achieve sensitivity, comfort, and durability in vital sign monitoring, this study explores the use of radar technologies in wearable devices. The study first detected the respiratory rates and heart rates of a subject at a one-meter distance using a self-injection-locked (SIL) radar and a conventional continuous-wave (CW) radar to compare the sensitivity versus power consumption between the two radars. Then, a pulse rate monitor was constructed based on a bistatic SIL radar architecture. This monitor uses an active antenna that is composed of a SIL oscillator (SILO) and a patch antenna. When attached to a band worn on the subject's wrist, the active antenna can monitor the pulse on the subject's wrist by modulating the SILO with the associated Doppler signal. Subsequently, the SILO's output signal is received and demodulated by a remote frequency discriminator to obtain the pulse rate information.

  18. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads

    NASA Astrophysics Data System (ADS)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient

  19. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    SciTech Connect

    Cochems, P.; Kirk, A. T.; Bunert, E.; Runge, M.; Goncalves, P.; Zimmermann, S.

    2015-06-15

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron current due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.

  20. Hybrid insulation coordination and optimisation for 1 MV operation of pulsed electron accelerator KALI-30GW

    SciTech Connect

    Senthil, K.; Mitra, S.; Sandeep, S.; and others

    2014-07-01

    In a multi-gigawatt pulsed power system like KALI-30 GW, insulation coordination is required to achieve high voltages ranging from 0.3 MV to 1 MV. At the same time optimisation of the insulation parameters is required to minimize the inductance of the system, so that nanoseconds output can be achieved. The KALI-30GW pulse power system utilizes a combination of Perspex, delrin, epoxy, transformer oil, nitrogen/SF{sub 6} gas and vacuum insulation at its various stages in compressing DC high voltage to a nanoseconds pulse. This paper describes the operation and performance of the system from 400 kV to 1030 kV output voltage pulse and insulation parameters utilized for obtaining peak 1 MV output. (author)

  1. 14 CFR 33.7 - Engine ratings and operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine ratings and operating limitations. 33.7 Section 33.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...) Rated 2-minute OEI Power; (ix) Rated 30-second OEI power; and (x) Auxiliary power unit (APU) mode of...

  2. 14 CFR 33.7 - Engine ratings and operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine ratings and operating limitations. 33.7 Section 33.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...) Rated 2-minute OEI Power; (ix) Rated 30-second OEI power; and (x) Auxiliary power unit (APU) mode of...

  3. A study of high repetition rate pulse generation and all-optical add/drop multiplexing

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin

    Ultra high-speed optical time-division-multiplexed (OTDM) transmission technologies are essential for the construction of ultra high-speed all-optical networks needed in the information era. In this Ph. D thesis dissertation, essential mechanisms associated with ultra high speed OTDM transmission systems, such as, high speed ultra short pulse generation, all optical demultiplexing and all optical add/drop multiplexing, have been studied. Both experimental demonstrations and numerical simulations have been performed. In order to realize high-speed optical TDM systems, high repetition rate, ultra short pulses are needed. A rational harmonic mode-locked ring fiber laser has been used to produce ultrashort pulses, the pulse jitter will be eliminated using a Phase-Locked-Loop (PLL), and the self-pulsation has been suppressed using a semiconductor optical amplifier (SOA). Sub pico-second pulses are very important for all optical sampling in the ultrahigh-speed OTDM transmission system. In this thesis, a two stage compression scheme utilizing the nonlinearity and dispersion of the optical fibers has been constructed and used to compress the gain switched DFB laser pulses. Also a nonlinear optical loop mirror has been constructed to suppress the wings associated with nonlinear compression. Pedestal free, transform-limited pulses with pulse widths in range of 0.2 to 0.4 ps have been generated. LiNbO3 modulators play a very important role in fiber optical communication systems. In this thesis, LiNbO3 modulators have been used to perform high repetition rate pulse generation, all optical demultiplexing and all optical add/drop for the TDM transmission system.

  4. Effect of skin to skin care to neonates on pulse rate, respiratory rate SPO2 and blood pressure in mothers.

    PubMed

    Nimbalkar, Archana; Patel, Dipen; Sethi, Ankur; Nimbalkar, Somashekhar

    2014-01-01

    Physiological benefits of skin to skin care (STS) to newborns are known but there is scarcity of data on changes in physiological parameters like pulse rate, respiratory rate, SPO2 and blood pressure in mothers during STS. We hypothesize that STS is beneficial to mothers with respect to these parameters. Objective of this study was to assess the changes of these parameters in mothers while providing STS for one hour. STS was provided by 52 mothers for a total of 127 times and parameters were recorded at starting of STS, at 15 min, at 30 min, at 60 min of STS and at 5 min rest after stopping STS. There were no significant changes in pulse rate and SPO2 but blood pressure and respiratory rate reduced significantly during STS as compared to rest after stopping STS. Thus STS is physiologically beneficial to mothers.

  5. Initial operation of high power ICRF system for long pulse in EAST

    SciTech Connect

    Qin, C. M. Zhao, Y. P.; Zhang, X. J.; Wan, B. N.; Gong, X. Z.; Mao, Y. Z.; Yuan, S.; Chen, G.

    2015-12-10

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactions at EAST and some preliminary results for the optimizing RF performance will be presented.

  6. Initial operation of high power ICRF system for long pulse in EAST

    NASA Astrophysics Data System (ADS)

    Qin, C. M.; Zhao, Y. P.; Zhang, X. J.; Wan, B. N.; Gong, X. Z.; Mao, Y. Z.; Yuan, S.; Chen, G.

    2015-12-01

    The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactions at EAST and some preliminary results for the optimizing RF performance will be presented.

  7. Gain property on supersonic flow TEA-CO2 laser in double-pulse operation

    NASA Astrophysics Data System (ADS)

    Imada, Go; Tateishi, Motoki; Suzuki, Masataro; Masuda, Wataru

    2012-01-01

    In order to contribute toward the development of a highly-repetitive TEA-CO2 laser, small-signal gains are measured for a double-pulse operation of a laser medium in a supersonic flow at a Mach number of 2. It is found that the time interval of the double-pulse operation should be longer than 60 μs in order to have the gain of the subsequent pulse comparable to that of the preceding one. It is also found that the gain is enhanced with a low-temperature laser medium owing to the concentration of excited CO2 molecules in the state of a specific rotational quantum number. The results suggest the possibility that the output power of a TEA-CO2 laser device can be increased by utilizing the supersonic flow.

  8. Smartphone-enabled pulse rate variability: an alternative methodology for the collection of heart rate variability in psychophysiological research.

    PubMed

    Heathers, James A J

    2013-09-01

    Heart rate variability (HRV) is widely used to assess autonomic nervous system (ANS) function. It is traditionally collected from a dedicated laboratory electrocardiograph (ECG). This presents a barrier to collecting the large samples necessary to maintain the statistical power of between-subject psychophysiological comparisons. An alternative to ECG involves an optical pulse sensor or photoplethysmograph run from a smartphone or similar portable device: smartphone pulse rate variability (SPRV). Experiment 1 determined the simultaneous accuracy between ECG and SPRV systems in n = 10 participants at rest. Raw SPRV values showed a consistent positive bias, which was successfully attenuated with correction. Experiment 2 tested an additional n = 10 participants at rest, during attentional load, and during mild stress (exercise). Accuracy was maintained, but slightly attenuated during exercise. The best correction method maintained an accuracy of +/-2% for low-frequency spectral power, and +/-5% for high-frequency spectral power over all points. Thus, the SPRV system records a pulse-to-pulse approximation of an ECG-derived heart rate series that is sufficiently accurate to perform time- and frequency-domain analysis of its variability, as well as accurately reflecting change in autonomic output provided by typical psychophysiological stimuli. This represents a novel method by which an accurate approximation of HRV may be collected for large-sample or naturalistic cardiac psychophysiological research.

  9. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation

    NASA Astrophysics Data System (ADS)

    Kirtland, Brian C.; Aelion, C. Marjorie

    2000-02-01

    Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O 2, CO 2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day -1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day -1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.

  10. High-repetition-rate ultrashort pulsed fiber ring laser using hybrid mode locking.

    PubMed

    Zhang, Xiang; Hu, Hongyu; Li, Wenbo; Dutta, Niloy K

    2016-10-01

    We propose and demonstrate a hybrid mode-locked erbium-doped fiber ring laser by combining the rational harmonic mode-locking technique and passive mode locking based on nonlinear polarization rotation in a highly nonlinear photonic crystal fiber. By carefully adjusting the modulation frequency and the polarization controllers in the cavity, a 30 GHz pulse train with improved stability and narrower pulse width is generated. The pulse width at 30 GHz using rational harmonic mode locking alone is 5.8 ps. This hybrid scheme narrows the pulse width to 1.9 ps at the repetition rate of 30 GHz. Numerical simulations are carried out that show good agreement with the experimental results.

  11. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate

    PubMed Central

    Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-01-01

    Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community. PMID:28717558

  12. Low-repetition-rate, high-energy, twin-pulse, passively mode locked Yb3+-doped fiber laser.

    PubMed

    Liu, Dongfeng; Zhu, Xiaojun; Wang, Chinhua; Yu, Jianjun; Hu, Danfeng

    2011-02-01

    We report an all-normal-dispersion, low-repetition-rate, high-energy, twin-pulse, passively mode locked ytterbium-doped fiber laser. The mode-locking mechanism of the laser is based on nonlinear polarization evolution and strong pulse shaping with a cascade long-period fiber grating bandpass filtering in a highly chirped pulse. The laser generates a highly stable twin-pulse group with 248 ps and 296 ps duration simultaneously and maximum pulse energy of 26.8 nJ-each pulse at a 2.5445 MHz repetition rate. Energy quantization is observed, which demonstrates the nonparabolic nature of these pulses. The laser can also work in third-harmonic mode locking with 17.8 nJ energy (at a repetition rate of 7.65 MHz and pulse width of 780 ps).

  13. Radioactivity computation of steady-state and pulsed fusion reactors operation

    SciTech Connect

    Attaya, H.

    1994-11-01

    The International Thermonuclear Report (ITER) is expected to operate in a pulsed operational mode. Accurate radioactivity calculations, that take into account this mode of operation, are required in order to determine precisely the different safety aspects of ITER. The authors previous examined analytically the effect of pulsed operation in ITER and showed how it depends on the burn time, the dwell time, and the half-lives. That analysis showed also that for ITER`s low duty factor, using the continuous operation assumption would considerably overestimate the radioactivities, for a wide range of half-lives. At the same time, the large improvements in the quality and the quantity of the decay and the cross-section data libraries has considerably increased the computation times of the radioactivity calculations. For both reasons it is imperative to seek different methods of solution that reduce the computational time and can be easily adopted to the treatment of the pulsed operation. In this work, they have developed algorithms based on several mathematical methods that were chosen based on their generality, reliability, stability, accuracy, and efficiency. These methods are the matrix Schuer decomposition, the eigenvector decomposition, and the Pade approximation for the matrix exponential functions.

  14. Biogenic amines modulate pulse rate in the dorsal blood vessel of Lumbriculus variegatus.

    PubMed

    Crisp, Kevin M; Grupe, Rebecca E; Lobsang, Tenzin T; Yang, Xong

    2010-05-01

    The biogenic amines are widespread regulators of physiological processes, and play an important role in regulating heart rate in diverse organisms. Here, we present the first pharmacological evidence for a role of the biogenic amines in the regulation of dorsal blood vessel pulse rate in an aquatic oligochaete, Lumbriculus variegatus (Müller, 1774). Bath application of octopamine to intact worms resulted in an acceleration of pulse rate, but not when co-applied with the adenylyl cyclase inhibitor MDL-12,330a. The phosphodiesterase inhibitor theophylline mimicked the effects of OA, but the polar adenosine receptor antagonist 8(p-sulphophenyl)theophylline was significantly less potent than theophylline. Pharmacologically blocking synaptic reuptake of the biogenic amines using the selective 5-HT reuptake blocker fluoxetine or various tricyclic antidepressants also accelerated heart rate. Depletion of the biogenic amines by treatment with the monoamine vesicular transporter blocker reserpine dramatically depressed pulse rate. Pulse rate was partially restored in amine-depleted worms after treatment with octopamine or dopamine, but fully restored following treatment with serotonin. This effect of 5-HT was weakly mimicked by 5-methoxytryptamine, but not by alpha-methylserotonin; it was completely blocked by clozapine and partially blocked by cyproheptadine. Because they are known to orchestrate a variety of adaptive behaviors in invertebrates, the biogenic amines may coordinate blood flow with behavioral state in L.variegatus.

  15. Capacitors, thermal rating/derating (ac-dc operation)

    NASA Technical Reports Server (NTRS)

    Borough, J. W.

    1981-01-01

    Application techniques for determining performance and ratings of cased capacitors under combined operation as a function of the actual operating conditions are described. Thermal impedances between the case and external environment and between the internal hot spot and case are taken into account.

  16. Monitoring of ultraviolet pulse rate dependent photomechanical actuation in carbon nanotubes using fiber Bragg gratings

    SciTech Connect

    Shivananju, B. N.; Suri, Ashish; Asokan, S.; Misra, Abha

    2014-01-06

    In this Letter, we present a non-contact method of controlling and monitoring photomechanical actuation in carbon nanotubes (CNT) by exposing it to ultra-violet radiation at different pulse rates (10 to 200 Hz). This is accomplished by imparting a reversible photo induced strain (5–330 με) on CNT coated fibre Bragg gratings; CNT undergoes an internal reversible structural change due to cyclic photon absorption that leads to the development of mechanical strain, which in turn allows reversible switching of the Bragg wavelength. The results also reveal an interesting pulse rate dependent rise and fall times of photomechanical actuation in CNT.

  17. Pulse

    MedlinePlus

    ... the underside of the opposite wrist, below the base of the thumb. Press with flat fingers until ... determine if the patient's heart is pumping. Pulse measurement has other uses as well. During or immediately ...

  18. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  19. Immediate post-exposure effects of high-peak-power microwave pulses on operant behavior of Wistar rats

    SciTech Connect

    Akyel, Y.; Hunt, E.L.; Gambrill, C.; Vargas, C. Jr. )

    1991-01-01

    Behavioral effects of high-peak-power microwave pulses on Wistar rats were studied by operant schedules. Each of twelve rats that had been trained to press a lever to receive food pellets was assigned randomly in groups of four to three different schedules of reinforcement: fixed-ratio (FR), variable-interval (VI), and differential-reinforcement-of-low-rates (DRL). After achieving a steady baseline performance, each animal was exposed for 10 min to 1.25-GHz microwave radiation at 1-MW peak-power (10-microseconds pulse width). Each pulse produced a peak whole-body SA and SAR of 2.1 J/kg and 0.21 MW/kg. Total doses (SAs) were set to 0.50, 1.5, 4.5, and 14 kJ/kg by adjusting the pulse-repetition rate. The corresponding time-averaged whole-body SARs were 0.84, 2.5, 7.6, and 23 W/kg. A microwave-transparent animal holder was used to keep the animal's body axis parallel to the E-field. Exposures at the highest dose caused an average colonic temperature rise of 2.5C and these animals failed to respond at all for about 13 minutes after the exposure. Their colonic temperatures had decreased to 1.1C, or less, above their pre-exposure (normal) temperature level when they began to respond. The FR and VI animals failed to reach their baseline levels of performance thereafter, while those on the DRL schedule displayed variable effects. No behavioral effects were found at the lower dose levels. It is concluded that the behavioral perturbations produced by pulsed microwave irradiation were thermal in nature.

  20. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  1. Multi-pulse operation of a dissipative soliton fibre laser based on nonlinear polarisation rotation

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Wang, X. L.; Zhou, P.; Chen, J. B.

    2016-03-01

    We report an experimental observation of multiple dissipative soliton (DS) operation states in an all-normal-dispersion passively mode-locked Yb-doped fibre laser, including DS bound and oscillating states. In the bound state, multiple DSs up to 11 can coexist in the cavity. In the oscillating state, the DSs' movements are not purely random and three typical states are generalised and illustrated. A single-pulse mode-locked state is established at a high pump power by carefully adjusting the polarisation controllers. The broad spectrum indicates that it may be noise-like pulses, which can serve as a pump to generate a supercontinuum.

  2. Use of a prototype pulse oximeter for time series analysis of heart rate variability

    NASA Astrophysics Data System (ADS)

    González, Erika; López, Jehú; Hautefeuille, Mathieu; Velázquez, Víctor; Del Moral, Jésica

    2015-05-01

    This work presents the development of a low cost pulse oximeter prototype consisting of pulsed red and infrared commercial LEDs and a broad spectral photodetector used to register time series of heart rate and oxygen saturation of blood. This platform, besides providing these values, like any other pulse oximeter, processes the signals to compute a power spectrum analysis of the patient heart rate variability in real time and, additionally, the device allows access to all raw and analyzed data if databases construction is required or another kind of further analysis is desired. Since the prototype is capable of acquiring data for long periods of time, it is suitable for collecting data in real life activities, enabling the development of future wearable applications.

  3. Cesium dynamics in long pulse operation of negative hydrogen ion sources for fusion

    SciTech Connect

    Fantz, U.; Wimmer, C.

    2012-02-15

    Large scale negative hydrogen ion sources operating stable for 1 h (cw mode) are required for the neutral beam heating system of the fusion experiment ITER. The formation of negative hydrogen ions relies on the surface effect for which cesium is evaporated into the source. In order to monitor the cesium dynamics the laser absorption spectroscopy technique is applied to the long pulse test facility MANITU. In the vacuum phase, without plasma operation the evaporation of cesium and the built-up of the cesium in the source are measured. Typical neutral cesium densities are 10{sup 15} m{sup -3}. During plasma operation and after the plasma phase a high cesium dynamics is observed, showing also depletion of cesium during long pulses with low cesium amount. The co-extracted electron current decreases with the cesium amount to a certain level whereas the ion current indicates an optimum density range.

  4. Cesium dynamics in long pulse operation of negative hydrogen ion sources for fusion.

    PubMed

    Fantz, U; Wimmer, C

    2012-02-01

    Large scale negative hydrogen ion sources operating stable for 1 h (cw mode) are required for the neutral beam heating system of the fusion experiment ITER. The formation of negative hydrogen ions relies on the surface effect for which cesium is evaporated into the source. In order to monitor the cesium dynamics the laser absorption spectroscopy technique is applied to the long pulse test facility MANITU. In the vacuum phase, without plasma operation the evaporation of cesium and the built-up of the cesium in the source are measured. Typical neutral cesium densities are 10(15) m(-3). During plasma operation and after the plasma phase a high cesium dynamics is observed, showing also depletion of cesium during long pulses with low cesium amount. The co-extracted electron current decreases with the cesium amount to a certain level whereas the ion current indicates an optimum density range.

  5. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments.

    PubMed

    Loebner, Keith T K; Underwood, Thomas C; Cappelli, Mark A

    2015-06-01

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenum pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.

  6. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments

    SciTech Connect

    Loebner, Keith T. K. Underwood, Thomas C.; Cappelli, Mark A.

    2015-06-15

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenum pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.

  7. A fast rise-rate, adjustable-mass-bit gas puff valve for energetic pulsed plasma experiments

    NASA Astrophysics Data System (ADS)

    Loebner, Keith T. K.; Underwood, Thomas C.; Cappelli, Mark A.

    2015-06-01

    A fast rise-rate, variable mass-bit gas puff valve based on the diamagnetic repulsion principle was designed, built, and experimentally characterized. The ability to hold the pressure rise-rate nearly constant while varying the total overall mass bit was achieved via a movable mechanical restrictor that is accessible while the valve is assembled and pressurized. The rise-rates and mass-bits were measured via piezoelectric pressure transducers for plenum pressures between 10 and 40 psig and restrictor positions of 0.02-1.33 cm from the bottom of the linear restrictor travel. The mass-bits were found to vary linearly with the restrictor position at a given plenum pressure, while rise-rates varied linearly with plenum pressure but exhibited low variation over the range of possible restrictor positions. The ability to change the operating regime of a pulsed coaxial plasma deflagration accelerator by means of altering the valve parameters is demonstrated.

  8. Temperature stable operation of YCOB crystal for giant-pulse green microlaser.

    PubMed

    Kausas, Arvydas; Loiseau, Pascal; Aka, Gerard; Zheng, Yanqing; Zheng, Lihe; Taira, Takunori

    2017-03-20

    In this work the performance of two yttrium calcium oxyborate (YCOB) crystals made by Czochralski and Bridgman growth process was measured. By using high peak power, passively Q-switched Nd3+:YAG/Cr4+:YAG microlaser, high conversion second harmonic generation efficiency were obtained. Laser pulses at 532 nm with 1.14 mJ energy and 223 ps duration were obtained with a 15-mm long YCOB crystal that was grown by Bridgman method. The conversion efficiency was 70.2%, comparable with the conversion efficiency of 72.8% that was achieved with 10-mm long lithium triborate (LBO) nonlinear crystal. Also, for the first time, experimental data on temperature tuning in type I YCOB crystal was measured with linear slope in 200°C temperature range equal to -0.057%/°C and -0.064%/°C for the Czochralski and Bridgman grown crystals, respectively. Such YCOB nonlinear crystal can become a serious option for developing laser sources with high-peak power at high repetition rate that can operate in harsh environment.

  9. NON-NEWTONIAN FLUID CAVERN AND NEWTONIAN CLOUD HEIGHT TESTS TO CHARACTERIZE PULSE JET MIXER OPERATION

    SciTech Connect

    Enderlin, Carl W.; Bontha, Jagannadha R.; Bamberger, Judith A.; Nigl, Franz

    2011-01-01

    Pulse jet mixing systems are being developed for use in the Waste Treatment Plant in Washington State. To assist with system development, scaled tests were conducted to obtain experimental measurements of the cloud height for Newtonian slurries and cavern heights for a Non-Newtonian yield stress material. The measurements were required to assess the effective mixing and material mobilization produced during pulse jet mixer operation. The cloud height measurements were obtained for a single steady-state jet directed downward in a spherical-bottom tank. The cloud tests used glass beads in water to evaluate the height of the suspended slurry as a function of jet velocity. Cloud testing revealed that the glass bead material was suspended in the tank quickly and developed a distinctive height for each combination of flow rate and particulate size tested. The solids loading had minimal impact on the cloud height for a given particle size. During all cloud tests, the surface of the tank remained relatively calm, indicating that the slurry was dissipating the mixing energy of the relatively high velocity jet. Cavern tests were conducted to obtain experimental data of non-Newtonian fluid mixing for fluid properties similar to those of certain tank wastes. A transparent material that exhibited a yield stress and shear thinning behavior was used to obtain measurements of steady-state cavern heights as a function of jet velocity. For the non-Newtonian fluid cavern tests, distinct cavern volumes were readily developed for the four velocities tested. A linear relationship was observed to exist between cavern height and nozzle velocity. Since the experimental work detailed in this paper was completed, additional scaled tests have been conducted with pneumatic drive systems and direct drive systems similar to that described for this effort. Data from both types of measurements are shown to be linear; however, effects from the reciprocating drive systems that are not yet

  10. Development of a wideband pulse quaternary modulation system. [for an operational 400 Mbps baseband laser communication system

    NASA Technical Reports Server (NTRS)

    Federhofer, J. A.

    1974-01-01

    Laboratory data verifying the pulse quaternary modulation (PQM) theoretical predictions is presented. The first laboratory PQM laser communication system was successfully fabricated, integrated, tested and demonstrated. System bit error rate tests were performed and, in general, indicated approximately a 2 db degradation from the theoretically predicted results. These tests indicated that no gross errors were made in the initial theoretical analysis of PQM. The relative ease with which the entire PQM laboratory system was integrated and tested indicates that PQM is a viable candidate modulation scheme for an operational 400 Mbps baseband laser communication system.

  11. Optical short pulse generation at high repetition rate over 80 GHz from a monolithic passively modelocked DBR laser diode

    NASA Astrophysics Data System (ADS)

    Arahira, S.; Matsui, Y.; Kunii, T.; Oshiba, S.; Ogawa, Y.

    1993-05-01

    Optical short pulses at high repetition rate over 80 GHz were successfully generated using a monolithically fabricated passively modelocked distributed Bragg reflector laser diode for the first time. By using linear fibre compression, a transform-limited optical pulse train with a duration of 2.7 ps was obtained. The pulse envelope closely matched a sech(sup 2) waveform.

  12. High-power optical parametric oscillator based on a high-pulse repetition rate, master Nd : KGW laser

    NASA Astrophysics Data System (ADS)

    Bogdanovich, M. V.; Grigor'ev, A. V.; Lantsov, K. I.; Lepchenkov, K. V.; Ryabtsev, A. G.; Ryabtsev, G. I.; Shchemelev, M. A.; Titovets, V. S.; Agrawal, L.; Bhardwaj, A.

    2017-05-01

    An optical scheme of an optical parametric oscillator with a master laser based on an Nd : KGW active element excited by two orthogonally oriented diode side pump modules is proposed to form radiation pulses with energies above 30 mJ and a repetition rate of 1 - 20 Hz in the eye-safe spectral range of 1.5 - 1.6 μm. The two-module excitation of the active medium makes the distribution of the master laser radiation intensity in the output beam cross section more uniform and provides a reliable operation of the optical parametric oscillator.

  13. The high performance readout chain for the DSSC 1Megapixel detector, designed for high throughput during pulsed operation mode

    NASA Astrophysics Data System (ADS)

    Kirchgessner, M.; Soldat, J.; Kugel, A.; Donato, M.; Porro, M.; Fischer, P.

    2015-01-01

    The readout chain of the DSSC 1M pixel detector currently built at DESY, Hamburg for the European X-Ray Free Electron Laser is described. The system operates in pulsed operation mode comparable to the new ILC. Each 0.1 seconds 800 images of 1M pixels are produced and readout by the DSSC DAQ electronics. The total data production rate of the system is about 134 Gbit/s. In order to deal with the high data rates, latest technology components like the Xilinx Kintex 7 FPGA are used to implement fast DDR3-1600 image buffers, high speed serial FPGA to FPGA communication and 10 GB Ethernet links concentrated in one 40 Gbit/s QSFP+ transceiver.

  14. Effect of the pulse repetition rate on fiber-assisted tissue ablation

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook

    2016-07-01

    The effect of the pulse repetition rate on ablation performance was evaluated ex vivo at various fiber sweeping speeds for an effective 532-nm laser prostatectomy. Three pulse repetition rates (7.5, 15, and 30 kHz) at 100 W were delivered to bovine liver tissue at three sweeping speeds (2, 4, and 6 mm/s) to achieve bulky tissue removal. Ablation performance was quantitatively compared in terms of the ablation volume and the coagulation thickness. The lowest pulse repetition rate of 7.5 kHz attained the highest ablation volume (101.5 ± 12.0 mm3) and the thinnest coagulation (0.7 ± 0.1 mm) along with superficial carbonization. The highest pulse repetition rate of 30 kHz was associated with the least tissue removal (65.8 ± 5.0 mm3) and the deepest thermal denaturation (1.1 ± 0.2 mm). Quantitative evaluations of laser parameters can be instrumental in facilitating ablation efficiency and maintaining hemostatic coagulation during treatment of large-sized benign prostate hyperplasia.

  15. Effects of pulse rate and electrode array design on intensity discrimination in cochlear implant users

    NASA Astrophysics Data System (ADS)

    Kreft, Heather A.; Donaldson, Gail S.; Nelson, David A.

    2004-10-01

    The effects of pulse rate on intensity discrimination were evaluated in 14 subjects with Clarion C-I cochlear implants. Subjects had a standard [Clarion spiral electrode array (SPRL group)] or perimodiolar electrode array [Clarion HiFocus electrode array with electrode positioning system (HF+EPS group)]. Weber fractions for intensity discrimination [WfdB=10 log ΔI/I] were evaluated at five levels over dynamic range at each of three pulse rates (200, 1625 and 6500 pps) using monopolar stimulation. Weber fractions were smaller for 200 pps stimuli than for 1625 or 6500 pps stimuli in both groups. Weber fractions were significantly smaller for SPRL subjects (mean WfdB=-9.1 dB) than for HF+EPS subjects (mean WfdB=-6.7 dB). Intensity difference limens (DLs) expressed as a percentage of dynamic range (DR) (ΔI%DR=ΔI/DRdB*100) did not vary systematically with pulse rate in either group. Larger intensity DLs combined with smaller dynamic ranges led to fewer intensity steps over the dynamic range for HF+EPS subjects (average 9 steps) compared to SPRL subjects (average 23 steps). The observed effects of pulse rate and electrode array design may stem primarily from an inverse relationship between absolute current amplitude and the size of intensity DLs. The combination of smaller dynamic ranges and larger Weber fractions in HF+EPS subjects could be the result of increased variability of neural outputs in these subjects. .

  16. Precipitation pulse size and frequency controls on dryland litter decomposition rates

    NASA Astrophysics Data System (ADS)

    Kurupas, K. L.; Throop, H.

    2014-12-01

    Drylands are an important component of the global carbon (C) cycle, accounting for 40% of the land area and 20% of the soil organic C globally. Litter decomposition is a key biogeochemical process, controlling C and nutrient cycling. While simple decomposition models successfully predict decomposition rates in many systems based on climate variables, there is a disconnect between the modeled and measured rates decomposition in drylands. This disconnect may stem from abiotic factors of importance in drylands, such as photodegradation and soil-litter mixing, not being taken into account. Soil-litter mixing can accelerate decomposition, but the underlying mechanisms are poorly understood. Potential mechanisms include microclimate buffering, physical abrasion, and enhanced microbial colonization. Recent work suggests that litter decomposition is remarkably insensitive to climate variables, at least when variables are presented as long temporal-scale values (e.g., annual precipitation). We hypothesized that decomposition would be more strongly affected by litter moisture content than total precipitation (PPT) alone. Thus, frequent, small PPT pulses would accelerate decomposition more than larger, but infrequent pulses. Furthermore, soil-litter mixing would enhance decomposition by buffering litter moisture content. To test the combined influence of soil-litter mixing and PPT pulses on decomposition, we incubated litter and soil in a semi-controlled greenhouse which simulated dryland summer temperatures. Two litter types (grass and shrub) were incubated under two levels of soil-litter mixing (no mixing and complete soil-litter mixing) and with 16 different PPT treatments (a factorial combination of four PPT pulses sizes and four PPT frequencies). We measured instantaneous CO2 flux throughout the 30 day incubation and mass loss at the end of the incubation. Shrub litter decomposed faster than grass litter. Flux rates generally peaked at day 8 and declined thereafter. CO2

  17. Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification.

    PubMed

    Schulz, M; Riedel, R; Willner, A; Mans, T; Schnitzler, C; Russbueldt, P; Dolkemeyer, J; Seise, E; Gottschall, T; Hädrich, S; Duesterer, S; Schlarb, H; Feldhaus, J; Limpert, J; Faatz, B; Tünnermann, A; Rossbach, J; Drescher, M; Tavella, F

    2011-07-01

    We report on a Yb:YAG Innoslab laser amplifier system for generation of subpicsecond high energy pump pulses for optical parametric chirped pulse amplification (OPCPA) at high repetition rates. Pulse energies of up to 20 mJ (at 12.5 kHz) and repetition rates of up to 100 kHz were attained with pulse durations of 830 fs and average power in excess of 200 W. We further investigate the possibility to use subpicosecond pulses to derive a stable continuum in a YAG crystal for OPCPA seeding.

  18. Lead extraction by selective operation of a nanosecond-pulsed 355nm laser

    NASA Astrophysics Data System (ADS)

    Herzog, Amir; Bogdan, Stefan; Glikson, Michael; Ishaaya, Amiel A.; Love, Charles

    2016-03-01

    Lead extraction (LE) is necessary for patients who are suffering from a related infection, or in opening venous occlusions that prevent the insertion of additional lead. In severe cases of fibrous encapsulation of the lead within a vein, laser-based cardiac LE has become one of the foremost methods of removal. In cases where the laser radiation (typically at 308 nm wavelength) interacts with the vein wall rather than with the fibrotic lesion, severe injury and subsequent bleeding may occur. Selective tissue ablation was previously demonstrated by a laser operating in the UV regime; however, it requires the use of sensitizers (e.g.: tetracycline). In this study, we present a preliminary examination of efficacy and safety aspects in the use of a nanosecond-pulsed solid-state laser radiation, at 355 nm wavelength, guided in a catheter consisting of optical fibers, in LE. Specifically, we demonstrate a correlation between the tissue elasticity and the catheter advancement rate, in ex-vivo experiments. Our results indicate a selectivity property for specific parameters of the laser radiation and catheter design. The selectivity is attributed to differences in the mechanical properties of the fibrotic tissue and a normal vein wall, leading to a different photomechanical response of the tissue's extracellular matrix. Furthermore, we performed successful in-vivo animal trials, providing a basic proof of concept for using the suggested scheme in LE. Selective operation using a 355 nm laser may reduce the risk of blood vessel perforation as well as the incidence of major adverse events.

  19. Concurrent validity of resting pulse-rate measurements: a comparison of 2 smartphone applications, the polar H7 belt monitor, and a pulse oximeter with bluetooth.

    PubMed

    Cheatham, Scott W; Kolber, Morey J; Ernst, Michael P

    2015-05-01

    Pulse rate is commonly measured manually or with commercial wrist or belt monitors. More recently, pulse-rate monitoring has become convenient with the use of mobile technology that allows monitoring through a smartphone camera. This optical technology offers many benefits, although the clinimetric properties have not been extensively studied. Observational study of reliability Setting: University kinesiology laboratory. 30 healthy, recreationally active adults. Concurrent measurement of pulse rate using 2 smartphone applications (fingertip, face-scan,) with the Polar H7 belt and pulse oximeter. Average resting pulse rate for 5 min in 3 positions (supine, sitting, and prone). Concurrent validity in supine and standing was good between the 2 applications and the Polar H7 (intraclass correlation coefficient [ICC] .80-.98) and pulse oximeter (ICC .82-.98). For sitting, the validity was good between the fingertip application, Polar H7 (ICC .97), and pulse oximeter (ICC .97). The face-scan application had moderate validity with the Polar H7 (ICC .74) and pulse oximeter (ICC .69). The minimal detectable change (MDC90) between the fingertip application and Polar H7 ranged from 1.38 to 4.36 beats/min (BPM) and from 0.69 to 2.97 BPM for the pulse oximeter with both positions. The MDC90 between the face-scan application and Polar H7 ranged from 11.88 to 12.83 BPM and from 0.59 to 17.72 BPM for the pulse oximeter. The 95% limits of agreement suggest that the fingertip application may vary between 2.40 and 3.59 BPM with the Polar H7 and between 3.40 and 3.42 BPM with the pulse oximeter. The face-scan application may vary between 3.46 and 3.52 BPM with the Polar H7 and between 2.54 and 3.46 BPM with the pulse oximeter. Pulse-rate measurements may be effective using a fingertip application, belt monitor, and pulse oximeter. The fingertip scanner showed superior results compared with the face scanner, which only demonstrated modest validity compared with the Polar H7 and pulse

  20. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE.

    PubMed

    Schmidt, J; Winnerl, S; Seidel, W; Bauer, C; Gensch, M; Schneider, H; Helm, M

    2015-06-01

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.

  1. Single-pulse picking at kHz repetition rates using a Ge plasma switch at the free-electron laser FELBE

    SciTech Connect

    Schmidt, J. Helm, M.; Winnerl, S.; Seidel, W.; Schneider, H.; Bauer, C.; Gensch, M.

    2015-06-15

    We demonstrate a system for picking of mid-infrared and terahertz (THz) radiation pulses from the free-electron laser (FEL) FELBE operating at a repetition rate of 13 MHz. Single pulses are reflected by a dense electron-hole plasma in a Ge slab that is photoexcited by amplified near-infrared (NIR) laser systems operating at repetition rates of 1 kHz and 100 kHz, respectively. The peak intensity of picked pulses is up to 400 times larger than the peak intensity of residual pulses. The required NIR fluence for picking pulses at wavelengths in the range from 5 μm to 30 μm is discussed. In addition, we show that the reflectivity of the plasma decays on a time scale from 100 ps to 1 ns dependent on the wavelengths of the FEL and the NIR laser. The plasma switch enables experiments with the FEL that require high peak power but lower average power. Furthermore, the system is well suited to investigate processes with decay times in the μs to ms regime, i.e., much longer than the 77 ns long pulse repetition period of FELBE.

  2. Controlling Dopant Profiles in Hyperdoped Silicon by Modifying Dopant Evaporation Rates During Pulsed Laser Melting

    SciTech Connect

    Recht, D.; Sullivan, J. T.; Reedy, R.; Buonassisi, T.; Aziz, M. J.

    2012-03-12

    We describe a method to control the sub-surface dopant profile in 'hyperdoped' silicon fabricated by ion implantation and pulsed laser melting. Dipping silicon ion implanted with sulfur into hydrofluoric acid prior to nanosecond pulsed laser melting leads to a tenfold increase in the rate of sulfur evaporation from the surface of the melt. This results in an 80% reduction of the near-surface dopant concentration, effectively embedding the hyperdoped region in a layer up to 180 nm beneath the surface. This method should facilitate the development of blocked impurity band devices.

  3. Lower complication rates for cranioplasty with peri-operative bundle.

    PubMed

    Le, Catherine; Guppy, Kern H; Axelrod, Yekaterina V; Hawk, Mark W; Silverthorn, James; Inacio, Maria C; Akins, Paul T

    2014-05-01

    The overall benefits of craniectomy must include procedural risks from cranioplasty. Cranioplasty carries a high risk of surgical site infections (SSI) particularly with antibiotic resistant bacteria. The goal of this study was to measure the effect of a cranioplasty bundle on peri-operative complications. The authors queried a prospective, inpatient neurosurgery database at Kaiser Sacramento Medical Center for craniectomy and cranioplasty over a 7 year period. 57 patients who underwent cranioplasties were identified. A retrospective chart review was completed for complications, including surgical complications such as SSI, wound dehiscence, and re-do cranioplasty. We measured cranioplasty complication rates before and after implementation of a peri-operative bundle, which consisted of peri-operative vancomycin (4 doses), a barrier dressing through post-operative day (POD) 3, and de-colonization of the surgical incision using topical chlorhexidine from POD 4 to 7. The rate of MRSA colonization in cranioplasty patients is three times higher than the average seen on ICU admission screening (19% vs. 6%). The cranioplasty surgical complication rate was 22.8% and SSI rate was 10.5%. The concurrent SSI rate for craniectomy was 1.9%. Organisms isolated were methicillin-resistant Staphylococcus aureus (4), methicillin-sensitive S. aureus (1), Propionibacterium acnes (1), and Escherichia coli (1). Factors associated with SSI were peri-operative vancomycin (68.6% vs. 16.7%, p=0.0217). Complication rates without (n=21) and with (n=36) the bundle were: SSI (23.8% vs. 2.8%, p=0.0217) and redo cranioplasty (19% vs. 0%, p=0.0152). Bundle use did not affect rates for superficial wound dehiscence, seizures, or hydrocephalus. The cranioplasty bundle was associated with reduced SSI rates and the need for re-do cranioplasties. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. 3D thermal analysis of rectangular microscale inorganic light-emitting diodes in a pulsed operation

    NASA Astrophysics Data System (ADS)

    Cui, Yun; Bian, Zuguang; Li, Yuhang; Xing, Yufeng; Song, Jizhou

    2016-10-01

    Microscale inorganic light-emitting diodes (µ-ILEDs) have attracted much attention due to their excellent performance in biointegrated applications such as optogenetics. The thermal behaviors of µ-ILEDs are critically important since a certain temperature increase may degrade the LED performance and cause tissue lesion. The µ-ILEDs in a pulsed operation offer an advantage in thermal management. In this paper, a 3D analytic model, as validated by finite element analysis, is developed to study the thermal response of rectangular µ-ILEDs in a pulsed operation. A scaling law for the maximum normalized temperature increase of rectangular µ-ILEDs in terms of non-dimensional parameters is established. The influences of geometric (i.e. shape factor) and loading parameters (e.g. duty cycle and period) on the temperature increase are systematically investigated. These results are very helpful in designing µ-ILEDs by providing guidelines to avoid adverse thermal effects.

  5. Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser.

    PubMed

    Li, Xiaohui; Wang, Yonggang; Wang, Yishan; Zhao, Wei; Yu, Xuechao; Sun, Zhipei; Cheng, Xueping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2014-07-14

    We study a single-wall carbon nanotube (SWNT) Polyvinyl alcohol (PVA) composite as a saturable absorber (SA) for pulse generation in Yb-doped fiber lasers. The saturable absorption and optical limiting (OL) characteristics of the SWNT device are investigated. By combing these two nonlinear effects, we find out for the first time, to the best of our knowledge, that mode-locking can be obtained in the dissipative soliton regime at low pumping followed by Q-switching at high pumping, which is quite different from conventional pulse dynamic evolutions. The Q-switched state operating at higher pump powers is due to the OL effect. The inverted operating fiber laser can be applied in various potential applications such as versatile material processing, optical communication and radar system etc.

  6. Short pulse acquisition by low sampling rate with phase-coded sequence in lidar system

    NASA Astrophysics Data System (ADS)

    Wu, Long; Xu, Jiajia; Lv, Wentao; Yang, Xiaocheng

    2016-11-01

    The requirement of high range resolution results in impractical collection of every returned laser pulse due to the limited response speed of imaging detectors. This paper proposes a phase coded sequence acquisition method for signal preprocessing. The system employs an m-sequence with N bits for demonstration with the detector controlled to accumulate N+1 bits of the echo signals to deduce one single returned laser pulse. An indoor experiment achieved 2 μs resolution with the sampling period of 28 μs by employing a 15-bit m-sequence. This method shows the potential to improve the detection capabilities of narrow laser pulses with the detectors at a low frame rate, especially for the imaging lidar systems. Meanwhile, the lidar system is able to improve the range resolution with available detectors of restricted performance.

  7. Dependence of diode sensitivity on the pulse rate of delivered radiation

    SciTech Connect

    Jursinic, Paul A.

    2013-02-15

    Purpose: It has been reported that diode sensitivity decreases by as much as 2% when the average dose rate set at the accelerator console was decreased from 600 to 40 MU/min. No explanation was given for this effect in earlier publications. This work is a detailed investigation of this phenomenon: the change of diode sensitivity versus the rate of delivery of dose pulses in the milliseconds and seconds range. Methods: X-ray beams used in this work had nominal energies of 6 and 15 MV and were generated by linear accelerators. The average dose rate was varied from 25 to 600 MU/min, which corresponded to time between microsecond-long dose pulses of 60-2.7 ms, respectively. The dose-per-pulse, dpp, was changed by positioning the detector at different source-to-detector distance. A variety of diodes fabricated by a number of manufacturers were tested in this work. Also, diodes in three different MapCHECKs (Sun Nuclear, Melbourne, FL) were tested. Results: For all diodes tested, the diode sensitivity decreases as the average dose rate is decreased, which corresponds to an increase in the pulse period, the time between radiation pulses. A sensitivity decrease as large as 5% is observed for a 60-ms pulse period. The diode sensitivity versus the pulse period is modeled by an empirical exponential function. This function has a fitting parameter, t{sub eff}, defined as the effective lifetime. The values of t{sub eff} were found to be 1.0-14 s, among the various diodes. For all diodes tested, t{sub eff} decreases as the dpp decreases and is greater for 15 MV than for 6 MV x rays. The decrease in diode sensitivity after 20 s without radiation can be reversed by as few as 60 radiation pulses. Conclusions: A decrease in diode sensitivity occurs with a decrease in the average dose rate, which corresponds to an increase in the pulse period of radiation. The sensitivity decrease is modeled by an empirical exponential function that decreases with an effective lifetime, t{sub eff}, of

  8. Dependence of diode sensitivity on the pulse rate of delivered radiation.

    PubMed

    Jursinic, Paul A

    2013-02-01

    It has been reported that diode sensitivity decreases by as much as 2% when the average dose rate set at the accelerator console was decreased from 600 to 40 MU∕min. No explanation was given for this effect in earlier publications. This work is a detailed investigation of this phenomenon: the change of diode sensitivity versus the rate of delivery of dose pulses in the milliseconds and seconds range. X-ray beams used in this work had nominal energies of 6 and 15 MV and were generated by linear accelerators. The average dose rate was varied from 25 to 600 MU∕min, which corresponded to time between microsecond-long dose pulses of 60-2.7 ms, respectively. The dose-per-pulse, dpp, was changed by positioning the detector at different source-to-detector distance. A variety of diodes fabricated by a number of manufacturers were tested in this work. Also, diodes in three different MapCHECKs (Sun Nuclear, Melbourne, FL) were tested. For all diodes tested, the diode sensitivity decreases as the average dose rate is decreased, which corresponds to an increase in the pulse period, the time between radiation pulses. A sensitivity decrease as large as 5% is observed for a 60-ms pulse period. The diode sensitivity versus the pulse period is modeled by an empirical exponential function. This function has a fitting parameter, t(eff), defined as the effective lifetime. The values of t(eff) were found to be 1.0-14 s, among the various diodes. For all diodes tested, t(eff) decreases as the dpp decreases and is greater for 15 MV than for 6 MV x rays. The decrease in diode sensitivity after 20 s without radiation can be reversed by as few as 60 radiation pulses. A decrease in diode sensitivity occurs with a decrease in the average dose rate, which corresponds to an increase in the pulse period of radiation. The sensitivity decrease is modeled by an empirical exponential function that decreases with an effective lifetime, t(eff), of 1.0-14 s. t(eff) varies widely for different diodes

  9. Reducing error rates in straintronic multiferroic nanomagnetic logic by pulse shaping.

    PubMed

    Munira, Kamaram; Xie, Yunkun; Nadri, Souheil; Forgues, Mark B; Fashami, Mohammad Salehi; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo; Ghosh, Avik W

    2015-06-19

    Dipole-coupled nanomagnetic logic (NML), where nanomagnets (NMs) with bistable magnetization states act as binary switches and information is transferred between them via dipole-coupling and Bennett clocking, is a potential replacement for conventional transistor logic since magnets dissipate less energy than transistors when they switch in a logic circuit. Magnets are also 'non-volatile' and hence can store the results of a computation after the computation is over, thereby doubling as both logic and memory-a feat that transistors cannot achieve. However, dipole-coupled NML is much more error-prone than transistor logic at room temperature [Formula: see text] because thermal noise can easily disrupt magnetization dynamics. Here, we study a particularly energy-efficient version of dipole-coupled NML known as straintronic multiferroic logic (SML) where magnets are clocked/switched with electrically generated mechanical strain. By appropriately 'shaping' the voltage pulse that generates strain, we show that the error rate in SML can be reduced to tolerable limits. We describe the error probabilities associated with various stress pulse shapes and discuss the trade-off between error rate and switching speed in SML.The lowest error probability is obtained when a 'shaped' high voltage pulse is applied to strain the output NM followed by a low voltage pulse. The high voltage pulse quickly rotates the output magnet's magnetization by 90° and aligns it roughly along the minor (or hard) axis of the NM. Next, the low voltage pulse produces the critical strain to overcome the shape anisotropy energy barrier in the NM and produce a monostable potential energy profile in the presence of dipole coupling from the neighboring NM. The magnetization of the output NM then migrates to the global energy minimum in this monostable profile and completes a 180° rotation (magnetization flip) with high likelihood.

  10. A review of the clinical experience in pulsed dose rate brachytherapy

    PubMed Central

    Balgobind, Brian V; Koedooder, Kees; Ordoñez Zúñiga, Diego; Dávila Fajardo, Raquel; Rasch, Coen R N

    2015-01-01

    Pulsed dose rate (PDR) brachytherapy is a treatment modality that combines physical advantages of high dose rate (HDR) brachytherapy with the radiobiological advantages of low dose rate brachytherapy. The aim of this review was to describe the effective clinical use of PDR brachytherapy worldwide in different tumour locations. We found 66 articles reporting on clinical PDR brachytherapy including the treatment procedure and outcome. Moreover, PDR brachytherapy has been applied in almost all tumour sites for which brachytherapy is indicated and with good local control and low toxicity. The main advantage of PDR is, because of the small pulse sizes used, the ability to spare normal tissue. In certain cases, HDR resembles PDR brachytherapy by the use of multifractionated low-fraction dose. PMID:26290399

  11. A review of the clinical experience in pulsed dose rate brachytherapy.

    PubMed

    Balgobind, Brian V; Koedooder, Kees; Ordoñez Zúñiga, Diego; Dávila Fajardo, Raquel; Rasch, Coen R N; Pieters, Bradley R

    2015-01-01

    Pulsed dose rate (PDR) brachytherapy is a treatment modality that combines physical advantages of high dose rate (HDR) brachytherapy with the radiobiological advantages of low dose rate brachytherapy. The aim of this review was to describe the effective clinical use of PDR brachytherapy worldwide in different tumour locations. We found 66 articles reporting on clinical PDR brachytherapy including the treatment procedure and outcome. Moreover, PDR brachytherapy has been applied in almost all tumour sites for which brachytherapy is indicated and with good local control and low toxicity. The main advantage of PDR is, because of the small pulse sizes used, the ability to spare normal tissue. In certain cases, HDR resembles PDR brachytherapy by the use of multifractionated low-fraction dose.

  12. Developmental patterns of O2 consumption, heart rate and O2 pulse in unturned eggs.

    PubMed

    Pearson, J T; Haque, M A; Hou, P C; Tazawa, H

    1996-01-01

    The effects of failure to turn eggs on the developmental patterns of oxygen consumption (MO2), heart rate (fH) and O2 pulse during the second half of incubation of individual chicken eggs were examined. The MO2 of unturned eggs increased at a significantly lower rate than the control toward the end of prenatal incubation, and the plateau MO2 between day 17 and 19 was significantly lower than the control. Lack of turning also resulted in significant changes in the developmental patterns of fH and O2 pulse. It is suggested that the effects of lack of egg-turning on the developmental patterns of MO2 may be attributable to lower embryonic growth rate in addition to impairment of gas exchange through the chorioallantoic gas exchanger.

  13. Influence of solvent mixture on the ablation rate of iron using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kanitz, Alexander; Hoppius, Jan S.; Ostendorf, Andreas; Gurevich, Evgeny L.

    2017-02-01

    Ultrashort pulse laser ablation has become an important tool for material processing. Adding liquids to the process can be beneficial for a reduced debris and heat affected zone width. Another application is the production of ligand-free nanoparticles. By measuring the ablation rate of iron for femtosecond pulsed laser ablation in different solvents and solvent-mixtures, the influence of the solvent properties on the ablation process is studied. The ablation efficiency is quantified by measuring the ablation rate in dependency of the fluence from 0.05 J/cm2 up to 5 J/cm2 in water-ethanol and water-acetone mixtures which are varied in 25 % steps. The ablation rate is significantly influenced by the solvent-mixtures.

  14. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Pulse Operation of Chemical Oxygen-Iodine Laser by Pulsed Gas Discharge with the Assistance of Spark Pre-ionization

    NASA Astrophysics Data System (ADS)

    Li, Guo-Fu; Yu, Hai-Jun; Duo, Li-Ping; Jin, Yu-Qi; Wang, Jian; Sang, Feng-Ting; Fang, Ben-Jie; Wang, De-Zhen

    2009-11-01

    The continuous wavelength chemical oxygen-iodine laser can be turned into pulse operation mode in order to obtain high energy and high pulse power. We propose an approach to produce iodine atoms instantaneously by pulsed gas discharge with the assistance of spark pre-ionization to achieve the pulsed goal. The influence of spark pre-ionization on discharge homogeneity is discussed. Voltage-current characteristics are shown and discussed in existence of the pre-ionization capacitor and peaking capacitor. The spark pre-ionization and peaking capacitor are very helpful in obtaining a stable and homogeneous discharge. The lasing is achieved at the total pressure of 2.2-2.9kPa and single pulse energy is up to 180 mJ, the corresponding specific output energy is 1.0 J/L.

  15. Dose rate effect of pulsed electron beam on micronucleus frequency in human peripheral blood lymphocytes.

    PubMed

    Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol

    2010-03-01

    The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor.

  16. Development and Testing of Gallium Arsenide Photoconductive Detectors for Ultra Fast, High Dose Rate Pulsed Electron and Bremsstrahlung Radiation Measurements

    SciTech Connect

    Kharashvili, George; Makarashvili, Vakhtang; Mitchell, Marc; Beezhold, Wendland; Spaulding, Randy; Wells, Douglas; Gesell, Thomas; Wingert, Wayne

    2009-03-10

    Real time radiation dose measurements are challenging in high dose rate environments such as those used for testing electronic devices or biological agents. Dosimetry needs in pulsed reactor fields and particle accelerator facilities require development of dosimeters with fast (10 s of picoseconds) response to pulsed radiation, linear response over a wide range of dose rates (up to 10{sup 11} Gy/s), high resistance to radiation damage, and successful operation in mixed gamma and neutron environments. Gallium arsenide photoconductive detectors (GaAs PCD) have been shown to exhibit many of these desirable characteristics, especially fast time response. Less than 50 ps time resolution has been demonstrated when previously irradiated by fission neutrons. We have conducted a study of the response-time dependence on neutron fluence, starting with fluences at {approx}10{sup 14} n/cm{sup 2}. A 23-MeV electron beam was used to produce photoneutrons in a tungsten target for irradiation of a GaAs wafer from which PCDs were made. The process was modeled using MCNPX computer code and the simulation results were compared to the experimental measurements. GaAs PCDs were fabricated from both neutron-irradiated and non-irradiated GaAs samples. The results of the preliminary tests of these devices in accelerator-produced pulses of electron and bremsstrahlung radiation of various energies (13 to 35 MeV) and pulse lengths (100 ps to 4 {mu}s) are presented together with an overview of the future plans of continuing GaAs PCD research at Idaho State University.

  17. Single attosecond pulse generation in He{sup +} by controlling the instant ionization rate using attosecond pulse trains combined with an intense laser pulse

    SciTech Connect

    He Xinkui; Jia, T. Q.; Zhang, Jun; Suzuki, M.; Baba, M.; Kuroda, Hiroto; Ozaki, T.; Li Ruxin; Xu Zhizhan

    2007-08-15

    High-order harmonics and single attosecond pulse generation by using an infrared laser pulse combined with attosecond pulse trains (APT) interacting with He{sup +} have been investigated. We show that the ionization for different instant time intervals can be controlled by altering the time delay between the APT and the infrared pulse. Consequently, APT can be used as a tool to control the efficiency of high-order harmonics emitted at different times. By choosing appropriate APT and time delay, the driving pulse width for single attosecond pulse generation can be extended up to six optical cycles.

  18. Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

    SciTech Connect

    Tarvainen, O. Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Izotov, I.; Mansfeld, D.; Skalyga, V.

    2016-02-15

    The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz A-electron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10-100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime.

  19. Rate equations for nitrogen molecules in ultrashort and intense x-ray pulses

    DOE PAGES

    Liu, Ji -Cai; Berrah, Nora; Cederbaum, Lorenz S.; ...

    2016-03-16

    Here, we study theoretically the quantum dynamics of nitrogen molecules (N2) exposed to intense and ultrafast x-rays at a wavelength ofmore » $$1.1\\;{\\rm{nm}}$$ ($$1100\\;{\\rm{eV}}$$ photon energy) from the Linac Coherent Light Source (LCLS) free electron laser. Molecular rate equations are derived to describe the intertwined photoionization, decay, and dissociation processes occurring for N2. This model complements our earlier phenomenological approaches, the single-atom, symmetric-sharing, and fragmentation-matrix models of 2012 (J. Chem. Phys. 136 214310). Our rate-equations are used to obtain the effective pulse energy at the sample and the time scale for the dissociation of the metastable dication $${{\\rm{N}}}_{2}^{2+}$$. This leads to a very good agreement between the theoretically and experimentally determined ion yields and, consequently, the average charge states. The effective pulse energy is found to decrease with shortening pulse duration. This variation together with a change in the molecular fragmentation pattern and frustrated absorption—an effect that reduces absorption of x-rays due to (double) core hole formation—are the causes for the drop of the average charge state with shortening LCLS pulse duration discovered previously.« less

  20. Rate equations for nitrogen molecules in ultrashort and intense x-ray pulses

    SciTech Connect

    Liu, Ji -Cai; Berrah, Nora; Cederbaum, Lorenz S.; Cryan, James P.; Glownia, James M.; Schafer, Kenneth J.; Buth, Christian

    2016-03-16

    Here, we study theoretically the quantum dynamics of nitrogen molecules (N2) exposed to intense and ultrafast x-rays at a wavelength of $1.1\\;{\\rm{nm}}$ ($1100\\;{\\rm{eV}}$ photon energy) from the Linac Coherent Light Source (LCLS) free electron laser. Molecular rate equations are derived to describe the intertwined photoionization, decay, and dissociation processes occurring for N2. This model complements our earlier phenomenological approaches, the single-atom, symmetric-sharing, and fragmentation-matrix models of 2012 (J. Chem. Phys. 136 214310). Our rate-equations are used to obtain the effective pulse energy at the sample and the time scale for the dissociation of the metastable dication ${{\\rm{N}}}_{2}^{2+}$. This leads to a very good agreement between the theoretically and experimentally determined ion yields and, consequently, the average charge states. The effective pulse energy is found to decrease with shortening pulse duration. This variation together with a change in the molecular fragmentation pattern and frustrated absorption—an effect that reduces absorption of x-rays due to (double) core hole formation—are the causes for the drop of the average charge state with shortening LCLS pulse duration discovered previously.

  1. Ultrafast XUV Pulses at High Repetition Rate for Time Resolved Photoelectron Spectroscopy of Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Zhao, Peng; Li, Xinlong; Muraca, Amanda R.; Kershis, Matthew D.; White, Michael G.; Allison, Thomas K.

    2016-05-01

    Ultrafast photoelectron studies of surface dynamics are often limited by low repetition rates. At Stony Brook we have built a cavity-enhanced high-harmonic generation XUV source that delivers ultrafast pulses to a surface science apparatus for photoelectron spectroscopy. We begin with a Ytterbium fiber laser at a repetition rate of 78 MHz and up to 90 W of average power. After compression the pulses have μJ's of energy with < 180 fs pulse width. We then use an enhancement cavity with a finesse of a few hundred to build up to the peak intensity required for high harmonic generation. The enhancement cavity is a six mirror double folded bow-tie geometry with a focus of 15 μm at a Krypton gas jet, followed by a Sapphire crystal at Brewster's angle for the fundamental to allow outcoupling of the harmonics. A single harmonic is selected using a time-preserving monochromator to maintain the short pulses, and is sent to an ultra high vacuum chamber with sample preparation and diagnostic tools as well as an electron energy spectrometer. This allows us to study the electronic dynamics of semiconductor surfaces and their interfaces with adsorbed molecules which enable various charge transfer effects. Supported by AFOSR.

  2. Rate equations for nitrogen molecules in ultrashort and intense x-ray pulses

    SciTech Connect

    Liu, Ji -Cai; Berrah, Nora; Cederbaum, Lorenz S.; Cryan, James P.; Glownia, James M.; Schafer, Kenneth J.; Buth, Christian

    Here, we study theoretically the quantum dynamics of nitrogen molecules (N2) exposed to intense and ultrafast x-rays at a wavelength of $1.1\\;{\\rm{nm}}$ ($1100\\;{\\rm{eV}}$ photon energy) from the Linac Coherent Light Source (LCLS) free electron laser. Molecular rate equations are derived to describe the intertwined photoionization, decay, and dissociation processes occurring for N2. This model complements our earlier phenomenological approaches, the single-atom, symmetric-sharing, and fragmentation-matrix models of 2012 (J. Chem. Phys. 136 214310). Our rate-equations are used to obtain the effective pulse energy at the sample and the time scale for the dissociation of the metastable dication ${{\\rm{N}}}_{2}^{2+}$. This leads to a very good agreement between the theoretically and experimentally determined ion yields and, consequently, the average charge states. The effective pulse energy is found to decrease with shortening pulse duration. This variation together with a change in the molecular fragmentation pattern and frustrated absorption—an effect that reduces absorption of x-rays due to (double) core hole formation—are the causes for the drop of the average charge state with shortening LCLS pulse duration discovered previously.

  3. An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers

    DOE PAGES

    Höppner, H.; Hage, A.; Tanikawa, T.; ...

    2015-05-15

    High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to manymore » hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.« less

  4. Using the Box-Behnken experimental design to optimise operating parameters in pulsed spray fluidised bed granulation.

    PubMed

    Liu, Huolong; Wang, Ke; Schlindwein, Walkiria; Li, Mingzhong

    2013-05-20

    In this work, the influence factors of pulsed frequency, binder spray rate and atomisation pressure of a top-spray fluidised bed granulation process were studied using the Box-Behnken experimental design method. Different mathematical models were developed to predict the mean size of granules, yield, relative width of granule distribution, Hausner ratio and final granule moisture content. The study has supported the theory that the granule size can be controlled through the liquid feed pulsing. However, care has to be taken when the pulsed frequency is chosen for controlling the granule size due to the nonlinear quadratic relation in the regression model. The design space of the ranges of operating parameters has been determined based on constraints of the mean size of granules and granule yield. High degree of prediction obtained from validation experiments has shown the reliability and effectiveness of using the Box-Behnken experimental design method to study a fluidised bed granulation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Pulse electrodeposition of gold-nickel alloys from a citrate bath. 1. Deposition rate and coating appearance

    SciTech Connect

    Kostin, N.A.; Kaptanovskii, V.I.

    1994-11-01

    The effect of various parameters of pulse polarizing current on the deposition rate and appearance of gold-nickel coatings used in the watch industry was studied. It was shown that the pulse conditions allow deposition-rate enhancement and production of variously colored coatings.

  6. A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostic.

    PubMed

    Den Hartog, D J; Jiang, N; Lempert, W R

    2008-10-01

    A "pulse-burst" laser system is being constructed for addition to the Thomson scattering diagnostic on the Madison Symmetric Torus (MST) reversed-field pinch. This laser is designed to produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. This laser system will operate at 1064 nm and is a master oscillator, power amplifier. The master oscillator is a compact diode-pumped Nd:YVO(4) laser, intermediate amplifier stages are flashlamp-pumped Nd:YAG, and final stages will be flashlamp-pumped Nd:glass (silicate). Variable pulse width drive (0.3-20 ms) of the flashlamps is accomplished by insulated-gate bipolar transistor switching of large electrolytic capacitor banks. The burst train of laser pulses will enable the study of electron temperature (T(e)) and electron density (n(e)) dynamics in a single MST shot, and with ensembling, will enable correlation of T(e) and n(e) fluctuations with other fluctuating quantities.

  7. A pulse-burst laser system for a high-repetition-rate Thomson scattering diagnostic

    SciTech Connect

    Den Hartog, D. J.; Jiang, N.; Lempert, W. R.

    2008-10-15

    A ''pulse-burst'' laser system is being constructed for addition to the Thomson scattering diagnostic on the Madison Symmetric Torus (MST) reversed-field pinch. This laser is designed to produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. This laser system will operate at 1064 nm and is a master oscillator, power amplifier. The master oscillator is a compact diode-pumped Nd:YVO{sub 4} laser, intermediate amplifier stages are flashlamp-pumped Nd:YAG, and final stages will be flashlamp-pumped Nd:glass (silicate). Variable pulse width drive (0.3-20 ms) of the flashlamps is accomplished by insulated-gate bipolar transistor switching of large electrolytic capacitor banks. The burst train of laser pulses will enable the study of electron temperature (T{sub e}) and electron density (n{sub e}) dynamics in a single MST shot, and with ensembling, will enable correlation of T{sub e} and n{sub e} fluctuations with other fluctuating quantities.

  8. CO2 pulse and acid-base status during increasing work rate exercise in health and disease.

    PubMed

    Kisaka, Tomohiko; Cox, Timothy A; Dumitrescu, Daniel; Wasserman, Karlman

    2015-11-01

    The CO2 pulse (VCO2/heart rate), analogous to the O2 pulse (VO2/heart rate), was calculated during cardiopulmonary exercise testing and evaluated in normal and diseased states. Our aim was to define its application in its release in excess of that from VCO2/heart rate in the presence of impaired cardiovascular and lung function. In the current study, forty-five patients were divided into six physiological states: normal, exercise-induced myocardial ischemia, chronic heart failure, pulmonary vasculopathy, chronic obstructive pulmonary disease, and interstitial lung disease. We subtracted the O2 pulse from the CO2 pulse to determine the exhaled CO2 that could be attributed to CO2 pulse of buffering of lactic acid. The difference between the CO2 pulse and O2 pulse (VCO2/heart rate-VO2/heart rate) includes CO2 generated from HCO3(-) buffering of lactic acid. The accumulated CO2 per body mass was found to be significantly correlated with the corresponding [HCO3(-)] decrease (R(2)=0.72; P<0.0001). In summary, the increase in CO2 pulse over the O2 pulse accounted for the anaerobically-generated excess-CO2 in each of the physiological states and correlated with the decreases in the arterial Bicarbonate concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. High-rate dead-time corrections in a general purpose digital pulse processing system.

    PubMed

    Abbene, Leonardo; Gerardi, Gaetano

    2015-09-01

    Dead-time losses are well recognized and studied drawbacks in counting and spectroscopic systems. In this work the abilities on dead-time correction of a real-time digital pulse processing (DPP) system for high-rate high-resolution radiation measurements are presented. The DPP system, through a fast and slow analysis of the output waveform from radiation detectors, is able to perform multi-parameter analysis (arrival time, pulse width, pulse height, pulse shape, etc.) at high input counting rates (ICRs), allowing accurate counting loss corrections even for variable or transient radiations. The fast analysis is used to obtain both the ICR and energy spectra with high throughput, while the slow analysis is used to obtain high-resolution energy spectra. A complete characterization of the counting capabilities, through both theoretical and experimental approaches, was performed. The dead-time modeling, the throughput curves, the experimental time-interval distributions (TIDs) and the counting uncertainty of the recorded events of both the fast and the slow channels, measured with a planar CdTe (cadmium telluride) detector, will be presented. The throughput formula of a series of two types of dead-times is also derived. The results of dead-time corrections, performed through different methods, will be reported and discussed, pointing out the error on ICR estimation and the simplicity of the procedure. Accurate ICR estimations (nonlinearity < 0.5%) were performed by using the time widths and the TIDs (using 10 ns time bin width) of the detected pulses up to 2.2 Mcps. The digital system allows, after a simple parameter setting, different and sophisticated procedures for dead-time correction, traditionally implemented in complex/dedicated systems and time-consuming set-ups.

  10. Impact of pulsed xenon ultraviolet light on hospital-acquired infection rates in a community hospital.

    PubMed

    Vianna, Pedro G; Dale, Charles R; Simmons, Sarah; Stibich, Mark; Licitra, Carmelo M

    2016-03-01

    The role of contaminated environments in the spread of hospital-associated infections has been well documented. This study reports the impact of a pulsed xenon ultraviolet no-touch disinfection system on infection rates in a community care facility. This study was conducted in a community hospital in Southern Florida. Beginning November 2012, a pulsed xenon ultraviolet disinfection system was implemented as an adjunct to traditional cleaning methods on discharge of select rooms. The technology uses a xenon flashlamp to generate germicidal light that damages the DNA of organisms in the hospital environment. The device was implemented in the intensive care unit (ICU), with a goal of using the pulsed xenon ultraviolet system for disinfecting all discharges and transfers after standard cleaning and prior to occupation of the room by the next patient. For all non-ICU discharges and transfers, the pulsed xenon ultraviolet system was only used for Clostridium difficile rooms. Infection data were collected for methicillin-resistant Staphylococcus aureus, C difficile, and vancomycin-resistant Enterococci (VRE). The intervention period was compared with baseline using a 2-sample Wilcoxon rank-sum test. In non-ICU areas, a significant reduction was found for C difficile. There was a nonsignificant decrease in VRE and a significant increase in methicillin-resistant S aureus. In the ICU, all infections were reduced, but only VRE was significant. This may be because of the increased role that environment plays in the transmission of this pathogen. Overall, there were 36 fewer infections in the whole facility and 16 fewer infections in the ICU during the intervention period than would have been expected based on baseline data. Implementation of pulsed xenon ultraviolet disinfection is associated with significant decreases in facility-wide and ICU infection rates. These outcomes suggest that enhanced environmental disinfection plays a role in the risk mitigation of hospital

  11. High-rate dead-time corrections in a general purpose digital pulse processing system

    PubMed Central

    Abbene, Leonardo; Gerardi, Gaetano

    2015-01-01

    Dead-time losses are well recognized and studied drawbacks in counting and spectroscopic systems. In this work the abilities on dead-time correction of a real-time digital pulse processing (DPP) system for high-rate high-resolution radiation measurements are presented. The DPP system, through a fast and slow analysis of the output waveform from radiation detectors, is able to perform multi-parameter analysis (arrival time, pulse width, pulse height, pulse shape, etc.) at high input counting rates (ICRs), allowing accurate counting loss corrections even for variable or transient radiations. The fast analysis is used to obtain both the ICR and energy spectra with high throughput, while the slow analysis is used to obtain high-resolution energy spectra. A complete characterization of the counting capabilities, through both theoretical and experimental approaches, was performed. The dead-time modeling, the throughput curves, the experimental time-interval distributions (TIDs) and the counting uncertainty of the recorded events of both the fast and the slow channels, measured with a planar CdTe (cadmium telluride) detector, will be presented. The throughput formula of a series of two types of dead-times is also derived. The results of dead-time corrections, performed through different methods, will be reported and discussed, pointing out the error on ICR estimation and the simplicity of the procedure. Accurate ICR estimations (nonlinearity < 0.5%) were performed by using the time widths and the TIDs (using 10 ns time bin width) of the detected pulses up to 2.2 Mcps. The digital system allows, after a simple parameter setting, different and sophisticated procedures for dead-time correction, traditionally implemented in complex/dedicated systems and time-consuming set-ups. PMID:26289270

  12. Management of thermal effects in high-repetition-rate pulsed optical parametric oscillators.

    PubMed

    Godard, Antoine; Raybaut, Myriam; Schmid, Thomas; Lefebvre, Michel; Michel, Anne-Marie; Péalat, Michel

    2010-11-01

    We report on the investigation of thermal effects in high-repetition-rate pulsed optical parametric oscillators emitting in the mid-IR. We find that the thermal load induced by the nonresonant idler absorption plays a critical role in the emergence of thermally induced bistability. We then demonstrate a significant improvement of the conversion efficiency (more than 30%) when a proper axial temperature gradient is applied to the nonlinear crystal by use of a two-zone temperature-controlled oven.

  13. Spectral-temporal encoding and decoding of the femtosecond pulses sequences with a THz repetition rate

    NASA Astrophysics Data System (ADS)

    Tcypkin, A. N.; Putilin, S. E.

    2017-01-01

    Experimental and numerical modeling techniques demonstrated the possibilities of the spectral-time encoding and decoding for time division multiplexing sequence of femtosecond subpulses with a repetition rate of up to 6.4 THz. The sequence was formed as a result of the interference of two phase-modulated pulses. We report the limits of the application of the developed method of controlling formed sequence at the spectral-temporal coding.

  14. Seasonal chaotic features of pulse rate in a healthy subject and a patient after coronary stenting.

    PubMed

    Chen, Ying; Chen, Wenxi

    2010-01-01

    This study analyzes seasonal features of pulse rate chaos in both healthy and unhealthy subjects. Analytical methods, such as numerical titration, sample entropy and spectral analysis, were used to detect and estimate the seasonal fluctuations in chaotic attributes, complexity and nonlinearity of pulse rate. Chaotic feature analyses are based on pulse rate data collected over one year from a healthy male and a male patient after coronary stenting. The results show that the mean level of pulse rate chaos in the healthy subject is lowest in winter (values of NL, DR, and SampEn are 8.1 ± 0.3%, 41.0 ± 1.2%, and 1.98 ± 0.02, separately) and highest in summer (corresponding values are 9.9 ± 0.6%, 46.8 ± 2.3%, and 2.06 ± 0.03, separately) (P < 0.05), whereas the postoperative individual has a relatively lower mean chaotic dynamics that is least active in autumn (7.1 ± 0.5%, 14.8 ± 1.5%, and 0.80 ± 0.01) and more active in winter (7.7 ± 0.4%, 35.9 ± 1.9%, and 0.93 ± 0.01) and spring (9.1 ± 0.7%, 28.6 ± 2.1%, and 0.87 ± 0.01) (P < 0.05). The study reveals distinct seasonal autonomic and cardiac activities in both good health and disease. These findings may also pave the way for developing new approaches to monitoring long-term HRV and interpreting HRV chaotic features.

  15. New tool designs for high rate gravel pack operations

    SciTech Connect

    Ross, C.M.

    1995-12-31

    Fracturing of the wellbore to improve hydrocarbon recovery has been a universally accepted practice in the oilfield. The fracturing procedures reduce skin by breaking through or bypassing near wellbore damage that inhibits production. In loosely consolidated formations, a propped fracture can reduce fluid velocity in the near wellbore region, which subsequently reduces fines migration that can plug the wellbore. Fracturing also provides highly conductive paths for gas and oil production. Gravel packing is another operation that is often needed during a well`s productive cycle. When a highly conductive fracture is created before a gravel packing operation is run, it has been found that well productivity increases. Performing the operations separately, however, diminishes the productivity gains because of formation damage that can occur between completion operations. A method of gravel packing that includes a tip-screenout-design fracturing procedure, performed with the gravel pack packer, screen, and blank in the hole, was proposed to allow the procedures to be performed simultaneously. This paper will describe the various types of gravel packing tools that are currently in use, their specific application, and a new series of gravel packing tools that was developed to resolve the difficulties that arose when the operations of fracturing and gravel packing were combined. Also discussed is the need that arose for tools that could sustain high flow rates in small casing diameters. Test results will be used to provide acceptable flow rates for different bore sizes.

  16. New tool designs for high rate gravel pack operations

    SciTech Connect

    Ross, C.M.

    1995-10-01

    A universally accepted practice in the oilfield has been fracturing of the wellbore to improve hydrocarbon recovery. Fracturing procedures reduce skin by breaking through or bypassing near wellbore damage that inhibits production. In loosely consolidated formations, a propped fracture can reduce fluid velocity in the near wellbore region, which subsequently reduces fines migration that can plug the wellbore. Fracturing also provides highly conductive paths for gas and oil production. Gravel packing is another operation that is often needed during a well`s productive cycle. When a highly-conductive fracture is created before a gravel packing operation is run, it has been found that well productivity increases. Performing the operations separately however, diminishes the productivity gains because of formation damage that can occur between completion operations. A method of gravel packing that includes a tip-screen-out-design fracturing procedure, performed with the gravel pack packer, screen, and blank in the hole, was proposed to allow the procedures to be performed simultaneously. This paper will describe the various types of gravel packing tools that are currently in use, their specific application, and a new series of gravel packing tools that was developed to resolve the difficulties that arose when the operations of fracturing and gravel packing were combined. Also discussed is the need that arose for tools that could sustain high flow rates in small casing diameters. Test results will be used to provide acceptable flow rates for different bore sizes.

  17. Estimation of heart rate and heart rate variability from pulse oximeter recordings using localized model fitting.

    PubMed

    Wadehn, Federico; Carnal, David; Loeliger, Hans-Andrea

    2015-08-01

    Heart rate variability is one of the key parameters for assessing the health status of a subject's cardiovascular system. This paper presents a local model fitting algorithm used for finding single heart beats in photoplethysmogram recordings. The local fit of exponentially decaying cosines of frequencies within the physiological range is used to detect the presence of a heart beat. Using 42 subjects from the CapnoBase database, the average heart rate error was 0.16 BPM and the standard deviation of the absolute estimation error was 0.24 BPM.

  18. Frequency doubled high-power disk lasers in pulsed and continuous-wave operation

    NASA Astrophysics Data System (ADS)

    Weiler, Sascha; Hangst, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Killi, Alexander; Kalfhues, Steffen; Kriegshaeuser, Uwe; Holzer, Marco; Havrilla, David

    2012-03-01

    The disk laser with multi-kW output power in infrared cw operation is widely used in today's manufacturing, primarily in the automotive industry. The disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency and high reliability with low investment and operating costs. Additionally, the disk laser is ideally suited for frequency conversion due to its polarized output with negligible depolarization losses. Laser light in the green spectral range (~515 nm) can be created with a nonlinear crystal. Pulsed disk lasers with green output of well above 50 W (extracavity doubling) in the ps regime and several hundreds of Watts in the ns regime with intracavity doubling are already commercially available whereas intracavity doubled disk lasers in continuous wave operation with greater than 250 W output are in test phase. In both operating modes (pulsed and cw) the frequency doubled disk laser offers advantages in existing and new applications. Copper welding for example is said to show much higher process reliability with green laser light due to its higher absorption in comparison to the infrared. This improvement has the potential to be very beneficial for the automotive industry's move to electrical vehicles which requires reliable high-volume welding of copper as a major task for electro motors, batteries, etc.

  19. Optimal repetition rate and pulse duration studies for two photon imaging

    NASA Astrophysics Data System (ADS)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Smyth, Connor J. C. P.; Praveen, Bavishna B.; Appleton, Paul; Thomson, Calum; Swift, Samuel; Wilcox, Keith G.

    2017-02-01

    Multiphoton imaging (MPI) is an important fluorescence microscopy technique that allows deep tissue and in-vivo imaging with high selectivity. According to theory, two-photon signal is proportional to the product of the peak power and the average power, allowing optimization of key imaging parameters of the excitation laser, such as average power, repetition rate and pulse duration. Recent progress in compact ultrafast lasers including femtosecond fiber lasers and optically pumped semiconductor lasers makes direct control of these parameters possible. In order to investigate the optimum laser parameters for two photon imaging we experimentally study the effects of repetition rate between 2.85 and 90 MHz and pulse duration between 336 fs and 3.5 ps on two photon signal in SYTOX Green labeled mouse intestine sections at 1030 nm. We found that the optimum repetition rate for this sample is in the range 20 - 40 MHz, depending on average power, and that the pulse duration has no effect on the MPI signal provided that the average power can be adjusted to keep the product of average and peak power constant.

  20. Effects of High-Rate Pulse Trains on Electrode Discrimination in Cochlear Implant Users

    PubMed Central

    Runge-Samuelson, Christina L.

    2009-01-01

    Overcoming issues related to abnormally high neural synchrony in response to electrical stimulation is one aspect in improving hearing with a cochlear implant. Desynchronization of electrical stimuli have shown benefits in neural encoding of electrical signals and improvements in psychophysical tasks. In the present study, 10 participants with either CII or HiRes 90k Advanced Bionics devices were tested for the effects of desynchronizing constant-amplitude high-rate (5,000 Hz) pulse trains on electrode discrimination of sinusoidal stimuli (1,000 Hz). When averaged across the sinusoidal dynamic range, overall improvements in electrode discrimination with high-rate pulses were found for 8 of 10 participants. This effect was significant for the group (p = .003). Nonmonotonic patterns of electrode discrimination as a function of sinusoidal stimulation level were observed. By providing additional spectral channels, it is possible that clinical implementation of constant-amplitude high-rate pulse trains in a signal processing strategy may improve performance with the device. PMID:19447763

  1. Repetition rate-dependent oxygen consumption modifies cytotoxicity in photodynamic therapy using pulsed light

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Morimoto, Yuji; Asanuma, Hiroshi; Sato, Hiroyuki; Arai, Tsunenori; Sato, Shunichi; Sakata, Isao; Takemura, Takeshi; Nakajima, Susumu; Kikuchi, Makoto

    2003-06-01

    We studied the repetition-rate dependence of PDT cytotoxicity and relation between PDT cytotoxicity and both oxygen consumption and photobleaching during PDT in vitro. Mice renal carcinoma cells were incubated wtih second-generation photosensitizier, PAD-S31, and were irradiated with 670-nm nanoseconds pulsed light from YAG-OPO system. Four repetition rates of 30, 15, 5 and 3 Hz were investigated, provided that the incident peak intensity and the total light dose adjusted to 1.2 MW/cm2 and 40 J/cm2, respectively. We found limited cytotoxicity about 40% at 30 and 15 Hz and sufficient cytotoxicity about 80% at 5 and 3 Hz. The oxygen measurement during irradiation revealed that the 5- and 30Hz irradiation caused slow oxygen consumption, while rapid oxygen consumption followed by a rapid recovery of oxygenation at 30 and 15 Hz. Interestingly, the fluorescence measurement during irradiation also demonstrated that photobleaching discontinued in the same period of oxygen recovery at 30 and 15 Hz. These discontinued oxygen consumption and photobleaching at 30 and 15 Hz might have limited effective total fluence and resulted in suppressed cytotoxicity. These results suggest that the PDT efficacy using a pulsed laser significantly depends on the pulse repetition rate probably due to different oxygen consumption process during PDT.

  2. Observation of self-magnetic field relaxations in Bi2223 and Y123 HTS tapes after over-current pulse and DC current operation

    NASA Astrophysics Data System (ADS)

    Tallouli, M.; Sun, J.; Chikumoto, N.; Otabe, E. S.; Shyshkin, O.; Charfi-Kaddour, S.; Yamaguchi, S.

    2016-07-01

    The development of power transmission lines based on long-length HTS tapes requires the production of high quality tapes. Due to fault conditions, technical mistakes and human errors during the operation of a DC power transmission line, an over-current pulse, several times larger than the rated current, could occur. To study the effect of such over-current pulses on the transport current density distribution in the HTS tapes, we simulated two start-up scenarios for one BSCCO and two YBCO tapes. The first start-up scenario is an initial over-current pulse during which the transport current was turned on rapidly, rising to 900 A during the first milliseconds, then reduced to a 100 A DC current. The second start-up scenario is normal operation, and involved increasing the transport current slowly from 0 A to 100 A at a rate of 1 A/s. For both scenarios, we then measured the vertical component of the self-magnetic field by means of a Hall probe above the tape, and afterward, by solving a linear equation of the inverse problem we obtain the current density profiles. We observe a change of the self-magnetic field above the edge of the BSCCO and YBCO tapes during 30 min after the 5 ms of over-current pulse and during the normal operation. The current density profiles are peaked in the centre for over-current pulse, and more peaked around the edge of the HTS tape for normal operation, which means that the limited time over-current pulse changes the current density profiles of the HTS tapes. We observe also a loop of current for YBCO tapes and we show the role of the HTS tape stabilizer.

  3. Electromagnetic Pulse (EMP) survey of the Louisiana State Emergency Operating Center, Baton Rouge, Louisiana

    SciTech Connect

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1989-08-01

    The purpose of this report is to develop an engineering design package to protect the federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high-altitude electromagnetic pulses (HEMP). This report refers to the Louisiana State Emergency Operating Center (EOC) in Baton Rouge, Louisiana. This report addresses electromagnetic pulse (EMP) effects only, and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe conditions. The threatening environment will therefore be limited to HEMP situations. 76 figs., 2 tabs.

  4. Operation of a magnetic pulse compressor with electrodynamic acceleration of a liner

    NASA Astrophysics Data System (ADS)

    Grabovskii, E. V.; Bakhtin, V. P.; Zhitlukhin, A. M.; Levashov, V. F.; Lototskii, A. P.; Toporkov, D. A.; Umrikhin, N. M.; Efremov, N. M.; Krylov, M. K.; Khomutinnikov, G. N.; Sulimin, Yu. N.; Galanin, M. P.; Rodin, A. S.

    2014-07-01

    Experimental data for the acceleration of plate liners with a magnetic flux electromagnetic compressor are reported. The compressor is designed for peaking the power of current pulses with an initial amplitude of 3 MA. The compression zone of the liner has the form of a stripline, which makes it possible to use one current source both for the acceleration of the liner and for the generation of a magnetic flux in the compression zone. The acceleration dynamics and the deformation of plate liners during an operating cycle of the compressor are studied. In the experiments conducted, the compressor is powered by a capacitor battery. The current amplitude in the output capacitive load rises by 1.6 times, while the pulse narrows twofold. Experimental data are compared with numerical calculation data for the liner material flow, which are found to adequately describe processes taking place in such a compressor.

  5. Multi-pulse operation of a dissipative soliton fibre laser based on nonlinear polarisation rotation

    SciTech Connect

    Yu, H L; Wang, X L; Zhou, P; Chen, J B

    2016-03-31

    We report an experimental observation of multiple dissipative soliton (DS) operation states in an all-normal-dispersion passively mode-locked Yb-doped fibre laser, including DS bound and oscillating states. In the bound state, multiple DSs up to 11 can coexist in the cavity. In the oscillating state, the DSs' movements are not purely random and three typical states are generalised and illustrated. A single-pulse mode-locked state is established at a high pump power by carefully adjusting the polarisation controllers. The broad spectrum indicates that it may be noise-like pulses, which can serve as a pump to generate a supercontinuum. (control of laser radiation parameters)

  6. Pulsed Plasma Thruster (PPT) Technology: Earth Observing-1 PPT Operational and Advanced Components Being Developed

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Benson, Scott W.; Arrington, Lynn A.; Frus, John; Hoskins, W. Andrew; Burton, Rodney

    2003-01-01

    In 2002 the pulsed plasma thruster (PPT) mounted on the Earth Observing-1 spacecraft was operated successfully in orbit. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. The first tests conducted in space demonstrated the full range of PPT operation, followed by calibration of control torques from the PPT in the attitude control system. Then the spacecraft was placed in PPT control mode. To date, it has operated for about 30 hr. The PPT successfully controlled pitch momentum during wheel de-spin, solar array acceleration and deceleration during array rewind, and environmental torques in nominal operating conditions. Images collected with the Advanced Landsat Imager during PPT operation have demonstrated that there was no degradation in comparison to full momentum wheel control. In addition, other experiments have been performed to interrogate the effects of PPT operation on communication packages and light reflection from spacecraft surfaces. Future experiments will investigate the possibility of orbit-raising maneuvers, spacecraft roll, and concurrent operation with the Hyperion imager. Future applications envisioned for pulsed plasma thrusters include longer life, higher precision, multiaxis thruster configurations for three-axis attitude control systems or high-precision, formationflying systems. Advanced components, such as a "dry" mica-foil capacitor, a wear-resistant spark plug, and a multichannel power processing unit have been developed under contract with Unison Industries, General Dynamics, and C.U. Aerospace. Over the last year, evaluation tests have been conducted to determine power processing unit efficiency, atmospheric functionality, vacuum functionality, thruster performance evaluation, thermal performance, and component life.

  7. Pulsed Plasma Thruster (PPT) Technology: Earth Observing-1 PPT Operational and Advanced Components Being Developed

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Benson, Scott W.; Arrington, Lynn A.; Frus, John; Hoskins, W. Andrew; Burton, Rodney

    2003-01-01

    In 2002 the pulsed plasma thruster (PPT) mounted on the Earth Observing-1 spacecraft was operated successfully in orbit. The two-axis thruster system is fully incorporated in the attitude determination and control system and is being used to automatically counteract disturbances in the pitch axis of the spacecraft. The first tests conducted in space demonstrated the full range of PPT operation, followed by calibration of control torques from the PPT in the attitude control system. Then the spacecraft was placed in PPT control mode. To date, it has operated for about 30 hr. The PPT successfully controlled pitch momentum during wheel de-spin, solar array acceleration and deceleration during array rewind, and environmental torques in nominal operating conditions. Images collected with the Advanced Landsat Imager during PPT operation have demonstrated that there was no degradation in comparison to full momentum wheel control. In addition, other experiments have been performed to interrogate the effects of PPT operation on communication packages and light reflection from spacecraft surfaces. Future experiments will investigate the possibility of orbit-raising maneuvers, spacecraft roll, and concurrent operation with the Hyperion imager. Future applications envisioned for pulsed plasma thrusters include longer life, higher precision, multiaxis thruster configurations for three-axis attitude control systems or high-precision, formationflying systems. Advanced components, such as a "dry" mica-foil capacitor, a wear-resistant spark plug, and a multichannel power processing unit have been developed under contract with Unison Industries, General Dynamics, and C.U. Aerospace. Over the last year, evaluation tests have been conducted to determine power processing unit efficiency, atmospheric functionality, vacuum functionality, thruster performance evaluation, thermal performance, and component life.

  8. Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device.

    PubMed

    Delgado-Gonzalo, Ricard; Parak, Jakub; Tarniceriu, Adrian; Renevey, Philippe; Bertschi, Mattia; Korhonen, Ilkka

    2015-08-01

    PulseOn is a wrist-worn optical heart rate (HR) monitor based on photoplethysmography. It utilizes multi-wavelength technology and optimized sensor geometry to monitor blood flow at different depths of skin tissue, and it dynamically adapts to an optimal measurement depth in different conditions. Movement artefacts are reduced by adaptive movement-cancellation algorithms and optimized mechanics, which stabilize the sensor-to-skin contact. In this paper, we evaluated the accuracy and reliability of PulseOn technology against ECG-derived HR in laboratory conditions during a wide range of physical activities and also during outdoor sports. In addition, we compared the performance to another on-the-shelf wrist-worn consumer product Mio LINK(®). The results showed PulseOn reliability (% of time with error <;10bpm) of 94.5% with accuracy (100% - mean absolute percentage error) 96.6% as compared to ECG (vs 86.6% and 94.4% for Mio LINK(®), correspondingly) during laboratory protocol. Similar or better reliability and accuracy was seen during normal outdoor sports activities. The results show that PulseOn provides reliability and accuracy similar to traditional chest strap ECG HR monitors during cardiovascular exercise.

  9. The Effect of Pulse Rate on Vacuum Phototriodes Response and the Use of AN LED Pulser to Improve Stability

    NASA Astrophysics Data System (ADS)

    Leslie, Dawn E.

    2010-04-01

    The Endcap Electromagnetic Calorimeter of the Compact Muon Solenoid detector (CMS) at the Large Hadron Collider (LHC) uses vacuum phototriodes (VPTs), which operate in the full 3.8T magnetic field of the experiment, to detect the scintillation light from the lead tungstate crystals. Initial measurements of the variation in response of VPTs, induced by sudden changes in the illuminating light pulse rate, prompted the inclusion of a dedicated stability pulser based on light emitting diodes (LEOs). The response of production VPTs, under simulated LHC operating conditions, has been investigated in three independent studies: in-situ tests with the installed endcaps at CERN, and separate VPT studies by groups at the University of Virginia, USA and Brunel University, UK. In this work, results are presented which illustrate the magnitude of the effect to demonstrate the expected stability of the VPTs during normal LHC operation, with a proposed regime for operating the stability pulser to minimise variations in response. It is demonstrated that a continuous signal at a rate of 100Hz is sufficient to reduce the change in the VPT response to <0.2%.

  10. Estimation of respiratory rate from photoplethysmographic imaging videos compared to pulse oximetry.

    PubMed

    Karlen, Walter; Garde, Ainara; Myers, Dorothy; Scheffer, Cornie; Ansermino, J Mark; Dumont, Guy A

    2015-07-01

    We present a study evaluating two respiratory rate estimation algorithms using videos obtained from placing a finger on the camera lens of a mobile phone. The two algorithms, based on Smart Fusion and empirical mode decomposition (EMD), consist of previously developed signal processing methods to detect features and extract respiratory induced variations in photoplethysmographic signals to estimate respiratory rate. With custom-built software on an Android phone, photoplethysmographic imaging videos were recorded from 19 healthy adults while breathing spontaneously at respiratory rates between 6 to 32 breaths/min. Signals from two pulse oximeters were simultaneously recorded to compare the algorithms' performance using mobile phone data and clinical data. Capnometry was recorded to obtain reference respiratory rates. Two hundred seventy-two recordings were analyzed. The Smart Fusion algorithm reported 39 recordings with insufficient respiratory information from the photoplethysmographic imaging data. Of the 232 remaining recordings, a root mean square error (RMSE) of 6 breaths/min was obtained. The RMSE for the pulse oximeter data was lower at 2.3 breaths/min. RMSE for the EMD method was higher throughout all data sources as, unlike the Smart Fusion, the EMD method did not screen for inconsistent results. The study showed that it is feasible to estimate respiratory rates by placing a finger on a mobile phone camera, but that it becomes increasingly challenging at respiratory rates greater than 20 breaths/min, independent of data source or algorithm tested.

  11. Development of Miniature and High-repetition-rate Magnetic Pulse Compression Circuit for Production of Streamer-like Discharge Plasmas in Water

    NASA Astrophysics Data System (ADS)

    Ueno, Takahisa; Kouno, Kanako; Akiyama, Masahiro; Akiyama, Hidenori; Sakugawa, Takashi

    Pulsed power technology enables production of non-thermal plasmas with a large volume in gases by generating a high electric field at the tip of streamer discharge plasmas. Recently, all solid-state pulsed power generators which are operated with a high repetition rate, long lifetime and high reliability, have been developed aiming for industrial applications. Here, a new high-repetition-rate pulsed power generator for discharge plasmas in water is developed. The generator consists of semiconductor switches and saturable inductors. The semiconductor switches are thyristors in parallel and series circuits. An output peak voltage over 20kV is generated with a voltage rise time of 100ns, and streamer-like discharge plasmas in water are produced repetitively.

  12. Production rate enhancement of size-tunable silicon nanoparticles by temporally shaping femtosecond laser pulses in ethanol.

    PubMed

    Li, Xin; Zhang, Guangming; Jiang, Lan; Shi, Xuesong; Zhang, Kaihu; Rong, Wenlong; Duan, Ji'an; Lu, Yongfeng

    2015-02-23

    This paper proposes an efficient approach for production-rate enhancement and size reduction of silicon nanoparticles produced by femtosecond (fs) double-pulse ablation of silicon in ethanol. Compared with a single pulse, the production rate is ~2.6 times higher and the mean size of the NPs is reduced by ~1/5 with a delay of 2 ps. The abnormal enhancement in the production rate is obtained at pulse delays Δt > 200 fs. The production-rate enhancement is mainly attributed to high photon absorption efficiency. It is caused by an increase in localized transient electron density, which results from the first sub-pulse ionization of ethanol molecules before the second sub-pulse arrives. The phase-change mechanism at a critical point might reduce nanoparticle size.

  13. Ambient temperature effect on pulse rate variability as an alternative to heart rate variability in young adult.

    PubMed

    Shin, Hangsik

    2016-12-01

    Pulse rate variability (PRV) is a promising physiological and analytic technique used as a substitute for heart rate variability (HRV). PRV is measured by pulse wave from various devices including mobile and wearable devices but HRV is only measured by an electrocardiogram (ECG). The purpose of this study was to evaluate PRV and HRV at various ambient temperatures and elaborate on the interchangeability of PRV and HRV. Twenty-eight healthy young subjects were enrolled in the experiment. We prepared temperature-controlled rooms and recorded the ECG and photoplethysmography (PPG) under temperature-controlled, constant humidity conditions. The rooms were kept at 17, 25, and 38 °C as low, moderate, and high ambient temperature environments, respectively. HRV and PRV were derived from the synchronized ECG and PPG measures and they were studied in time and frequency domain analysis for PRV/HRV ratio and pulse transit time (PTT). Similarity and differences between HRV and PRV were determined by a statistical analysis. PRV/HRV ratio analysis revealed that there was a significant difference between HRV and PRV for a given ambient temperature; this was with short-term variability measures such as SDNN SDSD or RMSSD, and HF-based variables including HF, LF/HF and normalized HF. In our analysis the absolute value of PTT was not significantly influenced by temperature. Standard deviation of PTT, however, showed significant difference not only between low and moderate temperatures but also between low and high temperatures. Our results suggest that ambient temperature induces a significant difference in PRV compared to HRV and that the difference becomes greater at a higher ambient temperature.

  14. Ytterbium fiber-based, 270 fs, 100 W chirped pulse amplification laser system with 1 MHz repetition rate

    NASA Astrophysics Data System (ADS)

    Zhao, Zhigang; Kobayashi, Yohei

    2016-01-01

    A 100 W Yb-doped, fiber-based, femtosecond, chirped pulse amplification laser system was developed with a repetition rate of 1 MHz, corresponding to a pulse energy of 100 µJ. Large-scale, fused-silica transmission gratings were used for both the pulse stretcher and compressor, with a compression throughput efficiency of ∼85%. A pulse duration of 270 fs was measured by second harmonic generation frequency-resolved optical gating (SHG-FROG). To the best of our knowledge, this is the shortest pulse duration ever achieved by a 100-W-level fiber chirped pulse amplification laser system at a repetition rate of few megahertz, without any special post-compression manipulation.

  15. How to improve rate of penetration in field operations

    SciTech Connect

    Fear, M.J.

    1999-03-01

    A method has been developed to identify which factors are controlling rate of penetration (ROP) in a particular group of bit runs. The method uses foot-based mud logging data, geological information, and drill bit characteristics, to produce numerical correlations between ROP and applied drilling parameters or other attributes of drilling conditions. These correlations are then used to generate recommendations for maximizing ROP in drilling operations.

  16. Pulse oximetry-derived respiratory rate in general care floor patients.

    PubMed

    Addison, Paul S; Watson, James N; Mestek, Michael L; Ochs, James P; Uribe, Alberto A; Bergese, Sergio D

    2015-02-01

    Respiratory rate is recognized as a clinically important parameter for monitoring respiratory status on the general care floor (GCF). Currently, intermittent manual assessment of respiratory rate is the standard of care on the GCF. This technique has several clinically-relevant shortcomings, including the following: (1) it is not a continuous measurement, (2) it is prone to observer error, and (3) it is inefficient for the clinical staff. We report here on an algorithm designed to meet clinical needs by providing respiratory rate through a standard pulse oximeter. Finger photoplethysmograms were collected from a cohort of 63 GCF patients monitored during free breathing over a 25-min period. These were processed using a novel in-house algorithm based on continuous wavelet-transform technology within an infrastructure incorporating confidence-based averaging and logical decision-making processes. The computed oximeter respiratory rates (RRoxi) were compared to an end-tidal CO2 reference rate (RRETCO2). RRETCO2 ranged from a lowest recorded value of 4.7 breaths per minute (brpm) to a highest value of 32.0 brpm. The mean respiratory rate was 16.3 brpm with standard deviation of 4.7 brpm. Excellent agreement was found between RRoxi and RRETCO2, with a mean difference of -0.48 brpm and standard deviation of 1.77 brpm. These data demonstrate that our novel respiratory rate algorithm is a potentially viable method of monitoring respiratory rate in GCF patients. This technology provides the means to facilitate continuous monitoring of respiratory rate, coupled with arterial oxygen saturation and pulse rate, using a single non-invasive sensor in low acuity settings.

  17. Slow and Go: Pulsing slip rates on the creeping section of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Turner, Ryan C.; Shirzaei, Manoochehr; Nadeau, Robert M.; Bürgmann, Roland

    2015-08-01

    Rising and falling slip rates on the creeping section of the San Andreas Fault have been inferred from variations of recurrence intervals of characteristically repeating microearthquakes, but this observation has not previously been confirmed using modern geodetic data. Here we report on observations of this "pulsing" slip obtained from advanced multitemporal interferometric synthetic aperture radar (InSAR) data, confirmed using continuous GPS sites of the Plate Boundary Observatory. The surface deformation time series show a strong correlation to the previously documented slip rate variations derived from repeating earthquakes on the fault interface, at various spatial and temporal scales. Time series and spectral analyses of repeating earthquake and InSAR data reveal a quasiperiodic pulsing with a roughly 2 year period along some sections of the fault, with the earthquakes on the fault interface lagging behind the far-field deformation by about 6 months. This suggests a temporal delay between the pulsing crustal strain generated by deep-seated shear and the time-variable slip on the shallow fault interface, and that at least in some places this process may be cyclical. There exist potential impacts for time-dependent seismic hazard forecasting in California and, as it becomes better validated in the richly instrumented natural laboratory of the central San Andreas Fault, the process used here will be even more helpful in characterizing hazard and fault zone rheology in areas without California's geodetic infrastructure.

  18. Effects of stimulus level and rate on psychophysical thresholds for interleaved pulse trains in cochlear implants.

    PubMed

    Hughes, Michelle L; Goehring, Jenny L; Baudhuin, Jacquelyn L; Schmid, Kendra K

    2016-10-01

    This study examined channel interactions using interleaved pulse trains to assess masking and potential facilitative effects in cochlear-implant recipients using clinically relevant stimuli. Psychophysical thresholds were measured for two adjacent mid-array electrodes; one served as the masker and the other as the probe. Two rates representative of those found in present-day strategies were tested: 1700 and 3400 pulses per second per channel. Four masker levels ranging from sub-threshold to loud-but-comfortable were tested. It was hypothesized that low-level maskers would produce facilitative effects, shifting to masking effects at high levels, and that faster rates would yield smaller masking effects due to greater stochastic neural firing patterns. Twenty-nine ears with Cochlear or Advanced Bionics devices were tested. High-level maskers produced more masking than low-level maskers, as expected. Facilitation was not observed for sub-threshold or threshold-level maskers in most cases. High masker levels yielded reduced probe thresholds for two Advanced Bionics subjects. This was partly eliminated with a longer temporal offset between each masker-probe pulse pair, as was used with Cochlear subjects. These findings support the use of temporal gaps between stimulation of subsequent electrodes to reduce channel interactions.

  19. Actively cooled plasma electrode for long pulse operations in a cesium-seeded negative ion source

    NASA Astrophysics Data System (ADS)

    Fujiwara, Yukio; Watanabe, Kazuhiro; Okumura, Yoshikazu; Trainham, Rusty; Jacquot, Claude

    2005-01-01

    An actively cooled plasma electrode has been developed for long pulse operation in a cesium-seeded negative ion source. To keep the electrode temperature at about 300°C, which is the optimum range of temperature to enhance cesium effects, the electrode cooling structure has been designed using three-dimensional numerical simulation assuming that the heat flux from the source plasma was 15W/cm2. Water cooling tubes were brazed to the plasma electrode substrate with spacers made of stainless steel, which acts as a thermal resistance. The fabricated plasma electrode has been tested in a cesium-seeded volume negative ion source called Kamaboko source. The temperature of the electrode reached 280°C for the arc power of 41kW, which is the operating condition required for producing D- beams with current densities exceeding 20mA/cm2. It was demonstrated that the actively cooled plasma electrode is applicable to long pulse operations, meeting the temperature requirement for optimizing the surface-production process of negative ions in the cesium-seeded ion source.

  20. Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John C.

    2004-07-01

    Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.

  1. 948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Boivinet, S.; Lecourt, J.-B.; Hernandez, Y.; Fotiadi, A.; Mégret, P.

    2014-05-01

    We present in this study a PM all-fiber laser oscillator passively mode-locked (ML) at 1.03 μm. The laser is based on Nonlinear Polarization Evolution (NPE) in polarization maintaining (PM) fibers. In order to obtain the mode-locking regime, a nonlinear reflective mirror including a fibered polarizer, a long fiber span and a fibered Faraday mirror (FM) is inserted in a Fabry-Perot laser cavity. In this work we explain the principles of operation of this original laser design that permits to generate ultrashort pulses at low repetition (lower that 1MHz) rate with a cavity length of 100 m of fiber. In this experiment, the measured pulse duration is about 6 ps. To our knowledge this is the first all-PM mode-locked laser based on the NPE with a cavity of 100m length fiber and a delivered pulse duration of few picosecondes. Furthermore, the different mode-locked regimes of the laser, i.e. multi-pulse, noise-like mode-locked and single pulse, are presented together with the ways of controlling the apparition of these regimes. When the single pulse mode-locking regime is achieved, the laser delivers linearly polarized pulses in a very stable way. Finally, this study includes numerical results which are obtained with the resolution of the NonLinear Schrodinger Equations (NLSE) with the Split-Step Fourier (SSF) algorithm. This modeling has led to the understanding of the different modes of operation of the laser. In particular, the influence of the peak power on the reflection of the nonlinear mirror and its operation are studied.

  2. ATLAS trigger operations: Upgrades to ``Xmon'' rate prediction system

    NASA Astrophysics Data System (ADS)

    Myers, Ava; Aukerman, Andrew; Hong, Tae Min; Atlas Collaboration

    2017-01-01

    We present ``Xmon,'' a tool to monitor trigger rates in the Control Room of the ATLAS Experiment. We discuss Xmon's recent (1) updates, (2) upgrades, and (3) operations. (1) Xmon was updated to modify the tool written for the three-level trigger architecture in Run-1 (2009-2012) to adapt to the new two-level system for Run-2 (2015-current). The tool takes as input the beam luminosity to make a rate prediction, which is compared with incoming rates to detect anomalies that occur both globally throughout a run and locally within a run. Global offsets are more commonly caught by the predictions based upon past runs, where offline processing allows for function adjustments and fit quality through outlier rejection. (2) Xmon was upgraded to detect local offsets using on-the-fly predictions, which uses a sliding window of in-run rates to make predictions. (3) Xmon operations examples are given. Future work involves further automation of the steps to provide the predictive functions and for alerting shifters.

  3. Argon gas-puff radius optimiaztion for Saturn operating in the long-pulse mode.

    SciTech Connect

    Apruzese, John P.; Jackson, S. L.; Commisso, Robert J.; Weber, Bruce V.; Mosher, Daniel A.

    2010-06-01

    Argon gas puff experiments using the long pulse mode of Saturn (230-ns rise time) have promise to increase the coupled energy and simplify operations because the voltage is reduced in vacuum and the forward-going energy is higher for the same Marx charge. The issue addressed in this work is to determine if the 12-cm-diameter triple nozzle used in Saturn long-pulse-mode experiments to date provides maximum K-shell yield, or if a different-radius nozzle provides additional radiation. Long-pulse implosions are modeled by starting with measured density distributions from the existing 12-cm-diameter nozzle, and then varying the outer radius in an implosion-energy-conserving self-similar manner to predict the gas-puff diameter that results in the maximum K-shell yield. The snowplow-implosions and multi-zone radiation transport models used in the analysis are benchmarked against detailed measurements from the 12-cm-diameter experiments. These calculations indicate that the maximum K-shell emission is produced with very nearly the existing nozzle radius.

  4. High energy density capacitors for vacuum operation with a pulsed plasma load

    NASA Technical Reports Server (NTRS)

    Guman, W. J.

    1976-01-01

    Results of the effort of designing, fabricating, and testing of a 40 joules/lb (88.2 joules/Kg) high voltage energy storage capacitor suitable for operating a pulsed plasma thruster in a vacuum environment for millions of pulses are presented. Using vacuum brazing and heli-arc welding techniques followed by vacuum and high pressure helium leak tests it was possible to produce a hermetically sealed relatively light weight enclosure for the dielectric system. An energy density of 40 joules/lb was realized with a KF-polyvinylidene fluoride dielectric system. One capacitor was D.C. life tested at 4 KV (107.8 joules/lb) for 2,000 hours before it failed. Another exceeded 2,670 hours without failure at 38.3 joules/lb. Pulse life testing in a vacuum exceeded 300,000 discharges with testing still in progress. The D.C. life test data shows a small decrease in capacitance and an increase in dissipation factor with time. Heat transfer from the load to the capacitor must also be considered besides the self-heat generated by the capacitor.

  5. Emission properties of diode laser bars during pulsed high-power operation

    NASA Astrophysics Data System (ADS)

    Olecki, Marcin; Tomm, Jens W.; Hempel, Martin; Hennig, Petra; Elsaesser, Thomas

    2012-03-01

    High power diode laser bars are subjected to single pulse step tests carried out up to and beyond their ultimate limits of operation. Laser nearfields and thermal behavior are monitored for pulse widths in the 10 μs-2 ms-range with streak- and thermo-cameras, respectively. The final phase of the tests allows the in situ observation of the catastrophic optical damage (COD) effect. We find perfect agreement between the location of COD signatures observed by transient emission and thermo-camera measurements on the one side, and optical inspection of the degraded bars on the other side. COD thresholds are determined and the observed dependence on the pulse length is qualitatively explained. This approach allows for testing hardness and homogeneity of facet coatings on a bar level with or without consideration of accidental early single-emitter failure effects and thermal crosstalk between the emitters. It helps embanking sudden degradation and provides insight into the mechanisms governing the device emission behavior at ultimate output powers.

  6. a Chirped-Pulse Fourier Transform Spectrometer Operating from 110 TO 170 GHZ

    NASA Astrophysics Data System (ADS)

    Bernier, Lauren E.; Shipman, Steven

    2014-06-01

    A chirped-pulse Fourier transform spectrometer operating from 110 - 170 GHz was constructed. The design of this spectrometer is directly adapted from that of the 260 - 295 GHz chirped-pulse spectrometer built by Steber and co-workers at the University of Virginia. In this instrument, an arbitrary waveform generator (AWG) produces a chirped pulse which is frequency shifted to a range between 9.2 and 14.1 GHz and then multiplied by a factor of 12 via an active multiplier chain to a range between 110 and 170 GHz. As in the Pate lab design, the AWG also serves as a local oscillator (LO) source; this LO is multiplied and used to downconvert the molecular emission, allowing it to be collected by a 40 GS/s digitizer. Benchmark measurements were taken for methanol at room temperature, and details of the instrument's performance will be discussed. A.L. Steber, B.J. Harris, J.L. Neill, and B.H. Pate, J. Mol. Spectrosc., 280, 3 (2012)

  7. Dual axis operation of a micromachined rate gyroscope

    SciTech Connect

    Juneau, T.; Pisano, A.P.; Smith, J.

    1997-04-01

    Since micromachining technology has raised the prospect of fabricating high performance sensors without the associated high cost and large size, many researchers have investigated micromachined rate gyroscopes. The vast majority of research has focused on single input axis rate gyroscopes, but this paper presents work on a dual input axis micromachined rate gyroscope. The key to successful simultaneous dual axis operation is the quad symmetry of the circular oscillating rotor design. Untuned gyroscopes with mismatched modes yielded random walk as low as 10{degrees}/{radical}hour with cross sensitivity ranging from 6% to 16%. Mode frequency matching via electrostatic tuning allowed performance better than 2{degrees}/{radical}hour, but at the expense of excessive cross sensitivity.

  8. High power pulsed magnetron sputtering: A method to increase deposition rate

    SciTech Connect

    Raman, Priya McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-05-15

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed.

  9. INTERACTION OF LASER RADIATION WITH MATTER: Influence of a target on operation of a pulsed CO2 laser emitting microsecond pulses

    NASA Astrophysics Data System (ADS)

    Baranov, V. Yu; Dolgov, V. A.; Malyuta, D. D.; Mezhevov, V. S.; Semak, V. V.

    1987-12-01

    The profile of pulses emitted by a TEA CO2 laser with an unstable resonator changed as a result of interaction of laser radiation with the surface of a metal in the presence of a breakdown plasma. This influence of a target on laser operation and its possible applications in laser processing of materials are analyzed.

  10. Optimization of Pulsed-DEER Measurements for Gd-Based Labels: Choice of Operational Frequencies, Pulse Durations and Positions, and Temperature

    SciTech Connect

    Raitsimring, A.; Astashkin, A. V.; Enemark, J. H.; Kaminker, I.; Goldfarb, D.; Walter, E. D.; Song, Y.; Meade, T. J.

    2012-12-29

    In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimal temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.

  11. High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime.

    PubMed

    Nodop, D; Limpert, J; Hohmuth, R; Richter, W; Guina, M; Tünnermann, A

    2007-08-01

    We present passively Q-switched microchip lasers with items bonded by spin-on-glass glue. Passive Q-switching is obtained by a semiconductor saturable absorber mirror. The laser medium is a Nd:YVO(4) crystal. These lasers generate pulse peak powers up to 20 kW at a pulse duration as short as 50 ps and pulse repetition rates of 166 kHz. At 1064 nm, a linear polarized transversal and longitudinal single-mode beam is emitted. To the best of our knowledge, these are the shortest pulses in the 1 microJ energy range ever obtained with passively Q-switched microchip lasers. The quasi-monolithic setup ensures stable and reliable performance.

  12. Dose rate dependence of the PTW 60019 microDiamond detector in high dose-per-pulse pulsed beams

    NASA Astrophysics Data System (ADS)

    Brualla-González, Luis; Gómez, Faustino; Pombar, Miguel; Pardo-Montero, Juan

    2016-01-01

    Recombination effects can affect the detectors used for the dosimetry of radiotherapy fields. They are important when using ionization chambers, especially in liquid-filled ionization chambers, and should be corrected for. The introduction of flattening-filter-free accelerators increases the typical dose-per-pulse used in radiotherapy beams, which leads to more important recombination effects. Diamond detectors provide a good solution for the dosimetry and quality assurance of small radiotherapy fields, due to their low energy dependence and small volume. The group of Università di Roma Tor Vergata has developed a synthetic diamond detector, which is commercialized by PTW as microDiamond detector type 60019. In this work we present an experimental characterization of the collection efficiency of the microDiamond detector, focusing on high dose-per-pulse FFF beams. The collection efficiency decreases with dose-per-pulse, down to 0.978 at 2.2 mGy/pulse, following a Fowler-Attix-like curve. On the other hand, we have found no significant dependence of the collection efficiency on the pulse repetition frequency (or pulse period).

  13. Double-pulse machining as a technique for the enhancement of material removal rates in laser machining of metals

    SciTech Connect

    Forsman, A.C.; Banks, P.S.; Perry, M.D.; Campbell, E.M.; Dodell, A.L.; Armas, M.S.

    2005-08-01

    Several nanosecond 0.53-{mu}m laser pulses separated by several tens of nanoseconds have been shown to significantly enhance (three to ten times) material removal rates while minimizing redeposition and heat-affected zones. Economic, high-quality, high-aspect ratio holes (>10:1) in metals are produced as a result. A phenomenological model whereby the second laser pulse interacts with the ejecta produced by the first laser pulse and in close proximity to the material surface is consistent with the observations. Incident laser wavelengths of 1.05 and 0.35 {mu}m also benefit from this pulse format.

  14. Design and preliminary tests of a twin coil HTS SMES for pulse power operation

    NASA Astrophysics Data System (ADS)

    Badel, Arnaud; Tixador, Pascal; Berger, Kevin; Deleglise, Marc

    2011-05-01

    The design of a twin coil 2 × 200 kJ-1 MW pulse power high temperature superconductor (HTS) superconducting magnetic energy storage (SMES) demonstrator is presented. Its aim is to test at small scale various possibilities of electromagnetic launcher powering. The foreseen operation modes include high voltage discharge in power capacitors, sequential discharges of identical energies from two coupled coils, and XRAM current multiplication. Special attention was paid to the arrangement of the coils for the energies discharged to be equal. The coils are cooled by conduction from three cryocoolers; the thermal design was optimized in order to maintain the coils around 15 K in spite of the high number of current leads required for XRAM operation (eight). Preliminary tests of the demonstrator are also presented, showing that the thermal and electrical characteristics are in very good agreement with the design objectives.

  15. Measurement of performance using acceleration control and pulse control in simulated spacecraft docking operations

    NASA Technical Reports Server (NTRS)

    Brody, Adam R.; Ellis, Stephen R.

    1992-01-01

    Nine commercial airline pilots served as test subjects in a study to compare acceleration control with pulse control in simulated spacecraft maneuvers. Simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's -V-bar (minus velocity vector). All unsuccessful missions were reflown. Five way mixed analysis of variance (ANOVA) with one between factor, first mode, and four within factors (mode, bloch, range, and trial) were performed on the data. Recorded performance measures included mission duration and fuel consumption along each of the three coordinate axes. Mission duration was lower with pulse mode, while delta V (fuel consumption) was lower with acceleration mode. Subjects used more fuel to travel faster with pulse mode than with acceleration mode. Mission duration, delta V, X delta V, Y delta V., and Z delta V all increased with range. Subjects commanded the OMV to 'fly' at faster rates from further distances. These higher average velocities were paid for with increased fuel consumption. Asymmetrical transfer was found in that the mode transitions could not be predicted solely from the mission duration main effect. More testing is advised to understand the manual control aspects of spaceflight maneuvers better.

  16. High-Power fiber amplifier with widely tunable repetition rate, fixed pulse duration, and multiple output wavelengths.

    PubMed

    Schrader, Paul E; Farrow, Roger L; Kliner, Dahv A V; Fève, Jean-Philippe; Landru, Nicolas

    2006-11-27

    We report a pulsed, fiber-amplified microchip laser providing widely tunable repetition rate (7.1 - 27 kHz) with constant pulse duration (1.0 ns), pulse energy up to 0.41 mJ, linear output polarization, diffraction-limited beam quality (M(2) < 1.2), and < 1% pulse-energy fluctuations. The pulse duration was shown to minimize nonlinear effects that cause temporal and spectral distortion of the amplified pulses. This source employs passive Q-switching, single-stage single-pass amplification, and cw pumping, thus offering high efficiency, simplicity, and compact, rugged packaging for use in practical applications. The high peak power and high beam quality make this system an ideal pump source for nonlinear frequency conversion, and we demonstrated efficient harmonic generation and optical parametric generation of wavelengths from 213 nm to 4.4 mum with Watt-level output powers.

  17. Advances in long pulse operation at high radio frequency power in Tore Supra

    SciTech Connect

    Goniche, M.; Dumont, R.; Bourdelle, C.; Decker, J.; Delpech, L.; Ekedahl, A.; Guilhem, D.; Guimarães-Filho, Z.; Litaudon, X.; Lotte, Ph.; Maget, P.; Mazon, D.; Saoutic, B.

    2014-06-15

    The lower hybrid current drive (LHCD) system of Tore Supra has been upgraded for long pulse operation at higher power (7–8 MW). The two launchers have coupled on plasma 3.8 MW and 2.7 MW separately. This new power capability allows extending the operational domain of Tore Supra for long pulses at higher current and density. 38 long (20 s –155 s) discharges with very low loop voltage (V{sub L} = 30-60 mV) were performed with combined LHCD (5-5.7 MW) and ICRH (1–3 MW) powers, with up to 1 GJ of injected energy. Higher LHCD efficiency, with respect to the previous long discharges, is reported. MHD stability of these discharges is very sensitive to the LHCD power and parallel wave index, in particular in the preforming phase. For theses evanescent loop voltage plasmas, the ICRH power, in excess of 1 MW, is found to have a beneficial effect on the MHD stability.

  18. Soft X-Ray Emission Analysis Of A Pulsed Capillary Discharge Operated In Nitrogen

    NASA Astrophysics Data System (ADS)

    Valdivia, M. P.; Valenzuela, J. C.; Wyndham, E. S.; Favre, M.; Chuaqui, H.; Bhuyan, H.

    2014-05-01

    We present results from a pulsed capillary ns discharge source, operated in Nitrogen and N/He mixtures, in an alumina capillary 2.1mm long with outer diameter of 6.3mm and inner diameter of 1.6mm. The electrical energy stored is 0.5J with peak current of 6kA. Fast charging from an IGBT based pulsed power circuit allows operation at 35-600 Hz with voltages in the range of 18-24kV. Characteristic time-integrated N/He spectra were recorded and analyzed for values of 20-200 Å, with clear evidence of He-like Nitrogen emission at 28.8Å, which represents a possible source for water window soft x-ray microscopy. Filtered diode measurements reveal the influence of axial electron beams, generated by hollow cathode dynamics, on the x-ray emission in the range of 300-450 eV. We discuss optimal voltage applied and pressure conditions for soft x-ray generation. Time-integrated MCP images of a filtered slit-wire system delivered clear evidence of full wall detachment with ~500μm in radial size for the entire emission range and ~200μm for the emission in the 300-450 eV range.

  19. Collection efficiency of ultrafine particles by an electrostatic precipitator under DC and pulse operating modes

    SciTech Connect

    Zukeran, Akinori; Looy, P.C.; Chakrabarti, A.; Berezin, A.A.; Jayaram, S.; Cross, J.D.; Ito, Tairo; Chang, J.S.

    1999-10-01

    High particle collection efficiency in terms of particle weight/volume mg/m{sup 3} is well achieved by a conventional electrostatic precipitator (ESP). However, the collection efficiencies in terms of number density for the ultrafine (particle size between 0.01--0.1 {micro}m) or submicrometer particles by a conventional ESP are still relatively low. Therefore, it is necessary to improve the collection efficiency for ultrafine particles. In this paper, attempts have been made to improve the ultrafine particle collection efficiency by controlling dust loading, as well as using the short pulse energizations. The present version of the ESP consists of three sets of wire-plate-type electrodes. For the ESP under dc operation modes, experimental results show that the collection efficiency for dc applied voltage decreases with increasing dust loading when particle density is larger than 2.5 x 10{sup 10} particles/m{sup 3} due to inefficient collections of ultrafine particles. However, under pulse operating modes without dc bias, high particle collection efficiency for ultrafine particles was obtained, which is thought to be due to the enhancement of particle charging by electrons.

  20. High Voltage Pulsed Operation of Intense Neutron Source-Electron (INS-e) Device

    NASA Astrophysics Data System (ADS)

    Park, J.; Nebel, R. A.; Stange, S. M.; Taccetti, J. M.; Krupakar Murali, S.

    2003-10-01

    Theoretical works on Periodically Oscillating Plasma Sphere or POPS have suggested that a spherical ion cloud in a uniform electron background may undergo a self-similar collapse that can result in the periodic and simultaneous attainment of ultra-high densities and temperatures. Several promising results, such as the formation of stable deep potential wells with a nearly uniform radial electron density profile, have been obtained in INS-e. However, there are a number of experimental obstacles in order to test the efficacy of POPS. Presently, background ionization and resulting charge neutralization make it difficult to maintain a potential well if the gas pressure is raised above 3x10-6 torr. The space-charge effect in the electron emitters limits the amount of electron injection and precludes a deep potential well of more than 200 V. To mitigate these problems, we are in the process of upgrading the INS-e device to employ pulsed (0.1 - 10 ms), high voltage ( 2kV), and high current ( a few amperes) operations. An overview of this upgrade and initial results form high voltage pulsed operations will be presented.

  1. Fiber optic based heart-rate and pulse pressure shape monitor

    NASA Astrophysics Data System (ADS)

    Kokkinos, D.; Dehipawala, S.; Holden, T.; Cheung, E.; Musa, M.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2012-01-01

    Macro-bending fiber optic based heart-rate and pulse pressure shape monitors have been fabricated and tested for non-invasive measurement. Study of fiber bending loss and its stability and variations are very important especially for sensor designs based on optical fiber bending. Wavelengths from 1300 nm to 1550 nm have been used with fabrication based on multimode fiber, single mode fiber, and photonic crystal fiber. The smallest studied curvature would demand the use of single mode standard fibers. The collected data series show high quality suitable for random series analysis. Fractal property of optically measured pulse pressure data has been observed to correlate with physical activity. Correlation to EKG signal suggests that the fabricated monitors are capable of measuring the differential time delays at wrist and leg locations. The difference in time delay could be used to formulate a velocity parameter for diagnostics. The pulse shape information collected by the fiber sensor provides additional parameters for the analysis of the fractal nature of the heart. The application to real time measurement of blood vessel stiffness with this optical non-invasive fiber sensor is discussed.

  2. Identifying Methane Sources with an Airborne Pulsed IPDA Lidar System Operating near 1.65 µm

    NASA Astrophysics Data System (ADS)

    Yerasi, A.; Bartholomew, J.; Tandy, W., Jr.; Emery, W. J.

    2016-12-01

    Methane is a powerful greenhouse gas that is predicted to play an important role in future global climate trends. It would therefore be beneficial to locate areas that produce methane in significant amounts so that these trends can be better understood. In this investigation, some initial performance test results of a lidar system called the Advanced Leak Detector Lidar - Natural Gas (ALDL-NG) are discussed. The feasibility of applying its fundamental principle of operation to methane source identification is also explored. The ALDL-NG was originally created by the Ball Aerospace & Technologies Corp. to reveal leaks emanating from pipelines that transport natural gas, which is primarily composed of methane. It operates in a pulsed integrated path differential absorption (IPDA) configuration and it is carried by a piloted, single-engine aircraft. In order to detect the presence of natural gas leaks, the laser wavelengths of its online and offline channels operate in the 1.65 µm region. The functionality of the ALDL-NG was tested during a recent field campaign in Colorado. It was determined that the ambient concentration of methane in the troposphere ( 1.8 ppm) could indeed be retrieved from ALDL-NG data with a lower-than-expected uncertainty ( 0.2 ppm). Furthermore, when the ALDL-NG scanned over areas that were presumed to be methane sources (feedlots, landfills, etc.), significantly higher concentrations of methane were retrieved. These results are intriguing because the ALDL-NG was not specifically designed to observe anything beyond natural gas pipelines. Nevertheless, they strongly indicate that utilizing an airborne pulsed IPDA lidar system operating near 1.65 µm may very well be a viable technique for identifying methane sources. Perhaps future lidar systems could build upon the heritage of the ALDL-NG and measure methane concentration with even better precision for a variety of scientific applications.

  3. Operating room clinicians' ratings of workload: a vignette simulation study.

    PubMed

    Wallston, Kenneth A; Slagle, Jason M; Speroff, Ted; Nwosu, Sam; Crimin, Kimberly; Feurer, Irene D; Boettcher, Brent; Weinger, Matthew B

    2014-06-01

    Increased clinician workload is associated with medical errors and patient harm. The Quality and Workload Assessment Tool (QWAT) measures anticipated (pre-case) and perceived (post-case) clinical workload during actual surgical procedures using ratings of individual and team case difficulty from every operating room (OR) team member. The purpose of this study was to examine the QWAT ratings of OR clinicians who were not present in the OR but who read vignettes compiled from actual case documentation to assess interrater reliability and agreement with ratings made by clinicians involved in the actual cases. Thirty-six OR clinicians (13 anesthesia providers, 11 surgeons, and 12 nurses) used the QWAT to rate 6 cases varying from easy to moderately difficult based on actual ratings made by clinicians involved with the cases. Cases were presented and rated in random order. Before rating anticipated individual and team difficulty, the raters read prepared clinical vignettes containing case synopses and much of the same written case information that was available to the actual clinicians before the onset of each case. Then, before rating perceived individual and team difficulty, they read part 2 of the vignette consisting of detailed role-specific intraoperative data regarding the anesthetic and surgical course, unusual events, and other relevant contextual factors. Surgeons had higher interrater reliability on the QWAT than did OR nurses or anesthesia providers. For the anticipated individual and team workload ratings, there were no statistically significant differences between the actual ratings and the ratings obtained from the vignettes. There were differences for the 3 provider types in perceived individual workload for the median difficulty cases and in the perceived team workload for the median and more difficult cases. The case difficulty items on the QWAT seem to be sufficiently reliable and valid to be used in other studies of anticipated and perceived clinical

  4. Measurements of pulse rate using long-range imaging photoplethysmography and sunlight illumination outdoors

    NASA Astrophysics Data System (ADS)

    Blackford, Ethan B.; Estepp, Justin R.

    2017-02-01

    Imaging photoplethysmography, a method using imagers to record absorption variations caused by microvascular blood volume pulsations, shows promise as a non-contact cardiovascular sensing technology. The first long-range imaging photoplethysmography measurements at distances of 25, 50, and 100 meters from the participant was recently demonstrated. Degraded signal quality was observed with increasing imager-to-subject distances. The degradation in signal quality was hypothesized to be largely attributable to inadequate light return to the image sensor with increasing lens focal length. To test this hypothesis, a follow-up evaluation with 27 participants was conducted outdoors with natural sunlight illumination resulting in 5-33 times the illumination intensity. Video was recorded from cameras equipped with ultra-telephoto lenses and positioned at distances of 25, 50, 100, and 150 meters. The brighter illumination allowed high-definition video recordings at increased frame rates of 60fps, shorter exposure times, and lower ISO settings, leading to higher quality image formation than the previous indoor evaluation. Results were compared to simultaneous reference measurements from electrocardiography. Compared to the previous indoor study, we observed lower overall error in pulse rate measurement with the same pattern of degradation in signal quality with respect to increasing distance. This effect was corroborated by the signal-to-noise ratio of the blood volume pulse signal which also showed decreasing quality with respect to increasing distance. Finally, a popular chrominance-based method was compared to a blind source separation approach; while comparable in measurement of signal-to-noise ratio, we observed higher overall error in pulse rate measurement using the chrominance method in this data.

  5. Phonotactic selectivity in two cryptic species of gray treefrogs: effects of differences in pulse rate, carrier frequency and playback level.

    PubMed

    Gerhardt, H Carl

    2008-08-01

    The two main spectral components of the advertisement calls of two species of North American gray treefrogs (Hyla chrysoscelis and H. versicolor) overlap broadly in frequency, and the frequency of each component matches the sensitivity of one of the two different auditory inner ear organs. The calls of the two species differ in the shape and repetition rate (pulse rate) of sound pulses within trills. Standard synthetic calls with one of these spectral peaks and the pulse rate typical of conspecific calls were tested against synthetic alternatives that had the same spectral peak but a different pulse rate. The results were generalized over a wide range of playback levels. Selectivity based on differences in pulse rate depended on which spectral peak was used in some tests, and greater pulse-rate selectivity was usually observed when the low-frequency rather than the high-frequency peak was used. This effect was more pronounced and occurred over a wider range of playback levels in H. versicolor than in H. chrysoscelis when the pulse rate of the alternative was higher than that of the standard call. In tests at high playback levels with an alternative of 15 pulses s(-1), however, females of H. versicolor showed greater selectivity for the standard call when the high-frequency rather than the low-frequency spectral peak was used. This last result may reflect the different ways in which females of the two species assess trains of pulses, and the broad implications for understanding the underlying auditory mechanisms are discussed.

  6. The operation of plastic MSGCs at high rates

    SciTech Connect

    Taylor, S.C.; Armitage, J.C.; Batchelar, D.

    1994-12-31

    The operation of MicroStrip Gas Counters (MSGCS) on a Upilex (polyimide) substrate is described. The surface resistivity of the substrate was reduced by ion implantation or by coating with a thin film of nickel oxide. Results are presented concerning the surface resistivity and The lowering of the substrate resistivity allows perate at very high rates and several devices in a high flux X-ray beam. Substrates with optimum resistivity showed no gain changes whereas gain changes were seen on those with higher resistivity.

  7. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  8. Effect of Heart Rate on Arterial Stiffness as Assessed by Pulse Wave Velocity.

    PubMed

    Tan, Isabella; Butlin, Mark; Spronck, Bart; Xiao, Huanguang; Avolio, Alberto

    2017-07-24

    Vascular assessment is becoming increasingly important in the diagnosis of cardiovascular diseases. In particular, clinical assessment of arterial stiffness, as measured by pulse wave velocity (PWV), is gaining increased interest due to the recognition of PWV as an influential factor on the prognosis of hypertension as well as being an independent predictor of cardiovascular and all-cause mortality. Whilst age and blood pressure are established as the two major determinants of PWV, the influence of heart rate on PWV measurements remains controversial with conflicting results being observed in both acute and epidemiological studies. In a majority of studies investigating the acute effects of heart rate on PWV, results were confounded by concomitant changes in blood pressure. Observations from epidemiological studies have also failed to converge, with approximately just half of such studies reporting a significant blood-pressure-independent association between heart rate and PWV. Further to the lack of consensus on the effects of heart rate on PWV, the possible mechanisms contributing to observed PWV changes with heart rate have yet to be fully elucidated, although many investigators have attributed heart-rate related changes in arterial stiffness to the viscoelasticity of the arterial wall. With elevated heart rate being an independent prognostic factor of cardiovascular disease and its association with hypertension, the interaction between heart rate and PWV continues to be relevant in assessing cardiovascular risk. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. False alarm rates of three third-generation pulse oximeters in PACU, ICU and IABP patients.

    PubMed

    Lutter, Norbert O; Urankar, Sabine; Kroeber, Steffi

    2002-01-01

    The objective of this clinical study was to determine alarm rates--in particular the frequency of false positive alarms--of three third-generation pulse oximeters in the postanesthesia care unit (PACU), the intensive care unit (ICU), and in patients with an intra-aortic balloon pump (IABP): Nellcor Symphony N-3000, a Masimo IVY 2000, and Agilent Viridia CMS 2000. All alarms were classified into technical/physiological and false/correct. 235 consecutive ASA physical status I-IV patients after surgery were included into the study. In the PACU false positive alarms were rare: CMS n = 60, N-3000 n = 60, Masimo n = 87. Bland-Altman testing discovered only negligible differences of alarm rates and dropout times. Out of a total of 728 alarms 67.3% were classified as false positive in ICU-patients: 97 alarms by CMS, 176 by N-3000 and 218 by Masimo SET. If IABP was present, CMS indicated a significant smaller number of false positive alarms (n = 35, 7.2%) when compared to Masimo SET (n = 188, 38.9%) and N-3000 (n = 229, 47.4%), consecutively the majority of false positive alarms (76.2%) can be rated as a result of the interference of IABP. Unless IABP (and to a considerably smaller extent cardiac arrhythmia) is present the pulse oximeters do not differ significantly regarding sensitivity and specificity.

  10. Effect of pulse duration and strain rate on incipient spall fracture in copper

    SciTech Connect

    Johnson, J.N.; Gray, G.T. III; Bourne, N.K.

    1999-11-01

    Data are presented on real time (VISAR) measurements of the spall fracture of copper for various pulse durations and tensile strain rates at the spall plane. The impactors consist of Teflon, {ital Y}-cut quartz, and a tungsten heavy alloy. VISAR data are compared with finite-difference calculations employing a rate-dependent void-growth model. The data and comparisons show little dependence of the onset of void growth on either pulse duration or tensile strain rate. Also, it is shown that hydrodynamics (wave propagation properties) involving the transmission of the spall signal from the spall plane to the free surface (plane of the VISAR measurement) can mask slight differences in the void-growth or fracture response. In addition, new results are presented for the elastic description of planar wave propagation in {ital Y}-cut quartz; expressions are given for the six independent stress components to second order in infinitesimal Lagrangian strains. A discussion with regard to additional use of {ital Y}-cut quartz in impact experiments is presented. {copyright} {ital 1999 American Institute of Physics.}

  11. Trans-ionospheric pulse pairs (TIPPs): Their occurrence rates and diurnal variation

    NASA Astrophysics Data System (ADS)

    Zuelsdorf, R. S.; Strangeway, R. J.; Russell, C. T.; Franz, R.

    Trans-Ionospheric Pulse Pairs (TIPPs) have been detected by the Blackbeard instrument aboard the ALEXIS spacecraft in the VHF band between 28 and 166 MHz with dispersion indicating a subionospheric source. Using a database that runs from 2 November 1993 to 19 November 1996, the rate and diurnal variation of TIPP detection are calculated for central Africa, Indonesia, and North America. The rate of TIPP detection by Blackbeard in the frequency band from 28-95 MHz is 0.02 and 0.04 TIPPs per second for central Africa and Indonesia respectively. For North America the data were acquired in a narrow band from 28-37.9 MHz and the TIPP detection rate is 0.007 events per second. The diurnal variation of TIPPs resembles the diurnal variation of CG lightning during daylight hours. However the TIPP production remains strong through midnight and into the morning hours, whereas CG flash production tends to decrease more sharply after peaking around 4 PM local time. Thus the diurnal variation suggests that TIPPs are not produced in CG flashes, a conclusion consistent with their correlation with intracloud pulses.

  12. Ablation of dental hard tissues with a microsecond pulsed carbon dioxide laser operating at 9.3-μm with an integrated scanner

    NASA Astrophysics Data System (ADS)

    Assa, Shlomo; Meyer, Steve; Fried, Daniel

    2008-02-01

    Pulsed carbon dioxide lasers operating at the highly absorbed 9.3 and 9.6-μm wavelengths with pulse durations in the microsecond range are ideally suited for dental hard tissue modification and removal. The purpose of these studies was to demonstrate that a low cost 9.3-μm CO II laser system utilizing low-energy laser pulses (1-5 mJ /pulse) delivered at a high repetition rate (400-Hz) is feasible for removing dental hard tissues. The laser beam was focused to a small spot size to achieve ablative fluence and an integrated/programmable optical scanner was used to scan the laser beam over the desired area for tissue removal. Pulse durations of 35, 60 and 75-μs were employed and the enamel and dentin ablation rate and ablation efficiency was measured. Laser irradiated human and bovine samples were assessed for peripheral thermal and mechanical damage using polarized light microscopy. The heat accumulation during rapid scanning ablation with water-cooling at 400-Hz was monitored using micro-thermocouples. The laser was able to ablate both enamel and dentin without excessive peripheral thermal damage or heat accumulation. These preliminary studies suggest that a low-cost RF excited CO II laser used in conjunction with an integrated scanner has considerable potential for application to dental hard tissues.

  13. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    PubMed

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  14. Optimal repetition rates of excitation pulses in a Tm-vapour laser

    SciTech Connect

    Gerasimov, V A; Gerasimov, V V; Pavlinskii, A V

    2011-01-31

    The optimal excitation pulse repetition rates (PRRs) for a gas-discharge Tm-vapour laser with indirect population of upper laser levels are determined. It is shown that, under the same excitation conditions, the optimal PRRs increase with a decrease in the energy defect between the upper laser acceptor level and the nearest resonant donor level. The reasons for the limitation of the optimal PRRs in Tm-vapour laser are discussed. It is shown that the maximum average power of Tm-vapour laser radiation may exceed several times the Cu-vapour laser power under the same excitation conditions and in identical gas-discharge tubes. (lasers)

  15. Optimal repetition rates of excitation pulses in a Tm-vapour laser

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. A.; Gerasimov, V. V.; Pavlinskii, A. V.

    2011-01-01

    The optimal excitation pulse repetition rates (PRRs) for a gas-discharge Tm-vapour laser with indirect population of upper laser levels are determined. It is shown that, under the same excitation conditions, the optimal PRRs increase with a decrease in the energy defect between the upper laser acceptor level and the nearest resonant donor level. The reasons for the limitation of the optimal PRRs in Tm-vapour laser are discussed. It is shown that the maximum average power of Tm-vapour laser radiation may exceed several times the Cu-vapour laser power under the same excitation conditions and in identical gas-discharge tubes.

  16. Pulsed-Dose Rate Brachytherapy for the Treatment of Endometrial Cancer.

    PubMed

    De Felice, Francesca; Caiazzo, Rossella; Benevento, Ilaria; Musio, Daniela; Rubini, Filippo; Tombolini, Vincenzo

    2017-01-01

    Endometrial cancer (EC) is the most frequent gynecologic malignancy. The aim of this review is to outline clinical practice recommendations, to suggest a technical solution, and to advise doses selection for pulsed-dose rate (PDR) brachytherapy in EC. Electronic bibliographic databases, including PubMed, clinicaltrials.gov, and the American Society of Clinical Oncology (ASCO) Meeting Library, were searched for articles in English. Clinical guidelines and systematic reviews were also considered. The appropriate therapeutic approach should consider risk factors for tumor relapse and PDR brachytherapy and have a convincing role in this multidisciplinary scenario. Performing PDR brachytherapy in EC requires robust training and experience. © 2017 S. Karger AG, Basel.

  17. Inter-island optical link demonstration using high-data-rate pulse-position modulation

    NASA Astrophysics Data System (ADS)

    Bacher, Michael; Arnold, Felix; Thieme, Björn

    2014-03-01

    The growing data-rate demand on satellite communication systems has led to the increased interest in optical space communication solutions for uplinks and downlinks between satellites and ground stations. As one example for applications that benefit from higher data-rates offered by optical links, RUAG Space studied an uplink scenario from an Unmanned Aerial Vehicle (UAV) to a Geostationary Orbit (GEO), under the European Space Agency project formally known as "Optical Communications Transceiver for Atmospheric Links" (OCTAL). Particularly suitable for optical links through turbulent atmospheres are robust Pulse Position Modulation (PPM) schemes. Communication electronics using a Multi-Pulse PPM (MPPM) scheme have been developed, increasing the data-rate compared to traditional PPM at a constant peak-to-average ratio while allowing a widely configurable data-rate range. The communication system was tested together with a newly developed receiver and transmitter at a wavelength of 1055nm in a field test campaign on the Canary Islands, where the transmitter telescope was located on La Palma while the receiver was installed within the ESA Optical Ground Station on Tenerife. The nearly horizontal link between the two islands with a link distance of 142km allowed validation of relevant system performances under stringent atmospheric conditions. A data-rate of more than 360Mbps could be demonstrated using MPPM, while nearly 220Mbps could be achieved with traditional PPM, well exceeding the targeted data-rate of the studied UAV-to-GEO scenario. Following an introduction on the applied MPPM schemes, the architecture of the test setup is described, different modulation schemes are compared and the test results of this Inter-Island Test Campaign performed in October 2012 are presented.

  18. Hour-long continuous operation of a tabletop soft x-ray laser at 50-100 Hz repetition rate.

    PubMed

    Reagan, Brendan A; Li, Wei; Urbanski, Lukasz; Wernsing, Keith A; Salsbury, Chase; Baumgarten, Cory; Marconi, Mario C; Menoni, Carmen S; Rocca, Jorge J

    2013-11-18

    We report the uninterrupted operation of an 18.9 nm wavelength tabletop soft x-ray laser at 100 Hz repetition rate for extended periods of time. An average power of about 0.1 mW was obtained by irradiating a Mo target with pulses from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Series of up to 1.8 x 10(5) consecutive laser pulses of ~1 µJ energy were generated by displacing the surface of a high shot-capacity rotating molybdenum target by ~2 µm between laser shots. As a proof-of-principle demonstration of the use of this compact ultrashort wavelength laser in applications requiring a high average power coherent beam, we lithographically printed an array of nanometer-scale features using coherent Talbot self-imaging.

  19. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    SciTech Connect

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.; Enderlin, Carl W.; Minette, Michael J.; Holton, Langdon K.

    2015-12-07

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs may be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids

  20. Protonmotive stoichiometry of rat liver cytochrome c oxidase: determination by a new rate/pulse method.

    PubMed

    Moody, A J; Mitchell, R; West, I C; Mitchell, P

    1987-11-19

    The stoichoimetry of vectorial H+ ejection coupled to electron flow through the cytochrome c oxidase (EC 1.9.3.1) of rat liver mitochondria was determined by a new rate/pulse method. This is a modification of the oxygen-pulse method. Electron flow through the oxidase is initiated by adding oxygen to suspensions of anaerobic mitochondria at a known and constant rate. Cytochrome c oxidase was examined directly or in combination with cytochrome c reductase (ubiquinol:ferricytochrome c oxidoreductase). In both cases the----H0+/2e- ratio was found to be constant during the time-course of oxygen reduction, and thus independent of delta pH. The stoichiometries observed were consistent with mechanistic stoichiometries of 2 and 6 for cytochrome c oxidase alone and cytochrome c oxidase together with cytochrome c reductase, respectively. The stoichiometry of cytochrome c reductase alone was also examined, by using ferricyanide in place of oxygen. The results obtained were consistent with the accepted mechanistic stoichiometry of 4 for this enzyme.

  1. High-rate conditioning pulse trains in cochlear implants: Dynamic range measures with sinusoidal stimuli

    NASA Astrophysics Data System (ADS)

    Hong, Robert S.; Rubinstein, Jay T.

    2003-12-01

    The addition of a continuous, unmodulated, high-rate pulse train to the electrical signals of cochlear implant recipients results in statistically significant increases in psychophysical dynamic range (41 out of 46 electrode pairs tested). The observed increases in dynamic range are thought to result from nerve conditioning by appropriate levels of high-rate pulse train. Five dynamic range profiles are characterized, defining the different responses of dynamic range observed with increasing levels of the conditioner. Four of the five profiles demonstrate increases in dynamic range, with three showing behavior consistent with stochastic resonance. One profile depicts evidence of adaptation in response to higher levels of the conditioner, with a recovery period lasting throughout the duration (on the scale of tens of minutes) of experimentation. Dynamic range profiles are shown to be similar across sinusoidal frequencies (202, 515, and 1031 Hz) but potentially different across electrode pairs (electrodes 1-2, 7-8, and 15-16). Correlation analysis does not reveal any predictors of optimal conditioner level or amount of dynamic range increase with the conditioner.

  2. Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces

    PubMed Central

    2011-01-01

    In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200), (211), and (321) reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure. PMID:21711595

  3. Pulsed laser deposition of adherent hexagonal/cubic boron nitride layer systems at high growth rates

    NASA Astrophysics Data System (ADS)

    Weißmantel, Steffen; Reiße, Günter

    2002-09-01

    Cubic boron nitride (c-BN) films were prepared by ion-beam-assisted pulsed laser deposition (IAPLD) using a KrF excimer laser for ablation. The c-BN growth rates of 50 nm/min at relatively low substrate temperatures of 250 °C were achieved by using high laser energy densities of more than 30 J/cm 2 and at ion beam energies of 600-700 eV. Main advantage of IAPLD for the deposition of c-BN films is that at high laser energy densities the ratio of ions from the ion beam to ablated atoms and ions necessary for cubic film growth can be reduced to 0.14, since the ablated boron and nitrogen species themselves have high mean kinetic energies of 130-180 eV. By using pulsed laser deposited h-BN intermediate layers, 300-420 nm thick well-adherent c-BN films can be prepared on Si and WC hard metal substrates. The maximum c-BN film thickness of some 0.5 μm is limited by the accumulation of particulates, formed during the ablation process, in the films. The microstructure, stress, hardness and adhesion of such layer systems deposited at high growth rates are presented.

  4. 486nm blue laser operating at 500 kHz pulse repetition frequency

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Blanchard, Jon; Pretorius, Herman; Limongelli, Julia; Setzler, Scott D.

    2016-03-01

    Compact, high power blue light in the 470-490nm region is difficult to generate due to the lack of laser sources which are easily convertible (through parametric processes) to those wavelengths. By using a pulsed Tm-doped fiber laser as a pump source for a 2-stage second harmonic generation (SHG) scheme, we have generated ~2W of 486.5nm light at 500kHz pulse repetition frequency (PRF). To our knowledge, this is the highest PRF and output power achieved in the blue region based on a frequency converted, monolithic fiber laser. This pump laser is a pulsed Tm-doped fiber laser/amplifier which generates 12.8W of 1946nm power at 500kHz PRF with diffraction-limited output from a purely single-mode fiber. The output from this laser is converted to 973nm through second harmonic generation (SHG). The 973nm is then converted to 486.5nm via another SHG stage. This architecture operates with very low peak power, which can be challenging from a nonlinear conversion standpoint. However, the low peak power enables the use of a single-mode monolithic fiber amplifier without undergoing nonlinear effects in the fiber. This also eliminates the need for novel fiber designs, large-mode area fiber, or free-space coupling to rod-type amplifiers, improving reliability and robustness of the laser source. Higher power and conversion efficiency are possible through the addition of Tm-doped fiber amplification stages as well as optimization of the nonlinear conversion process and nonlinear materials. In this paper, we discuss the laser layout, results, and challenges with generating blue light using a low peak power approach.

  5. Optimizing Estimates of Instantaneous Heart Rate from Pulse Wave Signals with the Synchrosqueezing Transform.

    PubMed

    Wu, Hau-Tieng; Lewis, Gregory F; Davila, Maria I; Daubechies, Ingrid; Porges, Stephen W

    2016-10-17

    With recent advances in sensor and computer technologies, the ability to monitor peripheral pulse activity is no longer limited to the laboratory and clinic. Now inexpensive sensors, which interface with smartphones or other computer-based devices, are expanding into the consumer market. When appropriate algorithms are applied, these new technologies enable ambulatory monitoring of dynamic physiological responses outside the clinic in a variety of applications including monitoring fatigue, health, workload, fitness, and rehabilitation. Several of these applications rely upon measures derived from peripheral pulse waves measured via contact or non-contact photoplethysmography (PPG). As technologies move from contact to non-contact PPG, there are new challenges. The technology necessary to estimate average heart rate over a few seconds from a noncontact PPG is available. However, a technology to precisely measure instantaneous heat rate (IHR) from non-contact sensors, on a beat-to-beat basis, is more challenging. The objective of this paper is to develop an algorithm with the ability to accurately monitor IHR from peripheral pulse waves, which provides an opportunity to measure the neural regulation of the heart from the beat-to-beat heart rate pattern (i.e., heart rate variability). The adaptive harmonic model is applied to model the contact or non-contact PPG signals, and a new methodology, the Synchrosqueezing Transform (SST), is applied to extract IHR. The body sway rhythm inherited in the non-contact PPG signal is modeled and handled by the notion of wave-shape function. The SST optimizes the extraction of IHR from the PPG signals and the technique functions well even during periods of poor signal to noise. We contrast the contact and non-contact indices of PPG derived heart rate with a criterion electrocardiogram (ECG). ECG and PPG signals were monitored in 21 healthy subjects performing tasks with different physical demands. The root mean square error of IHR

  6. High-pressure pulsed avalanche discharges: Formulas for required preionization density and rate for homogeneity

    SciTech Connect

    Brenning, N.; Axnaes, I.; Nilsson, J.O.; Eninger, J.E.

    1997-02-01

    The requirements on preionization for the formation of spatially homogeneous pulsed avalanche discharges are examined. The authors derive two formulas which apply in the case of a slowly rising electric field, one which gives the required preionization density at breakdown, and one which gives the required preionization rate. These quantities are expressed as functions of the electrochemical properties of the gas, the neutral density, and the electric field rise time. They also treat the statistical effect that the electrons tend to form groups, in contrast to being randomly distributed in space, during the prebreakdown phase. This process is found to increase the required preionization rate significantly, typically by a factor of five for a discharge at atmospheric pressure. Homogeneous high-pressure discharges have been used for laser excitation, and have also been proposed for chemical plasma processing (ozone production) because of their good scaling properties and high efficiency.

  7. Studies of Operating Frequency Effects On Ejector-based Thrust Augmentation in a Pulse Detonation Engine

    NASA Technical Reports Server (NTRS)

    Landry, K.

    2005-01-01

    Studies were performed in order to characterize the thrust augmentation potential of an ejector in a Pulse Detonation Engine application. A 49-mm diameter tube of 0.914-m length was constructed with one open end and one closed end. Ethylene, oxygen, and nitrogen were introduced into the tube at the closed end through the implementation of a fast mixing injector. The tube was completely filled with a stoichiometric mixture containing a one to one molar ratio of nitrogen to oxygen. Ethylene was selected as the fuel due to its detonation sensitivity and the molar ratio of the oxidizer was chosen for heat transfer purposes. Detonations were initiated in the tube through the use of a spark ignition system. The PDE was operated in a multi-cycle mode at frequencies ranging from 20-Hz to 50-Hz. Baseline thrust measurements with no ejector present were performed while operating the engine at various frequencies and compared to theoretical estimates. The baseline values were observed to agree with the theoretical model at low operating frequencies and proved to be increasingly lower than the predicted values as the operating frequency was increased. The baseline thrust measurements were observed to agree within 15 percent of the model for all operating frequencies. A straight 152-mm diameter ejector was installed and thrust augmentation percentages were measured. The length of the ejector was varied while the overlap percentage (percent of the ejector length which overlapped the tube) was maintained at 25 percent for all tests. In addition, the effect of ejector inlet geometry was investigated by comparing results with a straight inlet to those of a 38-mm inlet diameter. The thrust augmentation of the straight inlet ejector proved to be independent of engine operating frequency, augmenting thrust by 40 percent for the 0.914-m length ejector. In contrast, the rounded lip ejector of the same length seemed to be highly dependent on the engine operating frequency. An optimum

  8. Studies of Operating Frequency Effects On Ejector-based Thrust Augmentation in a Pulse Detonation Engine

    NASA Technical Reports Server (NTRS)

    Landry, K.

    2005-01-01

    Studies were performed in order to characterize the thrust augmentation potential of an ejector in a Pulse Detonation Engine application. A 49-mm diameter tube of 0.914-m length was constructed with one open end and one closed end. Ethylene, oxygen, and nitrogen were introduced into the tube at the closed end through the implementation of a fast mixing injector. The tube was completely filled with a stoichiometric mixture containing a one to one molar ratio of nitrogen to oxygen. Ethylene was selected as the fuel due to its detonation sensitivity and the molar ratio of the oxidizer was chosen for heat transfer purposes. Detonations were initiated in the tube through the use of a spark ignition system. The PDE was operated in a multi-cycle mode at frequencies ranging from 20-Hz to 50-Hz. Baseline thrust measurements with no ejector present were performed while operating the engine at various frequencies and compared to theoretical estimates. The baseline values were observed to agree with the theoretical model at low operating frequencies and proved to be increasingly lower than the predicted values as the operating frequency was increased. The baseline thrust measurements were observed to agree within 15 percent of the model for all operating frequencies. A straight 152-mm diameter ejector was installed and thrust augmentation percentages were measured. The length of the ejector was varied while the overlap percentage (percent of the ejector length which overlapped the tube) was maintained at 25 percent for all tests. In addition, the effect of ejector inlet geometry was investigated by comparing results with a straight inlet to those of a 38-mm inlet diameter. The thrust augmentation of the straight inlet ejector proved to be independent of engine operating frequency, augmenting thrust by 40 percent for the 0.914-m length ejector. In contrast, the rounded lip ejector of the same length seemed to be highly dependent on the engine operating frequency. An optimum

  9. Architecture and operation of the Z Pulsed Power Facility vacuum system.

    SciTech Connect

    Riddle, Allen Chauncey; Petmecky, Don; Weed, John Woodruff

    2010-11-01

    The Z Pulsed Power Facility at Sandia National Laboratories in Albuquerque, New Mexico, USA is one of the world's premier high energy density physics facilities. The Z Facility derives its name from the z-pinch phenomena which is a type of plasma confinement system that uses the electrical current in the plasma to generate a magnetic field that compresses it. Z refers to the direction of current flow, the z axis in a three dimensional Cartesian coordinate system. The multiterawatt, multimegajoule electrical pulse the Facility produces is 100-400 nanoseconds in time. Research and development programs currently being conducted on the Z Facility include inertial confinement fusion, dynamic material properties, laboratory astrophysics and radiation effects. The Z Facility vacuum system consists of two subsystems, center section and load diagnostics. Dry roughing pumps and cryogenic high vacuum pumps are used to evacuate the 40,000 liter, 200 square meter center section of the facility where the experimental load is located. Pumping times on the order of two hours are required to reduce the pressure from atmospheric to 10{sup -5} Torr. The center section is cycled from atmosphere to high vacuum for each experiment. The facility is capable of conducting one to two experiments per day. Numerous smaller vacuum pumping systems are used to evacuate load diagnostics. The megajoules of energy released during an experiment causes damage to the Facility that presents numerous challenges for reliable operation of the vacuum system.

  10. ECR-driven multicusp H^- volume source operated in pulsed or cw mode

    NASA Astrophysics Data System (ADS)

    Svarnas, Panayiotis

    2005-10-01

    Electron cyclotron resonance (ECR) driven multicusp H^- volume hybrid source [1, 2] operates in continuous (cw) or pulsed microwave (2.45 GHz) mode up to 3 kW. The hydrogen plasma is produced between 1 and 7 mTorr by seven elementary ECR sources housed in the magnetic multipole chamber ``Camembert III'' [3]. This ECR configuration could be applied both to accelerator and fusion ion sources. Negative ion or electron extracted currents and plasma characteristics are studied in both modes with electrical measurements, electrostatic probe and photodetachment. The role of the plasma electrode bias in the values of the extracted currents is major. H^- current is maximized for a bias voltage close to plasma potential. An optimum pressure at 4-5 mTorr yields enhanced H^- density in the center of the chamber, under cw regime. Finally, the post-discharge formation of H^-, in the pulsed mode, is observed. [1] A.A. Ivanov Jr., C. Rouille, M. Bacal, Y. Arnal, S. Bechu, J. Pelletier, Rev. Sci. Instrum. 75(5), 1750 (2004) [2] M. Bacal, A.A. Ivanov Jr., C. Rouille, P. Svarnas, S. Bechu, J. Pelletier, AIP Conf. Proc. No 763 (Kiev, Ukraine) (2004) [3] C. Courteille, A.M. Bruneteau, M. Bacal, Rev. Sci. Instrum. 66(3), 2533 (1995)

  11. Enhancement of electrodialysis performances using pulsing electric fields during extended period operation.

    PubMed

    Lee, Hong-Joo; Moon, Seung-Hyeon

    2005-07-15

    Many methods have been considered for mitigating and minimizing fouling potentials in the electrodialysis process, because fouling of ion exchange membranes is one of the significant considerations in process design and operation. In the observation of foulant behaviors, it was observed that the humate was deposited and formed a loosely packed fouling layer on the anion-exchange membrane surfaces, thus having reversible fouling effects on the process. In order to investigate the effects of the frequencies on the electrodialysis performance during fouling experiments in the presence of humate, the square-wave powers having various frequencies in the electric fields were employed. The results showed that the pulsing electric fields mitigated the fouling potential and that there exists an optimal frequency for the minimization of the fouling potential. Also, the pulsation of the electric field with an optimal frequency reduced the fouling potential of the already fouled membrane systems in the continuous batch runs. It was suggested that the electric field with pulsing effects enhanced the electrophoretic mobilities of the charged foulants, thus decreasing fouling potentials.

  12. Oxygen consumption, heart rate and oxygen pulse associated with selected exercise-to-muscle class elements.

    PubMed Central

    Abernethy, P; Batman, P

    1994-01-01

    The purpose of the investigation was to determine the relative oxygen consumption (VO2), heart rate and oxygen pulse associated with the constituent elements of an exercise-to-music class. Six women exercise-to-music leaders with a mean(s.d.) age, weight and height of 33.2(5.2) years, 51.0(2.8) kg and 157.9(5.6) cm respectively, completed five distinct exercise-to-music movement elements. The movement elements were of a locomoter (circuit, jump and low impact) and callisthenic (prone and side/supine) nature. The movement elements were distinguishable from one another in terms of their movement patterns, posture and tempo. Relative VO2 values were greatest for the circuit element (40.6 ml kg-1 min-1) and least for the side/supine element (20.0 ml kg-1 min-1). The differences in VO2 between the locomotrr and callisthenic elements were significant (circuit approximately jump approximately low impact > prone approximately side/supine). However, effect size data suggested that the differences between the low impact and jump elements and the prone and side/supine elements were of practical significance (circuit approximately jump > low impact > prone > side/supine). With a single exception similar parametric statistics and effect size trends were identified for absolute heart rate. Specifically, the heart rate associated with the low impact element was not significantly greater than the prone element. The oxygen pulse associated with the locomotor elements was significantly greater than the callisthenic elements (circuit approximately jump approximately low impact > prone > side/supine). This suggested that heart rate may be an inappropriate index for making comparisons between exercise-to-music elements. Reasons for differences in oxygen uptake values between movement elements are discussed. PMID:8044493

  13. Pulsed external magnetic fields increase the deposition rate in reactive HiPIMS while preserving stoichiometry: An application to amorphous HfO2

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Treverrow, B.; Denniss, P.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.

    2016-09-01

    We compare the use of externally applied pulsed and steady magnetic fields for the enhancement of deposition rate in reactive High Power Impulse Magnetron Sputtering (HiPIMS), using the deposition of amorphous hafnium oxide (a-HfO2) on Si as an example. The external magnetic fields were applied by a solenoidal coil, placed above the magnetron target. In the case of a steady magnetic field, a higher voltage was required to initiate the HiPIMS discharge, a longer delay time was observed for current onset, and the films became substoichiometric. For the pulsed magnetic field, film stoichiometry was maintained under all applied external magnetic field strengths. Varying the duration and delay times of the magnetic field after the application of HiPIMS voltage pulse revealed that the afterglow of the plasma between HiPIMS pulses was actively quenched by the presence of the magnetic field. Therefore, the optimum operation with the highest plasma density was obtained by applying the external magnetic field only when the plasma was established and removing it at the end of the HiPIMS pulse. A model to explain the findings is presented in which the target poisoning by oxide formation is determined by the conditions in the afterglow. We describe an approach to achieve maximum deposition rate while maintaining film stoichiometry and high film quality. Amorphous HfO2 films with leakage current through the film of less than 5 × 10-5 A/cm2 at 0.1 MV/cm were obtained at the maximum deposition rate. The refractive index, at a wavelength of 500 nm, of the film prepared with pulsed magnetic field was 2.05 with a very low extinction coefficient of 8 × 10-5.

  14. Increased Pre-operative Pulse Pressure Predicts Procedural Complications and Mortality in Patients Undergoing Tibial Interventions for Critical Limb Ischemia

    PubMed Central

    Darling, Jeremy D.; Lee, Vanessa; Schermerhorn, Marc L.; Guzman, Raul J.

    2015-01-01

    Introduction Pulse pressure is a non-invasive measure of arterial stiffness. Elevated pulse pressure is associated with an increased risk of cardiovascular events and death. The effects of pulse pressure on outcomes after endovascular interventions for critical limb ischemia (CLI), however, are unknown. We thus evaluated whether increased pre-operative pulse pressure was associated with adverse outcomes and mortality in patients undergoing endovascular tibial artery intervention. Methods All patients undergoing endovascular tibial intervention for CLI at a single institution from 2004 to 2014 were included in this study. Pre-operative pulse pressure was derived from measurements obtained in the holding area prior to the procedure. Patients were divided into 2 groups based on pulse pressure, < 80 or ≥ 80. Patient demographics and co-morbidities were documented, and outcomes including procedural complications, repeat intervention, amputation, and mortality were recorded. Multivariable logistic regression was utilized to account for patient demographics and comorbidities. Results Of 371 patients, 186 patients had a pre-operative pulse pressure <80 and 185 had a pre-operative pulse pressure ≥80. No significant differences in patient demographics or comorbidities were identified; however there was a trend toward older age in patients with elevated pulse pressure (70 vs. 72, P = 0.07). On univariate analysis, procedural complications (21% vs. 13%, P = 0.02), reinterventions (26% vs. 17%, P < 0.01), and restenosis (32% vs. 23%, P = 0.03) were more common among patients with pulse pressure ≥ 80. Procedural complications remained significant on multivariate analysis (OR 1.8, 95% CI 1.0-3.1, P = 0.04). There was no difference in 30-day mortality; however increased mortality was seen at 5 years of follow-up (OR: 1.6, 95% CI: 1.0-2.5, P = 0.04) following multivariable analysis. Conclusions Increased pre-operative pulse pressure is associated with procedural complications

  15. PCI data acquisition and signal processing hardware modules for long pulse operation

    SciTech Connect

    Sousa, J.; Batista, A.J.N.; Combo, A.; Pereira, R.; Correia, Miguel; Cruz, N.; Carvalho, P.; Correia, Carlos; Varandas, C.A.F.

    2004-10-01

    A set of PCI instrumentation modules was developed at the EURATOM/IST Association. The modules were engineered around a reconfigurable hardware core which permits one to reduce the development time of instrument for new applications, provide support for long time or even continuous operation, and is able to perform real-time digital signal processing. The core was engineered at low cost and the modules incorporate a high number of channels, which contribute to reduce the total cost per channel. Field results are as expected in terms of performance both in data throughput and input characteristics. Currently, a 2 MSPS, 14-bit, eight channel galvanic isolated transient recorder; a 200 MSPS, 8-bit, four channel pulse digitizer; an eight channel time-to-digital-converter with a resolution of 0.4 ns, and a reconfigurable hardware expandable board, are implemented.

  16. The operation of microchannel plates at high count rates

    NASA Astrophysics Data System (ADS)

    Fraser, G. W.; Pain, M. T.; Lees, J. E.; Pearson, J. F.

    1991-08-01

    The measured count rate characteristics of a large number of microchannel plate electron multipliers are compared with the predictions of a universal, paralysable-counter model. Individual plate resistances for the experimental study lie in the range 27-2450 MΩ. The gain behaviour of single channel plates is shown to differ from that of multi-stage MCP detectors. The measured dependence of multi-stage multiplier recovery time on illuminated area is interpreted in terms of inter-channel coupling and of changes in conduction current during plate operation. Our findings have significance for the calibration of particle and photon spectrometers and for the development of future channel plate detectors with extended dynamic range.

  17. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    PubMed

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms.

  18. Double-pulse single-longitudinal-mode operation of injection-seeded laser using intracavity phase modulator

    NASA Astrophysics Data System (ADS)

    Zhang, Junxuan; Zhu, Xiaolei; Zang, Huaguo; Li, Shiguang; Ma, Xiuhua; Liu, Jiqiao; Chen, Weibiao

    2017-04-01

    A single-longitudinal-mode (SLM) double-pulse injection-seeded neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was established utilizing an RbTiOPO4 electro-optic crystal to modulate the optical path of the slave resonator for generating a resonance condition. The Q-switcher was fired twice during every pump period. This enabled the laser to emit a pair of SLM laser pulses with a time separation of 200 μs. Each pulse had a pulse energy of 13 mJ at 50-Hz repetition rate, pulse duration of 20±0.5 ns, and linewidth of 30±0.3 MHz (within 2 min). The beam quality factor of M2 was <1.22. A frequency jitter of 1.4 MHz was obtained within 2 min.

  19. Generation of high repetition rate femtosecond pulses from a CW laser by a time-lens loop.

    PubMed

    Dai, Yitang; Xu, Chris

    2009-04-13

    We demonstrate a novel method for femtosecond pulse generation based on a time-lens loop. Time division multiplexing in the loop is performed so that a high repetition rate can be achieved. Pulse width less than 500 fs is generated from a continuous wave (CW) laser without mode locking, and tunable repetition rate from 23 MHz to 400 MHz is demonstrated. Theoretical analysis shows that the repetition rate is ultimately limited by the in-loop interference. By using a 2 x 2 optical switch, such interference is further suppressed, and repetition rate as high as 1.1 GHz is demonstrated.

  20. Conceptual design of the neutral beamline for TPX long pulse operation

    SciTech Connect

    Wright, K.E.; Dahlgren, F.; Fan, H.M.; Grisham, L.R.; Hammersand, F.G.; Kamperschroer, J.H.; Lontai, L.M.; Oldaker, M.E.; Rogoff, P.

    1993-11-01

    The Tokamak Physics Experiment (TPX) will require a minimum of 8.0 megawatts of Neutral Beam beating power to be injected into the plasma for pulse lengths up to one thousand (1000) seconds to meet the experimental objectives. The Neutral Beam Injection System (NBIS) for initial operation on TPX will consist of one neutral beamline (NBL) with three Ion sources. Provisions will be made for a total of three NBLs. The NBIS will provide S.S MW of 120 keV D{sup 0} and 2.S MW of partial-energy D{sup 0} at 60 keV and 40 keV. The system also provides for measuring the neutral beam power, limits excess cold gas from entering the torus, and provides independent power, control, and protection for each individual ion source and accelerating structure. The Neutral Beam/Torus Connecting Duct (NB/TCD) includes a vacuum valve, an electrical insulating break, alignment bellows, vacuum seals, internal energy absorbing protective elements, beam diagnostics and bakeout capability. The NBL support structure will support the NBL, which will weigh approximately 80 tons at the proper elevation and withstand a seismic event. The NBIS currently operational on the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory (PPPL) is restricted to injection pulse lengths of two (2) seconds by the limited capability of various energy absorbers. This paper describes the modifications and improvements which will be implemented for the TFTR Neutral Beamlines and the NB/TCD to satisfy the TPX requirements.

  1. Assessment of operational space for long-pulse scenarios in ITER

    NASA Astrophysics Data System (ADS)

    Polevoi, A. R.; Loarte, A.; Hayashi, N.; Kim, H. S.; Kim, S. H.; Koechl, F.; Kukushkin, A. S.; Leonov, V. M.; Medvedev, S. Yu.; Murakami, M.; Na, Y. S.; Pankin, A. Y.; Park, J. M.; Snyder, P. B.; Snipes, J. A.; Zhogolev, V. E.; IOS ITPA TG, the

    2015-06-01

    The operational space (Ip - n) for long-pulse scenarios (Δtburn ˜ 1000 s, Q ⩾ 5) of ITER has been assessed by 1.5D core transport modelling with pedestal parameters predicted by the EPED1 code by a set of transport codes under a joint activity carried out by the Integrated Operational Scenario ITPA group. The analyses include the majority of transport models (CDBM, GLF23, Bohm/gyroBohm (BgB), MMM7.1, MMM95, Weiland, scaling-based) presently used for interpretation of experiments and ITER predictions. The EPED1 code was modified to take into account boundary conditions predicted by SOLPS4 for ITER. In contrast to standard EPED1 assumptions, EPED1 with the SOLPS boundary conditions predicts no degradation of the pedestal pressure as density is reduced. Lowering the plasma density to ne ˜ (5-6) × 1019 m-3 leads to an increased plasma temperature (similar pedestal pressure), which reduces the loop voltage and increases the duration of the burn phase to Δtburn ˜ 1000 s with Q ⩾ 5 for Ip ⩾ 13 MA at moderate normalized pressure (βN ˜ 2). These ITER plasmas require the same level of additional heating power as the reference Q = 10 inductive scenario at 15 MA (33 MW NBI and 17-20 MW EC heating and current drive power). However, unlike the ‘hybrid’ scenarios considered previously, these H-mode plasmas do not require specially shaped q profiles nor improved confinement in the core for the transport models considered in this study. Thus, these medium density H-mode plasma scenarios with Ip ⩾ 13 MA present an attractive alternative to hybrid scenarios to achieve ITER's long-pulse Q ⩾ 5 scenario and deserve further analysis and experimental demonstration in present tokamaks.

  2. Radial Pressure Pulse and Heart Rate Variability in Heat- and Cold-Stressed Humans

    PubMed Central

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chiachung; Liao, Yin-Tzu; Chen, Fun-Jou

    2011-01-01

    This study aims to explore the effects of heat and cold stress on the radial pressure pulse (RPP) and heart rate variability (HRV). The subjects immersed their left hand into 45°C and 7°C water for 2 minutes. Sixty healthy subjects (age 25 ± 4 yr; 29 men and 31 women) were enrolled in this study. All subjects underwent the supine temperature measurements of the bilateral forearms, brachial arterial blood pressure, HRV and RPP with a pulse analyzer in normothermic conditions, and thermal stresses. The power spectral low-frequency (LF) and high-frequency (HF) components of HRV decreased in the heat test and increased in the cold test. The heat stress significantly reduced radial augmentation index (AIr) (P < .05), but the cold stress significantly increased AIr (P < .01). The spectral energy of RPP did not show any statistical difference in 0 ~ 10 Hz region under both conditions, but in the region of 10 ~ 50 Hz, there was a significant increase (P < .01) in the heat test and a significant decrease in the cold test (P < .01). The changes in AIr induced by heat and cold stress were significantly negatively correlated with the spectral energy in the region of 10 ~ 50 Hz (SE10−50 Hz) but not in the region of 0 ~ 10 Hz (SE0−10 Hz). The results demonstrated that the SE10−50 Hz, which only possessed a small percentage in total pulse energy, presented more physiological characteristics than the SE0−10 Hz under the thermal stresses. PMID:21113292

  3. MW peak-power, mJ pulse energy, multi-kHz repetition rate pulses from Yb-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Di Teodoro, Fabio; Brooks, Christopher D.

    2006-02-01

    We report on pulsed fiber-based sources generating high peak and average powers in beams of excellent spectral/spatial quality. In the first setup, a ~10-kHz pulse repetition rate (PRR), 1ns-pulse, Q-switched microlaser seeded a dual-stage amplifier featuring a 40-μm-core Yb-doped photonic-crystal fiber (PCF) as the power amplifier. From this amplifier, we obtained diffraction-limited (M2 = 1.05), ~1ns pulses of 1.1mJ energy, ~1.1MW peak power, ~10.2W average-power, spectral linewidth ~9GHz, negligible nonlinearities, and slope efficiency >73%. In the second setup, we replaced the seed source with a shorter-pulse (<500ps) microchip laser of PRR ~13.4 kHz and obtained diffraction-limited (M2=1.05), ~450ps pulses of energy >0.7mJ, peak power in excess of 1.5 MW, average power ~9.5W, spectral linewidth <35 GHz. To show further power scaling, these pulses were amplified in a 140-μmcore Yb-doped fiber, which yielded multimode (M2 ~ 9), 2.2mJ-energy, 30-W average-power pulses of peak power in excess of 4.5MW, the highest ever obtained in a fiber source, to our knowledge. In the third setup, an Yb-doped, 70μmcore, intrinsically single-mode photonic-crystal rod was used to generate diffraction-limited (M2 ~ 1.1), ~10kHz PRR, ~1ns pulses of 2.05mJ energy, >2 MW peak-power (the highest ever reported in a diffraction-limited fiber source), ~20W average-power, ~13 GHz spectral linewidth, and spectral signal-to-noise ratio >50 dB. Finally, a single polarization large-core Yb-doped PCF was used to demonstrate high-peak-power harmonic generation. We obtained ~1ns pulses of peak powers >410 kW in the green (531nm) and >190kW in the UV (265.5 nm).

  4. Long-pulse operation of a 0.5 MW TE{sub 10.4} gyrotron at 140 GHz

    SciTech Connect

    Dammertz, G.; Iatrou, C.T.; Kuntze, M.; Moebius, A.; Piosczyk, B.; Braz, O.; Thumm, M. |

    1996-06-01

    Gyrotron oscillators have proven to be highly efficient sources of coherent mm-wave radiation. They have been used successfully for electron cyclotron resonance heating (ECRH) experiments and electron cyclotron diagnostics (ECD) of plasma fusion for some time. Due to the localized energy deposition, the temperature profile can be modified and the stability of the plasma can be improved. Here, the operation features of a TE{sub 10.4}-mode gyrotron oscillator with a quasi-optical mode converter and a single-stage depressed collector at 140 GHz with an output power of 500 kW in long pulses of 0.2 s are presented. Measurements on long-pulse operation of the tube are described in detail, and the significant differences between short- and long-pulse operation concerning efficiency and output power are pointed out. The variation of frequency during a pulse and an irreversible frequency shift during long-pulse operation were measured and are discussed with respect to gyrotron design.

  5. Assessment of continuous acoustic respiratory rate monitoring as an addition to a pulse oximetry-based patient surveillance system.

    PubMed

    McGrath, Susan P; Pyke, Joshua; Taenzer, Andreas H

    2016-05-03

    Technology advances make it possible to consider continuous acoustic respiratory rate monitoring as an integral component of physiologic surveillance systems. This study explores technical and logistical aspects of augmenting pulse oximetry-based patient surveillance systems with continuous respiratory rate monitoring and offers some insight into the impact on patient deterioration detection that may result. Acoustic respiratory rate sensors were introduced to a general care pulse oximetry-based surveillance system with respiratory rate alarms deactivated. Simulation was used after 4324 patient days to determine appropriate alarm thresholds for respiratory rate, which were then activated. Data were collected for an additional 4382 patient days. Physiologic parameters, alarm data, sensor utilization and patient/staff feedback were collected throughout the study and analyzed. No notable technical or workflow issues were observed. Sensor utilization was 57 %, with patient refusal leading reasons for nonuse (22.7 %). With respiratory rate alarm thresholds set to 6 and 40 breaths/min., the majority of nurse pager clinical notifications were triggered by low oxygen saturation values (43 %), followed by low respiratory rate values (21 %) and low pulse rate values (13 %). Mean respiratory rate collected was 16.6 ± 3.8 breaths/min. The vast majority (82 %) of low oxygen saturation states coincided with normal respiration rates of 12-20 breaths/min. Continuous respiratory rate monitoring can be successfully added to a pulse oximetry-based surveillance system without significant technical, logistical or workflow issues and is moderately well-tolerated by patients. Respiratory rate sensor alarms did not significantly impact overall system alarm burden. Respiratory rate and oxygen saturation distributions suggest adding continuous respiratory rate monitoring to a pulse oximetry-based surveillance system may not significantly improve patient deterioration detection.

  6. Improving detection of obstructive sleep apnoea by overnight oximetry in children using pulse rate parameters.

    PubMed

    Sahadan, Dg Zuraini; Davey, Margot J; Horne, Rosemary S C; Nixon, Gillian M

    2015-12-01

    Overnight oximetry is a simple tool for investigation of obstructive sleep apnoea (OSA) in children, but only severe cases will be detected, and children with obstructive events resulting in arousal, but not desaturation, will have a normal (inconclusive) result. We hypothesised that pulse rate rises using pulse rate indices per hour (PRI) and pulse rate standard deviation (PR-SD) automatically calculated from commercially available software would improve oximetry as a diagnostic tool. Children having home overnight oximetry for suspected OSA were identified over 12 months, and those with a normal result who went on to have polysomnography (PSG) were included. Oximetry, including PR-SD and PRI (rises of 8, 10 and 15 beats/min per hour), was analyzed using commercially available software. PR parameters were compared between those with OSA (obstructive apnoea-hypopnoea index (OAHI) >1 event/h) and those without OSA. One hundred sixteen children had normal oximetry, of whom 93 (median age 4.5 years; 55 % M) had PSG. Fifty-seven of 93 (61 %) children had OSA (median OAHI 4.5 events/h, range 1.1-24). PR-SD was not different between the OSA and non-OSA groups (p = 0.87). PRI tended to be higher in those with OSA, but there was considerable overlap between the groups: PRI-8 (mean ± SD 58.5 ± 29.0/h in OSA group vs 48.6 ± 20.2/h in non-OSA group, p = 0.07), PRI-10 (45.1 ± 25.0 vs 36.2 ± 16.7, p = 0.06) and PRI-15 (24.4 ± 14.5 vs 18.9 ± 9.0, p = 0.04). A PRI-15 threshold of >35/h had specificity of 97 % for OSA. The PRI-15 shows promise as an indicator of OSA in children with normal oximetry.

  7. Arterial viscoelasticity: role in the dependency of pulse wave velocity on heart rate in conduit arteries.

    PubMed

    Xiao, Hanguang; Tan, Isabella; Butlin, Mark; Li, Decai; Avolio, Alberto P

    2017-06-01

    Experimental investigations have established that the stiffness of large arteries has a dependency on acute heart rate (HR) changes. However, the possible underlying mechanisms inherent in this HR dependency have not been well established. This study aimed to explore a plausible viscoelastic mechanism by which HR exerts an influence on arterial stiffness. A multisegment transmission line model of the human arterial tree incorporating fractional viscoelastic components in each segment was used to investigate the effect of varying fractional order parameter (α) of viscoelasticity on the dependence of aortic arch to femoral artery pulse wave velocity (afPWV) on HR. HR was varied from 60 to 100 beats/min at a fixed mean flow of 100 ml/s. PWV was calculated by intersecting tangent method (afPWVTan) and by phase velocity from the transfer function (afPWVTF) in the time and frequency domain, respectively. PWV was significantly and positively associated with HR for α ≥ 0.6; for α = 0.6, 0.8, and 1, HR-dependent changes in afPWVTan were 0.01 ± 0.02, 0.07 ± 0.04, and 0.22 ± 0.09 m/s per 5 beats/min; HR-dependent changes in afPWVTF were 0.02 ± 0.01, 0.12 ± 0.00, and 0.34 ± 0.01 m/s per 5 beats/min, respectively. This crosses the range of previous physiological studies where the dependence of PWV on HR was found to be between 0.08 and 0.10 m/s per 5 beats/min. Therefore, viscoelasticity of the arterial wall could contribute to mechanisms through which large artery stiffness changes with changing HR. Physiological studies are required to confirm this mechanism.NEW & NOTEWORTHY This study used a transmission line model to elucidate the role of arterial viscoelasticity in the dependency of pulse wave velocity on heart rate. The model uses fractional viscoelasticity concepts, which provided novel insights into arterial hemodynamics. This study also provides a means of assessing the clinical manifestation of the association of pulse wave velocity and heart rate

  8. Improvement of the dissolution rate of nitrendipine using a new pulse combustion drying method.

    PubMed

    Wang, Liang; Cui, Fu-De; Sunada, Hisakazu

    2007-08-01

    Solid dispersions (SDs) of nitrendipine (NTD), a poorly water-soluble drug, were prepared with the Hypulcon pulse combustion dryer system, and the physicochemical properties of particles were investigated and compared with those of particles prepared with a spray dryer. The SD particles prepared with Hypulcon using Aerosil and Tween 80 as carriers showed improved properties over those prepared with a conventional spray dryer, such as smaller particle size, tighter particle size distribution, and no agglomeration. Powder X-ray diffraction and differential scanning calorimetry evaluation showed that the drug in the NTD-Aerosil SD prepared with 5% (v/v) Tween 80 solution was dispersed in an amorphous state. Fourier transformation IR spectroscopy indicated the presence of hydrogen bonds between NTD and Aerosil. Aerosil had greater ability to improve the dissolution of NTD than Sylysia and other polymers. The highest drug supersaturation concentration was maintained continuously during the dissolution test of the NTD-Aerosil SD prepared with 5% (v/v) Tween 80 solution using Hypulcon. The good hydrophilicity and dispersibility of Aerosil, solubilization of Tween 80, and actions of shock waves and ultrasonic waves might account for the amorphization of NTD and improved dissolution rate of SDs. Pulse combustion drying with low drying costs and high thermal efficiency is a promising method for the preparation of SD particles with improved properties without using organic solvent.

  9. Contactless vision-based pulse rate detection of Infants Under Neurological Examinations.

    PubMed

    Sikdar, Arindam; Behera, Santosh Kumar; Dogra, Debi Prosad; Bhaskar, Harish

    2015-08-01

    In this paper, we propose a method for detecting variations in the Pulse Rate (PR) of infants undergoing the Hammersmith Infant Neurological Examinations (HINE) using video data. As in every other medical examination the measurement of the PR is critical to underpin the physiological state of living beings. During HINE, measuring the infant's PR is important as its variations against physical conditions, age and other factors must be studied and correlated against developmental scores. However, this becomes highly complicated with active infants where their movements often lead to inconsistent PR estimation. We propose the use of a non-linear dimensionality reduction technique, called Laplacian Eigenmap (LE), to uncover the pulse information encapsulated within the high dimensional visual manifold characterized by normalized RGB feature vectors. Furthermore, low-level image filtering is applied to accurately detect PR within a chosen region-of-interest (ROI) from different parts of the infant's body. For validation and analysis, a set of 14 video sequences of infants undergoing five important tests of HINE have been chosen. Experimental results suggest that a bi-parametrized combination of color features from the RG and GB channels provide more valuable information in comparison to the RB and RGB channels. Results have demonstrated that this contactless method of PR detection has promising prospects for its future use in other clinical examinations of infants.

  10. Parallel Transmission Pulse Design with Explicit Control for the Specific Absorption Rate in the Presence of Radiofrequency Errors

    PubMed Central

    Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan; Herraiz, Joaquin L.; Gagoski, Borjan; Adalsteinsson, Elfar; Wald, Lawrence L.; Guerin, Bastien

    2016-01-01

    Purpose A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. Methods The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors (“worst-case SAR”) is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. Results Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled “worst-case SAR” in the presence of errors of this magnitude at minor cost of the excitation profile quality. Conclusion Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. PMID:26147916

  11. The influence of the repetition rate on the nanosecond pulsed pin-to-pin microdischarges

    NASA Astrophysics Data System (ADS)

    Huang, Bang-Dou; Takashima, Keisuke; Zhu, Xi-Ming; Pu, Yi-Kang

    2014-10-01

    The effect of repetition rate on a nanosecond atmospheric pressure discharge is investigated. The discharge is generated between two pins in a mixture of Ne and Ar. The voltage, current, power waveforms and the temporally and spatially resolved electron density and an ‘effective’ electron temperature are measured, with a pulse interval between 1.5 and 200 µs. It is found that not only does the repetition rate have a strong influence on the breakdown voltage and the peak discharge power, but it can also affect the rise rate of the volume averaged electron density and its peak value. Temporally and spatially resolved measurement of the electron density and the effective electron temperature show that the spatial distributions of both quantities are also influenced by the repetition rate. In the initial discharge period of all cases, the sharp rise of the electron density correlates with the drastic drop of the effective electron temperature. It is suggested that the residual charges have a strong impact on the axial distribution of the electric field and energetic electrons between the electrodes during the breakdown period, as illustrated by a simple sheath model.

  12. Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza

    2016-12-01

    The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.

  13. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4-μm with a pulse duration of 26-μs

    PubMed Central

    Chan, Kenneth H.; Jew, Jamison M.; Fried, Daniel

    2016-01-01

    Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions. PMID:27006521

  14. A new sealed RF-excited CO2 laser for enamel ablation operating at 9.4-μm with a pulse duration of 26-μs.

    PubMed

    Chan, Kenneth H; Jew, Jamison M; Fried, Daniel

    2016-02-13

    Several studies over the past 20 years have shown that carbon dioxide lasers operating at wavelengths between 9.3 and 9.6-μm with pulse durations near 20-μs are ideal for hard tissue ablation. Those wavelengths are coincident with the peak absorption of the mineral phase. The pulse duration is close to the thermal relaxation time of the deposited energy of a few microseconds which is short enough to minimize peripheral thermal damage and long enough to minimize plasma shielding effects to allow efficient ablation at practical rates. The desired pulse duration near 20-μs has been difficult to achieve since it is too long for transverse excited atmospheric pressure (TEA) lasers and too short for radio-frequency (RF) excited lasers for efficient operation. Recently, Coherent Inc. (Santa Clara, CA) developed the Diamond J5-V laser for microvia drilling which can produce laser pulses greater than 100-mJ in energy at 9.4-μm with a pulse duration of 26-μs and it can achieve pulse repetition rates of 3 KHz. We report the first results using this laser to ablate dental enamel. Efficient ablation of dental enamel is possible at rates exceeding 50-μm per pulse. This laser is ideally suited for the selective ablation of carious lesions.

  15. MW ps pulse generation at sub-MHz repetition rates from a phase conjugate Nd:YVO(4) bounce amplifier.

    PubMed

    Omatsu, Takashige; Nawata, Kouji; Okida, Masahito; Furuki, Kenji

    2007-07-23

    We demonstrated high-repetition-rate (sub-MHz) MW pulse generation by combining a picosecond phase conjugate laser system based on a diode-side-pumped Nd:YVO(4) bounce amplifier with a pulse selector based on a RbTiOPO(4) electro-optical modulator. Peak output powers in the range of 2.8-6.8 MW at a pulse repetition frequency range of 0.33-1.0 MHz were achieved at an extraction efficiency of 34-35%.

  16. Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime.

    PubMed

    Ayvazyan, V; Baboi, N; Bohnet, I; Brinkmann, R; Castellano, M; Castro, P; Catani, L; Choroba, S; Cianchi, A; Dohlus, M; Edwards, H T; Faatz, B; Fateev, A A; Feldhaus, J; Flöttmann, K; Gamp, A; Garvey, T; Genz, H; Gerth, Ch; Gretchko, V; Grigoryan, B; Hahn, U; Hessler, C; Honkavaara, K; Hüning, M; Ischebeck, R; Jablonka, M; Kamps, T; Körfer, M; Krassilnikov, M; Krzywinski, J; Liepe, M; Liero, A; Limberg, T; Loos, H; Luong, M; Magne, C; Menzel, J; Michelato, P; Minty, M; Müller, U-C; Nölle, D; Novokhatski, A; Pagani, C; Peters, F; Pflüger, J; Piot, P; Plucinski, L; Rehlich, K; Reyzl, I; Richter, A; Rossbach, J; Saldin, E L; Sandner, W; Schlarb, H; Schmidt, G; Schmüser, P; Schneider, J R; Schneidmiller, E A; Schreiber, H-J; Schreiber, S; Sertore, D; Setzer, S; Simrock, S; Sobierajski, R; Sonntag, B; Steeg, B; Stephan, F; Sytchev, K P; Tiedtke, K; Tonutti, M; Treusch, R; Trines, D; Türke, D; Verzilov, V; Wanzenberg, R; Weiland, T; Weise, H; Wendt, M; Will, I; Wolff, S; Wittenburg, K; Yurkov, M V; Zapfe, K

    2002-03-11

    Experimental results are presented from vacuum-ultraviolet free-electron laser (FEL) operating in the self-amplified spontaneous emission (SASE) mode. The generation of ultrashort radiation pulses became possible due to specific tailoring of the bunch charge distribution. A complete characterization of the linear and nonlinear modes of the SASE FEL operation was performed. At saturation the FEL produces ultrashort pulses (30-100 fs FWHM) with a peak radiation power in the GW level and with full transverse coherence. The wavelength was tuned in the range of 95-105 nm.

  17. Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation

    DOE PAGES

    Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.; ...

    2017-04-18

    Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energymore » depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. By performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.« less

  18. Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation.

    PubMed

    Yang, Bo; Wu, Juhao; Raubenheimer, Tor O; Feng, Yiping

    2017-05-01

    Newtonian fluid dynamics simulations were performed using the Navier-Stokes-Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser-gas interaction region, where large pressure and temperature gradients have been built upon the initial energy deposition via X-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. By performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.

  19. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.

    2006-02-01

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was ˜100ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  20. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    SciTech Connect

    Tarasenko, Victor F.

    2006-02-20

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3 kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was {approx}100 ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  1. Picosecond optical pulse generation at gigahertz rates by direct modulation of a semiconductor laser

    NASA Technical Reports Server (NTRS)

    Auyeung, J.

    1981-01-01

    We report the generation of picosecond pulses by the direct modulation of a buried heterostructure GaAlAs diode laser. Pulse width of 28 ps is achieved at a repetition frequency of 2.5 GHz. Pulse width dependence on the experimental parameters is described.

  2. Optically isolated, 2 kHz repetition rate, 4 kV solid-state pulse trigger generator

    NASA Astrophysics Data System (ADS)

    Barnett, D. H.; Parson, J. M.; Lynn, C. F.; Kelly, P. M.; Taylor, M.; Calico, S.; Scott, M. C.; Dickens, J. C.; Neuber, A. A.; Mankowski, J. J.

    2015-03-01

    This paper presents the design and operation characteristics of a solid-state high voltage pulse generator. Its primary utilization is aimed at triggering a gaseous spark gap with high repeatability. Specifically, the trigger generator is designed to achieve a risetime on the order of 0.1 kV/ns to trigger the first stage, trigatron spark gap of a 10-stage, 500 kV Marx generator. The major design components are comprised of a 60 W constant current DC-DC converter for high voltage charging, a single 4 kV thyristor, a step-up pulse transformer, and magnetic switch for pulse steepening. A risetime of <30 ns and pulse magnitude of 4 kV is achieved matching the simulated performance of the design.

  3. Electromagnetic pulse (EMP) survey of the Idaho State Emergency Operating Center, Boise, Idaho

    SciTech Connect

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1992-02-01

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high- altitude electromagnetic pulses (HEMPs). This report was developed specifically for the Idaho State Emergency Operating Center (EOC) in Boise, Idaho. It is highly probable that there will be a heavy dependence upon high-frequency (hf) radio communications for long- haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, steps must be taken to protect the FNARS facilities against the effects of HEMP that are likely to be created in a nuclear confrontation. The solution must than be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. It is the intent of this report to define the particular hardening measures that will minimize the susceptibility of system components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe EMP conditions. The threatening environment will therefore be limited to HEMP situations.

  4. Electromagnetic pulse (EMP) survey of the Idaho State Emergency Operating Center, Boise, Idaho

    SciTech Connect

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1992-02-01

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high- altitude electromagnetic pulses (HEMPs). This report was developed specifically for the Idaho State Emergency Operating Center (EOC) in Boise, Idaho. It is highly probable that there will be a heavy dependence upon high-frequency (hf) radio communications for long- haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, steps must be taken to protect the FNARS facilities against the effects of HEMP that are likely to be created in a nuclear confrontation. The solution must than be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. It is the intent of this report to define the particular hardening measures that will minimize the susceptibility of system components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe EMP conditions. The threatening environment will therefore be limited to HEMP situations.

  5. High discharge rate characteristics of nickel-cadmium batteries for pulse load filtering

    NASA Technical Reports Server (NTRS)

    Gearing, G. M.; Cimino, M. B.; Fritts, D. H.; Leonard, J. F.; Terzuoli, A. J., Jr.

    1985-01-01

    Several tests of specially fabricated nickel-cadmium batteries having circular disk type electrodes were considered. These batteries were evaluated as filter elements between a constant current power supply and a five hertz pulsed load demanding approximately twice the power supply current during the load on portion of the cycle. Short tests lasting 10,000 cycles were conducted at up to a 21 C rate and an equivalent energy density of over 40 Joules per pound. In addition, two batteries were subjected to 10 to the 7 charge/discharge cycles, one at a 6.5 C rate and the other at a 13 C rate. Assuming an electrode to battery weight ratio of 0.5, these tests represent an energy density of about 7 and 14 Joules per pound respectively. Energy density, efficiency, capacitance, average voltage, and available capacity were tracked during these tests. After 10 to the 7 cycles, capacity degradation was negligible for one battery and about 20% for the other. Cadmium electrode failure may be the factor limiting lifetime at extremely low depth of discharge cycling. The output was examined and a simple equivalent circuit was proposed.

  6. Femtosecond optical pulse amplification

    NASA Astrophysics Data System (ADS)

    Knox, Wayne H.

    1988-02-01

    A number of techniques have been developed for amplification of optical pulses of approximately 100-fs duration. These amplifiers span a wide range of operating parameters from kilowatt to gigawatt peak powers and from 10 Hz to megahertz repetition rates. Amplification of femtosecond pulses has also been demonstrated at several wavelengths including visible, near-infrared, and ultraviolet regions. Several problems arise when amplifying short optical pulses to very high intensities. The problems are discussed and the state of the art of femtosecond optical pulse amplification is reviewed.

  7. Expanding the Capabilities of the Pulsed Plasma Thruster for In-Space and Atmospheric Operation

    NASA Astrophysics Data System (ADS)

    Johnson, Ian Kronheim

    Of all in-space propulsion systems to date, the Pulsed Plasma Thruster (PPT) is unique in its simplicity and wide range of operational parameters. This study examined multiple uses of the thruster for in-space and atmospheric propulsion, as well as the creation of a CubeSat satellite and atmospheric airship as test beds for the thruster. The PPT was tested as a solid-propellant feed source for the High Power Helicon Thruster, a compact plasma source capable of generating order of magnitude higher plasma densities than comparable power level systems. Replacing the gaseous feed system reduced the thruster size and complexity, as well as allowing for extremely discrete discharges, minimizing the influence of wall effects. Teflon (C2F4) has been the traditional propellant for PPTs due to a high exhaust velocity and ability to ablate without surface modification over long durations. A number of alternative propellants, including minerals and metallics commonly found on asteroids, were tested for use with the PPT. Compounds with significant fractions of sulfur showed the highest performance increase, with specific thrusts double that of Teflon. A PPT with sulfur propellant designed for CubeSat operation, as well as the subsystems necessary for autonomous operation, was built and tested in the laboratory. The PPT was modified for use at atmospheric pressures where the impulse was well defined as a function of the discharge chamber volume, capacitor energy, and background pressure. To demonstrate that the air-breathing PPT was a viable concept the device was launched on two atmospheric balloon flights.

  8. Relationship between Resting Heart Rate, Blood Pressure and Pulse Pressure in Adolescents.

    PubMed

    Christofaro, Diego Giulliano Destro; Casonatto, Juliano; Vanderlei, Luiz Carlos Marques; Cucato, Gabriel Grizzo; Dias, Raphael Mendes Ritti

    2017-05-01

    High resting heart rate is considered an important factor for increasing mortality chance in adults. However, it remains unclear whether the observed associations would remain after adjustment for confounders in adolescents. To analyze the relationship between resting heart rate, blood pressure and pulse pressure in adolescents of both sexes. A cross-sectional study with 1231 adolescents (716 girls and 515 boys) aged 14-17 years. Heart rate, blood pressure and pulse pressure were evaluated using an oscillometric blood pressure device, validated for this population. Weight and height were measured with an electronic scale and a stadiometer, respectively, and waist circumference with a non-elastic tape. Multivariate analysis using linear regression investigated the relationship between resting heart rate and blood pressure and pulse pressure in boys and girls, controlling for general and abdominal obesity. Higher resting heart rate values were observed in girls (80.1 ± 11.0 beats/min) compared to boys (75.9 ± 12.7 beats/min) (p ≤ 0.001). Resting heart rate was associated with systolic blood pressure in boys (Beta = 0.15 [0.04; 0.26]) and girls (Beta = 0.24 [0.16; 0.33]), with diastolic blood pressure in boys (Beta = 0.50 [0.37; 0.64]) and girls (Beta = 0.41 [0.30; 0.53]), and with pulse pressure in boys (Beta = -0.16 [-0.27; -0.04]). This study demonstrated a relationship between elevated resting heart rate and increased systolic and diastolic blood pressure in both sexes and pulse pressure in boys even after controlling for potential confounders, such as general and abdominal obesity. A frequência cardíaca de repouso é considerada um importante fator de aumento de mortalidade em adultos. Entretanto, ainda é incerto se as associações observadas permanecem após ajuste para fatores de confusão em adolescentes. Analisar a relação entre frequência cardíaca de repouso, pressão arterial e pressão de pulso em adolescentes dos dois sexos. Estudo transversal

  9. LN2-free Operation of the MEG Liquid Xenon Calorimeter by using a High-power Pulse Tube Cryocooler

    SciTech Connect

    Haruyama, T.; Kasami, K.; Nishiguchi, H.; Mihara, S.; Mori, T.; Otani, W.; Sawada, R.; Maruno, Y.; Nishitani, T.

    2006-04-27

    A high-power coaxial pulse tube cryocooler, originally developed in KEK and technology-transferred to Iwatani Industrial Gases Corp (IIGC), has been installed in a large liquid xenon calorimeter to evaluate liquid nitrogen-free (LN2-free) operation of the rare {mu}-particle decay experiment (MEG). Features of this pulse tube cryocooler include the cold-end heat exchanger, designed with sufficient surface area to ensure high-power cooling, and a cylindrical regenerator placed inside the pulse tube giving compact design and ease of fabrication. This production-level cryocooler provides a cooling power of {approx}200 W at 165 K, using a 6 kW Gifford-McMahon (GM)-type compressor. The paper describes the detailed configuration of the cryocooler, and the results of the continuous LN2-free operation of the large prototype liquid xenon calorimeter, which ran for more than 40 days without problems.

  10. Apparatus for and method of operating a cylindrical pulsed induction mass launcher

    SciTech Connect

    Cowan, M. Jr.; Duggin, B.W.; Widner, M.M.

    1990-12-06

    In accordance with the one aspect of the invention, an electromagnetic projectile launcher is provided which comprises: a conducting projectile, a barrel that receives the projectile, a plurality of electromagnetic drive coils, a plurality of pulsed energy sources, and pulse power means for generating a sequence of pulses forming a pulsed magnetic wave within the drive coil for propelling the projectile along the barrel, wherein the pulsed magnetic wave of the drive coil is advanced along the barrel faster than the projectile to thereby induce a current wave in the armature of the projectile and thereby minimize electromagnetic heating of the projectile and provide nearly constant acceleration of the projectile. In accordance with another aspect of the invention, a method is provided for propelling a projectile within a pulsed induction electromagnetic coil launcher, wherein the method comprises the steps of: generating a sequence of pulses forming a pulsed magnetic wave within the coil launcher, applying the pulsed magnetic wave initially at the aft end of the projectile to accelerate the projectile within the coil launcher, and advancing the position of the pulsed magnetic wave relative to the projectile to thereby generate an induced current wave in the armature, such that electromagnetic heating of the projectile is minimized and acceleration is nearly constant.

  11. Sub-20-ps pulses from a passively Q-switched microchip laser at 1  MHz repetition rate.

    PubMed

    Mehner, Eva; Bernard, Benjamin; Giessen, Harald; Kopf, Daniel; Braun, Bernd

    2014-05-15

    We present a 50 μm Nd3+:YVO4 microchip laser that is passively Q-switched by a semiconductor saturable absorber mirror. To reduce handling problems caused by the small crystal dimensions, the 50 μm Nd3+:YVO4 crystal is optically bonded to an undoped YVO4 crystal of a length of about 500 μm. By using a saturable absorber mirror with an effective modulation depth of >10% the system is able to deliver 16 ps pulses at a repetition rate of up to 1.0 MHz. The average laser power is 16 mW at 1064 nm. To our knowledge these are the shortest Q-switched pulses ever reported from a solid-state laser. The limits in terms of pulse width, repetition rate, output power, and system stability are discussed. Additionally, continuous-wave behavior is analyzed. Experimental data is compared with the simulation results of the coupled rate equations.

  12. Graphene-deposited microfiber photonic device for ultrahigh-repetition rate pulse generation in a fiber laser.

    PubMed

    Qi, You-Li; Liu, Hao; Cui, Hu; Huang, Yu-Qi; Ning, Qiu-Yi; Liu, Meng; Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2015-07-13

    We report on the generation of a high-repetition-rate pulse in a fiber laser using a graphene-deposited microfiber photonic device (GMPD) and a Fabry-Perot filter. Taking advantage of the unique nonlinear optical properties of the GMPD, dissipative four-wave mixing effect (DFWM) could be induced at low pump power. Based on DFWM mode-locking mechanism, the fiber laser delivers a 100 GHz repetition rate pulse train. The results indicate that the small sized GMPD offers an alternative candidate of highly nonlinear optical component to achieve high-repetition rate pulses, and also opens up possibilities for the investigation of other abundant nonlinear effects or related fields of photonics.

  13. A novel non-linear recursive filter design for extracting high rate pulse features in nuclear medicine imaging and spectroscopy.

    PubMed

    Sajedi, Salar; Kamal Asl, Alireza; Ay, Mohammad R; Farahani, Mohammad H; Rahmim, Arman

    2013-06-01

    Applications in imaging and spectroscopy rely on pulse processing methods for appropriate data generation. Often, the particular method utilized does not highly impact data quality, whereas in some scenarios, such as in the presence of high count rates or high frequency pulses, this issue merits extra consideration. In the present study, a new approach for pulse processing in nuclear medicine imaging and spectroscopy is introduced and evaluated. The new non-linear recursive filter (NLRF) performs nonlinear processing of the input signal and extracts the main pulse characteristics, having the powerful ability to recover pulses that would ordinarily result in pulse pile-up. The filter design defines sampling frequencies lower than the Nyquist frequency. In the literature, for systems involving NaI(Tl) detectors and photomultiplier tubes (PMTs), with a signal bandwidth considered as 15 MHz, the sampling frequency should be at least 30 MHz (the Nyquist rate), whereas in the present work, a sampling rate of 3.3 MHz was shown to yield very promising results. This was obtained by exploiting the known shape feature instead of utilizing a general sampling algorithm. The simulation and experimental results show that the proposed filter enhances count rates in spectroscopy. With this filter, the system behaves almost identically as a general pulse detection system with a dead time considerably reduced to the new sampling time (300 ns). Furthermore, because of its unique feature for determining exact event times, the method could prove very useful in time-of-flight PET imaging. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Research of narrow pulse width, high repetition rate, high output power fiber lasers for deep space exploration

    NASA Astrophysics Data System (ADS)

    Tang, Yan-feng; Li, Hong-zuo; Wang, Yan; Hao, Zi-qiang; Xiao, Dong-Ya

    2013-08-01

    As human beings expand the research in unknown areas constantly, the deep space exploration has become a hot research topic all over the world. According to the long distance and large amount of information transmission characteristics of deep space exploration, the space laser communication is the preferred mode because it has the advantages of concentrated energy, good security, and large information capacity and interference immunity. In a variety of laser source, fibre-optical pulse laser has become an important communication source in deep space laser communication system because of its small size, light weight and large power. For fiber lasers, to solve the contradiction between the high repetition rate and the peak value power is an important scientific problem. General Q technology is difficult to obtain a shorter pulse widths, This paper presents a DFB semiconductor laser integrated with Electro-absorption modulator to realize the narrow pulse width, high repetition rate of the seed source, and then using a two-cascaded high gain fiber amplifier as amplification mean, to realize the fibre-optical pulse laser with pulse width 3ns, pulse frequency 200kHz and peak power 1kW. According to the space laser atmospheric transmission window, the wavelength selects for 1.06um. It is adopted that full fibre technology to make seed source and amplification, pumping source and amplification of free-space coupled into fiber-coupled way. It can overcome that fibre lasers are vulnerable to changes in external conditions such as vibration, temperature drift and other factors affect, improving long-term stability. The fiber lasers can be modulated by PPM mode, to realize high rate modulation, because of its peak power, high transmission rate, narrow pulse width, high frequency stability, all technical indexes meet the requirements of the exploration of deep space communication technology.

  15. Comparison of two techniques of interstitial pulsed dose rate boost brachytherapy in conservative treatment of breast cancer

    PubMed Central

    Tarnawska, Zofia; Blukis, Andrzej; Badzio, Andrzej; Jaskiewicz, Janusz; Jassem, Jacek

    2009-01-01

    Purpose The aim of this work is to compare selected parameters of implants and natural dose volume histograms for two techniques of interstitial pulsed dose rate brachytherapy (PDR BT) as a boost to the tumour bed in breast-conserving therapy (BCT). Material and methods Data of T1-3N0-2M0 breast cancer patients who underwent BCT with BT boost between 05.2002 and 12.2008 were analysed. Ninety two patients were implanted with rigid tubes after breast irradiation (group A) and 96 had a peri-operative BT with an intra-operative flexible tube placement and subsequent whole breast radiotherapy (group B). In both groups PDR BT of 15 Gy (1 Gy/pulse/h) was administered based on Paris system rules, and volume optimization using BT planning system PLATO. Results Three-plane implant was used in 62% and 8% of patients in group A and B, respectively, and two-plane implant in 38% of group A and in 84% of group B, with a median of 11 and 9 tubes respectively. The average volume for the prescribed dose (V100) was 42.0 ± 25.4 cc (group A) and 34.1 ± 19.7 cc (group B), respectively (p = 0.017). The individual V50 and V200 were similar. Quality index (QI) was not impacted by the technique of BT (mean QI was 1.80 ± 0.10 and 1.75 ± 0.46 for the groups A and B, respectively). Uniformity index (UI) in respective groups was 1.60 ± 0.10 and 1.52 ± 0.21 (p = 0.001). Conclusions Implant volume encompassed by prescribed dose was significantly lower with intra-operative plastic tubes placement. In respect to the QI, these two BT techniques were comparable. The target volume coverage by the dose distribution as defined by UI was better for rigid tubes. PMID:27799951

  16. Reirradiation of Large-Volume Recurrent Glioma With Pulsed Reduced-Dose-Rate Radiotherapy

    SciTech Connect

    Adkison, Jarrod B.; Tome, Wolfgang; Seo, Songwon; Richards, Gregory M.; Robins, H. Ian; Rassmussen, Karl; Welsh, James S.; Mahler, Peter A.; Howard, Steven P.

    2011-03-01

    Purpose: Pulsed reduced-dose-rate radiotherapy (PRDR) is a reirradiation technique that reduces the effective dose rate and increases the treatment time, allowing sublethal damage repair during irradiation. Patients and Methods: A total of 103 patients with recurrent glioma underwent reirradiation using PRDR (86 considered to have Grade 4 at PRDR). PRDR was delivered using a series of 0.2-Gy pulses at 3-min intervals, creating an apparent dose rate of 0.0667 Gy/min to a median dose of 50 Gy (range, 20-60) delivered in 1.8-2.0-Gy fractions. The mean treatment volume was 403.5 {+-} 189.4 cm{sup 3} according to T{sub 2}-weighted magnetic resonance imaging and a 2-cm margin. Results: For the initial or upgraded Grade 4 cohort (n = 86), the median interval from the first irradiation to PRDR was 14 months. Patients undergoing PRDR within 14 months of the first irradiation (n = 43) had a median survival of 21 weeks. Those treated {>=}14 months after radiotherapy had a median survival of 28 weeks (n = 43; p = 0.004 and HR = 1.82 with a 95% CI ranging from 1.25 to 3.10). These data compared favorably to historical data sets, because only 16% of the patients were treated at first relapse (with 46% treated at the second relapse, 32% at the third or fourth relapse, and 4% at the fourth or fifth relapse). The median survival since diagnosis and retreatment was 6.3 years and 11.4 months for low-grade, 4.1 years and 5.6 months for Grade 3, and 1.6 years and 5.1 months for Grade 4 tumors, respectively, according to the initial histologic findings. Multivariate analysis revealed age at the initial diagnosis, initial low-grade disease, and Karnofsky performance score of {>=}80 to be significant predictors of survival after initiation of PRDR. Conclusion: PRDR allowed for safe retreatment of larger volumes to high doses with palliative benefit.

  17. Duty-cycle dependence of the filamentation effect in gas devices for high repetition rate pulsed x-ray FELs

    NASA Astrophysics Data System (ADS)

    Feng, Yiping; Raubenheimer, Tor O.

    2017-06-01

    Time-dependent simulations were carried out to study the duty-cycle dependence of the density depression effect in gas attenuators and gas intensity monitors servicing a high repetition rate pulsed Free-electron laser beam. The evolution of the temperature/density gradients in-between the pulses in the entire gas volume, especially during the on-cycle, were obtained to evaluate the performance of any given pulse. It was found that the actual achieved attenuation in the attenuator or the intensity measured by the gas monitor deviates from the asymptotic value expected for a uniformly spaced pulse train after reaching a steady state, becoming progressively more significant as the duty-cycle tends lower.

  18. UV pulse trains by α-BBO crystal stacking for the production of THz-rap-rate electron bunches

    NASA Astrophysics Data System (ADS)

    Yan, Li-Xin; Hua, Jian-Fei; Du, Ying-Chao; Huang, Yuan-Fang; You, Yan; Wang, Dan; Huang, Wen-Hui; Tang, Chuan-Xiang; Tang

    2012-08-01

    Ultrashort electron bunch trains can be used for plasma wake field acceleration (PWFA) to overcome the limit of transformer ratio of a single electron bunch, or high-power terahertz (Thz) radiation production by various radiation mechanisms. Basic facility for high-power THz radiation development based on ultrashort electron beam has been set up at accelerator lab of TUB. Using birefringent crystal serials, ultraviolet (UV) pulse shaping for photocathode radio frequency gun to produce THz-repetition-rate pulse train was realized. Driven by such pulses, ultrashort electron bunch train with picosecond (ps) spacing was obtained for THz production. Measurement of the stacked UV pulse trains was done by difference frequency generation (DFG), and the measured group velocity mismatch of α-BBO crystal at 266.7-nm wavelength was 0.8 ps/mm. This method may also be applied to form ramped electron bunch trains for PWFA.

  19. Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: electropermeabilization-induced electro-desensitization?

    PubMed

    Silve, A; Guimerà Brunet, A; Al-Sakere, B; Ivorra, A; Mir, L M

    2014-07-01

    Applications of cell electropermeabilization are rapidly growing but basic concepts are still unclear. In particular, the impact of electric pulse repetition rate in the efficiency of permeabilization has not yet been understood. The impact of electric pulse repetition rate in the efficiency of permeabilization was analyzed in experiments performed on potato tissue and partially transposed on mice liver. On potato tissue, pulses with durations of 100μs or 10ns are applied. The intensity of permeabilization was quantified by means of bioimpedance changes and electric current measurements and a new index was defined. For the two pulse durations tested, very low repetition rates (below 0.1Hz) are much more efficient to achieve cell permeabilization in potato tissue. In mice liver, using 100μs pulses, the influence of the repetition rate is more complex. Indeed, repetition rates of 1Hz and 10Hz are more efficient than 100Hz or 1kHz, but not the repetition rate of 0.1Hz for which there is an impact of the living mice organism response. We propose that the effects reported here might be caused by an electroporation-induced cell membrane 'electro-desensitization' which requires seconds to dissipate due to membrane resealing. This study not only reinforces previous observations, but moreover it sustains a new concept of 'electro-desensitization' which is the first unifying mechanism enabling to explain all the results obtained until now both in vitro and in vivo, with long and short pulses. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Resting pulse rates in a glaucoma clinic: the effect of topical and systemic beta-blocker usage.

    PubMed

    Tattersall, C; Vernon, S; Singh, R

    2006-02-01

    Beta-blockers have, for 25 years, been a commonly used agent in the treatment of raised intraocular pressure (IOP). Beta-blockers can also reduce the pulse rate. With no available literature examining a cohort of patients, this study aims to investigate the resting pulse rates in patients attending a specialist glaucoma clinic in order to identify if routine review of ophthalmic medication use is indicated. The resting pulse rates of patients attending a glaucoma clinic were measured using pulseoximetry, with a medical and drug history established for each patient. In all, 205 patients were included in the study. A total of 101 (49%) of patients were using beta-blockers in some form. The mean pulse rate for patients not using beta-blockers (104 patients) was 76 beats per minute (bpm), for topical use only (68 patients) it was 70.3 bpm, for oral use (18 patients) it was 64.7 bpm, and 58 bpm for patients using both topical and oral beta-blockers (15 patients). Groups using beta-blockers (oral, topical, oral and topical) were considered in relation to patients not using beta-blockers. All groups using beta-blockers showed a significant association with causing a bradycardia of less than 60 bpm. Patients with a pulse rate of less than 50 bpm were significantly more likely to be using topical and oral beta-blockers than oral beta-blockers alone (P=0.01). Topical beta-blockers should be used with caution, even in the presence of established systemic beta-blocker use. Routine pulse rate monitoring and review of ophthalmic medication are indicated in patients using beta-blocker therapy.

  1. Trends in resting pulse rates in 9-11-year-old children in the UK 1980-2008.

    PubMed

    Peters, Helen; Whincup, Peter H; Cook, Derek G; Law, Catherine; Li, Leah

    2014-01-01

    Little is known about whether levels of physical fitness, which is related to adiposity and physical activity (PA), have changed in children, particularly the progressive increase in childhood obesity levels. We aimed to examine the time trends in resting pulse rate (a marker of physical fitness) among UK children, in order to better understand the trends in levels of physical fitness in recent decades. We used a cross-sectional study design and included data on over 22 000 children aged 9-11 years (mean 10.3 years) from five population-based studies conducted in the UK between 1980 and 2008. Resting pulse rate (bpm). Observed mean resting pulse rate was higher for girls than boys (82.2 bpm vs 78.7 bpm). During the study period mean pulse rate increased by 0.07 bpm/year (95% CI 0.04 to 0.09) among boys and to a lesser extent among girls, by 0.04 bpm/year (0.01 to 0.06) (p<0.05 for gender interaction). For boys, there was an indication that the trend was steeper after the mid-1990 s, compared to that prior to 1994 (annual increase 0.14 vs 0.04 bpm). The trends for Body Mass Index (BMI) accounted for only 13.8% (11.3% to 16.3%) of increase in pulse rate for boys and 17.2% (9.4% to 24.9%) for girls. Increases in mean resting pulse rate have occurred during the period 1980-2008 in girls and especially in boys. The increase was not explained by increased BMI. The observed trends in children, though modest, could have important public health implications for future cardiovascular risk.

  2. Feasibility of pulse wave velocity estimation from low frame rate US sequences in vivo

    NASA Astrophysics Data System (ADS)

    Zontak, Maria; Bruce, Matthew; Hippke, Michelle; Schwartz, Alan; O'Donnell, Matthew

    2017-03-01

    The pulse wave velocity (PWV) is considered one of the most important clinical parameters to evaluate CV risk, vascular adaptation, etc. There has been substantial work attempting to measure the PWV in peripheral vessels using ultrasound (US). This paper presents a fully automatic algorithm for PWV estimation from the human carotid using US sequences acquired with a Logic E9 scanner (modified for RF data capture) and a 9L probe. Our algorithm samples the pressure wave in time by tracking wall displacements over the sequence, and estimates the PWV by calculating the temporal shift between two sampled waves at two distinct locations. Several recent studies have utilized similar ideas along with speckle tracking tools and high frame rate (above 1 KHz) sequences to estimate the PWV. To explore PWV estimation in a more typical clinical setting, we used focused-beam scanning, which yields relatively low frame rates and small fields of view (e.g., 200 Hz for 16.7 mm filed of view). For our application, a 200 Hz frame rate is low. In particular, the sub-frame temporal accuracy required for PWV estimation between locations 16.7 mm apart, ranges from 0.82 of a frame for 4m/s, to 0.33 for 10m/s. When the distance is further reduced (to 0.28 mm between two beams), the sub-frame precision is in parts per thousand (ppt) of the frame (5 ppt for 10m/s). As such, the contributions of our algorithm and this paper are: 1. Ability to work with low frame-rate ( 200Hz) and decreased lateral field of view. 2. Fully automatic segmentation of the wall intima (using raw RF images). 3. Collaborative Speckle Tracking of 2D axial and lateral carotid wall motion. 4. Outlier robust PWV calculation from multiple votes using RANSAC. 5. Algorithm evaluation on volunteers of different ages and health conditions.

  3. A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light.

    PubMed

    Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro

    2015-04-01

    Time-averaged net photosynthetic rate (P n) under pulsed light (PL) is known to be affected by the PL frequency and duty ratio, even though the time-averaged photosynthetic photon flux density (PPFD) is unchanged. This phenomenon can be explained by considering that photosynthetic intermediates (PIs) are pooled during light periods and then consumed by partial photosynthetic reactions during dark periods. In this study, we developed a kinetic model to estimate P n of cos lettuce (Lactuca sativa L. var. longifolia) leaves under PL based on the dynamics of the amount of pooled PIs. The model inputs are average PPFD, duty ratio, and frequency; the output is P n. The rates of both PI accumulation and consumption at a given moment are assumed to be dependent on the amount of pooled PIs at that point. Required model parameters and three explanatory variables (average PPFD, frequency, and duty ratio) were determined for the simulation using P n values under PL based on several combinations of the three variables. The model simulation for various PL levels with a wide range of time-averaged PPFDs, frequencies, and duty ratios further demonstrated that P n under PL with high frequencies and duty ratios was comparable to, but did not exceed, P n under continuous light, and also showed that P n under PL decreased as either frequency or duty ratio was decreased. The developed model can be used to estimate P n under various light environments where PPFD changes cyclically.

  4. Thin Disk Ti:Sapphire amplifiers for Joule-class ultrashort pulses with high repetition rate (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nagymihály, Roland S.; Cao, Huabao; Kalashnikov, Mikhail P.; Khodakovskiy, Nikita; Ehrentraut, Lutz; Osvay, Károly; Chvykov, Vladimir V.

    2017-05-01

    High peak power CPA laser systems can deliver now few petawatt pulses [1]. Reaching the high energies with broad spectral bandwidth necessary for these pulses was possible by the use of large aperture Ti:Sa crystals as final amplifier media. Wide applications for these systems will be possible if the repetition rate could be increased. Therefore, thermal deposition in Ti:Sa amplifiers is a key issue, which has to be solved in case of high average power pumping. The thin disk (TD) laser technology, which is intensively developed nowadays by using new laser materials, is able to overcome thermal distortions and damages of laser crystals [2]. TD technique also has the potential to be used in systems with both high peak and average power. For this, the commonly used laser materials with low absorption and emission cross sections, also low heat conductivity, like Yb:YAG, need to be replaced by a gain medium that supports broad enough emission spectrum and high thermal conductivity to obtain few tens of fs pulses with high repetition rates. Parasitic effects during the amplification process however seriously limit the energy that can be extracted from the gain medium and also they distort the gain profile. Nevertheless, the application of the Extraction During Pumping (EDP) technique can mitigate the depopulation losses in the gain medium with high aspect ratio [3]. We proposed to use Ti:Sa in combination with TD and EDP techniques to reach high energies at high repetition rates, and we presented numerical simulations for different amplifier geometries and parameters of the amplification [4,5]. We present the results of the proof-of-principle experiment, where a EDP-TD Ti:Sa amplifier was tested for the first time. In our experiment, the final cryogenically cooled Ti:Sa amplifier in a 100 TW/10 Hz/28 fs laser system was replaced with the EDP-TD room temperature cooled arrangement. Amplified seed pulse energy of 2.6 J was reached only for 3 passes through TD with 0.5 J of

  5. Relativistic electron beams driven by single-cycle laser pulses at kHz repetition rate (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Faure, Jérôme; Guénot, Diego; Gustas, Dominykas; Vernier, Aline; Beaurepaire, Benoît; Böhle, Frederik; López-Martens, Rodrigo; Lifschitz, Agustin

    2017-05-01

    Laser-plasma accelerators are usually driven by 100-TW class laser systems with rather low repetition rates. However, recent years have seen the emergence of laser-plasma accelerators operating with kHz lasers and energies lower than 10 mJ. The high repetition-rate is particularly interesting for applications requiring high stability and high signal-to-noise ratio but lower energy electrons. For example, our group recently demonstrated that kHz laser-driven electron beams could be used to capture ultrafast structural dynamics in Silicon nano-membranes via electron diffraction with picosecond resolution. In these first experiments, electrons were injected in the density gradients located at the plasma exit, resulting in rather low energies in the 100 keV range. The electrons being nonrelativistic, the bunch duration quickly becomes picosecond long. Relativistic energies are required to mitigate space charge effects and maintain femtosecond bunches. In this paper, we will show very recent results where electrons are accelerated in laser-driven wakefields to relativistic energies, reaching up to 5 MeV at kHz repetition rate. The electron energy was increased by nearly two orders of magnitude by using single-cycle laser pulses of 3.5 fs, with only 2.5 mJ of energy. Using such short pulses of light allowed us to resonantly excite high amplitude and nonlinear plasma waves at high plasma density, ne=1.5-2×1020 cm-3, in a regime close to the blow-out regime. Electrons had a peaked distribution around 5 MeV, with a relative energy spread of 30 %. Charges in the 100's fC/shot and up to pC/shot where measured depending on plasma density. The electron beam was fairly collimated, 20 mrad divergence at Full Width Half Maximum. The results show remarkable stability of the beam parameters in terms of beam pointing and electron distribution. 3D PIC simulations reproduce the results very well and indicate that electrons are injected by the ionization of Nitrogen atoms, N5+ to N6

  6. High repetition rate operation of a photoinitiated impulse-enhanced electrically excited CO2 laser discharge using a burst-mode technique

    NASA Astrophysics Data System (ADS)

    Nikumb, S. K.; Seguin, H. J. J.; Seguin, V. A.; Presakarchuk, D.

    1988-10-01

    The incorporation of a gating signal into the trigger circuit of a photoinitiated, impulse-enhanced, electrically excited (PIE) laser system has permitted high-power, pulsed operation of a normally cw CO2 discharge. The 40 liter gain medium has been run at repetition rates approaching 1 kHz utilizing this approach. Plasma uniformity and stability have been significantly enhanced, such that a factor of two increase in electrical power deposition into the excited volume has been achieved. Results suggest that pulsed performance considerably in excess of that achievable under cw operating conditions can be realized through the adoption of this simple modification to the PIE ionization process.

  7. Design and operation of the multiple-pulse driver line on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Waxer, L. J.

    2016-05-01

    The multiple-pulse driver line (MPD) provides on-shot co-propagation of two separately generated pulse shapes in all 60 OMEGA beams at the Laboratory for Laser Energetics. Smoothing by spectral dispersion (SSD), which increases the laser bandwidth, can be applied to either one of the two pulse shapes, thereby enabling dynamic bandwidth reduction. The design of the MPD required careful consideration of beam combination as well as the minimum pulse separation for two pulses generated by two separate seed sources. A new combined-pulse-shape diagnostic needed to be designed and installed after the last SSD grating. The capability of MPD to reduce dynamic bandwidth has been used on a series of campaigns on OMEGA and the performance data are presented.

  8. Improved operation of a microwave pulse compressor with a laser-triggered high-pressure gas plasma switch

    SciTech Connect

    Shlapakovski, A.; Gorev, S.; Krasik, Ya. E.

    2016-08-15

    The influence of laser beam parameters on the output pulses of a resonant microwave compressor with a laser-triggered plasma switch was investigated. The S-band compressor, consisting of a rectangular waveguide-based cavity and H-plane waveguide tee with a shorted side arm, was filled with pressurized dry air and pumped by 1.8-μs-long microwave pulses of up to 450 kW power. A Nd:YAG laser was used to ignite the gas discharge in the tee side arm for output pulse extraction. The laser beam (at 213 nm or 532 nm) was directed along the RF electric field lines. It was found that the compressor operated most effectively when the laser beam was focused at the center of the switch waveguide cross-section. In this case, the power extraction efficiency reached ∼47% at an output power of ∼14 MW, while when the laser beam was not focused the maximal extraction efficiency was only ∼20% at ∼6 MW output power. Focusing the laser beam resulted also in a dramatic decrease (down to <1 ns) in the delay of the output pulses' appearance with respect to the time of the beam's entrance into the switch, and the jitter of the output pulses' appearance was minimized. In addition, the quality of the output pulses' waveform was significantly improved.

  9. Improved operation of a microwave pulse compressor with a laser-triggered high-pressure gas plasma switch

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A.; Gorev, S.; Krasik, Ya. E.

    2016-08-01

    The influence of laser beam parameters on the output pulses of a resonant microwave compressor with a laser-triggered plasma switch was investigated. The S-band compressor, consisting of a rectangular waveguide-based cavity and H-plane waveguide tee with a shorted side arm, was filled with pressurized dry air and pumped by 1.8-μs-long microwave pulses of up to 450 kW power. A Nd:YAG laser was used to ignite the gas discharge in the tee side arm for output pulse extraction. The laser beam (at 213 nm or 532 nm) was directed along the RF electric field lines. It was found that the compressor operated most effectively when the laser beam was focused at the center of the switch waveguide cross-section. In this case, the power extraction efficiency reached ˜47% at an output power of ˜14 MW, while when the laser beam was not focused the maximal extraction efficiency was only ˜20% at ˜6 MW output power. Focusing the laser beam resulted also in a dramatic decrease (down to <1 ns) in the delay of the output pulses' appearance with respect to the time of the beam's entrance into the switch, and the jitter of the output pulses' appearance was minimized. In addition, the quality of the output pulses' waveform was significantly improved.

  10. DFB diode seeded low repetition rate fiber laser system operating in burst mode

    NASA Astrophysics Data System (ADS)

    Šajn, M.; Petelin, J.; Agrež, V.; Vidmar, M.; Petkovšek, R.

    2017-02-01

    A distributed feedback (DFB) diode, gain switched to produce pulses from 60 ps at high peak power of over 0.5 W, is used in burst mode to seed a fiber amplifier chain. High seed power, spectral filtering between amplifier stages and pulsed pumping are used to mitigate amplified spontaneous emission (ASE). The effect of pulse pumping synchronized with the seed on the ASE is explored for the power amplifier at low repetition. Different input and output energies at different burst repetition rates are examined and up to 85% reduction in ASE is achieved compared to continuous pumping. Finally, a numerical model is used to predict further reduction of ASE.

  11. Mortality Rates and Associated Factors in Equine Colic Operations — A Retrospective Study of 341 Operations

    PubMed Central

    Pascoe, P. J.; McDonell, W. N.; Trim, Cynthia M.; Van Gorder, J.

    1983-01-01

    A retrospective survey of 300 surgical treatments for colic involving 341 interventions was carried out to determine mortality rates and associated factors. These horses had been referred to the Ontario Veterinary College over the period September 1974 to February 1980. Data from the case records was collected and stored on a computer and statistical analysis was carried out using X2 tests. Fifty percent (150/300) of the horses survived to be discharged from the hospital. Fifty-two horses were euthanized during the operation and another ten horses should have been; if these cases are excluded the overall survival rate is 64.7% (150/232). A wide range of breeds were involved but the breed did not significantly affect survival. There was a significantly greater occurrence of serious colic in the two week to two month and one to two year age groups and significantly less in the two to four year age groups when compared with the total number of horses admitted over the same period. There was an even distribution of male and female horses but males showed a significantly lower mortality rate (57% of the males survived compared with 43% of the females). The size of the animal did not affect survival significantly. There was no seasonal variation when compared with the total number of equine patients. Survival was significantly influenced by the lesion, the preoperative packed cell volume and total plasma protein and by the length of the surgical procedure. PMID:17422234

  12. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  13. Design and economic benefits from the operation of pulse-jet fabric filter pilot plants

    SciTech Connect

    Emerson, R.D. ); Bustard, C.J.; Holstein, D.B. )

    1992-01-01

    This paper reports that utility power plant flue gas particulate collection is generally accomplished by either electrostatic precipitation (ESP) or fabric filtration (FF). The majority of existing units use ESP's but an increase in the use of FF's occurred during the 1970's and 80's. This was partially due to advances in FF state-of-the-art technology and the tightening of regulatory requirements. Fabric filtration is usually accomplished by reverse gas (RGFF), shake and deflate (SDFF), or pulse jet (PJFF) methods. Regardless of the method, the efficiency and reliability of operation are of paramount importance, especially when six minute averaging (or similar) is required for opacity measurements. Many items enter into the efficiency and reliability of FF's with a primary one being the performance of the fabric itself. The fabric could possibly fail in a given situation and as a minimum would impact outlet emissions, cleaning frequency, and pressure drop. The fabric's performance is very much a function of the flue gas conditions and flyash characteristics.

  14. Electromagnetic pulse survey of the Kentucky State Emergency Operating Center, Frankfort, Kentucky

    SciTech Connect

    Buchanan, M.E.; Cole, O.C.; Jones, R.W.; Marshall, D.J.

    1988-09-01

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities against the effects of high-altitude electromagnetic pulses (HEMP). This report refers to the Kentucky State Emergency Operating Center (EOC) in Frankfort, Kentucky. It is highly probable that there will be a heavy dependence upon hf radio for long-haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, the FNARS facilities must take measures to protect against the effects of HEMP that are likely to be created in a nuclear confrontation. The equipment under stress has already been designed and built so that little opportunity exists for equipment design changes that could raise the threshold levels at which malfunctions occur. The solution must then be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. 30 figs., 2 tabs.

  15. CFD simulation of a miniature coaxial Stirling-type pulse tube cryocooler operating at 128 Hz

    NASA Astrophysics Data System (ADS)

    Zhao, Yibo; Dang, Haizheng

    2016-01-01

    A two-dimensional axis-symmetric CFD model of a miniature coaxial Stirling-type pulse tube cryocooler with an overall weight of 920 g operating at 128 Hz is established, and systematic simulations of the performance characteristics at different temperatures are conducted. Both thermal equilibrium and non-equilibrium mechanisms for the porous matrix are considered, and the regenerator losses including the gas and solid conduction, the pressure drop and the imperfect interfacial heat transfer are calculated, respectively. The results indicate that the pressure drop loss is dominant during the first 85% and 78% of regenerator length for the thermal equilibrium and non-equilibrium models, respectively, and it decreases monotonously from warm to cold end due to the steadily decreasing Darcy and Forchheimer terms, whereas other entropy generations share similar changing tendencies, going up gradually near the warm end, increasing dramatically from about 60% of length and then decreasing sharply near the cold end. The reasons for these entropy variations are discussed.

  16. [Design of Oxygen Saturation, Heart Rate, Respiration Rate Detection System Based on Smartphone of Android Operating System].

    PubMed

    Zhu, Mingshan; Zeng, Bixin

    2015-03-01

    In this paper, we designed an oxygen saturation, heart rate, respiration rate monitoring system based on smartphone of android operating system, physiological signal acquired by MSP430 microcontroller and transmitted by Bluetooth module.

  17. A two-dose-rate method for general recombination correction for liquid ionization chambers in pulsed beams

    NASA Astrophysics Data System (ADS)

    Tölli, Heikki; Sjögren, Rickard; Wendelsten, Mikael

    2010-08-01

    The correction for general recombination losses in liquid ionization chambers (LICs) is more complex than that in air-filled ionization chambers. The reason for this is that the saturation charge in LICs, i.e. the charge that escapes initial recombination, depends on the applied voltage. This paper presents a method, based on measurements at two different dose rates in a pulsed beam, for general recombination correction in LICs. The Boag theory for pulsed beams is used and the collection efficiency is determined by numerical methods which are equivalent to the two-voltage method used in dosimetry with air-filled ionization chambers. The method has been tested in experiments in water in a 20 MeV electron beam using two LICs filled with isooctane and tetramethylsilane. The dose per pulse in the electron beam was varied between 0.1 mGy/pulse and 8 mGy/pulse. The relative standard deviations of the collection efficiencies determined with the two-dose-rate method ranged between 0.1% and 1.5%. The dose-rate variations of the general recombination corrected charge measured with the LICs are in excellent agreement with the corresponding values obtained with an air-filled plane parallel ionization chamber.

  18. Spatial release from masking improves sound pattern discrimination along a biologically relevant pulse-rate continuum in gray treefrogs

    PubMed Central

    Ward, Jessica L.; Buerkle, Nathan P.; Bee, Mark A.

    2013-01-01

    Frogs form large choruses during the mating season in which males produce loud advertisement calls to attract females and repel rival males. High background noise levels in these social aggregations can impair vocal perception. In humans, spatial release from masking contributes to our ability to understand speech in noisy social groups. Here, we tested the hypothesis that spatial separation between target signals and ‘chorus-shaped noise’ improves the ability of female gray treefrogs (Hyla chrysoscelis) to perform a behavioral discrimination task based on perceiving differences in the pulsatile structure of advertisement calls. We used two-stimulus choice tests to measure phonotaxis (approach toward sound) in response to calls differing in pulse rate along a biologically relevant continuum between conspecific (50 pulses s−1) and heterospecific (20 pulses s−1) calls. Signals were presented in quiet, in colocated noise, and in spatially separated noise. In quiet conditions, females exhibited robust preferences for calls with relatively faster pulse rates more typical of conspecific calls. Behavioral discrimination between calls differing in pulse rate was impaired in the presence of colocated noise but similar between quiet and spatially separated noise conditions. Our results indicate that spatial release from energetic masking facilitates a biologically important temporal discrimination task in frogs. We discuss these results in light of previous work on spatial release from masking in frogs and other animals. PMID:24055623

  19. High repetition-rate neutron generation by several-mJ, 35 fs pulses interacting with free-flowing D2O

    NASA Astrophysics Data System (ADS)

    Hah, J.; Petrov, G. M.; Nees, J. A.; He, Z.-H.; Hammig, M. D.; Krushelnick, K.; Thomas, A. G. R.

    2016-10-01

    Using several-mJ energy pulses from a high-repetition rate (1/2 kHz), ultrashort (35 fs) pulsed laser interacting with a ˜ 10 μm diameter stream of free-flowing heavy water (D2O), we demonstrate a 2.45 MeV neutron flux of 105/s. Operating at high intensity (of order 1019 W/cm2), laser pulse energy is efficiently absorbed in the pre-plasma, generating energetic deuterons. These collide with deuterium nuclei in both the bulk target and the large volume of low density D2O vapor surrounding the target to generate neutrons through d ( d , n ) 3 He reactions. The neutron flux, as measured by a calibrated neutron bubble detector, increases as the laser pulse energy is increased from 6 mJ to 12 mJ. A quantitative comparison between the measured flux and the results derived from 2D-particle-in-cell simulations shows comparable neutron fluxes for laser characteristics similar to the experiment. The simulations reveal that there are two groups of deuterons. Forward moving deuterons generate deuterium-deuterium fusion reactions in the D2O stream and act as a point source of neutrons, while backward moving deuterons propagate through the low-density D2O vapor filled chamber and yield a volumetric source of neutrons.

  20. Explosive Emission Cathode Based on a Carbon Fiber for Long-Term Pulsed-Periodic Mode of Operation and its Application in a High-Power Microwave Pulse Generator Without External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Kutenkov, O. P.; Pegel, I. V.; Totmeninov, E. M.

    2014-09-01

    Current characteristics and operating lifetime of the explosive emission cathode based on a carbon microfiber are investigated in the pulsed-periodic mode of operation with pulse duration of about 5 ns. Long-term (for up to 3.6 million pulses) tests of the cathode operating lifetime are carried out. Specific ablation of the fiber material equal to 2.4·10-4 g/C is obtained. Change in the morphology of the fiber surface during long-time operation caused by deposition of carbon from the cathode plasma is revealed. The microscopic electric field strength on the fiber surface is estimated taking into account the surface microrelief. The efficiency of microwave generation comparable with that of a velvet cathode in low (200 kV/cm) average electric field in the gap is obtained for the Cherenkov microwave generator with vacuum diode without external magnetic field of decimeter wavelength range based on the SINUS-7 pulsed-periodic high-current electron accelerator with current pulse duration of 50 ns. The operating lifetime no less than 105 pulses is demonstrated for the carbon fiber-based cathode of the microwave generator operating in the mode of pulse batch with duration of several seconds and pulse repetition frequency of 20-50 Hz.

  1. 12-fs pulses from a continuous-wave-pumped 200-nJ Ti:sapphire amplifier at a variable repetition rate as high as 4 MHz

    NASA Astrophysics Data System (ADS)

    Huber, R.; Adler, F.; Leitenstorfer, A.; Beutter, M.; Baum, P.; Riedle, E.

    2003-11-01

    We demonstrate a novel compact femtosecond Ti:sapphire laser system operating at repetition rates from 10 kHz to 4 MHz. The scheme is based on the combination of a broadband cavity-dumped oscillator and a double-pass Ti:sapphire amplifier pumped by a low-noise cw solid-state laser. Amplified pulses with an extremely smooth spectrum, a duration of only 12 fs, and less than 0.25% rms fluctuation are generated in a beam with M2 < 1.2. A maximum pulse energy of 210 nJ and an average output power of as much as 720 mW are achieved. This output energy is sufficient to generate a stable continuum in a sapphire disk.

  2. Turnover rates in microorganisms by laser ablation electrospray ionization mass spectrometry and pulse-chase analysis.

    PubMed

    Stopka, Sylwia A; Mansour, Tarek R; Shrestha, Bindesh; Maréchal, Éric; Falconet, Denis; Vertes, Akos

    2016-01-01

    Biochemical processes rely on elaborate networks containing thousands of compounds participating in thousands of reaction. Rapid turnover of diverse metabolites and lipids in an organism is an essential part of homeostasis. It affects energy production and storage, two important processes utilized in bioengineering. Conventional approaches to simultaneously quantify a large number of turnover rates in biological systems are currently not feasible. Here we show that pulse-chase analysis followed by laser ablation electrospray ionization mass spectrometry (LAESI-MS) enable the simultaneous and rapid determination of metabolic turnover rates. The incorporation of ion mobility separation (IMS) allowed an additional dimension of analysis, i.e., the detection and identification of isotopologs based on their collision cross sections. We demonstrated these capabilities by determining metabolite, lipid, and peptide turnover in the photosynthetic green algae, Chlamydomonas reinhardtii, in the presence of (15)N-labeled ammonium chloride as the main nitrogen source. Following the reversal of isotope patterns in the chase phase by LAESI-IMS-MS revealed the turnover rates and half-lives for biochemical species with a wide range of natural concentrations, e.g., chlorophyll metabolites, lipids, and peptides. For example, the half-lives of lyso-DGTS(16:0) and DGTS(18:3/16:0), t1/2 = 43.6 ± 4.5 h and 47.6 ± 2.2 h, respectively, provided insight into lipid synthesis and degradation in this organism. Within the same experiment, half-lives for chlorophyll a, t1/2 = 24.1 ± 2.2 h, and a 2.8 kDa peptide, t1/2 = 10.4 ± 3.6 h, were also determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design and Operation of a 9-bit Single-flux-quantum Pulse-frequency Modulation Digital-to-analog Converter

    NASA Astrophysics Data System (ADS)

    Mizugaki, Yoshinao; Takahashi, Yoshitaka; Shimada, Hiroshi; Maezawa, Masaaki

    We designed and operated a 9-bit single-flux-quantum (SFQ) digital-to-analog converter (DAC). SFQ pulse-frequency modulation (PFM) was employed for generation of variable quantum output voltage, where a 9-bit variable pulse number multiplier and a 100-fold voltage multiplier were the key components. Test chips were fabricated using a Nb Josephson integration technology. Arbitrary voltage waveforms were synthesized with the maximum voltage of 2.54 mV. For ac voltage standard applications, relationships between the DAC resolution and the synthesized waveform frequency are discussed.

  4. Respiratory rate and pulse oximetry derived information as predictors of hospital admission in young children in Bangladesh: a prospective observational study

    PubMed Central

    Garde, Ainara; Zhou, Guohai; Raihana, Shahreen; Dunsmuir, Dustin; Karlen, Walter; Dekhordi, Parastoo; Huda, Tanvir; Arifeen, Shams El; Larson, Charles; Kissoon, Niranjan; Dumont, Guy A; Ansermino, J Mark

    2016-01-01

    Objective Hypoxaemia is a strong predictor of mortality in children. Early detection of deteriorating condition is vital to timely intervention. We hypothesise that measures of pulse oximetry dynamics may identify children requiring hospitalisation. Our aim was to develop a predictive tool using only objective data derived from pulse oximetry and observed respiratory rate to identify children at increased risk of hospital admission. Setting Tertiary-level hospital emergency department in Bangladesh. Participants Children under 5 years (n=3374) presenting at the facility (October 2012–April 2013) without documented chronic diseases were recruited. 1-minute segments of pulse oximetry (photoplethysmogram (PPG), blood oxygen saturation (SpO2) and heart rate (HR)) and respiratory rate were collected with a mobile app. Primary outcome The need for hospitalisation based on expert physician review and follow-up. Methods Pulse rate variability (PRV) using pulse peak intervals of the PPG signal and features extracted from the SpO2 signal, all derived from pulse oximetry recordings, were studied. A univariate age-adjusted logistic regression was applied to evaluate differences between admitted and non-admitted children. A multivariate logistic regression model was developed using a stepwise selection of predictors and was internally validated using bootstrapping. Results Children admitted to hospital showed significantly (p<0.01) decreased PRV and higher SpO2 variability compared to non-admitted children. The strongest predictors of hospitalisation were reduced PRV-power in the low frequency band (OR associated with a 0.01 unit increase, 0.93; 95% CI 0.89 to 0.98), greater time spent below an SpO2 of 98% and 94% (OR associated with 10 s increase, 1.4; 95% CI 1.3 to 1.4 and 1.5; 95% CI 1.4 to 1.6, respectively), high respiratory rate, high HR, low SpO2, young age and male sex. These variables provided a bootstrap-corrected AUC of the receiver operating characteristic

  5. Pulsed Yb³⁺-doped fiber laser operating at 1011 nm by intra-cavity phase modulation.

    PubMed

    Jiang, Man; Zhou, Pu; Xiao, Hu; Tao, Rumao; Wang, Xiong

    2014-04-01

    A 1011 nm pulsed Yb³⁺-doped fiber laser is experimentally demonstrated by employing a commercially available LiNbO₃ phase modulator (PM) in the linear cavity. The resonator is built up with a section of normal single-cladding Yb³⁺-doped fiber, a PM, and a pair of fiber Bragg gratings. Active mode-locked stable trains of pulses with 2 and 1.4 ns are generated at repetition rates of 30.2478 and 60.4956 MHz, respectively. The maximum average output power is 10.6 mW at pump power of 200 mW, with the slope efficiency of 13.3%. Relaxation-oscillation-modulated pulses with width of 2 μs are obtained at a repetition rate of 27.778 kHz.

  6. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death

  7. High-rate deposition of MgO by reactive ac pulsed magnetron sputtering in the transition mode

    SciTech Connect

    Kupfer, H.; Kleinhempel, R.; Richter, F.; Peters, C.; Krause, U.; Kopte, T.; Cheng, Y.

    2006-01-15

    A reactive ac pulsed dual magnetron sputtering process for MgO thin-film deposition was equipped with a closed-loop control of the oxygen flow rate (F{sub O2}) using the 285 nm magnesium radiation as input. Owing to this control, most of the unstable part of the partial pressure versus flowrate curve became accessible. The process worked steadily and reproducible without arcing. A dynamic deposition rate of up to 35 nm m/min could be achieved, which was higher than in the oxide mode by about a factor of 18. Both process characteristics and film properties were investigated in this work in dependence on the oxygen flow, i.e., in dependence on the particular point within the transition region where the process is operated. The films had very low extinction coefficients (<5x10{sup -5}) and refractive indices close to the bulk value. They were nearly stoichiometric with a slight oxygen surplus (Mg/O=48/52) which was independent of the oxygen flow. X-ray diffraction revealed a prevailing (111) orientation. Provided that appropriate rf plasma etching was performed prior to deposition, no other than the (111) peak could be detected. The intensity of this peak increased with increasing F{sub O{sub 2}}, indicating an even more pronounced (111) texture. The ion-induced secondary electron emission coefficient (iSEEC) was distinctly correlated with the markedness of the (111) preferential orientation. Both refractive index and (111) preferred orientation (which determines the iSEEC) were found to be improved in comparison with the MgO growth in the fully oxide mode. Consequently, working in the transition mode is superior to the oxide mode not only with respect to the growth rate, but also to most important film properties.

  8. Effect of Inductive Coil Geometry on the Operating Characteristics of an Inductive Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.; Perdue, Kevin A.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with conical theta pinch coils of different cone angles are explored through thrust stand measurements and time- integrated, unfiltered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass flow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass flow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  9. Effect of Inductive Coil Geometry on the Operating Characteristics of a Pulsed Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.; Kimberlin, Adam C.

    2012-01-01

    Operational characteristics of two separate inductive thrusters with coils of different cone angles are explored through thrust stand measurements and time-integrated, un- filtered photography. Trends in impulse bit measurements indicate that, in the present experimental configuration, the thruster with the inductive coil possessing a smaller cone angle produced larger values of thrust, in apparent contradiction to results of a previous thruster acceleration model. Areas of greater light intensity in photographs of thruster operation are assumed to qualitatively represent locations of increased current density. Light intensity is generally greater in images of the thruster with the smaller cone angle when compared to those of the thruster with the larger half cone angle for the same operating conditions. The intensity generally decreases in both thrusters for decreasing mass ow rate and capacitor voltage. The location of brightest light intensity shifts upstream for decreasing mass ow rate of propellant and downstream for decreasing applied voltage. Recognizing that there typically exists an optimum ratio of applied electric field to gas pressure with respect to breakdown efficiency, this result may indicate that the optimum ratio was not achieved uniformly over the coil face, leading to non-uniform and incomplete current sheet formation in violation of the model assumption of immediate formation where all the injected propellant is contained in a magnetically-impermeable current sheet.

  10. Hybrid power system intelligent operation and protection involving distributed architectures and pulsed loads

    NASA Astrophysics Data System (ADS)

    Mohamed, Ahmed

    Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available

  11. Influence of the excitation light intensity on the rate of fluorescence quenching reactions: pulsed experiments.

    PubMed

    Angulo, Gonzalo; Milkiewicz, Jadwiga; Kattnig, Daniel; Nejbauer, Michał; Stepanenko, Yuriy; Szczepanek, Jan; Radzewicz, Czesław; Wnuk, Paweł; Grampp, Günter

    2017-02-22

    The effect of multiple light excitation events on bimolecular photo-induced electron transfer reactions in liquid solution is studied experimentally. It is found that the decay of fluorescence can be up to 25% faster if a second photon is absorbed after a first cycle of quenching and recombination. A theoretical model is presented which ascribes this effect to the enrichment of the concentration of quenchers in the immediate vicinity of fluorophores that have been previously excited. Despite its simplicity, the model delivers a qualitative agreement with the observed experimental trends. The original theory by Burshtein and Igoshin (J. Chem. Phys., 2000, 112, 10930-10940) was created for continuous light excitation though. A qualitative extrapolation from the here presented pulse experiments to the continuous excitation conditions lead us to conclude that in the latter the order of magnitude of the increase of the quenching efficiency upon increasing the light intensity of excitation, must also be on the order of tens of percent. These results mean that the rate constant for photo-induced bimolecular reactions depends not only on the usual known factors, such as temperature, viscosity and other properties of the medium, but also on the intensity of the excitation light.

  12. Manipulating the pulse rate and resonance scale in speech and animal calls

    NASA Astrophysics Data System (ADS)

    Kawahara, Hideki

    2005-04-01

    A large proportion of the sound in speech and animal calls is voiced, and thus, periodic in nature. The sounds are generated by repetitive pulsive stimulations and each pulse produces a resonant response. This repetitive structure in the sounds can be interpreted as a time-frequency sampling process that provides a stream of information about the size, shape, and structure of the resonators in the vocal tract. This perspective has enabled us to develop a system, referred to as STRAIGHT, that can analyze, manipulate, and resynthesize vocal sounds. It is based on an extended pitch synchronous spectral estimation algorithm that recovers the underlying smooth time-frequency representation representing physical information on resonators. Ideally, this process removes stimulation related structure from the time-frequency representation, and thus, it should follow the same scaling laws as the physical dimensions of the resonating body. One problem is that speech sometimes contains multiple stimulations within one pitch period. This type of stimulation introduces a spectral deformation that has the same scaling laws as for the fundamental frequency (reciprocal of the repetition rate). The effects of this dual scaling and the problems of joint normalization will be discussed. [Work supported by MEXT Japan.

  13. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph.

    PubMed

    Warren, Kristen M; Harvey, Joshua R; Chon, Ki H; Mendelson, Yitzhak

    2016-03-07

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.

  14. Diagnosis of PLMD from increased pulse rate variability on overnight oximetry.

    PubMed

    Krishnaswamy, Uma M; Higgins, Sean E; Kosky, Christopher A; Delacy, Simone; Williams, Adrian J

    2010-01-01

    This study was undertaken in a group of patients with periodic limb movement disorder (PLMD) to assess whether the presence of increased pulse rate variability (PRV) without desaturation on overnight oximetry was suggestive of the occurrence of periodic limb movements (PLMs). Seventy sleepy patients with a polysomnographic diagnosis of PLMD and 25 controls with obstructive sleep apnea were included in this retrospective study. All patients had undergone initial domiciliary oximetry and subsequent polysomnography (PSG). The oximetry tracings were independently interpreted by five sleep unit personnel for the presence of increased PRV. Further, the association between increased PRV and PLMs was evaluated in the summary graph of the PSG. Fifty seven (81.4%) patients had definite evidence of increased PRV without episodes of desaturation on initial oximetry, which was later confirmed to be due to PLMs on PSG. 13 (18.6%) patients had no PRV on oximetry and PSG but had PLMD. The inter-interpreter concurrence in suspecting a diagnosis of PLMD based on oximetry alone was more than 80% in 64 (91%) patients. The presence of isolated increased PRV on overnight oximetry is a valuable tool in suspecting nonsleep apnea disorders like PLMD.

  15. Diagnosis of PLMD from increased pulse rate variability on overnight oximetry

    PubMed Central

    Krishnaswamy, Uma M; Higgins, Sean E; Kosky, Christopher A; deLacy, Simone; Williams, Adrian J

    2010-01-01

    Study objective This study was undertaken in a group of patients with periodic limb movement disorder (PLMD) to assess whether the presence of increased pulse rate variability (PRV) without desaturation on overnight oximetry was suggestive of the occurrence of periodic limb movements (PLMs). Methods Seventy sleepy patients with a polysomnographic diagnosis of PLMD and 25 controls with obstructive sleep apnea were included in this retrospective study. All patients had undergone initial domiciliary oximetry and subsequent polysomnography (PSG). The oximetry tracings were independently interpreted by five sleep unit personnel for the presence of increased PRV. Further, the association between increased PRV and PLMs was evaluated in the summary graph of the PSG. Results Fifty seven (81.4%) patients had definite evidence of increased PRV without episodes of desaturation on initial oximetry, which was later confirmed to be due to PLMs on PSG. 13 (18.6%) patients had no PRV on oximetry and PSG but had PLMD. The inter-interpreter concurrence in suspecting a diagnosis of PLMD based on oximetry alone was more than 80% in 64 (91%) patients. Conclusion The presence of isolated increased PRV on overnight oximetry is a valuable tool in suspecting nonsleep apnea disorders like PLMD. PMID:23616703

  16. Detection of circaseptan rhythm and the "Monday effect" from long-term pulse rate dynamics.

    PubMed

    Chen, Ying; Chen, Wenxi

    2011-01-01

    This study proposes a methodology to detect circaseptan (CS) rhythm in pulse rate (PR) data and to investigate the "Monday effect" in CS rhythm. Daily PR was collected from a middle-aged healthy working woman over one year. PR, SDNN index and sample entropy (SampEn) were chosen as the indexes of PR dynamics. In order to avoid interference from other biorhythms, ensemble empirical mode decomposition (EEMD) method was used to decompose the original PR series into multiple components. And the single cosinor method was applied to fit the detrended component signal. An optimal 7-day period was found in all indexes (P = 0.0103, P = 0.0133, P = 0.0122 for PR, SDNN index and SampEn, separately) that demonstrated an underlying CS rhythm. In the following study, a statistical Monday decrease in PR dynamics was observed especially significant in the detrended signal. The results suggested a direct relationship between the "Monday effect" and the CS variation, and also indicated a cardiac susceptibility to the social activities. The findings in CS periodicity and the "Monday effect" may help understand the human's biorhythm, provide evidence for preventive and optimized timing treatment, and also serve to daily health management.

  17. Improving Pulse Rate Measurements during Random Motion Using a Wearable Multichannel Reflectance Photoplethysmograph

    PubMed Central

    Warren, Kristen M.; Harvey, Joshua R.; Chon, Ki H.; Mendelson, Yitzhak

    2016-01-01

    Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data. PMID:26959034

  18. Pulsed hall thruster system

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir J. (Inventor); Pote, Bruce M. (Inventor); Gamero-Castano, Manuel (Inventor)

    2004-01-01

    A pulsed Hall thruster system includes a Hall thruster having an electron source, a magnetic circuit, and a discharge chamber; a power processing unit for firing the Hall thruster to generate a discharge; a propellant storage and delivery system for providing propellant to the discharge chamber and a control unit for defining a pulse duration .tau.<0.1d.sup.3.rho./m, where d is the characteristic size of the thruster, .rho. is the propellant density at standard conditions, and m is the propellant mass flow rate for operating either the power processing unit to provide to the Hall thruster a power pulse of a pre-selected duration, .tau., or operating the propellant storage and delivery system to provide a propellant flow pulse of duration, .tau., or providing both as pulses, synchronized to arrive coincidentally at the discharge chamber to enable the Hall thruster to produce a discreet output impulse.

  19. Efficient femtosecond pulse generation in an all-normal-dispersion Yb:fiber ring laser at 605 MHz repetition rate.

    PubMed

    Yang, Hongyu; Wang, Aimin; Zhang, Zhigang

    2012-03-01

    We report a 1030 nm-wavelength Yb:fiber laser that produces the shortest/direct output pulse duration (502 fs) among all-normal-dispersion fiber lasers at the highest repetition rate (605 MHz) among the passively fundamentally mode-locked fiber lasers. The laser also exhibits an optical efficiency of 70% at CW and 65% at mode-locking modes.

  20. The Effects of TM on Concurrent Heart Rate, Peripheral Blood Pulse Volume, and the Alpha Wave Frequency.

    ERIC Educational Resources Information Center

    Lukas, Jerome S.

    Through observation of 26 subjects over a 3 month period, this research project measured the effects of transcendental meditation (TM) on concurrent heart rate, peripheral blood pulse volume, and the alpha wave frequency. The subjects were assigned randomly to three groups. One group practiced TM as prescribed by the International Meditation…

  1. Modeling transient gain dynamics in a cladding-pumped Yb-doped fiber ampliefier pulsed at low repetition rates

    NASA Technical Reports Server (NTRS)

    Valley, G. C.; Wright, M.

    2001-01-01

    Simulations of 1-50 kHz repetition rate, pulsed Yb-fiber amplifiers show peak powers to 10 kW with half-widths < 30 ns, consistent with commercial amplifier performance. This device is a potential source for deep space-communication.

  2. Hydroxyl Radical Rate Constants: Comparing UV/H2O2 and Pulse Radiolysis for Environmental Pollutants

    EPA Science Inventory

    The objective of this study was to measure OH radical rates using both UV/H2O2 and pulse radiolysis techniques for 13 US EPA Contaminant Candidate List compounds (2,6- and 2,4-DNT, EPTC, prometon, linuron, diuron, dyfonate, diazinon, RDX, molinate, nitrobenz...

  3. Development of high energy, sub-15 fs OPCPA system operating at 1 kHz repetition rate for ELI-Beamlines facility

    NASA Astrophysics Data System (ADS)

    Bakule, Pavel; Antipenkov, Roman; Green, Jonathan T.; Novák, Jakub; Batysta, František; Rus, Bedřich; Boge, Robert; Hubka, Zbyněk.; Naylon, Jack A.; Horáček, Martin; Horáček, Jakub; Strkula, Petr; Snopek, David; Indra, Lukaš; Tykalewicz, Boguslaw

    2017-05-01

    We report on the status of the high repetition rate, high energy, L1 laser beamline at the ELI-Beamlines facility. The beamline is based on picosecond optical parametric chirped pulse amplification (OPCPA) of pulses from a mode-locked Ti:Sapphire oscillator and has a target energy/repetition rate of 100 mJ/1 kHz with < 15fs pulse duration. The OPCPA pump lasers use thin disk technology to achieve the high energy and average power required to pump such a high energy, high repetition rate broadband amplifier. Here we report on the progress in beamline development and discuss the technical challenges involved in producing such a system and their solutions. A major focus of the laser development is reliable, robust operation and long term stability; mechanical, optical, and control system architecture design considerations to achieve our goals of long term stability are discussed.

  4. A rapidly-tuned, short-pulse-length, high-repetition-rate CO{sub 2} laser for IR dial

    SciTech Connect

    Zaugg, T.; Thompson, D.; Leland, W.T.; Busch, G.

    1997-08-01

    Analysis of noise sources in Differential Absorption LIDAR (DIAL) in the infrared region of the spectrum indicates that the signal-to-noise ratio for direct detection can be improved if multiple-wavelength, short-pulse-length beams are transmitted and received at high repetition rates. Atmospheric effects can be minimized, albedo can be rapidly scanned, and uncorrelated speckle can be acquired at the maximum possible rate. A compact, rugged, RF-excited waveguide laser can produce 15 nanosecond pulses at a 100 kHz rate with sufficient energy per pulse to reach the speckle limit of the signal-to-noise ratio. A high-repetition-rate laser has been procured and will be used to verify these signal and noise scaling relationships at high repetition rates. Current line-tuning devices are mechanical and are capable of switching lines at a rate up to a few hundred Hertz. Acousto-optic modulators, deflectors or tunable filters can be substituted for these mechanical devices in the resonator of a CO{sub 2} laser and used to rapidly line-tune the laser across the 9 and 10 micron bands at a rate as high as 100 kHz. Several configurations for line tuning using acousto-optic and electro-optic devices with and without gratings are presented. The merits of and constraints on each design are also discussed. A pair of large aperture, acousto-optic deflectors has been purchased and the various line-tuning designs will be evaluated in a conventional, glass tube, CO{sub 2} laser, with a view to incorporation into the high-repetition-rate, waveguide laser. A computer model of the dynamics of an RF-excited, short-pulse-length, high-repetition-rate waveguide laser has been developed. The model will be used to test the consequences of various line-tuning designs.

  5. Data-Rate Estimation for Autonomous Receiver Operation

    NASA Technical Reports Server (NTRS)

    Tkacenko, A.; Simon, M. K.

    2005-01-01

    In this article, we present a series of algorithms for estimating the data rate of a signal whose admissible data rates are integer base, integer powered multiples of a known basic data rate. These algorithms can be applied to the Electra radio currently used in the Deep Space Network (DSN), which employs data rates having the above relationship. The estimation is carried out in an autonomous setting in which very little a priori information is assumed. It is done by exploiting an elegant property of the split symbol moments estimator (SSME), which is traditionally used to estimate the signal-to-noise ratio (SNR) of the received signal. By quantizing the assumed symbol-timing error or jitter, we present an all-digital implementation of the SSME which can be used to jointly estimate the data rate, SNR, and jitter. Simulation results presented show that these joint estimation algorithms perform well, even in the low SNR regions typically encountered in the DSN.

  6. C -band disk-loaded-type accelerating structure for a high acceleration gradient and high-repetition-rate operation

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Ego, H.; Inagaki, T.; Asaka, T.; Suzuki, D.; Miura, S.; Otake, Y.

    2017-04-01

    A high-acceleration-gradient linear accelerator (LINAC) for an x-ray free electron laser (XFEL) offers the advantages of a short accelerator length and low construction costs. In addition, the high pulse repetition rate of the LINAC, which can drive multiple x-ray beam lines, provides additional user opportunities for experiments involving XFEL. A C -band disk-loaded-type accelerating structure was developed to achieve a high acceleration gradient of >50 MV /m and an rf-pulse repetition rate of 120 pps, which is twice as high as that of the XFEL facility, SACLA (60 pps). The structure has a quasiconstant gradient and a traveling wave type with an accelerating mode of TM 01 -2 π /3 . To reduce the surface electric fields, we employed a cross section with an ellipsoidal curvature around an iris aperture. The accelerating structure was manufactured for SACLA. High-power rf conditioning was conducted to investigate its performance. Owing to the conditioning, the acceleration gradient reached a value of more than 50.1 MV /m . The structure was operated without any serious issues at a repetition rate of 120 pps. The accelerating structures were installed in the dedicated accelerator for EUV-FEL at SACLA beam line-1. Finally, we obtained accelerated electron beams with the structures operated at an acceleration gradient of 41.4 MV /m .

  7. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation--an alternate approach.

    PubMed

    Sudhir, Dass; Bandyopadhyay, M; Kraus, W; Gahlaut, A; Bansal, G; Chakraborty, A

    2014-01-01

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (∼100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  8. Response elimination, reinforcement rate and resurgence of operant behavior.

    PubMed

    Cançado, Carlos R X; Lattal, Kennon A

    2013-11-01

    The effects of reinforcement rate of alternative responding on resurgence were studied in six experiments with pigeons. In Experiment 1A, key pecking was maintained on a multiple variable-interval (VI) VI schedule in the Training phase. In the Response-Elimination phase, a variable differential-reinforcement-of-other-behavior (DRO) schedule was in effect in each component. Reinforcement rates were equal and then, higher in one (rich) component, and lower in the other (lean), than in the Training phase. More resurgence occurred in the lean component, but this could have resulted from response-rate differences between components in the Training-phase. Experiment 1B was a replication of Experiment 1A, but with experimentally-naïve pigeons. Response-Elimination phase reinforcement rates were manipulated systematically in subsequent experiments: In Experiment 2, reinforcement rate was equal, in one component, and lower or higher in the other, than in the Training phase. In Experiment 3, reinforcers were discontinued before differential reinforcement rates were effected. In Experiment 4, reinforcement rates first were differential and, then, equal to those in the Training phase. In Experiments 5 and 6, differential reinforcement rates were arranged by using fixed-DROs and VIs for pecking a different key, respectively. Even though resurgence was not obtained with every pigeon, at least some small-magnitude resurgence occurred in each experiment and was not related systematically to reinforcement rates of alternative responding. Schedule differences, response topography, order of conditions and the length of each phase were not sufficient to account for these results.

  9. High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser.

    PubMed

    Tian, Xiaolong; Tang, Ming; Shum, Perry Ping; Gong, Yandong; Lin, Chinlon; Fu, Songnian; Zhang, Taishi

    2009-05-01

    We demonstrate an ultralong cavity, all-fiber, all-normal-dispersion Yb-doped fiber laser that is passively mode locked by a semiconductor saturable absorber mirror (SESAM). Without any discrete dispersion-compensation components or conventional spectral filters, the SESAM works together with the strongly chirped pulse and the nonlinearity induced spectrum broadening to perform a filtering-equivalent function, thus stabilizing the mode locking. The laser generates 4.3 nJ stable mode-locked pulses with a 397 kHz fundamental repetition rate at a 1068 nm central wavelength.

  10. 14 CFR 33.7 - Engine ratings and operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operation in each supercharger mode as applicable). (2) Fuel grade or specification. (3) Oil grade or specification. (4) Temperature of the— (i) Cylinder; (ii) Oil at the oil inlet; and (iii) Turbosupercharger turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil...

  11. H- extraction from electron-cyclotron-resonance-driven multicusp volume source operated in pulsed mode

    NASA Astrophysics Data System (ADS)

    Svarnas, P.; Bacal, M.; Auvray, P.; Béchu, S.; Pelletier, J.

    2006-03-01

    H2 microwave (2.45GHz) pulsed plasma is produced from seven elementary electron cyclotron resonance sources installed into the magnetic multipole chamber "Camembert III" (École Polytechnique—Palaiseau) from which H- extraction takes place. The negative-ion and electron extracted currents are studied through electrical measurements and the plasma parameters by means of electrostatic probe under various experimental conditions. The role of the plasma electrode bias and the discharge duty cycle in the extraction process is emphasized. The gas breakdown at the beginning of every pulse gives rise to variations of the plasma characteristic parameters in comparison with those established at the later time of the pulse, where the electron temperature, the plasma potential, and the floating potential converge to the values obtained for a continuous plasma. The electron density is significantly enhanced in the pulsed mode.

  12. Phonotactic selectivity in two cryptic species of gray treefrogs: effects of differences in pulse-rate, carrier frequency, and playback level

    PubMed Central

    Gerhardt, H. Carl

    2008-01-01

    Summary The two main spectral components of the advertisement calls of two species of North American gray treefrogs (Hyla chrysoscelis and H. versicolor) overlap broadly in frequency, and each matches the sensitivity of one of the two different auditory inner ear organs. The calls of the two species differ in the shape and repetition-rate (pulse rate) of sound pulses within trills. A standard synthetic call with one of these spectral peaks and the pulse rate typical of conspecific calls was tested against synthetic alternatives that had the same spectral peak but a different pulse rate. The results were generalized over a wide range of playback levels. Selectivity based on differences in pulse rate depended on which spectral peak was used in some tests, and greater pulse-rate selectivity was usually observed when the low-frequency rather than the high-frequency peak was used. This effect was more pronounced and occurred over a wider range of playback levels in H. versicolor than in H. chrysoscelis when the pulse rate of the alternative was higher than that of the standard call. In tests using the high-frequency peak at high playback levels, however, females of H. versicolor showed greater selectivity for the standard call than did H. chrysoscelis when the pulse rate of the alternative was modestly lower than that of the standard call. This last result may reflect the different ways in which females of the two species assess trains of pulses. PMID:18689414

  13. Investigation of pulsed low dose rate radiotherapy using dynamic arc delivery techniques

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Lin, M. H.; Dai, X. F.; Koren, Sion; Klayton, T.; Wang, L.; Li, J. S.; Chen, L.; Price, R. A.

    2012-07-01

    There has been no consensus standard of care to treat recurrent cancer patients who have previously been irradiated. Pulsed low dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while still providing significant tumor control for recurrent cancers. This work investigates the dosimetry feasibility of PLDR treatment using dynamic arc delivery techniques. Five treatment sites were investigated in this study including breast, pancreas, prostate, head and neck, and lung. Dynamic arc plans were generated using the Varian Eclipse system and the RapidArc delivery technique with 6 and 10 MV photon beams. Each RapidArc plan consisted of two full arcs and the plan was delivered five times to achieve a daily dose of 200 cGy. The dosimetry requirement was to deliver approximately 20 cGy/arc with a 3 min interval to achieve an effective dose rate of 6.7 cGy min-1. Monte Carlo simulations were performed to calculate the actual dose delivered to the planning target volume (PTV) per arc taking into account beam attenuation/scattering and intensity modulation. The maximum, minimum and mean doses to the PTV were analyzed together with the dose volume histograms and isodose distributions. The dose delivery for the five plans was validated using solid water phantoms inserted with an ionization chamber and film, and a cylindrical detector array. Two intensity-modulated arcs were used to efficiently deliver the PLDR plans that provided conformal dose distributions for treating complex recurrent cancers. For the five treatment sites, the mean PTV dose ranged from 18.9 to 22.6 cGy/arc. For breast, the minimum and maximum PTV dose was 8.3 and 35.2 cGy/arc, respectively. The PTV dose varied between 12.9 and 27.5 cGy/arc for pancreas, 12.6 and 28.3 cGy/arc for prostate, 12.1 and 30.4 cGy/arc for H&N, and 16.2 and 27.6 cGy/arc for lung. Advanced radiation therapy can provide superior target coverage and normal tissue sparing for PLDR

  14. 14C BOMB-PULSE DATING AND STABLE ISOTOPE ANALYSIS FOR GROWTH RATE AND DIETARY INFORMATION IN BREAST CANCER?

    PubMed

    Lång, K; Eriksson Stenström, K; Rosso, A; Bech, M; Zackrisson, S; Graubau, D; Mattsson, S

    2016-06-01

    The purpose of this study was to perform an initial investigation of the possibility to determine breast cancer growth rate with (14)C bomb-pulse dating. Tissues from 11 breast cancers, diagnosed in 1983, were retrieved from a regional biobank. The estimated average age of the majority of the samples overlapped the year of collection (1983) within 3σ Thus, this first study of tumour tissue has not yet demonstrated that (14)C bomb-pulse dating can obtain information on the growth of breast cancer. However, with further refinement, involving extraction of cell types and components, there is a possibility that fundamental knowledge of tumour biology might still be gained by the bomb-pulse technique. Additionally, δ (13)C and δ (15)N analyses were performed to obtain dietary and metabolic information, and to serve as a base for improvement of the age determination.

  15. 14C BOMB-PULSE DATING AND STABLE ISOTOPE ANALYSIS FOR GROWTH RATE AND DIETARY INFORMATION IN BREAST CANCER?

    PubMed Central

    Lång, K.; Eriksson Stenström, K.; Rosso, A.; Bech, M.; Zackrisson, S.; Graubau, D.; Mattsson, S.

    2016-01-01

    The purpose of this study was to perform an initial investigation of the possibility to determine breast cancer growth rate with 14C bomb-pulse dating. Tissues from 11 breast cancers, diagnosed in 1983, were retrieved from a regional biobank. The estimated average age of the majority of the samples overlapped the year of collection (1983) within 3σ. Thus, this first study of tumour tissue has not yet demonstrated that 14C bomb-pulse dating can obtain information on the growth of breast cancer. However, with further refinement, involving extraction of cell types and components, there is a possibility that fundamental knowledge of tumour biology might still be gained by the bomb-pulse technique. Additionally, δ 13C and δ 15N analyses were performed to obtain dietary and metabolic information, and to serve as a base for improvement of the age determination. PMID:27179119

  16. Film dosimetry calibration method for pulsed-dose-rate brachytherapy with an 192Ir source.

    PubMed

    Schwob, Nathan; Orion, Itzhak

    2007-05-01

    192Ir sources have been widely used in clinical brachytherapy. An important challenge is to perform dosimetric measurements close to the source despite the steep dose gradient. The common, inexpensive silver halide film is a classic two-dimensional integrator dosimeter and would be an attractive solution for these dose measurements. The main disadvantage of film dosimetry is the film response to the low-energy photon. Since the photon energy spectrum is known to vary with depth, the sensitometric curves are expected to be dependent on depth. The purpose of this study is to suggest a correction method for silver halide film dosimetry that overcomes the response changes at different depths. Sensitometric curves have been obtained at different depths with verification film near a 1 Ci 192Ir pulsed-dose-rate source. The depth dependence of the film response was observed and a correction function was established. The suitability of the method was tested through measurement of the radial dose profile and radial dose function. The results were compared to Monte Carlo-simulated values according to the TG43 formalism. Monte Carlo simulations were performed separately for the beta and gamma source emissions, using the EGS4 code system, including the low-energy photon and electron transport optimization procedures. The beta source emission simulation showed that the beta dose contribution could be neglected and therefore the film-depth dependence could not be attributed to this part of the source radioactivity. The gamma source emission simulations included photon-spectra collection at several depths. The results showed a depth-dependent softening of the photon spectrum that can explain the film-energy dependence.

  17. [Pulse oximetry versus electrocardiogram for heart rate assessment during resuscitation of the preterm infant].

    PubMed

    Iglesias, B; Rodríguez, M J; Aleo, E; Criado, E; Herranz, G; Moro, M; Martínez Orgado, J; Arruza, L

    2016-05-01

    Heart rate (HR) assessment is essential during neonatal resuscitation, and it is usually done by auscultation or pulse oximetry (PO). The aim of the present study was to determine whether HR assessment with ECG is as fast and reliable as PO during preterm resuscitation. Thirty-nine preterm (<32 weeks of gestational age and/or<1.500g of birth weight) newborn resuscitations were video-recorded. Simultaneous determinations of HR using ECG and PO were registered every 5s for the first 10min after birth. Time needed to place both devices and to obtain reliable readings, as well as total time of signal loss was registered. The proportion of reliable HR readings available at the beginning of different resuscitation manoeuvres was also determined. Time needed to connect the ECG was shorter compared with the PO (26.64±3.01 vs. 17.10±1.28 s, for PO and ECG, respectively, P<.05). Similarly, time to obtain reliable readings was shorter for the ECG (87.28±12.11 vs. 26.38±3.41 s, for PO and ECG, respectively, P<.05). Availability of reliable HR readings at initiation of different resuscitation manoeuvres was lower with the PO (PO vs. ECG for positive pressure ventilation: 10.52 vs. 57.89% P<.05; intubation: 33.33 vs. 91.66%, P<.05). PO displayed lower HR values during the first 6min after birth (P<.05, between 150 and 300s). Reliable HR is obtained later with the PO than with the ECG during preterm resuscitation. PO underestimates HR in the first minutes of resuscitation. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  18. Physical activity and resting pulse rate in older adults: findings from a randomized controlled trial

    PubMed Central

    ó Hartaigh, Bríain; Pahor, Marco; Buford, Thomas W.; Dodson, John A.; Forman, Daniel E.; Gill, Thomas M.

    2014-01-01

    Background Elevated resting pulse rate (RPR) is a well-recognized risk factor for adverse outcomes. Epidemiological evidence supports the beneficial effects of regular exercise for lowering RPR, but studies are mainly confined to persons younger than 65 years. We set out to evaluate the utility of a physical activity (PA) intervention for slowing RPR among older adults. Methods A total of 424 seniors (ages 70-89 years) were randomized to a moderate intensity PA intervention or an education-based “successful aging” (SA) health program. RPR was assessed at baseline, 6 months and 12 months. Longitudinal differences in RPR were evaluated between treatment groups using generalized estimating equation (GEE) models, reporting unstandardized beta coefficients (β) with robust standard errors (SE). Results Increased frequency and duration of aerobic training was observed for the PA group at 6 and 12 months as compared with the SA group (P <0.001). In both groups, RPR remained unchanged over the course of the 12-month study period (P =0.67). No significant improvement was observed (β [SE] = 0.58 [0.88], P =0.51) for RPR when treatment groups were compared using the GEE method. Comparable results were found after omitting participants with a pacemaker, cardiac arrhythmia, or who were receiving beta-blockers. Conclusions Twelve months of moderate intensity aerobic training did not improve RPR among older adults. Additional studies are needed to determine whether physical activity of longer duration and/or greater intensity can slow RPR in older persons. PMID:25262271

  19. How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram.

    PubMed

    Schäfer, Axel; Vagedes, Jan

    2013-06-05

    The usefulness of heart rate variability (HRV) as a clinical research and diagnostic tool has been verified in numerous studies. The gold standard technique comprises analyzing time series of RR intervals from an electrocardiographic signal. However, some authors have used pulse cycle intervals instead of RR intervals, as they can be determined from a pulse wave (e.g. a photoplethysmographic) signal. This option is often called pulse rate variability (PRV), and utilizing it could expand the serviceability of pulse oximeters or simplify ambulatory monitoring of HRV. We review studies investigating the accuracy of PRV as an estimate of HRV, regardless of the underlying technology (photoplethysmography, continuous blood pressure monitoring or Finapresi, impedance plethysmography). Results speak in favor of sufficient accuracy when subjects are at rest, although many studies suggest that short-term variability is somewhat overestimated by PRV, which reflects coupling effects between respiration and the cardiovascular system. Physical activity and some mental stressors seem to impair the agreement of PRV and HRV, often to an inacceptable extent. Findings regarding the position of the sensor or the detection algorithm are not conclusive. Generally, quantitative conclusions are impeded by the fact that results of different studies are mostly incommensurable due to diverse experimental settings and/or methods of analysis. Copyright © 2012. Published by Elsevier Ireland Ltd.

  20. From cardiac to respiratory rate, from cardiac sounds to pulse velocity: a noncontact unified approach for the monitoring of vital signs by means of optical vibrocardiography

    NASA Astrophysics Data System (ADS)

    Scalise, L.; De Melis, M.; Morbiducci, U.; Segers, P.; Tomasini, E. P.

    2008-06-01

    In this paper we report experimental data obtained using a novel, non contact and unified approach for the monitoring of some important vital parameters: Heart Rate, Heart Rate Variability, Respiration Rate, Filling Time, Pulse Transit Time. The measurement approach - named optical vibrocardiography (VCG) - has been recently described by some of the authors for what concerns the assessment of a single parameter or measurement and technical aspects. Here, we discuss the experimental setup realized to operate optical VCG in order to measure the previously cited vital parameters. We present two novel configurations for the assessment of the respiration rate and the pulse transit time. The quantities measured by optical VCG have been compared with the ones measured with golden standard instrumentations; the comparison reference instruments has shown differences with no statistical and clinical significance. Optical VCG therefore can be considered a valid, fully non-contact measurement method for the assessment of vital signs, with the additional advantage that such parameters can be assessed using one single instrument instead of a set of dedicated devices.

  1. Pioneer spacecraft operation at low and high spin rates

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility of executing major changes upward or downward from the nominal spin rate for which the Pioneer F&G spacecraft was designed was investigated along with the extent of system and subsystem modifications required to implement these mode changes in future spacecraft evolving from the baseline Pioneer F and G. Results of a previous study are re-examined and updated for an extended range of spin rate variations for missions that include outer planet orbiters, outer planet flyby and outer planet probe delivery. However, in the interest of design simplicity and cost economy, major modifications of the baseline Pioneer system and subsystem concept were avoided.

  2. HydroPulse Drilling

    SciTech Connect

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  3. Accuracy of a third (Dolphin Voyager) versus first generation pulse oximeter (Nellcor N-180) in predicting arterial oxygen saturation and pulse rate in the anesthetized dog.

    PubMed

    Burns, Patrick M; Driessen, Bernd; Boston, Ray; Gunther, Robert A

    2006-09-01

    To compare the accuracy of a 3rd (Dolphin Voyager) versus 1st generation pulse oximeter (Nellcor N-180). Prospective laboratory investigation. Eight adult dogs. In anesthetized dogs, arterial oxygen saturation (SpO(2)) was recorded simultaneously with each pulse oximeter. The oxygen fraction in inspired gas (FiO(2)) was successively reduced from 1.00 to 0.09, with re-saturation (FiO(2) 0.40) after each breathe-down step. After each 3-minute FiO(2) plateau, SpO(2) and pulse rate (PR) were compared with the fractional arterial saturation (SaO(2)) and PR determined by co-oximetry and invasive blood pressure monitoring, respectively. Data analysis included Bland-Altman (B-A) plots, Lin's concordance correlation factor (rho(c)), and linear regression models. Over a SaO(2) range of 33-99%, the overall bias (mean SpO(2) - SaO(2)), precision (SD of bias), and accuracy (A(rms)) for the Dolphin Voyager and Nellcor N-180 were 4.3%, 4.4%, and 6.1%, and 3.2%, 3.0%, and 4.3%, respectively. Bias increased at SaO(2) < 90%, more so with the Dolphin Voyager (from 1.6% to 8.6%) than Nellcor N-180 (from 3.2% to 4.5%). The SpO(2) readings correlated significantly with SaO(2) for both the Dolphin Voyager (rho(c) = 0.94) and Nellcor N-180 (rho(c) = 0.97) (p < 0.001). Regarding PR, bias, precision, and accuracy (A(rms)) for the Dolphin Voyager and Nellcor N-180 were -0.5, 4.6, and 4.6 and 1.38, 4.3, and 4.5 beats minute(-1), respectively. Significant correlation existed between pulse oximeter and directly measured PR (Dolphin Voyager: rho(c) = 0.98; Nellcor N-180: rho(c) = 0.99) (p < 0.001). In anesthetized dogs with adequate hemodynamic function, both instruments record SaO(2) relatively accurately over a wide range of normal saturation values. However, there is an increasing overestimation at SaO(2) < 90%, particularly with the Dolphin Voyager, indicating that 3rd generation pulse oximeters may not perform better than older instruments. The 5.4-fold increase in bias with the Dolphin

  4. Transport critical current of MgB2 wires: pulsed current of varying rate compared to direct current method

    NASA Astrophysics Data System (ADS)

    See, K. W.; Xu, X.; Horvat, J.; Cook, C. D.; Dou, S. X.

    2011-10-01

    The measurement of transport critical current (Ic) for MgB2 wires and tapes has been investigated with two different techniques, the conventional four-probe arrangement with direct current (DC) power source, and a tailored triangle pulse at different rates of current change. The DC method has been widely used and practiced by various groups, but suffers from inevitable heating effects when high currents are used at low magnetic fields. The pulsed current method has no heating effects, but the critical current can depend on the rate of the current change (dI/dt) in the pulse. Our pulsed current measurements with varying dI/dt show that the same values of Ic are obtained as with the DC method, but without the artifacts of heating. Our method is particularly useful at low field regions which are often inaccessible by DC methods. We also performed a finite element method (FEM) analysis to obtain the time dependent heat distribution in MgB2 due to the electric potential produced at the current contacts to the superconducting sample and its gradient around the contacts. This gradient is defined as the current transfer length (CTL) of the samples and leads to Joule heating of the wire near the contacts. The FEM results provide further evidence of the limitation of the DC method in obtaining high transport critical current.

  5. Evaporation Rates of Decontamination Solutions From Operationally Relevant Substrates

    DTIC Science & Technology

    2006-01-01

    evaporation rates of two decontamination solutions, DeconGreenTM and DF200 TM, were measured from surfaces with multiple and independent methods. Evaporation...humidity and high temperature. The decontamination solution, DF200 TM, evaporated faster from bare and CARC-coated aluminum by a factor of approximately...Decontamination Studies of DF200 Formulations with VX, HD, and GD; U.S. Army Edgewood Chemical Biological Center: Aberdeen Proving Ground, MD; unpublished data

  6. Investigations, Experiments, and Implications for using existingPulse Magents for 'TOPOFF' Operation at the Advanced Light Source

    SciTech Connect

    Stover, Gregory D.; Baptiste, Kenneth Michael; Barry, Walter; Gath, William; Julian, James; Kwiatkowski, Slawomir; Prestemon, Soren; Schlueter, Ross; Shuman, Derek; Steier, Christoph

    2005-05-11

    ALS top-off mode of operation will require injection of the electron beam from the Booster Ring into the Storage Ring at the full ALS energy level of 1.9 GeV. Currently the Booster delivers a beam at 1.5 GeV to the Storage Ring where it is then ramped to the full energy and stored for the user operation. The higher Booster beam energy will require the pulse magnets in the Booster and Storage Rings to operate at proportionally higher magnetic gap fields. Our group studied and tested the possible design and installation modifications required to operate the magnets and drivers at ''top-off'' levels. Our results and experiments show that with minor electrical modifications all the existing pulse magnet systems can be used at the higher energy levels, and the increased operational stresses should have a negligible impact on magnet reliability. Furthermore, simple electrical modifications to the storage ring thick septum will greatly reduce the present level of septum stray leakage fields into the storage ring beam.

  7. Utility of overnight pulse oximetry and heart rate variability analysis to screen for sleep-disordered breathing in chronic heart failure.

    PubMed

    Ward, Neil R; Cowie, Martin R; Rosen, Stuart D; Roldao, Vitor; De Villa, Manuel; McDonagh, Theresa A; Simonds, Anita; Morrell, Mary J

    2012-11-01

    Sleep-disordered breathing (SDB) is under diagnosed in chronic heart failure (CHF). Screening with simple monitors may increase detection of SDB in a cardiology setting. This study aimed to evaluate the accuracy of heart rate variability analysis and overnight pulse oximetry for diagnosis of SDB in patients with CHF. 180 patients with CHF underwent simultaneous polysomnography, ambulatory electrocardiography and wrist-worn overnight pulse oximetry. SDB was defined as an apnoea-hypopnoea index ≥15/h. To identify SDB from the screening tests, the per cent very low frequency increment (%VLFI) component of heart rate variability was measured with a pre-specified cutoff ≥2.23%, and the 3% oxygen desaturation index was measured with a pre-specified cutoff >7.5 desaturations/h. 173 patients with CHF had adequate sleep study data; SDB occurred in 77 (45%) patients. Heart rate variability was measurable in 78 (45%) patients with area under the %VLFI receiver operating characteristic curve of 0.50. At the ≥2.23% cutoff, %VLFI sensitivity was 58% and specificity was 48%. The 3% oxygen desaturation index was measurable in 171 (99%) patients with area under the curve of 0.92. At the pre-specified cutoff of >7.5 desaturations/h, the 3% oxygen desaturation index had a sensitivity of 97%, specificity of 32%, negative likelihood ratio of 0.08 and positive likelihood ratio of 1.42. Diagnostic accuracy was increased using a cutoff of 12.5 desaturations/h, with sensitivity of 93% and specificity of 73%. The high sensitivity and low negative likelihood ratio of the 3% oxygen desaturation index indicates that pulse oximetry would be of use as a simple screening test to rule out SDB in patients with CHF in a cardiology setting. The %VLFI component of heart rate variability is not suitable for detection of SDB in CHF.

  8. Black phosphorus based saturable absorber for Nd-ion doped pulsed solid state laser operation

    NASA Astrophysics Data System (ADS)

    Han, S.; Zhang, F.; Wang, M.; Wang, L.; Zhou, Y.; Wang, Z.; Xu, X.

    2017-04-01

    In this paper, the use of black phosphorus (BP) as a saturable absorber in a Q-switched Nd-ion doped solid state laser is presented. Few layers of BP in isopropyl alcohol are obtained by liquid phase exfoliation. The BP nanosheets with thicknesses in the range of 15-20 nm are deposited onto a K9 glass substrate. By inserting the BP nanosheets into a diode pumped Nd-ion doped solid state laser, stable Q-switched lasing at 0.9, 1.06, 1.3 μm is obtained. Using this approach, we have achieved a short pulse duration down to 219 ns, a high pulse energy of up to 6.5 μJ, and the corresponding peak power of 30 W. Our results show that the BP saturable absorber functions well in a Nd-ion doped solid state laser for pulsed laser generation.

  9. Black phosphorus based saturable absorber for Nd-ion doped pulsed solid state laser operation

    NASA Astrophysics Data System (ADS)

    Han, S.; Zhang, F.; Wang, M.; Wang, L.; Zhou, Y.; Wang, Z.; Xu, X.

    2016-12-01

    In this paper, the use of black phosphorus (BP) as a saturable absorber in a Q-switched Nd-ion doped solid state laser is presented. Few layers of BP in isopropyl alcohol are obtained by liquid phase exfoliation. The BP nanosheets with thicknesses in the range of 15-20 nm are deposited onto a K9 glass substrate. By inserting the BP nanosheets into a diode pumped Nd-ion doped solid state laser, stable Q-switched lasing at 0.9, 1.06, 1.3 μm is obtained. Using this approach, we have achieved a short pulse duration down to 219 ns, a high pulse energy of up to 6.5 μJ, and the corresponding peak power of 30 W. Our results show that the BP saturable absorber functions well in a Nd-ion doped solid state laser for pulsed laser generation.

  10. 76 FR 19706 - Non-Vessel-Operating Common Carrier Negotiated Rate Arrangements; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... 46 CFR Parts 520 and 532 RIN 3072-AC38 Non-Vessel-Operating Common Carrier Negotiated Rate... on March 2, 2011, exempting licensed non-vessel-operating common carriers that enter into negotiated rate arrangements from the tariff rate publication requirements of the Shipping Act of 1984....

  11. Thermal Spray Using a High-Frequency Pulse Detonation Combustor Operated in the Liquid-Purge Mode

    NASA Astrophysics Data System (ADS)

    Endo, T.; Obayashi, R.; Tajiri, T.; Kimura, K.; Morohashi, Y.; Johzaki, T.; Matsuoka, K.; Hanafusa, T.; Mizunari, S.

    2016-02-01

    Experiments on thermal spray by pulsed detonations at 150 Hz were conducted. Two types of pulse detonation combustors were used, one operated in the inert gas purge (GAP) mode and the other in the liquid-purge (LIP) mode. In both modes, all gases were supplied in the valveless mode. The GAP mode is free of moving components, although the explosive mixture is unavoidably diluted with the inert gas used for the purge of the hot burned gas. In the LIP mode, pure fuel-oxygen combustion can be realized, although a liquid-droplet injector must be actuated cyclically. The objective of this work was to demonstrate a higher spraying temperature in the LIP mode. First, the temperature of CoNiCrAlY particles heated by pulsed detonations was measured. As a result, the spraying temperature in the LIP mode was higher than that in the GAP mode by about 1000 K. Second, the temperature of yttria-stabilized zirconia (YSZ) particles, whose melting point was almost 2800 °C, heated by pulsed detonations in the LIP mode was measured. As a result, the YSZ particles were heated up to about 2500 °C. Finally, a thermal spray experiment using YSZ particles was conducted, and a coating with low porosity was successfully deposited.

  12. Consolidated Fuel Reprocessing Program. Operating experience with pulsed-column holdup estimators

    SciTech Connect

    Ehinger, M.H.

    1986-01-01

    Methods for estimating pulsed-column holdup are being investigated as part of the Safeguards Assessment task of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory. The CFRP was a major sponsor of test runs at the Barnwell Nuclear Fuel plant (BNFP) in 1980 and 1981. During these tests, considerable measurement data were collected for pulsed columns in the plutonium purification portion of the plant. These data have been used to evaluate and compare three available methods of holdup estimation.

  13. A simple pulsed drain feedback preamplifier for high resolution high rate nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakatos, Tamás; Hegyesi, Gyula; Kalinka, Gábor

    1996-02-01

    A non-optical, pulsed reset technique for use in charge sensitive preamplifiers with Si(Li) X-ray semiconductor detectors of conventional polarity is described. The phenomenon of impact ionization in the field effect transistor is used for charge restoration. The process is controlled via the detector capacitance. The method needs no extra components in the input circuitry. No significant resolution degradation can be detected up to 600 kcps Mn K intensity if following the 5 μs resetting pulse the signal processor is inhibited for 50 μs.

  14. On the use of pulsed reduced dose rate for improvement of the therapeutic ratio

    NASA Astrophysics Data System (ADS)

    Rasmussen, Karl H., V.

    This work demonstrates three related aspects of the efficacy, delivery, and verification of pulsed reduced dose rate radiotherapy (PRDR). PRDR is a method of irradiation designed to minimize radiation-related toxicities in patients undergoing reirradiation for loco-regional reoccurrence of glioblastoma. PRDR uses 0.2GyX10fx daily doses delivered over a 30-minute time span. Under PRDR treatments, a subset of patients have had an unexpectedly positive response to treatment. It was a primary goal of this project to determine if low-dose hyper-radiosensitivity was a contributor to the increased radio-response from these patients. This was done through the use of human T98G glioma and HT29 colorectal cells, and V79.379-A Chinese hamster fibroblasts with drug inhibition of the p53 and PI3K pathways. Radiation was delivered with a medical linear accelerator in either 2Gy acute doses or through PRDR. Methods used to analyze the effect of these techniques included clonogenic assay, flow cytometry, and western blots. Comparison of survival ratios demonstrated no decrease in efficacy for either the standard T98G or HT29 cell lines when using PRDR as compared to an acute dose. T98G with PI3K inhibition and V79.397-A cells demonstrated a decreased efficacy of treatment using PRDR relative to an acute dose. These results suggest an equivalency in tumor treatment with a possible improvement in normal tissue toxicities for the PRDR method. An additional method of delivering PRDR through the use of Tomotherapy was proposed and demonstrated to be accurate. Tomotherapy planning forces the short leaf open times for individual MLC projections from low dose fractionation closed, resulting in an undeliverable plan due to the loss of a large number of usable projections. Application of a virtual grid with directional blocking allows for the output from useable segments to be above this threshold, resulting in a deliverable treatment plan. Finally, analysis was performed on a proposed QA

  15. Radial pressure pulse and heart rate variability in normotensive and hypertensive subjects.

    PubMed

    Huang, Chin-Ming; Chang, Hsien-Cheh; Kao, Shung-Te; Li, Tsai-Chung; Wei, Ching-Chuan; Chen, Chia Chung; Chen, Fun-jou; Tsou, Shi-Sheng

    2011-10-01

    The characteristics of the right/left radial pressure pulse (RPP) at the six diagnosis positions in Chinese medicine are not well documented. The purpose of this study is to investigate the spectral energy and augmentation index (AI) of bilateral RPP at the six diagnosis positions and heart rate variability (HRV) in the normotensives, hypertensives without heart dysfunction (HTN-N), and hypertensives with mild diastolic dysfunction (HTN-A). One hundred and thirty-eight (138) subjects were enrolled in this study. All subjects underwent measurements of brachial arterial blood pressure and RPP of both wrists while seated, and the supine measurement of HRV. AI and spectral energy of RPP as well as HRV were analyzed. The low-frequency component, the spectral HRV parameter, was significantly reduced in HTN-A compared with that in the normotensive group. Radial AI of the six diagnosis positions in HTN-N was significantly higher compared with that in the normotensive group or HTN-A. At the six diagnosis positions, the spectral energy of 0-10 Hz (SE(0-10 Hz)) in both hypertensive groups and 10-50 Hz (SE(10-50 Hz)) in the HTN-A group were significantly higher compared with those in the normotensive group. SE(10-50 Hz) at right Chy, left Chun, and left Guan in the HTN-N group were higher than those in the normotensive group. Within each group, there was a significant difference in the energy proportion, 10-50 Hz% (EP(10-50 Hz%)), between the six positions and a significant reduction only at the left Chun position in both hypertensive groups compared to that in the normotensive group. It is concluded that the EP(10-50 Hz%) revealed the specific characteristics of RPP and significantly varied at the six positions, and the left Chun position, the position to detect the heart diseases in Chinese medicine, is qualified to discriminate the differences between the normotensive and hypertensive patients.

  16. Effects of an inverted position on blood pressure, pulse rate, and deep tendon reflexes of healthy young adults.

    PubMed

    Rheault, W; Derleth, M; Casey, M; Czarnik, C; Kania, D; Nagel, G

    1985-09-01

    This study reports the effects of an inverted position on pulse rate, blood pressure, and deep tendon reflexes of the biceps muscle, triceps muscle, and Achilles tendon. Twenty healthy adults were used as subjects. We collected data both before and after the subjects were in the inverted position for eight minutes on a specially designed tonic labyrinthine inverted table. A significant decrease in systolic blood pressure and all tendon reflexes was observed along with a significant increase in diastolic blood pressure (p less than .05). Pulse rate showed no change. The findings indicate that the inverted position is likely to be effective for decreasing muscle tone and systolic blood pressure. Although this study used healthy subjects, the inverted position may be used as a therapeutic technique, provided the clinician monitors closely the physiological effects on patients.

  17. Derivation of a formula describing the saturation correction of plane-parallel ionization chambers in pulsed fields with arbitrary repetition rate.

    PubMed

    Karsch, Leonhard

    2016-04-21

    Gas-filled ionization chambers are widely used radiation detectors in radiotherapy. A quantitative description and correction of the recombination effects exists for two cases, for continuous radiation exposure and for pulsed radiation fields with short single pulses. This work gives a derivation of a formula for pulsed beams with arbitrary pulse rate for which the prerequisites of the two existing descriptions are not fulfilled. Furthermore, an extension of the validity of the two known cases is investigated. The temporal evolution of idealized charge density distributions within a plane parallel chamber volume is described for pulsed beams of vanishing pulse duration and arbitrary pulse repetition rate. First, the radiation induced release, movement and collection of the charge carriers without recombination are considered. Then, charge recombination is calculated basing on these simplified charge distributions and the time dependent spatial overlap of positive and negative charge carrier distributions. Finally, a formula for the calculation of the saturation correction factor is derived by calculation and simplification of the first two terms of a Taylor expansion for small recombination. The new formula of saturation correction contains the two existing cases, descriptions for exposure by single pulses and continuous irradiation, as limiting cases. Furthermore, it is possible to determine the pulse rate range for which each of the three descriptions is applicable by comparing the dependencies of the new formula with the two existing cases. As long as the time between two pulses is lower than one third of the collection time of the chamber, the formalism for a continuous exposure can be used. The known description for single pulse irradiation is only valid if the repetition rate is less than 1.2 times the inverse collection time. For all other repetition rates in between the new formula should be used. The experimental determination by Jaffe diagrams can be

  18. Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra

    PubMed Central

    Gonzalez, Oriol; Roso, Sergio; Vilanova, Xavier

    2016-01-01

    We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C) via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C) together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal), results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide. PMID:28144501

  19. Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra.

    PubMed

    Gonzalez, Oriol; Roso, Sergio; Vilanova, Xavier; Llobet, Eduard

    2016-01-01

    We report on the use of combined heating and pulsed UV light activation of indium oxide gas sensors for enhancing their performance in the detection of nitrogen dioxide in air. Indium oxide nano-octahedra were synthesized at high temperature (900 °C) via vapour-phase transport and screen-printed onto alumina transducers that comprised interdigitated electrodes and a heating resistor. Compared to the standard, constant temperature operation of the sensor, mild heating (e.g., 100 °C) together with pulsed UV light irradiation employing a commercially available, 325 nm UV diode (square, 1 min period, 15 mA drive current signal), results in an up to 80-fold enhancement in sensitivity to nitrogen dioxide. Furthermore, this combined operation method allows for making savings in power consumption that range from 35% to over 80%. These results are achieved by exploiting the dynamics of sensor response under pulsed UV light, which convey important information for the quantitative analysis of nitrogen dioxide.

  20. Multicenter Study Validating Accuracy of a Continuous Respiratory Rate Measurement Derived From Pulse Oximetry: A Comparison With Capnography.

    PubMed

    Bergese, Sergio D; Mestek, Michael L; Kelley, Scott D; McIntyre, Robert; Uribe, Alberto A; Sethi, Rakesh; Watson, James N; Addison, Paul S

    2017-04-01

    Intermittent measurement of respiratory rate via observation is routine in many patient care settings. This approach has several inherent limitations that diminish the clinical utility of these measurements because it is intermittent, susceptible to human error, and requires clinical resources. As an alternative, a software application that derives continuous respiratory rate measurement from a standard pulse oximeter has been developed. We sought to determine the performance characteristics of this new technology by comparison with clinician-reviewed capnography waveforms in both healthy subjects and hospitalized patients in a low-acuity care setting. Two independent observational studies were conducted to validate the performance of the Medtronic Nellcor Respiration Rate Software application. One study enrolled 26 healthy volunteer subjects in a clinical laboratory, and a second multicenter study enrolled 53 hospitalized patients. During a 30-minute study period taking place while participants were breathing spontaneously, pulse oximeter and nasal/oral capnography waveforms were collected. Pulse oximeter waveforms were processed to determine respiratory rate via the Medtronic Nellcor Respiration Rate Software. Capnography waveforms reviewed by a clinician were used to determine the reference respiratory rate. A total of 23,243 paired observations between the pulse oximeter-derived respiratory rate and the capnography reference method were collected and examined. The mean reference-based respiratory rate was 15.3 ± 4.3 breaths per minute with a range of 4 to 34 breaths per minute. The Pearson correlation coefficient between the Medtronic Nellcor Respiration Rate Software values and the capnography reference respiratory rate is reported as a linear correlation, R, as 0.92 ± 0.02 (P < .001), whereas Lin's concordance correlation coefficient indicates an overall agreement of 0.85 ± 0.04 (95% confidence interval [CI] +0.76; +0.93) (healthy volunteers: 0.94 ± 0