Vector Adaptive/Predictive Encoding Of Speech
NASA Technical Reports Server (NTRS)
Chen, Juin-Hwey; Gersho, Allen
1989-01-01
Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.
Multipath search coding of stationary signals with applications to speech
NASA Astrophysics Data System (ADS)
Fehn, H. G.; Noll, P.
1982-04-01
This paper deals with the application of multipath search coding (MSC) concepts to the coding of stationary memoryless and correlated sources, and of speech signals, at a rate of one bit per sample. Use is made of three MSC classes: (1) codebook coding, or vector quantization, (2) tree coding, and (3) trellis coding. This paper explains the performances of these coders and compares them both with those of conventional coders and with rate-distortion bounds. The potentials of MSC coding strategies are demonstrated by illustrations. The paper reports also on results of MSC coding of speech, where both the strategy of adaptive quantization and of adaptive prediction were included in coder design.
NASA Technical Reports Server (NTRS)
Mcaulay, Robert J.; Quatieri, Thomas F.
1988-01-01
It has been shown that an analysis/synthesis system based on a sinusoidal representation of speech leads to synthetic speech that is essentially perceptually indistinguishable from the original. Strategies for coding the amplitudes, frequencies and phases of the sine waves have been developed that have led to a multirate coder operating at rates from 2400 to 9600 bps. The encoded speech is highly intelligible at all rates with a uniformly improving quality as the data rate is increased. A real-time fixed-point implementation has been developed using two ADSP2100 DSP chips. The methods used for coding and quantizing the sine-wave parameters for operation at the various frame rates are described.
Impact of dynamic rate coding aspects of mobile phone networks on forensic voice comparison.
Alzqhoul, Esam A S; Nair, Balamurali B T; Guillemin, Bernard J
2015-09-01
Previous studies have shown that landline and mobile phone networks are different in their ways of handling the speech signal, and therefore in their impact on it. But the same is also true of the different networks within the mobile phone arena. There are two major mobile phone technologies currently in use today, namely the global system for mobile communications (GSM) and code division multiple access (CDMA) and these are fundamentally different in their design. For example, the quality of the coded speech in the GSM network is a function of channel quality, whereas in the CDMA network it is determined by channel capacity (i.e., the number of users sharing a cell site). This paper examines the impact on the speech signal of a key feature of these networks, namely dynamic rate coding, and its subsequent impact on the task of likelihood-ratio-based forensic voice comparison (FVC). Surprisingly, both FVC accuracy and precision are found to be better for both GSM- and CDMA-coded speech than for uncoded. Intuitively one expects FVC accuracy to increase with increasing coded speech quality. This trend is shown to occur for the CDMA network, but, surprisingly, not for the GSM network. Further, in respect to comparisons between these two networks, FVC accuracy for CDMA-coded speech is shown to be slightly better than for GSM-coded speech, particularly when the coded-speech quality is high, but in terms of FVC precision the two networks are shown to be very similar. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Pulse Vector-Excitation Speech Encoder
NASA Technical Reports Server (NTRS)
Davidson, Grant; Gersho, Allen
1989-01-01
Proposed pulse vector-excitation speech encoder (PVXC) encodes analog speech signals into digital representation for transmission or storage at rates below 5 kilobits per second. Produces high quality of reconstructed speech, but with less computation than required by comparable speech-encoding systems. Has some characteristics of multipulse linear predictive coding (MPLPC) and of code-excited linear prediction (CELP). System uses mathematical model of vocal tract in conjunction with set of excitation vectors and perceptually-based error criterion to synthesize natural-sounding speech.
A Comparison of LBG and ADPCM Speech Compression Techniques
NASA Astrophysics Data System (ADS)
Bachu, Rajesh G.; Patel, Jignasa; Barkana, Buket D.
Speech compression is the technology of converting human speech into an efficiently encoded representation that can later be decoded to produce a close approximation of the original signal. In all speech there is a degree of predictability and speech coding techniques exploit this to reduce bit rates yet still maintain a suitable level of quality. This paper is a study and implementation of Linde-Buzo-Gray Algorithm (LBG) and Adaptive Differential Pulse Code Modulation (ADPCM) algorithms to compress speech signals. In here we implemented the methods using MATLAB 7.0. The methods we used in this study gave good results and performance in compressing the speech and listening tests showed that efficient and high quality coding is achieved.
NASA Astrophysics Data System (ADS)
Jiang, Hongyan; Qiu, Hongbing; He, Ning; Liao, Xin
2018-06-01
For the optoacoustic communication from in-air platforms to submerged apparatus, a method based on speech recognition and variable laser-pulse repetition rates is proposed, which realizes character encoding and transmission for speech. Firstly, the theories and spectrum characteristics of the laser-generated underwater sound are analyzed; and moreover character conversion and encoding for speech as well as the pattern of codes for laser modulation is studied; lastly experiments to verify the system design are carried out. Results show that the optoacoustic system, where laser modulation is controlled by speech-to-character baseband codes, is beneficial to improve flexibility in receiving location for underwater targets as well as real-time performance in information transmission. In the overwater transmitter, a pulse laser is controlled to radiate by speech signals with several repetition rates randomly selected in the range of one to fifty Hz, and then in the underwater receiver laser pulse repetition rate and data can be acquired by the preamble and information codes of the corresponding laser-generated sound. When the energy of the laser pulse is appropriate, real-time transmission for speaker-independent speech can be realized in that way, which solves the problem of underwater bandwidth resource and provides a technical approach for the air-sea communication.
Landwehr, Markus; Fürstenberg, Dirk; Walger, Martin; von Wedel, Hasso; Meister, Hartmut
2014-01-01
Advances in speech coding strategies and electrode array designs for cochlear implants (CIs) predominantly aim at improving speech perception. Current efforts are also directed at transmitting appropriate cues of the fundamental frequency (F0) to the auditory nerve with respect to speech quality, prosody, and music perception. The aim of this study was to examine the effects of various electrode configurations and coding strategies on speech intonation identification, speaker gender identification, and music quality rating. In six MED-EL CI users electrodes were selectively deactivated in order to simulate different insertion depths and inter-electrode distances when using the high definition continuous interleaved sampling (HDCIS) and fine structure processing (FSP) speech coding strategies. Identification of intonation and speaker gender was determined and music quality rating was assessed. For intonation identification HDCIS was robust against the different electrode configurations, whereas fine structure processing showed significantly worse results when a short electrode depth was simulated. In contrast, speaker gender recognition was not affected by electrode configuration or speech coding strategy. Music quality rating was sensitive to electrode configuration. In conclusion, the three experiments revealed different outcomes, even though they all addressed the reception of F0 cues. Rapid changes in F0, as seen with intonation, were the most sensitive to electrode configurations and coding strategies. In contrast, electrode configurations and coding strategies did not show large effects when F0 information was available over a longer time period, as seen with speaker gender. Music quality relies on additional spectral cues other than F0, and was poorest when a shallow insertion was simulated.
Wirtzfeld, Michael R; Ibrahim, Rasha A; Bruce, Ian C
2017-10-01
Perceptual studies of speech intelligibility have shown that slow variations of acoustic envelope (ENV) in a small set of frequency bands provides adequate information for good perceptual performance in quiet, whereas acoustic temporal fine-structure (TFS) cues play a supporting role in background noise. However, the implications for neural coding are prone to misinterpretation because the mean-rate neural representation can contain recovered ENV cues from cochlear filtering of TFS. We investigated ENV recovery and spike-time TFS coding using objective measures of simulated mean-rate and spike-timing neural representations of chimaeric speech, in which either the ENV or the TFS is replaced by another signal. We (a) evaluated the levels of mean-rate and spike-timing neural information for two categories of chimaeric speech, one retaining ENV cues and the other TFS; (b) examined the level of recovered ENV from cochlear filtering of TFS speech; (c) examined and quantified the contribution to recovered ENV from spike-timing cues using a lateral inhibition network (LIN); and (d) constructed linear regression models with objective measures of mean-rate and spike-timing neural cues and subjective phoneme perception scores from normal-hearing listeners. The mean-rate neural cues from the original ENV and recovered ENV partially accounted for perceptual score variability, with additional variability explained by the recovered ENV from the LIN-processed TFS speech. The best model predictions of chimaeric speech intelligibility were found when both the mean-rate and spike-timing neural cues were included, providing further evidence that spike-time coding of TFS cues is important for intelligibility when the speech envelope is degraded.
NASA Astrophysics Data System (ADS)
Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret
2003-12-01
A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravishankar, C., Hughes Network Systems, Germantown, MD
Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfullymore » regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.« less
ERIC Educational Resources Information Center
Raine, Adrian; And Others
1991-01-01
Children with speech disorders had lower short-term memory capacity and smaller word length effect than control children. Children with speech disorders also had reduced speech-motor activity during rehearsal. Results suggest that speech rate may be a causal determinant of verbal short-term memory capacity. (BC)
4800 B/S speech compression techniques for mobile satellite systems
NASA Technical Reports Server (NTRS)
Townes, S. A.; Barnwell, T. P., III; Rose, R. C.; Gersho, A.; Davidson, G.
1986-01-01
This paper will discuss three 4800 bps digital speech compression techniques currently being investigated for application in the mobile satellite service. These three techniques, vector adaptive predictive coding, vector excitation coding, and the self excited vocoder, are the most promising among a number of techniques being developed to possibly provide near-toll-quality speech compression while still keeping the bit-rate low enough for a power and bandwidth limited satellite service.
Dilley, Laura C; Wieland, Elizabeth A; Gamache, Jessica L; McAuley, J Devin; Redford, Melissa A
2013-02-01
As children mature, changes in voice spectral characteristics co-vary with changes in speech, language, and behavior. In this study, spectral characteristics were manipulated to alter the perceived ages of talkers' voices while leaving critical acoustic-prosodic correlates intact, to determine whether perceived age differences were associated with differences in judgments of prosodic, segmental, and talker attributes. Speech was modified by lowering formants and fundamental frequency, for 5-year-old children's utterances, or raising them, for adult caregivers' utterances. Next, participants differing in awareness of the manipulation (Experiment 1A) or amount of speech-language training (Experiment 1B) made judgments of prosodic, segmental, and talker attributes. Experiment 2 investigated the effects of spectral modification on intelligibility. Finally, in Experiment 3, trained analysts used formal prosody coding to assess prosodic characteristics of spectrally modified and unmodified speech. Differences in perceived age were associated with differences in ratings of speech rate, fluency, intelligibility, likeability, anxiety, cognitive impairment, and speech-language disorder/delay; effects of training and awareness of the manipulation on ratings were limited. There were no significant effects of the manipulation on intelligibility or formally coded prosody judgments. Age-related voice characteristics can greatly affect judgments of speech and talker characteristics, raising cautionary notes for developmental research and clinical work.
NASA Astrophysics Data System (ADS)
Viswanathan, V. R.; Makhoul, J.; Schwartz, R. M.; Huggins, A. W. F.
1982-04-01
The variable frame rate (VFR) transmission methodology developed, implemented, and tested in the years 1973-1978 for efficiently transmitting linear predictive coding (LPC) vocoder parameters extracted from the input speech at a fixed frame rate is reviewed. With the VFR method, parameters are transmitted only when their values have changed sufficiently over the interval since their preceding transmission. Two distinct approaches to automatic implementation of the VFR method are discussed. The first bases the transmission decisions on comparisons between the parameter values of the present frame and the last transmitted frame. The second, which is based on a functional perceptual model of speech, compares the parameter values of all the frames that lie in the interval between the present frame and the last transmitted frame against a linear model of parameter variation over that interval. Also considered is the application of VFR transmission to the design of narrow-band LPC speech coders with average bit rates of 2000-2400 bts/s.
Dilley, Laura C.; Wieland, Elizabeth A.; Gamache, Jessica L.; McAuley, J. Devin; Redford, Melissa A.
2013-01-01
Purpose As children mature, changes in voice spectral characteristics covary with changes in speech, language, and behavior. Spectral characteristics were manipulated to alter the perceived ages of talkers’ voices while leaving critical acoustic-prosodic correlates intact, to determine whether perceived age differences were associated with differences in judgments of prosodic, segmental, and talker attributes. Method Speech was modified by lowering formants and fundamental frequency, for 5-year-old children’s utterances, or raising them, for adult caregivers’ utterances. Next, participants differing in awareness of the manipulation (Exp. 1a) or amount of speech-language training (Exp. 1b) made judgments of prosodic, segmental, and talker attributes. Exp. 2 investigated the effects of spectral modification on intelligibility. Finally, in Exp. 3 trained analysts used formal prosody coding to assess prosodic characteristics of spectrally-modified and unmodified speech. Results Differences in perceived age were associated with differences in ratings of speech rate, fluency, intelligibility, likeability, anxiety, cognitive impairment, and speech-language disorder/delay; effects of training and awareness of the manipulation on ratings were limited. There were no significant effects of the manipulation on intelligibility or formally coded prosody judgments. Conclusions Age-related voice characteristics can greatly affect judgments of speech and talker characteristics, raising cautionary notes for developmental research and clinical work. PMID:23275414
NASA Technical Reports Server (NTRS)
Kondoz, A. M.; Evans, B. G.
1993-01-01
In the last decade, low bit rate speech coding research has received much attention resulting in newly developed, good quality, speech coders operating at as low as 4.8 Kb/s. Although speech quality at around 8 Kb/s is acceptable for a wide variety of applications, at 4.8 Kb/s more improvements in quality are necessary to make it acceptable to the majority of applications and users. In addition to the required low bit rate with acceptable speech quality, other facilities such as integrated digital echo cancellation and voice activity detection are now becoming necessary to provide a cost effective and compact solution. In this paper we describe a CELP speech coder with integrated echo canceller and a voice activity detector all of which have been implemented on a single DSP32C with 32 KBytes of SRAM. The quality of CELP coded speech has been improved significantly by a new codebook implementation which also simplifies the encoder/decoder complexity making room for the integration of a 64-tap echo canceller together with a voice activity detector.
Everyday listening questionnaire: correlation between subjective hearing and objective performance.
Brendel, Martina; Frohne-Buechner, Carolin; Lesinski-Schiedat, Anke; Lenarz, Thomas; Buechner, Andreas
2014-01-01
Clinical experience has demonstrated that speech understanding by cochlear implant (CI) recipients has improved over recent years with the development of new technology. The Everyday Listening Questionnaire 2 (ELQ 2) was designed to collect information regarding the challenges faced by CI recipients in everyday listening. The aim of this study was to compare self-assessment of CI users using ELQ 2 with objective speech recognition measures and to compare results between users of older and newer coding strategies. During their regular clinical review appointments a group of representative adult CI recipients implanted with the Advanced Bionics implant system were asked to complete the questionnaire. The first 100 patients who agreed to participate in this survey were recruited independent of processor generation and speech coding strategy. Correlations between subjectively scored hearing performance in everyday listening situations and objectively measured speech perception abilities were examined relative to the speech coding strategies used. When subjects were grouped by strategy there were significant differences between users of older 'standard' strategies and users of the newer, currently available strategies (HiRes and HiRes 120), especially in the categories of telephone use and music perception. Significant correlations were found between certain subjective ratings and the objective speech perception data in noise. There is a good correlation between subjective and objective data. Users of more recent speech coding strategies tend to have fewer problems in difficult hearing situations.
Lorens, Artur; Zgoda, Małgorzata; Obrycka, Anita; Skarżynski, Henryk
2010-12-01
Presently, there are only few studies examining the benefits of fine structure information in coding strategies. Against this background, this study aims to assess the objective and subjective performance of children experienced with the C40+ cochlear implant using the CIS+ coding strategy who were upgraded to the OPUS 2 processor using FSP and HDCIS. In this prospective study, 60 children with more than 3.5 years of experience with the C40+ cochlear implant were upgraded to the OPUS 2 processor and fit and tested with HDCIS (Interval I). After 3 months of experience with HDCIS, they were fit with the FSP coding strategy (Interval II) and tested with all strategies (FSP, HDCIS, CIS+). After an additional 3-4 months, they were assessed on all three strategies and asked to choose their take-home strategy (Interval III). The children were tested using the Adaptive Auditory Speech Test which measures speech reception threshold (SRT) in quiet and noise at each test interval. The children were also asked to rate on a Visual Analogue Scale their satisfaction and coding strategy preference when listening to speech and a pop song. However, since not all tests could be performed at one single visit, some children were not able complete all tests at all intervals. At the study endpoint, speech in quiet showed a significant difference in SRT of 1.0 dB between FSP and HDCIS, with FSP performing better. FSP proved a better strategy compared with CIS+, showing lower SRT results of 5.2 dB. Speech in noise tests showed FSP to be significantly better than CIS+ by 0.7 dB, and HDCIS to be significantly better than CIS+ by 0.8 dB. Both satisfaction and coding strategy preference ratings also revealed that FSP and HDCIS strategies were better than CIS+ strategy when listening to speech and music. FSP was better than HDCIS when listening to speech. This study demonstrates that long-term pediatric users of the COMBI 40+ are able to upgrade to a newer processor and coding strategy without compromising their listening performance and even improving their performance with FSP after a short time of experience. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
A variable rate speech compressor for mobile applications
NASA Technical Reports Server (NTRS)
Yeldener, S.; Kondoz, A. M.; Evans, B. G.
1990-01-01
One of the most promising speech coder at the bit rate of 9.6 to 4.8 kbits/s is CELP. Code Excited Linear Prediction (CELP) has been dominating 9.6 to 4.8 kbits/s region during the past 3 to 4 years. Its set back however, is its expensive implementation. As an alternative to CELP, the Base-Band CELP (CELP-BB) was developed which produced good quality speech comparable to CELP and a single chip implementable complexity as reported previously. Its robustness was also improved to tolerate errors up to 1.0 pct. and maintain intelligibility up to 5.0 pct. and more. Although, CELP-BB produces good quality speech at around 4.8 kbits/s, it has a fundamental problem when updating the pitch filter memory. A sub-optimal solution is proposed for this problem. Below 4.8 kbits/s, however, CELP-BB suffers from noticeable quantization noise as a result of the large vector dimensions used. Efficient representation of speech below 4.8 kbits/s is reported by introducing Sinusoidal Transform Coding (STC) to represent the LPC excitation which is called Sine Wave Excited LPC (SWELP). In this case, natural sounding good quality synthetic speech is obtained at around 2.4 kbits/s.
Noise suppression methods for robust speech processing
NASA Astrophysics Data System (ADS)
Boll, S. F.; Ravindra, H.; Randall, G.; Armantrout, R.; Power, R.
1980-05-01
Robust speech processing in practical operating environments requires effective environmental and processor noise suppression. This report describes the technical findings and accomplishments during this reporting period for the research program funded to develop real time, compressed speech analysis synthesis algorithms whose performance in invariant under signal contamination. Fulfillment of this requirement is necessary to insure reliable secure compressed speech transmission within realistic military command and control environments. Overall contributions resulting from this research program include the understanding of how environmental noise degrades narrow band, coded speech, development of appropriate real time noise suppression algorithms, and development of speech parameter identification methods that consider signal contamination as a fundamental element in the estimation process. This report describes the current research and results in the areas of noise suppression using the dual input adaptive noise cancellation using the short time Fourier transform algorithms, articulation rate change techniques, and a description of an experiment which demonstrated that the spectral subtraction noise suppression algorithm can improve the intelligibility of 2400 bps, LPC 10 coded, helicopter speech by 10.6 point.
Xiao, Bo; Imel, Zac E; Georgiou, Panayiotis G; Atkins, David C; Narayanan, Shrikanth S
2015-01-01
The technology for evaluating patient-provider interactions in psychotherapy-observational coding-has not changed in 70 years. It is labor-intensive, error prone, and expensive, limiting its use in evaluating psychotherapy in the real world. Engineering solutions from speech and language processing provide new methods for the automatic evaluation of provider ratings from session recordings. The primary data are 200 Motivational Interviewing (MI) sessions from a study on MI training methods with observer ratings of counselor empathy. Automatic Speech Recognition (ASR) was used to transcribe sessions, and the resulting words were used in a text-based predictive model of empathy. Two supporting datasets trained the speech processing tasks including ASR (1200 transcripts from heterogeneous psychotherapy sessions and 153 transcripts and session recordings from 5 MI clinical trials). The accuracy of computationally-derived empathy ratings were evaluated against human ratings for each provider. Computationally-derived empathy scores and classifications (high vs. low) were highly accurate against human-based codes and classifications, with a correlation of 0.65 and F-score (a weighted average of sensitivity and specificity) of 0.86, respectively. Empathy prediction using human transcription as input (as opposed to ASR) resulted in a slight increase in prediction accuracies, suggesting that the fully automatic system with ASR is relatively robust. Using speech and language processing methods, it is possible to generate accurate predictions of provider performance in psychotherapy from audio recordings alone. This technology can support large-scale evaluation of psychotherapy for dissemination and process studies.
Design of a robust baseband LPC coder for speech transmission over 9.6 kbit/s noisy channels
NASA Astrophysics Data System (ADS)
Viswanathan, V. R.; Russell, W. H.; Higgins, A. L.
1982-04-01
This paper describes the design of a baseband Linear Predictive Coder (LPC) which transmits speech over 9.6 kbit/sec synchronous channels with random bit errors of up to 1%. Presented are the results of our investigation of a number of aspects of the baseband LPC coder with the goal of maximizing the quality of the transmitted speech. Important among these aspects are: bandwidth of the baseband, coding of the baseband residual, high-frequency regeneration, and error protection of important transmission parameters. The paper discusses these and other issues, presents the results of speech-quality tests conducted during the various stages of optimization, and describes the details of the optimized speech coder. This optimized speech coding algorithm has been implemented as a real-time full-duplex system on an array processor. Informal listening tests of the real-time coder have shown that the coder produces good speech quality in the absence of channel bit errors and introduces only a slight degradation in quality for channel bit error rates of up to 1%.
Vector Sum Excited Linear Prediction (VSELP) speech coding at 4.8 kbps
NASA Technical Reports Server (NTRS)
Gerson, Ira A.; Jasiuk, Mark A.
1990-01-01
Code Excited Linear Prediction (CELP) speech coders exhibit good performance at data rates as low as 4800 bps. The major drawback to CELP type coders is their larger computational requirements. The Vector Sum Excited Linear Prediction (VSELP) speech coder utilizes a codebook with a structure which allows for a very efficient search procedure. Other advantages of the VSELP codebook structure is discussed and a detailed description of a 4.8 kbps VSELP coder is given. This coder is an improved version of the VSELP algorithm, which finished first in the NSA's evaluation of the 4.8 kbps speech coders. The coder uses a subsample resolution single tap long term predictor, a single VSELP excitation codebook, a novel gain quantizer which is robust to channel errors, and a new adaptive pre/postfilter arrangement.
Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
Holzrichter, J.F.; Ng, L.C.
1998-03-17
The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.
Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
Holzrichter, John F.; Ng, Lawrence C.
1998-01-01
The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.
Speech coding, reconstruction and recognition using acoustics and electromagnetic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzrichter, J.F.; Ng, L.C.
The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used formore » purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.« less
Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain
Gross, Joachim; Hoogenboom, Nienke; Thut, Gregor; Schyns, Philippe; Panzeri, Stefano; Belin, Pascal; Garrod, Simon
2013-01-01
Cortical oscillations are likely candidates for segmentation and coding of continuous speech. Here, we monitored continuous speech processing with magnetoencephalography (MEG) to unravel the principles of speech segmentation and coding. We demonstrate that speech entrains the phase of low-frequency (delta, theta) and the amplitude of high-frequency (gamma) oscillations in the auditory cortex. Phase entrainment is stronger in the right and amplitude entrainment is stronger in the left auditory cortex. Furthermore, edges in the speech envelope phase reset auditory cortex oscillations thereby enhancing their entrainment to speech. This mechanism adapts to the changing physical features of the speech envelope and enables efficient, stimulus-specific speech sampling. Finally, we show that within the auditory cortex, coupling between delta, theta, and gamma oscillations increases following speech edges. Importantly, all couplings (i.e., brain-speech and also within the cortex) attenuate for backward-presented speech, suggesting top-down control. We conclude that segmentation and coding of speech relies on a nested hierarchy of entrained cortical oscillations. PMID:24391472
ERIC Educational Resources Information Center
Hickok, Gregory
2012-01-01
Speech recognition is an active process that involves some form of predictive coding. This statement is relatively uncontroversial. What is less clear is the source of the prediction. The dual-stream model of speech processing suggests that there are two possible sources of predictive coding in speech perception: the motor speech system and the…
The minor third communicates sadness in speech, mirroring its use in music.
Curtis, Meagan E; Bharucha, Jamshed J
2010-06-01
There is a long history of attempts to explain why music is perceived as expressing emotion. The relationship between pitches serves as an important cue for conveying emotion in music. The musical interval referred to as the minor third is generally thought to convey sadness. We reveal that the minor third also occurs in the pitch contour of speech conveying sadness. Bisyllabic speech samples conveying four emotions were recorded by 9 actresses. Acoustic analyses revealed that the relationship between the 2 salient pitches of the sad speech samples tended to approximate a minor third. Participants rated the speech samples for perceived emotion, and the use of numerous acoustic parameters as cues for emotional identification was modeled using regression analysis. The minor third was the most reliable cue for identifying sadness. Additional participants rated musical intervals for emotion, and their ratings verified the historical association between the musical minor third and sadness. These findings support the theory that human vocal expressions and music share an acoustic code for communicating sadness.
Speech processing using conditional observable maximum likelihood continuity mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, John; Nix, David
A computer implemented method enables the recognition of speech and speech characteristics. Parameters are initialized of first probability density functions that map between the symbols in the vocabulary of one or more sequences of speech codes that represent speech sounds and a continuity map. Parameters are also initialized of second probability density functions that map between the elements in the vocabulary of one or more desired sequences of speech transcription symbols and the continuity map. The parameters of the probability density functions are then trained to maximize the probabilities of the desired sequences of speech-transcription symbols. A new sequence ofmore » speech codes is then input to the continuity map having the trained first and second probability function parameters. A smooth path is identified on the continuity map that has the maximum probability for the new sequence of speech codes. The probability of each speech transcription symbol for each input speech code can then be output.« less
A 4.8 kbps code-excited linear predictive coder
NASA Technical Reports Server (NTRS)
Tremain, Thomas E.; Campbell, Joseph P., Jr.; Welch, Vanoy C.
1988-01-01
A secure voice system STU-3 capable of providing end-to-end secure voice communications (1984) was developed. The terminal for the new system will be built around the standard LPC-10 voice processor algorithm. The performance of the present STU-3 processor is considered to be good, its response to nonspeech sounds such as whistles, coughs and impulse-like noises may not be completely acceptable. Speech in noisy environments also causes problems with the LPC-10 voice algorithm. In addition, there is always a demand for something better. It is hoped that LPC-10's 2.4 kbps voice performance will be complemented with a very high quality speech coder operating at a higher data rate. This new coder is one of a number of candidate algorithms being considered for an upgraded version of the STU-3 in late 1989. The problems of designing a code-excited linear predictive (CELP) coder to provide very high quality speech at a 4.8 kbps data rate that can be implemented on today's hardware are considered.
Signal Prediction With Input Identification
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin
1999-01-01
A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.
Bailey, Dallin J; Blomgren, Michael; DeLong, Catharine; Berggren, Kiera; Wambaugh, Julie L
2017-06-22
The purpose of this article is to quantify and describe stuttering-like disfluencies in speakers with acquired apraxia of speech (AOS), utilizing the Lidcombe Behavioural Data Language (LBDL). Additional purposes include measuring test-retest reliability and examining the effect of speech sample type on disfluency rates. Two types of speech samples were elicited from 20 persons with AOS and aphasia: repetition of mono- and multisyllabic words from a protocol for assessing AOS (Duffy, 2013), and connected speech tasks (Nicholas & Brookshire, 1993). Sampling was repeated at 1 and 4 weeks following initial sampling. Stuttering-like disfluencies were coded using the LBDL, which is a taxonomy that focuses on motoric aspects of stuttering. Disfluency rates ranged from 0% to 13.1% for the connected speech task and from 0% to 17% for the word repetition task. There was no significant effect of speech sampling time on disfluency rate in the connected speech task, but there was a significant effect of time for the word repetition task. There was no significant effect of speech sample type. Speakers demonstrated both major types of stuttering-like disfluencies as categorized by the LBDL (fixed postures and repeated movements). Connected speech samples yielded more reliable tallies over repeated measurements. Suggestions are made for modifying the LBDL for use in AOS in order to further add to systematic descriptions of motoric disfluencies in this disorder.
Research in speech communication.
Flanagan, J
1995-10-24
Advances in digital speech processing are now supporting application and deployment of a variety of speech technologies for human/machine communication. In fact, new businesses are rapidly forming about these technologies. But these capabilities are of little use unless society can afford them. Happily, explosive advances in microelectronics over the past two decades have assured affordable access to this sophistication as well as to the underlying computing technology. The research challenges in speech processing remain in the traditionally identified areas of recognition, synthesis, and coding. These three areas have typically been addressed individually, often with significant isolation among the efforts. But they are all facets of the same fundamental issue--how to represent and quantify the information in the speech signal. This implies deeper understanding of the physics of speech production, the constraints that the conventions of language impose, and the mechanism for information processing in the auditory system. In ongoing research, therefore, we seek more accurate models of speech generation, better computational formulations of language, and realistic perceptual guides for speech processing--along with ways to coalesce the fundamental issues of recognition, synthesis, and coding. Successful solution will yield the long-sought dictation machine, high-quality synthesis from text, and the ultimate in low bit-rate transmission of speech. It will also open the door to language-translating telephony, where the synthetic foreign translation can be in the voice of the originating talker.
Hateful Help--A Practical Look at the Issue of Hate Speech.
ERIC Educational Resources Information Center
Shelton, Michael W.
Many college and university administrators have responded to the recent increase in hateful incidents on campus by putting hate speech codes into place. The establishment of speech codes has sparked a heated debate over the impact that such codes have upon free speech and First Amendment values. Some commentators have suggested that viewing hate…
Fifty years of progress in speech coding standards
NASA Astrophysics Data System (ADS)
Cox, Richard
2004-10-01
Over the past 50 years, speech coding has taken root worldwide. Early applications were for the military and transmission for telephone networks. The military gave equal priority to intelligibility and low bit rate. The telephone network gave priority to high quality and low delay. These illustrate three of the four areas in which requirements must be set for any speech coder application: bit rate, quality, delay, and complexity. While the military could afford relatively expensive terminal equipment for secure communications, the telephone network needed low cost for massive deployment in switches and transmission equipment worldwide. Today speech coders are at the heart of the wireless phones and telephone answering systems we use every day. In addition to the technology and technical invention that has occurred, standards make it possible for all these different systems to interoperate. The primary areas of standardization are the public switched telephone network, wireless telephony, and secure telephony for government and military applications. With the advent of IP telephony there are additional standardization efforts and challenges. In this talk the progress in all areas is reviewed as well as a reflection on Jim Flanagan's impact on this field during the past half century.
Psychoacoustic cues to emotion in speech prosody and music.
Coutinho, Eduardo; Dibben, Nicola
2013-01-01
There is strong evidence of shared acoustic profiles common to the expression of emotions in music and speech, yet relatively limited understanding of the specific psychoacoustic features involved. This study combined a controlled experiment and computational modelling to investigate the perceptual codes associated with the expression of emotion in the acoustic domain. The empirical stage of the study provided continuous human ratings of emotions perceived in excerpts of film music and natural speech samples. The computational stage created a computer model that retrieves the relevant information from the acoustic stimuli and makes predictions about the emotional expressiveness of speech and music close to the responses of human subjects. We show that a significant part of the listeners' second-by-second reported emotions to music and speech prosody can be predicted from a set of seven psychoacoustic features: loudness, tempo/speech rate, melody/prosody contour, spectral centroid, spectral flux, sharpness, and roughness. The implications of these results are discussed in the context of cross-modal similarities in the communication of emotion in the acoustic domain.
Effects of irrelevant sounds on phonological coding in reading comprehension and short-term memory.
Boyle, R; Coltheart, V
1996-05-01
The effects of irrelevant sounds on reading comprehension and short-term memory were studied in two experiments. In Experiment 1, adults judged the acceptability of written sentences during irrelevant speech, accompanied and unaccompanied singing, instrumental music, and in silence. Sentences varied in syntactic complexity: Simple sentences contained a right-branching relative clause (The applause pleased the woman that gave the speech) and syntactically complex sentences included a centre-embedded relative clause (The hay that the farmer stored fed the hungry animals). Unacceptable sentences either sounded acceptable (The dog chased the cat that eight up all his food) or did not (The man praised the child that sight up his spinach). Decision accuracy was impaired by syntactic complexity but not by irrelevant sounds. Phonological coding was indicated by increased errors on unacceptable sentences that sounded correct. These errors rates were unaffected by irrelevant sounds. Experiment 2 examined effects of irrelevant sounds on ordered recall of phonologically similar and dissimilar word lists. Phonological similarity impaired recall. Irrelevant speech reduced recall but did not interact with phonological similarity. The results of these experiments question assumptions about the relationship between speech input and phonological coding in reading and the short-term store.
IEP goals for school-age children with speech sound disorders.
Farquharson, Kelly; Tambyraja, Sherine R; Justice, Laura M; Redle, Erin E
2014-01-01
The purpose of the current study was to describe the current state of practice for writing Individualized Education Program (IEP) goals for children with speech sound disorders (SSDs). IEP goals for 146 children receiving services for SSDs within public school systems across two states were coded for their dominant theoretical framework and overall quality. A dichotomous scheme was used for theoretical framework coding: cognitive-linguistic or sensory-motor. Goal quality was determined by examining 7 specific indicators outlined by an empirically tested rating tool. In total, 147 long-term and 490 short-term goals were coded. The results revealed no dominant theoretical framework for long-term goals, whereas short-term goals largely reflected a sensory-motor framework. In terms of quality, the majority of speech production goals were functional and generalizable in nature, but were not able to be easily targeted during common daily tasks or by other members of the IEP team. Short-term goals were consistently rated higher in quality domains when compared to long-term goals. The current state of practice for writing IEP goals for children with SSDs indicates that theoretical framework may be eclectic in nature and likely written to support the individual needs of children with speech sound disorders. Further investigation is warranted to determine the relations between goal quality and child outcomes. (1) Identify two predominant theoretical frameworks and discuss how they apply to IEP goal writing. (2) Discuss quality indicators as they relate to IEP goals for children with speech sound disorders. (3) Discuss the relationship between long-term goals level of quality and related theoretical frameworks. (4) Identify the areas in which business-as-usual IEP goals exhibit strong quality.
1988-05-01
Seeciv Limited- System for varying Senses term filter capacity output until some Figure 2. Original limited-capacity channel model (Frim Broadbent, 1958) S...2 Figure 2. Original limited-capacity channel model (From Broadbent, 1958) .... 10 Figure 3. Experimental...unlimited variety of human voices for digital recording sources. Synthesis by Analysis Analysis-synthesis methods electronically model the human voice
Development of a good-quality speech coder for transmission over noisy channels at 2.4 kb/s
NASA Astrophysics Data System (ADS)
Viswanathan, V. R.; Berouti, M.; Higgins, A.; Russell, W.
1982-03-01
This report describes the development, study, and experimental results of a 2.4 kb/s speech coder called harmonic deviations (HDV) vocoder, which transmits good-quality speech over noisy channels with bit-error rates of up to 1%. The HDV coder is based on the linear predictive coding (LPC) vocoder, and it transmits additional information over and above the data transmitted by the LPC vocoder, in the form of deviations between the speech spectrum and the LPC all-pole model spectrum at a selected set of frequencies. At the receiver, the spectral deviations are used to generate the excitation signal for the all-pole synthesis filter. The report describes and compares several methods for extracting the spectral deviations from the speech signal and for encoding them. To limit the bit-rate of the HDV coder to 2.4 kb/s the report discusses several methods including orthogonal transformation and minimum-mean-square-error scalar quantization of log area ratios, two-stage vector-scalar quantization, and variable frame rate transmission. The report also presents the results of speech-quality optimization of the HDV coder at 2.4 kb/s.
Human phoneme recognition depending on speech-intrinsic variability.
Meyer, Bernd T; Jürgens, Tim; Wesker, Thorsten; Brand, Thomas; Kollmeier, Birger
2010-11-01
The influence of different sources of speech-intrinsic variation (speaking rate, effort, style and dialect or accent) on human speech perception was investigated. In listening experiments with 16 listeners, confusions of consonant-vowel-consonant (CVC) and vowel-consonant-vowel (VCV) sounds in speech-weighted noise were analyzed. Experiments were based on the OLLO logatome speech database, which was designed for a man-machine comparison. It contains utterances spoken by 50 speakers from five dialect/accent regions and covers several intrinsic variations. By comparing results depending on intrinsic and extrinsic variations (i.e., different levels of masking noise), the degradation induced by variabilities can be expressed in terms of the SNR. The spectral level distance between the respective speech segment and the long-term spectrum of the masking noise was found to be a good predictor for recognition rates, while phoneme confusions were influenced by the distance to spectrally close phonemes. An analysis based on transmitted information of articulatory features showed that voicing and manner of articulation are comparatively robust cues in the presence of intrinsic variations, whereas the coding of place is more degraded. The database and detailed results have been made available for comparisons between human speech recognition (HSR) and automatic speech recognizers (ASR).
Results using the OPAL strategy in Mandarin speaking cochlear implant recipients.
Vandali, Andrew E; Dawson, Pam W; Arora, Komal
2017-01-01
To evaluate the effectiveness of an experimental pitch-coding strategy for improving recognition of Mandarin lexical tone in cochlear implant (CI) recipients. Adult CI recipients were tested on recognition of Mandarin tones in quiet and speech-shaped noise at a signal-to-noise ratio of +10 dB; Mandarin sentence speech-reception threshold (SRT) in speech-shaped noise; and pitch discrimination of synthetic complex-harmonic tones in quiet. Two versions of the experimental strategy were examined: (OPAL) linear (1:1) mapping of fundamental frequency (F0) to the coded modulation rate; and (OPAL+) transposed mapping of high F0s to a lower coded rate. Outcomes were compared to results using the clinical ACE™ strategy. Five Mandarin speaking users of Nucleus® cochlear implants. A small but significant benefit in recognition of lexical tones was observed using OPAL compared to ACE in noise, but not in quiet, and not for OPAL+ compared to ACE or OPAL in quiet or noise. Sentence SRTs were significantly better using OPAL+ and comparable using OPAL to those using ACE. No differences in pitch discrimination thresholds were observed across strategies. OPAL can provide benefits to Mandarin lexical tone recognition in moderately noisy conditions and preserve perception of Mandarin sentences in challenging noise conditions.
Research in speech communication.
Flanagan, J
1995-01-01
Advances in digital speech processing are now supporting application and deployment of a variety of speech technologies for human/machine communication. In fact, new businesses are rapidly forming about these technologies. But these capabilities are of little use unless society can afford them. Happily, explosive advances in microelectronics over the past two decades have assured affordable access to this sophistication as well as to the underlying computing technology. The research challenges in speech processing remain in the traditionally identified areas of recognition, synthesis, and coding. These three areas have typically been addressed individually, often with significant isolation among the efforts. But they are all facets of the same fundamental issue--how to represent and quantify the information in the speech signal. This implies deeper understanding of the physics of speech production, the constraints that the conventions of language impose, and the mechanism for information processing in the auditory system. In ongoing research, therefore, we seek more accurate models of speech generation, better computational formulations of language, and realistic perceptual guides for speech processing--along with ways to coalesce the fundamental issues of recognition, synthesis, and coding. Successful solution will yield the long-sought dictation machine, high-quality synthesis from text, and the ultimate in low bit-rate transmission of speech. It will also open the door to language-translating telephony, where the synthetic foreign translation can be in the voice of the originating talker. Images Fig. 1 Fig. 2 Fig. 5 Fig. 8 Fig. 11 Fig. 12 Fig. 13 PMID:7479806
Spotlight on Speech Codes 2012: The State of Free Speech on Our Nation's Campuses
ERIC Educational Resources Information Center
Foundation for Individual Rights in Education (NJ1), 2012
2012-01-01
The U.S. Supreme Court has called America's colleges and universities "vital centers for the Nation's intellectual life," but the reality today is that many of these institutions severely restrict free speech and open debate. Speech codes--policies prohibiting student and faculty speech that would, outside the bounds of campus, be…
Simplified APC for Space Shuttle applications. [Adaptive Predictive Coding for speech transmission
NASA Technical Reports Server (NTRS)
Hutchins, S. E.; Batson, B. H.
1975-01-01
This paper describes an 8 kbps adaptive predictive digital speech transmission system which was designed for potential use in the Space Shuttle Program. The system was designed to provide good voice quality in the presence of both cabin noise on board the Shuttle and the anticipated bursty channel. Minimal increase in size, weight, and power over the current high data rate system was also a design objective.
Tuning time-frequency methods for the detection of metered HF speech
NASA Astrophysics Data System (ADS)
Nelson, Douglas J.; Smith, Lawrence H.
2002-12-01
Speech is metered if the stresses occur at a nearly regular rate. Metered speech is common in poetry, and it can occur naturally in speech, if the speaker is spelling a word or reciting words or numbers from a list. In radio communications, the CQ request, call sign and other codes are frequently metered. In tactical communications and air traffic control, location, heading and identification codes may be metered. Moreover metering may be expected to survive even in HF communications, which are corrupted by noise, interference and mistuning. For this environment, speech recognition and conventional machine-based methods are not effective. We describe Time-Frequency methods which have been adapted successfully to the problem of mitigation of HF signal conditions and detection of metered speech. These methods are based on modeled time and frequency correlation properties of nearly harmonic functions. We derive these properties and demonstrate a performance gain over conventional correlation and spectral methods. Finally, in addressing the problem of HF single sideband (SSB) communications, the problems of carrier mistuning, interfering signals, such as manual Morse, and fast automatic gain control (AGC) must be addressed. We demonstrate simple methods which may be used to blindly mitigate mistuning and narrowband interference, and effectively invert the fast automatic gain function.
Neural Coding of Formant-Exaggerated Speech in the Infant Brain
ERIC Educational Resources Information Center
Zhang, Yang; Koerner, Tess; Miller, Sharon; Grice-Patil, Zach; Svec, Adam; Akbari, David; Tusler, Liz; Carney, Edward
2011-01-01
Speech scientists have long proposed that formant exaggeration in infant-directed speech plays an important role in language acquisition. This event-related potential (ERP) study investigated neural coding of formant-exaggerated speech in 6-12-month-old infants. Two synthetic /i/ vowels were presented in alternating blocks to test the effects of…
Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise.
Millman, Rebecca E; Mattys, Sven L; Gouws, André D; Prendergast, Garreth
2017-08-09
Verbal communication in noisy backgrounds is challenging. Understanding speech in background noise that fluctuates in intensity over time is particularly difficult for hearing-impaired listeners with a sensorineural hearing loss (SNHL). The reduction in fast-acting cochlear compression associated with SNHL exaggerates the perceived fluctuations in intensity in amplitude-modulated sounds. SNHL-induced changes in the coding of amplitude-modulated sounds may have a detrimental effect on the ability of SNHL listeners to understand speech in the presence of modulated background noise. To date, direct evidence for a link between magnified envelope coding and deficits in speech identification in modulated noise has been absent. Here, magnetoencephalography was used to quantify the effects of SNHL on phase locking to the temporal envelope of modulated noise (envelope coding) in human auditory cortex. Our results show that SNHL enhances the amplitude of envelope coding in posteromedial auditory cortex, whereas it enhances the fidelity of envelope coding in posteromedial and posterolateral auditory cortex. This dissociation was more evident in the right hemisphere, demonstrating functional lateralization in enhanced envelope coding in SNHL listeners. However, enhanced envelope coding was not perceptually beneficial. Our results also show that both hearing thresholds and, to a lesser extent, magnified cortical envelope coding in left posteromedial auditory cortex predict speech identification in modulated background noise. We propose a framework in which magnified envelope coding in posteromedial auditory cortex disrupts the segregation of speech from background noise, leading to deficits in speech perception in modulated background noise. SIGNIFICANCE STATEMENT People with hearing loss struggle to follow conversations in noisy environments. Background noise that fluctuates in intensity over time poses a particular challenge. Using magnetoencephalography, we demonstrate anatomically distinct cortical representations of modulated noise in normal-hearing and hearing-impaired listeners. This work provides the first link among hearing thresholds, the amplitude of cortical representations of modulated sounds, and the ability to understand speech in modulated background noise. In light of previous work, we propose that magnified cortical representations of modulated sounds disrupt the separation of speech from modulated background noise in auditory cortex. Copyright © 2017 Millman et al.
NASA Technical Reports Server (NTRS)
Gray, Robert M.
1989-01-01
During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.
Speech coding at low to medium bit rates
NASA Astrophysics Data System (ADS)
Leblanc, Wilfred Paul
1992-09-01
Improved search techniques coupled with improved codebook design methodologies are proposed to improve the performance of conventional code-excited linear predictive coders for speech. Improved methods for quantizing the short term filter are developed by employing a tree search algorithm and joint codebook design to multistage vector quantization. Joint codebook design procedures are developed to design locally optimal multistage codebooks. Weighting during centroid computation is introduced to improve the outlier performance of the multistage vector quantizer. Multistage vector quantization is shown to be both robust against input characteristics and in the presence of channel errors. Spectral distortions of about 1 dB are obtained at rates of 22-28 bits/frame. Structured codebook design procedures for excitation in code-excited linear predictive coders are compared to general codebook design procedures. Little is lost using significant structure in the excitation codebooks while greatly reducing the search complexity. Sparse multistage configurations are proposed for reducing computational complexity and memory size. Improved search procedures are applied to code-excited linear prediction which attempt joint optimization of the short term filter, the adaptive codebook, and the excitation. Improvements in signal to noise ratio of 1-2 dB are realized in practice.
Auditory-neurophysiological responses to speech during early childhood: Effects of background noise
White-Schwoch, Travis; Davies, Evan C.; Thompson, Elaine C.; Carr, Kali Woodruff; Nicol, Trent; Bradlow, Ann R.; Kraus, Nina
2015-01-01
Early childhood is a critical period of auditory learning, during which children are constantly mapping sounds to meaning. But learning rarely occurs under ideal listening conditions—children are forced to listen against a relentless din. This background noise degrades the neural coding of these critical sounds, in turn interfering with auditory learning. Despite the importance of robust and reliable auditory processing during early childhood, little is known about the neurophysiology underlying speech processing in children so young. To better understand the physiological constraints these adverse listening scenarios impose on speech sound coding during early childhood, auditory-neurophysiological responses were elicited to a consonant-vowel syllable in quiet and background noise in a cohort of typically-developing preschoolers (ages 3–5 yr). Overall, responses were degraded in noise: they were smaller, less stable across trials, slower, and there was poorer coding of spectral content and the temporal envelope. These effects were exacerbated in response to the consonant transition relative to the vowel, suggesting that the neural coding of spectrotemporally-dynamic speech features is more tenuous in noise than the coding of static features—even in children this young. Neural coding of speech temporal fine structure, however, was more resilient to the addition of background noise than coding of temporal envelope information. Taken together, these results demonstrate that noise places a neurophysiological constraint on speech processing during early childhood by causing a breakdown in neural processing of speech acoustics. These results may explain why some listeners have inordinate difficulties understanding speech in noise. Speech-elicited auditory-neurophysiological responses offer objective insight into listening skills during early childhood by reflecting the integrity of neural coding in quiet and noise; this paper documents typical response properties in this age group. These normative metrics may be useful clinically to evaluate auditory processing difficulties during early childhood. PMID:26113025
Techniques for the Enhancement of Linear Predictive Speech Coding in Adverse Conditions
NASA Astrophysics Data System (ADS)
Wrench, Alan A.
Available from UMI in association with The British Library. Requires signed TDF. The Linear Prediction model was first applied to speech two and a half decades ago. Since then it has been the subject of intense research and continues to be one of the principal tools in the analysis of speech. Its mathematical tractability makes it a suitable subject for study and its proven success in practical applications makes the study worthwhile. The model is known to be unsuited to speech corrupted by background noise. This has led many researchers to investigate ways of enhancing the speech signal prior to Linear Predictive analysis. In this thesis this body of work is extended. The chosen application is low bit-rate (2.4 kbits/sec) speech coding. For this task the performance of the Linear Prediction algorithm is crucial because there is insufficient bandwidth to encode the error between the modelled speech and the original input. A review of the fundamentals of Linear Prediction and an independent assessment of the relative performance of methods of Linear Prediction modelling are presented. A new method is proposed which is fast and facilitates stability checking, however, its stability is shown to be unacceptably poorer than existing methods. A novel supposition governing the positioning of the analysis frame relative to a voiced speech signal is proposed and supported by observation. The problem of coding noisy speech is examined. Four frequency domain speech processing techniques are developed and tested. These are: (i) Combined Order Linear Prediction Spectral Estimation; (ii) Frequency Scaling According to an Aural Model; (iii) Amplitude Weighting Based on Perceived Loudness; (iv) Power Spectrum Squaring. These methods are compared with the Recursive Linearised Maximum a Posteriori method. Following on from work done in the frequency domain, a time domain implementation of spectrum squaring is developed. In addition, a new method of power spectrum estimation is developed based on the Minimum Variance approach. This new algorithm is shown to be closely related to Linear Prediction but produces slightly broader spectral peaks. Spectrum squaring is applied to both the new algorithm and standard Linear Prediction and their relative performance is assessed. (Abstract shortened by UMI.).
Auditory Speech Perception Tests in Relation to the Coding Strategy in Cochlear Implant.
Bazon, Aline Cristine; Mantello, Erika Barioni; Gonçales, Alina Sanches; Isaac, Myriam de Lima; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa
2016-07-01
The objective of the evaluation of auditory perception of cochlear implant users is to determine how the acoustic signal is processed, leading to the recognition and understanding of sound. To investigate the differences in the process of auditory speech perception in individuals with postlingual hearing loss wearing a cochlear implant, using two different speech coding strategies, and to analyze speech perception and handicap perception in relation to the strategy used. This study is prospective cross-sectional cohort study of a descriptive character. We selected ten cochlear implant users that were characterized by hearing threshold by the application of speech perception tests and of the Hearing Handicap Inventory for Adults. There was no significant difference when comparing the variables subject age, age at acquisition of hearing loss, etiology, time of hearing deprivation, time of cochlear implant use and mean hearing threshold with the cochlear implant with the shift in speech coding strategy. There was no relationship between lack of handicap perception and improvement in speech perception in both speech coding strategies used. There was no significant difference between the strategies evaluated and no relation was observed between them and the variables studied.
Ackermann, Hermann; Mathiak, Klaus; Riecker, Axel
2007-01-01
A classical tenet of clinical neurology proposes that cerebellar disorders may give rise to speech motor disorders (ataxic dysarthria), but spare perceptual and cognitive aspects of verbal communication. During the past two decades, however, a variety of higher-order deficits of speech production, e.g., more or less exclusive agrammatism, amnesic or transcortical motor aphasia, have been noted in patients with vascular cerebellar lesions, and transient mutism following resection of posterior fossa tumors in children may develop into similar constellations. Perfusion studies provided evidence for cerebello-cerebral diaschisis as a possible pathomechanism in these instances. Tight functional connectivity between the language-dominant frontal lobe and the contralateral cerebellar hemisphere represents a prerequisite of such long-distance effects. Recent functional imaging data point at a contribution of the right cerebellar hemisphere, concomitant with language-dominant dorsolateral and medial frontal areas, to the temporal organization of a prearticulatory verbal code ('inner speech'), in terms of the sequencing of syllable strings at a speaker's habitual speech rate. Besides motor control, this network also appears to be engaged in executive functions, e.g., subvocal rehearsal mechanisms of verbal working memory, and seems to be recruited during distinct speech perception tasks. Taken together, thus, a prearticulatory verbal code bound to reciprocal right cerebellar/left frontal interactions might represent a common platform for a variety of cerebellar engagements in cognitive functions. The distinct computational operation provided by cerebellar structures within this framework appears to be the concatenation of syllable strings into coarticulated sequences.
Ultra-narrow bandwidth voice coding
Holzrichter, John F [Berkeley, CA; Ng, Lawrence C [Danville, CA
2007-01-09
A system of removing excess information from a human speech signal and coding the remaining signal information, transmitting the coded signal, and reconstructing the coded signal. The system uses one or more EM wave sensors and one or more acoustic microphones to determine at least one characteristic of the human speech signal.
NASA Astrophysics Data System (ADS)
Riera-Palou, Felip; den Brinker, Albertus C.
2007-12-01
This paper introduces a new audio and speech broadband coding technique based on the combination of a pulse excitation coder and a standardized parametric coder, namely, MPEG-4 high-quality parametric coder. After presenting a series of enhancements to regular pulse excitation (RPE) to make it suitable for the modeling of broadband signals, it is shown how pulse and parametric codings complement each other and how they can be merged to yield a layered bit stream scalable coder able to operate at different points in the quality bit rate plane. The performance of the proposed coder is evaluated in a listening test. The major result is that the extra functionality of the bit stream scalability does not come at the price of a reduced performance since the coder is competitive with standardized coders (MP3, AAC, SSC).
Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach
NASA Astrophysics Data System (ADS)
Feldbauer, Christian; Kubin, Gernot; Kleijn, W. Bastiaan
2005-12-01
Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel) coding.
JND measurements of the speech formants parameters and its implication in the LPC pole quantization
NASA Astrophysics Data System (ADS)
Orgad, Yaakov
1988-08-01
The inherent sensitivity of auditory perception is explicitly used with the objective of designing an efficient speech encoder. Speech can be modelled by a filter representing the vocal tract shape that is driven by an excitation signal representing glottal air flow. This work concentrates on the filter encoding problem, assuming that excitation signal encoding is optimal. Linear predictive coding (LPC) techniques were used to model a short speech segment by an all-pole filter; each pole was directly related to the speech formants. Measurements were made of the auditory just noticeable difference (JND) corresponding to the natural speech formants, with the LPC filter poles as the best candidates to represent the speech spectral envelope. The JND is the maximum precision required in speech quantization; it was defined on the basis of the shift of one pole parameter of a single frame of a speech segment, necessary to induce subjective perception of the distortion, with .75 probability. The average JND in LPC filter poles in natural speech was found to increase with increasing pole bandwidth and, to a lesser extent, frequency. The JND measurements showed a large spread of the residuals around the average values, indicating that inter-formant coupling and, perhaps, other, not yet fully understood, factors were not taken into account at this stage of the research. A future treatment should consider these factors. The average JNDs obtained in this work were used to design pole quantization tables for speech coding and provided a better bit-rate than the standard quantizer of reflection coefficient; a 30-bits-per-frame pole quantizer yielded a speech quality similar to that obtained with a standard 41-bits-per-frame reflection coefficient quantizer. Owing to the complexity of the numerical root extraction system, the practical implementation of the pole quantization approach remains to be proved.
Language Recognition via Sparse Coding
2016-09-08
a posteriori (MAP) adaptation scheme that further optimizes the discriminative quality of sparse-coded speech fea - tures. We empirically validate the...significantly improve the discriminative quality of sparse-coded speech fea - tures. In Section 4, we evaluate the proposed approaches against an i-vector
NASA Technical Reports Server (NTRS)
Sandor, Aniko; Moses, Haifa
2016-01-01
Speech alarms have been used extensively in aviation and included in International Building Codes (IBC) and National Fire Protection Association's (NFPA) Life Safety Code. However, they have not been implemented on space vehicles. Previous studies conducted at NASA JSC showed that speech alarms lead to faster identification and higher accuracy. This research evaluated updated speech and tone alerts in a laboratory environment and in the Human Exploration Research Analog (HERA) in a realistic setup.
Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model
Rallapalli, Varsha H.
2016-01-01
Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to: (a) reduce S + N envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.
Near-toll quality digital speech transmission in the mobile satellite service
NASA Technical Reports Server (NTRS)
Townes, S. A.; Divsalar, D.
1986-01-01
This paper discusses system considerations for near-toll quality digital speech transmission in a 5 kHz mobile satellite system channel. Tradeoffs are shown for power performance versus delay for a 4800 bps speech compression system in conjunction with a 16 state rate 2/3 trellis coded 8PSK modulation system. The suggested system has an additional 150 ms of delay beyond the propagation delay and requires an E(b)/N(0) of about 7 dB for a Ricean channel assumption with line-of-sight to diffuse component ratio of 10 assuming ideal synchronization. An additional loss of 2 to 3 dB is expected for synchronization in fading environment.
Improved Speech Coding Based on Open-Loop Parameter Estimation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Chen, Ya-Chin; Longman, Richard W.
2000-01-01
A nonlinear optimization algorithm for linear predictive speech coding was developed early that not only optimizes the linear model coefficients for the open loop predictor, but does the optimization including the effects of quantization of the transmitted residual. It also simultaneously optimizes the quantization levels used for each speech segment. In this paper, we present an improved method for initialization of this nonlinear algorithm, and demonstrate substantial improvements in performance. In addition, the new procedure produces monotonically improving speech quality with increasing numbers of bits used in the transmitted error residual. Examples of speech encoding and decoding are given for 8 speech segments and signal to noise levels as high as 47 dB are produced. As in typical linear predictive coding, the optimization is done on the open loop speech analysis model. Here we demonstrate that minimizing the error of the closed loop speech reconstruction, instead of the simpler open loop optimization, is likely to produce negligible improvement in speech quality. The examples suggest that the algorithm here is close to giving the best performance obtainable from a linear model, for the chosen order with the chosen number of bits for the codebook.
Civility on Campus: Harassment Codes vs. Free Speech. ASHE Annual Meeting Paper.
ERIC Educational Resources Information Center
Nordin, Virginia Davis
In response to the resurgence of racial incidents and increased "gay-bashing" on higher education campuses in recent years, campus authorities have instituted harassment codes thereby giving rise to a conflicts with free speech. Similar conflicts and challenges to free speech have arisen recently in a municipal context such as a St. Paul…
Hansen, J H; Nandkumar, S
1995-01-01
The formulation of reliable signal processing algorithms for speech coding and synthesis require the selection of a prior criterion of performance. Though coding efficiency (bits/second) or computational requirements can be used, a final performance measure must always include speech quality. In this paper, three objective speech quality measures are considered with respect to quality assessment for American English, noisy American English, and noise-free versions of seven languages. The purpose is to determine whether objective quality measures can be used to quantify changes in quality for a given voice coding method, with a known subjective performance level, as background noise or language conditions are changed. The speech coding algorithm chosen is regular-pulse excitation with long-term prediction (RPE-LTP), which has been chosen as the standard voice compression algorithm for the European Digital Mobile Radio system. Three areas are considered for objective quality assessment which include: (i) vocoder performance for American English in a noise-free environment, (ii) speech quality variation for three additive background noise sources, and (iii) noise-free performance for seven languages which include English, Japanese, Finnish, German, Hindi, Spanish, and French. It is suggested that although existing objective quality measures will never replace subjective testing, they can be a useful means of assessing changes in performance, identifying areas for improvement in algorithm design, and augmenting subjective quality tests for voice coding/compression algorithms in noise-free, noisy, and/or non-English applications.
Spatiotemporal dynamics of auditory attention synchronize with speech
Wöstmann, Malte; Herrmann, Björn; Maess, Burkhard
2016-01-01
Attention plays a fundamental role in selectively processing stimuli in our environment despite distraction. Spatial attention induces increasing and decreasing power of neural alpha oscillations (8–12 Hz) in brain regions ipsilateral and contralateral to the locus of attention, respectively. This study tested whether the hemispheric lateralization of alpha power codes not just the spatial location but also the temporal structure of the stimulus. Participants attended to spoken digits presented to one ear and ignored tightly synchronized distracting digits presented to the other ear. In the magnetoencephalogram, spatial attention induced lateralization of alpha power in parietal, but notably also in auditory cortical regions. This alpha power lateralization was not maintained steadily but fluctuated in synchrony with the speech rate and lagged the time course of low-frequency (1–5 Hz) sensory synchronization. Higher amplitude of alpha power modulation at the speech rate was predictive of a listener’s enhanced performance of stream-specific speech comprehension. Our findings demonstrate that alpha power lateralization is modulated in tune with the sensory input and acts as a spatiotemporal filter controlling the read-out of sensory content. PMID:27001861
Xiao, Bo; Imel, Zac E.; Georgiou, Panayiotis G.; Atkins, David C.; Narayanan, Shrikanth S.
2015-01-01
The technology for evaluating patient-provider interactions in psychotherapy–observational coding–has not changed in 70 years. It is labor-intensive, error prone, and expensive, limiting its use in evaluating psychotherapy in the real world. Engineering solutions from speech and language processing provide new methods for the automatic evaluation of provider ratings from session recordings. The primary data are 200 Motivational Interviewing (MI) sessions from a study on MI training methods with observer ratings of counselor empathy. Automatic Speech Recognition (ASR) was used to transcribe sessions, and the resulting words were used in a text-based predictive model of empathy. Two supporting datasets trained the speech processing tasks including ASR (1200 transcripts from heterogeneous psychotherapy sessions and 153 transcripts and session recordings from 5 MI clinical trials). The accuracy of computationally-derived empathy ratings were evaluated against human ratings for each provider. Computationally-derived empathy scores and classifications (high vs. low) were highly accurate against human-based codes and classifications, with a correlation of 0.65 and F-score (a weighted average of sensitivity and specificity) of 0.86, respectively. Empathy prediction using human transcription as input (as opposed to ASR) resulted in a slight increase in prediction accuracies, suggesting that the fully automatic system with ASR is relatively robust. Using speech and language processing methods, it is possible to generate accurate predictions of provider performance in psychotherapy from audio recordings alone. This technology can support large-scale evaluation of psychotherapy for dissemination and process studies. PMID:26630392
Iles, Jane; Spiby, Helen; Slade, Pauline
2014-10-01
Little is known about what constitutes key components of partner support during the childbirth experience. This study modified the five minute speech sample, a measure of expressed emotion (EE), for use with new parents in the immediate postpartum. A coding framework was developed to rate the speech samples on dimensions of couple support. Associations were explored between these codes and subsequent symptoms of postnatal depression and posttraumatic stress. 372 couples were recruited in the early postpartum and individually provided short speech samples. Posttraumatic stress and postnatal depression symptoms were assessed via questionnaire measures at six and thirteen weeks. Two hundred and twelve couples completed all time-points. Key elements of supportive interactions were identified and reliably categorised. Mothers' posttraumatic stress was associated with criticisms of the partner during childbirth, general relationship criticisms and men's perception of helplessness. Postnatal depression was associated with absence of partner empathy and any positive comments regarding the partner's support. The content of new parents' descriptions of labour and childbirth, their partner during labour and birth and their relationship within the immediate postpartum may have significant implications for later psychological functioning. Interventions to enhance specific supportive elements between couples during the antenatal period merit development and evaluation.
Vaerenberg, Bart; Péan, Vincent; Lesbros, Guillaume; De Ceulaer, Geert; Schauwers, Karen; Daemers, Kristin; Gnansia, Dan; Govaerts, Paul J
2013-06-01
To assess the auditory performance of Digisonic(®) cochlear implant users with electric stimulation (ES) and electro-acoustic stimulation (EAS) with special attention to the processing of low-frequency temporal fine structure. Six patients implanted with a Digisonic(®) SP implant and showing low-frequency residual hearing were fitted with the Zebra(®) speech processor providing both electric and acoustic stimulation. Assessment consisted of monosyllabic speech identification tests in quiet and in noise at different presentation levels, and a pitch discrimination task using harmonic and disharmonic intonating complex sounds ( Vaerenberg et al., 2011 ). These tests investigate place and time coding through pitch discrimination. All tasks were performed with ES only and with EAS. Speech results in noise showed significant improvement with EAS when compared to ES. Whereas EAS did not yield better results in the harmonic intonation test, the improvements in the disharmonic intonation test were remarkable, suggesting better coding of pitch cues requiring phase locking. These results suggest that patients with residual hearing in the low-frequency range still have good phase-locking capacities, allowing them to process fine temporal information. ES relies mainly on place coding but provides poor low-frequency temporal coding, whereas EAS also provides temporal coding in the low-frequency range. Patients with residual phase-locking capacities can make use of these cues.
Neural evidence for predictive coding in auditory cortex during speech production.
Okada, Kayoko; Matchin, William; Hickok, Gregory
2018-02-01
Recent models of speech production suggest that motor commands generate forward predictions of the auditory consequences of those commands, that these forward predications can be used to monitor and correct speech output, and that this system is hierarchically organized (Hickok, Houde, & Rong, Neuron, 69(3), 407--422, 2011; Pickering & Garrod, Behavior and Brain Sciences, 36(4), 329--347, 2013). Recent psycholinguistic research has shown that internally generated speech (i.e., imagined speech) produces different types of errors than does overt speech (Oppenheim & Dell, Cognition, 106(1), 528--537, 2008; Oppenheim & Dell, Memory & Cognition, 38(8), 1147-1160, 2010). These studies suggest that articulated speech might involve predictive coding at additional levels than imagined speech. The current fMRI experiment investigates neural evidence of predictive coding in speech production. Twenty-four participants from UC Irvine were recruited for the study. Participants were scanned while they were visually presented with a sequence of words that they reproduced in sync with a visual metronome. On each trial, they were cued to either silently articulate the sequence or to imagine the sequence without overt articulation. As expected, silent articulation and imagined speech both engaged a left hemisphere network previously implicated in speech production. A contrast of silent articulation with imagined speech revealed greater activation for articulated speech in inferior frontal cortex, premotor cortex and the insula in the left hemisphere, consistent with greater articulatory load. Although both conditions were silent, this contrast also produced significantly greater activation in auditory cortex in dorsal superior temporal gyrus in both hemispheres. We suggest that these activations reflect forward predictions arising from additional levels of the perceptual/motor hierarchy that are involved in monitoring the intended speech output.
Bilingual Voicing: A Study of Code-Switching in the Reported Speech of Finnish Immigrants in Estonia
ERIC Educational Resources Information Center
Frick, Maria; Riionheimo, Helka
2013-01-01
Through a conversation analytic investigation of Finnish-Estonian bilingual (direct) reported speech (i.e., voicing) by Finns who live in Estonia, this study shows how code-switching is used as a double contextualization device. The code-switched voicings are shaped by the on-going interactional situation, serving its needs by opening up a context…
Look at the Gato! Code-Switching in Speech to Toddlers
ERIC Educational Resources Information Center
Bail, Amelie; Morini, Giovanna; Newman, Rochelle S.
2015-01-01
We examined code-switching (CS) in the speech of twenty-four bilingual caregivers when speaking with their 18- to 24-month-old children. All parents CS at least once in a short play session, and some code-switched quite often (over 1/3 of utterances). This CS included both inter-sentential and intra-sentential switches, suggesting that at least…
Abrams, Daniel A; Nicol, Trent; White-Schwoch, Travis; Zecker, Steven; Kraus, Nina
2017-05-01
Speech perception relies on a listener's ability to simultaneously resolve multiple temporal features in the speech signal. Little is known regarding neural mechanisms that enable the simultaneous coding of concurrent temporal features in speech. Here we show that two categories of temporal features in speech, the low-frequency speech envelope and periodicity cues, are processed by distinct neural mechanisms within the same population of cortical neurons. We measured population activity in primary auditory cortex of anesthetized guinea pig in response to three variants of a naturally produced sentence. Results show that the envelope of population responses closely tracks the speech envelope, and this cortical activity more closely reflects wider bandwidths of the speech envelope compared to narrow bands. Additionally, neuronal populations represent the fundamental frequency of speech robustly with phase-locked responses. Importantly, these two temporal features of speech are simultaneously observed within neuronal ensembles in auditory cortex in response to clear, conversation, and compressed speech exemplars. Results show that auditory cortical neurons are adept at simultaneously resolving multiple temporal features in extended speech sentences using discrete coding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.
Yoo, Sejin; Chung, Jun-Young; Jeon, Hyeon-Ae; Lee, Kyoung-Min; Kim, Young-Bo; Cho, Zang-Hee
2012-07-01
Speech production is inextricably linked to speech perception, yet they are usually investigated in isolation. In this study, we employed a verbal-repetition task to identify the neural substrates of speech processing with two ends active simultaneously using functional MRI. Subjects verbally repeated auditory stimuli containing an ambiguous vowel sound that could be perceived as either a word or a pseudoword depending on the interpretation of the vowel. We found verbal repetition commonly activated the audition-articulation interface bilaterally at Sylvian fissures and superior temporal sulci. Contrasting word-versus-pseudoword trials revealed neural activities unique to word repetition in the left posterior middle temporal areas and activities unique to pseudoword repetition in the left inferior frontal gyrus. These findings imply that the tasks are carried out using different speech codes: an articulation-based code of pseudowords and an acoustic-phonetic code of words. It also supports the dual-stream model and imitative learning of vocabulary. Copyright © 2012 Elsevier Inc. All rights reserved.
A possible role for a paralemniscal auditory pathway in the coding of slow temporal information
Abrams, Daniel A.; Nicol, Trent; Zecker, Steven; Kraus, Nina
2010-01-01
Low frequency temporal information present in speech is critical for normal perception, however the neural mechanism underlying the differentiation of slow rates in acoustic signals is not known. Data from the rat trigeminal system suggest that the paralemniscal pathway may be specifically tuned to code low-frequency temporal information. We tested whether this phenomenon occurs in the auditory system by measuring the representation of temporal rate in lemniscal and paralemniscal auditory thalamus and cortex in guinea pig. Similar to the trigeminal system, responses measured in auditory thalamus indicate that slow rates are differentially represented in a paralemniscal pathway. In cortex, both lemniscal and paralemniscal neurons indicated sensitivity to slow rates. We speculate that a paralemniscal pathway in the auditory system may be specifically tuned to code low frequency temporal information present in acoustic signals. These data suggest that somatosensory and auditory modalities have parallel sub-cortical pathways that separately process slow rates and the spatial representation of the sensory periphery. PMID:21094680
Harris, Margaret; Moreno, Constanza
2006-01-01
Nine children with severe-profound prelingual hearing loss and single-word reading scores not more than 10 months behind chronological age (Good Readers) were matched with 9 children whose reading lag was at least 15 months (Poor Readers). Good Readers had significantly higher spelling and reading comprehension scores. They produced significantly more phonetic errors (indicating the use of phonological coding) and more often correctly represented the number of syllables in spelling than Poor Readers. They also scored more highly on orthographic awareness and were better at speech reading. Speech intelligibility was the same in the two groups. Cluster analysis revealed that only three Good Readers showed strong evidence of phonetic coding in spelling although seven had good representation of syllables; only four had high orthographic awareness scores. However, all 9 children were good speech readers, suggesting that a phonological code derived through speech reading may underpin reading success for deaf children.
More About Vector Adaptive/Predictive Coding Of Speech
NASA Technical Reports Server (NTRS)
Jedrey, Thomas C.; Gersho, Allen
1992-01-01
Report presents additional information about digital speech-encoding and -decoding system described in "Vector Adaptive/Predictive Encoding of Speech" (NPO-17230). Summarizes development of vector adaptive/predictive coding (VAPC) system and describes basic functions of algorithm. Describes refinements introduced enabling receiver to cope with errors. VAPC algorithm implemented in integrated-circuit coding/decoding processors (codecs). VAPC and other codecs tested under variety of operating conditions. Tests designed to reveal effects of various background quiet and noisy environments and of poor telephone equipment. VAPC found competitive with and, in some respects, superior to other 4.8-kb/s codecs and other codecs of similar complexity.
NASA Technical Reports Server (NTRS)
Sayood, K.; Chen, Y. C.; Wang, X.
1992-01-01
During this reporting period we have worked on three somewhat different problems. These are modeling of video traffic in packet networks, low rate video compression, and the development of a lossy + lossless image compression algorithm, which might have some application in browsing algorithms. The lossy + lossless scheme is an extension of work previously done under this grant. It provides a simple technique for incorporating browsing capability. The low rate coding scheme is also a simple variation on the standard discrete cosine transform (DCT) coding approach. In spite of its simplicity, the approach provides surprisingly high quality reconstructions. The modeling approach is borrowed from the speech recognition literature, and seems to be promising in that it provides a simple way of obtaining an idea about the second order behavior of a particular coding scheme. Details about these are presented.
Speaking of Race, Speaking of Sex: Hate Speech, Civil Rights, and Civil Liberties.
ERIC Educational Resources Information Center
Gates, Henry Louis, Jr.; And Others
The essays of this collection explore the restriction of speech and the hate speech codes that attempt to restrict bigoted or offensive speech and punish those who engage in it. These essays generally argue that speech restrictions are dangerous and counterproductive, but they acknowledge that it is very difficult to distinguish between…
Speech processing using maximum likelihood continuity mapping
Hogden, John E.
2000-01-01
Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.
Speech processing using maximum likelihood continuity mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, J.E.
Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.
Xiao, Bo; Huang, Chewei; Imel, Zac E; Atkins, David C; Georgiou, Panayiotis; Narayanan, Shrikanth S
2016-04-01
Scaling up psychotherapy services such as for addiction counseling is a critical societal need. One challenge is ensuring quality of therapy, due to the heavy cost of manual observational assessment. This work proposes a speech technology-based system to automate the assessment of therapist empathy-a key therapy quality index-from audio recordings of the psychotherapy interactions. We designed a speech processing system that includes voice activity detection and diarization modules, and an automatic speech recognizer plus a speaker role matching module to extract the therapist's language cues. We employed Maximum Entropy models, Maximum Likelihood language models, and a Lattice Rescoring method to characterize high vs. low empathic language. We estimated therapy-session level empathy codes using utterance level evidence obtained from these models. Our experiments showed that the fully automated system achieved a correlation of 0.643 between expert annotated empathy codes and machine-derived estimations, and an accuracy of 81% in classifying high vs. low empathy, in comparison to a 0.721 correlation and 86% accuracy in the oracle setting using manual transcripts. The results show that the system provides useful information that can contribute to automatic quality insurance and therapist training.
Xiao, Bo; Huang, Chewei; Imel, Zac E.; Atkins, David C.; Georgiou, Panayiotis; Narayanan, Shrikanth S.
2016-01-01
Scaling up psychotherapy services such as for addiction counseling is a critical societal need. One challenge is ensuring quality of therapy, due to the heavy cost of manual observational assessment. This work proposes a speech technology-based system to automate the assessment of therapist empathy—a key therapy quality index—from audio recordings of the psychotherapy interactions. We designed a speech processing system that includes voice activity detection and diarization modules, and an automatic speech recognizer plus a speaker role matching module to extract the therapist's language cues. We employed Maximum Entropy models, Maximum Likelihood language models, and a Lattice Rescoring method to characterize high vs. low empathic language. We estimated therapy-session level empathy codes using utterance level evidence obtained from these models. Our experiments showed that the fully automated system achieved a correlation of 0.643 between expert annotated empathy codes and machine-derived estimations, and an accuracy of 81% in classifying high vs. low empathy, in comparison to a 0.721 correlation and 86% accuracy in the oracle setting using manual transcripts. The results show that the system provides useful information that can contribute to automatic quality insurance and therapist training. PMID:28286867
Hate Speech and the First Amendment.
ERIC Educational Resources Information Center
Rainey, Susan J.; Kinsler, Waren S.; Kannarr, Tina L.; Reaves, Asa E.
This document is comprised of California state statutes, federal legislation, and court litigation pertaining to hate speech and the First Amendment. The document provides an overview of California education code sections relating to the regulation of speech; basic principles of the First Amendment; government efforts to regulate hate speech,…
The Cheerleaders' Mock Execution
ERIC Educational Resources Information Center
Trujillo-Jenks, Laura
2011-01-01
The fervor of student speech is demonstrated through different mediums and venues in public schools. In this case, a new principal encounters the mores of a community that believes in free speech, specifically student free speech. When a pep rally becomes a venue for hate speech, terroristic threats, and profanity, the student code of conduct…
Automating annotation of information-giving for analysis of clinical conversation.
Mayfield, Elijah; Laws, M Barton; Wilson, Ira B; Penstein Rosé, Carolyn
2014-02-01
Coding of clinical communication for fine-grained features such as speech acts has produced a substantial literature. However, annotation by humans is laborious and expensive, limiting application of these methods. We aimed to show that through machine learning, computers could code certain categories of speech acts with sufficient reliability to make useful distinctions among clinical encounters. The data were transcripts of 415 routine outpatient visits of HIV patients which had previously been coded for speech acts using the Generalized Medical Interaction Analysis System (GMIAS); 50 had also been coded for larger scale features using the Comprehensive Analysis of the Structure of Encounters System (CASES). We aggregated selected speech acts into information-giving and requesting, then trained the machine to automatically annotate using logistic regression classification. We evaluated reliability by per-speech act accuracy. We used multiple regression to predict patient reports of communication quality from post-visit surveys using the patient and provider information-giving to information-requesting ratio (briefly, information-giving ratio) and patient gender. Automated coding produces moderate reliability with human coding (accuracy 71.2%, κ=0.57), with high correlation between machine and human prediction of the information-giving ratio (r=0.96). The regression significantly predicted four of five patient-reported measures of communication quality (r=0.263-0.344). The information-giving ratio is a useful and intuitive measure for predicting patient perception of provider-patient communication quality. These predictions can be made with automated annotation, which is a practical option for studying large collections of clinical encounters with objectivity, consistency, and low cost, providing greater opportunity for training and reflection for care providers.
Effects of synthetic speech output in the learning of graphic symbols of varied iconicity.
Koul, Rajinder; Schlosser, Ralf
To examine the effects of additional auditory feedback from synthetic speech on the learning of high translucent symbols versus low translucent symbols. Two adults with little or no functional speech and severe intellectual disabilities served as participants. A single-subject ABACA/ACABA design was used to study the relative effects of two treatments: symbol training in the presence and absence of synthetic speech output. The results clearly indicated that the two treatments, rather than extraneous variables were responsible for gains in the symbol learning. Both participants learned either more low translucent symbols or reached their maximum learning of low translucent symbols in the speech output condition. The results of this preliminary study replicate and extend the iconicity hypothesis to a new set of learning conditions involving speech output, and suggest that feedback from speech output may assist adults with profound intellectual disabilities in coding particularly those symbols whose association with their referent cannot be coded via their visual resemblance with the referent.
School Dress Codes v. The First Amendment: Ganging up on Student Attire.
ERIC Educational Resources Information Center
Jahn, Karon L.
Do school dress codes written with the specific purpose of limiting individual dress preferences, including dress associated with gangs, infringe on speech freedoms granted by the First Amendment of the U.S. Constitution? Although the Supreme Court has extended its protection of political speech to nonverbal acts of communication, it has…
Neural coding of sound envelope in reverberant environments.
Slama, Michaël C C; Delgutte, Bertrand
2015-03-11
Speech reception depends critically on temporal modulations in the amplitude envelope of the speech signal. Reverberation encountered in everyday environments can substantially attenuate these modulations. To assess the effect of reverberation on the neural coding of amplitude envelope, we recorded from single units in the inferior colliculus (IC) of unanesthetized rabbit using sinusoidally amplitude modulated (AM) broadband noise stimuli presented in simulated anechoic and reverberant environments. Although reverberation degraded both rate and temporal coding of AM in IC neurons, in most neurons, the degradation in temporal coding was smaller than the AM attenuation in the stimulus. This compensation could largely be accounted for by the compressive shape of the modulation input-output function (MIOF), which describes the nonlinear transformation of modulation depth from acoustic stimuli into neural responses. Additionally, in a subset of neurons, the temporal coding of AM was better for reverberant stimuli than for anechoic stimuli having the same modulation depth at the ear. Using hybrid anechoic stimuli that selectively possess certain properties of reverberant sounds, we show that this reverberant advantage is not caused by envelope distortion, static interaural decorrelation, or spectral coloration. Overall, our results suggest that the auditory system may possess dual mechanisms that make the coding of amplitude envelope relatively robust in reverberation: one general mechanism operating for all stimuli with small modulation depths, and another mechanism dependent on very specific properties of reverberant stimuli, possibly the periodic fluctuations in interaural correlation at the modulation frequency. Copyright © 2015 the authors 0270-6474/15/354452-17$15.00/0.
ERIC Educational Resources Information Center
Podgor, Ellen S.
1976-01-01
The concept of symbolic speech emanates from the 1967 case of United States v. O'Brien. These discussions of flag desecration, grooming and dress codes, nude entertainment, buttons and badges, and musical expression show that the courts place symbolic speech in different strata from verbal communication. (LBH)
Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T
1992-09-01
Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.
Spotlight on Speech Codes 2011: The State of Free Speech on Our Nation's Campuses
ERIC Educational Resources Information Center
Foundation for Individual Rights in Education (NJ1), 2011
2011-01-01
Each year, the Foundation for Individual Rights in Education (FIRE) conducts a rigorous survey of restrictions on speech at America's colleges and universities. The survey and accompanying report explore the extent to which schools are meeting their legal and moral obligations to uphold students' and faculty members' rights to freedom of speech,…
Spotlight on Speech Codes 2009: The State of Free Speech on Our Nation's Campuses
ERIC Educational Resources Information Center
Foundation for Individual Rights in Education (NJ1), 2009
2009-01-01
Each year, the Foundation for Individual Rights in Education (FIRE) conducts a wide, detailed survey of restrictions on speech at America's colleges and universities. The survey and resulting report explore the extent to which schools are meeting their obligations to uphold students' and faculty members' rights to freedom of speech, freedom of…
Spotlight on Speech Codes 2010: The State of Free Speech on Our Nation's Campuses
ERIC Educational Resources Information Center
Foundation for Individual Rights in Education (NJ1), 2010
2010-01-01
Each year, the Foundation for Individual Rights in Education (FIRE) conducts a rigorous survey of restrictions on speech at America's colleges and universities. The survey and resulting report explore the extent to which schools are meeting their legal and moral obligations to uphold students' and faculty members' rights to freedom of speech,…
Coutinho, Eduardo; Schuller, Björn
2017-01-01
Music and speech exhibit striking similarities in the communication of emotions in the acoustic domain, in such a way that the communication of specific emotions is achieved, at least to a certain extent, by means of shared acoustic patterns. From an Affective Sciences points of view, determining the degree of overlap between both domains is fundamental to understand the shared mechanisms underlying such phenomenon. From a Machine learning perspective, the overlap between acoustic codes for emotional expression in music and speech opens new possibilities to enlarge the amount of data available to develop music and speech emotion recognition systems. In this article, we investigate time-continuous predictions of emotion (Arousal and Valence) in music and speech, and the Transfer Learning between these domains. We establish a comparative framework including intra- (i.e., models trained and tested on the same modality, either music or speech) and cross-domain experiments (i.e., models trained in one modality and tested on the other). In the cross-domain context, we evaluated two strategies-the direct transfer between domains, and the contribution of Transfer Learning techniques (feature-representation-transfer based on Denoising Auto Encoders) for reducing the gap in the feature space distributions. Our results demonstrate an excellent cross-domain generalisation performance with and without feature representation transfer in both directions. In the case of music, cross-domain approaches outperformed intra-domain models for Valence estimation, whereas for Speech intra-domain models achieve the best performance. This is the first demonstration of shared acoustic codes for emotional expression in music and speech in the time-continuous domain.
ERIC Educational Resources Information Center
Riley, Gresham
1993-01-01
It is argued that the arguments currently advanced for limiting speech on college campuses are also arguments that will compromise academic freedom and that a distinction needs to be made between the right of free speech and the wisdom of exercising the right on any given occasion. (MSE)
Transitioning from analog to digital audio recording in childhood speech sound disorders.
Shriberg, Lawrence D; McSweeny, Jane L; Anderson, Bruce E; Campbell, Thomas F; Chial, Michael R; Green, Jordan R; Hauner, Katherina K; Moore, Christopher A; Rusiewicz, Heather L; Wilson, David L
2005-06-01
Few empirical findings or technical guidelines are available on the current transition from analog to digital audio recording in childhood speech sound disorders. Of particular concern in the present context was whether a transition from analog- to digital-based transcription and coding of prosody and voice features might require re-standardizing a reference database for research in childhood speech sound disorders. Two research transcribers with different levels of experience glossed, transcribed, and prosody-voice coded conversational speech samples from eight children with mild to severe speech disorders of unknown origin. The samples were recorded, stored, and played back using representative analog and digital audio systems. Effect sizes calculated for an array of analog versus digital comparisons ranged from negligible to medium, with a trend for participants' speech competency scores to be slightly lower for samples obtained and transcribed using the digital system. We discuss the implications of these and other findings for research and clinical practise.
Transitioning from analog to digital audio recording in childhood speech sound disorders
Shriberg, Lawrence D.; McSweeny, Jane L.; Anderson, Bruce E.; Campbell, Thomas F.; Chial, Michael R.; Green, Jordan R.; Hauner, Katherina K.; Moore, Christopher A.; Rusiewicz, Heather L.; Wilson, David L.
2014-01-01
Few empirical findings or technical guidelines are available on the current transition from analog to digital audio recording in childhood speech sound disorders. Of particular concern in the present context was whether a transition from analog- to digital-based transcription and coding of prosody and voice features might require re-standardizing a reference database for research in childhood speech sound disorders. Two research transcribers with different levels of experience glossed, transcribed, and prosody-voice coded conversational speech samples from eight children with mild to severe speech disorders of unknown origin. The samples were recorded, stored, and played back using representative analog and digital audio systems. Effect sizes calculated for an array of analog versus digital comparisons ranged from negligible to medium, with a trend for participants’ speech competency scores to be slightly lower for samples obtained and transcribed using the digital system. We discuss the implications of these and other findings for research and clinical practise. PMID:16019779
[Prosody, speech input and language acquisition].
Jungheim, M; Miller, S; Kühn, D; Ptok, M
2014-04-01
In order to acquire language, children require speech input. The prosody of the speech input plays an important role. In most cultures adults modify their code when communicating with children. Compared to normal speech this code differs especially with regard to prosody. For this review a selective literature search in PubMed and Scopus was performed. Prosodic characteristics are a key feature of spoken language. By analysing prosodic features, children gain knowledge about underlying grammatical structures. Child-directed speech (CDS) is modified in a way that meaningful sequences are highlighted acoustically so that important information can be extracted from the continuous speech flow more easily. CDS is said to enhance the representation of linguistic signs. Taking into consideration what has previously been described in the literature regarding the perception of suprasegmentals, CDS seems to be able to support language acquisition due to the correspondence of prosodic and syntactic units. However, no findings have been reported, stating that the linguistically reduced CDS could hinder first language acquisition.
Ruble, Lisa; Birdwhistell, Jessie; Toland, Michael D; McGrew, John H
2011-01-01
The significant increase in the numbers of students with autism combined with the need for better trained teachers (National Research Council, 2001) call for research on the effectiveness of alternative methods, such as consultation, that have the potential to improve service delivery. Data from 2 randomized controlled single-blind trials indicate that an autism-specific consultation planning framework known as the collaborative model for promoting competence and success (COMPASS) is effective in increasing child Individual Education Programs (IEP) outcomes (Ruble, Dal-rymple, & McGrew, 2010; Ruble, McGrew, & Toland, 2011). In this study, we describe the verbal interactions, defined as speech acts and speech act exchanges that take place during COMPASS consultation, and examine the associations between speech exchanges and child outcomes. We applied the Psychosocial Processes Coding Scheme (Leaper, 1991) to code speech acts. Speech act exchanges were overwhelmingly affiliative, failed to show statistically significant relationships with child IEP outcomes and teacher adherence, but did correlate positively with IEP quality.
RUBLE, LISA; BIRDWHISTELL, JESSIE; TOLAND, MICHAEL D.; MCGREW, JOHN H.
2011-01-01
The significant increase in the numbers of students with autism combined with the need for better trained teachers (National Research Council, 2001) call for research on the effectiveness of alternative methods, such as consultation, that have the potential to improve service delivery. Data from 2 randomized controlled single-blind trials indicate that an autism-specific consultation planning framework known as the collaborative model for promoting competence and success (COMPASS) is effective in increasing child Individual Education Programs (IEP) outcomes (Ruble, Dal-rymple, & McGrew, 2010; Ruble, McGrew, & Toland, 2011). In this study, we describe the verbal interactions, defined as speech acts and speech act exchanges that take place during COMPASS consultation, and examine the associations between speech exchanges and child outcomes. We applied the Psychosocial Processes Coding Scheme (Leaper, 1991) to code speech acts. Speech act exchanges were overwhelmingly affiliative, failed to show statistically significant relationships with child IEP outcomes and teacher adherence, but did correlate positively with IEP quality. PMID:22639523
Speech coding at 4800 bps for mobile satellite communications
NASA Technical Reports Server (NTRS)
Gersho, Allen; Chan, Wai-Yip; Davidson, Grant; Chen, Juin-Hwey; Yong, Mei
1988-01-01
A speech compression project has recently been completed to develop a speech coding algorithm suitable for operation in a mobile satellite environment aimed at providing telephone quality natural speech at 4.8 kbps. The work has resulted in two alternative techniques which achieve reasonably good communications quality at 4.8 kbps while tolerating vehicle noise and rather severe channel impairments. The algorithms are embodied in a compact self-contained prototype consisting of two AT and T 32-bit floating-point DSP32 digital signal processors (DSP). A Motorola 68HC11 microcomputer chip serves as the board controller and interface handler. On a wirewrapped card, the prototype's circuit footprint amounts to only 200 sq cm, and consumes about 9 watts of power.
Interactive MPEG-4 low-bit-rate speech/audio transmission over the Internet
NASA Astrophysics Data System (ADS)
Liu, Fang; Kim, JongWon; Kuo, C.-C. Jay
1999-11-01
The recently developed MPEG-4 technology enables the coding and transmission of natural and synthetic audio-visual data in the form of objects. In an effort to extend the object-based functionality of MPEG-4 to real-time Internet applications, architectural prototypes of multiplex layer and transport layer tailored for transmission of MPEG-4 data over IP are under debate among Internet Engineering Task Force (IETF), and MPEG-4 systems Ad Hoc group. In this paper, we present an architecture for interactive MPEG-4 speech/audio transmission system over the Internet. It utilities a framework of Real Time Streaming Protocol (RTSP) over Real-time Transport Protocol (RTP) to provide controlled, on-demand delivery of real time speech/audio data. Based on a client-server model, a couple of low bit-rate bit streams (real-time speech/audio, pre- encoded speech/audio) are multiplexed and transmitted via a single RTP channel to the receiver. The MPEG-4 Scene Description (SD) and Object Descriptor (OD) bit streams are securely sent through the RTSP control channel. Upon receiving, an initial MPEG-4 audio- visual scene is constructed after de-multiplexing, decoding of bit streams, and scene composition. A receiver is allowed to manipulate the initial audio-visual scene presentation locally, or interactively arrange scene changes by sending requests to the server. A server may also choose to update the client with new streams and list of contents for user selection.
Toward a Natural Speech Understanding System
1989-10-01
WALTER J. SENUS Technical Director Directorate of Intelligence & Reconnaissance FOR THE COMMANDER JAMES W. HYDE III V Directorate of Plans & Programs ...applicable) Human Resources Laboratory F30602-81-C-0193 8 . ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK...error rates for distinctive words produced in isolation by a single speaker, and their simple programming requirements. Template-matching systems rank
Equality marker in the language of bali
NASA Astrophysics Data System (ADS)
Wajdi, Majid; Subiyanto, Paulus
2018-01-01
The language of Bali could be grouped into one of the most elaborate languages of the world since the existence of its speech levels, low and high speech levels, as the language of Java has. Low and high speech levels of the language of Bali are language codes that could be used to show and express social relationship between or among its speakers. This paper focuses on describing, analyzing, and interpreting the use of the low code of the language of Bali in daily communication in the speech community of Pegayaman, Bali. Observational and documentation methods were applied to provide the data for the research. Recoding and field note techniques were executed to provide the data. Recorded in spoken language and the study of novel of Balinese were transcribed into written form to ease the process of analysis. Symmetric use of low code expresses social equality between or among the participants involves in the communication. It also implies social intimacy between or among the speakers of the language of Bali. Regular and patterned use of the low code of the language of Bali is not merely communication strategy, but it is a kind of communication agreement or communication contract between the participants. By using low code during their social and communication activities, the participants shared and express their social equality and intimacy between or among the participants involve in social and communication activities.
Davis, Matthew H.
2016-01-01
Successful perception depends on combining sensory input with prior knowledge. However, the underlying mechanism by which these two sources of information are combined is unknown. In speech perception, as in other domains, two functionally distinct coding schemes have been proposed for how expectations influence representation of sensory evidence. Traditional models suggest that expected features of the speech input are enhanced or sharpened via interactive activation (Sharpened Signals). Conversely, Predictive Coding suggests that expected features are suppressed so that unexpected features of the speech input (Prediction Errors) are processed further. The present work is aimed at distinguishing between these two accounts of how prior knowledge influences speech perception. By combining behavioural, univariate, and multivariate fMRI measures of how sensory detail and prior expectations influence speech perception with computational modelling, we provide evidence in favour of Prediction Error computations. Increased sensory detail and informative expectations have additive behavioural and univariate neural effects because they both improve the accuracy of word report and reduce the BOLD signal in lateral temporal lobe regions. However, sensory detail and informative expectations have interacting effects on speech representations shown by multivariate fMRI in the posterior superior temporal sulcus. When prior knowledge was absent, increased sensory detail enhanced the amount of speech information measured in superior temporal multivoxel patterns, but with informative expectations, increased sensory detail reduced the amount of measured information. Computational simulations of Sharpened Signals and Prediction Errors during speech perception could both explain these behavioural and univariate fMRI observations. However, the multivariate fMRI observations were uniquely simulated by a Prediction Error and not a Sharpened Signal model. The interaction between prior expectation and sensory detail provides evidence for a Predictive Coding account of speech perception. Our work establishes methods that can be used to distinguish representations of Prediction Error and Sharpened Signals in other perceptual domains. PMID:27846209
Rowa, Karen; Paulitzki, Jeffrey R; Ierullo, Maria D; Chiang, Brenda; Antony, Martin M; McCabe, Randi E; Moscovitch, David A
2015-05-01
In the current study, 55 participants with a diagnosis of generalized social anxiety disorder (SAD), 23 participants with a diagnosis of an anxiety disorder other than SAD with no comorbid SAD, and 50 healthy controls completed a speech task as well as self-reported measures of safety behavior use. Speeches were videotaped and coded for global and specific indicators of performance by two raters who were blind to participants' diagnostic status. Results suggested that the objective performance of people with SAD was poorer than that of both control groups, who did not differ from each other. Moreover, self-reported use of safety behaviors during the speech strongly mediated the relationship between diagnostic group and observers' performance ratings. These results are consistent with contemporary cognitive-behavioral and interpersonal models of SAD and suggest that socially anxious individuals' performance skills may be undermined by the use of safety behaviors. These data provide further support for recommendations from previous studies that the elimination of safety behaviors ought to be a priority in cognitive behavioral therapy for SAD. Copyright © 2014. Published by Elsevier Ltd.
Status Report on Speech Research, July 1994-December 1995.
ERIC Educational Resources Information Center
Fowler, Carol A., Ed.
This publication (one of a series) contains 19 articles which report the status and progress of studies on the nature of speech, instruments for its investigation, and practical applications. Articles are: "Speech Perception Deficits in Poor Readers: Auditory Processing or Phonological Coding?" (Maria Mody and others); "Auditory…
ERIC Educational Resources Information Center
Pratt, Michael W.; And Others
1992-01-01
Investigated relations between certain family context variables and the conversational behavior of 36 parents who were playing with their 3 year olds. Transcripts were coded for types of conversational functions and structure of parent speech. Marital satisfaction was associated with aspects of parent speech. (LB)
Relative Salience of Speech Rhythm and Speech Rate on Perceived Foreign Accent in a Second Language.
Polyanskaya, Leona; Ordin, Mikhail; Busa, Maria Grazia
2017-09-01
We investigated the independent contribution of speech rate and speech rhythm to perceived foreign accent. To address this issue we used a resynthesis technique that allows neutralizing segmental and tonal idiosyncrasies between identical sentences produced by French learners of English at different proficiency levels and maintaining the idiosyncrasies pertaining to prosodic timing patterns. We created stimuli that (1) preserved the idiosyncrasies in speech rhythm while controlling for the differences in speech rate between the utterances; (2) preserved the idiosyncrasies in speech rate while controlling for the differences in speech rhythm between the utterances; and (3) preserved the idiosyncrasies both in speech rate and speech rhythm. All the stimuli were created in intoned (with imposed intonational contour) and flat (with monotonized, constant F0) conditions. The original and the resynthesized sentences were rated by native speakers of English for degree of foreign accent. We found that both speech rate and speech rhythm influence the degree of perceived foreign accent, but the effect of speech rhythm is larger than that of speech rate. We also found that intonation enhances the perception of fine differences in rhythmic patterns but reduces the perceptual salience of fine differences in speech rate.
Johari, Karim; Behroozmand, Roozbeh
2017-05-01
The predictive coding model suggests that neural processing of sensory information is facilitated for temporally-predictable stimuli. This study investigated how temporal processing of visually-presented sensory cues modulates movement reaction time and neural activities in speech and hand motor systems. Event-related potentials (ERPs) were recorded in 13 subjects while they were visually-cued to prepare to produce a steady vocalization of a vowel sound or press a button in a randomized order, and to initiate the cued movement following the onset of a go signal on the screen. Experiment was conducted in two counterbalanced blocks in which the time interval between visual cue and go signal was temporally-predictable (fixed delay at 1000 ms) or unpredictable (variable between 1000 and 2000 ms). Results of the behavioral response analysis indicated that movement reaction time was significantly decreased for temporally-predictable stimuli in both speech and hand modalities. We identified premotor ERP activities with a left-lateralized parietal distribution for hand and a frontocentral distribution for speech that were significantly suppressed in response to temporally-predictable compared with unpredictable stimuli. The premotor ERPs were elicited approximately -100 ms before movement and were significantly correlated with speech and hand motor reaction times only in response to temporally-predictable stimuli. These findings suggest that the motor system establishes a predictive code to facilitate movement in response to temporally-predictable sensory stimuli. Our data suggest that the premotor ERP activities are robust neurophysiological biomarkers of such predictive coding mechanisms. These findings provide novel insights into the temporal processing mechanisms of speech and hand motor systems.
Speech input system for meat inspection and pathological coding used thereby
NASA Astrophysics Data System (ADS)
Abe, Shozo
Meat inspection is one of exclusive and important jobs of veterinarians though it is not well known in general. As the inspection should be conducted skillfully during a series of continuous operations in a slaughter house, development of automatic inspecting systems has been required for a long time. We employed a hand-free speech input system to record the inspecting data because inspecters have to use their both hands to treat the internals of catles and check their health conditions by necked eyes. The data collected by the inspectors are transfered to a speech recognizer and then stored as controlable data of each catle inspected. Control of terms such as pathological conditions to be input and their coding are also important in this speech input system and practical examples are shown.
Schuller, Björn
2017-01-01
Music and speech exhibit striking similarities in the communication of emotions in the acoustic domain, in such a way that the communication of specific emotions is achieved, at least to a certain extent, by means of shared acoustic patterns. From an Affective Sciences points of view, determining the degree of overlap between both domains is fundamental to understand the shared mechanisms underlying such phenomenon. From a Machine learning perspective, the overlap between acoustic codes for emotional expression in music and speech opens new possibilities to enlarge the amount of data available to develop music and speech emotion recognition systems. In this article, we investigate time-continuous predictions of emotion (Arousal and Valence) in music and speech, and the Transfer Learning between these domains. We establish a comparative framework including intra- (i.e., models trained and tested on the same modality, either music or speech) and cross-domain experiments (i.e., models trained in one modality and tested on the other). In the cross-domain context, we evaluated two strategies—the direct transfer between domains, and the contribution of Transfer Learning techniques (feature-representation-transfer based on Denoising Auto Encoders) for reducing the gap in the feature space distributions. Our results demonstrate an excellent cross-domain generalisation performance with and without feature representation transfer in both directions. In the case of music, cross-domain approaches outperformed intra-domain models for Valence estimation, whereas for Speech intra-domain models achieve the best performance. This is the first demonstration of shared acoustic codes for emotional expression in music and speech in the time-continuous domain. PMID:28658285
Can you hear my age? Influences of speech rate and speech spontaneity on estimation of speaker age
Skoog Waller, Sara; Eriksson, Mårten; Sörqvist, Patrik
2015-01-01
Cognitive hearing science is mainly about the study of how cognitive factors contribute to speech comprehension, but cognitive factors also partake in speech processing to infer non-linguistic information from speech signals, such as the intentions of the talker and the speaker’s age. Here, we report two experiments on age estimation by “naïve” listeners. The aim was to study how speech rate influences estimation of speaker age by comparing the speakers’ natural speech rate with increased or decreased speech rate. In Experiment 1, listeners were presented with audio samples of read speech from three different speaker age groups (young, middle aged, and old adults). They estimated the speakers as younger when speech rate was faster than normal and as older when speech rate was slower than normal. This speech rate effect was slightly greater in magnitude for older (60–65 years) speakers in comparison with younger (20–25 years) speakers, suggesting that speech rate may gain greater importance as a perceptual age cue with increased speaker age. This pattern was more pronounced in Experiment 2, in which listeners estimated age from spontaneous speech. Faster speech rate was associated with lower age estimates, but only for older and middle aged (40–45 years) speakers. Taken together, speakers of all age groups were estimated as older when speech rate decreased, except for the youngest speakers in Experiment 2. The absence of a linear speech rate effect in estimates of younger speakers, for spontaneous speech, implies that listeners use different age estimation strategies or cues (possibly vocabulary) depending on the age of the speaker and the spontaneity of the speech. Potential implications for forensic investigations and other applied domains are discussed. PMID:26236259
Fingerspelled and Printed Words Are Recoded into a Speech-based Code in Short-term Memory.
Sehyr, Zed Sevcikova; Petrich, Jennifer; Emmorey, Karen
2017-01-01
We conducted three immediate serial recall experiments that manipulated type of stimulus presentation (printed or fingerspelled words) and word similarity (speech-based or manual). Matched deaf American Sign Language signers and hearing non-signers participated (mean reading age = 14-15 years). Speech-based similarity effects were found for both stimulus types indicating that deaf signers recoded both printed and fingerspelled words into a speech-based phonological code. A manual similarity effect was not observed for printed words indicating that print was not recoded into fingerspelling (FS). A manual similarity effect was observed for fingerspelled words when similarity was based on joint angles rather than on handshape compactness. However, a follow-up experiment suggested that the manual similarity effect was due to perceptual confusion at encoding. Overall, these findings suggest that FS is strongly linked to English phonology for deaf adult signers who are relatively skilled readers. This link between fingerspelled words and English phonology allows for the use of a more efficient speech-based code for retaining fingerspelled words in short-term memory and may strengthen the representation of English vocabulary. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Davidow, Jason H; Ingham, Roger J
2013-01-01
This study examined the effect of speech rate on phonated intervals (PIs), in order to test whether a reduction in the frequency of short PIs is an important part of the fluency-inducing mechanism of chorus reading. The influence of speech rate on stuttering frequency, speaker-judged speech effort, and listener-judged naturalness was also examined. An added purpose was to determine if chorus reading could be further refined so as to provide a perceptual guide for gauging the level of physical effort exerted during speech production. A repeated-measures design was used to compare data obtained during control reading conditions and during several chorus reading conditions produced at different speech rates. Participants included 8 persons who stutter (PWS) between the ages of 16 and 32 years. There were significant reductions in the frequency of short PIs from the habitual reading condition during slower chorus conditions, no change when speech rates were matched between habitual reading and chorus conditions, and an increase in the frequency of short PIs during chorus reading produced at a faster rate than the habitual condition. Speech rate did not have an effect on stuttering frequency during chorus reading. In general, speech effort ratings improved and naturalness ratings worsened as speech rate decreased. These results provide evidence that (a) a reduction in the frequency of short PIs is not necessary for fluency improvement during chorus reading, and (b) speech rate may be altered to provide PWS with a more appropriate reference for how physically effortful normally fluent speech production should be. Future investigations should examine the necessity of changes in the activation of neural regions during chorus reading, the possibility of defining individualized units on a 9-point effort scale, and if there are upper and lower speech rate boundaries for receiving ratings of "highly natural sounding" speech during chorus reading. The reader will be able to: (1) describe the effect of changes in speech rate on the frequency of short phonated intervals during chorus reading, (2) describe changes to speaker-judged speech effort as speech rate changes during chorus reading, (3) and describe the effect of changes in speech rate on listener-judged naturalness ratings during chorus reading. Copyright © 2012 Elsevier Inc. All rights reserved.
A software tool for analyzing multichannel cochlear implant signals.
Lai, Wai Kong; Bögli, Hans; Dillier, Norbert
2003-10-01
A useful and convenient means to analyze the radio frequency (RF) signals being sent by a speech processor to a cochlear implant would be to actually capture and display them with appropriate software. This is particularly useful for development or diagnostic purposes. sCILab (Swiss Cochlear Implant Laboratory) is such a PC-based software tool intended for the Nucleus family of Multichannel Cochlear Implants. Its graphical user interface provides a convenient and intuitive means for visualizing and analyzing the signals encoding speech information. Both numerical and graphic displays are available for detailed examination of the captured CI signals, as well as an acoustic simulation of these CI signals. sCILab has been used in the design and verification of new speech coding strategies, and has also been applied as an analytical tool in studies of how different parameter settings of existing speech coding strategies affect speech perception. As a diagnostic tool, it is also useful for troubleshooting problems with the external equipment of the cochlear implant systems.
CACTI: free, open-source software for the sequential coding of behavioral interactions.
Glynn, Lisa H; Hallgren, Kevin A; Houck, Jon M; Moyers, Theresa B
2012-01-01
The sequential analysis of client and clinician speech in psychotherapy sessions can help to identify and characterize potential mechanisms of treatment and behavior change. Previous studies required coding systems that were time-consuming, expensive, and error-prone. Existing software can be expensive and inflexible, and furthermore, no single package allows for pre-parsing, sequential coding, and assignment of global ratings. We developed a free, open-source, and adaptable program to meet these needs: The CASAA Application for Coding Treatment Interactions (CACTI). Without transcripts, CACTI facilitates the real-time sequential coding of behavioral interactions using WAV-format audio files. Most elements of the interface are user-modifiable through a simple XML file, and can be further adapted using Java through the terms of the GNU Public License. Coding with this software yields interrater reliabilities comparable to previous methods, but at greatly reduced time and expense. CACTI is a flexible research tool that can simplify psychotherapy process research, and has the potential to contribute to the improvement of treatment content and delivery.
Modelling the Architecture of Phonetic Plans: Evidence from Apraxia of Speech
ERIC Educational Resources Information Center
Ziegler, Wolfram
2009-01-01
In theories of spoken language production, the gestural code prescribing the movements of the speech organs is usually viewed as a linear string of holistic, encapsulated, hard-wired, phonetic plans, e.g., of the size of phonemes or syllables. Interactions between phonetic units on the surface of overt speech are commonly attributed to either the…
Do North Carolina Students Have Freedom of Speech? A Review of Campus Speech Codes
ERIC Educational Resources Information Center
Robinson, Jenna Ashley
2010-01-01
America's colleges and universities are supposed to be strongholds of classically liberal ideals, including the protection of individual rights and openness to debate and inquiry. Too often, this is not the case. Across the country, universities deny students and faculty their fundamental rights to freedom of speech and expression. The report…
[Effects of fundamental frequency and speech rate on impression formation].
Uchida, Teruhisa; Nakaune, Naoko
2004-12-01
This study investigated the systematic relationship between nonverbal features of speech and personality trait ratings of the speaker. In Study 1, fundamental frequency (F0) in original speech was converted into five levels from 64% to 156.25%. Then 132 undergraduates rated each of the converted speeches in terms of personality traits. In Study 2 134 undergraduates similarly rated the speech stimuli, which had five speech rate levels as well as two F0 levels. Results showed that listener ratings along Big Five dimensions were mostly independent. Each dimension had a slightly different change profile over the five levels of F0 and speech rate. A quadratic regression equation provided a good approximation for each rating as a function of F0 or speech rate. The quadratic regression equations put together would provide us with a rough estimate of personality trait impression as a function of prosodic features. The functional relationship among F0, speech rate, and trait ratings was shown as a curved surface in the three-dimensional space.
ERIC Educational Resources Information Center
Studdert-Kennedy, Michael, Ed.; O'Brien, Nancy, Ed.
Prepared as part of a regular series on the status and progress of studies on the nature of speech, instrumentation for its evaluation, and practical applications for speech research, this compilation contains 14 reports. Topics covered in the reports include the following: (1) phonetic coding and order memory in relation to reading proficiency,…
The Unsupervised Acquisition of a Lexicon from Continuous Speech.
1995-11-01
Com- munication, 2(1):57{89, 1982. [42] J. Ziv and A. Lempel . Compression of individual sequences by variable rate coding. IEEE Trans- actions on...parameters of the compression algorithm , in a never-ending attempt to identify and eliminate the predictable. They lead us to a class of grammars in...the rst 10 sentences of the test set, previously unseen by the algorithm . Vertical bars indicate word boundaries. 7.1 Text Compression and Language
Application of a VLSI vector quantization processor to real-time speech coding
NASA Technical Reports Server (NTRS)
Davidson, G.; Gersho, A.
1986-01-01
Attention is given to a working vector quantization processor for speech coding that is based on a first-generation VLSI chip which efficiently performs the pattern-matching operation needed for the codebook search process (CPS). Using this chip, the CPS architecture has been successfully incorporated into a compact, single-board Vector PCM implementation operating at 7-18 kbits/sec. A real time Adaptive Vector Predictive Coder system using the CPS has also been implemented.
Speech parts as Poisson processes.
Badalamenti, A F
2001-09-01
This paper presents evidence that six of the seven parts of speech occur in written text as Poisson processes, simple or recurring. The six major parts are nouns, verbs, adjectives, adverbs, prepositions, and conjunctions, with the interjection occurring too infrequently to support a model. The data consist of more than the first 5000 words of works by four major authors coded to label the parts of speech, as well as periods (sentence terminators). Sentence length is measured via the period and found to be normally distributed with no stochastic model identified for its occurrence. The models for all six speech parts but the noun significantly distinguish some pairs of authors and likewise for the joint use of all words types. Any one author is significantly distinguished from any other by at least one word type and sentence length very significantly distinguishes each from all others. The variety of word type use, measured by Shannon entropy, builds to about 90% of its maximum possible value. The rate constants for nouns are close to the fractions of maximum entropy achieved. This finding together with the stochastic models and the relations among them suggest that the noun may be a primitive organizer of written text.
ERIC Educational Resources Information Center
Gray, Christina; Baylor, Carolyn; Eadie, Tanya; Kendall, Diane; Yorkston, Kathryn
2012-01-01
Background: The term "speech usage" refers to what people want or need to do with their speech to fulfil the communication demands in their life roles. Speech-language pathologists (SLPs) need to know about clients' speech usage to plan appropriate interventions to meet their life participation goals. The Levels of Speech Usage is a…
EFFECT OF DELAYED AUDITORY FEEDBACK, SPEECH RATE, AND SEX ON SPEECH PRODUCTION.
Stuart, Andrew; Kalinowski, Joseph
2015-06-01
Perturbations in Delayed Auditory Feedback (DAF) and speech rate were examined as sources of disruptions in speech between men and women. Fluent adult men (n = 16) and women (n = 16) spoke at a normal and an imposed fast rate of speech with 0, 25, 50, 100, and 200 msec. DAF. The syllable rate significantly increased when participants were instructed to speak at a fast rate, and the syllable rate decreased with increasing DAF delays. Men's speech rate was significantly faster during the fast speech rate condition with a 200 msec. DAF. Disfluencies increased with increasing DAF delay. Significantly more disfluency occurred at delays of 25 and 50 msec. at the fast rate condition, while more disfluency occurred at 100 and 200 msec. in normal rate conditions. Men and women did not display differences in the number of disfluencies. These findings demonstrate sex differences in susceptibility to perturbations in DAF and speech rate suggesting feedforward/feedback subsystems that monitor vocalizations may be different between sexes.
One Speaker, Two Languages. Cross-Disciplinary Perspectives on Code-Switching.
ERIC Educational Resources Information Center
Milroy, Lesley, Ed.; Muysken, Pieter, Ed.
Fifteen articles review code-switching in the four major areas: policy implications in specific institutional and community settings; perspectives of social theory of code-switching as a form of speech behavior in particular social contexts; the grammatical analysis of code-switching, including factors that constrain switching even within a…
Real-time speech encoding based on Code-Excited Linear Prediction (CELP)
NASA Technical Reports Server (NTRS)
Leblanc, Wilfrid P.; Mahmoud, S. A.
1988-01-01
This paper reports on the work proceeding with regard to the development of a real-time voice codec for the terrestrial and satellite mobile radio environments. The codec is based on a complexity reduced version of code-excited linear prediction (CELP). The codebook search complexity was reduced to only 0.5 million floating point operations per second (MFLOPS) while maintaining excellent speech quality. Novel methods to quantize the residual and the long and short term model filters are presented.
How our own speech rate influences our perception of others.
Bosker, Hans Rutger
2017-08-01
In conversation, our own speech and that of others follow each other in rapid succession. Effects of the surrounding context on speech perception are well documented but, despite the ubiquity of the sound of our own voice, it is unknown whether our own speech also influences our perception of other talkers. This study investigated context effects induced by our own speech through 6 experiments, specifically targeting rate normalization (i.e., perceiving phonetic segments relative to surrounding speech rate). Experiment 1 revealed that hearing prerecorded fast or slow context sentences altered the perception of ambiguous vowels, replicating earlier work. Experiment 2 demonstrated that talking at a fast or slow rate prior to target presentation also altered target perception, though the effect of preceding speech rate was reduced. Experiment 3 showed that silent talking (i.e., inner speech) at fast or slow rates did not modulate the perception of others, suggesting that the effect of self-produced speech rate in Experiment 2 arose through monitoring of the external speech signal. Experiment 4 demonstrated that, when participants were played back their own (fast/slow) speech, no reduction of the effect of preceding speech rate was observed, suggesting that the additional task of speech production may be responsible for the reduced effect in Experiment 2. Finally, Experiments 5 and 6 replicate Experiments 2 and 3 with new participant samples. Taken together, these results suggest that variation in speech production may induce variation in speech perception, thus carrying implications for our understanding of spoken communication in dialogue settings. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Speech perception of young children using nucleus 22-channel or CLARION cochlear implants.
Young, N M; Grohne, K M; Carrasco, V N; Brown, C
1999-04-01
This study compares the auditory perceptual skill development of 23 congenitally deaf children who received the Nucleus 22-channel cochlear implant with the SPEAK speech coding strategy, and 20 children who received the CLARION Multi-Strategy Cochlear Implant with the Continuous Interleaved Sampler (CIS) speech coding strategy. All were under 5 years old at implantation. Preimplantation, there were no significant differences between the groups in age, length of hearing aid use, or communication mode. Auditory skills were assessed at 6 months and 12 months after implantation. Postimplantation, the mean scores on all speech perception tests were higher for the Clarion group. These differences were statistically significant for the pattern perception and monosyllable subtests of the Early Speech Perception battery at 6 months, and for the Glendonald Auditory Screening Procedure at 12 months. Multiple regression analysis revealed that device type accounted for the greatest variance in performance after 12 months of implant use. We conclude that children using the CIS strategy implemented in the Clarion implant may develop better auditory perceptual skills during the first year postimplantation than children using the SPEAK strategy with the Nucleus device.
Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing
2014-01-01
To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance of voice pitch cues (albeit poorly coded by the CI) did not influence the relationship between working memory and speech perception.
Davidow, Jason H
2014-01-01
Metronome-paced speech results in the elimination, or substantial reduction, of stuttering moments. The cause of fluency during this fluency-inducing condition is unknown. Several investigations have reported changes in speech pattern characteristics from a control condition to a metronome-paced speech condition, but failure to control speech rate between conditions limits our ability to determine if the changes were necessary for fluency. This study examined the effect of speech rate on several speech production variables during one-syllable-per-beat metronomic speech in order to determine changes that may be important for fluency during this fluency-inducing condition. Thirteen persons who stutter (PWS), aged 18-62 years, completed a series of speaking tasks. Several speech production variables were compared between conditions produced at different metronome beat rates, and between a control condition and a metronome-paced speech condition produced at a rate equal to the control condition. Vowel duration, voice onset time, pressure rise time and phonated intervals were significantly impacted by metronome beat rate. Voice onset time and the percentage of short (30-100 ms) phonated intervals significantly decreased from the control condition to the equivalent rate metronome-paced speech condition. A reduction in the percentage of short phonated intervals may be important for fluency during syllable-based metronome-paced speech for PWS. Future studies should continue examining the necessity of this reduction. In addition, speech rate must be controlled in future fluency-inducing condition studies, including neuroimaging investigations, in order for this research to make a substantial contribution to finding the fluency-inducing mechanism of fluency-inducing conditions. © 2013 Royal College of Speech and Language Therapists.
Alexandrou, Anna Maria; Saarinen, Timo; Kujala, Jan; Salmelin, Riitta
2018-06-19
During natural speech perception, listeners must track the global speaking rate, that is, the overall rate of incoming linguistic information, as well as transient, local speaking rate variations occurring within the global speaking rate. Here, we address the hypothesis that this tracking mechanism is achieved through coupling of cortical signals to the amplitude envelope of the perceived acoustic speech signals. Cortical signals were recorded with magnetoencephalography (MEG) while participants perceived spontaneously produced speech stimuli at three global speaking rates (slow, normal/habitual, and fast). Inherently to spontaneously produced speech, these stimuli also featured local variations in speaking rate. The coupling between cortical and acoustic speech signals was evaluated using audio-MEG coherence. Modulations in audio-MEG coherence spatially differentiated between tracking of global speaking rate, highlighting the temporal cortex bilaterally and the right parietal cortex, and sensitivity to local speaking rate variations, emphasizing the left parietal cortex. Cortical tuning to the temporal structure of natural connected speech thus seems to require the joint contribution of both auditory and parietal regions. These findings suggest that cortical tuning to speech rhythm operates on two functionally distinct levels: one encoding the global rhythmic structure of speech and the other associated with online, rapidly evolving temporal predictions. Thus, it may be proposed that speech perception is shaped by evolutionary tuning, a preference for certain speaking rates, and predictive tuning, associated with cortical tracking of the constantly changing rate of linguistic information in a speech stream.
Zipf's Law in Short-Time Timbral Codings of Speech, Music, and Environmental Sound Signals
Haro, Martín; Serrà, Joan; Herrera, Perfecto; Corral, Álvaro
2012-01-01
Timbre is a key perceptual feature that allows discrimination between different sounds. Timbral sensations are highly dependent on the temporal evolution of the power spectrum of an audio signal. In order to quantitatively characterize such sensations, the shape of the power spectrum has to be encoded in a way that preserves certain physical and perceptual properties. Therefore, it is common practice to encode short-time power spectra using psychoacoustical frequency scales. In this paper, we study and characterize the statistical properties of such encodings, here called timbral code-words. In particular, we report on rank-frequency distributions of timbral code-words extracted from 740 hours of audio coming from disparate sources such as speech, music, and environmental sounds. Analogously to text corpora, we find a heavy-tailed Zipfian distribution with exponent close to one. Importantly, this distribution is found independently of different encoding decisions and regardless of the audio source. Further analysis on the intrinsic characteristics of most and least frequent code-words reveals that the most frequent code-words tend to have a more homogeneous structure. We also find that speech and music databases have specific, distinctive code-words while, in the case of the environmental sounds, this database-specific code-words are not present. Finally, we find that a Yule-Simon process with memory provides a reasonable quantitative approximation for our data, suggesting the existence of a common simple generative mechanism for all considered sound sources. PMID:22479497
ERIC Educational Resources Information Center
Pattamadilok, Chotiga; Nelis, Aubéline; Kolinsky, Régine
2014-01-01
Studies on proficient readers showed that speech processing is affected by knowledge of the orthographic code. Yet, the automaticity of the orthographic influence depends on task demand. Here, we addressed this automaticity issue in normal and dyslexic adult readers by comparing the orthographic effects obtained in two speech processing tasks that…
ERIC Educational Resources Information Center
Dodd, Barbara; McIntosh, Beth; Erdener, Dogu; Burnham, Denis
2008-01-01
An example of the auditory-visual illusion in speech perception, first described by McGurk and MacDonald, is the perception of [ta] when listeners hear [pa] in synchrony with the lip movements for [ka]. One account of the illusion is that lip-read and heard speech are combined in an articulatory code since people who mispronounce words respond…
NASA Astrophysics Data System (ADS)
Kayasith, Prakasith; Theeramunkong, Thanaruk
It is a tedious and subjective task to measure severity of a dysarthria by manually evaluating his/her speech using available standard assessment methods based on human perception. This paper presents an automated approach to assess speech quality of a dysarthric speaker with cerebral palsy. With the consideration of two complementary factors, speech consistency and speech distinction, a speech quality indicator called speech clarity index (Ψ) is proposed as a measure of the speaker's ability to produce consistent speech signal for a certain word and distinguished speech signal for different words. As an application, it can be used to assess speech quality and forecast speech recognition rate of speech made by an individual dysarthric speaker before actual exhaustive implementation of an automatic speech recognition system for the speaker. The effectiveness of Ψ as a speech recognition rate predictor is evaluated by rank-order inconsistency, correlation coefficient, and root-mean-square of difference. The evaluations had been done by comparing its predicted recognition rates with ones predicted by the standard methods called the articulatory and intelligibility tests based on the two recognition systems (HMM and ANN). The results show that Ψ is a promising indicator for predicting recognition rate of dysarthric speech. All experiments had been done on speech corpus composed of speech data from eight normal speakers and eight dysarthric speakers.
Speech Rate Entrainment in Children and Adults With and Without Autism Spectrum Disorder.
Wynn, Camille J; Borrie, Stephanie A; Sellers, Tyra P
2018-05-03
Conversational entrainment, a phenomenon whereby people modify their behaviors to match their communication partner, has been evidenced as critical to successful conversation. It is plausible that deficits in entrainment contribute to the conversational breakdowns and social difficulties exhibited by people with autism spectrum disorder (ASD). This study examined speech rate entrainment in children and adult populations with and without ASD. Sixty participants including typically developing children, children with ASD, typically developed adults, and adults with ASD participated in a quasi-conversational paradigm with a pseudoconfederate. The confederate's speech rate was digitally manipulated to create slow and fast speech rate conditions. Typically developed adults entrained their speech rate in the quasi-conversational paradigm, using a faster rate during the fast speech rate conditions and a slower rate during the slow speech rate conditions. This entrainment pattern was not evident in adults with ASD or in children populations. Findings suggest that speech rate entrainment is a developmentally acquired skill and offers preliminary evidence of speech rate entrainment deficits in adults with ASD. Impairments in this area may contribute to the conversational breakdowns and social difficulties experienced by this population. Future work is needed to advance this area of inquiry.
Compression of digital images over local area networks. Appendix 1: Item 3. M.S. Thesis
NASA Technical Reports Server (NTRS)
Gorjala, Bhargavi
1991-01-01
Differential Pulse Code Modulation (DPCM) has been used with speech for many years. It has not been as successful for images because of poor edge performance. The only corruption in DPC is quantizer error but this corruption becomes quite large in the region of an edge because of the abrupt changes in the statistics of the signal. We introduce two improved DPCM schemes; Edge correcting DPCM and Edge Preservation Differential Coding. These two coding schemes will detect the edges and take action to correct them. In an Edge Correcting scheme, the quantizer error for an edge is encoded using a recursive quantizer with entropy coding and sent to the receiver as side information. In an Edge Preserving scheme, when the quantizer input falls in the overload region, the quantizer error is encoded and sent to the receiver repeatedly until the quantizer input falls in the inner levels. Therefore these coding schemes increase the bit rate in the region of an edge and require variable rate channels. We implement these two variable rate coding schemes on a token wing network. Timed token protocol supports two classes of messages; asynchronous and synchronous. The synchronous class provides a pre-allocated bandwidth and guaranteed response time. The remaining bandwidth is dynamically allocated to the asynchronous class. The Edge Correcting DPCM is simulated by considering the edge information under the asynchronous class. For the simulation of the Edge Preserving scheme, the amount of information sent each time is fixed, but the length of the packet or the bit rate for that packet is chosen depending on the availability capacity. The performance of the network, and the performance of the image coding algorithms, is studied.
The design of an adaptive predictive coder using a single-chip digital signal processor
NASA Astrophysics Data System (ADS)
Randolph, M. A.
1985-01-01
A speech coding processor architecture design study has been performed in which Texas Instruments TMS32010 has been selected from among three commercially available digital signal processing integrated circuits and evaluated in an implementation study of real-time Adaptive Predictive Coding (APC). The TMS32010 has been compared with AR&T Bell Laboratories DSP I and Nippon Electric Co. PD7720 and was found to be most suitable for a single chip implementation of APC. A preliminary design system based on TMS32010 has been performed, and several of the hardware and software design issues are discussed. Particular attention was paid to the design of an external memory controller which permits rapid sequential access of external RAM. As a result, it has been determined that a compact hardware implementation of the APC algorithm is feasible based of the TSM32010. Originator-supplied keywords include: vocoders, speech compression, adaptive predictive coding, digital signal processing microcomputers, speech processor architectures, and special purpose processor.
Davidow, Jason H.
2013-01-01
Background Metronome-paced speech results in the elimination, or substantial reduction, of stuttering moments. The cause of fluency during this fluency-inducing condition is unknown. Several investigations have reported changes in speech pattern characteristics from a control condition to a metronome-paced speech condition, but failure to control speech rate between conditions limits our ability to determine if the changes were necessary for fluency. Aims This study examined the effect of speech rate on several speech production variables during one-syllable-per-beat metronomic speech, in order to determine changes that may be important for fluency during this fluency-inducing condition. Methods and Procedures Thirteen persons who stutter (PWS), aged 18–62 years, completed a series of speaking tasks. Several speech production variables were compared between conditions produced at different metronome beat rates, and between a control condition and a metronome-paced speech condition produced at a rate equal to the control condition. Outcomes & Results Vowel duration, voice onset time, pressure rise time, and phonated intervals were significantly impacted by metronome beat rate. Voice onset time and the percentage of short (30–100 ms) phonated intervals significantly decreased from the control condition to the equivalent rate metronome-paced speech condition. Conclusions & Implications A reduction in the percentage of short phonated intervals may be important for fluency during syllable-based metronome-paced speech for PWS. Future studies should continue examining the necessity of this reduction. In addition, speech rate must be controlled in future fluency-inducing condition studies, including neuroimaging investigations, in order for this research to make a substantial contribution to finding the fluency-inducing mechanism of fluency-inducing conditions. PMID:24372888
Tjaden, Kris; Wilding, Greg
2011-01-01
The primary purpose of this study was to investigate how speakers with Parkinson's disease (PD) and Multiple Sclerosis (MS) accomplish voluntary reductions in speech rate. A group of talkers with no history of neurological disease was included for comparison. This study was motivated by the idea that knowledge of how speakers with dysarthria voluntarily accomplish a reduced speech rate would contribute toward a descriptive model of speaking rate change in dysarthria. Such a model has the potential to assist in identifying rate control strategies to receive focus in clinical treatment programs and also would advance understanding of global speech timing in dysarthria. All speakers read a passage in Habitual and Slow conditions. Speech rate, articulation rate, pause duration, and pause frequency were measured. All speaker groups adjusted articulation time as well as pause time to reduce overall speech rate. Group differences in how voluntary rate reduction was accomplished were primarily one of quantity or degree. Overall, a slower-than-normal rate was associated with a reduced articulation rate, shorter speech runs that included fewer syllables, and longer more frequent pauses. Taken together, these results suggest that existing skills or strategies used by patients should be emphasized in dysarthria training programs focusing on rate reduction. Results further suggest that a model of voluntary speech rate reduction based on neurologically normal speech shows promise as being applicable for mild to moderate dysarthria. The reader will be able to: (1) describe the importance of studying voluntary adjustments in speech rate in dysarthria, (2) discuss how speakers with Parkinson's disease and Multiple Sclerosis adjust articulation time and pause time to slow speech rate. Copyright © 2011 Elsevier Inc. All rights reserved.
Deriving Word Order in Code-Switching: Feature Inheritance and Light Verbs
ERIC Educational Resources Information Center
Shim, Ji Young
2013-01-01
This dissertation investigates code-switching (CS), the concurrent use of more than one language in conversation, commonly observed in bilingual speech. Assuming that code-switching is subject to universal principles, just like monolingual grammar, the dissertation provides a principled account of code-switching, with particular emphasis on OV~VO…
ERIC Educational Resources Information Center
Davidow, Jason H.; Ingham, Roger J.
2013-01-01
Purpose: This study examined the effect of speech rate on phonated intervals (PIs), in order to test whether a reduction in the frequency of short PIs is an important part of the fluency-inducing mechanism of chorus reading. The influence of speech rate on stuttering frequency, speaker-judged speech effort, and listener-judged naturalness was also…
ERIC Educational Resources Information Center
Heffner, Christopher C.; Newman, Rochelle S.; Dilley, Laura C.; Idsardi, William J.
2015-01-01
Purpose: A new literature has suggested that speech rate can influence the parsing of words quite strongly in speech. The purpose of this study was to investigate differences between younger adults and older adults in the use of context speech rate in word segmentation, given that older adults perceive timing information differently from younger…
The development of the Nucleus Freedom Cochlear implant system.
Patrick, James F; Busby, Peter A; Gibson, Peter J
2006-12-01
Cochlear Limited (Cochlear) released the fourth-generation cochlear implant system, Nucleus Freedom, in 2005. Freedom is based on 25 years of experience in cochlear implant research and development and incorporates advances in medicine, implantable materials, electronic technology, and sound coding. This article presents the development of Cochlear's implant systems, with an overview of the first 3 generations, and details of the Freedom system: the CI24RE receiver-stimulator, the Contour Advance electrode, the modular Freedom processor, the available speech coding strategies, the input processing options of Smart Sound to improve the signal before coding as electrical signals, and the programming software. Preliminary results from multicenter studies with the Freedom system are reported, demonstrating better levels of performance compared with the previous systems. The final section presents the most recent implant reliability data, with the early findings at 18 months showing improved reliability of the Freedom implant compared with the earlier Nucleus 3 System. Also reported are some of the findings of Cochlear's collaborative research programs to improve recipient outcomes. Included are studies showing the benefits from bilateral implants, electroacoustic stimulation using an ipsilateral and/or contralateral hearing aid, advanced speech coding, and streamlined speech processor programming.
CACTI: Free, Open-Source Software for the Sequential Coding of Behavioral Interactions
Glynn, Lisa H.; Hallgren, Kevin A.; Houck, Jon M.; Moyers, Theresa B.
2012-01-01
The sequential analysis of client and clinician speech in psychotherapy sessions can help to identify and characterize potential mechanisms of treatment and behavior change. Previous studies required coding systems that were time-consuming, expensive, and error-prone. Existing software can be expensive and inflexible, and furthermore, no single package allows for pre-parsing, sequential coding, and assignment of global ratings. We developed a free, open-source, and adaptable program to meet these needs: The CASAA Application for Coding Treatment Interactions (CACTI). Without transcripts, CACTI facilitates the real-time sequential coding of behavioral interactions using WAV-format audio files. Most elements of the interface are user-modifiable through a simple XML file, and can be further adapted using Java through the terms of the GNU Public License. Coding with this software yields interrater reliabilities comparable to previous methods, but at greatly reduced time and expense. CACTI is a flexible research tool that can simplify psychotherapy process research, and has the potential to contribute to the improvement of treatment content and delivery. PMID:22815713
Language choice in bimodal bilingual development.
Lillo-Martin, Diane; de Quadros, Ronice M; Chen Pichler, Deborah; Fieldsteel, Zoe
2014-01-01
Bilingual children develop sensitivity to the language used by their interlocutors at an early age, reflected in differential use of each language by the child depending on their interlocutor. Factors such as discourse context and relative language dominance in the community may mediate the degree of language differentiation in preschool age children. Bimodal bilingual children, acquiring both a sign language and a spoken language, have an even more complex situation. Their Deaf parents vary considerably in access to the spoken language. Furthermore, in addition to code-mixing and code-switching, they use code-blending-expressions in both speech and sign simultaneously-an option uniquely available to bimodal bilinguals. Code-blending is analogous to code-switching sociolinguistically, but is also a way to communicate without suppressing one language. For adult bimodal bilinguals, complete suppression of the non-selected language is cognitively demanding. We expect that bimodal bilingual children also find suppression difficult, and use blending rather than suppression in some contexts. We also expect relative community language dominance to be a factor in children's language choices. This study analyzes longitudinal spontaneous production data from four bimodal bilingual children and their Deaf and hearing interlocutors. Even at the earliest observations, the children produced more signed utterances with Deaf interlocutors and more speech with hearing interlocutors. However, while three of the four children produced >75% speech alone in speech target sessions, they produced <25% sign alone in sign target sessions. All four produced bimodal utterances in both, but more frequently in the sign sessions, potentially because they find suppression of the dominant language more difficult. Our results indicate that these children are sensitive to the language used by their interlocutors, while showing considerable influence from the dominant community language.
Language choice in bimodal bilingual development
Lillo-Martin, Diane; de Quadros, Ronice M.; Chen Pichler, Deborah; Fieldsteel, Zoe
2014-01-01
Bilingual children develop sensitivity to the language used by their interlocutors at an early age, reflected in differential use of each language by the child depending on their interlocutor. Factors such as discourse context and relative language dominance in the community may mediate the degree of language differentiation in preschool age children. Bimodal bilingual children, acquiring both a sign language and a spoken language, have an even more complex situation. Their Deaf parents vary considerably in access to the spoken language. Furthermore, in addition to code-mixing and code-switching, they use code-blending—expressions in both speech and sign simultaneously—an option uniquely available to bimodal bilinguals. Code-blending is analogous to code-switching sociolinguistically, but is also a way to communicate without suppressing one language. For adult bimodal bilinguals, complete suppression of the non-selected language is cognitively demanding. We expect that bimodal bilingual children also find suppression difficult, and use blending rather than suppression in some contexts. We also expect relative community language dominance to be a factor in children's language choices. This study analyzes longitudinal spontaneous production data from four bimodal bilingual children and their Deaf and hearing interlocutors. Even at the earliest observations, the children produced more signed utterances with Deaf interlocutors and more speech with hearing interlocutors. However, while three of the four children produced >75% speech alone in speech target sessions, they produced <25% sign alone in sign target sessions. All four produced bimodal utterances in both, but more frequently in the sign sessions, potentially because they find suppression of the dominant language more difficult. Our results indicate that these children are sensitive to the language used by their interlocutors, while showing considerable influence from the dominant community language. PMID:25368591
Cooke, Martin; Aubanel, Vincent
2017-01-01
Algorithmic modifications to the durational structure of speech designed to avoid intervals of intense masking lead to increases in intelligibility, but the basis for such gains is not clear. The current study addressed the possibility that the reduced information load produced by speech rate slowing might explain some or all of the benefits of durational modifications. The study also investigated the influence of masker stationarity on the effectiveness of durational changes. Listeners identified keywords in sentences that had undergone linear and nonlinear speech rate changes resulting in overall temporal lengthening in the presence of stationary and fluctuating maskers. Relative to unmodified speech, a slower speech rate produced no intelligibility gains for the stationary masker, suggesting that a reduction in information rate does not underlie intelligibility benefits of durationally modified speech. However, both linear and nonlinear modifications led to substantial intelligibility increases in fluctuating noise. One possibility is that overall increases in speech duration provide no new phonetic information in stationary masking conditions, but that temporal fluctuations in the background increase the likelihood of glimpsing additional salient speech cues. Alternatively, listeners may have benefitted from an increase in the difference in speech rates between the target and background. PMID:28618803
Methods of analysis speech rate: a pilot study.
Costa, Luanna Maria Oliveira; Martins-Reis, Vanessa de Oliveira; Celeste, Letícia Côrrea
2016-01-01
To describe the performance of fluent adults in different measures of speech rate. The study included 24 fluent adults, of both genders, speakers of Brazilian Portuguese, who were born and still living in the metropolitan region of Belo Horizonte, state of Minas Gerais, aged between 18 and 59 years. Participants were grouped by age: G1 (18-29 years), G2 (30-39 years), G3 (40-49 years), and G4 (50-59 years). The speech samples were obtained following the methodology of the Speech Fluency Assessment Protocol. In addition to the measures of speech rate proposed by the protocol (speech rate in words and syllables per minute), the rate of speech into phonemes per second and the articulation rate with and without the disfluencies were calculated. We used the nonparametric Friedman test and the Wilcoxon test for multiple comparisons. Groups were compared using the nonparametric Kruskal Wallis. The significance level was of 5%. There were significant differences between measures of speech rate involving syllables. The multiple comparisons showed that all the three measures were different. There was no effect of age for the studied measures. These findings corroborate previous studies. The inclusion of temporal acoustic measures such as speech rate in phonemes per second and articulation rates with and without disfluencies can be a complementary approach in the evaluation of speech rate.
“Down the Language Rabbit Hole with Alice”: A Case Study of a Deaf Girl with a Cochlear Implant
Andrews, Jean F.; Dionne, Vickie
2011-01-01
Alice, a deaf girl who was implanted after age three years of age was exposed to four weeks of storybook sessions conducted in American Sign Language (ASL) and speech (English). Two research questions were address: (1) how did she use her sign bimodal/bilingualism, codeswitching, and code mixing during reading activities and (2) what sign bilingual code-switching and code-mixing strategies did she use while attending to stories delivered under two treatments: ASL only and speech only. Retelling scores were collected to determine the type and frequency of her codeswitching/codemixing strategies between both languages after Alice was read to a story in ASL and in spoken English. Qualitative descriptive methods were utilized. Teacher, clinician and student transcripts of the reading and retelling sessions were recorded. Results showed Alice frequently used codeswitching and codeswitching strategies while retelling the stories retold under both treatments. Alice increased in her speech production retellings of the stories under both the ASL storyreading and spoken English-only reading of the story. The ASL storyreading did not decrease Alice's retelling scores in spoken English. Professionals are encouraged to consider the benefits of early sign bimodal/bilingualism to enhance the overall speech, language and reading proficiency of deaf children with cochlear implants. PMID:22135677
Ethnography of Communication: Cultural Codes and Norms.
ERIC Educational Resources Information Center
Carbaugh, Donal
The primary tasks of the ethnographic researcher are to discover, describe, and comparatively analyze different speech communities' ways of speaking. Two general abstractions occurring in ethnographic analyses are normative and cultural. Communicative norms are formulated in analyzing and explaining the "patterned use of speech."…
Speech effort measurement and stuttering: investigating the chorus reading effect.
Ingham, Roger J; Warner, Allison; Byrd, Anne; Cotton, John
2006-06-01
The purpose of this study was to investigate chorus reading's (CR's) effect on speech effort during oral reading by adult stuttering speakers and control participants. The effect of a speech effort measurement highlighting strategy was also investigated. Twelve persistent stuttering (PS) adults and 12 normally fluent control participants completed 1-min base rate readings (BR-nonchorus) and CRs within a BR/CR/BR/CR/BR experimental design. Participants self-rated speech effort using a 9-point scale after each reading trial. Stuttering frequency, speech rate, and speech naturalness measures were also obtained. Instructions highlighting speech effort ratings during BR and CR phases were introduced after the first CR. CR improved speech effort ratings for the PS group, but the control group showed a reverse trend. Both groups' effort ratings were not significantly different during CR phases but were significantly poorer than the control group's effort ratings during BR phases. The highlighting strategy did not significantly change effort ratings. The findings show that CR will produce not only stutter-free and natural sounding speech but also reliable reductions in speech effort. However, these reductions do not reach effort levels equivalent to those achieved by normally fluent speakers, thereby conditioning its use as a gold standard of achievable normal fluency by PS speakers.
Coding strategies for cochlear implants under adverse environments
NASA Astrophysics Data System (ADS)
Tahmina, Qudsia
Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI speech processors. For speech in background noise, we propose a mechanism underlying the contribution of harmonics to the benefit of electroacoustic stimulations in cochlear implants. The proposed strategy is based on harmonic modeling and uses synthesis driven approach to synthesize the harmonics in voiced segments of speech. Based on objective measures, results indicated improvement in speech quality. This study warrants further work into development of algorithms to regenerate harmonics of voiced segments in the presence of noise.
Structured codebook design in CELP
NASA Technical Reports Server (NTRS)
Leblanc, W. P.; Mahmoud, S. A.
1990-01-01
Codebook Excited Linear Protection (CELP) is a popular analysis by synthesis technique for quantizing speech at bit rates from 4 to 6 kbps. Codebook design techniques to date have been largely based on either random (often Gaussian) codebooks, or on known binary or ternary codes which efficiently map the space of (assumed white) excitation codevectors. It has been shown that by introducing symmetries into the codebook, good complexity reduction can be realized with only marginal decrease in performance. Codebook design algorithms are considered for a wide range of structured codebooks.
Ortwein, Heiderose; Benz, Alexander; Carl, Petra; Huwendiek, Sören; Pander, Tanja; Kiessling, Claudia
2017-02-01
To investigate whether the Verona Coding Definitions of Emotional Sequences to code health providers' responses (VR-CoDES-P) can be used for assessment of medical students' responses to patients' cues and concerns provided in written case vignettes. Student responses in direct speech to patient cues and concerns were analysed in 21 different case scenarios using VR-CoDES-P. A total of 977 student responses were available for coding, and 857 responses were codable with the VR-CoDES-P. In 74.6% of responses, the students used either a "reducing space" statement only or a "providing space" statement immediately followed by a "reducing space" statement. Overall, the most frequent response was explicit information advice (ERIa) followed by content exploring (EPCEx) and content acknowledgement (EPCAc). VR-CoDES-P were applicable to written responses of medical students when they were phrased in direct speech. The application of VR-CoDES-P is reliable and feasible when using the differentiation of "providing" and "reducing space" responses. Communication strategies described by students in non-direct speech were difficult to code and produced many missings. VR-CoDES-P are useful for analysis of medical students' written responses when focusing on emotional issues. Students need precise instructions for their response in the given test format. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Measuring Speech Comprehensibility in Students with Down Syndrome
Woynaroski, Tiffany; Camarata, Stephen
2016-01-01
Purpose There is an ongoing need to develop assessments of spontaneous speech that focus on whether the child's utterances are comprehensible to listeners. This study sought to identify the attributes of a stable ratings-based measure of speech comprehensibility, which enabled examining the criterion-related validity of an orthography-based measure of the comprehensibility of conversational speech in students with Down syndrome. Method Participants were 10 elementary school students with Down syndrome and 4 unfamiliar adult raters. Averaged across-observer Likert ratings of speech comprehensibility were called a ratings-based measure of speech comprehensibility. The proportion of utterance attempts fully glossed constituted an orthography-based measure of speech comprehensibility. Results Averaging across 4 raters on four 5-min segments produced a reliable (G = .83) ratings-based measure of speech comprehensibility. The ratings-based measure was strongly (r > .80) correlated with the orthography-based measure for both the same and different conversational samples. Conclusion Reliable and valid measures of speech comprehensibility are achievable with the resources available to many researchers and some clinicians. PMID:27299989
Davidow, Jason H; Bothe, Anne K; Richardson, Jessica D; Andreatta, Richard D
2010-12-01
This study introduces a series of systematic investigations intended to clarify the parameters of the fluency-inducing conditions (FICs) in stuttering. Participants included 11 adults, aged 20-63 years, with typical speech-production skills. A repeated measures design was used to examine the relationships between several speech production variables (vowel duration, voice onset time, fundamental frequency, intraoral pressure, pressure rise time, transglottal airflow, and phonated intervals) and speech rate and instatement style during metronome-entrained rhythmic speech. Measures of duration (vowel duration, voice onset time, and pressure rise time) differed across different metronome conditions. When speech rates were matched between the control condition and metronome condition, voice onset time was the only variable that changed. Results confirm that speech rate and instatement style can influence speech production variables during the production of fluency-inducing conditions. Future studies of normally fluent speech and of stuttered speech must control both features and should further explore the importance of voice onset time, which may be influenced by rate during metronome stimulation in a way that the other variables are not.
The Relationship between Speech Rate and Memory Span in Children.
ERIC Educational Resources Information Center
Henry, Lucy A.
1994-01-01
Examined whether speech rate is related to the amount recalled and if developmental increases in speech rate allow faster rehearsal with age, and hence, greater recall. Found that the group relationship was clear and replicable but that speech rates of individual children were not good predictors of those children's memory spans; age was found to…
Speech transport for packet telephony and voice over IP
NASA Astrophysics Data System (ADS)
Baker, Maurice R.
1999-11-01
Recent advances in packet switching, internetworking, and digital signal processing technologies have converged to allow realizable practical implementations of packet telephony systems. This paper provides a tutorial on transmission engineering for packet telephony covering the topics of speech coding/decoding, speech packetization, packet data network transport, and impairments which may negatively impact end-to-end system quality. Particular emphasis is placed upon Voice over Internet Protocol given the current popularity and ubiquity of IP transport.
Stern, Steven E; Chobany, Chelsea M; Beam, Alexander A; Hoover, Brittany N; Hull, Thomas T; Linsenbigler, Melissa; Makdad-Light, Courtney; Rubright, Courtney N
2017-01-01
We have previously demonstrated that when speech generating devices (SGD) are used as assistive technologies, they are preferred over the users' natural voices. We sought to examine whether using SGDs would affect listener's perceptions of hirability of people with complex communication needs. In a series of three experiments, participants rated videotaped actors, one using SGD and the other using their natural, mildly dysarthric voice, on (a) a measurement of perceptions of speaker credibility, strength, and informedness and (b) measurements of hirability for jobs coded in terms of skill, verbal ability, and interactivity. Experiment 1 examined hirability for jobs varying in terms of skill and verbal ability. Experiment 2 was a replication that examined hirability for jobs varying in terms of interactivity. Experiment 3 examined jobs in terms of skill and specific mode of interaction (face-to-face, telephone, computer-mediated). Actors were rated more favorably when using SGD than their own voices. Actors using SGD were also rated more favorably for highly skilled and highly verbal jobs. This preference for SGDs over mildly dysarthric voice was also found for jobs entailing computer-mediated-communication, particularly skillful jobs.
Collaborative Signaling of Informational Structures by Dynamic Speech Rate.
ERIC Educational Resources Information Center
Koiso, Hanae; Shimojima, Atsushi; Katagiri, Yasuhiro
1998-01-01
Investigated the functions of dynamic speech rates as contextualization cues in conversational Japanese, examining five spontaneous task-oriented dialogs and analyzing the potential of speech-rate changes in signaling the structure of the information being exchanged. Results found a correlation between speech decelerations and the openings of new…
Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users.
Jaekel, Brittany N; Newman, Rochelle S; Goupell, Matthew J
2017-05-24
Normal-hearing (NH) listeners rate normalize, temporarily remapping phonemic category boundaries to account for a talker's speech rate. It is unknown if adults who use auditory prostheses called cochlear implants (CI) can rate normalize, as CIs transmit degraded speech signals to the auditory nerve. Ineffective adjustment to rate information could explain some of the variability in this population's speech perception outcomes. Phonemes with manipulated voice-onset-time (VOT) durations were embedded in sentences with different speech rates. Twenty-three CI and 29 NH participants performed a phoneme identification task. NH participants heard the same unprocessed stimuli as the CI participants or stimuli degraded by a sine vocoder, simulating aspects of CI processing. CI participants showed larger rate normalization effects (6.6 ms) than the NH participants (3.7 ms) and had shallower (less reliable) category boundary slopes. NH participants showed similarly shallow slopes when presented acoustically degraded vocoded signals, but an equal or smaller rate effect in response to reductions in available spectral and temporal information. CI participants can rate normalize, despite their degraded speech input, and show a larger rate effect compared to NH participants. CI participants may particularly rely on rate normalization to better maintain perceptual constancy of the speech signal.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-25
... Relay Services and Speech-to-Speech Services for Individuals With Hearing and Speech Disabilities; Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION...-minute video relay service (``VRS'') compensation rates, and adopts per-minute compensation rates for the...
Automated Speech Rate Measurement in Dysarthria
ERIC Educational Resources Information Center
Martens, Heidi; Dekens, Tomas; Van Nuffelen, Gwen; Latacz, Lukas; Verhelst, Werner; De Bodt, Marc
2015-01-01
Purpose: In this study, a new algorithm for automated determination of speech rate (SR) in dysarthric speech is evaluated. We investigated how reliably the algorithm calculates the SR of dysarthric speech samples when compared with calculation performed by speech-language pathologists. Method: The new algorithm was trained and tested using Dutch…
Strahl, Stefan; Mertins, Alfred
2008-07-18
Evidence that neurosensory systems use sparse signal representations as well as improved performance of signal processing algorithms using sparse signal models raised interest in sparse signal coding in the last years. For natural audio signals like speech and environmental sounds, gammatone atoms have been derived as expansion functions that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006. Efficient auditory coding. Nature 439, 978-982). Furthermore, gammatone functions are established models for the human auditory filters. Thus far, a practical application of a sparse gammatone signal model has been prevented by the fact that deriving the sparsest representation is, in general, computationally intractable. In this paper, we applied an accelerated version of the matching pursuit algorithm for gammatone dictionaries allowing real-time and large data set applications. We show that a sparse signal model in general has advantages in audio coding and that a sparse gammatone signal model encodes speech more efficiently in terms of sparseness than a sparse modified discrete cosine transform (MDCT) signal model. We also show that the optimal gammatone parameters derived for English speech do not match the human auditory filters, suggesting for signal processing applications to derive the parameters individually for each applied signal class instead of using psychometrically derived parameters. For brain research, it means that care should be taken with directly transferring findings of optimality for technical to biological systems.
Gray, Christina; Baylor, Carolyn; Eadie, Tanya; Kendall, Diane; Yorkston, Kathryn
2012-01-01
The term 'speech usage' refers to what people want or need to do with their speech to fulfil the communication demands in their life roles. Speech-language pathologists (SLPs) need to know about clients' speech usage to plan appropriate interventions to meet their life participation goals. The Levels of Speech Usage is a categorical scale intended for client self-report of speech usage, but SLPs may want the option to use it as a proxy-report tool. The relationship between self-report and clinician ratings should be examined before the instrument is used in a proxy format. The primary purpose of this study was to compare client self-ratings with SLP ratings on the Levels of Speech Usage scale. The secondary purpose was to determine if the SLP ratings differed depending on whether or not the SLPs knew about the clients' medical condition. Self-ratings of adults with communication disorders on the Levels of Speech Usage scale were available from prior research. Vignettes about these individuals were created from existing data. Two sets of vignettes were created. One set contained information about demographic information, living situation, occupational status and hobbies or social activities. The second set was identical to the first with the addition of information about the clients' medical conditions and communication disorders. Various communication disorders were represented including dysarthria, voice disorders, laryngectomy, and mild cognitive and language disorders. Sixty SLPs were randomly divided into two groups with each group rating one set of vignettes. The task was completed online. While this does not replicate typical in-person clinical interactions, it was a feasible method for this study. For data analysis, the client self-ratings were considered fixed points and the percentage of SLP ratings in agreement with the self-ratings was calculated. The percentage of SLP ratings in exact agreement with client self-ratings was 44.9%. Agreement was lowest for the less-demanding speech usage categories and highest for the most demanding usage category. There was no significant difference between the two groups of SLPs based on knowledge of medical condition. SLPs often need to document the speech usage levels of clients. This study suggests the potential for SLPs to misjudge how clients see their own speech demands. Further research is needed to determine if similar results would be found in actual clinical interactions. Until then, SLPs should seek the input of their clients when using this instrument. © 2012 Royal College of Speech and Language Therapists.
Teaching Speech Organization and Outlining Using a Color-Coded Approach.
ERIC Educational Resources Information Center
Hearn, Ralene
The organization/outlining unit in the basic Public Speaking course can be made more interesting by using a color-coded instructional method that captivates students, facilitates understanding, and provides the opportunity for interesting reinforcement activities. The two part lesson includes a mini-lecture with a color-coded outline and a two…
Long-term temporal tracking of speech rate affects spoken-word recognition.
Baese-Berk, Melissa M; Heffner, Christopher C; Dilley, Laura C; Pitt, Mark A; Morrill, Tuuli H; McAuley, J Devin
2014-08-01
Humans unconsciously track a wide array of distributional characteristics in their sensory environment. Recent research in spoken-language processing has demonstrated that the speech rate surrounding a target region within an utterance influences which words, and how many words, listeners hear later in that utterance. On the basis of hypotheses that listeners track timing information in speech over long timescales, we investigated the possibility that the perception of words is sensitive to speech rate over such a timescale (e.g., an extended conversation). Results demonstrated that listeners tracked variation in the overall pace of speech over an extended duration (analogous to that of a conversation that listeners might have outside the lab) and that this global speech rate influenced which words listeners reported hearing. The effects of speech rate became stronger over time. Our findings are consistent with the hypothesis that neural entrainment by speech occurs on multiple timescales, some lasting more than an hour. © The Author(s) 2014.
Will Microfilm and Computers Replace Clippings?
ERIC Educational Resources Information Center
Oppendahl, Alison; And Others
Four speeches are presented, each of which deals with the use of conputers to organize and retrieve news stories. The first speech relates in detail the step-by-step process devised by the "Free Press" in Detroit to analyze, categorize, code, film, process, and retrieve news stories through the use of the electronic film retrieval…
Comparisons of Young Children's Private Speech Profiles: Analogical Versus Nonanalogical Reasoners.
ERIC Educational Resources Information Center
Manning, Brenda H.; White, C. Stephen
The primary intention of this study was to compare private speech profiles of young children classified as analogical reasoners (AR) with young children classified as nonanalogical reasoners (NAR). The secondary purpose was to investigate Berk's (1986) research methodology and categorical scheme for the collection and coding of private speech…
Transitioning from Analog to Digital Audio Recording in Childhood Speech Sound Disorders
ERIC Educational Resources Information Center
Shriberg, Lawrence D.; Mcsweeny, Jane L.; Anderson, Bruce E.; Campbell, Thomas F.; Chial, Michael R.; Green, Jordan R.; Hauner, Katherina K.; Moore, Christopher A.; Rusiewicz, Heather L.; Wilson, David L.
2005-01-01
Few empirical findings or technical guidelines are available on the current transition from analog to digital audio recording in childhood speech sound disorders. Of particular concern in the present context was whether a transition from analog- to digital-based transcription and coding of prosody and voice features might require re-standardizing…
Cultivating American- and Japanese-Style Relatedness through Mother-Child Conversation
ERIC Educational Resources Information Center
Crane, Lauren Shapiro; Fernald, Anne
2017-01-01
This study investigated whether European American and Japanese mothers' speech to preschoolers contained exchange- and alignment-oriented structures that reflect and possibly support culture-specific models of self-other relatedness. In each country 12 mothers were observed in free play with their 3-year-olds. Maternal speech was coded for…
Freedom of Speech Wins in Wisconsin
ERIC Educational Resources Information Center
Downs, Donald Alexander
2006-01-01
One might derive, from the eradication of a particularly heinous speech code, some encouragement that all is not lost in the culture wars. A core of dedicated scholars, working from within, made it obvious, to all but the most radical left, that imposing social justice by restricting thought and expression was a recipe for tyranny. Donald…
Rate and rhythm control strategies for apraxia of speech in nonfluent primary progressive aphasia.
Beber, Bárbara Costa; Berbert, Monalise Costa Batista; Grawer, Ruth Siqueira; Cardoso, Maria Cristina de Almeida Freitas
2018-01-01
The nonfluent/agrammatic variant of primary progressive aphasia is characterized by apraxia of speech and agrammatism. Apraxia of speech limits patients' communication due to slow speaking rate, sound substitutions, articulatory groping, false starts and restarts, segmentation of syllables, and increased difficulty with increasing utterance length. Speech and language therapy is known to benefit individuals with apraxia of speech due to stroke, but little is known about its effects in primary progressive aphasia. This is a case report of a 72-year-old, illiterate housewife, who was diagnosed with nonfluent primary progressive aphasia and received speech and language therapy for apraxia of speech. Rate and rhythm control strategies for apraxia of speech were trained to improve initiation of speech. We discuss the importance of these strategies to alleviate apraxia of speech in this condition and the future perspectives in the area.
Preliminary Analysis of Automatic Speech Recognition and Synthesis Technology.
1983-05-01
16.311 % a. Seale In/Se"l tAL4 lrs e y i s 2 I ROM men "Ig eddiei, m releerla ons leveltc. Ŗ dots ghoeea INDtISTRtAIJ%6LITARY SPEECH SYNTHESIS PRODUCTS...saquence The SC-01 Suech Syntheszer conftains 64 cf, arent poneme~hs which are accessed try A 6-tht code. 1 - the proper sequ.enti omthnatiors of thoe...connected speech input with widely differing emotional states, diverse accents, and substantial nonperiodic background noise input. As noted previously
Compressed Speech Technology: Implications for Learning and Instruction.
ERIC Educational Resources Information Center
Sullivan, LeRoy L.
This paper first traces the historical development of speech compression technology, which has made it possible to alter the spoken rate of a pre-recorded message without excessive distortion. Terms used to describe techniques employed as the technology evolved are discussed, including rapid speech, rate altered speech, cut-and-spliced speech, and…
NASA Astrophysics Data System (ADS)
The present conference on the development status of communications systems in the context of electronic warfare gives attention to topics in spread spectrum code acquisition, digital speech technology, fiber-optics communications, free space optical communications, the networking of HF systems, and applications and evaluation methods for digital speech. Also treated are issues in local area network system design, coding techniques and applications, technology applications for HF systems, receiver technologies, software development status, channel simultion/prediction methods, C3 networking spread spectrum networks, the improvement of communication efficiency and reliability through technical control methods, mobile radio systems, and adaptive antenna arrays. Finally, communications system cost analyses, spread spectrum performance, voice and image coding, switched networks, and microwave GaAs ICs, are considered.
Integrating speech in time depends on temporal expectancies and attention.
Scharinger, Mathias; Steinberg, Johanna; Tavano, Alessandro
2017-08-01
Sensory information that unfolds in time, such as in speech perception, relies on efficient chunking mechanisms in order to yield optimally-sized units for further processing. Whether or not two successive acoustic events receive a one-unit or a two-unit interpretation seems to depend on the fit between their temporal extent and a stipulated temporal window of integration. However, there is ongoing debate on how flexible this temporal window of integration should be, especially for the processing of speech sounds. Furthermore, there is no direct evidence of whether attention may modulate the temporal constraints on the integration window. For this reason, we here examine how different word durations, which lead to different temporal separations of sound onsets, interact with attention. In an Electroencephalography (EEG) study, participants actively and passively listened to words where word-final consonants were occasionally omitted. Words had either a natural duration or were artificially prolonged in order to increase the separation of speech sound onsets. Omission responses to incomplete speech input, originating in left temporal cortex, decreased when the critical speech sound was separated from previous sounds by more than 250 msec, i.e., when the separation was larger than the stipulated temporal window of integration (125-150 msec). Attention, on the other hand, only increased omission responses for stimuli with natural durations. We complemented the event-related potential (ERP) analyses by a frequency-domain analysis on the stimulus presentation rate. Notably, the power of stimulation frequency showed the same duration and attention effects than the omission responses. We interpret these findings on the background of existing research on temporal integration windows and further suggest that our findings may be accounted for within the framework of predictive coding. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Sinko, Garnet R.; Hedrick, Dona L.
1982-01-01
Thirty untrained young adult observers rated the speech and facial acceptablity of 20 speakers with cleft palate. The observers were reliable in rating both speech and facial acceptability. Judgments of facial acceptability were generally more positive, suggesting that speech is generally judged more negatively in speakers with cleft palate.…
Brunnegård, Karin; Lohmander, Anette; van Doorn, Jan
2009-01-01
Hypernasal resonance, audible nasal air emission and/or nasal turbulence, and articulation errors are typical speech disorders associated with the speech of children with cleft lip and palate. Several studies indicate that hypernasal resonance tends to be perceived negatively by listeners. Most perceptual studies of speech disorders related to cleft palate are carried out with speech and language pathologists as listeners, whereas only a few studies have been conducted to explore how judgements by untrained listeners compare with expert assessments. These types of studies can be used to determine whether children for whom speech and language pathologists recommend intervention have a significant speech deviance that is also detected by untrained listeners. To compare ratings by untrained listeners with ratings by speech and language pathologists for cleft palate speech. An assessment form for untrained listeners was developed using statements and a five-point scale. The assessment form was tailored to facilitate comparison with expert judgements. Twenty-eight untrained listeners assessed the speech of 26 speakers with cleft palate and ten speakers without cleft in a comparison group. This assessment was compared with the joint assessment of two expert speech and language pathologists. Listener groups generally agreed on which speakers were nasal. The untrained listeners detected hyper- and hyponasality when it was present in speech and considered moderate to severe hypernasality to be serious enough to call for intervention. The expert listeners assessed audible nasal air emission and/or nasal turbulence to be present in twice as many speakers as the untrained listeners who were much less sensitive to audible nasal air emission and/or nasal turbulence. The results of untrained listeners' ratings in this study in the main confirm the ratings of speech and language pathologists and show that cleft palate speech disorders may have an impact in the everyday life of the speaker.
Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users
Newman, Rochelle S.; Goupell, Matthew J.
2017-01-01
Purpose Normal-hearing (NH) listeners rate normalize, temporarily remapping phonemic category boundaries to account for a talker's speech rate. It is unknown if adults who use auditory prostheses called cochlear implants (CI) can rate normalize, as CIs transmit degraded speech signals to the auditory nerve. Ineffective adjustment to rate information could explain some of the variability in this population's speech perception outcomes. Method Phonemes with manipulated voice-onset-time (VOT) durations were embedded in sentences with different speech rates. Twenty-three CI and 29 NH participants performed a phoneme identification task. NH participants heard the same unprocessed stimuli as the CI participants or stimuli degraded by a sine vocoder, simulating aspects of CI processing. Results CI participants showed larger rate normalization effects (6.6 ms) than the NH participants (3.7 ms) and had shallower (less reliable) category boundary slopes. NH participants showed similarly shallow slopes when presented acoustically degraded vocoded signals, but an equal or smaller rate effect in response to reductions in available spectral and temporal information. Conclusion CI participants can rate normalize, despite their degraded speech input, and show a larger rate effect compared to NH participants. CI participants may particularly rely on rate normalization to better maintain perceptual constancy of the speech signal. PMID:28395319
Don’t speak too fast! Processing of fast rate speech in children with specific language impairment
Bedoin, Nathalie; Krifi-Papoz, Sonia; Herbillon, Vania; Caillot-Bascoul, Aurélia; Gonzalez-Monge, Sibylle; Boulenger, Véronique
2018-01-01
Background Perception of speech rhythm requires the auditory system to track temporal envelope fluctuations, which carry syllabic and stress information. Reduced sensitivity to rhythmic acoustic cues has been evidenced in children with Specific Language Impairment (SLI), impeding syllabic parsing and speech decoding. Our study investigated whether these children experience specific difficulties processing fast rate speech as compared with typically developing (TD) children. Method Sixteen French children with SLI (8–13 years old) with mainly expressive phonological disorders and with preserved comprehension and 16 age-matched TD children performed a judgment task on sentences produced 1) at normal rate, 2) at fast rate or 3) time-compressed. Sensitivity index (d′) to semantically incongruent sentence-final words was measured. Results Overall children with SLI perform significantly worse than TD children. Importantly, as revealed by the significant Group × Speech Rate interaction, children with SLI find it more challenging than TD children to process both naturally or artificially accelerated speech. The two groups do not significantly differ in normal rate speech processing. Conclusion In agreement with rhythm-processing deficits in atypical language development, our results suggest that children with SLI face difficulties adjusting to rapid speech rate. These findings are interpreted in light of temporal sampling and prosodic phrasing frameworks and of oscillatory mechanisms underlying speech perception. PMID:29373610
Su, Qiaotong; Galvin, John J.; Zhang, Guoping; Li, Yongxin
2016-01-01
Cochlear implant (CI) speech performance is typically evaluated using well-enunciated speech produced at a normal rate by a single talker. CI users often have greater difficulty with variations in speech production encountered in everyday listening. Within a single talker, speaking rate, amplitude, duration, and voice pitch information may be quite variable, depending on the production context. The coarse spectral resolution afforded by the CI limits perception of voice pitch, which is an important cue for speech prosody and for tonal languages such as Mandarin Chinese. In this study, sentence recognition from the Mandarin speech perception database was measured in adult and pediatric Mandarin-speaking CI listeners for a variety of speaking styles: voiced speech produced at slow, normal, and fast speaking rates; whispered speech; voiced emotional speech; and voiced shouted speech. Recognition of Mandarin Hearing in Noise Test sentences was also measured. Results showed that performance was significantly poorer with whispered speech relative to the other speaking styles and that performance was significantly better with slow speech than with fast or emotional speech. Results also showed that adult and pediatric performance was significantly poorer with Mandarin Hearing in Noise Test than with Mandarin speech perception sentences at the normal rate. The results suggest that adult and pediatric Mandarin-speaking CI patients are highly susceptible to whispered speech, due to the lack of lexically important voice pitch cues and perhaps other qualities associated with whispered speech. The results also suggest that test materials may contribute to differences in performance observed between adult and pediatric CI users. PMID:27363714
Speech rate in Parkinson's disease: A controlled study.
Martínez-Sánchez, F; Meilán, J J G; Carro, J; Gómez Íñiguez, C; Millian-Morell, L; Pujante Valverde, I M; López-Alburquerque, T; López, D E
2016-09-01
Speech disturbances will affect most patients with Parkinson's disease (PD) over the course of the disease. The origin and severity of these symptoms are of clinical and diagnostic interest. To evaluate the clinical pattern of speech impairment in PD patients and identify significant differences in speech rate and articulation compared to control subjects. Speech rate and articulation in a reading task were measured using an automatic analytical method. A total of 39 PD patients in the 'on' state and 45 age-and sex-matched asymptomatic controls participated in the study. None of the patients experienced dyskinesias or motor fluctuations during the test. The patients with PD displayed a significant reduction in speech and articulation rates; there were no significant correlations between the studied speech parameters and patient characteristics such as L-dopa dose, duration of the disorder, age, and UPDRS III scores and Hoehn & Yahr scales. Patients with PD show a characteristic pattern of declining speech rate. These results suggest that in PD, disfluencies are the result of the movement disorder affecting the physiology of speech production systems. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Davidow, Jason H; Grossman, Heather L; Edge, Robin L
2018-05-01
Voluntary stuttering techniques involve persons who stutter purposefully interjecting disfluencies into their speech. Little research has been conducted on the impact of these techniques on the speech pattern of persons who stutter. The present study examined whether changes in the frequency of voluntary stuttering accompanied changes in stuttering frequency, articulation rate, speech naturalness, and speech effort. In total, 12 persons who stutter aged 16-34 years participated. Participants read four 300-syllable passages during a control condition, and three voluntary stuttering conditions that involved attempting to produce purposeful, tension-free repetitions of initial sounds or syllables of a word for two or more repetitions (i.e., bouncing). The three voluntary stuttering conditions included bouncing on 5%, 10%, and 15% of syllables read. Friedman tests and follow-up Wilcoxon signed ranks tests were conducted for the statistical analyses. Stuttering frequency, articulation rate, and speech naturalness were significantly different between the voluntary stuttering conditions. Speech effort did not differ between the voluntary stuttering conditions. Stuttering frequency was significantly lower during the three voluntary stuttering conditions compared to the control condition, and speech effort was significantly lower during two of the three voluntary stuttering conditions compared to the control condition. Due to changes in articulation rate across the voluntary stuttering conditions, it is difficult to conclude, as has been suggested previously, that voluntary stuttering is the reason for stuttering reductions found when using voluntary stuttering techniques. Additionally, future investigations should examine different types of voluntary stuttering over an extended period of time to determine their impact on stuttering frequency, speech rate, speech naturalness, and speech effort.
Van Borsel, John; Eeckhout, Hannelore
2008-09-01
This study investigated listeners' perception of the speech naturalness of people who stutter (PWS) speaking under delayed auditory feedback (DAF) with particular attention for possible listener differences. Three panels of judges consisting of 14 stuttering individuals, 14 speech language pathologists, and 14 naive listeners rated the naturalness of speech samples of stuttering and non-stuttering individuals using a 9-point interval scale. Results clearly indicate that these three groups evaluate naturalness differently. Naive listeners appear to be more severe in their judgements than speech language pathologists and stuttering listeners, and speech language pathologists are apparently more severe than PWS. The three listener groups showed similar trends with respect to the relationship between speech naturalness and speech rate. Results of all three indicated that for PWS, the slower a speaker's rate was, the less natural speech was judged to sound. The three listener groups also showed similar trends with regard to naturalness of the stuttering versus the non-stuttering individuals. All three panels considered the speech of the non-stuttering participants more natural. The reader will be able to: (1) discuss the speech naturalness of people who stutter speaking under delayed auditory feedback, (2) discuss listener differences about the naturalness of people who stutter speaking under delayed auditory feedback, and (3) discuss the importance of speech rate for the naturalness of speech.
Bradlow, Ann R.; Kim, Midam; Blasingame, Michael
2017-01-01
Second-language (L2) speech is consistently slower than first-language (L1) speech, and L1 speaking rate varies within- and across-talkers depending on many individual, situational, linguistic, and sociolinguistic factors. It is asked whether speaking rate is also determined by a language-independent talker-specific trait such that, across a group of bilinguals, L1 speaking rate significantly predicts L2 speaking rate. Two measurements of speaking rate were automatically extracted from recordings of read and spontaneous speech by English monolinguals (n = 27) and bilinguals from ten L1 backgrounds (n = 86): speech rate (syllables/second), and articulation rate (syllables/second excluding silent pauses). Replicating prior work, L2 speaking rates were significantly slower than L1 speaking rates both across-groups (monolinguals' L1 English vs bilinguals' L2 English), and across L1 and L2 within bilinguals. Critically, within the bilingual group, L1 speaking rate significantly predicted L2 speaking rate, suggesting that a significant portion of inter-talker variation in L2 speech is derived from inter-talker variation in L1 speech, and that individual variability in L2 spoken language production may be best understood within the context of individual variability in L1 spoken language production. PMID:28253679
Evaluation of inner-outer space distinction and verbal hallucinations in schizophrenia.
Stephane, Massoud; Kuskowski, Michael; McClannahan, Kate; Surerus, Christa; Nelson, Katie
2010-09-01
Verbal hallucinations could result from attributing one's own inner speech to another. Inner speech is usually experienced in inner space, whereas hallucinations are often experienced in outer space. To clarify this paradox, we investigated schizophrenia patients' ability to distinguish between speech experienced in inner space, and speech experienced in outer space. 32 schizophrenia patients and 26 matched healthy controls underwent a two-stage experiment. First, they read sentences aloud or silently. Afterwards, they were required to distinguish between the sentences read aloud (experienced in outer space), the sentences read silently (experienced in inner space), and new sentences not previously read (no space coding). The sentences were in the first, second, or third person in equal proportions. Linear mixed models were used to investigate the effects of group, sentence location, pronoun, and hallucinations status. Schizophrenia patients were similar to controls in recognition capacity of sentences without space coding. They exhibited both inner-outer and outer-inner space confusion (they confused silently read sentences for sentences read aloud, and vice versa). Patients who experienced hallucinations inside their head were more likely to have outer-inner space bias. For speech generated by one's own brain, schizophrenia patients have bidirectional failure of inner-outer space distinction (inner-outer and outer-inner space biases); this might explain why hallucinations (abnormal inner speech) could be experienced in outer space. Furthermore, the direction of inner-outer space indistinction could determine the spatial location of the experienced hallucinations (inside or outside the head).
Acoustic properties of naturally produced clear speech at normal speaking rates
NASA Astrophysics Data System (ADS)
Krause, Jean C.; Braida, Louis D.
2004-01-01
Sentences spoken ``clearly'' are significantly more intelligible than those spoken ``conversationally'' for hearing-impaired listeners in a variety of backgrounds [Picheny et al., J. Speech Hear. Res. 28, 96-103 (1985); Uchanski et al., ibid. 39, 494-509 (1996); Payton et al., J. Acoust. Soc. Am. 95, 1581-1592 (1994)]. While producing clear speech, however, talkers often reduce their speaking rate significantly [Picheny et al., J. Speech Hear. Res. 29, 434-446 (1986); Uchanski et al., ibid. 39, 494-509 (1996)]. Yet speaking slowly is not solely responsible for the intelligibility benefit of clear speech (over conversational speech), since a recent study [Krause and Braida, J. Acoust. Soc. Am. 112, 2165-2172 (2002)] showed that talkers can produce clear speech at normal rates with training. This finding suggests that clear speech has inherent acoustic properties, independent of rate, that contribute to improved intelligibility. Identifying these acoustic properties could lead to improved signal processing schemes for hearing aids. To gain insight into these acoustical properties, conversational and clear speech produced at normal speaking rates were analyzed at three levels of detail (global, phonological, and phonetic). Although results suggest that talkers may have employed different strategies to achieve clear speech at normal rates, two global-level properties were identified that appear likely to be linked to the improvements in intelligibility provided by clear/normal speech: increased energy in the 1000-3000-Hz range of long-term spectra and increased modulation depth of low frequency modulations of the intensity envelope. Other phonological and phonetic differences associated with clear/normal speech include changes in (1) frequency of stop burst releases, (2) VOT of word-initial voiceless stop consonants, and (3) short-term vowel spectra.
From In-Session Behaviors to Drinking Outcomes: A Causal Chain for Motivational Interviewing
ERIC Educational Resources Information Center
Moyers, Theresa B.; Martin, Tim; Houck, Jon M.; Christopher, Paulette J.; Tonigan, J. Scott
2009-01-01
Client speech in favor of change within motivational interviewing sessions has been linked to treatment outcomes, but a causal chain has not yet been demonstrated. Using a sequential behavioral coding system for client speech, the authors found that, at both the session and utterance levels, specific therapist behaviors predict client change talk.…
ERIC Educational Resources Information Center
Shriberg, Lawrence D.; Paul, Rhea; McSweeny, Jane L.; Klin, Ami; Cohen, Donald J.; Volkmar, Fred R.
2001-01-01
This study compared the speech and prosody-voice profiles for 30 male speakers with either high-functioning autism (HFA) or Asperger syndrome (AS), and 53 typically developing male speakers. Both HFA and AS groups had more residual articulation distortion errors and utterances coded as inappropriate for phrasing, stress, and resonance. AS speakers…
[Speech fluency developmental profile in Brazilian Portuguese speakers].
Martins, Vanessa de Oliveira; Andrade, Claudia Regina Furquim de
2008-01-01
speech fluency varies from one individual to the next, fluent or stutterer, depending on several factors. Studies that investigate the influence of age on fluency patterns have been identified; however these differences were investigated in isolated age groups. Studies about life span fluency variations were not found. to verify the speech fluency developmental profile. speech samples of 594 fluent participants of both genders, with ages between 2:0 and 99:11 years, speakers of the Brazilian Portuguese language, were analyzed. Participants were grouped as follows: pre-scholars, scholars, early adolescence, late adolescence, adults and elderlies. Speech samples were analyzed according to the Speech Fluency Profile variables and were compared regarding: typology of speech disruptions (typical and less typical), speech rate (words and syllables per minute) and frequency of speech disruptions (percentage of speech discontinuity). although isolated variations were identified, overall there was no significant difference between the age groups for the speech disruption indexes (typical and less typical speech disruptions and percentage of speech discontinuity). Significant differences were observed between the groups when considering speech rate. the development of the neurolinguistic system for speech fluency, in terms of speech disruptions, seems to stabilize itself during the first years of life, presenting no alterations during the life span. Indexes of speech rate present variations in the age groups, indicating patterns of acquisition, development, stabilization and degeneration.
Munson, Benjamin; Johnson, Julie M.; Edwards, Jan
2013-01-01
Purpose This study examined whether experienced speech-language pathologists differ from inexperienced people in their perception of phonetic detail in children's speech. Method Convenience samples comprising 21 experienced speech-language pathologist and 21 inexperienced listeners participated in a series of tasks in which they made visual-analog scale (VAS) ratings of children's natural productions of target /s/-/θ/, /t/-/k/, and /d/-/ɡ/ in word-initial position. Listeners rated the perception distance between individual productions and ideal productions. Results The experienced listeners' ratings differed from inexperienced listeners' in four ways: they had higher intra-rater reliability, they showed less bias toward a more frequent sound, their ratings were more closely related to the acoustic characteristics of the children's speech, and their responses were related to a different set of predictor variables. Conclusions Results suggest that experience working as a speech-language pathologist leads to better perception of phonetic detail in children's speech. Limitations and future research are discussed. PMID:22230182
Oral Motor Abilities Are Task Dependent: A Factor Analytic Approach to Performance Rate.
Staiger, Anja; Schölderle, Theresa; Brendel, Bettina; Bötzel, Kai; Ziegler, Wolfram
2017-01-01
Measures of performance rates in speech-like or volitional nonspeech oral motor tasks are frequently used to draw inferences about articulation rate abnormalities in patients with neurologic movement disorders. The study objective was to investigate the structural relationship between rate measures of speech and of oral motor behaviors different from speech. A total of 130 patients with neurologic movement disorders and 130 healthy subjects participated in the study. Rate data was collected for oral reading (speech), rapid syllable repetition (speech-like), and rapid single articulator movements (nonspeech). The authors used factor analysis to determine whether the different rate variables reflect the same or distinct constructs. The behavioral data were most appropriately captured by a measurement model in which the different task types loaded onto separate latent variables. The data on oral motor performance rates show that speech tasks and oral motor tasks such as rapid syllable repetition or repetitive single articulator movements measure separate traits.
Neben, Nicole; Lenarz, Thomas; Schuessler, Mark; Harpel, Theo; Buechner, Andreas
2013-05-01
Results for speech recognition in noise tests when using a new research coding strategy designed to introduce the virtual channel effect provided no advantage over MP3(000™). Although statistically significant smaller just noticeable differences (JNDs) were obtained, the findings for pitch ranking proved to have little clinical impact. The aim of this study was to explore whether modifications to MP3000 by including sequential virtual channel stimulation would lead to further improvements in hearing, particularly for speech recognition in background noise and in competing-talker conditions, and to compare results for pitch perception and melody recognition, as well as informally collect subjective impressions on strategy preference. Nine experienced cochlear implant subjects were recruited for the prospective study. Two variants of the experimental strategy were compared to MP3000. The study design was a single-blinded ABCCBA cross-over trial paradigm with 3 weeks of take-home experience for each user condition. Comparing results of pitch-ranking, a significantly reduced JND was identified. No significant effect of coding strategy on speech understanding in noise or competing-talker materials was found. Melody recognition skills were the same under all user conditions.
Neural mechanisms underlying auditory feedback control of speech
Reilly, Kevin J.; Guenther, Frank H.
2013-01-01
The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557
Ben-David, Boaz M; Multani, Namita; Shakuf, Vered; Rudzicz, Frank; van Lieshout, Pascal H H M
2016-02-01
Our aim is to explore the complex interplay of prosody (tone of speech) and semantics (verbal content) in the perception of discrete emotions in speech. We implement a novel tool, the Test for Rating of Emotions in Speech. Eighty native English speakers were presented with spoken sentences made of different combinations of 5 discrete emotions (anger, fear, happiness, sadness, and neutral) presented in prosody and semantics. Listeners were asked to rate the sentence as a whole, integrating both speech channels, or to focus on one channel only (prosody or semantics). We observed supremacy of congruency, failure of selective attention, and prosodic dominance. Supremacy of congruency means that a sentence that presents the same emotion in both speech channels was rated highest; failure of selective attention means that listeners were unable to selectively attend to one channel when instructed; and prosodic dominance means that prosodic information plays a larger role than semantics in processing emotional speech. Emotional prosody and semantics are separate but not separable channels, and it is difficult to perceive one without the influence of the other. Our findings indicate that the Test for Rating of Emotions in Speech can reveal specific aspects in the processing of emotional speech and may in the future prove useful for understanding emotion-processing deficits in individuals with pathologies.
A real-time phoneme counting algorithm and application for speech rate monitoring.
Aharonson, Vered; Aharonson, Eran; Raichlin-Levi, Katia; Sotzianu, Aviv; Amir, Ofer; Ovadia-Blechman, Zehava
2017-03-01
Adults who stutter can learn to control and improve their speech fluency by modifying their speaking rate. Existing speech therapy technologies can assist this practice by monitoring speaking rate and providing feedback to the patient, but cannot provide an accurate, quantitative measurement of speaking rate. Moreover, most technologies are too complex and costly to be used for home practice. We developed an algorithm and a smartphone application that monitor a patient's speaking rate in real time and provide user-friendly feedback to both patient and therapist. Our speaking rate computation is performed by a phoneme counting algorithm which implements spectral transition measure extraction to estimate phoneme boundaries. The algorithm is implemented in real time in a mobile application that presents its results in a user-friendly interface. The application incorporates two modes: one provides the patient with visual feedback of his/her speech rate for self-practice and another provides the speech therapist with recordings, speech rate analysis and tools to manage the patient's practice. The algorithm's phoneme counting accuracy was validated on ten healthy subjects who read a paragraph at slow, normal and fast paces, and was compared to manual counting of speech experts. Test-retest and intra-counter reliability were assessed. Preliminary results indicate differences of -4% to 11% between automatic and human phoneme counting. Differences were largest for slow speech. The application can thus provide reliable, user-friendly, real-time feedback for speaking rate control practice. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liberman, A. M.
1982-03-01
This report is one of a regular series on the status and progress of studies on the nature of speech, instrumentation for its investigation and practical applications. Manuscripts cover the following topics: Speech perception and memory coding in relation to reading ability; The use of orthographic structure by deaf adults: Recognition of finger-spelled letters; Exploring the information support for speech; The stream of speech; Using the acoustic signal to make inferences about place and duration of tongue-palate contact. Patterns of human interlimb coordination emerge from the the properties of nonlinear limit cycle oscillatory processes: Theory and data; Motor control: Which themes do we orchestrate? Exploring the nature of motor control in Down's syndrome; Periodicity and auditory memory: A pilot study; Reading skill and language skill: On the role of sign order and morphological structure in memory for American Sign Language sentences; Perception of nasal consonants with special reference to Catalan; and Speech production Characteristics of the hearing impaired.
Smart command recognizer (SCR) - For development, test, and implementation of speech commands
NASA Technical Reports Server (NTRS)
Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.
1988-01-01
The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.
Levels of Code Switching on EFL Student's Daily Language; Study of Language Production
ERIC Educational Resources Information Center
Zainuddin
2016-01-01
This study is aimed at describing the levels of code switching on EFL students' daily conversation. The topic is chosen due to the facts that code switching phenomenon are commonly found in daily speech of Indonesian community such as in teenager talks, television serial dialogues and mass media. Therefore, qualitative data were collected by using…
Speech Rate Normalization and Phonemic Boundary Perception in Cochlear-Implant Users
ERIC Educational Resources Information Center
Jaekel, Brittany N.; Newman, Rochelle S.; Goupell, Matthew J.
2017-01-01
Purpose: Normal-hearing (NH) listeners rate normalize, temporarily remapping phonemic category boundaries to account for a talker's speech rate. It is unknown if adults who use auditory prostheses called cochlear implants (CI) can rate normalize, as CIs transmit degraded speech signals to the auditory nerve. Ineffective adjustment to rate…
Brochier, Tim; McDermott, Hugh J; McKay, Colette M
2017-06-01
In order to improve speech understanding for cochlear implant users, it is important to maximize the transmission of temporal information. The combined effects of stimulation rate and presentation level on temporal information transfer and speech understanding remain unclear. The present study systematically varied presentation level (60, 50, and 40 dBA) and stimulation rate [500 and 2400 pulses per second per electrode (pps)] in order to observe how the effect of rate on speech understanding changes for different presentation levels. Speech recognition in quiet and noise, and acoustic amplitude modulation detection thresholds (AMDTs) were measured with acoustic stimuli presented to speech processors via direct audio input (DAI). With the 500 pps processor, results showed significantly better performance for consonant-vowel nucleus-consonant words in quiet, and a reduced effect of noise on sentence recognition. However, no rate or level effect was found for AMDTs, perhaps partly because of amplitude compression in the sound processor. AMDTs were found to be strongly correlated with the effect of noise on sentence perception at low levels. These results indicate that AMDTs, at least when measured with the CP910 Freedom speech processor via DAI, explain between-subject variance of speech understanding, but do not explain within-subject variance for different rates and levels.
Describing Phonological Paraphasias in Three Variants of Primary Progressive Aphasia.
Dalton, Sarah Grace Hudspeth; Shultz, Christine; Henry, Maya L; Hillis, Argye E; Richardson, Jessica D
2018-03-01
The purpose of this study was to describe the linguistic environment of phonological paraphasias in 3 variants of primary progressive aphasia (semantic, logopenic, and nonfluent) and to describe the profiles of paraphasia production for each of these variants. Discourse samples of 26 individuals diagnosed with primary progressive aphasia were investigated for phonological paraphasias using the criteria established for the Philadelphia Naming Test (Moss Rehabilitation Research Institute, 2013). Phonological paraphasias were coded for paraphasia type, part of speech of the target word, target word frequency, type of segment in error, word position of consonant errors, type of error, and degree of change in consonant errors. Eighteen individuals across the 3 variants produced phonological paraphasias. Most paraphasias were nonword, followed by formal, and then mixed, with errors primarily occurring on nouns and verbs, with relatively few on function words. Most errors were substitutions, followed by addition and deletion errors, and few sequencing errors. Errors were evenly distributed across vowels, consonant singletons, and clusters, with more errors occurring in initial and medial positions of words than in the final position of words. Most consonant errors consisted of only a single-feature change, with few 2- or 3-feature changes. Importantly, paraphasia productions by variant differed from these aggregate results, with unique production patterns for each variant. These results suggest that a system where paraphasias are coded as present versus absent may be insufficient to adequately distinguish between the 3 subtypes of PPA. The 3 variants demonstrate patterns that may be used to improve phenotyping and diagnostic sensitivity. These results should be integrated with recent findings on phonological processing and speech rate. Future research should attempt to replicate these results in a larger sample of participants with longer speech samples and varied elicitation tasks. https://doi.org/10.23641/asha.5558107.
Deep electrode insertion and sound coding in cochlear implants.
Hochmair, Ingeborg; Hochmair, Erwin; Nopp, Peter; Waller, Melissa; Jolly, Claude
2015-04-01
Present-day cochlear implants demonstrate remarkable speech understanding performance despite the use of non-optimized coding strategies concerning the transmission of tonal information. Most systems rely on place pitch information despite possibly large deviations from correct tonotopic placement of stimulation sites. Low frequency information is limited as well because of the constant pulse rate stimulation generally used and, being even more restrictive, of the limited insertion depth of the electrodes. This results in a compromised perception of music and tonal languages. Newly available flexible long straight electrodes permit deep insertion reaching the apical region with little or no insertion trauma. This article discusses the potential benefits of deep insertion which are obtained using pitch-locked temporal stimulation patterns. Besides the access to low frequency information, further advantages of deeply inserted long electrodes are the possibility to better approximate the correct tonotopic location of contacts, the coverage of a wider range of cochlear locations, and the somewhat reduced channel interaction due to the wider contact separation for a given number of channels. A newly developed set of strategies has been shown to improve speech understanding in noise and to enhance sound quality by providing a more "natural" impression, which especially becomes obvious when listening to music. The benefits of deep insertion should not, however, be compromised by structural damage during insertion. The small cross section and the high flexibility of the new electrodes can help to ensure less traumatic insertions as demonstrated by patients' hearing preservation rate. This article is part of a Special Issue entitled
Wie, Ona Bø; Falkenberg, Eva-Signe; Tvete, Ole; Tomblin, Bruce
2007-05-01
The objectives of the study were to describe the characteristics of the first 79 prelingually deaf cochlear implant users in Norway and to investigate to what degree the variation in speech recognition, speech- recognition growth rate, and speech production could be explained by the characteristics of the child, the cochlear implant, the family, and the educational setting. Data gathered longitudinally were analysed using descriptive statistics, multiple regression, and growth-curve analysis. The results show that more than 50% of the variation could be explained by these characteristics. Daily user-time, non-verbal intelligence, mode of communication, length of CI experience, and educational placement had the highest effect on the outcome. The results also indicate that children educated in a bilingual approach to education have better speech perception and faster speech perception growth rate with increased focus on spoken language.
ERIC Educational Resources Information Center
Galvin, Kathleen M.
This paper focuses on certain approaches which an urban speech department can use as it contributes to the preparation of urban school teachers to communicate effectively with their students. The contents include: "Verbal and Nonverbal Codes," which discusses the teacher as an encoder of verbal messages and emphasizes that teachers must learn to…
Hate Speech, the First Amendment, and Professional Codes of Conduct: Where to Draw the Line?
ERIC Educational Resources Information Center
Mello, Jeffrey A.
2008-01-01
This article presents a teaching case that involves the presentation of an actual incident in which a state commission on judicial performance had to balance a judge's First Amendment rights to protected free speech against his public statements about a societal class/group that were deemed to be derogatory and inflammatory and, hence, cast…
NASA Astrophysics Data System (ADS)
Studdert-Kennedy, M.; Obrien, N.
1983-05-01
This report is one of a regular series on the status and progress of studies on the nature of speech, instrumentation for its investigation, and practical applications. Manuscripts cover the following topics: The influence of subcategorical mismatches on lexical access; The Serbo-Croatian orthography constraints the reader to a phonologically analytic strategy; Grammatical priming effects between pronouns and inflected verb forms; Misreadings by beginning readers of Serrbo-Croatian; Bi-alphabetism and work recognition; Orthographic and phonemic coding for word identification: Evidence for Hebrew; Stress and vowel duration effects on syllable recognition; Phonetic and auditory trading relations between acoustic cues in speech perception: Further results; Linguistic coding by deaf children in relation beginning reading success; Determinants of spelling ability in deaf and hearing adults: Access to linguistic structures; A dynamical basis for action systems; On the space-time structure of human interlimb coordination; Some acoustic and physiological observations on diphthongs; Relationship between pitch control and vowel articulation; Laryngeal vibrations: A comparison between high-speed filming and glottographic techniques; Compensatory articulation in hearing impaired speakers: A cinefluorographic study; and Review (Pierre Delattre: Studies in comparative phonetics.)
Influence of musical training on understanding voiced and whispered speech in noise.
Ruggles, Dorea R; Freyman, Richard L; Oxenham, Andrew J
2014-01-01
This study tested the hypothesis that the previously reported advantage of musicians over non-musicians in understanding speech in noise arises from more efficient or robust coding of periodic voiced speech, particularly in fluctuating backgrounds. Speech intelligibility was measured in listeners with extensive musical training, and in those with very little musical training or experience, using normal (voiced) or whispered (unvoiced) grammatically correct nonsense sentences in noise that was spectrally shaped to match the long-term spectrum of the speech, and was either continuous or gated with a 16-Hz square wave. Performance was also measured in clinical speech-in-noise tests and in pitch discrimination. Musicians exhibited enhanced pitch discrimination, as expected. However, no systematic or statistically significant advantage for musicians over non-musicians was found in understanding either voiced or whispered sentences in either continuous or gated noise. Musicians also showed no statistically significant advantage in the clinical speech-in-noise tests. Overall, the results provide no evidence for a significant difference between young adult musicians and non-musicians in their ability to understand speech in noise.
Lei, Huimeng; Yan, Zhangming; Sun, Xiaohong; Zhang, Yue; Wang, Jianhong; Ma, Caihong; Xu, Qunyuan; Wang, Rui; Jarvis, Erich D; Sun, Zhirong
2017-11-01
Human and several nonhuman species share the rare ability of modifying acoustic and/or syntactic features of sounds produced, i.e. vocal learning, which is the important neurobiological and behavioral substrate of human speech/language. This convergent trait was suggested to be associated with significant genomic convergence and best manifested at the ROBO-SLIT axon guidance pathway. Here we verified the significance of such genomic convergence and assessed its functional relevance to human speech/language using human genetic variation data. In normal human populations, we found the affected amino acid sites were well fixed and accompanied with significantly more associated protein-coding SNPs in the same genes than the rest genes. Diseased individuals with speech/language disorders have significant more low frequency protein coding SNPs but they preferentially occurred outside the affected genes. Such patients' SNPs were enriched in several functional categories including two axon guidance pathways (mediated by netrin and semaphorin) that interact with ROBO-SLITs. Four of the six patients have homozygous missense SNPs on PRAME gene family, one youngest gene family in human lineage, which possibly acts upon retinoic acid receptor signaling, similarly as FOXP2, to modulate axon guidance. Taken together, we suggest the axon guidance pathways (e.g. ROBO-SLIT, PRAME gene family) served as common targets for human speech/language evolution and related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Ben-David, Boaz M.; Multani, Namita; Shakuf, Vered; Rudzicz, Frank; van Lieshout, Pascal H. H. M.
2016-01-01
Purpose: Our aim is to explore the complex interplay of prosody (tone of speech) and semantics (verbal content) in the perception of discrete emotions in speech. Method: We implement a novel tool, the Test for Rating of Emotions in Speech. Eighty native English speakers were presented with spoken sentences made of different combinations of 5…
Gain-adaptive vector quantization for medium-rate speech coding
NASA Technical Reports Server (NTRS)
Chen, J.-H.; Gersho, A.
1985-01-01
A class of adaptive vector quantizers (VQs) that can dynamically adjust the 'gain' of codevectors according to the input signal level is introduced. The encoder uses a gain estimator to determine a suitable normalization of each input vector prior to VQ coding. The normalized vectors have reduced dynamic range and can then be more efficiently coded. At the receiver, the VQ decoder output is multiplied by the estimated gain. Both forward and backward adaptation are considered and several different gain estimators are compared and evaluated. An approach to optimizing the design of gain estimators is introduced. Some of the more obvious techniques for achieving gain adaptation are substantially less effective than the use of optimized gain estimators. A novel design technique that is needed to generate the appropriate gain-normalized codebook for the vector quantizer is introduced. Experimental results show that a significant gain in segmental SNR can be obtained over nonadaptive VQ with a negligible increase in complexity.
NASA Astrophysics Data System (ADS)
Sato, Hayato; Ota, Ryo; Morimoto, Masayuki; Sato, Hiroshi
2005-04-01
Assessing sound environment of classrooms for the aged is a very important issue, because classrooms can be used by the aged for their lifelong learning, especially in the aged society. Hence hearing loss due to aging is a considerable factor for classrooms. In this study, the optimal speech level in noisy fields for both young adults and aged persons was investigated. Listening difficulty ratings and word intelligibility scores for familiar words were used to evaluate speech transmission performance. The results of the tests demonstrated that the optimal speech level for moderate background noise (i.e., less than around 60 dBA) was fairly constant. Meanwhile, the optimal speech level depended on the speech-to-noise ratio when the background noise level exceeded around 60 dBA. The minimum required speech level to minimize difficulty ratings for the aged was higher than that for the young. However, the minimum difficulty ratings for both the young and the aged were given in the range of speech level of 70 to 80 dBA of speech level.
Baylis, Adriane; Chapman, Kathy; Whitehill, Tara L; Group, The Americleft Speech
2015-11-01
To investigate the validity and reliability of multiple listener judgments of hypernasality and audible nasal emission, in children with repaired cleft palate, using visual analog scaling (VAS) and equal-appearing interval (EAI) scaling. Prospective comparative study of multiple listener ratings of hypernasality and audible nasal emission. Multisite institutional. Five trained and experienced speech-language pathologist listeners from the Americleft Speech Project. Average VAS and EAI ratings of hypernasality and audible nasal emission/turbulence for 12 video-recorded speech samples from the Americleft Speech Project. Intrarater and interrater reliability was computed, as well as linear and polynomial models of best fit. Intrarater and interrater reliability was acceptable for both rating methods; however, reliability was higher for VAS as compared to EAI ratings. When VAS ratings were plotted against EAI ratings, results revealed a stronger curvilinear relationship. The results of this study provide additional evidence that alternate rating methods such as VAS may offer improved validity and reliability over EAI ratings of speech. VAS should be considered a viable method for rating hypernasality and nasal emission in speech in children with repaired cleft palate.
Two different phenomena in basic motor speech performance in premanifest Huntington disease.
Skodda, Sabine; Grönheit, Wenke; Lukas, Carsten; Bellenberg, Barbara; von Hein, Sarah M; Hoffmann, Rainer; Saft, Carsten
2016-03-09
Dysarthria is a common feature in Huntington disease (HD). The aim of this cross-sectional pilot study was the description and objective analysis of different speech parameters with special emphasis on the aspect of speech timing of connected speech and nonspeech verbal utterances in premanifest HD (preHD). A total of 28 preHD mutation carriers and 28 age- and sex-matched healthy speakers had to perform a reading task and several syllable repetition tasks. Results of computerized acoustic analysis of different variables for the measurement of speech rate and regularity were correlated with clinical measures and MRI-based brain atrophy assessment by voxel-based morphometry. An impaired capacity to steadily repeat single syllables with higher variations in preHD compared to healthy controls was found (variance 1: Cohen d = 1.46). Notably, speech rate was increased compared to controls and showed correlations to the volume of certain brain areas known to be involved in the sensory-motor speech networks (net speech rate: Cohen d = 1.19). Furthermore, speech rate showed correlations to disease burden score, probability of disease onset, the estimated years to onset, and clinical measures like the cognitive score. Measurement of speech rate and regularity might be helpful additional tools for the monitoring of subclinical functional disability in preHD. As one of the possible causes for higher performance in preHD, we discuss huntingtin-dependent temporarily advantageous development processes of the brain. © 2016 American Academy of Neurology.
Kong, Anthony Pak-Hin; Law, Sam-Po; Kwan, Connie Ching-Yin; Lai, Christy; Lam, Vivian
2014-01-01
Gestures are commonly used together with spoken language in human communication. One major limitation of gesture investigations in the existing literature lies in the fact that the coding of forms and functions of gestures has not been clearly differentiated. This paper first described a recently developed Database of Speech and GEsture (DoSaGE) based on independent annotation of gesture forms and functions among 119 neurologically unimpaired right-handed native speakers of Cantonese (divided into three age and two education levels), and presented findings of an investigation examining how gesture use was related to age and linguistic performance. Consideration of these two factors, for which normative data are currently very limited or lacking in the literature, is relevant and necessary when one evaluates gesture employment among individuals with and without language impairment. Three speech tasks, including monologue of a personally important event, sequential description, and story-telling, were used for elicitation. The EUDICO Linguistic ANnotator (ELAN) software was used to independently annotate each participant’s linguistic information of the transcript, forms of gestures used, and the function for each gesture. About one-third of the subjects did not use any co-verbal gestures. While the majority of gestures were non-content-carrying, which functioned mainly for reinforcing speech intonation or controlling speech flow, the content-carrying ones were used to enhance speech content. Furthermore, individuals who are younger or linguistically more proficient tended to use fewer gestures, suggesting that normal speakers gesture differently as a function of age and linguistic performance. PMID:25667563
A recursive linear predictive vocoder
NASA Astrophysics Data System (ADS)
Janssen, W. A.
1983-12-01
A non-real time 10 pole recursive autocorrelation linear predictive coding vocoder was created for use in studying effects of recursive autocorrelation on speech. The vocoder is composed of two interchangeable pitch detectors, a speech analyzer, and speech synthesizer. The time between updating filter coefficients is allowed to vary from .125 msec to 20 msec. The best quality was found using .125 msec between each update. The greatest change in quality was noted when changing from 20 msec/update to 10 msec/update. Pitch period plots for the center clipping autocorrelation pitch detector and simplified inverse filtering technique are provided. Plots of speech into and out of the vocoder are given. Formant versus time three dimensional plots are shown. Effects of noise on pitch detection and formants are shown. Noise effects the voiced/unvoiced decision process causing voiced speech to be re-constructed as unvoiced.
Teshima, Shelli; Langevin, Marilyn; Hagler, Paul; Kully, Deborah
2010-03-01
The purposes of this study were to investigate naturalness of the post-treatment speech of Comprehensive Stuttering Program (CSP) clients and differences in naturalness ratings by three listener groups. Listeners were 21 student speech-language pathologists, 9 community members, and 15 listeners who stutter. Listeners rated perceptually fluent speech samples of CSP clients obtained immediately post-treatment (Post) and at 5 years follow-up (F5), and speech samples of matched typically fluent (TF) speakers. A 9-point interval rating scale was used. A 3 (listener group)x2 (time)x2 (speaker) mixed ANOVA was used to test for differences among mean ratings. The difference between CSP Post and F5 mean ratings was statistically significant. The F5 mean rating was within the range reported for typically fluent speakers. Student speech-language pathologists were found to be less critical than community members and listeners who stutter in rating naturalness; however, there were no significant differences in ratings made by community members and listeners who stutter. Results indicate that the naturalness of post-treatment speech of CSP clients improves in the post-treatment period and that it is possible for clients to achieve levels of naturalness that appear to be acceptable to adults who stutter and that are within the range of naturalness ratings given to typically fluent speakers. Readers will be able to (a) summarize key findings of studies that have investigated naturalness ratings, and (b) interpret the naturalness ratings of Comprehensive Stuttering Program speaker samples and the ratings made by the three listener groups in this study.
Effects of interior aircraft noise on speech intelligibility and annoyance
NASA Technical Reports Server (NTRS)
Pearsons, K. S.; Bennett, R. L.
1977-01-01
Recordings of the aircraft ambiance from ten different types of aircraft were used in conjunction with four distinct speech interference tests as stimuli to determine the effects of interior aircraft background levels and speech intelligibility on perceived annoyance in 36 subjects. Both speech intelligibility and background level significantly affected judged annoyance. However, the interaction between the two variables showed that above an 85 db background level the speech intelligibility results had a minimal effect on annoyance ratings. Below this level, people rated the background as less annoying if there was adequate speech intelligibility.
Affective Properties of Mothers' Speech to Infants With Hearing Impairment and Cochlear Implants
Bergeson, Tonya R.; Xu, Huiping; Kitamura, Christine
2015-01-01
Purpose The affective properties of infant-directed speech influence the attention of infants with normal hearing to speech sounds. This study explored the affective quality of maternal speech to infants with hearing impairment (HI) during the 1st year after cochlear implantation as compared to speech to infants with normal hearing. Method Mothers of infants with HI and mothers of infants with normal hearing matched by age (NH-AM) or hearing experience (NH-EM) were recorded playing with their infants during 3 sessions over a 12-month period. Speech samples of 25 s were low-pass filtered, leaving intonation but not speech information intact. Sixty adults rated the stimuli along 5 scales: positive/negative affect and intention to express affection, to encourage attention, to comfort/soothe, and to direct behavior. Results Low-pass filtered speech to HI and NH-EM groups was rated as more positive, affective, and comforting compared with the such speech to the NH-AM group. Speech to infants with HI and with NH-AM was rated as more directive than speech to the NH-EM group. Mothers decreased affective qualities in speech to all infants but increased directive qualities in speech to infants with NH-EM over time. Conclusions Mothers fine-tune communicative intent in speech to their infant's developmental stage. They adjust affective qualities to infants' hearing experience rather than to chronological age but adjust directive qualities of speech to the chronological age of their infants. PMID:25679195
Degraded neural and behavioral processing of speech sounds in a rat model of Rett syndrome
Engineer, Crystal T.; Rahebi, Kimiya C.; Borland, Michael S.; Buell, Elizabeth P.; Centanni, Tracy M.; Fink, Melyssa K.; Im, Kwok W.; Wilson, Linda G.; Kilgard, Michael P.
2015-01-01
Individuals with Rett syndrome have greatly impaired speech and language abilities. Auditory brainstem responses to sounds are normal, but cortical responses are highly abnormal. In this study, we used the novel rat Mecp2 knockout model of Rett syndrome to document the neural and behavioral processing of speech sounds. We hypothesized that both speech discrimination ability and the neural response to speech sounds would be impaired in Mecp2 rats. We expected that extensive speech training would improve speech discrimination ability and the cortical response to speech sounds. Our results reveal that speech responses across all four auditory cortex fields of Mecp2 rats were hyperexcitable, responded slower, and were less able to follow rapidly presented sounds. While Mecp2 rats could accurately perform consonant and vowel discrimination tasks in quiet, they were significantly impaired at speech sound discrimination in background noise. Extensive speech training improved discrimination ability. Training shifted cortical responses in both Mecp2 and control rats to favor the onset of speech sounds. While training increased the response to low frequency sounds in control rats, the opposite occurred in Mecp2 rats. Although neural coding and plasticity are abnormal in the rat model of Rett syndrome, extensive therapy appears to be effective. These findings may help to explain some aspects of communication deficits in Rett syndrome and suggest that extensive rehabilitation therapy might prove beneficial. PMID:26321676
An articulatorily constrained, maximum entropy approach to speech recognition and speech coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, J.
Hidden Markov models (HMM`s) are among the most popular tools for performing computer speech recognition. One of the primary reasons that HMM`s typically outperform other speech recognition techniques is that the parameters used for recognition are determined by the data, not by preconceived notions of what the parameters should be. This makes HMM`s better able to deal with intra- and inter-speaker variability despite the limited knowledge of how speech signals vary and despite the often limited ability to correctly formulate rules describing variability and invariance in speech. In fact, it is often the case that when HMM parameter values aremore » constrained using the limited knowledge of speech, recognition performance decreases. However, the structure of an HMM has little in common with the mechanisms underlying speech production. Here, the author argues that by using probabilistic models that more accurately embody the process of speech production, he can create models that have all the advantages of HMM`s, but that should more accurately capture the statistical properties of real speech samples--presumably leading to more accurate speech recognition. The model he will discuss uses the fact that speech articulators move smoothly and continuously. Before discussing how to use articulatory constraints, he will give a brief description of HMM`s. This will allow him to highlight the similarities and differences between HMM`s and the proposed technique.« less
Can bilingual two-year-olds code-switch?
Lanza, E
1992-10-01
Sociolinguists have investigated language mixing as code-switching in the speech of bilingual children three years old and older. Language mixing by bilingual two-year-olds, however, has generally been interpreted in the child language literature as a sign of the child's lack of language differentiation. The present study applies perspectives from sociolinguistics to investigate the language mixing of a bilingual two-year-old acquiring Norwegian and English simultaneously in Norway. Monthly recordings of the child's spontaneous speech in interactions with her parents were made from the age of 2;0 to 2;7. An investigation into the formal aspects of the child's mixing and the context of the mixing reveals that she does differentiate her language use in contextually sensitive ways, hence that she can code-switch. This investigation stresses the need to examine more carefully the roles of dominance and context in the language mixing of young bilingual children.
Revisiting place and temporal theories of pitch
2014-01-01
The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292
Association of Orofacial Muscle Activity and Movement during Changes in Speech Rate and Intensity
ERIC Educational Resources Information Center
McClean, Michael D.; Tasko, Stephen M.
2003-01-01
Understanding how orofacial muscle activity and movement covary across changes in speech rate and intensity has implications for the neural control of speech production and the use of clinical procedures that manipulate speech prosody. The present study involved a correlation analysis relating average lower-lip and jaw-muscle activity to lip and…
Of Mouths and Men: Non-Native Listeners' Identification and Evaluation of Varieties of English.
ERIC Educational Resources Information Center
Jarvella, Robert J.; Bang, Eva; Jakobsen, Arnt Lykke; Mees, Inger M.
2001-01-01
Advanced Danish students of English tried to identify the national origin of young men from Ireland, Scotland, England, and the United States from their speech and then rated the speech for attractiveness. Listeners rated speech produced by Englishmen as most attractive, and speech by Americans as least attractive. (Author/VWL)
Utterances in infant-directed speech are shorter, not slower.
Martin, Andrew; Igarashi, Yosuke; Jincho, Nobuyuki; Mazuka, Reiko
2016-11-01
It has become a truism in the literature on infant-directed speech (IDS) that IDS is pronounced more slowly than adult-directed speech (ADS). Using recordings of 22 Japanese mothers speaking to their infant and to an adult, we show that although IDS has an overall lower mean speech rate than ADS, this is not the result of an across-the-board slowing in which every vowel is expanded equally. Instead, the speech rate difference is entirely due to the effects of phrase-final lengthening, which disproportionally affects IDS because of its shorter utterances. These results demonstrate that taking utterance-internal prosodic characteristics into account is crucial to studies of speech rate. Copyright © 2016 Elsevier B.V. All rights reserved.
Digital Coding and the Self-Proving Message
ERIC Educational Resources Information Center
Dettering, Richard
1971-01-01
Author suggests that digital Communication", which relies on arbitrary coding elements, like the phones of speech," overshadows the importance of the analogic symbolism people use more extensively than realized. Non-verbal messages can be more convincing than verbal and can be used to predict patterns of future behavior. (Author/PD)
ERIC Educational Resources Information Center
Lechler, Suzanne; Hare, Dougal Julian
2015-01-01
A naturalistic observational single case study was carried out to investigate the form and function of private speech (PS) in a young man with Dandy-Walker variant syndrome and trisomy 22. Video recordings were observed, transcribed and coded to identify all combinations of type and form of PS. Through comparison between theories of PS and the…
Sensory Information Processing
1975-12-31
system noise . To see how this is avoided, note that zeroes in the blur spectrum become sharp, spike-like negative «*»• Page impulses when the...Synthetic Speech Quality Using Binaural Reverberation-- Boll 12 13 Section 4. Noise Suppression with Linear Prediction Filtering—Peterson 24 Section...5. Speech Processing to Reduce Noise and Improve Intelligibility— Callahan 28 Section 6. Linear Predictive Coding with a Glottal 36 Section 7
Multiparticipant Chat Analysis: A Survey
2013-02-26
language variation (e.g., regional speech in Germany [6]; code-switching in German-speaking regions of Switzerland [84] and Indian IRC channels [77]), and...messages which may be missed in high- tempo situations [19], and automated analysis of chat messages [13]. Finally, the high number of chat messages can...Androutsopoulos, E. Ziegler, Exploring language variation on the internet: Regional speech in a chat community, in: Proceedings of the Second International
Van Hoesel, Richard; Ramsden, Richard; Odriscoll, Martin
2002-04-01
To characterize some of the benefits available from using two cochlear implants compared with just one, sound-direction identification (ID) abilities, sensitivity to interaural time delays (ITDs) and speech intelligibility in noise were measured for a bilateral multi-channel cochlear implant user. Sound-direction ID in the horizontal plane was tested with a bilateral cochlear implant user. The subject was tested both unilaterally and bilaterally using two independent behind-the-ear ESPRIT (Cochlear Ltd.) processors, as well as bilaterally using custom research processors. Pink noise bursts were presented using an 11-loudspeaker array spanning the subject's frontal 180 degrees arc in an anechoic room. After each burst, the subject was asked to identify which loudspeaker had produced the sound. No explicit training, and no feedback were given. Presentation levels were nominally at 70 dB SPL, except for a repeat experiment using the clinical devices where the presentation levels were reduced to 60 dB SPL to avoid activation of the devices' automatic gain control (AGC) circuits. Overall presentation levels were randomly varied by +/- 3 dB. For the research processor, a "low-update-rate" and a "high-update-rate" strategy were tested. Direct measurements of ITD just noticeable differences (JNDs) were made using a 3 AFC paradigm targeting 70% correct performance on the psychometric function. Stimuli included simple, low-rate electrical pulse trains as well as high-rate pulse trains modulated at 100 Hz. Speech data comparing monaural and binaural performance in noise were also collected with both low, and high update-rate strategies on the research processors. Open-set sentences were presented from directly in front of the subject and competing multi-talker babble noise was presented from the same loudspeaker, or from a loudspeaker placed 90 degrees to the left or right of the subject. For the sound-direction ID task, monaural performance using the clinical devices showed large mean absolute errors of 81 degrees and 73 degrees, with standard deviations (averaged across all 11 loud-speakers) of 10 degrees and 17 degrees, for left and right ears, respectively. Fore bilateral device use at a presentation level of 70 dB SPL, the mean error improved to about 16 degrees with an average standard deviation of 18 degrees. When the presentation level was decreased to 60 dB SPL to avoid activation of the automatic gain control (AGC) circuits in the clinical processors, the mean response error improved further to 8 degrees with a standard deviation of 13 degrees. Further tests with the custom research processors, which had a higher stimulation rate and did not include AGCs, showed comparable response errors: around 8 or 9 degrees and a standard deviation of about 11 degrees for both update rates. The best ITD JNDs measured for this subject were between 350 to 400 microsec for simple low-rate pulse trains. Speech results showed a substantial headshadow advantage for bilateral device use when speech and noise were spatially separated, but little evidence of binaural unmasking. For spatially coincident speech and noise, listening with both ears showed similar results to listening with either side alone when loudness summation was compensated for. No significant differences were observed between binaural results for high and low update-rates in any test configuration. Only for monaural listening in one test configuration did the high rate show a small significant improvement over the low rate. Results show that even if interaural time delay cues are not well coded or perceived, bilateral implants can offer important advantages, both for speech in noise as well as for sound-direction identification.
Effect of delayed auditory feedback on normal speakers at two speech rates
NASA Astrophysics Data System (ADS)
Stuart, Andrew; Kalinowski, Joseph; Rastatter, Michael P.; Lynch, Kerry
2002-05-01
This study investigated the effect of short and long auditory feedback delays at two speech rates with normal speakers. Seventeen participants spoke under delayed auditory feedback (DAF) at 0, 25, 50, and 200 ms at normal and fast rates of speech. Significantly two to three times more dysfluencies were displayed at 200 ms (p<0.05) relative to no delay or the shorter delays. There were significantly more dysfluencies observed at the fast rate of speech (p=0.028). These findings implicate the peripheral feedback system(s) of fluent speakers for the disruptive effects of DAF on normal speech production at long auditory feedback delays. Considering the contrast in fluency/dysfluency exhibited between normal speakers and those who stutter at short and long delays, it appears that speech disruption of normal speakers under DAF is a poor analog of stuttering.
Audiovisual signal compression: the 64/P codecs
NASA Astrophysics Data System (ADS)
Jayant, Nikil S.
1996-02-01
Video codecs operating at integral multiples of 64 kbps are well-known in visual communications technology as p * 64 systems (p equals 1 to 24). Originally developed as a class of ITU standards, these codecs have served as core technology for videoconferencing, and they have also influenced the MPEG standards for addressable video. Video compression in the above systems is provided by motion compensation followed by discrete cosine transform -- quantization of the residual signal. Notwithstanding the promise of higher bit rates in emerging generations of networks and storage devices, there is a continuing need for facile audiovisual communications over voice band and wireless modems. Consequently, video compression at bit rates lower than 64 kbps is a widely-sought capability. In particular, video codecs operating at rates in the neighborhood of 64, 32, 16, and 8 kbps seem to have great practical value, being matched respectively to the transmission capacities of basic rate ISDN (64 kbps), and voiceband modems that represent high (32 kbps), medium (16 kbps) and low- end (8 kbps) grades in current modem technology. The purpose of this talk is to describe the state of video technology at these transmission rates, without getting too literal about the specific speeds mentioned above. In other words, we expect codecs designed for non- submultiples of 64 kbps, such as 56 kbps or 19.2 kbps, as well as for sub-multiples of 64 kbps, depending on varying constraints on modem rate and the transmission rate needed for the voice-coding part of the audiovisual communications link. The MPEG-4 video standards process is a natural platform on which to examine current capabilities in sub-ISDN rate video coding, and we shall draw appropriately from this process in describing video codec performance. Inherent in this summary is a reinforcement of motion compensation and DCT as viable building blocks of video compression systems, although there is a need for improving signal quality even in the very best of these systems. In a related part of our talk, we discuss the role of preprocessing and postprocessing subsystems which serve to enhance the performance of an otherwise standard codec. Examples of these (sometimes proprietary) subsystems are automatic face-tracking prior to the coding of a head-and-shoulders scene, and adaptive postfiltering after conventional decoding, to reduce generic classes of artifacts in low bit rate video. The talk concludes with a summary of technology targets and research directions. We discuss targets in terms of four fundamental parameters of coder performance: quality, bit rate, delay and complexity; and we emphasize the need for measuring and maximizing the composite quality of the audiovisual signal. In discussing research directions, we examine progress and opportunities in two fundamental approaches for bit rate reduction: removal of statistical redundancy and reduction of perceptual irrelevancy; we speculate on the value of techniques such as analysis-by-synthesis that have proved to be quite valuable in speech coding, and we examine the prospect of integrating speech and image processing for developing next-generation technology for audiovisual communications.
Cross-language Activation and the Phonetics of Code-switching
NASA Astrophysics Data System (ADS)
Piccinini, Page Elizabeth
It is now well established that bilinguals have both languages activated to some degree at all times. This cross-language activation has been documented in several research paradigms, including picture naming, reading, and electrophysiological studies. What is less well understood is how the degree a language is activated can vary in different language environments or contexts. Furthermore, when investigating effects of order of acquisition and language dominance, past research has been mixed, as the two variables are often conflated. In this dissertation, I test how degree of cross-language activation can vary according to context by examining phonetic productions in code-switching speech. Both spontaneous speech and scripted speech are analyzed. Follow-up perception experiments are conducted to see if listeners are able to anticipate language switches, potentially due to the phonetic cues in the signal. Additionally, by focusing on early bilinguals who are L1 Spanish but English dominant, I am able to see what plays a greater role in cross-language activation, order of acquisition or language dominance. I find that speakers do have intermediate phonetic productions in code-switching contexts relative to monolingual contexts. Effects are larger and more consistent in English than Spanish. Similar effects are found in speech perception. Listeners are able to anticipate language switches from English to Spanish but not Spanish to English. Together these results suggest that language dominance is a more important factor than order of acquisition in cross-language activation for early bilinguals. Future models on bilingual language organization and access should take into account both context and language dominance when modeling degrees of cross-language activation.
Rith-Najarian, Leslie R.; McLaughlin, Katie A.; Sheridan, Margaret A.; Nock, Matthew K.
2014-01-01
Extensive research among adults supports the biopsychosocial (BPS) model of challenge and threat, which describes relationships among stress appraisals, physiological stress reactivity, and performance; however, no previous studies have examined these relationships in adolescents. Perceptions of stressors as well as physiological reactivity to stress increase during adolescence, highlighting the importance of understanding the relationships among stress appraisals, physiological reactivity, and performance during this developmental period. In this study, 79 adolescent participants reported on stress appraisals before and after a Trier Social Stress Test in which they performed a speech task. Physiological stress reactivity was defined by changes in cardiac output and total peripheral resistance from a baseline rest period to the speech task, and performance on the speech was coded using an objective rating system. We observed in adolescents only two relationships found in past adult research on the BPS model variables: (1) pre-task stress appraisal predicted post-task stress appraisal and (2) performance predicted post-task stress appraisal. Physiological reactivity during the speech was unrelated to pre- and post-task stress appraisals and to performance. We conclude that the lack of association between post-task stress appraisal and physiological stress reactivity suggests that adolescents might have low self-awareness of physiological emotional arousal. Our findings further suggest that adolescent stress appraisals are based largely on their performance during stressful situations. Developmental implications of this potential lack of awareness of one’s physiological and emotional state during adolescence are discussed. PMID:24491123
Rith-Najarian, Leslie R; McLaughlin, Katie A; Sheridan, Margaret A; Nock, Matthew K
2014-03-01
Extensive research among adults supports the biopsychosocial (BPS) model of challenge and threat, which describes relationships among stress appraisals, physiological stress reactivity, and performance; however, no previous studies have examined these relationships in adolescents. Perceptions of stressors as well as physiological reactivity to stress increase during adolescence, highlighting the importance of understanding the relationships among stress appraisals, physiological reactivity, and performance during this developmental period. In this study, 79 adolescent participants reported on stress appraisals before and after a Trier Social Stress Test in which they performed a speech task. Physiological stress reactivity was defined by changes in cardiac output and total peripheral resistance from a baseline rest period to the speech task, and performance on the speech was coded using an objective rating system. We observed in adolescents only two relationships found in past adult research on the BPS model variables: (1) pre-task stress appraisal predicted post-task stress appraisal and (2) performance predicted post-task stress appraisal. Physiological reactivity during the speech was unrelated to pre- and post-task stress appraisals and to performance. We conclude that the lack of association between post-task stress appraisal and physiological stress reactivity suggests that adolescents might have low self-awareness of physiological emotional arousal. Our findings further suggest that adolescent stress appraisals are based largely on their performance during stressful situations. Developmental implications of this potential lack of awareness of one's physiological and emotional state during adolescence are discussed.
Speech Recognition: Proceedings of a Workshop Held in San Diego, California on March 24-26, 1987
1987-03-01
following count as single "words": HONG-KONG, SAN-DIEGO, ICE-NINE, PAC-ALERT, LAT -LON, FUGET- 1 , M -RATING, C- CODE, SQO-23, etc. However, BQ’ING...baseline isolsted-aord HHM systsa sre depicted in Tig. 1 , «hile Pig. 2 indicates ths robustness snhsnceaents «hich hsvs been developed end tsstsd...the United States Government. .>\\S .^Vv .vW 87 8 A3 023 £ 1 -•.v.v.-.." v v ■-•’.- ".• •.- •. • , • «* * • ■ "^ • i TADI.K OP
Walenski, Matthew; Swinney, David
2009-01-01
The central question underlying this study revolves around how children process co-reference relationships—such as those evidenced by pronouns (him) and reflexives (himself)—and how a slowed rate of speech input may critically affect this process. Previous studies of child language processing have demonstrated that typical language developing (TLD) children as young as 4 years of age process co-reference relations in a manner similar to adults on-line. In contrast, off-line measures of pronoun comprehension suggest a developmental delay for pronouns (relative to reflexives). The present study examines dependency relations in TLD children (ages 5–13) and investigates how a slowed rate of speech input affects the unconscious (on-line) and conscious (off-line) parsing of these constructions. For the on-line investigations (using a cross-modal picture priming paradigm), results indicate that at a normal rate of speech TLD children demonstrate adult-like syntactic reflexes. At a slowed rate of speech the typical language developing children displayed a breakdown in automatic syntactic parsing (again, similar to the pattern seen in unimpaired adults). As demonstrated in the literature, our off-line investigations (sentence/picture matching task) revealed that these children performed much better on reflexives than on pronouns at a regular speech rate. However, at the slow speech rate, performance on pronouns was substantially improved, whereas performance on reflexives was not different than at the regular speech rate. We interpret these results in light of a distinction between fast automatic processes (relied upon for on-line processing in real time) and conscious reflective processes (relied upon for off-line processing), such that slowed speech input disrupts the former, yet improves the latter. PMID:19343495
The development and validation of the speech quality instrument.
Chen, Stephanie Y; Griffin, Brianna M; Mancuso, Dean; Shiau, Stephanie; DiMattia, Michelle; Cellum, Ilana; Harvey Boyd, Kelly; Prevoteau, Charlotte; Kohlberg, Gavriel D; Spitzer, Jaclyn B; Lalwani, Anil K
2017-12-08
Although speech perception tests are available to evaluate hearing, there is no standardized validated tool to quantify speech quality. The objective of this study is to develop a validated tool to measure quality of speech heard. Prospective instrument validation study of 35 normal hearing adults recruited at a tertiary referral center. Participants listened to 44 speech clips of male/female voices reciting the Rainbow Passage. Speech clips included original and manipulated excerpts capturing goal qualities such as mechanical and garbled. Listeners rated clips on a 10-point visual analog scale (VAS) of 18 characteristics (e.g. cartoonish, garbled). Skewed distribution analysis identified mean ratings in the upper and lower 2-point limits of the VAS (ratings of 8-10, 0-2, respectively); items with inconsistent responses were eliminated. The test was pruned to a final instrument of nine speech clips that clearly define qualities of interest: speech-like, male/female, cartoonish, echo-y, garbled, tinny, mechanical, rough, breathy, soothing, hoarse, like, pleasant, natural. Mean ratings were highest for original female clips (8.8) and lowest for not-speech manipulation (2.1). Factor analysis identified two subsets of characteristics: internal consistency demonstrated Cronbach's alpha of 0.95 and 0.82 per subset. Test-retest reliability of total scores was high, with an intraclass correlation coefficient of 0.76. The Speech Quality Instrument (SQI) is a concise, valid tool for assessing speech quality as an indicator for hearing performance. SQI may be a valuable outcome measure for cochlear implant recipients who, despite achieving excellent speech perception, often experience poor speech quality. 2b. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.
Neurogenic Orofacial Weakness and Speech in Adults With Dysarthria
Makashay, Matthew J.; Helou, Leah B.; Clark, Heather M.
2017-01-01
Purpose This study compared orofacial strength between adults with dysarthria and neurologically normal (NN) matched controls. In addition, orofacial muscle weakness was examined for potential relationships to speech impairments in adults with dysarthria. Method Matched groups of 55 adults with dysarthria and 55 NN adults generated maximum pressure (Pmax) against an air-filled bulb during lingual elevation, protrusion and lateralization, and buccodental and labial compressions. These orofacial strength measures were compared with speech intelligibility, perceptual ratings of speech, articulation rate, and fast syllable-repetition rate. Results The dysarthria group demonstrated significantly lower orofacial strength than the NN group on all tasks. Lingual strength correlated moderately and buccal strength correlated weakly with most ratings of speech deficits. Speech intelligibility was not sensitive to dysarthria severity. Individuals with severely reduced anterior lingual elevation Pmax (< 18 kPa) had normal to profoundly impaired sentence intelligibility (99%–6%) and moderately to severely impaired speech (26%–94% articulatory imprecision; 33%–94% overall severity). Conclusions Results support the presence of orofacial muscle weakness in adults with dysarthrias of varying etiologies but reinforce tenuous links between orofacial strength and speech production disorders. By examining individual data, preliminary evidence emerges to suggest that speech, but not necessarily intelligibility, is likely to be impaired when lingual weakness is severe. PMID:28763804
The influence of speech rate and accent on access and use of semantic information.
Sajin, Stanislav M; Connine, Cynthia M
2017-04-01
Circumstances in which the speech input is presented in sub-optimal conditions generally lead to processing costs affecting spoken word recognition. The current study indicates that some processing demands imposed by listening to difficult speech can be mitigated by feedback from semantic knowledge. A set of lexical decision experiments examined how foreign accented speech and word duration impact access to semantic knowledge in spoken word recognition. Results indicate that when listeners process accented speech, the reliance on semantic information increases. Speech rate was not observed to influence semantic access, except in the setting in which unusually slow accented speech was presented. These findings support interactive activation models of spoken word recognition in which attention is modulated based on speech demands.
Kuruvilla-Dugdale, Mili; Mefferd, Antje
2017-01-01
Purpose Although it is frequently presumed that bulbar muscle degeneration in Amyotrophic Lateral Sclerosis (ALS) is associated with progressive loss of speech motor control, empirical evidence is limited. Furthermore, because speaking rate slows with disease progression and rate manipulations are used to improve intelligibility in ALS, this study sought to (i) determine between and within-group differences in articulatory motor control as a result of speaking rate changes and (ii) identify the strength of association between articulatory motor control and speech impairment severity. Method Ten talkers with ALS and 11 healthy controls repeated the target sentence at habitual, fast, and slow rates. The spatiotemporal variability index (STI) was calculated to determine tongue, lower lip, and jaw movement variability. Results During habitual speech, talkers with mild-moderate dysarthria displayed significantly lower tongue and lip movement variability whereas those with severe dysarthria showed greater variability compared to controls. Within-group rate effects were significant only for talkers with ALS. Specifically, lip and tongue movement variability significantly increased during slow speech relative to habitual and fast speech. Finally, preliminary associations between speech impairment severity and movement variability were moderate to strong in talkers with ALS. Conclusion Between-group differences for habitual speech and within-group effects for slow speech replicated previous findings for lower lip and jaw movements. Preliminary findings of moderate to strong associations between speech impairment severity and STI suggest that articulatory variability may vary from pathologically low (possibly indicating articulatory compensation) to pathologically high variability (possibly indicating loss of control) with dysarthria progression in ALS. PMID:28528293
SUBTHALAMIC NUCLEUS NEURONS DIFFERENTIALLY ENCODE EARLY AND LATE ASPECTS OF SPEECH PRODUCTION.
Lipski, W J; Alhourani, A; Pirnia, T; Jones, P W; Dastolfo-Hromack, C; Helou, L B; Crammond, D J; Shaiman, S; Dickey, M W; Holt, L L; Turner, R S; Fiez, J A; Richardson, R M
2018-05-22
Basal ganglia-thalamocortical loops mediate all motor behavior, yet little detail is known about the role of basal ganglia nuclei in speech production. Using intracranial recording during deep brain stimulation surgery in humans with Parkinson's disease, we tested the hypothesis that the firing rate of subthalamic nucleus neurons is modulated in sync with motor execution aspects of speech. Nearly half of seventy-nine unit recordings exhibited firing rate modulation, during a syllable reading task across twelve subjects (male and female). Trial-to-trial timing of changes in subthalamic neuronal activity, relative to cue onset versus production onset, revealed that locking to cue presentation was associated more with units that decreased firing rate, while locking to speech onset was associated more with units that increased firing rate. These unique data indicate that subthalamic activity is dynamic during the production of speech, reflecting temporally-dependent inhibition and excitation of separate populations of subthalamic neurons. SIGNIFICANCE STATEMENT The basal ganglia are widely assumed to participate in speech production, yet no prior studies have reported detailed examination of speech-related activity in basal ganglia nuclei. Using microelectrode recordings from the subthalamic nucleus during a single syllable reading task, in awake humans undergoing deep brain stimulation implantation surgery, we show that the firing rate of subthalamic nucleus neurons is modulated in response to motor execution aspects of speech. These results are the first to establish a role for subthalamic nucleus neurons in encoding of aspects of speech production, and they lay the groundwork for launching a modern subfield to explore basal ganglia function in human speech. Copyright © 2018 the authors.
Gorlin, Eugenia I; Teachman, Bethany A
2015-07-01
The current study brings together two typically distinct lines of research. First, social anxiety is inconsistently associated with behavioral deficits in social performance, and the factors accounting for these deficits remain poorly understood. Second, research on selective processing of threat cues, termed cognitive biases, suggests these biases typically predict negative outcomes, but may sometimes be adaptive, depending on the context. Integrating these research areas, the current study examined whether conscious and/or unconscious threat interference biases (indexed by the unmasked and masked emotional Stroop) can explain unique variance, beyond self-reported anxiety measures, in behavioral avoidance and observer-rated anxious behavior during a public speaking task. Minute of speech and general inhibitory control (indexed by the color-word Stroop) were examined as within-subject and between-subject moderators, respectively. Highly socially anxious participants (N=135) completed the emotional and color-word Stroop blocks prior to completing a 4-minute videotaped speech task, which was later coded for anxious behaviors (e.g., speech dysfluency). Mixed-effects regression analyses revealed that general inhibitory control moderated the relationship between both conscious and unconscious threat interference bias and anxious behavior (though not avoidance), such that lower threat interference predicted higher levels of anxious behavior, but only among those with relatively weaker (versus stronger) inhibitory control. Minute of speech further moderated this relationship for unconscious (but not conscious) social-threat interference, such that lower social-threat interference predicted a steeper increase in anxious behaviors over the course of the speech (but only among those with weaker inhibitory control). Thus, both trait and state differences in inhibitory control resources may influence the behavioral impact of threat biases in social anxiety. Copyright © 2015. Published by Elsevier Ltd.
Cognitive control components and speech symptoms in people with schizophrenia.
Becker, Theresa M; Cicero, David C; Cowan, Nelson; Kerns, John G
2012-03-30
Previous schizophrenia research suggests poor cognitive control is associated with schizophrenia speech symptoms. However, cognitive control is a broad construct. Two important cognitive control components are poor goal maintenance and poor verbal working memory storage. In the current research, people with schizophrenia (n=45) performed three cognitive tasks that varied in their goal maintenance and verbal working memory storage demands. Speech symptoms were assessed using clinical rating scales, ratings of disorganized speech from typed transcripts, and self-reported disorganization. Overall, alogia was associated with both goal maintenance and verbal working memory tasks. Objectively rated disorganized speech was associated with poor goal maintenance and with a task that included both goal maintenance and verbal working memory storage demands. In contrast, self-reported disorganization was unrelated to either amount of objectively rated disorganized speech or to cognitive control task performance, instead being associated with negative mood symptoms. Overall, our results suggest that alogia is associated with both poor goal maintenance and poor verbal working memory storage and that disorganized speech is associated with poor goal maintenance. In addition, patients' own assessment of their disorganization is related to negative mood, but perhaps not to objective disorganized speech or to cognitive control task performance. Published by Elsevier Ireland Ltd.
Auditory perceptual simulation: Simulating speech rates or accents?
Zhou, Peiyun; Christianson, Kiel
2016-07-01
When readers engage in Auditory Perceptual Simulation (APS) during silent reading, they mentally simulate characteristics of voices attributed to a particular speaker or a character depicted in the text. Previous research found that auditory perceptual simulation of a faster native English speaker during silent reading led to shorter reading times that auditory perceptual simulation of a slower non-native English speaker. Yet, it was uncertain whether this difference was triggered by the different speech rates of the speakers, or by the difficulty of simulating an unfamiliar accent. The current study investigates this question by comparing faster Indian-English speech and slower American-English speech in the auditory perceptual simulation paradigm. Analyses of reading times of individual words and the full sentence reveal that the auditory perceptual simulation effect again modulated reading rate, and auditory perceptual simulation of the faster Indian-English speech led to faster reading rates compared to auditory perceptual simulation of the slower American-English speech. The comparison between this experiment and the data from Zhou and Christianson (2016) demonstrate further that the "speakers'" speech rates, rather than the difficulty of simulating a non-native accent, is the primary mechanism underlying auditory perceptual simulation effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Spectral analysis method and sample generation for real time visualization of speech
NASA Astrophysics Data System (ADS)
Hobohm, Klaus
A method for translating speech signals into optical models, characterized by high sound discrimination and learnability and designed to provide to deaf persons a feedback towards control of their way of speaking, is presented. Important properties of speech production and perception processes and organs involved in these mechanisms are recalled in order to define requirements for speech visualization. It is established that the spectral representation of time, frequency and amplitude resolution of hearing must be fair and continuous variations of acoustic parameters of speech signal must be depicted by a continuous variation of images. A color table was developed for dynamic illustration and sonograms were generated with five spectral analysis methods such as Fourier transformations and linear prediction coding. For evaluating sonogram quality, test persons had to recognize consonant/vocal/consonant words and an optimized analysis method was achieved with a fast Fourier transformation and a postprocessor. A hardware concept of a real time speech visualization system, based on multiprocessor technology in a personal computer, is presented.
Churchill, Tyler H; Kan, Alan; Goupell, Matthew J; Litovsky, Ruth Y
2014-09-01
Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.
Cordella, Claire; Dickerson, Bradford C.; Quimby, Megan; Yunusova, Yana; Green, Jordan R.
2016-01-01
Background Primary progressive aphasia (PPA) is a neurodegenerative aphasic syndrome with three distinct clinical variants: non-fluent (nfvPPA), logopenic (lvPPA), and semantic (svPPA). Speech (non-) fluency is a key diagnostic marker used to aid identification of the clinical variants, and researchers have been actively developing diagnostic tools to assess speech fluency. Current approaches reveal coarse differences in fluency between subgroups, but often fail to clearly differentiate nfvPPA from the variably fluent lvPPA. More robust subtype differentiation may be possible with finer-grained measures of fluency. Aims We sought to identify the quantitative measures of speech rate—including articulation rate and pausing measures—that best differentiated PPA subtypes, specifically the non-fluent group (nfvPPA) from the more fluent groups (lvPPA, svPPA). The diagnostic accuracy of the quantitative speech rate variables was compared to that of a speech fluency impairment rating made by clinicians. Methods and Procedures Automatic estimates of pause and speech segment durations and rate measures were derived from connected speech samples of participants with PPA (N=38; 11 nfvPPA, 14 lvPPA, 13 svPPA) and healthy age-matched controls (N=8). Clinician ratings of fluency impairment were made using a previously validated clinician rating scale developed specifically for use in PPA. Receiver operating characteristic (ROC) analyses enabled a quantification of diagnostic accuracy. Outcomes and Results Among the quantitative measures, articulation rate was the most effective for differentiating between nfvPPA and the more fluent lvPPA and svPPA groups. The diagnostic accuracy of both speech and articulation rate measures was markedly better than that of the clinician rating scale, and articulation rate was the best classifier overall. Area under the curve (AUC) values for articulation rate were good to excellent for identifying nfvPPA from both svPPA (AUC=.96) and lvPPA (AUC=.86). Cross-validation of accuracy results for articulation rate showed good generalizability outside the training dataset. Conclusions Results provide empirical support for (1) the efficacy of quantitative assessments of speech fluency and (2) a distinct non-fluent PPA subtype characterized, at least in part, by an underlying disturbance in speech motor control. The trend toward improved classifier performance for quantitative rate measures demonstrates the potential for a more accurate and reliable approach to subtyping in the fluency domain, and suggests that articulation rate may be a useful input variable as part of a multi-dimensional clinical subtyping approach. PMID:28757671
ERIC Educational Resources Information Center
Haugh, Erin Kathleen
2017-01-01
The purpose of this study was to examine the role orthographic coding might play in distinguishing between membership in groups of language-based disability types. The sample consisted of 36 second and third-grade subjects who were administered the PAL-II Receptive Coding and Word Choice Accuracy subtest as a measure of orthographic coding…
Impairments of speech fluency in Lewy body spectrum disorder.
Ash, Sharon; McMillan, Corey; Gross, Rachel G; Cook, Philip; Gunawardena, Delani; Morgan, Brianna; Boller, Ashley; Siderowf, Andrew; Grossman, Murray
2012-03-01
Few studies have examined connected speech in demented and non-demented patients with Parkinson's disease (PD). We assessed the speech production of 35 patients with Lewy body spectrum disorder (LBSD), including non-demented PD patients, patients with PD dementia (PDD), and patients with dementia with Lewy bodies (DLB), in a semi-structured narrative speech sample in order to characterize impairments of speech fluency and to determine the factors contributing to reduced speech fluency in these patients. Both demented and non-demented PD patients exhibited reduced speech fluency, characterized by reduced overall speech rate and long pauses between sentences. Reduced speech rate in LBSD correlated with measures of between-utterance pauses, executive functioning, and grammatical comprehension. Regression analyses related non-fluent speech, grammatical difficulty, and executive difficulty to atrophy in frontal brain regions. These findings indicate that multiple factors contribute to slowed speech in LBSD, and this is mediated in part by disease in frontal brain regions. Copyright © 2011 Elsevier Inc. All rights reserved.
Fluency variation in adolescents.
Furquim de Andrade, Claudia Regina; de Oliveira Martins, Vanessa
2007-10-01
The Speech Fluency Profile of fluent adolescent speakers of Brazilian Portuguese, were examined with respect to gender and neurolinguistic variations. Speech samples of 130 male and female adolescents, aged between 12;0 and 17;11 years were gathered. They were analysed according to type of speech disruption; speech rate; and frequency of speech disruptions. Statistical analysis did not find significant differences between genders for the variables studied. However, regarding the phases of adolescence (early: 12;0-14;11 years; late: 15;0-17;11 years), statistical differences were observed for all of the variables. As for neurolinguistic maturation, a decrease in the number of speech disruptions and an increase in speech rate occurred during the final phase of adolescence, indicating that the maturation of the motor and linguistic processes exerted an influence over the fluency profile of speech.
ERIC Educational Resources Information Center
Kolehmainen, Leena; Skaffari, Janne
2016-01-01
This article serves as an introduction to a collection of four articles on multilingual practices in speech and writing, exploring both contemporary and historical sources. It not only introduces the articles but also discusses the scope and definitions of code-switching, attitudes towards multilingual interaction and, most pertinently, the…
Neural Coding of Relational Invariance in Speech: Human Language Analogs to the Barn Owl.
ERIC Educational Resources Information Center
Sussman, Harvey M.
1989-01-01
The neuronal model shown to code sound-source azimuth in the barn owl by H. Wagner et al. in 1987 is used as the basis for a speculative brain-based human model, which can establish contrastive phonetic categories to solve the problem of perception "non-invariance." (SLD)
Speech and gait in Parkinson's disease: When rhythm matters.
Ricciardi, Lucia; Ebreo, Michela; Graziosi, Adriana; Barbuto, Marianna; Sorbera, Chiara; Morgante, Letterio; Morgante, Francesca
2016-11-01
Speech disturbances in Parkinson's disease (PD) are heterogeneous, ranging from hypokinetic to hyperkinetic types. Repetitive speech disorder has been demonstrated in more advanced disease stages and has been considered the speech equivalent of freezing of gait (FOG). We aimed to verify a possible relationship between speech and FOG in patients with PD. Forty-three consecutive PD patients and 20 healthy control subjects underwent standardized speech evaluation using the Italian version of the Dysarthria Profile (DP), for its motor component, and subsets of the Battery for the Analysis of the Aphasic Deficit (BADA), for its procedural component. DP is a scale composed of 7 sub-sections assessing different features of speech; the rate/prosody section of DP includes items investigating the presence of repetitive speech disorder. Severity of FOG was evaluated with the new freezing of gait questionnaire (NFGQ). PD patients performed worse at DP and BADA compared to healthy controls; patients with FOG or with Hoehn-Yahr >2 reported lower scores in the articulation, intellibility, rate/prosody sections of DP and in the semantic verbal fluency test. Logistic regression analysis showed that only age and rate/prosody scores were significantly associated to FOG in PD. Multiple regression analysis showed that only the severity of FOG was associated to rate/prosody score. Our data demonstrate that repetitive speech disorder is related to FOG and is associated to advanced disease stages and independent of disease duration. Speech dysfluency represents a disorder of motor speech control, possibly sharing pathophysiological mechanisms with FOG. Copyright © 2016 Elsevier Ltd. All rights reserved.
Motor speech signature of behavioral variant frontotemporal dementia: Refining the phenotype.
Vogel, Adam P; Poole, Matthew L; Pemberton, Hugh; Caverlé, Marja W J; Boonstra, Frederique M C; Low, Essie; Darby, David; Brodtmann, Amy
2017-08-22
To provide a comprehensive description of motor speech function in behavioral variant frontotemporal dementia (bvFTD). Forty-eight individuals (24 bvFTD and 24 age- and sex-matched healthy controls) provided speech samples. These varied in complexity and thus cognitive demand. Their language was assessed using the Progressive Aphasia Language Scale and verbal fluency tasks. Speech was analyzed perceptually to describe the nature of deficits and acoustically to quantify differences between patients with bvFTD and healthy controls. Cortical thickness and subcortical volume derived from MRI scans were correlated with speech outcomes in patients with bvFTD. Speech of affected individuals was significantly different from that of healthy controls. The speech signature of patients with bvFTD is characterized by a reduced rate (75%) and accuracy (65%) on alternating syllable production tasks, and prosodic deficits including reduced speech rate (45%), prolonged intervals (54%), and use of short phrases (41%). Groups differed on acoustic measures derived from the reading, unprepared monologue, and diadochokinetic tasks but not the days of the week or sustained vowel tasks. Variability of silence length was associated with cortical thickness of the inferior frontal gyrus and insula and speech rate with the precentral gyrus. One in 8 patients presented with moderate speech timing deficits with a further two-thirds rated as mild or subclinical. Subtle but measurable deficits in prosody are common in bvFTD and should be considered during disease management. Language function correlated with speech timing measures derived from the unprepared monologue only. © 2017 American Academy of Neurology.
ERIC Educational Resources Information Center
Bauminger-Zviely, Nirit; Golan-Itshaky, Adi; Tubul-Lavy, Gila
2017-01-01
In this study, we videotaped two 10-min. free-play interactions and coded speech acts (SAs) in peer talk of 51 preschoolers (21 ASD, 30 typical), interacting with friend versus non-friend partners. Groups were matched for maternal education, IQ (verbal/nonverbal), and CA. We compared SAs by group (ASD/typical), by partner's friendship status…
Perception and Neural Coding of Harmonic Fusion in Ferrets
2004-01-01
distinct percepts that come under the rubric of pitch, be- cause periodicity pitch underlies speakers’ voices and speech prosody, as well as musical ...spectral fusion is unclear for sounds having predominantly low-frequency spectra such as speech, music , and many animal vocalizations. In summary...84, 560–565. von Helmholtz, H. (1863). Die Lehre von den Tonempfindungen als physiologische Grundlage fr die Theorie der Musik . (Vieweg und Sohn
The Matrix Pencil and its Applications to Speech Processing
2007-03-01
Elementary Linear Algebra ” 8th edition, pp. 278, 2000 John Wiley & Sons, Inc., New York [37] Wai C. Chu, “Speech Coding Algorithms”, New Jeresy: John...Ben; Daniel, James W.; “Applied Linear Algebra ”, pp. 342-345, 1988 Prentice Hall, Englewood Cliffs, NJ [35] Haykin, Simon “Applied Linear Adaptive...ABSTRACT Matrix Pencils facilitate the study of differential equations resulting from oscillating systems. Certain problems in linear ordinary
McCreery, Ryan W; Walker, Elizabeth A; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia
2015-01-01
Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HAs) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children's auditory experience on parent-reported auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Parent ratings on auditory development questionnaires and children's speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children rating scale, and an adaptation of the Speech, Spatial, and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open- and Closed-Set Test, Early Speech Perception test, Lexical Neighborhood Test, and Phonetically Balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared with peers with normal hearing matched for age, maternal educational level, and nonverbal intelligence. The effects of aided audibility, HA use, and language ability on parent responses to auditory development questionnaires and on children's speech recognition were also examined. Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater aided audibility through their HAs, more hours of HA use, and better language abilities generally had higher parent ratings of auditory skills and better speech-recognition abilities in quiet and in noise than peers with less audibility, more limited HA use, or poorer language abilities. In addition to the auditory and language factors that were predictive for speech recognition in quiet, phonological working memory was also a positive predictor for word recognition abilities in noise. Children who are hard of hearing continue to experience delays in auditory skill development and speech-recognition abilities compared with peers with normal hearing. However, significant improvements in these domains have occurred in comparison to similar data reported before the adoption of universal newborn hearing screening and early intervention programs for children who are hard of hearing. Increasing the audibility of speech has a direct positive effect on auditory skill development and speech-recognition abilities and also may enhance these skills by improving language abilities in children who are hard of hearing. Greater number of hours of HA use also had a significant positive impact on parent ratings of auditory skills and children's speech recognition.
Arsenault, Jessica S; Buchsbaum, Bradley R
2016-08-01
The motor theory of speech perception has experienced a recent revival due to a number of studies implicating the motor system during speech perception. In a key study, Pulvermüller et al. (2006) showed that premotor/motor cortex differentially responds to the passive auditory perception of lip and tongue speech sounds. However, no study has yet attempted to replicate this important finding from nearly a decade ago. The objective of the current study was to replicate the principal finding of Pulvermüller et al. (2006) and generalize it to a larger set of speech tokens while applying a more powerful statistical approach using multivariate pattern analysis (MVPA). Participants performed an articulatory localizer as well as a speech perception task where they passively listened to a set of eight syllables while undergoing fMRI. Both univariate and multivariate analyses failed to find evidence for somatotopic coding in motor or premotor cortex during speech perception. Positive evidence for the null hypothesis was further confirmed by Bayesian analyses. Results consistently show that while the lip and tongue areas of the motor cortex are sensitive to movements of the articulators, they do not appear to preferentially respond to labial and alveolar speech sounds during passive speech perception.
Carroll, Jeff; Zeng, Fan-Gang
2007-01-01
Increasing the number of channels at low frequencies improves discrimination of fundamental frequency (F0) in cochlear implants [Geurts and Wouters 2004]. We conducted three experiments to test whether improved F0 discrimination can be translated into increased speech intelligibility in noise in a cochlear implant simulation. The first experiment measured F0 discrimination and speech intelligibility in quiet as a function of channel density over different frequency regions. The results from this experiment showed a tradeoff in performance between F0 discrimination and speech intelligibility with a limited number of channels. The second experiment tested whether improved F0 discrimination and optimizing this tradeoff could improve speech performance with a competing talker. However, improved F0 discrimination did not improve speech intelligibility in noise. The third experiment identified the critical number of channels needed at low frequencies to improve speech intelligibility in noise. The result showed that, while 16 channels below 500 Hz were needed to observe any improvement in speech intelligibility in noise, even 32 channels did not achieve normal performance. Theoretically, these results suggest that without accurate spectral coding, F0 discrimination and speech perception in noise are two independent processes. Practically, the present results illustrate the need to increase the number of independent channels in cochlear implants. PMID:17604581
Leong, Victoria; Goswami, Usha
2014-01-01
Dyslexia is associated with impaired neural representation of the sound structure of words (phonology). The “phonological deficit” in dyslexia may arise in part from impaired speech rhythm perception, thought to depend on neural oscillatory phase-locking to slow amplitude modulation (AM) patterns in the speech envelope. Speech contains AM patterns at multiple temporal rates, and these different AM rates are associated with phonological units of different grain sizes, e.g., related to stress, syllables or phonemes. Here, we assess the ability of adults with dyslexia to use speech AMs to identify rhythm patterns (RPs). We study 3 important temporal rates: “Stress” (~2 Hz), “Syllable” (~4 Hz) and “Sub-beat” (reduced syllables, ~14 Hz). 21 dyslexics and 21 controls listened to nursery rhyme sentences that had been tone-vocoded using either single AM rates from the speech envelope (Stress only, Syllable only, Sub-beat only) or pairs of AM rates (Stress + Syllable, Syllable + Sub-beat). They were asked to use the acoustic rhythm of the stimulus to identity the original nursery rhyme sentence. The data showed that dyslexics were significantly poorer at detecting rhythm compared to controls when they had to utilize multi-rate temporal information from pairs of AMs (Stress + Syllable or Syllable + Sub-beat). These data suggest that dyslexia is associated with a reduced ability to utilize AMs <20 Hz for rhythm recognition. This perceptual deficit in utilizing AM patterns in speech could be underpinned by less efficient neuronal phase alignment and cross-frequency neuronal oscillatory synchronization in dyslexia. Dyslexics' perceptual difficulties in capturing the full spectro-temporal complexity of speech over multiple timescales could contribute to the development of impaired phonological representations for words, the cognitive hallmark of dyslexia across languages. PMID:24605099
Synthesized speech rate and pitch effects on intelligibility of warning messages for pilots
NASA Technical Reports Server (NTRS)
Simpson, C. A.; Marchionda-Frost, K.
1984-01-01
In civilian and military operations, a future threat-warning system with a voice display could warn pilots of other traffic, obstacles in the flight path, and/or terrain during low-altitude helicopter flights. The present study was conducted to learn whether speech rate and voice pitch of phoneme-synthesized speech affects pilot accuracy and response time to typical threat-warning messages. Helicopter pilots engaged in an attention-demanding flying task and listened for voice threat warnings presented in a background of simulated helicopter cockpit noise. Performance was measured by flying-task performance, threat-warning intelligibility, and response time. Pilot ratings were elicited for the different voice pitches and speech rates. Significant effects were obtained only for response time and for pilot ratings, both as a function of speech rate. For the few cases when pilots forgot to respond to a voice message, they remembered 90 percent of the messages accurately when queried for their response 8 to 10 sec later.
The influence of speaking rate on nasality in the speech of hearing-impaired individuals.
Dwyer, Claire H; Robb, Michael P; O'Beirne, Greg A; Gilbert, Harvey R
2009-10-01
The purpose of this study was to determine whether deliberate increases in speaking rate would serve to decrease the amount of nasality in the speech of severely hearing-impaired individuals. The participants were 11 severely to profoundly hearing-impaired students, ranging in age from 12 to 19 years (M = 16 years). Each participant provided a baseline speech sample (R1) followed by 3 training sessions during which participants were trained to increase their speaking rate. Following the training sessions, a second speech sample was obtained (R2). Acoustic and perceptual analyses of the speech samples obtained at R1 and R2 were undertaken. The acoustic analysis focused on changes in first (F(1)) and second (F(2)) formant frequency and formant bandwidths. The perceptual analysis involved listener ratings of the speech samples (at R1 and R2) for perceived nasality. Findings indicated a significant increase in speaking rate at R2. In addition, significantly narrower F(2) bandwidth and lower perceptual rating scores of nasality were obtained at R2 across all participants, suggesting a decrease in nasality as speaking rate increases. The nasality demonstrated by hearing-impaired individuals is amenable to change when speaking rate is increased. The influences of speaking rate changes on the perception and production of nasality in hearing-impaired individuals are discussed.
Performance of concatenated Reed-Solomon trellis-coded modulation over Rician fading channels
NASA Technical Reports Server (NTRS)
Moher, Michael L.; Lodge, John H.
1990-01-01
A concatenated coding scheme for providing very reliable data over mobile-satellite channels at power levels similar to those used for vocoded speech is described. The outer code is a shorter Reed-Solomon code which provides error detection as well as error correction capabilities. The inner code is a 1-D 8-state trellis code applied independently to both the inphase and quadrature channels. To achieve the full error correction potential of this inner code, the code symbols are multiplexed with a pilot sequence which is used to provide dynamic channel estimation and coherent detection. The implementation structure of this scheme is discussed and its performance is estimated.
Contextual modulation of reading rate for direct versus indirect speech quotations.
Yao, Bo; Scheepers, Christoph
2011-12-01
In human communication, direct speech (e.g., Mary said: "I'm hungry") is perceived to be more vivid than indirect speech (e.g., Mary said [that] she was hungry). However, the processing consequences of this distinction are largely unclear. In two experiments, participants were asked to either orally (Experiment 1) or silently (Experiment 2, eye-tracking) read written stories that contained either a direct speech or an indirect speech quotation. The context preceding those quotations described a situation that implied either a fast-speaking or a slow-speaking quoted protagonist. It was found that this context manipulation affected reading rates (in both oral and silent reading) for direct speech quotations, but not for indirect speech quotations. This suggests that readers are more likely to engage in perceptual simulations of the reported speech act when reading direct speech as opposed to meaning-equivalent indirect speech quotations, as part of a more vivid representation of the former. Copyright © 2011 Elsevier B.V. All rights reserved.
Predicting couple therapy outcomes based on speech acoustic features
Nasir, Md; Baucom, Brian Robert; Narayanan, Shrikanth
2017-01-01
Automated assessment and prediction of marital outcome in couples therapy is a challenging task but promises to be a potentially useful tool for clinical psychologists. Computational approaches for inferring therapy outcomes using observable behavioral information obtained from conversations between spouses offer objective means for understanding relationship dynamics. In this work, we explore whether the acoustics of the spoken interactions of clinically distressed spouses provide information towards assessment of therapy outcomes. The therapy outcome prediction task in this work includes detecting whether there was a relationship improvement or not (posed as a binary classification) as well as discerning varying levels of improvement or decline in the relationship status (posed as a multiclass recognition task). We use each interlocutor’s acoustic speech signal characteristics such as vocal intonation and intensity, both independently and in relation to one another, as cues for predicting the therapy outcome. We also compare prediction performance with one obtained via standardized behavioral codes characterizing the relationship dynamics provided by human experts as features for automated classification. Our experiments, using data from a longitudinal clinical study of couples in distressed relations, showed that predictions of relationship outcomes obtained directly from vocal acoustics are comparable or superior to those obtained using human-rated behavioral codes as prediction features. In addition, combining direct signal-derived features with manually coded behavioral features improved the prediction performance in most cases, indicating the complementarity of relevant information captured by humans and machine algorithms. Additionally, considering the vocal properties of the interlocutors in relation to one another, rather than in isolation, showed to be important for improving the automatic prediction. This finding supports the notion that behavioral outcome, like many other behavioral aspects, is closely related to the dynamics and mutual influence of the interlocutors during their interaction and their resulting behavioral patterns. PMID:28934302
Arndt, Susan; Aschendorff, Antje; Laszig, Roland; Wesarg, Thomas
2016-01-01
The ability to detect a target signal masked by noise is improved in normal-hearing listeners when interaural phase differences (IPDs) between the ear signals exist either in the masker or in the signal. To improve binaural hearing in bilaterally implanted cochlear implant (BiCI) users, a coding strategy providing the best possible access to IPD is highly desirable. In this study, we compared two coding strategies in BiCI users provided with CI systems from MED-EL (Innsbruck, Austria). The CI systems were bilaterally programmed either with the fine structure processing strategy FS4 or with the constant rate strategy high definition continuous interleaved sampling (HDCIS). Familiarization periods between 6 and 12 weeks were considered. The effect of IPD was measured in two types of experiments: (a) IPD detection thresholds with tonal signals addressing mainly one apical interaural electrode pair and (b) with speech in noise in terms of binaural speech intelligibility level differences (BILD) addressing multiple electrodes bilaterally. The results in (a) showed improved IPD detection thresholds with FS4 compared with HDCIS in four out of the seven BiCI users. In contrast, 12 BiCI users in (b) showed similar BILD with FS4 (0.6 ± 1.9 dB) and HDCIS (0.5 ± 2.0 dB). However, no correlation between results in (a) and (b) both obtained with FS4 was found. In conclusion, the degree of IPD sensitivity determined on an apical interaural electrode pair was not an indicator for BILD based on bilateral multielectrode stimulation. PMID:27659487
Zirn, Stefan; Arndt, Susan; Aschendorff, Antje; Laszig, Roland; Wesarg, Thomas
2016-09-22
The ability to detect a target signal masked by noise is improved in normal-hearing listeners when interaural phase differences (IPDs) between the ear signals exist either in the masker or in the signal. To improve binaural hearing in bilaterally implanted cochlear implant (BiCI) users, a coding strategy providing the best possible access to IPD is highly desirable. In this study, we compared two coding strategies in BiCI users provided with CI systems from MED-EL (Innsbruck, Austria). The CI systems were bilaterally programmed either with the fine structure processing strategy FS4 or with the constant rate strategy high definition continuous interleaved sampling (HDCIS). Familiarization periods between 6 and 12 weeks were considered. The effect of IPD was measured in two types of experiments: (a) IPD detection thresholds with tonal signals addressing mainly one apical interaural electrode pair and (b) with speech in noise in terms of binaural speech intelligibility level differences (BILD) addressing multiple electrodes bilaterally. The results in (a) showed improved IPD detection thresholds with FS4 compared with HDCIS in four out of the seven BiCI users. In contrast, 12 BiCI users in (b) showed similar BILD with FS4 (0.6 ± 1.9 dB) and HDCIS (0.5 ± 2.0 dB). However, no correlation between results in (a) and (b) both obtained with FS4 was found. In conclusion, the degree of IPD sensitivity determined on an apical interaural electrode pair was not an indicator for BILD based on bilateral multielectrode stimulation. © The Author(s) 2016.
Vogel, Adam P; Shirbin, Christopher; Churchyard, Andrew J; Stout, Julie C
2012-12-01
Speech disturbances (e.g., altered prosody) have been described in symptomatic Huntington's Disease (HD) individuals, however, the extent to which speech changes in gene positive pre-manifest (PreHD) individuals is largely unknown. The speech of individuals carrying the mutant HTT gene is a behavioural/motor/cognitive marker demonstrating some potential as an objective indicator of early HD onset and disease progression. Speech samples were acquired from 30 individuals carrying the mutant HTT gene (13 PreHD, 17 early stage HD) and 15 matched controls. Participants read a passage, produced a monologue and said the days of the week. Data were analysed acoustically for measures of timing, frequency and intensity. There was a clear effect of group across most acoustic measures, so that speech performance differed in-line with disease progression. Comparisons across groups revealed significant differences between the control and the early stage HD group on measures of timing (e.g., speech rate). Participants carrying the mutant HTT gene presented with slower rates of speech, took longer to say words and produced greater silences between and within words compared to healthy controls. Importantly, speech rate showed a significant correlation to burden of disease scores. The speech of early stage HD differed significantly from controls. The speech of PreHD, although not reaching significance, tended to lie between the performance of controls and early stage HD. This suggests that changes in speech production appear to be developing prior to diagnosis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hengst, Julie A; Frame, Simone R; Neuman-Stritzel, Tiffany; Gannaway, Rachel
2005-02-01
Reported speech, wherein one quotes or paraphrases the speech of another, has been studied extensively as a set of linguistic and discourse practices. Researchers agree that reported speech is pervasive, found across languages, and used in diverse contexts. However, to date, there have been no studies of the use of reported speech among individuals with aphasia. Grounded in an interactional sociolinguistic perspective, the study presented here documents and analyzes the use of reported speech by 7 adults with mild to moderately severe aphasia and their routine communication partners. Each of the 7 pairs was videotaped in 4 everyday activities at home or around the community, yielding over 27 hr of conversational interaction for analysis. A coding scheme was developed that identified 5 types of explicitly marked reported speech: direct, indirect, projected, indexed, and undecided. Analysis of the data documented reported speech as a common discourse practice used successfully by the individuals with aphasia and their communication partners. All participants produced reported speech at least once, and across all observations the target pairs produced 400 reported speech episodes (RSEs), 149 by individuals with aphasia and 251 by their communication partners. For all participants, direct and indirect forms were the most prevalent (70% of RSEs). Situated discourse analysis of specific episodes of reported speech used by 3 of the pairs provides detailed portraits of the diverse interactional, referential, social, and discourse functions of reported speech and explores ways that the pairs used reported speech to successfully frame talk despite their ongoing management of aphasia.
The influence of listener experience and academic training on ratings of nasality.
Lewis, Kerry E; Watterson, Thomas L; Houghton, Sarah M
2003-01-01
This study assessed listener agreement levels for nasality ratings, and the strength of relationship between nasality ratings and nasalance scores on one hand, and listener clinical experience and formal academic training in cleft palate speech on the other. The listeners were 12 adults who represented four levels of clinical experience and academic training in cleft palate speech. Three listeners were teachers with no clinical experience and no academic training (TR), three were graduate students in speech-language pathology (GS) with academic training but no clinical experience, three were craniofacial surgeons (MD) with extensive experience listening to cleft palate speech but with no academic training in speech disorders, and three were certified speech-language pathologists (SLP) with both extensive academic training and clinical experience. The speech samples were audio recordings from 20 persons representing a range of nasality from normal to severely hypernasal. Nasalance scores were obtained simultaneously with the audio recordings. Results revealed that agreement levels for nasality ratings were highest for the SLPs, followed by the MDs. Thus, the more experienced groups tended to be more reliable. Mean nasality ratings obtained for each of the rater groups revealed an inverse relationship with experience. That is, the two groups with clinical experience (SLP and MD) tended to rate nasality lower than the two groups without experience (GS and TR). Correlation coefficients between nasalance scores and nasality judgments were low to moderate for all groups and did not follow a pattern. EDUCATIONAL OUTCOMES: As a result of this activity, the reader will be able to (1) describe the influence of listener experience and academic training in cleft palate speech on perceptual ratings of nasality. (2) describe the influence of experience and training on the nasality/nasalance relationship and, (3) compare the present findings to previous findings reported in the literature.
Mochida, Takemi; Gomi, Hiroaki; Kashino, Makio
2010-11-08
There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded.
A laboratory study for assessing speech privacy in a simulated open-plan office.
Lee, P J; Jeon, J Y
2014-06-01
The aim of this study is to assess speech privacy in open-plan office using two recently introduced single-number quantities: the spatial decay rate of speech, DL(2,S) [dB], and the A-weighted sound pressure level of speech at a distance of 4 m, L(p,A,S,4) m [dB]. Open-plan offices were modeled using a DL(2,S) of 4, 8, and 12 dB, and L(p,A,S,4) m was changed in three steps, from 43 to 57 dB.Auditory experiments were conducted at three locations with source–receiver distances of 8, 16, and 24 m, while background noise level was fixed at 30 dBA.A total of 20 subjects were asked to rate the speech intelligibility and listening difficulty of 240 Korean sentences in such surroundings. The speech intelligibility scores were not affected by DL(2,S) or L(p,A,S,4) m at a source–receiver distance of 8 m; however, listening difficulty ratings were significantly changed with increasing DL(2,S) and L(p,A,S,4) m values. At other locations, the influences of DL(2,S) and L(p,A,S,4) m on speech intelligibility and listening difficulty ratings were significant. It was also found that the speech intelligibility scores and listening difficulty ratings were considerably changed with increasing the distraction distance (r(D)). Furthermore, listening difficulty is more sensitive to variations in DL(2,S) and L(p,A,S,4) m than intelligibility scores for sound fields with high speech transmission performances. The recently introduced single-number quantities in the ISO standard, based on the spatial distribution of sound pressure level, were associated with speech privacy in an open-plan office. The results support single-number quantities being suitable to assess speech privacy, mainly at large distances. This new information can be considered when designing open-plan offices and making acoustic guidelines of open-plan offices.
Working memory capacity may influence perceived effort during aided speech recognition in noise.
Rudner, Mary; Lunner, Thomas; Behrens, Thomas; Thorén, Elisabet Sundewall; Rönnberg, Jerker
2012-09-01
Recently there has been interest in using subjective ratings as a measure of perceived effort during speech recognition in noise. Perceived effort may be an indicator of cognitive load. Thus, subjective effort ratings during speech recognition in noise may covary both with signal-to-noise ratio (SNR) and individual cognitive capacity. The present study investigated the relation between subjective ratings of the effort involved in listening to speech in noise, speech recognition performance, and individual working memory (WM) capacity in hearing impaired hearing aid users. In two experiments, participants with hearing loss rated perceived effort during aided speech perception in noise. Noise type and SNR were manipulated in both experiments, and in the second experiment hearing aid compression release settings were also manipulated. Speech recognition performance was measured along with WM capacity. There were 46 participants in all with bilateral mild to moderate sloping hearing loss. In Experiment 1 there were 16 native Danish speakers (eight women and eight men) with a mean age of 63.5 yr (SD = 12.1) and average pure tone (PT) threshold of 47. 6 dB (SD = 9.8). In Experiment 2 there were 30 native Swedish speakers (19 women and 11 men) with a mean age of 70 yr (SD = 7.8) and average PT threshold of 45.8 dB (SD = 6.6). A visual analog scale (VAS) was used for effort rating in both experiments. In Experiment 1, effort was rated at individually adapted SNRs while in Experiment 2 it was rated at fixed SNRs. Speech recognition in noise performance was measured using adaptive procedures in both experiments with Dantale II sentences in Experiment 1 and Hagerman sentences in Experiment 2. WM capacity was measured using a letter-monitoring task in Experiment 1 and the reading span task in Experiment 2. In both experiments, there was a strong and significant relation between rated effort and SNR that was independent of individual WM capacity, whereas the relation between rated effort and noise type seemed to be influenced by individual WM capacity. Experiment 2 showed that hearing aid compression setting influenced rated effort. Subjective ratings of the effort involved in speech recognition in noise reflect SNRs, and individual cognitive capacity seems to influence relative rating of noise type. American Academy of Audiology.
Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain
Neilans, Erikson G.; Abrams, Kristina S.; Idrobo, Fabio; Carney, Laurel H.
2016-01-01
Amplitude modulation (AM) is a crucial feature of many communication signals, including speech. Whereas average discharge rates in the auditory midbrain correlate with behavioral AM sensitivity in rabbits, the neural bases of AM sensitivity in species with human-like behavioral acuity are unexplored. Here, we used parallel behavioral and neurophysiological experiments to explore the neural (midbrain) bases of AM perception in an avian speech mimic, the budgerigar (Melopsittacus undulatus). Behavioral AM sensitivity was quantified using operant conditioning procedures. Neural AM sensitivity was studied using chronically implanted microelectrodes in awake, unrestrained birds. Average discharge rates of multiunit recording sites in the budgerigar midbrain were insufficient to explain behavioral sensitivity to modulation frequencies <100 Hz for both tone- and noise-carrier stimuli, even with optimal pooling of information across recording sites. Neural envelope synchrony, in contrast, could explain behavioral performance for both carrier types across the full range of modulation frequencies studied (16–512 Hz). The results suggest that envelope synchrony in the budgerigar midbrain may underlie behavioral sensitivity to AM. Behavioral AM sensitivity based on synchrony in the budgerigar, which contrasts with rate-correlated behavioral performance in rabbits, raises the possibility that envelope synchrony, rather than average discharge rate, might also underlie AM perception in other species with sensitive AM detection abilities, including humans. These results highlight the importance of synchrony coding of envelope structure in the inferior colliculus. Furthermore, they underscore potential benefits of devices (e.g., midbrain implants) that evoke robust neural synchrony. PMID:26843608
Speech Rate as a Sticky Switch: A Multiple Lesion Case Analysis of Mutism and Hyperlalia
ERIC Educational Resources Information Center
Braun, Claude M. J.; Dumont, Mathieu; Duval, Julie; Hamel-Hebert, Isabelle
2004-01-01
Though it has long been known on the basis of clinical associations and serendipitous observation that speech rate is related to mood and psychomotor baseline, it is less known that speech rate is also related to libido and to immune function. We make the case for a bipolar phenomenon of ''psychic tonus,'' encompassing all these dimensions. The…
An Adaptive Approach to a 2.4 kb/s LPC Speech Coding System.
1985-07-01
laryngeal cancer ). Spectral estimation is at the foundation of speech analysis for all these goals and accurate AR model estimation in noise is...S ,5 mWnL NrinKt ) o ,-G p (d va Rmea.imn flU: 5() WOM Lu M(G)INUNM 40 4KeemS! MU= 1 UD M5) SIGHSM A SO= WAGe . M. (d) I U NS maIm ( IW vis MAMA
Geo-Coding for the Mapping of Documents and Social Media Messages
2013-08-22
O.L. (2007). UBC-ALM: Combining KNN with SVD for WSD. Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval-2007), Prague...and Yarowsky, D. (1992). One sense per discourse. In Proceedings of the 4th DARPA Speech and Natural Language Workshop. pp. 233-237, 1992. Retrieved...Part-of- Speech Tagging for Twitter: Annotation, Features, and Experiments. Proceedings of the Annual Meeting of the Association for Computational
Accent, intelligibility, and comprehensibility in the perception of foreign-accented Lombard speech
NASA Astrophysics Data System (ADS)
Li, Chi-Nin
2003-10-01
Speech produced in noise (Lombard speech) has been reported to be more intelligible than speech produced in quiet (normal speech). This study examined the perception of non-native Lombard speech in terms of intelligibility, comprehensibility, and degree of foreign accent. Twelve Cantonese speakers and a comparison group of English speakers read simple true and false English statements in quiet and in 70 dB of masking noise. Lombard and normal utterances were mixed with noise at a constant signal-to-noise ratio, and presented along with noise-free stimuli to eight new English listeners who provided transcription scores, comprehensibility ratings, and accent ratings. Analyses showed that, as expected, utterances presented in noise were less well perceived than were noise-free sentences, and that the Cantonese speakers' productions were more accented, but less intelligible and less comprehensible than those of the English speakers. For both groups of speakers, the Lombard sentences were correctly transcribed more often than their normal utterances in noisy conditions. However, the Cantonese-accented Lombard sentences were not rated as easier to understand than was the normal speech in all conditions. The assigned accent ratings were similar throughout all listening conditions. Implications of these findings will be discussed.
Becker, Johannes; Barbe, Michael T; Hartinger, Mariam; Dembek, Till A; Pochmann, Jil; Wirths, Jochen; Allert, Niels; Mücke, Doris; Hermes, Anne; Meister, Ingo G; Visser-Vandewalle, Veerle; Grice, Martine; Timmermann, Lars
2017-04-01
Deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) is performed to suppress medically-resistant essential tremor (ET). However, stimulation induced dysarthria (SID) is a common side effect, limiting the extent to which tremor can be suppressed. To date, the exact pathogenesis of SID in VIM-DBS treated ET patients is unknown. We investigate the effect of inactivated, uni- and bilateral VIM-DBS on speech production in patients with ET. We employ acoustic measures, tempo, and intelligibility ratings and patient's self-estimated speech to quantify SID, with a focus on comparing bilateral to unilateral stimulation effects and the effect of electrode position on speech. Sixteen German ET patients participated in this study. Each patient was acoustically recorded with DBS-off, unilateral-right-hemispheric-DBS-on, unilateral-left-hemispheric-DBS-on, and bilateral-DBS-on during an oral diadochokinesis task and a read German standard text. To capture the extent of speech impairment, we measured syllable duration and intensity ratio during the DDK task. Naïve listeners rated speech tempo and speech intelligibility of the read text on a 5-point-scale. Patients had to rate their "ability to speak". We found an effect of bilateral compared to unilateral and inactivated stimulation on syllable durations and intensity ratio, as well as on external intelligibility ratings and patients' VAS scores. Additionally, VAS scores are associated with more laterally located active contacts. For speech ratings, we found an effect of syllable duration such that tempo and intelligibility was rated worse for speakers exhibiting greater syllable durations. Our data confirms that SID is more pronounced under bilateral compared to unilateral stimulation. Laterally located electrodes are associated with more severe SID according to patient's self-ratings. We can confirm the relation between diadochokinetic rate and SID in that listener's tempo and intelligibility ratings can be predicted by measured syllable durations from DDK tasks. © 2017 International Neuromodulation Society.
Formant-frequency variation and its effects on across-formant grouping in speech perception.
Roberts, Brian; Summers, Robert J; Bailey, Peter J
2013-01-01
How speech is separated perceptually from other speech remains poorly understood. In a series of experiments, perceptual organisation was probed by presenting three-formant (F1+F2+F3) analogues of target sentences dichotically, together with a competitor for F2 (F2C), or for F2+F3, which listeners must reject to optimise recognition. To control for energetic masking, the competitor was always presented in the opposite ear to the corresponding target formant(s). Sine-wave speech was used initially, and different versions of F2C were derived from F2 using separate manipulations of its amplitude and frequency contours. F2Cs with time-varying frequency contours were highly effective competitors, whatever their amplitude characteristics, whereas constant-frequency F2Cs were ineffective. Subsequent studies used synthetic-formant speech to explore the effects of manipulating the rate and depth of formant-frequency change in the competitor. Competitor efficacy was not tuned to the rate of formant-frequency variation in the target sentences; rather, the reduction in intelligibility increased with competitor rate relative to the rate for the target sentences. Therefore, differences in speech rate may not be a useful cue for separating the speech of concurrent talkers. Effects of competitors whose depth of formant-frequency variation was scaled by a range of factors were explored using competitors derived either by inverting the frequency contour of F2 about its geometric mean (plausibly speech-like pattern) or by using a regular and arbitrary frequency contour (triangle wave, not plausibly speech-like) matched to the average rate and depth of variation for the inverted F2C. Competitor efficacy depended on the overall depth of frequency variation, not depth relative to that for the other formants. Furthermore, the triangle-wave competitors were as effective as their more speech-like counterparts. Overall, the results suggest that formant-frequency variation is critical for the across-frequency grouping of formants but that this grouping does not depend on speech-specific constraints.
Articulatory-to-Acoustic Relations in Response to Speaking Rate and Loudness Manipulations
ERIC Educational Resources Information Center
Mefferd, Antje S.; Green, Jordan R.
2010-01-01
Purpose: In this investigation, the authors determined the strength of association between tongue kinematic and speech acoustics changes in response to speaking rate and loudness manipulations. Performance changes in the kinematic and acoustic domains were measured using two aspects of speech production presumably affecting speech clarity:…
Methodological Choices in Rating Speech Samples
ERIC Educational Resources Information Center
O'Brien, Mary Grantham
2016-01-01
Much pronunciation research critically relies upon listeners' judgments of speech samples, but researchers have rarely examined the impact of methodological choices. In the current study, 30 German native listeners and 42 German L2 learners (L1 English) rated speech samples produced by English-German L2 learners along three continua: accentedness,…
DEBLICOM: Deaf-Blind Communication & Control Systems: First Quarterly Progress Report.
ERIC Educational Resources Information Center
Kafafian, Haig
Reported on is the first phase of development of DEBLICOM, a code for a two-way communication system for deaf-blind individuals who may be speech-impaired. Brief sections cover the following topics: alternatives to and considerations for the development of cutaneous codes for deaf-blind people; the DEBLICOM system which provides a means of…
McCreery, Ryan W.; Walker, Elizabeth A.; Spratford, Meredith; Oleson, Jacob; Bentler, Ruth; Holte, Lenore; Roush, Patricia
2015-01-01
Objectives Progress has been made in recent years in the provision of amplification and early intervention for children who are hard of hearing. However, children who use hearing aids (HA) may have inconsistent access to their auditory environment due to limitations in speech audibility through their HAs or limited HA use. The effects of variability in children’s auditory experience on parent-report auditory skills questionnaires and on speech recognition in quiet and in noise were examined for a large group of children who were followed as part of the Outcomes of Children with Hearing Loss study. Design Parent ratings on auditory development questionnaires and children’s speech recognition were assessed for 306 children who are hard of hearing. Children ranged in age from 12 months to 9 years of age. Three questionnaires involving parent ratings of auditory skill development and behavior were used, including the LittlEARS Auditory Questionnaire, Parents Evaluation of Oral/Aural Performance in Children Rating Scale, and an adaptation of the Speech, Spatial and Qualities of Hearing scale. Speech recognition in quiet was assessed using the Open and Closed set task, Early Speech Perception Test, Lexical Neighborhood Test, and Phonetically-balanced Kindergarten word lists. Speech recognition in noise was assessed using the Computer-Assisted Speech Perception Assessment. Children who are hard of hearing were compared to peers with normal hearing matched for age, maternal educational level and nonverbal intelligence. The effects of aided audibility, HA use and language ability on parent responses to auditory development questionnaires and on children’s speech recognition were also examined. Results Children who are hard of hearing had poorer performance than peers with normal hearing on parent ratings of auditory skills and had poorer speech recognition. Significant individual variability among children who are hard of hearing was observed. Children with greater aided audibility through their HAs, more hours of HA use and better language abilities generally had higher parent ratings of auditory skills and better speech recognition abilities in quiet and in noise than peers with less audibility, more limited HA use or poorer language abilities. In addition to the auditory and language factors that were predictive for speech recognition in quiet, phonological working memory was also a positive predictor for word recognition abilities in noise. Conclusions Children who are hard of hearing continue to experience delays in auditory skill development and speech recognition abilities compared to peers with normal hearing. However, significant improvements in these domains have occurred in comparison to similar data reported prior to the adoption of universal newborn hearing screening and early intervention programs for children who are hard of hearing. Increasing the audibility of speech has a direct positive effect on auditory skill development and speech recognition abilities, and may also enhance these skills by improving language abilities in children who are hard of hearing. Greater number of hours of HA use also had a significant positive impact on parent ratings of auditory skills and children’s speech recognition. PMID:26731160
Self-Organization: Complex Dynamical Systems in the Evolution of Speech
NASA Astrophysics Data System (ADS)
Oudeyer, Pierre-Yves
Human vocalization systems are characterized by complex structural properties. They are combinatorial, based on the systematic reuse of phonemes, and the set of repertoires in human languages is characterized by both strong statistical regularities—universals—and a great diversity. Besides, they are conventional codes culturally shared in each community of speakers. What are the origins of the forms of speech? What are the mechanisms that permitted their evolution in the course of phylogenesis and cultural evolution? How can a shared speech code be formed in a community of individuals? This chapter focuses on the way the concept of self-organization, and its interaction with natural selection, can throw light on these three questions. In particular, a computational model is presented which shows that a basic neural equipment for adaptive holistic vocal imitation, coupling directly motor and perceptual representations in the brain, can generate spontaneously shared combinatorial systems of vocalizations in a society of babbling individuals. Furthermore, we show how morphological and physiological innate constraints can interact with these self-organized mechanisms to account for both the formation of statistical regularities and diversity in vocalization systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, J.
The goal of the proposed research is to test a statistical model of speech recognition that incorporates the knowledge that speech is produced by relatively slow motions of the tongue, lips, and other speech articulators. This model is called Maximum Likelihood Continuity Mapping (Malcom). Many speech researchers believe that by using constraints imposed by articulator motions, we can improve or replace the current hidden Markov model based speech recognition algorithms. Unfortunately, previous efforts to incorporate information about articulation into speech recognition algorithms have suffered because (1) slight inaccuracies in our knowledge or the formulation of our knowledge about articulation maymore » decrease recognition performance, (2) small changes in the assumptions underlying models of speech production can lead to large changes in the speech derived from the models, and (3) collecting measurements of human articulator positions in sufficient quantity for training a speech recognition algorithm is still impractical. The most interesting (and in fact, unique) quality of Malcom is that, even though Malcom makes use of a mapping between acoustics and articulation, Malcom can be trained to recognize speech using only acoustic data. By learning the mapping between acoustics and articulation using only acoustic data, Malcom avoids the difficulties involved in collecting articulator position measurements and does not require an articulatory synthesizer model to estimate the mapping between vocal tract shapes and speech acoustics. Preliminary experiments that demonstrate that Malcom can learn the mapping between acoustics and articulation are discussed. Potential applications of Malcom aside from speech recognition are also discussed. Finally, specific deliverables resulting from the proposed research are described.« less
Methods of Improving Speech Intelligibility for Listeners with Hearing Resolution Deficit
2012-01-01
Abstract Methods developed for real-time time scale modification (TSM) of speech signal are presented. They are based on the non-uniform, speech rate depended SOLA algorithm (Synchronous Overlap and Add). Influence of the proposed method on the intelligibility of speech was investigated for two separate groups of listeners, i.e. hearing impaired children and elderly listeners. It was shown that for the speech with average rate equal to or higher than 6.48 vowels/s, all of the proposed methods have statistically significant impact on the improvement of speech intelligibility for hearing impaired children with reduced hearing resolution and one of the proposed methods significantly improves comprehension of speech in the group of elderly listeners with reduced hearing resolution. Virtual slides http://www.diagnosticpathology.diagnomx.eu/vs/2065486371761991 PMID:23009662
Neural and Behavioral Mechanisms of Clear Speech
ERIC Educational Resources Information Center
Luque, Jenna Silver
2017-01-01
Clear speech is a speaking style that has been shown to improve intelligibility in adverse listening conditions, for various listener and talker populations. Clear-speech phonetic enhancements include a slowed speech rate, expanded vowel space, and expanded pitch range. Although clear-speech phonetic enhancements have been demonstrated across a…
ERIC Educational Resources Information Center
Davidow, Jason H.
2014-01-01
Background: Metronome-paced speech results in the elimination, or substantial reduction, of stuttering moments. The cause of fluency during this fluency-inducing condition is unknown. Several investigations have reported changes in speech pattern characteristics from a control condition to a metronome-paced speech condition, but failure to control…
Cognitive Load in Voice Therapy Carry-Over Exercises.
Iwarsson, Jenny; Morris, David Jackson; Balling, Laura Winther
2017-01-01
The cognitive load generated by online speech production may vary with the nature of the speech task. This article examines 3 speech tasks used in voice therapy carry-over exercises, in which a patient is required to adopt and automatize new voice behaviors, ultimately in daily spontaneous communication. Twelve subjects produced speech in 3 conditions: rote speech (weekdays), sentences in a set form, and semispontaneous speech. Subjects simultaneously performed a secondary visual discrimination task for which response times were measured. On completion of each speech task, subjects rated their experience on a questionnaire. Response times from the secondary, visual task were found to be shortest for the rote speech, longer for the semispontaneous speech, and longest for the sentences within the set framework. Principal components derived from the subjective ratings were found to be linked to response times on the secondary visual task. Acoustic measures reflecting fundamental frequency distribution and vocal fold compression varied across the speech tasks. The results indicate that consideration should be given to the selection of speech tasks during the process leading to automation of revised speech behavior and that self-reports may be a reliable index of cognitive load.
Phonologically-based biomarkers for major depressive disorder
NASA Astrophysics Data System (ADS)
Trevino, Andrea Carolina; Quatieri, Thomas Francis; Malyska, Nicolas
2011-12-01
Of increasing importance in the civilian and military population is the recognition of major depressive disorder at its earliest stages and intervention before the onset of severe symptoms. Toward the goal of more effective monitoring of depression severity, we introduce vocal biomarkers that are derived automatically from phonologically-based measures of speech rate. To assess our measures, we use a 35-speaker free-response speech database of subjects treated for depression over a 6-week duration. We find that dissecting average measures of speech rate into phone-specific characteristics and, in particular, combined phone-duration measures uncovers stronger relationships between speech rate and depression severity than global measures previously reported for a speech-rate biomarker. Results of this study are supported by correlation of our measures with depression severity and classification of depression state with these vocal measures. Our approach provides a general framework for analyzing individual symptom categories through phonological units, and supports the premise that speaking rate can be an indicator of psychomotor retardation severity.
Jiang, Chenghui; Whitehill, Tara L
2014-04-01
Speech errors associated with cleft palate are well established for English and several other Indo-European languages. Few articles describing the speech of Putonghua (standard Mandarin Chinese) speakers with cleft palate have been published in English language journals. Although methodological guidelines have been published for the perceptual speech evaluation of individuals with cleft palate, there has been no critical review of methodological issues in studies of Putonghua speakers with cleft palate. A literature search was conducted to identify relevant studies published over the past 30 years in Chinese language journals. Only studies incorporating perceptual analysis of speech were included. Thirty-seven articles which met inclusion criteria were analyzed and coded on a number of methodological variables. Reliability was established by having all variables recoded for all studies. This critical review identified many methodological issues. These design flaws make it difficult to draw reliable conclusions about characteristic speech errors in this group of speakers. Specific recommendations are made to improve the reliability and validity of future studies, as well to facilitate cross-center comparisons.
Phonology and Vocal Behavior in Toddlers with Autism Spectrum Disorders
Schoen, Elizabeth; Paul, Rhea; Chawarska, Katyrzyna
2011-01-01
Scientific Abstract The purpose of this study is to examine the phonological and other vocal productions of children, 18-36 months, with autism spectrum disorder (ASD) and to compare these productions to those of age-matched and language-matched controls. Speech samples were obtained from 30 toddlers with ASD, 11 age-matched toddlers and 23 language-matched toddlers during either parent-child or clinician-child play sessions. Samples were coded for a variety of speech-like and non-speech vocalization productions. Toddlers with ASD produced speech-like vocalizations similar to those of language-matched peers, but produced significantly more atypical non-speech vocalizations when compared to both control groups.Toddlers with ASD show speech-like sound production that is linked to their language level, in a manner similar to that seen in typical development. The main area of difference in vocal development in this population is in the production of atypical vocalizations. Findings suggest that toddlers with autism spectrum disorders might not tune into the language model of their environment. Failure to attend to the ambient language environment negatively impacts the ability to acquire spoken language. PMID:21308998
Tomblin, J. Bruce; Peng, Shu-Chen; Spencer, Linda J.; Lu, Nelson
2011-01-01
Purpose This study characterized the development of speech sound production in prelingually deaf children with a minimum of 8 years of cochlear implant (CI) experience. Method Twenty-seven pediatric CI recipients' spontaneous speech samples from annual evaluation sessions were phonemically transcribed. Accuracy for these speech samples was evaluated in piecewise regression models. Results As a group, pediatric CI recipients showed steady improvement in speech sound production following implantation, but the improvement rate declined after 6 years of device experience. Piecewise regression models indicated that the slope estimating the participants' improvement rate was statistically greater than 0 during the first 6 years postimplantation, but not after 6 years. The group of pediatric CI recipients' accuracy of speech sound production after 4 years of device experience reasonably predicts their speech sound production after 5–10 years of device experience. Conclusions The development of speech sound production in prelingually deaf children stabilizes after 6 years of device experience, and typically approaches a plateau by 8 years of device use. Early growth in speech before 4 years of device experience did not predict later rates of growth or levels of achievement. However, good predictions could be made after 4 years of device use. PMID:18695018
Cleft audit protocol for speech (CAPS-A): a comprehensive training package for speech analysis.
Sell, D; John, A; Harding-Bell, A; Sweeney, T; Hegarty, F; Freeman, J
2009-01-01
The previous literature has largely focused on speech analysis systems and ignored process issues, such as the nature of adequate speech samples, data acquisition, recording and playback. Although there has been recognition of the need for training on tools used in speech analysis associated with cleft palate, little attention has been paid to this issue. To design, execute, and evaluate a training programme for speech and language therapists on the systematic and reliable use of the Cleft Audit Protocol for Speech-Augmented (CAPS-A), addressing issues of standardized speech samples, data acquisition, recording, playback, and listening guidelines. Thirty-six specialist speech and language therapists undertook the training programme over four days. This consisted of two days' training on the CAPS-A tool followed by a third day, making independent ratings and transcriptions on ten new cases which had been previously recorded during routine audit data collection. This task was repeated on day 4, a minimum of one month later. Ratings were made using the CAPS-A record form with the CAPS-A definition table. An analysis was made of the speech and language therapists' CAPS-A ratings at occasion 1 and occasion 2 and the intra- and inter-rater reliability calculated. Trained therapists showed consistency in individual judgements on specific sections of the tool. Intraclass correlation coefficients were calculated for each section with good agreement on eight of 13 sections. There were only fair levels of agreement on anterior oral cleft speech characteristics, non-cleft errors/immaturities and voice. This was explained, at least in part, by their low prevalence which affects the calculation of the intraclass correlation coefficient statistic. Speech and language therapists benefited from training on the CAPS-A, focusing on specific aspects of speech using definitions of parameters and scalar points, in order to apply the tool systematically and reliably. Ratings are enhanced by ensuring a high degree of attention to the nature of the data, standardizing the speech sample, data acquisition, the listening process together with the use of high-quality recording and playback equipment. In addition, a method is proposed for maintaining listening skills following training as part of an individual's continuing education.
Marchina, Sarah; Norton, Andrea; Kumar, Sandeep; Schlaug, Gottfried
2018-01-01
Functional imaging studies have provided insight into the effect of rate on production of syllables, pseudowords, and naturalistic speech, but the influence of rate on repetition of commonly-used words/phrases suitable for therapeutic use merits closer examination. Aim: To identify speech-motor regions responsive to rate and test the hypothesis that those regions would provide greater support as rates increase, we used an overt speech repetition task and functional magnetic resonance imaging (fMRI) to capture rate-modulated activation within speech-motor regions and determine whether modulations occur linearly and/or show hemispheric preference. Methods: Twelve healthy, right-handed adults participated in an fMRI task requiring overt repetition of commonly-used words/phrases at rates of 1, 2, and 3 syllables/second (syll./sec.). Results: Across all rates, bilateral activation was found both in ventral portions of primary sensorimotor cortex and middle and superior temporal regions. A repeated measures analysis of variance with pairwise comparisons revealed an overall difference between rates in temporal lobe regions of interest (ROIs) bilaterally ( p < 0.001); all six comparisons reached significance ( p < 0.05). Five of the six were highly significant ( p < 0.008), while the left-hemisphere 2- vs. 3-syll./sec. comparison, though still significant, was less robust ( p = 0.037). Temporal ROI mean beta-values increased linearly across the three rates bilaterally. Significant rate effects observed in the temporal lobes were slightly more pronounced in the right-hemisphere. No significant overall rate differences were seen in sensorimotor ROIs, nor was there a clear hemispheric effect. Conclusion: Linear effects in superior temporal ROIs suggest that sensory feedback corresponds directly to task demands. The lesser degree of significance in left-hemisphere activation at the faster, closer-to-normal rate may represent an increase in neural efficiency (and therefore, decreased demand) when the task so closely approximates a highly-practiced function. The presence of significant bilateral activation during overt repetition of words/phrases at all three rates suggests that repetition-based speech production may draw support from either or both hemispheres. This bihemispheric redundancy in regions associated with speech-motor control and their sensitivity to changes in rate may play an important role in interventions for nonfluent aphasia and other fluency disorders, particularly when right-hemisphere structures are the sole remaining pathway for production of meaningful speech.
ERIC Educational Resources Information Center
Zhang, Jianliang; Kalinowski, Joseph; Saltuklaroglu, Tim; Hudock, Daniel
2010-01-01
Background: Previous studies have found simultaneous increases in skin conductance response and decreases in heart rate when normally fluent speakers watched and listened to stuttered speech compared with fluent speech, suggesting that stuttering induces arousal and emotional unpleasantness in listeners. However, physiological responses of persons…
Not so fast: Fast speech correlates with lower lexical and structural information.
Cohen Priva, Uriel
2017-03-01
Speakers dynamically adjust their speech rate throughout conversations. These adjustments have been linked to cognitive and communicative limitations: for example, speakers speak words that are contextually unexpected (and thus add more information) with slower speech rates. This raises the question whether limitations of this type vary wildly across speakers or are relatively constant. The latter predicts that across speakers (or conversations), speech rate and the amount of information content are inversely correlated: on average, speakers can either provide high information content or speak quickly, but not both. Using two corpus studies replicated across two corpora, I demonstrate that indeed, fast speech correlates with the use of less informative words and syntactic structures. Thus, while there are individual differences in overall information throughput, speakers are more similar in this aspect than differences in speech rate would suggest. The results suggest that information theoretic constraints on production operate at a higher level than was observed before and affect language throughout production, not only after words and structures are chosen. Copyright © 2016 Elsevier B.V. All rights reserved.
Neural Oscillations Carry Speech Rhythm through to Comprehension
Peelle, Jonathan E.; Davis, Matthew H.
2012-01-01
A key feature of speech is the quasi-regular rhythmic information contained in its slow amplitude modulations. In this article we review the information conveyed by speech rhythm, and the role of ongoing brain oscillations in listeners’ processing of this content. Our starting point is the fact that speech is inherently temporal, and that rhythmic information conveyed by the amplitude envelope contains important markers for place and manner of articulation, segmental information, and speech rate. Behavioral studies demonstrate that amplitude envelope information is relied upon by listeners and plays a key role in speech intelligibility. Extending behavioral findings, data from neuroimaging – particularly electroencephalography (EEG) and magnetoencephalography (MEG) – point to phase locking by ongoing cortical oscillations to low-frequency information (~4–8 Hz) in the speech envelope. This phase modulation effectively encodes a prediction of when important events (such as stressed syllables) are likely to occur, and acts to increase sensitivity to these relevant acoustic cues. We suggest a framework through which such neural entrainment to speech rhythm can explain effects of speech rate on word and segment perception (i.e., that the perception of phonemes and words in connected speech is influenced by preceding speech rate). Neuroanatomically, acoustic amplitude modulations are processed largely bilaterally in auditory cortex, with intelligible speech resulting in differential recruitment of left-hemisphere regions. Notable among these is lateral anterior temporal cortex, which we propose functions in a domain-general fashion to support ongoing memory and integration of meaningful input. Together, the reviewed evidence suggests that low-frequency oscillations in the acoustic speech signal form the foundation of a rhythmic hierarchy supporting spoken language, mirrored by phase-locked oscillations in the human brain. PMID:22973251
Using on-line altered auditory feedback treating Parkinsonian speech
NASA Astrophysics Data System (ADS)
Wang, Emily; Verhagen, Leo; de Vries, Meinou H.
2005-09-01
Patients with advanced Parkinson's disease tend to have dysarthric speech that is hesitant, accelerated, and repetitive, and that is often resistant to behavior speech therapy. In this pilot study, the speech disturbances were treated using on-line altered feedbacks (AF) provided by SpeechEasy (SE), an in-the-ear device registered with the FDA for use in humans to treat chronic stuttering. Eight PD patients participated in the study. All had moderate to severe speech disturbances. In addition, two patients had moderate recurring stuttering at the onset of PD after long remission since adolescence, two had bilateral STN DBS, and two bilateral pallidal DBS. An effective combination of delayed auditory feedback and frequency-altered feedback was selected for each subject and provided via SE worn in one ear. All subjects produced speech samples (structured-monologue and reading) under three conditions: baseline, with SE without, and with feedbacks. The speech samples were randomly presented and rated for speech intelligibility goodness using UPDRS-III item 18 and the speaking rate. The results indicted that SpeechEasy is well tolerated and AF can improve speech intelligibility in spontaneous speech. Further investigational use of this device for treating speech disorders in PD is warranted [Work partially supported by Janus Dev. Group, Inc.].
Intensive Speech and Language Therapy for Older Children with Cerebral Palsy: A Systems Approach
ERIC Educational Resources Information Center
Pennington, Lindsay; Miller, Nick; Robson, Sheila; Steen, Nick
2010-01-01
Aim: To investigate whether speech therapy using a speech systems approach to controlling breath support, phonation, and speech rate can increase the speech intelligibility of children with dysarthria and cerebral palsy (CP). Method: Sixteen children with dysarthria and CP participated in a modified time series design. Group characteristics were…
Increasing Parental Involvement in Speech-Sound Remediation
ERIC Educational Resources Information Center
Roberts, Micah Renee Ferguson
2014-01-01
Speech therapy homework is a key component of a successful speech therapy program, increasing carryover of learned speech sounds. Poor return rate of homework assigned, with a lack of parental involvement, is a problem. The purpose of this project study was to examine what may increase parental participation in speech therapy homework. Guided by…
Automated Speech Rate Measurement in Dysarthria.
Martens, Heidi; Dekens, Tomas; Van Nuffelen, Gwen; Latacz, Lukas; Verhelst, Werner; De Bodt, Marc
2015-06-01
In this study, a new algorithm for automated determination of speech rate (SR) in dysarthric speech is evaluated. We investigated how reliably the algorithm calculates the SR of dysarthric speech samples when compared with calculation performed by speech-language pathologists. The new algorithm was trained and tested using Dutch speech samples of 36 speakers with no history of speech impairment and 40 speakers with mild to moderate dysarthria. We tested the algorithm under various conditions: according to speech task type (sentence reading, passage reading, and storytelling) and algorithm optimization method (speaker group optimization and individual speaker optimization). Correlations between automated and human SR determination were calculated for each condition. High correlations between automated and human SR determination were found in the various testing conditions. The new algorithm measures SR in a sufficiently reliable manner. It is currently being integrated in a clinical software tool for assessing and managing prosody in dysarthric speech. Further research is needed to fine-tune the algorithm to severely dysarthric speech, to make the algorithm less sensitive to background noise, and to evaluate how the algorithm deals with syllabic consonants.
Pefkou, Maria; Arnal, Luc H; Fontolan, Lorenzo; Giraud, Anne-Lise
2017-08-16
Recent psychophysics data suggest that speech perception is not limited by the capacity of the auditory system to encode fast acoustic variations through neural γ activity, but rather by the time given to the brain to decode them. Whether the decoding process is bounded by the capacity of θ rhythm to follow syllabic rhythms in speech, or constrained by a more endogenous top-down mechanism, e.g., involving β activity, is unknown. We addressed the dynamics of auditory decoding in speech comprehension by challenging syllable tracking and speech decoding using comprehensible and incomprehensible time-compressed auditory sentences. We recorded EEGs in human participants and found that neural activity in both θ and γ ranges was sensitive to syllabic rate. Phase patterns of slow neural activity consistently followed the syllabic rate (4-14 Hz), even when this rate went beyond the classical θ range (4-8 Hz). The power of θ activity increased linearly with syllabic rate but showed no sensitivity to comprehension. Conversely, the power of β (14-21 Hz) activity was insensitive to the syllabic rate, yet reflected comprehension on a single-trial basis. We found different long-range dynamics for θ and β activity, with β activity building up in time while more contextual information becomes available. This is consistent with the roles of θ and β activity in stimulus-driven versus endogenous mechanisms. These data show that speech comprehension is constrained by concurrent stimulus-driven θ and low-γ activity, and by endogenous β activity, but not primarily by the capacity of θ activity to track the syllabic rhythm. SIGNIFICANCE STATEMENT Speech comprehension partly depends on the ability of the auditory cortex to track syllable boundaries with θ-range neural oscillations. The reason comprehension drops when speech is accelerated could hence be because θ oscillations can no longer follow the syllabic rate. Here, we presented subjects with comprehensible and incomprehensible accelerated speech, and show that neural phase patterns in the θ band consistently reflect the syllabic rate, even when speech becomes too fast to be intelligible. The drop in comprehension, however, is signaled by a significant decrease in the power of low-β oscillations (14-21 Hz). These data suggest that speech comprehension is not limited by the capacity of θ oscillations to adapt to syllabic rate, but by an endogenous decoding process. Copyright © 2017 the authors 0270-6474/17/377930-09$15.00/0.
Gesture and speech during shared book reading with preschoolers with specific language impairment.
Lavelli, Manuela; Barachetti, Chiara; Florit, Elena
2015-11-01
This study examined (a) the relationship between gesture and speech produced by children with specific language impairment (SLI) and typically developing (TD) children, and their mothers, during shared book-reading, and (b) the potential effectiveness of gestures accompanying maternal speech on the conversational responsiveness of children. Fifteen preschoolers with expressive SLI were compared with fifteen age-matched and fifteen language-matched TD children. Child and maternal utterances were coded for modality, gesture type, gesture-speech informational relationship, and communicative function. Relative to TD peers, children with SLI used more bimodal utterances and gestures adding unique information to co-occurring speech. Some differences were mirrored in maternal communication. Sequential analysis revealed that only in the SLI group maternal reading accompanied by gestures was significantly followed by child's initiatives, and when maternal non-informative repairs were accompanied by gestures, they were more likely to elicit adequate answers from children. These findings support the 'gesture advantage' hypothesis in children with SLI, and have implications for educational and clinical practice.
Enhancing speech recognition using improved particle swarm optimization based hidden Markov model.
Selvaraj, Lokesh; Ganesan, Balakrishnan
2014-01-01
Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO) is suggested. The suggested methodology contains four stages, namely, (i) denoising, (ii) feature mining (iii), vector quantization, and (iv) IPSO based hidden Markov model (HMM) technique (IP-HMM). At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC), mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.
a Comparative Analysis of Fluent and Cerebral Palsied Speech.
NASA Astrophysics Data System (ADS)
van Doorn, Janis Lee
Several features of the acoustic waveforms of fluent and cerebral palsied speech were compared, using six fluent and seven cerebral palsied subjects, with a major emphasis being placed on an investigation of the trajectories of the first three formants (vocal tract resonances). To provide an overall picture which included other acoustic features, fundamental frequency, intensity, speech timing (speech rate and syllable duration), and prevocalization (vocalization prior to initial stop consonants found in cerebral palsied speech) were also investigated. Measurements were made using repetitions of a test sentence which was chosen because it required large excursions of the speech articulators (lips, tongue and jaw), so that differences in the formant trajectories for the fluent and cerebral palsied speakers would be emphasized. The acoustic features were all extracted from the digitized speech waveform (10 kHz sampling rate): the fundamental frequency contours were derived manually, the intensity contours were measured using the signal covariance, speech rate and syllable durations were measured manually, as were the prevocalization durations, while the formant trajectories were derived from short time spectra which were calculated for each 10 ms of speech using linear prediction analysis. Differences which were found in the acoustic features can be summarized as follows. For cerebral palsied speakers, the fundamental frequency contours generally showed inappropriate exaggerated fluctuations, as did some of the intensity contours; the mean fundamental frequencies were either higher or the same as for the fluent subjects; speech rates were reduced, and syllable durations were longer; prevocalization was consistently present at the beginning of the test sentence; formant trajectories were found to have overall reduced frequency ranges, and to contain anomalous transitional features, but it is noteworthy that for any one cerebral palsied subject, the inappropriate trajectory pattern was generally reproducible. The anomalous transitional features took the form of (a) inappropriate transition patterns, (b) reduced frequency excursions, (c) increased transition durations, and (d) decreased maximum rates of frequency change.
Speech Acquisition and Automatic Speech Recognition for Integrated Spacesuit Audio Systems
NASA Technical Reports Server (NTRS)
Huang, Yiteng; Chen, Jingdong; Chen, Shaoyan
2010-01-01
A voice-command human-machine interface system has been developed for spacesuit extravehicular activity (EVA) missions. A multichannel acoustic signal processing method has been created for distant speech acquisition in noisy and reverberant environments. This technology reduces noise by exploiting differences in the statistical nature of signal (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, the automatic speech recognition (ASR) accuracy can be improved to the level at which crewmembers would find the speech interface useful. The developed speech human/machine interface will enable both crewmember usability and operational efficiency. It can enjoy a fast rate of data/text entry, small overall size, and can be lightweight. In addition, this design will free the hands and eyes of a suited crewmember. The system components and steps include beam forming/multi-channel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, model adaption, ASR HMM (Hidden Markov Model) training, and ASR decoding. A state-of-the-art phoneme recognizer can obtain an accuracy rate of 65 percent when the training and testing data are free of noise. When it is used in spacesuits, the rate drops to about 33 percent. With the developed microphone array speech-processing technologies, the performance is improved and the phoneme recognition accuracy rate rises to 44 percent. The recognizer can be further improved by combining the microphone array and HMM model adaptation techniques and using speech samples collected from inside spacesuits. In addition, arithmetic complexity models for the major HMMbased ASR components were developed. They can help real-time ASR system designers select proper tasks when in the face of constraints in computational resources.
Speech rate and fluency in children with phonological disorder.
Novaes, Priscila Maronezi; Nicolielo-Carrilho, Ana Paola; Lopes-Herrera, Simone Aparecida
2015-01-01
To identify and describe the speech rate and fluency of children with phonological disorder (PD) with and without speech-language therapy. Thirty children, aged 5-8 years old, both genders, were divided into three groups: experimental group 1 (G1) — 10 children with PD in intervention; experimental group 2 (G2) — 10 children with PD without intervention; and control group (CG) — 10 children with typical development. Speech samples were collected and analyzed according to parameters of specific protocol. The children in CG had higher number of words per minute compared to those in G1, which, in turn, performed better in this aspect compared to children in G2. Regarding the number of syllables per minute, the CG showed the best result. In this aspect, the children in G1 showed better results than those in G2. Comparing children's performance in the assessed groups regarding the tests, those with PD in intervention had higher time of speech sample and adequate speech rate, which may be indicative of greater auditory monitoring of their own speech as a result of the intervention.
Pilot Workload and Speech Analysis: A Preliminary Investigation
NASA Technical Reports Server (NTRS)
Bittner, Rachel M.; Begault, Durand R.; Christopher, Bonny R.
2013-01-01
Prior research has questioned the effectiveness of speech analysis to measure the stress, workload, truthfulness, or emotional state of a talker. The question remains regarding the utility of speech analysis for restricted vocabularies such as those used in aviation communications. A part-task experiment was conducted in which participants performed Air Traffic Control read-backs in different workload environments. Participant's subjective workload and the speech qualities of fundamental frequency (F0) and articulation rate were evaluated. A significant increase in subjective workload rating was found for high workload segments. F0 was found to be significantly higher during high workload while articulation rates were found to be significantly slower. No correlation was found to exist between subjective workload and F0 or articulation rate.
Predicting clinical decline in progressive agrammatic aphasia and apraxia of speech.
Whitwell, Jennifer L; Weigand, Stephen D; Duffy, Joseph R; Clark, Heather M; Strand, Edythe A; Machulda, Mary M; Spychalla, Anthony J; Senjem, Matthew L; Jack, Clifford R; Josephs, Keith A
2017-11-28
To determine whether baseline clinical and MRI features predict rate of clinical decline in patients with progressive apraxia of speech (AOS). Thirty-four patients with progressive AOS, with AOS either in isolation or in the presence of agrammatic aphasia, were followed up longitudinally for up to 4 visits, with clinical testing and MRI at each visit. Linear mixed-effects regression models including all visits (n = 94) were used to assess baseline clinical and MRI variables that predict rate of worsening of aphasia, motor speech, parkinsonism, and behavior. Clinical predictors included baseline severity and AOS type. MRI predictors included baseline frontal, premotor, motor, and striatal gray matter volumes. More severe parkinsonism at baseline was associated with faster rate of decline in parkinsonism. Patients with predominant sound distortions (AOS type 1) showed faster rates of decline in aphasia and motor speech, while patients with segmented speech (AOS type 2) showed faster rates of decline in parkinsonism. On MRI, we observed trends for fastest rates of decline in aphasia in patients with relatively small left, but preserved right, Broca area and precentral cortex. Bilateral reductions in lateral premotor cortex were associated with faster rates of decline of behavior. No associations were observed between volumes and decline in motor speech or parkinsonism. Rate of decline of each of the 4 clinical features assessed was associated with different baseline clinical and regional MRI predictors. Our findings could help improve prognostic estimates for these patients. © 2017 American Academy of Neurology.
Persistent Use of Mixed Code: An Exploration of Its Functions in Hong Kong Schools
ERIC Educational Resources Information Center
Low, Winnie W. M.; Lu, Dan
2006-01-01
Codemixing of Cantonese Chinese and English is a common speech behaviour used by bilingual people in Hong Kong. Though codemixing is repeatedly criticised as a cause of the decline of students' language competence, there is little hard evidence to indicate its detrimental effects. This study examines the use of mixed code in the context of the…
Ben-David, Boaz M; Icht, Michal
2017-05-01
Oral-diadochokinesis (oral-DDK) tasks are extensively used in the evaluation of motor speech abilities. Currently, validated normative data for older adults (aged 65 years and older) are missing in Hebrew. The effect of task stimuli (non-word versus real-word repetition) is also non-clear in the population of older adult Hebrew speakers. (1) To establish a norm for oral-DDK rate for older adult (aged 65 years and older) Hebrew speakers, and to investigate the possible effect of age and gender on performance rate; and (2) to examine the effects of stimuli (non-word versus real word) on oral-DDK rates. In experiment 1, 88 healthy older Hebrew speakers (60-95 years, 48 females and 40 males) were audio-recorded while performing an oral-DDK task (repetition of /pataka/), and repetition rates (syllables/s) were coded. In experiment 2, the effect of real-word repetition was evaluated. Sixty-eight older Hebrew speakers (aged 66-95 years, 43 females and 25 males) were asked to repeat 'pataka' (non-word) and 'bodeket' (Hebrew real word). Experiment 1: Oral-DDK performance for older adult Hebrew speakers was 5.07 syllables/s (SD = 1.16 syllables/s), across age groups and gender. Comparison of this data with Hebrew norms for younger adults (and equivalent data in English) shows the following gradient of oral-DDK rates: ages 15-45 > 65-74 > 75-86 years. Gender was not a significant factor in our data. Experiment 2: Repetition of real words was faster than that of non-words, by 13.5%. The paper provides normative values for oral-DDK rates for older Hebrew speakers. The data show the large impact of ageing on oro-motor functions. The analysis further indicates that speech and language pathologists should consider separate norms for clients of 65-74 years and those of 75-86 years. Hebrew rates were found to be different from English norms for the oldest group, shedding light on the impact of language on these norms. Finally, the data support using a dual-protocol (real- and non-word repetition) with older adults to improve differential diagnosis of normal and pathological ageing in this task. © 2016 Royal College of Speech and Language Therapists.
The Reliability of Methodological Ratings for speechBITE Using the PEDro-P Scale
ERIC Educational Resources Information Center
Murray, Elizabeth; Power, Emma; Togher, Leanne; McCabe, Patricia; Munro, Natalie; Smith, Katherine
2013-01-01
Background: speechBITE (http://www.speechbite.com) is an online database established in order to help speech and language therapists gain faster access to relevant research that can used in clinical decision-making. In addition to containing more than 3000 journal references, the database also provides methodological ratings on the PEDro-P (an…
Measuring Severity of Involvement in Speech Delay: Segmental and Whole-Word Measures
ERIC Educational Resources Information Center
Flipsen, Peter, Jr.; Hammer, Jill B.; Yost, Kathryn M.
2005-01-01
Purpose: This study examined whether any of a series of segmental and whole-word measures of articulatory competence captured more of the variance in impressionistic ratings of severity of involvement in speech delay. It also examined whether knowing the age of the child affected severity ratings. Method: Ten very experienced speech-language…
ERIC Educational Resources Information Center
Chon, HeeCheong; Kraft, Shelly Jo; Zhang, Jingfei; Loucks, Torrey; Ambrose, Nicoline G.
2013-01-01
Purpose: Delayed auditory feedback (DAF) is known to induce stuttering-like disfluencies (SLDs) and cause speech rate reductions in normally fluent adults, but the reason for speech disruptions is not fully known, and individual variation has not been well characterized. Studying individual variation in susceptibility to DAF may identify factors…
ERIC Educational Resources Information Center
Sweeney, Triona; Sell, Debbie
2008-01-01
Background: Nasometry has supplemented perceptual assessments of nasality, using speech stimuli, which are devoid of nasal consonants. However, such speech stimuli are not representative of conversational speech. A weak relationship has been found in previous studies between perceptual ratings of hypernasality and nasalance scores for passages…
ERIC Educational Resources Information Center
Vallin, Marlene Boyd
A study tested those theories upon which instruction and curriculum in speech and public communication are based. The study investigated the relationship of mode of delivery on ratings of individual speech characteristics as well as the relationship of these perceptions of effectiveness in a public communication setting. Twenty-four videotapes of…
Revisiting Speech Rate and Utterance Length Manipulations in Stuttering Speakers
ERIC Educational Resources Information Center
Blomgren, Michael; Goberman, Alexander M.
2008-01-01
The goal of this study was to evaluate stuttering frequency across a multidimensional (2 x 2) hierarchy of speech performance tasks. Specifically, this study examined the interaction between changes in length of utterance and levels of speech rate stability. Forty-four adult male speakers participated in the study (22 stuttering speakers and 22…
Hodge, Megan M; Gotzke, Carrie L
2014-01-01
This study evaluated construct-related validity of the Test of Children's Speech (TOCS). Intelligibility scores obtained using open-set word identification tasks (orthographic transcription) for the TOCS word and sentence tests and rate scores for the TOCS sentence test (words per minute or WPM and intelligible words per minute or IWPM) were compared for a group of 15 adults (18-30 years of age) with normal speech production and three groups of children: 48 3-6 year-olds with typical speech development and neurological histories (TDS), 48 3-6 year-olds with a speech sound disorder of unknown origin and no identified neurological impairment (SSD-UNK), and 22 3-10 year-olds with dysarthria and cerebral palsy (DYS). As expected, mean intelligibility scores and rates increased with age in the TDS group. However, word test intelligibility, WPM and IWPM scores for the 6 year-olds in the TDS group were significantly lower than those for the adults. The DYS group had significantly lower word and sentence test intelligibility and WPM and IWPM scores than the TDS and SSD-UNK groups. Compared to the TDS group, the SSD-UNK group also had significantly lower intelligibility scores for the word and sentence tests, and significantly lower IWPM, but not WPM scores on the sentence test. The results support the construct-related validity of TOCS as a tool for obtaining intelligibility and rate scores that are sensitive to group differences in 3-6 year-old children, with and without speech sound disorders, and to 3+ year-old children with speech disorders, with and without dysarthria. Readers will describe the word and sentence intelligibility and speaking rate performance of children with typically developing speech at age levels of 3, 4, 5 and 6 years, as measured by the Test of Children's Speech, and how these compare with adult speakers and two groups of children with speech disorders. They will also recognize what measures on this test differentiate children with speech sound disorders of unknown origin from children with cerebral palsy and dysarthria. Copyright © 2014 Elsevier Inc. All rights reserved.
Effects of spectral and temporal disruption on cortical encoding of gerbil vocalizations
Ter-Mikaelian, Maria; Semple, Malcolm N.
2013-01-01
Animal communication sounds contain spectrotemporal fluctuations that provide powerful cues for detection and discrimination. Human perception of speech is influenced both by spectral and temporal acoustic features but is most critically dependent on envelope information. To investigate the neural coding principles underlying the perception of communication sounds, we explored the effect of disrupting the spectral or temporal content of five different gerbil call types on neural responses in the awake gerbil's primary auditory cortex (AI). The vocalizations were impoverished spectrally by reduction to 4 or 16 channels of band-passed noise. For this acoustic manipulation, an average firing rate of the neuron did not carry sufficient information to distinguish between call types. In contrast, the discharge patterns of individual AI neurons reliably categorized vocalizations composed of only four spectral bands with the appropriate natural token. The pooled responses of small populations of AI cells classified spectrally disrupted and natural calls with an accuracy that paralleled human performance on an analogous speech task. To assess whether discharge pattern was robust to temporal perturbations of an individual call, vocalizations were disrupted by time-reversing segments of variable duration. For this acoustic manipulation, cortical neurons were relatively insensitive to short reversal lengths. Consistent with human perception of speech, these results indicate that the stable representation of communication sounds in AI is more dependent on sensitivity to slow temporal envelopes than on spectral detail. PMID:23761696
The right hemisphere is highlighted in connected natural speech production and perception.
Alexandrou, Anna Maria; Saarinen, Timo; Mäkelä, Sasu; Kujala, Jan; Salmelin, Riitta
2017-05-15
Current understanding of the cortical mechanisms of speech perception and production stems mostly from studies that focus on single words or sentences. However, it has been suggested that processing of real-life connected speech may rely on additional cortical mechanisms. In the present study, we examined the neural substrates of natural speech production and perception with magnetoencephalography by modulating three central features related to speech: amount of linguistic content, speaking rate and social relevance. The amount of linguistic content was modulated by contrasting natural speech production and perception to speech-like non-linguistic tasks. Meaningful speech was produced and perceived at three speaking rates: normal, slow and fast. Social relevance was probed by having participants attend to speech produced by themselves and an unknown person. These speech-related features were each associated with distinct spatiospectral modulation patterns that involved cortical regions in both hemispheres. Natural speech processing markedly engaged the right hemisphere in addition to the left. In particular, the right temporo-parietal junction, previously linked to attentional processes and social cognition, was highlighted in the task modulations. The present findings suggest that its functional role extends to active generation and perception of meaningful, socially relevant speech. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Yamamoto, Kosuke; Kawabata, Hideaki
2014-12-01
We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.
Reilly, Kevin J.; Spencer, Kristie A.
2013-01-01
The current study investigated the processes responsible for selection of sounds and syllables during production of speech sequences in 10 adults with hypokinetic dysarthria from Parkinson’s disease, five adults with ataxic dysarthria, and 14 healthy control speakers. Speech production data from a choice reaction time task were analyzed to evaluate the effects of sequence length and practice on speech sound sequencing. Speakers produced sequences that were between one and five syllables in length over five experimental runs of 60 trials each. In contrast to the healthy speakers, speakers with hypokinetic dysarthria demonstrated exaggerated sequence length effects for both inter-syllable intervals (ISIs) and speech error rates. Conversely, speakers with ataxic dysarthria failed to demonstrate a sequence length effect on ISIs and were also the only group that did not exhibit practice-related changes in ISIs and speech error rates over the five experimental runs. The exaggerated sequence length effects in the hypokinetic speakers with Parkinson’s disease are consistent with an impairment of action selection during speech sequence production. The absent length effects observed in the speakers with ataxic dysarthria is consistent with previous findings that indicate a limited capacity to buffer speech sequences in advance of their execution. In addition, the lack of practice effects in these speakers suggests that learning-related improvements in the production rate and accuracy of speech sequences involves processing by structures of the cerebellum. Together, the current findings inform models of serial control for speech in healthy speakers and support the notion that sequencing deficits contribute to speech symptoms in speakers with hypokinetic or ataxic dysarthria. In addition, these findings indicate that speech sequencing is differentially impaired in hypokinetic and ataxic dysarthria. PMID:24137121
Speech and Voice Response to a Levodopa Challenge in Late-Stage Parkinson's Disease.
Fabbri, Margherita; Guimarães, Isabel; Cardoso, Rita; Coelho, Miguel; Guedes, Leonor Correia; Rosa, Mario M; Godinho, Catarina; Abreu, Daisy; Gonçalves, Nilza; Antonini, Angelo; Ferreira, Joaquim J
2017-01-01
Parkinson's disease (PD) patients are affected by hypokinetic dysarthria, characterized by hypophonia and dysprosody, which worsens with disease progression. Levodopa's (l-dopa) effect on quality of speech is inconclusive; no data are currently available for late-stage PD (LSPD). To assess the modifications of speech and voice in LSPD following an acute l-dopa challenge. LSPD patients [Schwab and England score <50/Hoehn and Yahr stage >3 (MED ON)] performed several vocal tasks before and after an acute l-dopa challenge. The following was assessed: respiratory support for speech, voice quality, stability and variability, speech rate, and motor performance (MDS-UPDRS-III). All voice samples were recorded and analyzed by a speech and language therapist blinded to patients' therapeutic condition using Praat 5.1 software. 24/27 (14 men) LSPD patients succeeded in performing voice tasks. Median age and disease duration of patients were 79 [IQR: 71.5-81.7] and 14.5 [IQR: 11-15.7] years, respectively. In MED OFF, respiratory breath support and pitch break time of LSPD patients were worse than the normative values of non-parkinsonian. A correlation was found between disease duration and voice quality ( R = 0.51; p = 0.013) and speech rate ( R = -0.55; p = 0.008). l-Dopa significantly improved MDS-UPDRS-III score (20%), with no effect on speech as assessed by clinical rating scales and automated analysis. Speech is severely affected in LSPD. Although l-dopa had some effect on motor performance, including axial signs, speech and voice did not improve. The applicability and efficacy of non-pharmacological treatment for speech impairment should be considered for speech disorder management in PD.
Relationship Among Signal Fidelity, Hearing Loss, and Working Memory for Digital Noise Suppression.
Arehart, Kathryn; Souza, Pamela; Kates, James; Lunner, Thomas; Pedersen, Michael Syskind
2015-01-01
This study considered speech modified by additive babble combined with noise-suppression processing. The purpose was to determine the relative importance of the signal modifications, individual peripheral hearing loss, and individual cognitive capacity on speech intelligibility and speech quality. The participant group consisted of 31 individuals with moderate high-frequency hearing loss ranging in age from 51 to 89 years (mean = 69.6 years). Speech intelligibility and speech quality were measured using low-context sentences presented in babble at several signal-to-noise ratios. Speech stimuli were processed with a binary mask noise-suppression strategy with systematic manipulations of two parameters (error rate and attenuation values). The cumulative effects of signal modification produced by babble and signal processing were quantified using an envelope-distortion metric. Working memory capacity was assessed with a reading span test. Analysis of variance was used to determine the effects of signal processing parameters on perceptual scores. Hierarchical linear modeling was used to determine the role of degree of hearing loss and working memory capacity in individual listener response to the processed noisy speech. The model also considered improvements in envelope fidelity caused by the binary mask and the degradations to envelope caused by error and noise. The participants showed significant benefits in terms of intelligibility scores and quality ratings for noisy speech processed by the ideal binary mask noise-suppression strategy. This benefit was observed across a range of signal-to-noise ratios and persisted when up to a 30% error rate was introduced into the processing. Average intelligibility scores and average quality ratings were well predicted by an objective metric of envelope fidelity. Degree of hearing loss and working memory capacity were significant factors in explaining individual listener's intelligibility scores for binary mask processing applied to speech in babble. Degree of hearing loss and working memory capacity did not predict listeners' quality ratings. The results indicate that envelope fidelity is a primary factor in determining the combined effects of noise and binary mask processing for intelligibility and quality of speech presented in babble noise. Degree of hearing loss and working memory capacity are significant factors in explaining variability in listeners' speech intelligibility scores but not in quality ratings.
Vocal Age Disguise: The Role of Fundamental Frequency and Speech Rate and Its Perceived Effects.
Skoog Waller, Sara; Eriksson, Mårten
2016-01-01
The relationship between vocal characteristics and perceived age is of interest in various contexts, as is the possibility to affect age perception through vocal manipulation. A few examples of such situations are when age is staged by actors, when ear witnesses make age assessments based on vocal cues only or when offenders (e.g., online groomers) disguise their voice to appear younger or older. This paper investigates how speakers spontaneously manipulate two age related vocal characteristics ( f 0 and speech rate) in attempt to sound younger versus older than their true age, and if the manipulations correspond to actual age related changes in f 0 and speech rate (Study 1). Further aims of the paper is to determine how successful vocal age disguise is by asking listeners to estimate the age of generated speech samples (Study 2) and to examine whether or not listeners use f 0 and speech rate as cues to perceived age. In Study 1, participants from three age groups (20-25, 40-45, and 60-65 years) agreed to read a short text under three voice conditions. There were 12 speakers in each age group (six women and six men). They used their natural voice in one condition, attempted to sound 20 years younger in another and 20 years older in a third condition. In Study 2, 60 participants (listeners) listened to speech samples from the three voice conditions in Study 1 and estimated the speakers' age. Each listener was exposed to all three voice conditions. The results from Study 1 indicated that the speakers increased fundamental frequency ( f 0 ) and speech rate when attempting to sound younger and decreased f 0 and speech rate when attempting to sound older. Study 2 showed that the voice manipulations had an effect in the sought-after direction, although the achieved mean effect was only 3 years, which is far less than the intended effect of 20 years. Moreover, listeners used speech rate, but not f 0 , as a cue to speaker age. It was concluded that age disguise by voice can be achieved by naïve speakers even though the perceived effect was smaller than intended.
Revisiting speech rate and utterance length manipulations in stuttering speakers.
Blomgren, Michael; Goberman, Alexander M
2008-01-01
The goal of this study was to evaluate stuttering frequency across a multidimensional (2x2) hierarchy of speech performance tasks. Specifically, this study examined the interaction between changes in length of utterance and levels of speech rate stability. Forty-four adult male speakers participated in the study (22 stuttering speakers and 22 non-stuttering speakers). Participants were audio and video recorded while producing a spontaneous speech task and four different experimental speaking tasks. The four experimental speaking tasks involved reading a list of 45 words and a list 45 phrases two times each. One reading of each list involved speaking at a steady habitual rate (habitual rate tasks) and another reading involved producing each list at a variable speaking rate (variable rate tasks). For the variable rate tasks, participants were directed to produce words or phrases at randomly ordered slow, habitual, and fast rates. The stuttering speakers exhibited significantly more stuttering on the variable rate tasks than on the habitual rate tasks. In addition, the stuttering speakers exhibited significantly more stuttering on the first word of the phrase length tasks compared to the single word tasks. Overall, the results indicated that varying levels of both utterance length and temporal complexity function to modulate stuttering frequency in adult stuttering speakers. Discussion focuses on issues of speech performance according to stuttering severity and possible clinical implications. The reader will learn about and be able to: (1) describe the mediating effects of length of utterance and speech rate on the frequency of stuttering in stuttering speakers; (2) understand the rationale behind multidimensional skill performance matrices; and (3) describe possible applications of motor skill performance matrices to stuttering therapy.
McCaig, Cassandra M; Adams, Scott G; Dykstra, Allyson D; Jog, Mandar
2016-01-01
Previous studies have demonstrated a negative effect of concurrent walking and talking on gait in Parkinson's disease (PD) but there is limited information about the effect of concurrent walking on speech production. The present study examined the effect of sitting, standing, and three concurrent walking tasks (slow, normal, fast) on conversational speech intensity and speech rate in fifteen individuals with hypophonia related to idiopathic Parkinson's disease (PD) and fourteen age-equivalent controls. Interlocuter (talker-to-talker) distance effects and walking speed were also examined. Concurrent walking was found to produce a significant increase in speech intensity, relative to standing and sitting, in both the control and PD groups. Faster walking produced significantly greater speech intensity than slower walking. Concurrent walking had no effect on speech rate. Concurrent walking and talking produced significant reductions in walking speed in both the control and PD groups. In general, the results of the present study indicate that concurrent walking tasks and the speed of concurrent walking can have a significant positive effect on conversational speech intensity. These positive, "energizing" effects need to be given consideration in future attempts to develop a comprehensive model of speech intensity regulation and they may have important implications for the development of new evaluation and treatment procedures for individuals with hypophonia related to PD. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Binaural sluggishness in the perception of tone sequences and speech in noise.
Culling, J F; Colburn, H S
2000-01-01
The binaural system is well-known for its sluggish response to changes in the interaural parameters to which it is sensitive. Theories of binaural unmasking have suggested that detection of signals in noise is mediated by detection of differences in interaural correlation. If these theories are correct, improvements in the intelligibility of speech in favorable binaural conditions is most likely mediated by spectro-temporal variations in interaural correlation of the stimulus which mirror the spectro-temporal amplitude modulations of the speech. However, binaural sluggishness should limit the temporal resolution of the representation of speech recovered by this means. The present study tested this prediction in two ways. First, listeners' masked discrimination thresholds for ascending vs descending pure-tone arpeggios were measured as a function of rate of frequency change in the NoSo and NoSpi binaural configurations. Three-tone arpeggios were presented repeatedly and continuously for 1.6 s, masked by a 1.6-s burst of noise. In a two-interval task, listeners determined the interval in which the arpeggios were ascending. The results showed a binaural advantage of 12-14 dB for NoSpi at 3.3 arpeggios per s (arp/s), which reduced to 3-5 dB at 10.4 arp/s. This outcome confirmed that the discrimination of spectro-temporal patterns in noise is susceptible to the effects of binaural sluggishness. Second, listeners' masked speech-reception thresholds were measured in speech-shaped noise using speech which was 1, 1.5, and 2 times the original articulation rate. The articulation rate was increased using a phase-vocoder technique which increased all the modulation frequencies in the speech without altering its pitch. Speech-reception thresholds were, on average, 5.2 dB lower for the NoSpi than for the NoSo configuration, at the original articulation rate. This binaural masking release was reduced to 2.8 dB when the articulation rate was doubled, but the most notable effect was a 6-8 dB increase in thresholds with articulation rate for both configurations. These results suggest that higher modulation frequencies in masked signals cannot be temporally resolved by the binaural system, but that the useful modulation frequencies in speech are sufficiently low (<5 Hz) that they are invulnerable to the effects of binaural sluggishness, even at elevated articulation rates.
Martens, Heidi; Van Nuffelen, Gwen; Dekens, Tomas; Hernández-Díaz Huici, Maria; Kairuz Hernández-Díaz, Hector Arturo; De Letter, Miet; De Bodt, Marc
2015-01-01
Most studies on treatment of prosody in individuals with dysarthria due to Parkinson's disease are based on intensive treatment of loudness. The present study investigates the effect of intensive treatment of speech rate and intonation on the intelligibility of individuals with dysarthria due to Parkinson's disease. A one group pretest-posttest design was used to compare intelligibility, speech rate, and intonation before and after treatment. Participants included eleven Dutch-speaking individuals with predominantly moderate dysarthria due to Parkinson's disease, who received five one-hour treatment sessions per week during three weeks. Treatment focused on lowering speech rate and magnifying the phrase final intonation contrast between statements and questions. Intelligibility was perceptually assessed using a standardized sentence intelligibility test. Speech rate was automatically assessed during the sentence intelligibility test as well as during a passage reading task and a storytelling task. Intonation was perceptually assessed using a sentence reading task and a sentence repetition task, and also acoustically analyzed in terms of maximum fundamental frequency. After treatment, there was a significant improvement of sentence intelligibility (effect size .83), a significant increase of pause frequency during the passage reading task, a significant improvement of correct listener identification of statements and questions, and a significant increase of the maximum fundamental frequency in the final syllable of questions during both intonation tasks. The findings suggest that participants were more intelligible and more able to manipulate pause frequency and statement-question intonation after treatment. However, the relationship between the change in intelligibility on the one hand and the changes in speech rate and intonation on the other hand is not yet fully understood. Results are nuanced in the light of the operated research design. The reader will be able to: (1) describe the effect of intensive speech rate and intonation treatment on intelligibility of speakers with dysarthria due to PD, (2) describe the effect of intensive speech rate treatment on rate manipulation by speakers with dysarthria due to PD, and (3) describe the effect of intensive intonation treatment on manipulation of the phrase final intonation contrast between statements and questions by speakers with dysarthria due to PD. Copyright © 2015 Elsevier Inc. All rights reserved.
Davidow, Jason H.; Bothe, Anne K.; Ye, Jun
2011-01-01
The most common way to induce fluency using rhythm requires persons who stutter to speak one syllable or one word to each beat of a metronome, but stuttering can also be eliminated when the stimulus is of a particular duration (e.g., 1 s). The present study examined stuttering frequency, speech production changes, and speech naturalness during rhythmic speech that alternated 1 s of reading with 1 s of silence. A repeated-measures design was used to compare data obtained during a control reading condition and during rhythmic reading in 10 persons who stutter (PWS) and 10 normally fluent controls. Ratings for speech naturalness were also gathered from naïve listeners. Results showed that mean vowel duration increased significantly, and the percentage of short phonated intervals decreased significantly, for both groups from the control to the experimental condition. Mean phonated interval length increased significantly for the fluent controls. Mean speech naturalness ratings during the experimental condition were approximately 7 on a 1–9 scale (1 = highly natural; 9 = highly unnatural), and these ratings were significantly correlated with vowel duration and phonated intervals for PWS. The findings indicate that PWS may be altering vocal fold vibration duration to obtain fluency during this rhythmic speech style, and that vocal fold vibration duration may have an impact on speech naturalness during rhythmic speech. Future investigations should examine speech production changes and speech naturalness during variations of this rhythmic condition. Educational Objectives The reader will be able to: (1) describe changes (from a control reading condition) in speech production variables when alternating between 1 s of reading and 1 s of silence, (2) describe which rhythmic conditions have been found to sound and feel the most natural, (3) describe methodological issues for studies about alterations in speech production variables during fluency-inducing conditions, and (4) describe which fluency-inducing conditions have been shown to involve a reduction in short phonated intervals. PMID:21664528
Now you hear it, now you don't: vowel devoicing in Japanese infant-directed speech.
Fais, Laurel; Kajikawa, Sachiyo; Amano, Shigeaki; Werker, Janet F
2010-03-01
In this work, we examine a context in which a conflict arises between two roles that infant-directed speech (IDS) plays: making language structure salient and modeling the adult form of a language. Vowel devoicing in fluent adult Japanese creates violations of the canonical Japanese consonant-vowel word structure pattern by systematically devoicing particular vowels, yielding surface consonant clusters. We measured vowel devoicing rates in a corpus of infant- and adult-directed Japanese speech, for both read and spontaneous speech, and found that the mothers in our study preserve the fluent adult form of the language and mask underlying phonological structure by devoicing vowels in infant-directed speech at virtually the same rates as those for adult-directed speech. The results highlight the complex interrelationships among the modifications to adult speech that comprise infant-directed speech, and that form the input from which infants begin to build the eventual mature form of their native language.
De Jonge-Hoekstra, Lisette; Van der Steen, Steffie; Van Geert, Paul; Cox, Ralf F A
2016-01-01
As children learn they use their speech to express words and their hands to gesture. This study investigates the interplay between real-time gestures and speech as children construct cognitive understanding during a hands-on science task. 12 children (M = 6, F = 6) from Kindergarten (n = 5) and first grade (n = 7) participated in this study. Each verbal utterance and gesture during the task were coded, on a complexity scale derived from dynamic skill theory. To explore the interplay between speech and gestures, we applied a cross recurrence quantification analysis (CRQA) to the two coupled time series of the skill levels of verbalizations and gestures. The analysis focused on (1) the temporal relation between gestures and speech, (2) the relative strength and direction of the interaction between gestures and speech, (3) the relative strength and direction between gestures and speech for different levels of understanding, and (4) relations between CRQA measures and other child characteristics. The results show that older and younger children differ in the (temporal) asymmetry in the gestures-speech interaction. For younger children, the balance leans more toward gestures leading speech in time, while the balance leans more toward speech leading gestures for older children. Secondly, at the group level, speech attracts gestures in a more dynamically stable fashion than vice versa, and this asymmetry in gestures and speech extends to lower and higher understanding levels. Yet, for older children, the mutual coupling between gestures and speech is more dynamically stable regarding the higher understanding levels. Gestures and speech are more synchronized in time as children are older. A higher score on schools' language tests is related to speech attracting gestures more rigidly and more asymmetry between gestures and speech, only for the less difficult understanding levels. A higher score on math or past science tasks is related to less asymmetry between gestures and speech. The picture that emerges from our analyses suggests that the relation between gestures, speech and cognition is more complex than previously thought. We suggest that temporal differences and asymmetry in influence between gestures and speech arise from simultaneous coordination of synergies.
29 CFR 1401.21 - Information policy.
Code of Federal Regulations, 2011 CFR
2011-07-01
... excluded by subsection 552(b) of title 5, United States Code, matters covered by the Privacy Act, or other... routine public distribution, e.g., pamphlets, speeches, and educational or training materials, will be...
Santesso, Diane L; Schmidt, Louis A; Trainor, Laurel J
2007-10-01
Many studies have shown that infants prefer infant-directed (ID) speech to adult-directed (AD) speech. ID speech functions to aid language learning, obtain and/or maintain an infant's attention, and create emotional communication between the infant and caregiver. We examined psychophysiological responses to ID speech that varied in affective content (i.e., love/comfort, surprise, fear) in a group of typically developing 9-month-old infants. Regional EEG and heart rate were collected continuously during stimulus presentation. We found the pattern of overall frontal EEG power was linearly related to affective intensity of the ID speech, such that EEG power was greatest in response to fear, than surprise than love/comfort; this linear pattern was specific to the frontal region. We also noted that heart rate decelerated to ID speech independent of affective content. As well, infants who were reported by their mothers as temperamentally distressed tended to exhibit greater relative right frontal EEG activity during baseline and in response to affective ID speech, consistent with previous work with visual stimuli and extending it to the auditory modality. Findings are discussed in terms of how increases in frontal EEG power in response to different affective intensity may reflect the cognitive aspects of emotional processing across sensory domains in infancy.
ERIC Educational Resources Information Center
Santesso, Diane L.; Schmidt, Louis A.; Trainor, Laurel J.
2007-01-01
Many studies have shown that infants prefer infant-directed (ID) speech to adult-directed (AD) speech. ID speech functions to aid language learning, obtain and/or maintain an infant's attention, and create emotional communication between the infant and caregiver. We examined psychophysiological responses to ID speech that varied in affective…
Non-US data compression and coding research. FASAC Technical Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, R.M.; Cohn, M.; Craver, L.W.
1993-11-01
This assessment of recent data compression and coding research outside the United States examines fundamental and applied work in the basic areas of signal decomposition, quantization, lossless compression, and error control, as well as application development efforts in image/video compression and speech/audio compression. Seven computer scientists and engineers who are active in development of these technologies in US academia, government, and industry carried out the assessment. Strong industrial and academic research groups in Western Europe, Israel, and the Pacific Rim are active in the worldwide search for compression algorithms that provide good tradeoffs among fidelity, bit rate, and computational complexity,more » though the theoretical roots and virtually all of the classical compression algorithms were developed in the United States. Certain areas, such as segmentation coding, model-based coding, and trellis-coded modulation, have developed earlier or in more depth outside the United States, though the United States has maintained its early lead in most areas of theory and algorithm development. Researchers abroad are active in other currently popular areas, such as quantizer design techniques based on neural networks and signal decompositions based on fractals and wavelets, but, in most cases, either similar research is or has been going on in the United States, or the work has not led to useful improvements in compression performance. Because there is a high degree of international cooperation and interaction in this field, good ideas spread rapidly across borders (both ways) through international conferences, journals, and technical exchanges. Though there have been no fundamental data compression breakthroughs in the past five years--outside or inside the United State--there have been an enormous number of significant improvements in both places in the tradeoffs among fidelity, bit rate, and computational complexity.« less
Schwartz, Jean-Luc; Savariaux, Christophe
2014-01-01
An increasing number of neuroscience papers capitalize on the assumption published in this journal that visual speech would be typically 150 ms ahead of auditory speech. It happens that the estimation of audiovisual asynchrony in the reference paper is valid only in very specific cases, for isolated consonant-vowel syllables or at the beginning of a speech utterance, in what we call “preparatory gestures”. However, when syllables are chained in sequences, as they are typically in most parts of a natural speech utterance, asynchrony should be defined in a different way. This is what we call “comodulatory gestures” providing auditory and visual events more or less in synchrony. We provide audiovisual data on sequences of plosive-vowel syllables (pa, ta, ka, ba, da, ga, ma, na) showing that audiovisual synchrony is actually rather precise, varying between 20 ms audio lead and 70 ms audio lag. We show how more complex speech material should result in a range typically varying between 40 ms audio lead and 200 ms audio lag, and we discuss how this natural coordination is reflected in the so-called temporal integration window for audiovisual speech perception. Finally we present a toy model of auditory and audiovisual predictive coding, showing that visual lead is actually not necessary for visual prediction. PMID:25079216
Johari, Karim; Behroozmand, Roozbeh
2017-08-01
Skilled movement is mediated by motor commands executed with extremely fine temporal precision. The question of how the brain incorporates temporal information to perform motor actions has remained unanswered. This study investigated the effect of stimulus temporal predictability on response timing of speech and hand movement. Subjects performed a randomized vowel vocalization or button press task in two counterbalanced blocks in response to temporally-predictable and unpredictable visual cues. Results indicated that speech and hand reaction time was decreased for predictable compared with unpredictable stimuli. This finding suggests that a temporal predictive code is established to capture temporal dynamics of sensory cues in order to produce faster movements in responses to predictable stimuli. In addition, results revealed a main effect of modality, indicating faster hand movement compared with speech. We suggest that this effect is accounted for by the inherent complexity of speech production compared with hand movement. Lastly, we found that movement inhibition was faster than initiation for both hand and speech, suggesting that movement initiation requires a longer processing time to coordinate activities across multiple regions in the brain. These findings provide new insights into the mechanisms of temporal information processing during initiation and inhibition of speech and hand movement. Copyright © 2017 Elsevier B.V. All rights reserved.
New Perspectives on Assessing Amplification Effects
Souza, Pamela E.; Tremblay, Kelly L.
2006-01-01
Clinicians have long been aware of the range of performance variability with hearing aids. Despite improvements in technology, there remain many instances of well-selected and appropriately fitted hearing aids whereby the user reports minimal improvement in speech understanding. This review presents a multistage framework for understanding how a hearing aid affects performance. Six stages are considered: (1) acoustic content of the signal, (2) modification of the signal by the hearing aid, (3) interaction between sound at the output of the hearing aid and the listener's ear, (4) integrity of the auditory system, (5) coding of available acoustic cues by the listener's auditory system, and (6) correct identification of the speech sound. Within this framework, this review describes methodology and research on 2 new assessment techniques: acoustic analysis of speech measured at the output of the hearing aid and auditory evoked potentials recorded while the listener wears hearing aids. Acoustic analysis topics include the relationship between conventional probe microphone tests and probe microphone measurements using speech, appropriate procedures for such tests, and assessment of signal-processing effects on speech acoustics and recognition. Auditory evoked potential topics include an overview of physiologic measures of speech processing and the effect of hearing loss and hearing aids on cortical auditory evoked potential measurements in response to speech. Finally, the clinical utility of these procedures is discussed. PMID:16959734
Musicians change their tune: how hearing loss alters the neural code.
Parbery-Clark, Alexandra; Anderson, Samira; Kraus, Nina
2013-08-01
Individuals with sensorineural hearing loss have difficulty understanding speech, especially in background noise. This deficit remains even when audibility is restored through amplification, suggesting that mechanisms beyond a reduction in peripheral sensitivity contribute to the perceptual difficulties associated with hearing loss. Given that normal-hearing musicians have enhanced auditory perceptual skills, including speech-in-noise perception, coupled with heightened subcortical responses to speech, we aimed to determine whether similar advantages could be observed in middle-aged adults with hearing loss. Results indicate that musicians with hearing loss, despite self-perceptions of average performance for understanding speech in noise, have a greater ability to hear in noise relative to nonmusicians. This is accompanied by more robust subcortical encoding of sound (e.g., stimulus-to-response correlations and response consistency) as well as more resilient neural responses to speech in the presence of background noise (e.g., neural timing). Musicians with hearing loss also demonstrate unique neural signatures of spectral encoding relative to nonmusicians: enhanced neural encoding of the speech-sound's fundamental frequency but not of its upper harmonics. This stands in contrast to previous outcomes in normal-hearing musicians, who have enhanced encoding of the harmonics but not the fundamental frequency. Taken together, our data suggest that although hearing loss modifies a musician's spectral encoding of speech, the musician advantage for perceiving speech in noise persists in a hearing-impaired population by adaptively strengthening underlying neural mechanisms for speech-in-noise perception. Copyright © 2013 Elsevier B.V. All rights reserved.
Coppens-Hofman, Marjolein C; Terband, Hayo R; Maassen, Ben A M; van Schrojenstein Lantman-De Valk, Henny M J; van Zaalen-op't Hof, Yvonne; Snik, Ad F M
2013-01-01
In individuals with an intellectual disability, speech dysfluencies are more common than in the general population. In clinical practice, these fluency disorders are generally diagnosed and treated as stuttering rather than cluttering. To characterise the type of dysfluencies in adults with intellectual disabilities and reported speech difficulties with an emphasis on manifestations of stuttering and cluttering, which distinction is to help optimise treatment aimed at improving fluency and intelligibility. The dysfluencies in the spontaneous speech of 28 adults (18-40 years; 16 men) with mild and moderate intellectual disabilities (IQs 40-70), who were characterised as poorly intelligible by their caregivers, were analysed using the speech norms for typically developing adults and children. The speakers were subsequently assigned to different diagnostic categories by relating their resulting dysfluency profiles to mean articulatory rate and articulatory rate variability. Twenty-two (75%) of the participants showed clinically significant dysfluencies, of which 21% were classified as cluttering, 29% as cluttering-stuttering and 25% as clear cluttering at normal articulatory rate. The characteristic pattern of stuttering did not occur. The dysfluencies in the speech of adults with intellectual disabilities and poor intelligibility show patterns that are specific for this population. Together, the results suggest that in this specific group of dysfluent speakers interventions should be aimed at cluttering rather than stuttering. The reader will be able to (1) describe patterns of dysfluencies in the speech of adults with intellectual disabilities that are specific for this group of people, (2) explain that a high rate of dysfluencies in speech is potentially a major determiner of poor intelligibility in adults with ID and (3) describe suggestions for intervention focusing on cluttering rather than stuttering in dysfluent speakers with ID. Copyright © 2013 Elsevier Inc. All rights reserved.
Jürgens, Tim; Brand, Thomas
2009-11-01
This study compares the phoneme recognition performance in speech-shaped noise of a microscopic model for speech recognition with the performance of normal-hearing listeners. "Microscopic" is defined in terms of this model twofold. First, the speech recognition rate is predicted on a phoneme-by-phoneme basis. Second, microscopic modeling means that the signal waveforms to be recognized are processed by mimicking elementary parts of human's auditory processing. The model is based on an approach by Holube and Kollmeier [J. Acoust. Soc. Am. 100, 1703-1716 (1996)] and consists of a psychoacoustically and physiologically motivated preprocessing and a simple dynamic-time-warp speech recognizer. The model is evaluated while presenting nonsense speech in a closed-set paradigm. Averaged phoneme recognition rates, specific phoneme recognition rates, and phoneme confusions are analyzed. The influence of different perceptual distance measures and of the model's a-priori knowledge is investigated. The results show that human performance can be predicted by this model using an optimal detector, i.e., identical speech waveforms for both training of the recognizer and testing. The best model performance is yielded by distance measures which focus mainly on small perceptual distances and neglect outliers.
Severity-Based Adaptation with Limited Data for ASR to Aid Dysarthric Speakers
Mustafa, Mumtaz Begum; Salim, Siti Salwah; Mohamed, Noraini; Al-Qatab, Bassam; Siong, Chng Eng
2014-01-01
Automatic speech recognition (ASR) is currently used in many assistive technologies, such as helping individuals with speech impairment in their communication ability. One challenge in ASR for speech-impaired individuals is the difficulty in obtaining a good speech database of impaired speakers for building an effective speech acoustic model. Because there are very few existing databases of impaired speech, which are also limited in size, the obvious solution to build a speech acoustic model of impaired speech is by employing adaptation techniques. However, issues that have not been addressed in existing studies in the area of adaptation for speech impairment are as follows: (1) identifying the most effective adaptation technique for impaired speech; and (2) the use of suitable source models to build an effective impaired-speech acoustic model. This research investigates the above-mentioned two issues on dysarthria, a type of speech impairment affecting millions of people. We applied both unimpaired and impaired speech as the source model with well-known adaptation techniques like the maximum likelihood linear regression (MLLR) and the constrained-MLLR(C-MLLR). The recognition accuracy of each impaired speech acoustic model is measured in terms of word error rate (WER), with further assessments, including phoneme insertion, substitution and deletion rates. Unimpaired speech when combined with limited high-quality speech-impaired data improves performance of ASR systems in recognising severely impaired dysarthric speech. The C-MLLR adaptation technique was also found to be better than MLLR in recognising mildly and moderately impaired speech based on the statistical analysis of the WER. It was found that phoneme substitution was the biggest contributing factor in WER in dysarthric speech for all levels of severity. The results show that the speech acoustic models derived from suitable adaptation techniques improve the performance of ASR systems in recognising impaired speech with limited adaptation data. PMID:24466004
Thurlow, W R
1980-01-01
Messages were presented which moved from right to left along an electronic alphabetic display which was varied in "window" size from 4 through 32 letter spaces. Deaf subjects signed the messages they perceived. Relatively few errors were made even at the highest rate of presentation, which corresponded to a typing rate of 60 words/min. It is concluded that many deaf persons can make effective use of a small visual display. A reduced cost is then possible for visual communication instruments for these people through reduced display size. Deaf subjects who can profit from a small display can be located by a sentence test administered by tape recorder which drives the display of the communication device by means of the standard code of the deaf teletype network.
Pennington, Lindsay; Lombardo, Eftychia; Steen, Nick; Miller, Nick
2018-01-01
The speech intelligibility of children with dysarthria and cerebral palsy has been observed to increase following therapy focusing on respiration and phonation. To determine if speech intelligibility change following intervention is associated with change in acoustic measures of voice. We recorded 16 young people with cerebral palsy and dysarthria (nine girls; mean age 14 years, SD = 2; nine spastic type, two dyskinetic, four mixed; one Worster-Drought) producing speech in two conditions (single words, connected speech) twice before and twice after therapy focusing on respiration, phonation and rate. In both single-word and connected speech we measured vocal intensity (root mean square-RMS), period-to-period variability (Shimmer APQ, Jitter RAP and PPQ) and harmonics-to-noise ratio (HNR). In connected speech we also measured mean fundamental frequency, utterance duration in seconds and speech and articulation rate (syllables/s with and without pauses respectively). All acoustic measures were made using Praat. Intelligibility was calculated in previous research. In single words statistically significant but very small reductions were observed in period-to-period variability following therapy: Shimmer APQ -0.15 (95% CI = -0.21 to -0.09); Jitter RAP -0.08 (95% CI = -0.14 to -0.01); Jitter PPQ -0.08 (95% CI = -0.15 to -0.01). No changes in period-to-period perturbation across phrases in connected speech were detected. However, changes in connected speech were observed in phrase length, rate and intensity. Following therapy, mean utterance duration increased by 1.11 s (95% CI = 0.37-1.86) when measured with pauses and by 1.13 s (95% CI = 0.40-1.85) when measured without pauses. Articulation rate increased by 0.07 syllables/s (95% CI = 0.02-0.13); speech rate increased by 0.06 syllables/s (95% CI = < 0.01-0.12); and intensity increased by 0.03 Pascals (95% CI = 0.02-0.04). There was a gradual reduction in mean fundamental frequency across all time points (-11.85 Hz, 95% CI = -19.84 to -3.86). Only increases in the intensity of single words (0.37 Pascals, 95% CI = 0.10-0.65) and reductions in fundamental frequency (-0.11 Hz, 95% CI = -0.21 to -0.02) in connected speech were associated with gains in intelligibility. Mean reductions in impairment in vocal function following therapy observed were small and most are unlikely to be clinically significant. Changes in vocal control did not explain improved intelligibility. © 2017 Royal College of Speech and Language Therapists.
Zhong, Ziwei; Henry, Kenneth S.; Heinz, Michael G.
2014-01-01
People with sensorineural hearing loss often have substantial difficulty understanding speech under challenging listening conditions. Behavioral studies suggest that reduced sensitivity to the temporal structure of sound may be responsible, but underlying neurophysiological pathologies are incompletely understood. Here, we investigate the effects of noise-induced hearing loss on coding of envelope (ENV) structure in the central auditory system of anesthetized chinchillas. ENV coding was evaluated noninvasively using auditory evoked potentials recorded from the scalp surface in response to sinusoidally amplitude modulated tones with carrier frequencies of 1, 2, 4, and 8 kHz and a modulation frequency of 140 Hz. Stimuli were presented in quiet and in three levels of white background noise. The latency of scalp-recorded ENV responses was consistent with generation in the auditory midbrain. Hearing loss amplified neural coding of ENV at carrier frequencies of 2 kHz and above. This result may reflect enhanced ENV coding from the periphery and/or an increase in the gain of central auditory neurons. In contrast to expectations, hearing loss was not associated with a stronger adverse effect of increasing masker intensity on ENV coding. The exaggerated neural representation of ENV information shown here at the level of the auditory midbrain helps to explain previous findings of enhanced sensitivity to amplitude modulation in people with hearing loss under some conditions. Furthermore, amplified ENV coding may potentially contribute to speech perception problems in people with cochlear hearing loss by acting as a distraction from more salient acoustic cues, particularly in fluctuating backgrounds. PMID:24315815
Why Should Speech Rate (Tempo) Be Integrated into Pronunciation Teaching Curriculum
ERIC Educational Resources Information Center
Yurtbasi, Meti
2015-01-01
The pace of speech i.e. tempo can be varied to our mood of the moment. Fast speech can convey urgency, whereas slower speech can be used for emphasis. In public speaking, orators produce powerful effects by varying the loudness and pace of their speech. The juxtaposition of very loud and very quiet utterances is a device often used by those trying…
ERIC Educational Resources Information Center
Ferguson, Sarah Hargus; Morgan, Shae D.
2018-01-01
Purpose: The purpose of this study is to examine talker differences for subjectively rated speech clarity in clear versus conversational speech, to determine whether ratings differ for young adults with normal hearing (YNH listeners) and older adults with hearing impairment (OHI listeners), and to explore effects of certain talker characteristics…
Improving Speech Perception in Noise with Current Focusing in Cochlear Implant Users
Srinivasan, Arthi G.; Padilla, Monica; Shannon, Robert V.; Landsberger, David M.
2013-01-01
Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. PMID:23467170
Lohmander, A; Willadsen, E; Persson, C; Henningsson, G; Bowden, M; Hutters, B
2009-07-01
To present the methodology for speech assessment in the Scandcleft project and discuss issues from a pilot study. Description of methodology and blinded test for speech assessment. Speech samples and instructions for data collection and analysis for comparisons of speech outcomes across five included languages were developed and tested. PARTICIPANTS AND MATERIALS: Randomly selected video recordings of 10 5-year-old children from each language (n = 50) were included in the project. Speech material consisted of test consonants in single words, connected speech, and syllable chains with nasal consonants. Five experienced speech and language pathologists participated as observers. Narrow phonetic transcription of test consonants translated into cleft speech characteristics, ordinal scale rating of resonance, and perceived velopharyngeal closure (VPC). A velopharyngeal composite score (VPC-sum) was extrapolated from raw data. Intra-agreement comparisons were performed. Range for intra-agreement for consonant analysis was 53% to 89%, for hypernasality on high vowels in single words the range was 20% to 80%, and the agreement between the VPC-sum and the overall rating of VPC was 78%. Pooling data of speakers of different languages in the same trial and comparing speech outcome across trials seems possible if the assessment of speech concerns consonants and is confined to speech units that are phonetically similar across languages. Agreed conventions and rules are important. A composite variable for perceptual assessment of velopharyngeal function during speech seems usable; whereas, the method for hypernasality evaluation requires further testing.
Temporal processing of speech in a time-feature space
NASA Astrophysics Data System (ADS)
Avendano, Carlos
1997-09-01
The performance of speech communication systems often degrades under realistic environmental conditions. Adverse environmental factors include additive noise sources, room reverberation, and transmission channel distortions. This work studies the processing of speech in the temporal-feature or modulation spectrum domain, aiming for alleviation of the effects of such disturbances. Speech reflects the geometry of the vocal organs, and the linguistically dominant component is in the shape of the vocal tract. At any given point in time, the shape of the vocal tract is reflected in the short-time spectral envelope of the speech signal. The rate of change of the vocal tract shape appears to be important for the identification of linguistic components. This rate of change, or the rate of change of the short-time spectral envelope can be described by the modulation spectrum, i.e. the spectrum of the time trajectories described by the short-time spectral envelope. For a wide range of frequency bands, the modulation spectrum of speech exhibits a maximum at about 4 Hz, the average syllabic rate. Disturbances often have modulation frequency components outside the speech range, and could in principle be attenuated without significantly affecting the range with relevant linguistic information. Early efforts for exploiting the modulation spectrum domain (temporal processing), such as the dynamic cepstrum or the RASTA processing, used ad hoc designed processing and appear to be suboptimal. As a major contribution, in this dissertation we aim for a systematic data-driven design of temporal processing. First we analytically derive and discuss some properties and merits of temporal processing for speech signals. We attempt to formalize the concept and provide a theoretical background which has been lacking in the field. In the experimental part we apply temporal processing to a number of problems including adaptive noise reduction in cellular telephone environments, reduction of reverberation for speech enhancement, and improvements on automatic recognition of speech degraded by linear distortions and reverberation.
Accounting for rate-dependent category boundary shifts in speech perception.
Bosker, Hans Rutger
2017-01-01
The perception of temporal contrasts in speech is known to be influenced by the speech rate in the surrounding context. This rate-dependent perception is suggested to involve general auditory processes because it is also elicited by nonspeech contexts, such as pure tone sequences. Two general auditory mechanisms have been proposed to underlie rate-dependent perception: durational contrast and neural entrainment. This study compares the predictions of these two accounts of rate-dependent speech perception by means of four experiments, in which participants heard tone sequences followed by Dutch target words ambiguous between /ɑs/ "ash" and /a:s/ "bait". Tone sequences varied in the duration of tones (short vs. long) and in the presentation rate of the tones (fast vs. slow). Results show that the duration of preceding tones did not influence target perception in any of the experiments, thus challenging durational contrast as explanatory mechanism behind rate-dependent perception. Instead, the presentation rate consistently elicited a category boundary shift, with faster presentation rates inducing more /a:s/ responses, but only if the tone sequence was isochronous. Therefore, this study proposes an alternative, neurobiologically plausible account of rate-dependent perception involving neural entrainment of endogenous oscillations to the rate of a rhythmic stimulus.
High-frame-rate full-vocal-tract 3D dynamic speech imaging.
Fu, Maojing; Barlaz, Marissa S; Holtrop, Joseph L; Perry, Jamie L; Kuehn, David P; Shosted, Ryan K; Liang, Zhi-Pei; Sutton, Bradley P
2017-04-01
To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm 3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Fogerty, Daniel
2011-01-01
Listeners often only have fragments of speech available to understand the intended message due to competing background noise. In order to maximize successful speech recognition, listeners must allocate their perceptual resources to the most informative acoustic properties. The speech signal contains temporally-varying acoustics in the envelope and fine structure that are present across the frequency spectrum. Understanding how listeners perceptually weigh these acoustic properties in different frequency regions during interrupted speech is essential for the design of assistive listening devices. This study measured the perceptual weighting of young normal-hearing listeners for the envelope and fine structure in each of three frequency bands for interrupted sentence materials. Perceptual weights were obtained during interruption at the syllabic rate (i.e., 4 Hz) and the periodic rate (i.e., 128 Hz) of speech. Potential interruption interactions with fundamental frequency information were investigated by shifting the natural pitch contour higher relative to the interruption rate. The availability of each acoustic property was varied independently by adding noise at different levels. Perceptual weights were determined by correlating a listener’s performance with the availability of each acoustic property on a trial-by-trial basis. Results demonstrated similar relative weights across the interruption conditions, with emphasis on the envelope in high-frequencies. PMID:21786914
Dykstra, Allyson D; Adams, Scott G; Jog, Mandar
2015-01-01
To examine the relationship between speech intensity and self-ratings of communicative effectiveness in speakers with Parkinson's disease (PD) and hypophonia. An additional purpose was to evaluate if self-ratings of communicative effectiveness made by participants with PD differed from ratings made by primary communication partners. Thirty participants with PD and 15 healthy older adults completed the Communication Effectiveness Survey. Thirty primary communication partners rated the communicative effectiveness of his/her partner with PD. Speech intensity was calculated for participants with PD and control participants based on conversational utterances. Results revealed significant differences between groups in conversational speech intensity (p=.001). Participants with PD self-rated communicative effectiveness significantly lower than control participants (p=.000). Correlational analyses revealed a small but non-significant relationship between speech intensity and communicative effectiveness for participants with PD (r=0.298, p=.110) and control participants (r=0.327, p=.234). Self-ratings of communicative effectiveness made participants with PD was not significantly different than ratings made by primary communication partners (p=.20). Obtaining information on communicative effectiveness may help to broaden outcome measurement and may aid in the provision of educational strategies. Findings also suggest that communicative effectiveness may be a separate and a distinct construct that cannot necessarily be predicted from the severity of hypophonia. Copyright © 2015 Elsevier Inc. All rights reserved.
The effect of emotion on articulation rate in persistence and recovery of childhood stuttering.
Erdemir, Aysu; Walden, Tedra A; Jefferson, Caswell M; Choi, Dahye; Jones, Robin M
2018-06-01
This study investigated the possible association of emotional processes and articulation rate in pre-school age children who stutter and persist (persisting), children who stutter and recover (recovered) and children who do not stutter (nonstuttering). The participants were ten persisting, ten recovered, and ten nonstuttering children between the ages of 3-5 years; who were classified as persisting, recovered, or nonstuttering approximately 2-2.5 years after the experimental testing took place. The children were exposed to three emotionally-arousing video clips (baseline, positive and negative) and produced a narrative based on a text-free storybook following each video clip. From the audio-recordings of these narratives, individual utterances were transcribed and articulation rates were calculated. Results indicated that persisting children exhibited significantly slower articulation rates following the negative emotion condition, unlike recovered and nonstuttering children whose articulation rates were not affected by either of the two emotion-inducing conditions. Moreover, all stuttering children displayed faster rates during fluent compared to stuttered speech; however, the recovered children were significantly faster than the persisting children during fluent speech. Negative emotion plays a detrimental role on the speech-motor control processes of children who persist, whereas children who eventually recover seem to exhibit a relatively more stable and mature speech-motor system. This suggests that complex interactions between speech-motor and emotional processes are at play in stuttering recovery and persistency; and articulation rates following negative emotion or during stuttered versus fluent speech might be considered as potential factors to prospectively predict persistence and recovery from stuttering. Copyright © 2017 Elsevier Inc. All rights reserved.
A speech-controlled environmental control system for people with severe dysarthria.
Hawley, Mark S; Enderby, Pam; Green, Phil; Cunningham, Stuart; Brownsell, Simon; Carmichael, James; Parker, Mark; Hatzis, Athanassios; O'Neill, Peter; Palmer, Rebecca
2007-06-01
Automatic speech recognition (ASR) can provide a rapid means of controlling electronic assistive technology. Off-the-shelf ASR systems function poorly for users with severe dysarthria because of the increased variability of their articulations. We have developed a limited vocabulary speaker dependent speech recognition application which has greater tolerance to variability of speech, coupled with a computerised training package which assists dysarthric speakers to improve the consistency of their vocalisations and provides more data for recogniser training. These applications, and their implementation as the interface for a speech-controlled environmental control system (ECS), are described. The results of field trials to evaluate the training program and the speech-controlled ECS are presented. The user-training phase increased the recognition rate from 88.5% to 95.4% (p<0.001). Recognition rates were good for people with even the most severe dysarthria in everyday usage in the home (mean word recognition rate 86.9%). Speech-controlled ECS were less accurate (mean task completion accuracy 78.6% versus 94.8%) but were faster to use than switch-scanning systems, even taking into account the need to repeat unsuccessful operations (mean task completion time 7.7s versus 16.9s, p<0.001). It is concluded that a speech-controlled ECS is a viable alternative to switch-scanning systems for some people with severe dysarthria and would lead, in many cases, to more efficient control of the home.
Space station interior noise analysis program
NASA Technical Reports Server (NTRS)
Stusnick, E.; Burn, M.
1987-01-01
Documentation is provided for a microcomputer program which was developed to evaluate the effect of the vibroacoustic environment on speech communication inside a space station. The program, entitled Space Station Interior Noise Analysis Program (SSINAP), combines a Statistical Energy Analysis (SEA) prediction of sound and vibration levels within the space station with a speech intelligibility model based on the Modulation Transfer Function and the Speech Transmission Index (MTF/STI). The SEA model provides an effective analysis tool for predicting the acoustic environment based on proposed space station design. The MTF/STI model provides a method for evaluating speech communication in the relatively reverberant and potentially noisy environments that are likely to occur in space stations. The combinations of these two models provides a powerful analysis tool for optimizing the acoustic design of space stations from the point of view of speech communications. The mathematical algorithms used in SSINAP are presented to implement the SEA and MTF/STI models. An appendix provides an explanation of the operation of the program along with details of the program structure and code.
ERIC Educational Resources Information Center
Toohill, Bethany J.; Mcleod, Sharynne; Mccormack, Jane
2012-01-01
This study investigated the effect of dialectal difference on identification and rating of severity of speech impairment in children from Indigenous Australian backgrounds. The speech of 15 Indigenous Australian children identified by their parents/caregivers and teachers as having "difficulty talking and making speech sounds" was…
Breathing-Impaired Speech after Brain Haemorrhage: A Case Study
ERIC Educational Resources Information Center
Heselwood, Barry
2007-01-01
Results are presented from an auditory and acoustic analysis of the speech of an adult male with impaired prosody and articulation due to brain haemorrhage. They show marked effects on phonation, speech rate and articulator velocity, and a speech rhythm disrupted by "intrusive" stresses. These effects are discussed in relation to the speaker's…
Speech Intelligibility and Personality Peer-Ratings of Young Adults with Cochlear Implants
ERIC Educational Resources Information Center
Freeman, Valerie
2018-01-01
Speech intelligibility, or how well a speaker's words are understood by others, affects listeners' judgments of the speaker's competence and personality. Deaf cochlear implant (CI) users vary widely in speech intelligibility, and their speech may have a noticeable "deaf" quality, both of which could evoke negative stereotypes or…
Coppens-Hofman, Marjolein C.; Terband, Hayo; Snik, Ad F.M.; Maassen, Ben A.M.
2017-01-01
Purpose Adults with intellectual disabilities (ID) often show reduced speech intelligibility, which affects their social interaction skills. This study aims to establish the main predictors of this reduced intelligibility in order to ultimately optimise management. Method Spontaneous speech and picture naming tasks were recorded in 36 adults with mild or moderate ID. Twenty-five naïve listeners rated the intelligibility of the spontaneous speech samples. Performance on the picture-naming task was analysed by means of a phonological error analysis based on expert transcriptions. Results The transcription analyses showed that the phonemic and syllabic inventories of the speakers were complete. However, multiple errors at the phonemic and syllabic level were found. The frequencies of specific types of errors were related to intelligibility and quality ratings. Conclusions The development of the phonemic and syllabic repertoire appears to be completed in adults with mild-to-moderate ID. The charted speech difficulties can be interpreted to indicate speech motor control and planning difficulties. These findings may aid the development of diagnostic tests and speech therapies aimed at improving speech intelligibility in this specific group. PMID:28118637
Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius
2015-01-01
Background and Purpose Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions regarding if AOS emerges from a unique pattern of brain damage or as a sub-element of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Methods Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The Apraxia of Speech Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with AOS and/or aphasia. Localized brain damage was identified using structural MRI, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS and/or aphasia, and brain damage. Results The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS and/or aphasia were associated with damage to the temporal lobe and the inferior pre-central frontal regions. Conclusion AOS likely occurs in conjunction with aphasia due to the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. PMID:25908457
Influence of speech sample on perceptual rating of hypernasality.
Medeiros, Maria Natália Leite de; Fukushiro, Ana Paula; Yamashita, Renata Paciello
2016-07-07
To investigate the influence of speech sample of spontaneous conversation or sentences repetition on intra and inter-rater hypernasality reliability. One hundred and twenty audio recorded speech samples (60 containing spontaneous conversation and 60 containing repeated sentences) of individuals with repaired cleft palate±lip, both genders, aged between 6 and 52 years old (mean=21±10) were selected and edited. Three experienced speech and language pathologists rated hypernasality according to their own criteria using 4-point scale: 1=absence of hypernasality, 2=mild hypernasality, 3=moderate hypernasality and 4=severe hypernasality, first in spontaneous speech samples and 30 days after, in sentences repetition samples. Intra- and inter-rater agreements were calculated for both speech samples and were statistically compared by the Z test at a significance level of 5%. Comparison of intra-rater agreements between both speech samples showed an increase of the coefficients obtained in the analysis of sentences repetition compared to those obtained in spontaneous conversation. Comparison between inter-rater agreement showed no significant difference among the three raters for the two speech samples. Sentences repetition improved intra-raters reliability of perceptual judgment of hypernasality. However, the speech sample had no influence on reliability among different raters.
Vocal Age Disguise: The Role of Fundamental Frequency and Speech Rate and Its Perceived Effects
Skoog Waller, Sara; Eriksson, Mårten
2016-01-01
The relationship between vocal characteristics and perceived age is of interest in various contexts, as is the possibility to affect age perception through vocal manipulation. A few examples of such situations are when age is staged by actors, when ear witnesses make age assessments based on vocal cues only or when offenders (e.g., online groomers) disguise their voice to appear younger or older. This paper investigates how speakers spontaneously manipulate two age related vocal characteristics (f0 and speech rate) in attempt to sound younger versus older than their true age, and if the manipulations correspond to actual age related changes in f0 and speech rate (Study 1). Further aims of the paper is to determine how successful vocal age disguise is by asking listeners to estimate the age of generated speech samples (Study 2) and to examine whether or not listeners use f0 and speech rate as cues to perceived age. In Study 1, participants from three age groups (20–25, 40–45, and 60–65 years) agreed to read a short text under three voice conditions. There were 12 speakers in each age group (six women and six men). They used their natural voice in one condition, attempted to sound 20 years younger in another and 20 years older in a third condition. In Study 2, 60 participants (listeners) listened to speech samples from the three voice conditions in Study 1 and estimated the speakers’ age. Each listener was exposed to all three voice conditions. The results from Study 1 indicated that the speakers increased fundamental frequency (f0) and speech rate when attempting to sound younger and decreased f0 and speech rate when attempting to sound older. Study 2 showed that the voice manipulations had an effect in the sought-after direction, although the achieved mean effect was only 3 years, which is far less than the intended effect of 20 years. Moreover, listeners used speech rate, but not f0, as a cue to speaker age. It was concluded that age disguise by voice can be achieved by naïve speakers even though the perceived effect was smaller than intended. PMID:27917144
Hustad, Katherine C.; Gorton, Kristin; Lee, Jimin
2010-01-01
Purpose Little is known about the speech and language abilities of children with cerebral palsy (CP) and there is currently no system for classifying speech and language profiles. Such a system would have epidemiological value and would have the potential to advance the development of interventions that improve outcomes. In this study, we propose and test a preliminary speech and language classification system by quantifying how well speech and language data differentiate among children classified into different hypothesized profile groups. Method Speech and language assessment data were collected in a laboratory setting from 34 children with CP (18 males; 16 females) who were a mean age of 54 months (SD 1.8 months). Measures of interest were vowel area, speech rate, language comprehension scores, and speech intelligibility ratings. Results Canonical discriminant function analysis showed that three functions accounted for 100% of the variance among profile groups, with speech variables accounting for 93% of the variance. Classification agreement varied from 74% to 97% using four different classification paradigms. Conclusions Results provide preliminary support for the classification of speech and language abilities of children with CP into four initial profile groups. Further research is necessary to validate the full classification system. PMID:20643795
Recovering With Acquired Apraxia of Speech: The First 2 Years.
Haley, Katarina L; Shafer, Jennifer N; Harmon, Tyson G; Jacks, Adam
2016-12-01
This study was intended to document speech recovery for 1 person with acquired apraxia of speech quantitatively and on the basis of her lived experience. The second author sustained a traumatic brain injury that resulted in acquired apraxia of speech. Over a 2-year period, she documented her recovery through 22 video-recorded monologues. We analyzed these monologues using a combination of auditory perceptual, acoustic, and qualitative methods. Recovery was evident for all quantitative variables examined. For speech sound production, the recovery was most prominent during the first 3 months, but slower improvement was evident for many months. Measures of speaking rate, fluency, and prosody changed more gradually throughout the entire period. A qualitative analysis of topics addressed in the monologues was consistent with the quantitative speech recovery and indicated a subjective dynamic relationship between accuracy and rate, an observation that several factors made speech sound production variable, and a persisting need for cognitive effort while speaking. Speech features improved over an extended time, but the recovery trajectories differed, indicating dynamic reorganization of the underlying speech production system. The relationship among speech dimensions should be examined in other cases and in population samples. The combination of quantitative and qualitative analysis methods offers advantages for understanding clinically relevant aspects of recovery.
Perception of speech rhythm in second language: the case of rhythmically similar L1 and L2
Ordin, Mikhail; Polyanskaya, Leona
2015-01-01
We investigated the perception of developmental changes in timing patterns that happen in the course of second language (L2) acquisition, provided that the native and the target languages of the learner are rhythmically similar (German and English). It was found that speech rhythm in L2 English produced by German learners becomes increasingly stress-timed as acquisition progresses. This development is captured by the tempo-normalized rhythm measures of durational variability. Advanced learners also deliver speech at a faster rate. However, when native speakers have to classify the timing patterns characteristic of L2 English of German learners at different proficiency levels, they attend to speech rate cues and ignore the differences in speech rhythm. PMID:25859228
Filtering, Coding, and Compression with Malvar Wavelets
1993-12-01
speech coding techniques being investigated by the military (38). Imagery: Space imagery often requires adaptive restoration to deblur out-of-focus...and blurred image, find an estimate of the ideal image using a priori information about the blur, noise , and the ideal image" (12). The research for...recording can be described as the original signal convolved with impulses , which appear as echoes in the seismic event. The term deconvolution indicates
Haley, Katarina L.
2015-01-01
Purpose To study the effects of masked auditory feedback (MAF) on speech fluency in adults with aphasia and/or apraxia of speech (APH/AOS). We hypothesized that adults with AOS would increase speech fluency when speaking with noise. Altered auditory feedback (AAF; i.e., delayed/frequency-shifted feedback) was included as a control condition not expected to improve speech fluency. Method Ten participants with APH/AOS and 10 neurologically healthy (NH) participants were studied under both feedback conditions. To allow examination of individual responses, we used an ABACA design. Effects were examined on syllable rate, disfluency duration, and vocal intensity. Results Seven of 10 APH/AOS participants increased fluency with masking by increasing rate, decreasing disfluency duration, or both. In contrast, none of the NH participants increased speaking rate with MAF. In the AAF condition, only 1 APH/AOS participant increased fluency. Four APH/AOS participants and 8 NH participants slowed their rate with AAF. Conclusions Speaking with MAF appears to increase fluency in a subset of individuals with APH/AOS, indicating that overreliance on auditory feedback monitoring may contribute to their disorder presentation. The distinction between responders and nonresponders was not linked to AOS diagnosis, so additional work is needed to develop hypotheses for candidacy and underlying control mechanisms. PMID:26363508
Masking release for words in amplitude-modulated noise as a function of modulation rate and task
Buss, Emily; Whittle, Lisa N.; Grose, John H.; Hall, Joseph W.
2009-01-01
For normal-hearing listeners, masked speech recognition can improve with the introduction of masker amplitude modulation. The present experiments tested the hypothesis that this masking release is due in part to an interaction between the temporal distribution of cues necessary to perform the task and the probability of those cues temporally coinciding with masker modulation minima. Stimuli were monosyllabic words masked by speech-shaped noise, and masker modulation was introduced via multiplication with a raised sinusoid of 2.5–40 Hz. Tasks included detection, three-alternative forced-choice identification, and open-set identification. Overall, there was more masking release associated with the closed than the open-set tasks. The best rate of modulation also differed as a function of task; whereas low modulation rates were associated with best performance for the detection and three-alternative identification tasks, performance improved with modulation rate in the open-set task. This task-by-rate interaction was also observed when amplitude-modulated speech was presented in a steady masker, and for low- and high-pass filtered speech presented in modulated noise. These results were interpreted as showing that the optimal rate of amplitude modulation depends on the temporal distribution of speech cues and the information required to perform a particular task. PMID:19603883
Davidow, Jason H; Bothe, Anne K; Ye, Jun
2011-06-01
The most common way to induce fluency using rhythm requires persons who stutter to speak one syllable or one word to each beat of a metronome, but stuttering can also be eliminated when the stimulus is of a particular duration (e.g., 1 second [s]). The present study examined stuttering frequency, speech production changes, and speech naturalness during rhythmic speech that alternated 1s of reading with 1s of silence. A repeated-measures design was used to compare data obtained during a control reading condition and during rhythmic reading in 10 persons who stutter (PWS) and 10 normally fluent controls. Ratings for speech naturalness were also gathered from naïve listeners. Results showed that mean vowel duration increased significantly, and the percentage of short phonated intervals decreased significantly, for both groups from the control to the experimental condition. Mean phonated interval length increased significantly for the fluent controls. Mean speech naturalness ratings during the experimental condition were approximately "7" on a 1-9 scale (1=highly natural; 9=highly unnatural), and these ratings were significantly correlated with vowel duration and phonated intervals for PWS. The findings indicate that PWS may be altering vocal fold vibration duration to obtain fluency during this rhythmic speech style, and that vocal fold vibration duration may have an impact on speech naturalness during rhythmic speech. Future investigations should examine speech production changes and speech naturalness during variations of this rhythmic condition. The reader will be able to: (1) describe changes (from a control reading condition) in speech production variables when alternating between 1s of reading and 1s of silence, (2) describe which rhythmic conditions have been found to sound and feel the most natural, (3) describe methodological issues for studies about alterations in speech production variables during fluency-inducing conditions, and (4) describe which fluency-inducing conditions have been shown to involve a reduction in short phonated intervals. Copyright © 2011 Elsevier Inc. All rights reserved.
Hemispheric asymmetry in auditory processing of speech envelope modulations in prereading children.
Vanvooren, Sophie; Poelmans, Hanne; Hofmann, Michael; Ghesquière, Pol; Wouters, Jan
2014-01-22
The temporal envelope of speech is an important cue contributing to speech intelligibility. Theories about the neural foundations of speech perception postulate that the left and right auditory cortices are functionally specialized in analyzing speech envelope information at different time scales: the right hemisphere is thought to be specialized in processing syllable rate modulations, whereas a bilateral or left hemispheric specialization is assumed for phoneme rate modulations. Recently, it has been found that this functional hemispheric asymmetry is different in individuals with language-related disorders such as dyslexia. Most studies were, however, performed in adults and school-aged children, and only a little is known about how neural auditory processing at these specific rates manifests and develops in very young children before reading acquisition. Yet, studying hemispheric specialization for processing syllable and phoneme rate modulations in preliterate children may reveal early neural markers for dyslexia. In the present study, human cortical evoked potentials to syllable and phoneme rate modulations were measured in 5-year-old children at high and low hereditary risk for dyslexia. The results demonstrate a right hemispheric preference for processing syllable rate modulations and a symmetric pattern for phoneme rate modulations, regardless of hereditary risk for dyslexia. These results suggest that, while hemispheric specialization for processing syllable rate modulations seems to be mature in prereading children, hemispheric specialization for phoneme rate modulation processing may still be developing. These findings could have important implications for the development of phonological and reading skills.
Acceptable range of speech level in noisy sound fields for young adults and elderly persons.
Sato, Hayato; Morimoto, Masayuki; Ota, Ryo
2011-09-01
The acceptable range of speech level as a function of background noise level was investigated on the basis of word intelligibility scores and listening difficulty ratings. In the present study, the acceptable range is defined as the range that maximizes word intelligibility scores and simultaneously does not cause a significant increase in listening difficulty ratings from the minimum ratings. Listening tests with young adult and elderly listeners demonstrated the following. (1) The acceptable range of speech level for elderly listeners overlapped that for young listeners. (2) The lower limit of the acceptable speech level for both young and elderly listeners was 65 dB (A-weighted) for noise levels of 40 and 45 dB (A-weighted), a level with a speech-to-noise ratio of +15 dB for noise levels of 50 and 55 dB, and a level with a speech-to-noise ratio of +10 dB for noise levels from 60 to 70 dB. (3) The upper limit of the acceptable speech level for both young and elderly listeners was 80 dB for noise levels from 40 to 55 dB and 85 dB or above for noise levels from 55 to 70 dB. © 2011 Acoustical Society of America
Foreign-Accented Speech Perception Ratings: A Multifactorial Case Study
ERIC Educational Resources Information Center
Kraut, Rachel; Wulff, Stefanie
2013-01-01
Seventy-eight native English speakers rated the foreign-accented speech (FAS) of 24 international students enrolled in an Intensive English programme at a public university in Texas on degree of accent, comprehensibility and communicative ability. Variables considered to potentially impact listeners' ratings were the sex of the speaker, the first…
NASA Technical Reports Server (NTRS)
Birch, J. N.; Getzin, N.
1971-01-01
Analog and digital voice coding techniques for application to an L-band satellite-basedair traffic control (ATC) system for over ocean deployment are examined. In addition to performance, the techniques are compared on the basis of cost, size, weight, power consumption, availability, reliability, and multiplexing features. Candidate systems are chosen on the bases of minimum required RF bandwidth and received carrier-to-noise density ratios. A detailed survey of automated and nonautomated intelligibility testing methods and devices is presented and comparisons given. Subjective evaluation of speech system by preference tests is considered. Conclusion and recommendations are developed regarding the selection of the voice system. Likewise, conclusions and recommendations are developed for the appropriate use of intelligibility tests, speech quality measurements, and preference tests with the framework of the proposed ATC system.
Reading your own lips: common-coding theory and visual speech perception.
Tye-Murray, Nancy; Spehar, Brent P; Myerson, Joel; Hale, Sandra; Sommers, Mitchell S
2013-02-01
Common-coding theory posits that (1) perceiving an action activates the same representations of motor plans that are activated by actually performing that action, and (2) because of individual differences in the ways that actions are performed, observing recordings of one's own previous behavior activates motor plans to an even greater degree than does observing someone else's behavior. We hypothesized that if observing oneself activates motor plans to a greater degree than does observing others, and if these activated plans contribute to perception, then people should be able to lipread silent video clips of their own previous utterances more accurately than they can lipread video clips of other talkers. As predicted, two groups of participants were able to lipread video clips of themselves, recorded more than two weeks earlier, significantly more accurately than video clips of others. These results suggest that visual input activates speech motor activity that links to word representations in the mental lexicon.
Do perceived context pictures automatically activate their phonological code?
Jescheniak, Jörg D; Oppermann, Frank; Hantsch, Ansgar; Wagner, Valentin; Mädebach, Andreas; Schriefers, Herbert
2009-01-01
Morsella and Miozzo (Morsella, E., & Miozzo, M. (2002). Evidence for a cascade model of lexical access in speech production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 555-563) have reported that the to-be-ignored context pictures become phonologically activated when participants name a target picture, and took this finding as support for cascaded models of lexical retrieval in speech production. In a replication and extension of their experiment in German, we failed to obtain priming effects from context pictures phonologically related to a to-be-named target picture. By contrast, corresponding context words (i.e., the names of the respective pictures) and the same context pictures, when used in an identity condition, did reliably facilitate the naming process. This pattern calls into question the generality of the claim advanced by Morsella and Miozzo that perceptual processing of pictures in the context of a naming task automatically leads to the activation of corresponding lexical-phonological codes.
Small intragenic deletion in FOXP2 associated with childhood apraxia of speech and dysarthria.
Turner, Samantha J; Hildebrand, Michael S; Block, Susan; Damiano, John; Fahey, Michael; Reilly, Sheena; Bahlo, Melanie; Scheffer, Ingrid E; Morgan, Angela T
2013-09-01
Relatively little is known about the neurobiological basis of speech disorders although genetic determinants are increasingly recognized. The first gene for primary speech disorder was FOXP2, identified in a large, informative family with verbal and oral dyspraxia. Subsequently, many de novo and familial cases with a severe speech disorder associated with FOXP2 mutations have been reported. These mutations include sequencing alterations, translocations, uniparental disomy, and genomic copy number variants. We studied eight probands with speech disorder and their families. Family members were phenotyped using a comprehensive assessment of speech, oral motor function, language, literacy skills, and cognition. Coding regions of FOXP2 were screened to identify novel variants. Segregation of the variant was determined in the probands' families. Variants were identified in two probands. One child with severe motor speech disorder had a small de novo intragenic FOXP2 deletion. His phenotype included features of childhood apraxia of speech and dysarthria, oral motor dyspraxia, receptive and expressive language disorder, and literacy difficulties. The other variant was found in a family in two of three family members with stuttering, and also in the mother with oral motor impairment. This variant was considered a benign polymorphism as it was predicted to be non-pathogenic with in silico tools and found in database controls. This is the first report of a small intragenic deletion of FOXP2 that is likely to be the cause of severe motor speech disorder associated with language and literacy problems. Copyright © 2013 Wiley Periodicals, Inc.
Action planning and predictive coding when speaking
Wang, Jun; Mathalon, Daniel H.; Roach, Brian J.; Reilly, James; Keedy, Sarah; Sweeney, John A.; Ford, Judith M.
2014-01-01
Across the animal kingdom, sensations resulting from an animal's own actions are processed differently from sensations resulting from external sources, with self-generated sensations being suppressed. A forward model has been proposed to explain this process across sensorimotor domains. During vocalization, reduced processing of one's own speech is believed to result from a comparison of speech sounds to corollary discharges of intended speech production generated from efference copies of commands to speak. Until now, anatomical and functional evidence validating this model in humans has been indirect. Using EEG with anatomical MRI to facilitate source localization, we demonstrate that inferior frontal gyrus activity during the 300ms before speaking was associated with suppressed processing of speech sounds in auditory cortex around 100ms after speech onset (N1). These findings indicate that an efference copy from speech areas in prefrontal cortex is transmitted to auditory cortex, where it is used to suppress processing of anticipated speech sounds. About 100ms after N1, a subsequent auditory cortical component (P2) was not suppressed during talking. The combined N1 and P2 effects suggest that although sensory processing is suppressed as reflected in N1, perceptual gaps are filled as reflected in the lack of P2 suppression, explaining the discrepancy between sensory suppression and preserved sensory experiences. These findings, coupled with the coherence between relevant brain regions before and during speech, provide new mechanistic understanding of the complex interactions between action planning and sensory processing that provide for differentiated tagging and monitoring of one's own speech, processes disrupted in neuropsychiatric disorders. PMID:24423729
Cracking the Language Code: Neural Mechanisms Underlying Speech Parsing
McNealy, Kristin; Mazziotta, John C.; Dapretto, Mirella
2013-01-01
Word segmentation, detecting word boundaries in continuous speech, is a critical aspect of language learning. Previous research in infants and adults demonstrated that a stream of speech can be readily segmented based solely on the statistical and speech cues afforded by the input. Using functional magnetic resonance imaging (fMRI), the neural substrate of word segmentation was examined on-line as participants listened to three streams of concatenated syllables, containing either statistical regularities alone, statistical regularities and speech cues, or no cues. Despite the participants’ inability to explicitly detect differences between the speech streams, neural activity differed significantly across conditions, with left-lateralized signal increases in temporal cortices observed only when participants listened to streams containing statistical regularities, particularly the stream containing speech cues. In a second fMRI study, designed to verify that word segmentation had implicitly taken place, participants listened to trisyllabic combinations that occurred with different frequencies in the streams of speech they just heard (“words,” 45 times; “partwords,” 15 times; “nonwords,” once). Reliably greater activity in left inferior and middle frontal gyri was observed when comparing words with partwords and, to a lesser extent, when comparing partwords with nonwords. Activity in these regions, taken to index the implicit detection of word boundaries, was positively correlated with participants’ rapid auditory processing skills. These findings provide a neural signature of on-line word segmentation in the mature brain and an initial model with which to study developmental changes in the neural architecture involved in processing speech cues during language learning. PMID:16855090
Adaptation to an electropalatograph palate: acoustic, impressionistic, and perceptual data.
McLeod, Sharynne; Searl, Jeff
2006-05-01
The purpose of this study was to evaluate adaptation to the electropalatograph (EPG) from the perspective of consonant acoustics, listener perceptions, and speaker ratings. Seven adults with typical speech wore an EPG and pseudo-EPG palate over 2 days and produced syllables, read a passage, counted, and rated their adaptation to the palate. Consonant acoustics, listener ratings, and speaker ratings were analyzed. The spectral mean for the burst (/t/) and frication (/s/) was reduced for the first 60-120 min of wearing the pseudo-EPG palate. Temporal features (stop gap, frication, and syllable duration) were unaffected by wearing the pseudo-EPG palate. The EPG palate had a similar effect on consonant acoustics as the pseudo-EPG palate. Expert listener ratings indicated minimal to no change in speech naturalness or distortion from the pseudo-EPG or EPG palate. The sounds [see text] were most likely to be affected. Speaker self-ratings related to oral comfort, speech, tongue movement, appearance, and oral sensation were negatively affected by the presence of the palatal devices. Speakers detected a substantial difference when wearing a palatal device, but the effects on speech were minimal based on listener ratings. Spectral features of consonants were initially affected, although adaptation occurred. Wearing an EPG or pseudo-EPG palate for approximately 2 hr results in relatively normal-sounding speech with acoustic features similar to a no-palate condition.
Goehring, Tobias; Bolner, Federico; Monaghan, Jessica J M; van Dijk, Bas; Zarowski, Andrzej; Bleeck, Stefan
2017-02-01
Speech understanding in noisy environments is still one of the major challenges for cochlear implant (CI) users in everyday life. We evaluated a speech enhancement algorithm based on neural networks (NNSE) for improving speech intelligibility in noise for CI users. The algorithm decomposes the noisy speech signal into time-frequency units, extracts a set of auditory-inspired features and feeds them to the neural network to produce an estimation of which frequency channels contain more perceptually important information (higher signal-to-noise ratio, SNR). This estimate is used to attenuate noise-dominated and retain speech-dominated CI channels for electrical stimulation, as in traditional n-of-m CI coding strategies. The proposed algorithm was evaluated by measuring the speech-in-noise performance of 14 CI users using three types of background noise. Two NNSE algorithms were compared: a speaker-dependent algorithm, that was trained on the target speaker used for testing, and a speaker-independent algorithm, that was trained on different speakers. Significant improvements in the intelligibility of speech in stationary and fluctuating noises were found relative to the unprocessed condition for the speaker-dependent algorithm in all noise types and for the speaker-independent algorithm in 2 out of 3 noise types. The NNSE algorithms used noise-specific neural networks that generalized to novel segments of the same noise type and worked over a range of SNRs. The proposed algorithm has the potential to improve the intelligibility of speech in noise for CI users while meeting the requirements of low computational complexity and processing delay for application in CI devices. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
The Comprehension of Rapid Speech by the Blind: Part III. Final Report.
ERIC Educational Resources Information Center
Foulke, Emerson
Accounts of completed and ongoing research conducted from 1964 to 1968 are presented on the subject of accelerated speech as a substitute for the written word. Included are a review of the research on intelligibility and comprehension of accelerated speech, some methods for controlling the word rate of recorded speech, and a comparison of…
Auditory Brainstem Response to Complex Sounds Predicts Self-Reported Speech-in-Noise Performance
ERIC Educational Resources Information Center
Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina
2013-01-01
Purpose: To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette,…
Auditory-Perceptual Assessment of Fluency in Typical and Neurologically Disordered Speech
ERIC Educational Resources Information Center
Penttilä, Nelly; Korpijaakko-Huuhka, Anna-Maija; Kent, Ray D.
2018-01-01
Purpose: The aim of this study is to investigate how speech fluency in typical and atypical speech is perceptually assessed by speech-language pathologists (SLPs). Our research questions were as follows: (a) How do SLPs rate fluency in speakers with and without neurological communication disorders? (b) Do they differentiate the speaker groups? and…
How Our Own Speech Rate Influences Our Perception of Others
ERIC Educational Resources Information Center
Bosker, Hans Rutger
2017-01-01
In conversation, our own speech and that of others follow each other in rapid succession. Effects of the surrounding context on speech perception are well documented but, despite the ubiquity of the sound of our own voice, it is unknown whether our own speech also influences our perception of other talkers. This study investigated context effects…
ERIC Educational Resources Information Center
Gordon-Salant, Sandra; Fitzgibbons, Peter J.; Friedman, Sarah A.
2007-01-01
Purpose: The goal of this experiment was to determine whether selective slowing of speech segments improves recognition performance by young and elderly listeners. The hypotheses were (a) the benefits of time expansion occur for rapid speech but not for natural-rate speech, (b) selective time expansion of consonants produces greater score…
Clinical evaluation of higher stimulation rates in the nucleus research platform 8 system.
Plant, Kerrie; Holden, Laura; Skinner, Margo; Arcaroli, Jennifer; Whitford, Lesley; Law, Mary-Ann; Nel, Esti
2007-06-01
The effect on speech perception of using higher stimulation rates than the 14.4 kHz available in the Nucleus 24 cochlear implant system was investigated. The study used the Nucleus Research Platform 8 (RP8) system, comprising the CI24RE receiver-stimulator with the Contour electrode array, the L34SP body-worn research speech processor, and the Nucleus Programming Environment (NPE) fitting and Neural Response Telemetry (NRT) software. This system enabled clinical investigation of higher stimulation rates before an implementation in the Freedom cochlear implant system commercially released by Cochlear Limited. Use of higher stimulation rates in the ACE coding strategy was assessed in 15 adult subjects. An ABAB experimental design was used to control for order effects. Program A used a total stimulation rate of between 12 kHz and 14.4 kHz. This program was used for at least the first 3 mo after initial device activation. After evaluation with this program, each subject was provided with two different higher stimulation rate programs: one with a total stimulation rate of 24 kHz and the other with a total stimulation rate of 32 kHz. After a 6-week period of familiarization, each subject identified his/her preferred higher rate program (program B), and this was used for the evaluation. Subjects then repeated their use of program A for 3 wk, then program B for 3 wk, before the second evaluation with each. Speech perception was evaluated by using CNC open-set monosyllabic words presented in quiet and CUNY open-set sentences presented in noise. Preference for stimulation rate program was assessed via a subjective questionnaire. Threshold (T)- and Comfortable (C)-levels, as well as subjective reports of tinnitus, were monitored for each subject throughout the study to determine whether there were any changes that might be associated with the use of higher stimulation rates. No significant mean differences in speech perception results were found for the group between the two programs for tests in either quiet or noise. Analysis of individual subject data showed that five subjects had significant benefit from use of program B for tests administered in quiet and for tests administered in noise. However, only two of these subjects showed benefit in both test conditions. One subject showed significant benefit from use of program A when tested in quiet, whereas another showed benefit with this program in noise. Each subject's preferred program varied. Five subjects reported a preference for program A, eight subjects reported a preference for program B and two reported no overall preference. Preference between the different stimulation rates provided within program B also varied, with 10 subjects preferring 24 kHz and five preferring 32 kHz total stimulation rates. A significant increase in T-levels from baseline measures was observed after three weeks of initial experience with program B, however there was no difference between the baseline levels and those obtained after five weeks of use. No significant change in C-levels was found over the monitoring period. No long-term changes in tinnitus that could be associated with the use of the higher stimulation rates were reported by any of the subjects. The use of higher stimulation rates may provide benefit to some but not all cochlear implant recipients. It is important to optimize the stimulation rate for an individual to ensure maximal benefit. The absence of any changes in T- and C-levels or in tinnitus suggests that higher stimulation rates are safe for clinical use.
1986-03-01
attributed to insufficient power in the experimental design: Two of the studies that failed to find evidence of sign-based coding when printed words...perception of [p]; so may a lesser amount of silence, insufficient to cue a [p] percept in itself, followed bytransitions characteristic of [p] release...posterior pharyngeal wall has become visible through the nasal passage; the Velotrace is inserted using a procedure similar to that used for nasal
Erb, Julia; Ludwig, Alexandra Annemarie; Kunke, Dunja; Fuchs, Michael; Obleser, Jonas
2018-04-24
Psychoacoustic tests assessed shortly after cochlear implantation are useful predictors of the rehabilitative speech outcome. While largely independent, both spectral and temporal resolution tests are important to provide an accurate prediction of speech recognition. However, rapid tests of temporal sensitivity are currently lacking. Here, we propose a simple amplitude modulation rate discrimination (AMRD) paradigm that is validated by predicting future speech recognition in adult cochlear implant (CI) patients. In 34 newly implanted patients, we used an adaptive AMRD paradigm, where broadband noise was modulated at the speech-relevant rate of ~4 Hz. In a longitudinal study, speech recognition in quiet was assessed using the closed-set Freiburger number test shortly after cochlear implantation (t0) as well as the open-set Freiburger monosyllabic word test 6 months later (t6). Both AMRD thresholds at t0 (r = -0.51) and speech recognition scores at t0 (r = 0.56) predicted speech recognition scores at t6. However, AMRD and speech recognition at t0 were uncorrelated, suggesting that those measures capture partially distinct perceptual abilities. A multiple regression model predicting 6-month speech recognition outcome with deafness duration and speech recognition at t0 improved from adjusted R = 0.30 to adjusted R = 0.44 when AMRD threshold was added as a predictor. These findings identify AMRD thresholds as a reliable, nonredundant predictor above and beyond established speech tests for CI outcome. This AMRD test could potentially be developed into a rapid clinical temporal-resolution test to be integrated into the postoperative test battery to improve the reliability of speech outcome prognosis.
Basilakos, Alexandra; Rorden, Chris; Bonilha, Leonardo; Moser, Dana; Fridriksson, Julius
2015-06-01
Acquired apraxia of speech (AOS) is a motor speech disorder caused by brain damage. AOS often co-occurs with aphasia, a language disorder in which patients may also demonstrate speech production errors. The overlap of speech production deficits in both disorders has raised questions on whether AOS emerges from a unique pattern of brain damage or as a subelement of the aphasic syndrome. The purpose of this study was to determine whether speech production errors in AOS and aphasia are associated with distinctive patterns of brain injury. Forty-three patients with history of a single left-hemisphere stroke underwent comprehensive speech and language testing. The AOS Rating Scale was used to rate speech errors specific to AOS versus speech errors that can also be associated with both AOS and aphasia. Localized brain damage was identified using structural magnetic resonance imaging, and voxel-based lesion-impairment mapping was used to evaluate the relationship between speech errors specific to AOS, those that can occur in AOS or aphasia, and brain damage. The pattern of brain damage associated with AOS was most strongly associated with damage to cortical motor regions, with additional involvement of somatosensory areas. Speech production deficits that could be attributed to AOS or aphasia were associated with damage to the temporal lobe and the inferior precentral frontal regions. AOS likely occurs in conjunction with aphasia because of the proximity of the brain areas supporting speech and language, but the neurobiological substrate for each disorder differs. © 2015 American Heart Association, Inc.
Speech rate reduction and "nasality" in normal speakers.
Brancewicz, T M; Reich, A R
1989-12-01
This study explored the effects of reduced speech rate on nasal/voice accelerometric measures and nasality ratings. Nasal/voice accelerometric measures were obtained from normal adults for various speech stimuli and speaking rates. Stimuli included three sentences (one obstruent-loaded, one semivowel-loaded, and one containing a single nasal), and /pv/ syllable trains.. Speakers read the stimuli at their normal rate, half their normal rate, and as slowly as possible. In addition, a computer program paced each speaker at rates of 1, 2, and 3 syllables per second. The nasal/voice accelerometric values revealed significant stimulus effects but no rate effects. The nasality ratings of experienced listeners, evaluated as a function of stimulus and speaking rate, were compared to the accelerometric measures. The nasality scale values demonstrated small, but statistically significant, stimulus and rate effects. However, the nasality percepts were poorly correlated with the nasal/voice accelerometric measures.
Improving speech perception in noise with current focusing in cochlear implant users.
Srinivasan, Arthi G; Padilla, Monica; Shannon, Robert V; Landsberger, David M
2013-05-01
Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. Copyright © 2013 Elsevier B.V. All rights reserved.
Rusz, Jan; Hlavnička, Jan; Tykalová, Tereza; Bušková, Jitka; Ulmanová, Olga; Růžička, Evžen; Šonka, Karel
2016-03-01
Patients with idiopathic rapid eye movement sleep behaviour disorder (RBD) are at substantial risk for developing Parkinson's disease (PD) or related neurodegenerative disorders. Speech is an important indicator of motor function and movement coordination, and therefore may be an extremely sensitive early marker of changes due to prodromal neurodegeneration. Speech data were acquired from 16 RBD subjects and 16 age- and sex-matched healthy control subjects. Objective acoustic assessment of 15 speech dimensions representing various phonatory, articulatory, and prosodic deviations was performed. Statistical models were applied to characterise speech disorders in RBD and to estimate sensitivity and specificity in differentiating between RBD and control subjects. Some form of speech impairment was revealed in 88% of RBD subjects. Articulatory deficits were the most prominent findings in RBD. In comparison to controls, the RBD group showed significant alterations in irregular alternating motion rates (p = 0.009) and articulatory decay (p = 0.01). The combination of four distinctive speech dimensions, including aperiodicity, irregular alternating motion rates, articulatory decay, and dysfluency, led to 96% sensitivity and 79% specificity in discriminating between RBD and control subjects. Speech impairment was significantly more pronounced in RBD subjects with the motor score of the Unified Parkinson's Disease Rating Scale greater than 4 points when compared to other RBD individuals. Simple quantitative speech motor measures may be suitable for the reliable detection of prodromal neurodegeneration in subjects with RBD, and therefore may provide important outcomes for future therapy trials. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Yune-Sang; Turkeltaub, Peter; Granger, Richard; Raizada, Rajeev D S
2012-03-14
Although much effort has been directed toward understanding the neural basis of speech processing, the neural processes involved in the categorical perception of speech have been relatively less studied, and many questions remain open. In this functional magnetic resonance imaging (fMRI) study, we probed the cortical regions mediating categorical speech perception using an advanced brain-mapping technique, whole-brain multivariate pattern-based analysis (MVPA). Normal healthy human subjects (native English speakers) were scanned while they listened to 10 consonant-vowel syllables along the /ba/-/da/ continuum. Outside of the scanner, individuals' own category boundaries were measured to divide the fMRI data into /ba/ and /da/ conditions per subject. The whole-brain MVPA revealed that Broca's area and the left pre-supplementary motor area evoked distinct neural activity patterns between the two perceptual categories (/ba/ vs /da/). Broca's area was also found when the same analysis was applied to another dataset (Raizada and Poldrack, 2007), which previously yielded the supramarginal gyrus using a univariate adaptation-fMRI paradigm. The consistent MVPA findings from two independent datasets strongly indicate that Broca's area participates in categorical speech perception, with a possible role of translating speech signals into articulatory codes. The difference in results between univariate and multivariate pattern-based analyses of the same data suggest that processes in different cortical areas along the dorsal speech perception stream are distributed on different spatial scales.
Hemispheric asymmetry of auditory steady-state responses to monaural and diotic stimulation.
Poelmans, Hanne; Luts, Heleen; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan
2012-12-01
Amplitude modulations in the speech envelope are crucial elements for speech perception. These modulations comprise the processing rate at which syllabic (~3-7 Hz), and phonemic transitions occur in speech. Theories about speech perception hypothesize that each hemisphere in the auditory cortex is specialized in analyzing modulations at different timescales, and that phonemic-rate modulations of the speech envelope lateralize to the left hemisphere, whereas right lateralization occurs for slow, syllabic-rate modulations. In the present study, neural processing of phonemic- and syllabic-rate modulations was investigated with auditory steady-state responses (ASSRs). ASSRs to speech-weighted noise stimuli, amplitude modulated at 4, 20, and 80 Hz, were recorded in 30 normal-hearing adults. The 80 Hz ASSR is primarily generated by the brainstem, whereas 20 and 4 Hz ASSRs are mainly cortically evoked and relate to speech perception. Stimuli were presented diotically (same signal to both ears) and monaurally (one signal to the left or right ear). For 80 Hz, diotic ASSRs were larger than monaural responses. This binaural advantage decreased with decreasing modulation frequency. For 20 Hz, diotic ASSRs were equal to monaural responses, while for 4 Hz, diotic responses were smaller than monaural responses. Comparison of left and right ear stimulation demonstrated that, with decreasing modulation rate, a gradual change from ipsilateral to right lateralization occurred. Together, these results (1) suggest that ASSR enhancement to binaural stimulation decreases in the ascending auditory system and (2) indicate that right lateralization is more prominent for low-frequency ASSRs. These findings may have important consequences for electrode placement in clinical settings, as well as for the understanding of low-frequency ASSR generation.
Alternating motion rate as an index of speech motor disorder in traumatic brain injury.
Wang, Yu-Tsai; Kent, Ray D; Duffy, Joseph R; Thomas, Jack E; Weismer, Gary
2004-01-01
The task of syllable alternating motion rate (AMR) (also called diadochokinesis) is suitable for examining speech disorders of varying degrees of severity and in individuals with varying levels of linguistic and cognitive ability. However, very limited information on this task has been published for subjects with traumatic brain injury (TBI). This study is a quantitative and qualitative acoustic analysis of AMR in seven subjects with TBI. The primary goal was to use acoustic analyses to assess speech motor control disturbances for the group as a whole and for individual patients. Quantitative analyses included measures of syllable rate, syllable and intersyllable gap durations, energy maxima, and voice onset time (VOT). Qualitative analyses included classification of features evident in spectrograms and waveforms to provide a more detailed description. The TBI group had (1) a slowed syllable rate due mostly to lengthened syllables and, to a lesser degree, lengthened intersyllable gaps, (2) highly correlated syllable rates between AMR and conversation, (3) temporal and energy maxima irregularities within repetition sequences, (4) normal median VOT values but with large variation, and (5) a number of speech production abnormalities revealed by qualitative analysis, including explosive speech quality, breathy voice quality, phonatory instability, multiple or missing stop bursts, continuous voicing, and spirantization. The relationships between these findings and TBI speakers' neurological status and dysarthria types are also discussed. It was concluded that acoustic analyses of the AMR task provides specific information on motor speech limitations in individuals with TBI.
Role of N-Methyl-D-Aspartate Receptors in Action-Based Predictive Coding Deficits in Schizophrenia.
Kort, Naomi S; Ford, Judith M; Roach, Brian J; Gunduz-Bruce, Handan; Krystal, John H; Jaeger, Judith; Reinhart, Robert M G; Mathalon, Daniel H
2017-03-15
Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia. In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback (listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event-related potentials during the talk/listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared. N1 suppression to self-produced vocalizations was significantly and similarly diminished by ketamine (Cohen's d = 1.14) and schizophrenia (Cohen's d = .85). Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
A speech processing study using an acoustic model of a multiple-channel cochlear implant
NASA Astrophysics Data System (ADS)
Xu, Ying
1998-10-01
A cochlear implant is an electronic device designed to provide sound information for adults and children who have bilateral profound hearing loss. The task of representing speech signals as electrical stimuli is central to the design and performance of cochlear implants. Studies have shown that the current speech- processing strategies provide significant benefits to cochlear implant users. However, the evaluation and development of speech-processing strategies have been complicated by hardware limitations and large variability in user performance. To alleviate these problems, an acoustic model of a cochlear implant with the SPEAK strategy is implemented in this study, in which a set of acoustic stimuli whose psychophysical characteristics are as close as possible to those produced by a cochlear implant are presented on normal-hearing subjects. To test the effectiveness and feasibility of this acoustic model, a psychophysical experiment was conducted to match the performance of a normal-hearing listener using model- processed signals to that of a cochlear implant user. Good agreement was found between an implanted patient and an age-matched normal-hearing subject in a dynamic signal discrimination experiment, indicating that this acoustic model is a reasonably good approximation of a cochlear implant with the SPEAK strategy. The acoustic model was then used to examine the potential of the SPEAK strategy in terms of its temporal and frequency encoding of speech. It was hypothesized that better temporal and frequency encoding of speech can be accomplished by higher stimulation rates and a larger number of activated channels. Vowel and consonant recognition tests were conducted on normal-hearing subjects using speech tokens processed by the acoustic model, with different combinations of stimulation rate and number of activated channels. The results showed that vowel recognition was best at 600 pps and 8 activated channels, but further increases in stimulation rate and channel numbers were not beneficial. Manipulations of stimulation rate and number of activated channels did not appreciably affect consonant recognition. These results suggest that overall speech performance may improve by appropriately increasing stimulation rate and number of activated channels. Future revision of this acoustic model is necessary to provide more accurate amplitude representation of speech.
Speech Comprehension Difficulties in Chronic Tinnitus and Its Relation to Hyperacusis
Vielsmeier, Veronika; Kreuzer, Peter M.; Haubner, Frank; Steffens, Thomas; Semmler, Philipp R. O.; Kleinjung, Tobias; Schlee, Winfried; Langguth, Berthold; Schecklmann, Martin
2016-01-01
Objective: Many tinnitus patients complain about difficulties regarding speech comprehension. In spite of the high clinical relevance little is known about underlying mechanisms and predisposing factors. Here, we performed an exploratory investigation in a large sample of tinnitus patients to (1) estimate the prevalence of speech comprehension difficulties among tinnitus patients, to (2) compare subjective reports of speech comprehension difficulties with behavioral measurements in a standardized speech comprehension test and to (3) explore underlying mechanisms by analyzing the relationship between speech comprehension difficulties and peripheral hearing function (pure tone audiogram), as well as with co-morbid hyperacusis as a central auditory processing disorder. Subjects and Methods: Speech comprehension was assessed in 361 tinnitus patients presenting between 07/2012 and 08/2014 at the Interdisciplinary Tinnitus Clinic at the University of Regensburg. The assessment included standard audiological assessments (pure tone audiometry, tinnitus pitch, and loudness matching), the Goettingen sentence test (in quiet) for speech audiometric evaluation, two questions about hyperacusis, and two questions about speech comprehension in quiet and noisy environments (“How would you rate your ability to understand speech?”; “How would you rate your ability to follow a conversation when multiple people are speaking simultaneously?”). Results: Subjectively-reported speech comprehension deficits are frequent among tinnitus patients, especially in noisy environments (cocktail party situation). 74.2% of all investigated patients showed disturbed speech comprehension (indicated by values above 21.5 dB SPL in the Goettingen sentence test). Subjective speech comprehension complaints (both for general and in noisy environment) were correlated with hearing level and with audiologically-assessed speech comprehension ability. In contrast, co-morbid hyperacusis was only correlated with speech comprehension difficulties in noisy environments, but not with speech comprehension difficulties in general. Conclusion: Speech comprehension deficits are frequent among tinnitus patients. Whereas speech comprehension deficits in quiet environments are primarily due to peripheral hearing loss, speech comprehension deficits in noisy environments are related to both peripheral hearing loss and dysfunctional central auditory processing. Disturbed speech comprehension in noisy environments might be modulated by a central inhibitory deficit. In addition, attentional and cognitive aspects may play a role. PMID:28018209
Speech Comprehension Difficulties in Chronic Tinnitus and Its Relation to Hyperacusis.
Vielsmeier, Veronika; Kreuzer, Peter M; Haubner, Frank; Steffens, Thomas; Semmler, Philipp R O; Kleinjung, Tobias; Schlee, Winfried; Langguth, Berthold; Schecklmann, Martin
2016-01-01
Objective: Many tinnitus patients complain about difficulties regarding speech comprehension. In spite of the high clinical relevance little is known about underlying mechanisms and predisposing factors. Here, we performed an exploratory investigation in a large sample of tinnitus patients to (1) estimate the prevalence of speech comprehension difficulties among tinnitus patients, to (2) compare subjective reports of speech comprehension difficulties with behavioral measurements in a standardized speech comprehension test and to (3) explore underlying mechanisms by analyzing the relationship between speech comprehension difficulties and peripheral hearing function (pure tone audiogram), as well as with co-morbid hyperacusis as a central auditory processing disorder. Subjects and Methods: Speech comprehension was assessed in 361 tinnitus patients presenting between 07/2012 and 08/2014 at the Interdisciplinary Tinnitus Clinic at the University of Regensburg. The assessment included standard audiological assessments (pure tone audiometry, tinnitus pitch, and loudness matching), the Goettingen sentence test (in quiet) for speech audiometric evaluation, two questions about hyperacusis, and two questions about speech comprehension in quiet and noisy environments ("How would you rate your ability to understand speech?"; "How would you rate your ability to follow a conversation when multiple people are speaking simultaneously?"). Results: Subjectively-reported speech comprehension deficits are frequent among tinnitus patients, especially in noisy environments (cocktail party situation). 74.2% of all investigated patients showed disturbed speech comprehension (indicated by values above 21.5 dB SPL in the Goettingen sentence test). Subjective speech comprehension complaints (both for general and in noisy environment) were correlated with hearing level and with audiologically-assessed speech comprehension ability. In contrast, co-morbid hyperacusis was only correlated with speech comprehension difficulties in noisy environments, but not with speech comprehension difficulties in general. Conclusion: Speech comprehension deficits are frequent among tinnitus patients. Whereas speech comprehension deficits in quiet environments are primarily due to peripheral hearing loss, speech comprehension deficits in noisy environments are related to both peripheral hearing loss and dysfunctional central auditory processing. Disturbed speech comprehension in noisy environments might be modulated by a central inhibitory deficit. In addition, attentional and cognitive aspects may play a role.
Perceptual rate normalization in naturally produced bilabial stops
NASA Astrophysics Data System (ADS)
Nagao, Kyoko; de Jong, Kenneth
2003-10-01
The perception of voicing categories is affected by the speaking rate, so that listeners' category boundaries on a VOT continuum shift to a lower value when the syllable duration decreases (Miller and Volaitis, 1989; Volaitis and Miller, 1992). Previous rate normalization effects have been found using computer-generated stimuli. This study examines the effect of speech rate on voicing categorization in naturally produced speech. Four native speakers of American English repeated syllables (/bi/ and /pi/) at increasing rates in time with a metronome. Three-syllable stimuli were spliced from the repetitive speech. These stimuli contained natural decreases in VOT with faster speech rates. Besides, this rate effect on VOT was larger for /p/ than /b/, so that VOT values for /b/ and /p/ overlapped at the fastest rates. Eighteen native listeners of American English were presented with 168 stimuli and asked to identify the consonant. Perceptual category boundaries occur at VOT values 15 ms shorter than the values reported for synthesized stimuli. This difference may be due to the extraordinarily wide range of VOT values in previous studies. The values found in the current study closely match the actual division point for /b/ and /p/. The underlying mechanism of perceptual normalization will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, S
The highlights of the many public programs are described and summaries of plenary session speeches are included. Names, addresses, and solar interest codes of conference registrants are included. Eleven technical papers or summaries are included. A separate citation was prepared for each one. (MHR)
Development of a coding form for approach control/pilot voice communications.
DOT National Transportation Integrated Search
1995-05-01
The Aviation Topics Speech Acts Taxonomy (ATSAT) is a tool for categorizing pilot/controller communications according to their purpose and for classifying communication errors. Air traffic controller communications that deviate from FAA Air Traffic C...
Mapping the Speech Code: Cortical Responses Linking the Perception and Production of Vowels
Schuerman, William L.; Meyer, Antje S.; McQueen, James M.
2017-01-01
The acoustic realization of speech is constrained by the physical mechanisms by which it is produced. Yet for speech perception, the degree to which listeners utilize experience derived from speech production has long been debated. In the present study, we examined how sensorimotor adaptation during production may affect perception, and how this relationship may be reflected in early vs. late electrophysiological responses. Participants first performed a baseline speech production task, followed by a vowel categorization task during which EEG responses were recorded. In a subsequent speech production task, half the participants received shifted auditory feedback, leading most to alter their articulations. This was followed by a second, post-training vowel categorization task. We compared changes in vowel production to both behavioral and electrophysiological changes in vowel perception. No differences in phonetic categorization were observed between groups receiving altered or unaltered feedback. However, exploratory analyses revealed correlations between vocal motor behavior and phonetic categorization. EEG analyses revealed correlations between vocal motor behavior and cortical responses in both early and late time windows. These results suggest that participants' recent production behavior influenced subsequent vowel perception. We suggest that the change in perception can be best characterized as a mapping of acoustics onto articulation. PMID:28439232
Altieri, Nicholas; Pisoni, David B.; Townsend, James T.
2012-01-01
Summerfield (1987) proposed several accounts of audiovisual speech perception, a field of research that has burgeoned in recent years. The proposed accounts included the integration of discrete phonetic features, vectors describing the values of independent acoustical and optical parameters, the filter function of the vocal tract, and articulatory dynamics of the vocal tract. The latter two accounts assume that the representations of audiovisual speech perception are based on abstract gestures, while the former two assume that the representations consist of symbolic or featural information obtained from visual and auditory modalities. Recent converging evidence from several different disciplines reveals that the general framework of Summerfield’s feature-based theories should be expanded. An updated framework building upon the feature-based theories is presented. We propose a processing model arguing that auditory and visual brain circuits provide facilitatory information when the inputs are correctly timed, and that auditory and visual speech representations do not necessarily undergo translation into a common code during information processing. Future research on multisensory processing in speech perception should investigate the connections between auditory and visual brain regions, and utilize dynamic modeling tools to further understand the timing and information processing mechanisms involved in audiovisual speech integration. PMID:21968081
Altieri, Nicholas; Pisoni, David B; Townsend, James T
2011-01-01
Summerfield (1987) proposed several accounts of audiovisual speech perception, a field of research that has burgeoned in recent years. The proposed accounts included the integration of discrete phonetic features, vectors describing the values of independent acoustical and optical parameters, the filter function of the vocal tract, and articulatory dynamics of the vocal tract. The latter two accounts assume that the representations of audiovisual speech perception are based on abstract gestures, while the former two assume that the representations consist of symbolic or featural information obtained from visual and auditory modalities. Recent converging evidence from several different disciplines reveals that the general framework of Summerfield's feature-based theories should be expanded. An updated framework building upon the feature-based theories is presented. We propose a processing model arguing that auditory and visual brain circuits provide facilitatory information when the inputs are correctly timed, and that auditory and visual speech representations do not necessarily undergo translation into a common code during information processing. Future research on multisensory processing in speech perception should investigate the connections between auditory and visual brain regions, and utilize dynamic modeling tools to further understand the timing and information processing mechanisms involved in audiovisual speech integration.
Social Anxiety, Affect, Cortisol Response and Performance on a Speech Task.
Losiak, Wladyslaw; Blaut, Agata; Klosowska, Joanna; Slowik, Natalia
2016-01-01
Social anxiety is characterized by increased emotional reactivity to social stimuli, but results of studies focusing on affective reactions of socially anxious subjects in the situation of social exposition are inconclusive, especially in the case of endocrinological measures of affect. This study was designed to examine individual differences in endocrinological and affective reactions to social exposure as well as in performance on a speech task in a group of students (n = 44) comprising subjects with either high or low levels of social anxiety. Measures of salivary cortisol and positive and negative affect were taken before and after an impromptu speech. Self-ratings and observer ratings of performance were also obtained. Cortisol levels and negative affect increased in both groups after the speech task, and positive affect decreased; however, group × affect interactions were not significant. Assessments conducted after the speech task revealed that highly socially anxious participants had lower observer ratings of performance while cortisol increase and changes in self-reported affect were not related to performance. Socially anxious individuals do not differ from nonanxious individuals in affective reactions to social exposition, but reveal worse performance at a speech task. © 2015 S. Karger AG, Basel.
Müller, Joachim
2005-01-01
Over the past two decades, the fascinating possibilities of cochlear implants for congenitally deaf or deafened children and adults developed tremendously and created a rapidly developing interdisciplinary research field. The main advancements of cochlear implantation in the past decade are marked by significant improvement of hearing and speech understanding in CI users. These improvements are attributed to the enhancement of speech coding strategies. The Implantation of more (and increasingly younger) children as well as the possibilities of the restoration of binaural hearing abilities with cochlear implants reflect the high standards reached by this development. Despite this progress, modern cochlear implants do not yet enable normal speech understanding, not even for the best patients. In particular speech understanding in noise remains problematic [1]. Until the mid 1990ies research concentrated on unilateral implantation. Remarkable and effective improvements have been made with bilateral implantation since 1996. Nowadays an increasing numbers of patients enjoy these benefits. PMID:22073052
Müller, Joachim
2005-01-01
Over the past two decades, the fascinating possibilities of cochlear implants for congenitally deaf or deafened children and adults developed tremendously and created a rapidly developing interdisciplinary research field.The main advancements of cochlear implantation in the past decade are marked by significant improvement of hearing and speech understanding in CI users. These improvements are attributed to the enhancement of speech coding strategies.The Implantation of more (and increasingly younger) children as well as the possibilities of the restoration of binaural hearing abilities with cochlear implants reflect the high standards reached by this development. Despite this progress, modern cochlear implants do not yet enable normal speech understanding, not even for the best patients. In particular speech understanding in noise remains problematic [1]. Until the mid 1990ies research concentrated on unilateral implantation. Remarkable and effective improvements have been made with bilateral implantation since 1996. Nowadays an increasing numbers of patients enjoy these benefits.
Perception of temporally modified speech in auditory neuropathy.
Hassan, Dalia Mohamed
2011-01-01
Disrupted auditory nerve activity in auditory neuropathy (AN) significantly impairs the sequential processing of auditory information, resulting in poor speech perception. This study investigated the ability of AN subjects to perceive temporally modified consonant-vowel (CV) pairs and shed light on their phonological awareness skills. Four Arabic CV pairs were selected: /ki/-/gi/, /to/-/do/, /si/-/sti/ and /so/-/zo/. The formant transitions in consonants and the pauses between CV pairs were prolonged. Rhyming, segmentation and blending skills were tested using words at a natural rate of speech and with prolongation of the speech stream. Fourteen adult AN subjects were compared to a matched group of cochlear-impaired patients in their perception of acoustically processed speech. The AN group distinguished the CV pairs at a low speech rate, in particular with modification of the consonant duration. Phonological awareness skills deteriorated in adult AN subjects but improved with prolongation of the speech inter-syllabic time interval. A rehabilitation program for AN should consider temporal modification of speech, training for auditory temporal processing and the use of devices with innovative signal processing schemes. Verbal modifications as well as visual imaging appear to be promising compensatory strategies for remediating the affected phonological processing skills.
Everyday listeners' impressions of speech produced by individuals with adductor spasmodic dysphonia.
Nagle, Kathleen F; Eadie, Tanya L; Yorkston, Kathryn M
2015-01-01
Individuals with adductor spasmodic dysphonia (ADSD) have reported that unfamiliar communication partners appear to judge them as sneaky, nervous or not intelligent, apparently based on the quality of their speech; however, there is minimal research into the actual everyday perspective of listening to ADSD speech. The purpose of this study was to investigate the impressions of listeners hearing ADSD speech for the first time using a mixed-methods design. Everyday listeners were interviewed following sessions in which they made ratings of ADSD speech. A semi-structured interview approach was used and data were analyzed using thematic content analysis. Three major themes emerged: (1) everyday listeners make judgments about speakers with ADSD; (2) ADSD speech does not sound normal to everyday listeners; and (3) rating overall severity is difficult for everyday listeners. Participants described ADSD speech similarly to existing literature; however, some listeners inaccurately extrapolated speaker attributes based solely on speech samples. Listeners may draw erroneous conclusions about individuals with ADSD and these biases may affect the communicative success of these individuals. Results have implications for counseling individuals with ADSD, as well as the need for education and awareness about ADSD. Copyright © 2015 Elsevier Inc. All rights reserved.
Autonomic Correlates of Speech Versus Nonspeech Tasks in Children and Adults
Arnold, Hayley S.; MacPherson, Megan K.; Smith, Anne
2015-01-01
Purpose To assess autonomic arousal associated with speech and nonspeech tasks in school-age children and young adults. Method Measures of autonomic arousal (electrodermal level, electrodermal response amplitude, blood pulse volume, and heart rate) were recorded prior to, during, and after the performance of speech and nonspeech tasks by twenty 7- to 9-year-old children and twenty 18- to 22-year-old adults. Results Across age groups, autonomic arousal was higher for speech tasks compared with nonspeech tasks, based on peak electrodermal response amplitude and blood pulse volume. Children demonstrated greater relative arousal, based on heart rate and blood pulse volume, for nonspeech oral motor tasks than adults but showed similar mean arousal levels for speech tasks as adults. Children demonstrated sex differences in autonomic arousal; specifically, autonomic arousal remained high for school-age boys but not girls in a more complex open-ended narrative task that followed a simple sentence production task. Conclusions Speech tasks elicit greater autonomic arousal than nonspeech tasks, and children demonstrate greater autonomic arousal for nonspeech oral motor tasks than adults. Sex differences in autonomic arousal associated with speech tasks in school-age children are discussed relative to speech-language differences between boys and girls. PMID:24686989
Development of The Viking Speech Scale to classify the speech of children with cerebral palsy.
Pennington, Lindsay; Virella, Daniel; Mjøen, Tone; da Graça Andrada, Maria; Murray, Janice; Colver, Allan; Himmelmann, Kate; Rackauskaite, Gija; Greitane, Andra; Prasauskiene, Audrone; Andersen, Guro; de la Cruz, Javier
2013-10-01
Surveillance registers monitor the prevalence of cerebral palsy and the severity of resulting impairments across time and place. The motor disorders of cerebral palsy can affect children's speech production and limit their intelligibility. We describe the development of a scale to classify children's speech performance for use in cerebral palsy surveillance registers, and its reliability across raters and across time. Speech and language therapists, other healthcare professionals and parents classified the speech of 139 children with cerebral palsy (85 boys, 54 girls; mean age 6.03 years, SD 1.09) from observation and previous knowledge of the children. Another group of health professionals rated children's speech from information in their medical notes. With the exception of parents, raters reclassified children's speech at least four weeks after their initial classification. Raters were asked to rate how easy the scale was to use and how well the scale described the child's speech production using Likert scales. Inter-rater reliability was moderate to substantial (k>.58 for all comparisons). Test-retest reliability was substantial to almost perfect for all groups (k>.68). Over 74% of raters found the scale easy or very easy to use; 66% of parents and over 70% of health care professionals judged the scale to describe children's speech well or very well. We conclude that the Viking Speech Scale is a reliable tool to describe the speech performance of children with cerebral palsy, which can be applied through direct observation of children or through case note review. Copyright © 2013 Elsevier Ltd. All rights reserved.
Analyzing crowdsourced ratings of speech-based take-over requests for automated driving.
Bazilinskyy, P; de Winter, J C F
2017-10-01
Take-over requests in automated driving should fit the urgency of the traffic situation. The robustness of various published research findings on the valuations of speech-based warning messages is unclear. This research aimed to establish how people value speech-based take-over requests as a function of speech rate, background noise, spoken phrase, and speaker's gender and emotional tone. By means of crowdsourcing, 2669 participants from 95 countries listened to a random 10 out of 140 take-over requests, and rated each take-over request on urgency, commandingness, pleasantness, and ease of understanding. Our results replicate several published findings, in particular that an increase in speech rate results in a monotonic increase of perceived urgency. The female voice was easier to understand than a male voice when there was a high level of background noise, a finding that contradicts the literature. Moreover, a take-over request spoken with Indian accent was found to be easier to understand by participants from India than by participants from other countries. Our results replicate effects in the literature regarding speech-based warnings, and shed new light on effects of background noise, gender, and nationality. The results may have implications for the selection of appropriate take-over requests in automated driving. Additionally, our study demonstrates the promise of crowdsourcing for testing human factors and ergonomics theories with large sample sizes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Is Language a Factor in the Perception of Foreign Accent Syndrome?
Jose, Linda; Read, Jennifer; Miller, Nick
2016-06-01
Neurogenic foreign accent syndrome (FAS) is diagnosed when listeners perceive speech associated with motor speech impairments as foreign rather than disordered. Speakers with foreign accent syndrome typically have aphasia. It remains unclear how far language changes might contribute to the perception of foreign accent syndrome independent of accent. Judges with and without training in language analysis rated orthographic transcriptions of speech from people with foreign accent syndrome, speech-language disorder and no foreign accent syndrome, foreign accent without neurological impairment and healthy controls on scales of foreignness, normalness and disorderedness. Control speakers were judged as significantly more normal, less disordered and less foreign than other groups. Foreign accent syndrome speakers' transcriptions consistently profiled most closely to those of foreign speakers and significantly different to speakers with speech-language disorder. On normalness and foreignness ratings there were no significant differences between foreign and foreign accent syndrome speakers. For disorderedness, foreign accent syndrome participants fell midway between foreign speakers and those with speech-language impairment only. Slower rate, more hesitations, pauses within and between utterances influenced judgments, delineating control scripts from others. Word-level syntactic and morphological deviations and reduced syntactic and semantic repertoire linked strongly with foreignness perceptions. Greater disordered ratings related to word fragments, poorly intelligible grammatical structures and inappropriate word selection. Language changes influence foreignness perception. Clinical and theoretical issues are addressed.
Guntupalli, Vijaya K; Everhart, D Erik; Kalinowski, Joseph; Nanjundeswaran, Chayadevie; Saltuklaroglu, Tim
2007-01-01
People who stutter produce speech that is characterized by intermittent, involuntary part-word repetitions and prolongations. In addition to these signature acoustic manifestations, those who stutter often display repetitive and fixated behaviours outside the speech producing mechanism (e.g. in the head, arm, fingers, nares, etc.). Previous research has examined the attitudes and perceptions of those who stutter and people who frequently interact with them (e.g. relatives, parents, employers). Results have shown an unequivocal, powerful and robust negative stereotype despite a lack of defined differences in personality structure between people who stutter and normally fluent individuals. However, physiological investigations of listener responses during moments of stuttering are limited. There is a need for data that simultaneously examine physiological responses (e.g. heart rate and galvanic skin conductance) and subjective behavioural responses to stuttering. The pairing of these objective and subjective data may provide information that casts light on the genesis of negative stereotypes associated with stuttering, the development of compensatory mechanisms in those who stutter, and the true impact of stuttering on senders and receivers alike. To compare the emotional and physiological responses of fluent speakers while listening and observing fluent and severe stuttered speech samples. Twenty adult participants (mean age = 24.15 years, standard deviation = 3.40) observed speech samples of two fluent speakers and two speakers who stutter reading aloud. Participants' skin conductance and heart rate changes were measured as physiological responses to stuttered or fluent speech samples. Participants' subjective responses on arousal (excited-calm) and valence (happy-unhappy) dimensions were assessed via the Self-Assessment Manikin (SAM) rating scale with an additional questionnaire comprised of a set of nine bipolar adjectives. Results showed significantly increased skin conductance and lower mean heart rate during the presentation of stuttered speech relative to the presentation of fluent speech samples (p<0.05). Listeners also self-rated themselves as being more aroused, unhappy, nervous, uncomfortable, sad, tensed, unpleasant, avoiding, embarrassed, and annoyed while viewing stuttered speech relative to the fluent speech. These data support the notion that stutter-filled speech can elicit physiological and emotional responses in listeners. Clinicians who treat stuttering should be aware that listeners show involuntary physiological responses to moderate-severe stuttering that probably remain salient over time and contribute to the evolution of negative stereotypes of people who stutter. With this in mind, it is hoped that clinicians can work with people who stutter to develop appropriate coping strategies. The role of amygdala and mirror neural mechanism in physiological and subjective responses to stuttering is discussed.
The role of accent imitation in sensorimotor integration during processing of intelligible speech
Adank, Patti; Rueschemeyer, Shirley-Ann; Bekkering, Harold
2013-01-01
Recent theories on how listeners maintain perceptual invariance despite variation in the speech signal allocate a prominent role to imitation mechanisms. Notably, these simulation accounts propose that motor mechanisms support perception of ambiguous or noisy signals. Indeed, imitation of ambiguous signals, e.g., accented speech, has been found to aid effective speech comprehension. Here, we explored the possibility that imitation in speech benefits perception by increasing activation in speech perception and production areas. Participants rated the intelligibility of sentences spoken in an unfamiliar accent of Dutch in a functional Magnetic Resonance Imaging experiment. Next, participants in one group repeated the sentences in their own accent, while a second group vocally imitated the accent. Finally, both groups rated the intelligibility of accented sentences in a post-test. The neuroimaging results showed an interaction between type of training and pre- and post-test sessions in left Inferior Frontal Gyrus, Supplementary Motor Area, and left Superior Temporal Sulcus. Although alternative explanations such as task engagement and fatigue need to be considered as well, the results suggest that imitation may aid effective speech comprehension by supporting sensorimotor integration. PMID:24109447
Fine-coarse semantic processing in schizophrenia: a reversed pattern of hemispheric dominance.
Zeev-Wolf, Maor; Goldstein, Abraham; Levkovitz, Yechiel; Faust, Miriam
2014-04-01
Left lateralization for language processing is a feature of neurotypical brains. In individuals with schizophrenia, lack of left lateralization is associated with the language impairments manifested in this population. Beeman׳s fine-coarse semantic coding model asserts left hemisphere specialization in fine (i.e., conventionalized) semantic coding and right hemisphere specialization in coarse (i.e., non-conventionalized) semantic coding. Applying this model to schizophrenia would suggest that language impairments in this population are a result of greater reliance on coarse semantic coding. We investigated this hypothesis and examined whether a reversed pattern of hemispheric involvement in fine-coarse semantic coding along the time course of activation could be detected in individuals with schizophrenia. Seventeen individuals with schizophrenia and 30 neurotypical participants were presented with two word expressions of four types: literal, conventional metaphoric, unrelated (exemplars of fine semantic coding) and novel metaphoric (an exemplar of coarse semantic coding). Expressions were separated by either a short (250 ms) or long (750 ms) delay. Findings indicate that whereas during novel metaphor processing, controls displayed a left hemisphere advantage at 250 ms delay and right hemisphere advantage at 750 ms, individuals with schizophrenia displayed the opposite. For conventional metaphoric and unrelated expressions, controls showed left hemisphere advantage across times, while individuals with schizophrenia showed a right hemisphere advantage. Furthermore, whereas individuals with schizophrenia were less accurate than control at judging literal, conventional metaphoric and unrelated expressions they were more accurate when judging novel metaphors. Results suggest that individuals with schizophrenia display a reversed pattern of lateralization for semantic coding which causes them to rely more heavily on coarse semantic coding. Thus, for individuals with schizophrenia, speech situation are always non-conventional, compelling them to constantly seek for meanings and prejudicing them toward novel or atypical speech acts. This, in turn, may disadvantage them in conventionalized communication and result in language impairment. Copyright © 2014 Elsevier Ltd. All rights reserved.
The analysis of verbal interaction sequences in dyadic clinical communication: a review of methods.
Connor, Martin; Fletcher, Ian; Salmon, Peter
2009-05-01
To identify methods available for sequential analysis of dyadic verbal clinical communication and to review their methodological and conceptual differences. Critical review, based on literature describing sequential analyses of clinical and other relevant social interaction. Dominant approaches are based on analysis of communication according to its precise position in the series of utterances that constitute event-coded dialogue. For practical reasons, methods focus on very short-term processes, typically the influence of one party's speech on what the other says next. Studies of longer-term influences are rare. Some analyses have statistical limitations, particularly in disregarding heterogeneity between consultations, patients or practitioners. Additional techniques, including ones that can use information about timing and duration of speech from interval-coding are becoming available. There is a danger that constraints of commonly used methods shape research questions and divert researchers from potentially important communication processes including ones that operate over a longer-term than one or two speech turns. Given that no one method can model the complexity of clinical communication, multiple methods, both quantitative and qualitative, are necessary. Broadening the range of methods will allow the current emphasis on exploratory studies to be balanced by tests of hypotheses about clinically important communication processes.
Source analysis of auditory steady-state responses in acoustic and electric hearing.
Luke, Robert; De Vos, Astrid; Wouters, Jan
2017-02-15
Speech is a complex signal containing a broad variety of acoustic information. For accurate speech reception, the listener must perceive modulations over a range of envelope frequencies. Perception of these modulations is particularly important for cochlear implant (CI) users, as all commercial devices use envelope coding strategies. Prolonged deafness affects the auditory pathway. However, little is known of how cochlear implantation affects the neural processing of modulated stimuli. This study investigates and contrasts the neural processing of envelope rate modulated signals in acoustic and CI listeners. Auditory steady-state responses (ASSRs) are used to study the neural processing of amplitude modulated (AM) signals. A beamforming technique is applied to determine the increase in neural activity relative to a control condition, with particular attention paid to defining the accuracy and precision of this technique relative to other tomographies. In a cohort of 44 acoustic listeners, the location, activity and hemispheric lateralisation of ASSRs is characterised while systematically varying the modulation rate (4, 10, 20, 40 and 80Hz) and stimulation ear (right, left and bilateral). We demonstrate a complex pattern of laterality depending on both modulation rate and stimulation ear that is consistent with, and extends, existing literature. We present a novel extension to the beamforming method which facilitates source analysis of electrically evoked auditory steady-state responses (EASSRs). In a cohort of 5 right implanted unilateral CI users, the neural activity is determined for the 40Hz rate and compared to the acoustic cohort. Results indicate that CI users activate typical thalamic locations for 40Hz stimuli. However, complementary to studies of transient stimuli, the CI population has atypical hemispheric laterality, preferentially activating the contralateral hemisphere. Copyright © 2016. Published by Elsevier Inc.
Incorporating Speech Recognition into a Natural User Interface
NASA Technical Reports Server (NTRS)
Chapa, Nicholas
2017-01-01
The Augmented/ Virtual Reality (AVR) Lab has been working to study the applicability of recent virtual and augmented reality hardware and software to KSC operations. This includes the Oculus Rift, HTC Vive, Microsoft HoloLens, and Unity game engine. My project in this lab is to integrate voice recognition and voice commands into an easy to modify system that can be added to an existing portion of a Natural User Interface (NUI). A NUI is an intuitive and simple to use interface incorporating visual, touch, and speech recognition. The inclusion of speech recognition capability will allow users to perform actions or make inquiries using only their voice. The simplicity of needing only to speak to control an on-screen object or enact some digital action means that any user can quickly become accustomed to using this system. Multiple programs were tested for use in a speech command and recognition system. Sphinx4 translates speech to text using a Hidden Markov Model (HMM) based Language Model, an Acoustic Model, and a word Dictionary running on Java. PocketSphinx had similar functionality to Sphinx4 but instead ran on C. However, neither of these programs were ideal as building a Java or C wrapper slowed performance. The most ideal speech recognition system tested was the Unity Engine Grammar Recognizer. A Context Free Grammar (CFG) structure is written in an XML file to specify the structure of phrases and words that will be recognized by Unity Grammar Recognizer. Using Speech Recognition Grammar Specification (SRGS) 1.0 makes modifying the recognized combinations of words and phrases very simple and quick to do. With SRGS 1.0, semantic information can also be added to the XML file, which allows for even more control over how spoken words and phrases are interpreted by Unity. Additionally, using a CFG with SRGS 1.0 produces a Finite State Machine (FSM) functionality limiting the potential for incorrectly heard words or phrases. The purpose of my project was to investigate options for a Speech Recognition System. To that end I attempted to integrate Sphinx4 into a user interface. Sphinx4 had great accuracy and is the only free program able to perform offline speech dictation. However it had a limited dictionary of words that could be recognized, single syllable words were almost impossible for it to hear, and since it ran on Java it could not be integrated into the Unity based NUI. PocketSphinx ran much faster than Sphinx4 which would've made it ideal as a plugin to the Unity NUI, unfortunately creating a C# wrapper for the C code made the program unusable with Unity due to the wrapper slowing code execution and class files becoming unreachable. Unity Grammar Recognizer is the ideal speech recognition interface, it is flexible in recognizing multiple variations of the same command. It is also the most accurate program in recognizing speech due to using an XML grammar to specify speech structure instead of relying solely on a Dictionary and Language model. The Unity Grammar Recognizer will be used with the NUI for these reasons as well as being written in C# which further simplifies the incorporation.
Huber, Rainer; Bisitz, Thomas; Gerkmann, Timo; Kiessling, Jürgen; Meister, Hartmut; Kollmeier, Birger
2018-06-01
The perceived qualities of nine different single-microphone noise reduction (SMNR) algorithms were to be evaluated and compared in subjective listening tests with normal hearing and hearing impaired (HI) listeners. Speech samples added with traffic noise or with party noise were processed by the SMNR algorithms. Subjects rated the amount of speech distortions, intrusiveness of background noise, listening effort and overall quality, using a simplified MUSHRA (ITU-R, 2003 ) assessment method. 18 normal hearing and 18 moderately HI subjects participated in the study. Significant differences between the rating behaviours of the two subject groups were observed: While normal hearing subjects clearly differentiated between different SMNR algorithms, HI subjects rated all processed signals very similarly. Moreover, HI subjects rated speech distortions of the unprocessed, noisier signals as being more severe than the distortions of the processed signals, in contrast to normal hearing subjects. It seems harder for HI listeners to distinguish between additive noise and speech distortions or/and they might have a different understanding of the term "speech distortion" than normal hearing listeners have. The findings confirm that the evaluation of SMNR schemes for hearing aids should always involve HI listeners.
Sentence Position and Syntactic Complexity of Stuttering in Early Childhood: A Longitudinal Study
Buhr, Anthony P.; Zebrowski, Patricia M.
2009-01-01
The purpose of the present investigation was to assess longitudinal word- and sentence-level measures of stuttering in young children. Participants included 12 stuttering and non-stuttering children between 36 and 71 months of age at an initial who exhibited a range of stuttering rates. Parent-child spontaneous speech samples were obtained over a period of two years at six-month intervals. Each speech sample was transcribed, and both stuttering-like disfluencies (SLDs) and other disfluencies (ODs) were coded. Word and sentence-level measures of SLDs were used to assess linguistic characteristics of stuttering. Results of the word-level analysis indicated that stuttering was most likely to occur at the sentence-initial position, but that a tendency to stutter on function words was present only at the sentence-initial position. Results of the sentence-level analyses indicated that sentences containing ODs and those containing SLDs were both significantly longer and more complex than fluent sentences, but did not differ from each other. Word- and sentence-level measures also did not change across visits. Results were taken to suggest that both SLDs and ODs originate during the same stage of sentence planning. PMID:19948270
Audio steganography by amplitude or phase modification
NASA Astrophysics Data System (ADS)
Gopalan, Kaliappan; Wenndt, Stanley J.; Adams, Scott F.; Haddad, Darren M.
2003-06-01
This paper presents the results of embedding short covert message utterances on a host, or cover, utterance by modifying the phase or amplitude of perceptually masked or significant regions of the host. In the first method, the absolute phase at selected, perceptually masked frequency indices was changed to fixed, covert data-dependent values. Embedded bits were retrieved at the receiver from the phase at the selected frequency indices. Tests on embedding a GSM-coded covert utterance on clean and noisy host utterances showed no noticeable difference in the stego compared to the hosts in speech quality or spectrogram. A bit error rate of 2 out of 2800 was observed for a clean host utterance while no error occurred for a noisy host. In the second method, the absolute phase of 10 or fewer perceptually significant points in the host was set in accordance with covert data. This resulted in a stego with successful data retrieval and a slightly noticeable degradation in speech quality. Modifying the amplitude of perceptually significant points caused perceptible differences in the stego even with small changes of amplitude made at five points per frame. Finally, the stego obtained by altering the amplitude at perceptually masked points showed barely noticeable differences and excellent data recovery.
Carry-over fluency induced by extreme prolongations: A new behavioral paradigm.
Briley, P M; Barnes, M P; Kalinowski, J S
2016-04-01
Extreme prolongations, which can be generated via extreme delayed auditory feedback (DAF) (e.g., 250-500 ms) or mediated cognitively with timing applications (e.g., analog stopwatch) at 2 s per syllable, have long been behavioral techniques used to inhibit stuttering. Some therapies have used this rate solely to establish initial fluency, while others use extremely slowed speech to establish fluency and add other strategic techniques such as easy onsets and diaphragmatic breathing. Extreme prolongations generate effective, efficient, and immediate forward flowing fluent speech, removing the signature behaviors of discrete stuttering (i.e., syllable repetitions and audible and inaudible postural fixations). Prolonged use of extreme prolongations establishes carry-over fluency, which is spontaneous, effortless speech absent of most, if not all, overt and covert manifestations of stuttering. The creation of this immediate fluency and the immense potential of extreme prolongations to generate long periods of carry-over fluency have been overlooked by researchers and clinicians alike. Clinicians depart from these longer prolongation durations as they attempt to achieve the same fluent results at a near normal rate of speech. Clinicians assume they are re-teaching fluency and slow rates will give rise to more normal rates with less control, but without carry-over fluency, controls and cognitive mediation are always needed for the inherently unstable speech systems of persons who stutter to experience fluent speech. The assumption being that the speech system is untenable without some level of cognitive and motoric monitoring that is always necessary. The goal is omnipresent "near normal rate sounding fluency" with continuous mediation via cognitive and motoric processes. This pursuit of "normal sounding fluency" continues despite ever-present relapse. Relapse has become so common that acceptance of stuttering is the new therapy modality because relapse has come to be understood as somewhat inevitable. Researchers and clinicians fail to recognize that immediate amelioration of stuttering and its attendant carry-over fluency are signs of a different pathway to fluency. In this path, clinicians focus on extreme prolongations and the extent of their carry-over. While fluency is automatically generated under these extreme prolongations, the realization is that communication at this rate in routine speaking tasks is not feasible. The perceived solution is a systematic reduction in the duration of these prolongations, which attempts to approximate "normal speech." Typically, the reintroduction of speech at a normalized rate precipitates a laborious style that is undesirable to the person who stutters (PWS) and is discontinued, once departed from the comforts of the clinical setting. The inevitable typically occurs; the well-intentioned therapist instructs the PWS to focus on the techniques while speaking at a rate that is nearest normal speech, but the overlooked extreme prolongations are unlikely to ever be revisited. The foundation of this hypothesis is that the departure from fluency generators (e.g. extreme prolongations) is the cause of regression to the stuttering set point. In turn, we postulate that the continued use of extreme prolongations, as a solitary practice method, will establish and nurture different neural pathways that will create a modality of fluent speech, able to be experienced without cognitive or motoric mediation. This would therefore result in fewer occurrences of stuttering due to a phenomenon called carry-over fluency. Thus, we hypothesize that the use of extreme prolongations fosters neural pathways for fluent speech, which will result in carry-over fluency that does not require mediation by the speaker. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paper-Based Textbooks with Audio Support for Print-Disabled Students.
Fujiyoshi, Akio; Ohsawa, Akiko; Takaira, Takuya; Tani, Yoshiaki; Fujiyoshi, Mamoru; Ota, Yuko
2015-01-01
Utilizing invisible 2-dimensional codes and digital audio players with a 2-dimensional code scanner, we developed paper-based textbooks with audio support for students with print disabilities, called "multimodal textbooks." Multimodal textbooks can be read with the combination of the two modes: "reading printed text" and "listening to the speech of the text from a digital audio player with a 2-dimensional code scanner." Since multimodal textbooks look the same as regular textbooks and the price of a digital audio player is reasonable (about 30 euro), we think multimodal textbooks are suitable for students with print disabilities in ordinary classrooms.
Tsai, Ching-Shu; Chen, Vincent Chin-Hung; Yang, Yao-Hsu; Hung, Tai-Hsin; Lu, Mong-Liang; Huang, Kuo-You; Gossop, Michael
2017-01-01
Manifestations of Mycoplasma pneumoniae infection can range from self-limiting upper respiratory symptoms to various neurological complications, including speech and language impairment. But an association between Mycoplasma pneumoniae infection and speech and language impairment has not been sufficiently explored. In this study, we aim to investigate the association between Mycoplasma pneumoniae infection and subsequent speech and language impairment in a nationwide population-based sample using Taiwan's National Health Insurance Research Database. We identified 5,406 children with Mycoplasma pneumoniae infection (International Classification of Disease, Revision 9, Clinical Modification code 4830) and compared to 21,624 age-, sex-, urban- and income-matched controls on subsequent speech and language impairment. The mean follow-up interval for all subjects was 6.44 years (standard deviation = 2.42 years); the mean latency period between the initial Mycoplasma pneumoniae infection and presence of speech and language impairment was 1.96 years (standard deviation = 1.64 years). The results showed that Mycoplasma pneumoniae infection was significantly associated with greater incidence of speech and language impairment [hazard ratio (HR) = 1.49, 95% CI: 1.23-1.80]. In addition, significantly increased hazard ratio of subsequent speech and language impairment in the groups younger than 6 years old and no significant difference in the groups over the age of 6 years were found (HR = 1.43, 95% CI:1.09-1.88 for age 0-3 years group; HR = 1.67, 95% CI: 1.25-2.23 for age 4-5 years group; HR = 1.14, 95% CI: 0.54-2.39 for age 6-7 years group; and HR = 0.83, 95% CI:0.23-2.92 for age 8-18 years group). In conclusion, Mycoplasma pneumoniae infection is temporally associated with incident speech and language impairment.
ERIC Educational Resources Information Center
Munson, Benjamin; Johnson, Julie M.; Edwards, Jan
2012-01-01
Purpose: This study examined whether experienced speech-language pathologists (SLPs) differ from inexperienced people in their perception of phonetic detail in children's speech. Method: Twenty-one experienced SLPs and 21 inexperienced listeners participated in a series of tasks in which they used a visual-analog scale (VAS) to rate children's…
Evaluation of NASA speech encoder
NASA Technical Reports Server (NTRS)
1976-01-01
Techniques developed by NASA for spaceflight instrumentation were used in the design of a quantizer for speech-decoding. Computer simulation of the actions of the quantizer was tested with synthesized and real speech signals. Results were evaluated by a phometician. Topics discussed include the relationship between the number of quantizer levels and the required sampling rate; reconstruction of signals; digital filtering; speech recording, sampling, and storage, and processing results.
Reduced efficiency of audiovisual integration for nonnative speech.
Yi, Han-Gyol; Phelps, Jasmine E B; Smiljanic, Rajka; Chandrasekaran, Bharath
2013-11-01
The role of visual cues in native listeners' perception of speech produced by nonnative speakers has not been extensively studied. Native perception of English sentences produced by native English and Korean speakers in audio-only and audiovisual conditions was examined. Korean speakers were rated as more accented in audiovisual than in the audio-only condition. Visual cues enhanced word intelligibility for native English speech but less so for Korean-accented speech. Reduced intelligibility of Korean-accented audiovisual speech was associated with implicit visual biases, suggesting that listener-related factors partially influence the efficiency of audiovisual integration for nonnative speech perception.
Expressed parental concern regarding childhood stuttering and the Test of Childhood Stuttering.
Tumanova, Victoria; Choi, Dahye; Conture, Edward G; Walden, Tedra A
The purpose of the present study was to determine whether the Test of Childhood Stuttering observational rating scales (TOCS; Gillam et al., 2009) (1) differed between parents who did versus did not express concern (independent from the TOCS) about their child's speech fluency; (2) correlated with children's frequency of stuttering measured during a child-examiner conversation; and (3) correlated with the length and complexity of children's utterances, as indexed by mean length of utterance (MLU). Participants were 183 young children ages 3:0-5:11. Ninety-one had parents who reported concern about their child's stuttering (65 boys, 26 girls) and 92 had parents who reported no such concern (50 boys, 42 girls). Participants' conversational speech during a child-examiner conversation was analyzed for (a) frequency of occurrence of stuttered and non-stuttered disfluencies, and (b) MLU. Besides expressing concern or lack thereof about their child's speech fluency, parents completed the TOCS observational rating scales documenting how often they observe different disfluency types in speech of their children, as well as disfluency-related consequences. There were three main findings. First, parents who expressed concern (independently from the TOCS) about their child's stuttering reported significantly higher scores on the TOCS Speech Fluency and Disfluency-Related Consequences rating scales. Second, children whose parents rated them higher on the TOCS Speech Fluency rating scale produced more stuttered disfluencies during a child-examiner conversation. Third, children with higher scores on the TOCS Disfluency-Related Consequences rating scale had shorter MLU during child-examiner conversation, across age and level of language ability. Findings support the use of the TOCS observational rating scales as one documentable, objective means to determine parental perception of and concern about their child's stuttering. Findings also support the notion that parents are reasonably accurate, if not reliable, judges of the quantity and quality (i.e., stuttered vs. non-stuttered) of their child's speech disfluencies. Lastly, findings that some children may decrease their verbal output in attempts to minimize instances of stuttering - as indexed by relatively low MLU and a high TOCS Disfluency-Related Consequences scores - provides strong support for sampling young children's speech and language across various situations to obtain the most representative index possible of the child's MLU and associated instances of stuttering. Copyright © 2018 Elsevier Inc. All rights reserved.
Speaking Rate Characteristics of Elementary-School-Aged Children Who Do and Do Not Stutter
ERIC Educational Resources Information Center
Logan, Kenneth J.; Byrd, Courtney T.; Mazzocchi, Elizabeth M.; Gillam, Ronald B.
2011-01-01
Purpose: To compare articulation and speech rates of school-aged children who do and do not stutter across sentence priming, structured conversation, and narration tasks and to determine factors that predict children's speech and articulation rates. Method: 34 children who stutter (CWS) and 34 age- and gender-matched children who do not stutter…
Generating and Describing Affective Eye Behaviors
NASA Astrophysics Data System (ADS)
Mao, Xia; Li, Zheng
The manner of a person's eye movement conveys much about nonverbal information and emotional intent beyond speech. This paper describes work on expressing emotion through eye behaviors in virtual agents based on the parameters selected from the AU-Coded facial expression database and real-time eye movement data (pupil size, blink rate and saccade). A rule-based approach to generate primary (joyful, sad, angry, afraid, disgusted and surprise) and intermediate emotions (emotions that can be represented as the mixture of two primary emotions) utilized the MPEG4 FAPs (facial animation parameters) is introduced. Meanwhile, based on our research, a scripting tool, named EEMML (Emotional Eye Movement Markup Language) that enables authors to describe and generate emotional eye movement of virtual agents, is proposed.
Assessing Speech Discrimination in Individual Infants
ERIC Educational Resources Information Center
Houston, Derek M.; Horn, David L.; Qi, Rong; Ting, Jonathan Y.; Gao, Sujuan
2007-01-01
Assessing speech discrimination skills in individual infants from clinical populations (e.g., infants with hearing impairment) has important diagnostic value. However, most infant speech discrimination paradigms have been designed to test group effects rather than individual differences. Other procedures suffer from high attrition rates. In this…
Functional Characterization of the Human Speech Articulation Network.
Basilakos, Alexandra; Smith, Kimberly G; Fillmore, Paul; Fridriksson, Julius; Fedorenko, Evelina
2018-05-01
A number of brain regions have been implicated in articulation, but their precise computations remain debated. Using functional magnetic resonance imaging, we examine the degree of functional specificity of articulation-responsive brain regions to constrain hypotheses about their contributions to speech production. We find that articulation-responsive regions (1) are sensitive to articulatory complexity, but (2) are largely nonoverlapping with nearby domain-general regions that support diverse goal-directed behaviors. Furthermore, premotor articulation regions show selectivity for speech production over some related tasks (respiration control), but not others (nonspeech oral-motor [NSO] movements). This overlap between speech and nonspeech movements concords with electrocorticographic evidence that these regions encode articulators and their states, and with patient evidence whereby articulatory deficits are often accompanied by oral-motor deficits. In contrast, the superior temporal regions show strong selectivity for articulation relative to nonspeech movements, suggesting that these regions play a specific role in speech planning/production. Finally, articulation-responsive portions of posterior inferior frontal gyrus show some selectivity for articulation, in line with the hypothesis that this region prepares an articulatory code that is passed to the premotor cortex. Taken together, these results inform the architecture of the human articulation system.
Yorkston, Kathryn; Baylor, Carolyn; Britton, Deanna
2017-06-22
In this project, we explore the experiences of people who report speech changes associated with Parkinson's disease as they describe taking part in everyday communication situations and report impressions related to speech treatment. Twenty-four community-dwelling adults with Parkinson's disease took part in face-to-face, semistructured interviews. Qualitative research methods were used to code and develop themes related to the interviews. Two major themes emerged. The first, called "speaking," included several subthemes: thinking about speaking, weighing value versus effort, feelings associated with speaking, the environmental context of speaking, and the impact of Parkinson's disease on speaking. The second theme involved "treatment experiences" and included subthemes: choosing not to have treatment, the clinician, drills and exercise, and suggestions for change. From the perspective of participants with Parkinson's disease, speaking is an activity requiring both physical and cognitive effort that takes place in a social context. Although many report positive experiences with speech treatment, some reported dissatisfaction with speech drills and exercises and a lack of focus on the social aspects of communication. Suggestions for improvement include increased focus on the cognitive demands of speaking and on the psychosocial aspects of communication.
Baylor, Carolyn; Britton, Deanna
2017-01-01
Purpose In this project, we explore the experiences of people who report speech changes associated with Parkinson's disease as they describe taking part in everyday communication situations and report impressions related to speech treatment. Method Twenty-four community-dwelling adults with Parkinson's disease took part in face-to-face, semistructured interviews. Qualitative research methods were used to code and develop themes related to the interviews. Results Two major themes emerged. The first, called “speaking,” included several subthemes: thinking about speaking, weighing value versus effort, feelings associated with speaking, the environmental context of speaking, and the impact of Parkinson's disease on speaking. The second theme involved “treatment experiences” and included subthemes: choosing not to have treatment, the clinician, drills and exercise, and suggestions for change. Conclusions From the perspective of participants with Parkinson's disease, speaking is an activity requiring both physical and cognitive effort that takes place in a social context. Although many report positive experiences with speech treatment, some reported dissatisfaction with speech drills and exercises and a lack of focus on the social aspects of communication. Suggestions for improvement include increased focus on the cognitive demands of speaking and on the psychosocial aspects of communication. PMID:28654939
Effects of the rate of formant-frequency variation on the grouping of formants in speech perception.
Summers, Robert J; Bailey, Peter J; Roberts, Brian
2012-04-01
How speech is separated perceptually from other speech remains poorly understood. Recent research suggests that the ability of an extraneous formant to impair intelligibility depends on the modulation of its frequency, but not its amplitude, contour. This study further examined the effect of formant-frequency variation on intelligibility by manipulating the rate of formant-frequency change. Target sentences were synthetic three-formant (F1 + F2 + F3) analogues of natural utterances. Perceptual organization was probed by presenting stimuli dichotically (F1 + F2C + F3C; F2 + F3), where F2C + F3C constitute a competitor for F2 and F3 that listeners must reject to optimize recognition. Competitors were derived using formant-frequency contours extracted from extended passages spoken by the same talker and processed to alter the rate of formant-frequency variation, such that rate scale factors relative to the target sentences were 0, 0.25, 0.5, 1, 2, and 4 (0 = constant frequencies). Competitor amplitude contours were either constant, or time-reversed and rate-adjusted in parallel with the frequency contour. Adding a competitor typically reduced intelligibility; this reduction increased with competitor rate until the rate was at least twice that of the target sentences. Similarity in the results for the two amplitude conditions confirmed that formant amplitude contours do not influence across-formant grouping. The findings indicate that competitor efficacy is not tuned to the rate of the target sentences; most probably, it depends primarily on the overall rate of frequency variation in the competitor formants. This suggests that, when segregating the speech of concurrent talkers, differences in speech rate may not be a significant cue for across-frequency grouping of formants.
Support for context effects on segmentation and segments depends on the context.
Heffner, Christopher C; Newman, Rochelle S; Idsardi, William J
2017-04-01
Listeners must adapt to differences in speech rate across talkers and situations. Speech rate adaptation effects are strong for adjacent syllables (i.e., proximal syllables). For studies that have assessed adaptation effects on speech rate information more than one syllable removed from a point of ambiguity in speech (i.e., distal syllables), the difference in strength between different types of ambiguity is stark. Studies of word segmentation have shown large shifts in perception as a result of distal rate manipulations, while studies of segmental perception have shown only weak, or even nonexistent, effects. However, no study has standardized methods and materials to study context effects for both types of ambiguity simultaneously. Here, a set of sentences was created that differed as minimally as possible except for whether the sentences were ambiguous to the voicing of a consonant or ambiguous to the location of a word boundary. The sentences were then rate-modified to slow down the distal context speech rate to various extents, dependent on three different definitions of distal context that were adapted from previous experiments, along with a manipulation of proximal context to assess whether proximal effects were comparable across ambiguity types. The results indicate that the definition of distal influenced the extent of distal rate effects strongly for both segments and segmentation. They also establish the presence of distal rate effects on word-final segments for the first time. These results were replicated, with some caveats regarding the perception of individual segments, in an Internet-based sample recruited from Mechanical Turk.
NASA Technical Reports Server (NTRS)
Lokerson, D. C. (Inventor)
1977-01-01
A speech signal is analyzed by applying the signal to formant filters which derive first, second and third signals respectively representing the frequency of the speech waveform in the first, second and third formants. A first pulse train having approximately a pulse rate representing the average frequency of the first formant is derived; second and third pulse trains having pulse rates respectively representing zero crossings of the second and third formants are derived. The first formant pulse train is derived by establishing N signal level bands, where N is an integer at least equal to two. Adjacent ones of the signal bands have common boundaries, each of which is a predetermined percentage of the peak level of a complete cycle of the speech waveform.
Lopez-Poveda, Enrique A; Eustaquio-Martín, Almudena; Stohl, Joshua S; Wolford, Robert D; Schatzer, Reinhold; Gorospe, José M; Ruiz, Santiago Santa Cruz; Benito, Fernando; Wilson, Blake S
2017-05-01
We have recently proposed a binaural cochlear implant (CI) sound processing strategy inspired by the contralateral medial olivocochlear reflex (the MOC strategy) and shown that it improves intelligibility in steady-state noise (Lopez-Poveda et al., 2016, Ear Hear 37:e138-e148). The aim here was to evaluate possible speech-reception benefits of the MOC strategy for speech maskers, a more natural type of interferer. Speech reception thresholds (SRTs) were measured in six bilateral and two single-sided deaf CI users with the MOC strategy and with a standard (STD) strategy. SRTs were measured in unilateral and bilateral listening conditions, and for target and masker stimuli located at azimuthal angles of (0°, 0°), (-15°, +15°), and (-90°, +90°). Mean SRTs were 2-5 dB better with the MOC than with the STD strategy for spatially separated target and masker sources. For bilateral CI users, the MOC strategy (1) facilitated the intelligibility of speech in competition with spatially separated speech maskers in both unilateral and bilateral listening conditions; and (2) led to an overall improvement in spatial release from masking in the two listening conditions. Insofar as speech is a more natural type of interferer than steady-state noise, the present results suggest that the MOC strategy holds potential for promising outcomes for CI users. Copyright © 2017. Published by Elsevier B.V.
Investigations in mechanisms and strategies to enhance hearing with cochlear implants
NASA Astrophysics Data System (ADS)
Churchill, Tyler H.
Cochlear implants (CIs) produce hearing sensations by stimulating the auditory nerve (AN) with current pulses whose amplitudes are modulated by filtered acoustic temporal envelopes. While this technology has provided hearing for multitudinous CI recipients, even bilaterally-implanted listeners have more difficulty understanding speech in noise and localizing sounds than normal hearing (NH) listeners. Three studies reported here have explored ways to improve electric hearing abilities. Vocoders are often used to simulate CIs for NH listeners. Study 1 was a psychoacoustic vocoder study examining the effects of harmonic carrier phase dispersion and simulated CI current spread on speech intelligibility in noise. Results showed that simulated current spread was detrimental to speech understanding and that speech vocoded with carriers whose components' starting phases were equal was the least intelligible. Cross-correlogram analyses of AN model simulations confirmed that carrier component phase dispersion resulted in better neural envelope representation. Localization abilities rely on binaural processing mechanisms in the brainstem and mid-brain that are not fully understood. In Study 2, several potential mechanisms were evaluated based on the ability of metrics extracted from stereo AN simulations to predict azimuthal locations. Results suggest that unique across-frequency patterns of binaural cross-correlation may provide a strong cue set for lateralization and that interaural level differences alone cannot explain NH sensitivity to lateral position. While it is known that many bilateral CI users are sensitive to interaural time differences (ITDs) in low-rate pulsatile stimulation, most contemporary CI processing strategies use high-rate, constant-rate pulse trains. In Study 3, we examined the effects of pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition by bilateral CI listeners. Results showed that listeners were able to use low-rate pulse timing cues presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli even when mixed with high rates on other electrodes. These results have contributed to a better understanding of those aspects of the auditory system that support speech understanding and binaural hearing, suggested vocoder parameters that may simulate aspects of electric hearing, and shown that redundant, low-rate pulse timing supports improved spatial hearing for bilateral CI listeners.
Speech deterioration in amyotrophic lateral sclerosis (ALS) after manifestation of bulbar symptoms.
Makkonen, Tanja; Ruottinen, Hanna; Puhto, Riitta; Helminen, Mika; Palmio, Johanna
2018-03-01
The symptoms and their progression in amyotrophic lateral sclerosis (ALS) are typically studied after the diagnosis has been confirmed. However, many people with ALS already have severe dysarthria and loss of adequate speech at the time of diagnosis. Speech-and-language therapy interventions should be targeted timely based on communicative need in ALS. To investigate how long natural speech will remain functional and to identify the changes in the speech of persons with ALS. Altogether 30 consecutive participants were studied and divided into two groups based on the initial type of ALS, bulbar or spinal. Their speech disorder was evaluated on severity, articulation rate and intelligibility during the 2-year follow-up. The ability to speak deteriorated to poor and necessitated augmentative and alternative communication (AAC) methods with 60% of the participants. Their speech remained adequate on average for 18 months from the first bulbar symptom. Severity, articulation rate and intelligibility declined with nearly all participants during the study. To begin with speech deteriorated more in the bulbar group than in the spinal group and the difference remained during the whole follow-up with some exceptions. The onset of bulbar symptoms indicated the time to loss of speech better than when assessed from ALS diagnosis or the first speech therapy evaluation. In clinical work, it is important to take the initial type of ALS into consideration when determining the urgency of AAC measures as people with bulbar-onset ALS are more susceptible to delayed evaluation and AAC intervention. © 2017 Royal College of Speech and Language Therapists.
Na, Wondo; Kim, Gibbeum; Kim, Gungu; Han, Woojae; Kim, Jinsook
2017-01-01
The current study aimed to evaluate hearing-related changes in terms of speech-in-noise processing, fast-rate speech processing, and working memory; and to identify which of these three factors is significantly affected by age-related hearing loss. One hundred subjects aged 65-84 years participated in the study. They were classified into four groups ranging from normal hearing to moderate-to-severe hearing loss. All the participants were tested for speech perception in quiet and noisy conditions and for speech perception with time alteration in quiet conditions. Forward- and backward-digit span tests were also conducted to measure the participants' working memory. 1) As the level of background noise increased, speech perception scores systematically decreased in all the groups. This pattern was more noticeable in the three hearing-impaired groups than in the normal hearing group. 2) As the speech rate increased faster, speech perception scores decreased. A significant interaction was found between speed of speech and hearing loss. In particular, 30% of compressed sentences revealed a clear differentiation between moderate hearing loss and moderate-to-severe hearing loss. 3) Although all the groups showed a longer span on the forward-digit span test than the backward-digit span test, there was no significant difference as a function of hearing loss. The degree of hearing loss strongly affects the speech recognition of babble-masked and time-compressed speech in the elderly but does not affect the working memory. We expect these results to be applied to appropriate rehabilitation strategies for hearing-impaired elderly who experience difficulty in communication.
Cognitive-Perceptual Examination of Remediation Approaches to Hypokinetic Dysarthria
ERIC Educational Resources Information Center
McAuliffe, Megan J.; Kerr, Sarah E.; Gibson, Elizabeth M. R.; Anderson, Tim; LaShell, Patrick J.
2014-01-01
Purpose: To determine how increased vocal loudness and reduced speech rate affect listeners' cognitive-perceptual processing of hypokinetic dysarthric speech associated with Parkinson's disease. Method: Fifty-one healthy listener participants completed a speech perception experiment. Listeners repeated phrases produced by 5 individuals…
Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children
Power, Alan James; Mead, Natasha; Barnes, Lisa; Goswami, Usha
2012-01-01
Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal “samples” of information from the speech stream at different rates, phase resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (“phase locking”). Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate) based on repetition of the syllable “ba,” presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a “talking head”). To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the “ba” stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a “ba” in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling, such as dyslexia. PMID:22833726
Adaptation of hidden Markov models for recognizing speech of reduced frame rate.
Lee, Lee-Min; Jean, Fu-Rong
2013-12-01
The frame rate of the observation sequence in distributed speech recognition applications may be reduced to suit a resource-limited front-end device. In order to use models trained using full-frame-rate data in the recognition of reduced frame-rate (RFR) data, we propose a method for adapting the transition probabilities of hidden Markov models (HMMs) to match the frame rate of the observation. Experiments on the recognition of clean and noisy connected digits are conducted to evaluate the proposed method. Experimental results show that the proposed method can effectively compensate for the frame-rate mismatch between the training and the test data. Using our adapted model to recognize the RFR speech data, one can significantly reduce the computation time and achieve the same level of accuracy as that of a method, which restores the frame rate using data interpolation.
Modifying Speech to Children based on their Perceived Phonetic Accuracy
Julien, Hannah M.; Munson, Benjamin
2014-01-01
Purpose We examined the relationship between adults' perception of the accuracy of children's speech, and acoustic detail in their subsequent productions to children. Methods Twenty-two adults participated in a task in which they rated the accuracy of 2- and 3-year-old children's word-initial /s/and /∫/ using a visual analog scale (VAS), then produced a token of the same word as if they were responding to the child whose speech they had just rated. Result The duration of adults' fricatives varied as a function of their perception of the accuracy of children's speech: longer fricatives were produced following productions that they rated as inaccurate. This tendency to modify duration in response to perceived inaccurate tokens was mediated by measures of self-reported experience interacting with children. However, speakers did not increase the spectral distinctiveness of their fricatives following the perception of inaccurate tokens. Conclusion These results suggest that adults modify temporal features of their speech in response to perceiving children's inaccurate productions. These longer fricatives are potentially both enhanced input to children, and an error-corrective signal. PMID:22744140
Speech motor correlates of treatment-related changes in stuttering severity and speech naturalness.
Tasko, Stephen M; McClean, Michael D; Runyan, Charles M
2007-01-01
Participants of stuttering treatment programs provide an opportunity to evaluate persons who stutter as they demonstrate varying levels of fluency. Identifying physiologic correlates of altered fluency levels may lead to insights about mechanisms of speech disfluency. This study examined respiratory, orofacial kinematic and acoustic measures in 35 persons who stutter prior to and as they were completing a 1-month intensive stuttering treatment program. Participants showed a marked reduction in stuttering severity as they completed the treatment program. Coincident with reduced stuttering severity, participants increased the amplitude and duration of speech breaths, reduced the rate of lung volume change during inspiration, reduced the amplitude and speed of lip movements early in the test utterance, increased lip and jaw movement durations, and reduced syllable rate. A multiple regression model that included two respiratory measures and one orofacial kinematic measure accounted for 62% of the variance in changes in stuttering severity. Finally, there was a weak but significant tendency for speech of participants with the largest reductions in stuttering severity to be rated as more unnatural as they completed the treatment program.
ERIC Educational Resources Information Center
Haskins Labs., New Haven, CT.
Research reports on the nature of speech, instrumentation for the investigation of speech, and practical application of research are included in this status report for January 1-March 31, 1981. The reports deal with the following topics: (1) distinguishing temporal information for speaking rate from temporal information for intervocalic stop…
Brain-to-text: decoding spoken phrases from phone representations in the brain.
Herff, Christian; Heger, Dominic; de Pesters, Adriana; Telaar, Dominic; Brunner, Peter; Schalk, Gerwin; Schultz, Tanja
2015-01-01
It has long been speculated whether communication between humans and machines based on natural speech related cortical activity is possible. Over the past decade, studies have suggested that it is feasible to recognize isolated aspects of speech from neural signals, such as auditory features, phones or one of a few isolated words. However, until now it remained an unsolved challenge to decode continuously spoken speech from the neural substrate associated with speech and language processing. Here, we show for the first time that continuously spoken speech can be decoded into the expressed words from intracranial electrocorticographic (ECoG) recordings.Specifically, we implemented a system, which we call Brain-To-Text that models single phones, employs techniques from automatic speech recognition (ASR), and thereby transforms brain activity while speaking into the corresponding textual representation. Our results demonstrate that our system can achieve word error rates as low as 25% and phone error rates below 50%. Additionally, our approach contributes to the current understanding of the neural basis of continuous speech production by identifying those cortical regions that hold substantial information about individual phones. In conclusion, the Brain-To-Text system described in this paper represents an important step toward human-machine communication based on imagined speech.
Brain-to-text: decoding spoken phrases from phone representations in the brain
Herff, Christian; Heger, Dominic; de Pesters, Adriana; Telaar, Dominic; Brunner, Peter; Schalk, Gerwin; Schultz, Tanja
2015-01-01
It has long been speculated whether communication between humans and machines based on natural speech related cortical activity is possible. Over the past decade, studies have suggested that it is feasible to recognize isolated aspects of speech from neural signals, such as auditory features, phones or one of a few isolated words. However, until now it remained an unsolved challenge to decode continuously spoken speech from the neural substrate associated with speech and language processing. Here, we show for the first time that continuously spoken speech can be decoded into the expressed words from intracranial electrocorticographic (ECoG) recordings.Specifically, we implemented a system, which we call Brain-To-Text that models single phones, employs techniques from automatic speech recognition (ASR), and thereby transforms brain activity while speaking into the corresponding textual representation. Our results demonstrate that our system can achieve word error rates as low as 25% and phone error rates below 50%. Additionally, our approach contributes to the current understanding of the neural basis of continuous speech production by identifying those cortical regions that hold substantial information about individual phones. In conclusion, the Brain-To-Text system described in this paper represents an important step toward human-machine communication based on imagined speech. PMID:26124702
Effect of speech-intrinsic variations on human and automatic recognition of spoken phonemes.
Meyer, Bernd T; Brand, Thomas; Kollmeier, Birger
2011-01-01
The aim of this study is to quantify the gap between the recognition performance of human listeners and an automatic speech recognition (ASR) system with special focus on intrinsic variations of speech, such as speaking rate and effort, altered pitch, and the presence of dialect and accent. Second, it is investigated if the most common ASR features contain all information required to recognize speech in noisy environments by using resynthesized ASR features in listening experiments. For the phoneme recognition task, the ASR system achieved the human performance level only when the signal-to-noise ratio (SNR) was increased by 15 dB, which is an estimate for the human-machine gap in terms of the SNR. The major part of this gap is attributed to the feature extraction stage, since human listeners achieve comparable recognition scores when the SNR difference between unaltered and resynthesized utterances is 10 dB. Intrinsic variabilities result in strong increases of error rates, both in human speech recognition (HSR) and ASR (with a relative increase of up to 120%). An analysis of phoneme duration and recognition rates indicates that human listeners are better able to identify temporal cues than the machine at low SNRs, which suggests incorporating information about the temporal dynamics of speech into ASR systems.
Studies in automatic speech recognition and its application in aerospace
NASA Astrophysics Data System (ADS)
Taylor, Michael Robinson
Human communication is characterized in terms of the spectral and temporal dimensions of speech waveforms. Electronic speech recognition strategies based on Dynamic Time Warping and Markov Model algorithms are described and typical digit recognition error rates are tabulated. The application of Direct Voice Input (DVI) as an interface between man and machine is explored within the context of civil and military aerospace programmes. Sources of physical and emotional stress affecting speech production within military high performance aircraft are identified. Experimental results are reported which quantify fundamental frequency and coarse temporal dimensions of male speech as a function of the vibration, linear acceleration and noise levels typical of aerospace environments; preliminary indications of acoustic phonetic variability reported by other researchers are summarized. Connected whole-word pattern recognition error rates are presented for digits spoken under controlled Gz sinusoidal whole-body vibration. Correlations are made between significant increases in recognition error rate and resonance of the abdomen-thorax and head subsystems of the body. The phenomenon of vibrato style speech produced under low frequency whole-body Gz vibration is also examined. Interactive DVI system architectures and avionic data bus integration concepts are outlined together with design procedures for the efficient development of pilot-vehicle command and control protocols.
Kates, James M; Arehart, Kathryn H
2015-10-01
This paper uses mutual information to quantify the relationship between envelope modulation fidelity and perceptual responses. Data from several previous experiments that measured speech intelligibility, speech quality, and music quality are evaluated for normal-hearing and hearing-impaired listeners. A model of the auditory periphery is used to generate envelope signals, and envelope modulation fidelity is calculated using the normalized cross-covariance of the degraded signal envelope with that of a reference signal. Two procedures are used to describe the envelope modulation: (1) modulation within each auditory frequency band and (2) spectro-temporal processing that analyzes the modulation of spectral ripple components fit to successive short-time spectra. The results indicate that low modulation rates provide the highest information for intelligibility, while high modulation rates provide the highest information for speech and music quality. The low-to-mid auditory frequencies are most important for intelligibility, while mid frequencies are most important for speech quality and high frequencies are most important for music quality. Differences between the spectral ripple components used for the spectro-temporal analysis were not significant in five of the six experimental conditions evaluated. The results indicate that different modulation-rate and auditory-frequency weights may be appropriate for indices designed to predict different types of perceptual relationships.
Park, H K; Bradley, J S
2009-09-01
Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds.
Kates, James M.; Arehart, Kathryn H.
2015-01-01
This paper uses mutual information to quantify the relationship between envelope modulation fidelity and perceptual responses. Data from several previous experiments that measured speech intelligibility, speech quality, and music quality are evaluated for normal-hearing and hearing-impaired listeners. A model of the auditory periphery is used to generate envelope signals, and envelope modulation fidelity is calculated using the normalized cross-covariance of the degraded signal envelope with that of a reference signal. Two procedures are used to describe the envelope modulation: (1) modulation within each auditory frequency band and (2) spectro-temporal processing that analyzes the modulation of spectral ripple components fit to successive short-time spectra. The results indicate that low modulation rates provide the highest information for intelligibility, while high modulation rates provide the highest information for speech and music quality. The low-to-mid auditory frequencies are most important for intelligibility, while mid frequencies are most important for speech quality and high frequencies are most important for music quality. Differences between the spectral ripple components used for the spectro-temporal analysis were not significant in five of the six experimental conditions evaluated. The results indicate that different modulation-rate and auditory-frequency weights may be appropriate for indices designed to predict different types of perceptual relationships. PMID:26520329
Longitudinal changes in speech recognition in older persons.
Dubno, Judy R; Lee, Fu-Shing; Matthews, Lois J; Ahlstrom, Jayne B; Horwitz, Amy R; Mills, John H
2008-01-01
Recognition of isolated monosyllabic words in quiet and recognition of key words in low- and high-context sentences in babble were measured in a large sample of older persons enrolled in a longitudinal study of age-related hearing loss. Repeated measures were obtained yearly or every 2 to 3 years. To control for concurrent changes in pure-tone thresholds and speech levels, speech-recognition scores were adjusted using an importance-weighted speech-audibility metric (AI). Linear-regression slope estimated the rate of change in adjusted speech-recognition scores. Recognition of words in quiet declined significantly faster with age than predicted by declines in speech audibility. As subjects aged, observed scores deviated increasingly from AI-predicted scores, but this effect did not accelerate with age. Rate of decline in word recognition was significantly faster for females than males and for females with high serum progesterone levels, whereas noise history had no effect. Rate of decline did not accelerate with age but increased with degree of hearing loss, suggesting that with more severe injury to the auditory system, impairments to auditory function other than reduced audibility resulted in faster declines in word recognition as subjects aged. Recognition of key words in low- and high-context sentences in babble did not decline significantly with age.
Effect of Listeners' Linguistic Background on Perceptual Judgements of Hypernasality
ERIC Educational Resources Information Center
Lee, Alice; Brown, Susanna; Gibbon, Fiona E.
2008-01-01
Background: Many speech and language therapists work in a multilingual environment, making cross-linguistic studies of speech disorders clinically and theoretically important. Aims: To investigate the effect of listeners' linguistic background on their perceptual ratings of hypernasality and the reliability of the ratings. Methods &…
Speech-language pathology students' self-reports on voice training: easier to understand or to do?
Lindhe, Christina; Hartelius, Lena
2009-01-01
The aim of the study was to describe the subjective ratings of the course 'Training of the student's own voice and speech', from a student-centred perspective. A questionnaire was completed after each of the six individual sessions. Six speech and language pathology (SLP) students rated how they perceived the practical exercises in terms of doing and understanding. The results showed that five of the six participants rated the exercises as significantly easier to understand than to do. The exercises were also rated as easier to do over time. Results are interpreted within in a theoretical framework of approaches to learning. The findings support the importance of both the physical and reflective aspects of the voice training process.
ERIC Educational Resources Information Center
Trofimovich, Pavel; Kennedy, Sara; Blanchet, Josée
2017-01-01
This study examined the relationship between targeted pronunciation instruction in French as a second language (L2) and listener-based ratings of accent, comprehensibility, and fluency. The ratings by 20 French listeners evaluating the speech of 30 adult L2 French learners enrolled in a 15-week listening and speaking course targeting segments,…
Davidson, Lisa S; Skinner, Margaret W; Holstad, Beth A; Fears, Beverly T; Richter, Marie K; Matusofsky, Margaret; Brenner, Christine; Holden, Timothy; Birath, Amy; Kettel, Jerrica L; Scollie, Susan
2009-06-01
The purpose of this study was to examine the effects of a wider instantaneous input dynamic range (IIDR) setting on speech perception and comfort in quiet and noise for children wearing the Nucleus 24 implant system and the Freedom speech processor. In addition, children's ability to understand soft and conversational level speech in relation to aided sound-field thresholds was examined. Thirty children (age, 7 to 17 years) with the Nucleus 24 cochlear implant system and the Freedom speech processor with two different IIDR settings (30 versus 40 dB) were tested on the Consonant Nucleus Consonant (CNC) word test at 50 and 60 dB SPL, the Bamford-Kowal-Bench Speech in Noise Test, and a loudness rating task for four-talker speech noise. Aided thresholds for frequency-modulated tones, narrowband noise, and recorded Ling sounds were obtained with the two IIDRs and examined in relation to CNC scores at 50 dB SPL. Speech Intelligibility Indices were calculated using the long-term average speech spectrum of the CNC words at 50 dB SPL measured at each test site and aided thresholds. Group mean CNC scores at 50 dB SPL with the 40 IIDR were significantly higher (p < 0.001) than with the 30 IIDR. Group mean CNC scores at 60 dB SPL, loudness ratings, and the signal to noise ratios-50 for Bamford-Kowal-Bench Speech in Noise Test were not significantly different for the two IIDRs. Significantly improved aided thresholds at 250 to 6000 Hz as well as higher Speech Intelligibility Indices afforded improved audibility for speech presented at soft levels (50 dB SPL). These results indicate that an increased IIDR provides improved word recognition for soft levels of speech without compromising comfort of higher levels of speech sounds or sentence recognition in noise.
Predicting Intelligibility Gains in Dysarthria through Automated Speech Feature Analysis
ERIC Educational Resources Information Center
Fletcher, Annalise R.; Wisler, Alan A.; McAuliffe, Megan J.; Lansford, Kaitlin L.; Liss, Julie M.
2017-01-01
Purpose: Behavioral speech modifications have variable effects on the intelligibility of speakers with dysarthria. In the companion article, a significant relationship was found between measures of speakers' baseline speech and their intelligibility gains following cues to speak louder and reduce rate (Fletcher, McAuliffe, Lansford, Sinex, &…
Building Searchable Collections of Enterprise Speech Data.
ERIC Educational Resources Information Center
Cooper, James W.; Viswanathan, Mahesh; Byron, Donna; Chan, Margaret
The study has applied speech recognition and text-mining technologies to a set of recorded outbound marketing calls and analyzed the results. Since speaker-independent speech recognition technology results in a significantly lower recognition rate than that found when the recognizer is trained for a particular speaker, a number of post-processing…
Measuring Speech Comprehensibility in Students with Down Syndrome
ERIC Educational Resources Information Center
Yoder, Paul J.; Woynaroski, Tiffany; Camarata, Stephen
2016-01-01
Purpose: There is an ongoing need to develop assessments of spontaneous speech that focus on whether the child's utterances are comprehensible to listeners. This study sought to identify the attributes of a stable ratings-based measure of speech comprehensibility, which enabled examining the criterion-related validity of an orthography-based…
Immediate Effect of Alcohol on Voice Tremor Parameters and Speech Motor Control
ERIC Educational Resources Information Center
Krishnan, Gayathri; Ghosh, Vipin
2017-01-01
The complex neuro-muscular interplay of speech subsystems is susceptible to alcohol intoxication. Published reports have studied language formulation and fundamental frequency measures pre- and post-intoxication. This study aimed at tapping the speech motor control measure using rate, consistency, and accuracy measures of diadochokinesis and…
Yoder, Paul J.; Molfese, Dennis; Murray, Micah M.; Key, Alexandra P. F.
2013-01-01
Typically developing (TD) preschoolers and age-matched preschoolers with specific language impairment (SLI) received event-related potentials (ERPs) to four monosyllabic speech sounds prior to treatment and, in the SLI group, after 6 months of grammatical treatment. Before treatment, the TD group processed speech sounds faster than the SLI group. The SLI group increased the speed of their speech processing after treatment. Post-treatment speed of speech processing predicted later impairment in comprehending phrase elaboration in the SLI group. During the treatment phase, change in speed of speech processing predicted growth rate of grammar in the SLI group. PMID:24219693
van den Tillaart-Haverkate, Maj; de Ronde-Brons, Inge; Dreschler, Wouter A; Houben, Rolph
2017-01-01
Single-microphone noise reduction leads to subjective benefit, but not to objective improvements in speech intelligibility. We investigated whether response times (RTs) provide an objective measure of the benefit of noise reduction and whether the effect of noise reduction is reflected in rated listening effort. Twelve normal-hearing participants listened to digit triplets that were either unprocessed or processed with one of two noise-reduction algorithms: an ideal binary mask (IBM) and a more realistic minimum mean square error estimator (MMSE). For each of these three processing conditions, we measured (a) speech intelligibility, (b) RTs on two different tasks (identification of the last digit and arithmetic summation of the first and last digit), and (c) subjective listening effort ratings. All measurements were performed at four signal-to-noise ratios (SNRs): -5, 0, +5, and +∞ dB. Speech intelligibility was high (>97% correct) for all conditions. A significant decrease in response time, relative to the unprocessed condition, was found for both IBM and MMSE for the arithmetic but not the identification task. Listening effort ratings were significantly lower for IBM than for MMSE and unprocessed speech in noise. We conclude that RT for an arithmetic task can provide an objective measure of the benefit of noise reduction. For young normal-hearing listeners, both ideal and realistic noise reduction can reduce RTs at SNRs where speech intelligibility is close to 100%. Ideal noise reduction can also reduce perceived listening effort.
Identification of speech transients using variable frame rate analysis and wavelet packets.
Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung
2006-01-01
Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.
Clear Speech Variants: An Acoustic Study in Parkinson's Disease.
Lam, Jennifer; Tjaden, Kris
2016-08-01
The authors investigated how different variants of clear speech affect segmental and suprasegmental acoustic measures of speech in speakers with Parkinson's disease and a healthy control group. A total of 14 participants with Parkinson's disease and 14 control participants served as speakers. Each speaker produced 18 different sentences selected from the Sentence Intelligibility Test (Yorkston & Beukelman, 1996). All speakers produced stimuli in 4 speaking conditions (habitual, clear, overenunciate, and hearing impaired). Segmental acoustic measures included vowel space area and first moment (M1) coefficient difference measures for consonant pairs. Second formant slope of diphthongs and measures of vowel and fricative durations were also obtained. Suprasegmental measures included fundamental frequency, sound pressure level, and articulation rate. For the majority of adjustments, all variants of clear speech instruction differed from the habitual condition. The overenunciate condition elicited the greatest magnitude of change for segmental measures (vowel space area, vowel durations) and the slowest articulation rates. The hearing impaired condition elicited the greatest fricative durations and suprasegmental adjustments (fundamental frequency, sound pressure level). Findings have implications for a model of speech production for healthy speakers as well as for speakers with dysarthria. Findings also suggest that particular clear speech instructions may target distinct speech subsystems.
[Verbal and gestural communication in interpersonal interaction with Alzheimer's disease patients].
Schiaratura, Loris Tamara; Di Pastena, Angela; Askevis-Leherpeux, Françoise; Clément, Sylvain
2015-03-01
Communication can be defined as a verbal and non verbal exchange of thoughts and emotions. While verbal communication deficit in Alzheimer's disease is well documented, very little is known about gestural communication, especially in interpersonal situations. This study examines the production of gestures and its relations with verbal aspects of communication. Three patients suffering from moderately severe Alzheimer's disease were compared to three healthy adults. Each one were given a series of pictures and asked to explain which one she preferred and why. The interpersonal interaction was video recorded. Analyses concerned verbal production (quantity and quality) and gestures. Gestures were either non representational (i.e., gestures of small amplitude punctuating speech or accentuating some parts of utterance) or representational (i.e., referring to the object of the speech). Representational gestures were coded as iconic (depicting of concrete aspects), metaphoric (depicting of abstract meaning) or deictic (pointing toward an object). In comparison with healthy participants, patients revealed a decrease in quantity and quality of speech. Nevertheless, their production of gestures was always present. This pattern is in line with the conception that gestures and speech depend on different communicational systems and look inconsistent with the assumption of a parallel dissolution of gesture and speech. Moreover, analyzing the articulation between verbal and gestural dimensions suggests that representational gestures may compensate for speech deficits. It underlines the importance for the role of gestures in maintaining interpersonal communication.
Bilingual Listeners' Perception of Temporally Manipulated English Passages
ERIC Educational Resources Information Center
Shi, Lu-Feng; Farooq, Nadia
2012-01-01
Purpose: The current study measured, objectively and subjectively, how changes in speech rate affect recognition of English passages in bilingual listeners. Method: Ten native monolingual, 20 English-dominant bilingual, and 20 non-English-dominant bilingual listeners repeated target words in English passages at five speech rates (unprocessed, two…
Listeners' Perceptions of Speech and Language Disorders
ERIC Educational Resources Information Center
Allard, Emily R.; Williams, Dale F.
2008-01-01
Using semantic differential scales with nine trait pairs, 445 adults rated five audio-taped speech samples, one depicting an individual without a disorder and four portraying communication disorders. Statistical analyses indicated that the no disorder sample was rated higher with respect to the trait of employability than were the articulation,…
NASA Astrophysics Data System (ADS)
Feenaughty, Lynda
Purpose: The current study sought to investigate the separate effects of dysarthria and cognitive status on global speech timing, speech hesitation, and linguistic complexity characteristics and how these speech behaviors impose on listener impressions for three connected speech tasks presumed to differ in cognitive-linguistic demand for four carefully defined speaker groups; 1) MS with cognitive deficits (MSCI), 2) MS with clinically diagnosed dysarthria and intact cognition (MSDYS), 3) MS without dysarthria or cognitive deficits (MS), and 4) healthy talkers (CON). The relationship between neuropsychological test scores and speech-language production and perceptual variables for speakers with cognitive deficits was also explored. Methods: 48 speakers, including 36 individuals reporting a neurological diagnosis of MS and 12 healthy talkers participated. The three MS groups and control group each contained 12 speakers (8 women and 4 men). Cognitive function was quantified using standard clinical tests of memory, information processing speed, and executive function. A standard z-score of ≤ -1.50 indicated deficits in a given cognitive domain. Three certified speech-language pathologists determined the clinical diagnosis of dysarthria for speakers with MS. Experimental speech tasks of interest included audio-recordings of an oral reading of the Grandfather passage and two spontaneous speech samples in the form of Familiar and Unfamiliar descriptive discourse. Various measures of spoken language were of interest. Suprasegmental acoustic measures included speech and articulatory rate. Linguistic speech hesitation measures included pause frequency (i.e., silent and filled pauses), mean silent pause duration, grammatical appropriateness of pauses, and interjection frequency. For the two discourse samples, three standard measures of language complexity were obtained including subordination index, inter-sentence cohesion adequacy, and lexical diversity. Ten listeners judged each speech sample using the perceptual construct of Speech Severity using a visual analog scale. Additional measures obtained to describe participants included the Sentence Intelligibility Test (SIT), the 10-item Communication Participation Item Bank (CPIB), and standard biopsychosocial measures of depression (Beck Depression Inventory-Fast Screen; BDI-FS), fatigue (Fatigue Severity Scale; FSS), and overall disease severity (Expanded Disability Status Scale; EDSS). Healthy controls completed all measures, with the exception of the CPIB and EDSS. All data were analyzed using standard, descriptive and parametric statistics. For the MSCI group, the relationship between neuropsychological test scores and speech-language variables were explored for each speech task using Pearson correlations. The relationship between neuropsychological test scores and Speech Severity also was explored. Results and Discussion: Topic familiarity for descriptive discourse did not strongly influence speech production or perceptual variables; however, results indicated predicted task-related differences for some spoken language measures. With the exception of the MSCI group, all speaker groups produced the same or slower global speech timing (i.e., speech and articulatory rates), more silent and filled pauses, more grammatical and longer silent pause durations in spontaneous discourse compared to reading aloud. Results revealed no appreciable task differences for linguistic complexity measures. Results indicated group differences for speech rate. The MSCI group produced significantly faster speech rates compared to the MSDYS group. Both the MSDYS and the MSCI groups were judged to have significantly poorer perceived Speech Severity compared to typically aging adults. The Task x Group interaction was only significant for the number of silent pauses. The MSDYS group produced fewer silent pauses in spontaneous speech and more silent pauses in the reading task compared to other groups. Finally, correlation analysis revealed moderate relationships between neuropsychological test scores and speech hesitation measures, within the MSCI group. Slower information processing and poorer memory were significantly correlated with more silent pauses and poorer executive function was associated with fewer filled pauses in the Unfamiliar discourse task. Results have both clinical and theoretical implications. Overall, clinicians should demonstrate caution when interpreting global measures of speech timing and perceptual measures in the absence of information about cognitive ability. Results also have implications for a comprehensive model of spoken language incorporating cognitive, linguistic, and motor variables.
The Effects of Word Length on Memory for Pictures: Evidence for Speech Coding in Young Children.
ERIC Educational Resources Information Center
Hulme, Charles; And Others
1986-01-01
Three experiments demonstrate that children four to ten years old, when presented with a series recall task with pictures of common objects having short or long names, showed consistently better recall of pictures with short names. (HOD)
Different Timescales for the Neural Coding of Consonant and Vowel Sounds
Perez, Claudia A.; Engineer, Crystal T.; Jakkamsetti, Vikram; Carraway, Ryan S.; Perry, Matthew S.
2013-01-01
Psychophysical, clinical, and imaging evidence suggests that consonant and vowel sounds have distinct neural representations. This study tests the hypothesis that consonant and vowel sounds are represented on different timescales within the same population of neurons by comparing behavioral discrimination with neural discrimination based on activity recorded in rat inferior colliculus and primary auditory cortex. Performance on 9 vowel discrimination tasks was highly correlated with neural discrimination based on spike count and was not correlated when spike timing was preserved. In contrast, performance on 11 consonant discrimination tasks was highly correlated with neural discrimination when spike timing was preserved and not when spike timing was eliminated. These results suggest that in the early stages of auditory processing, spike count encodes vowel sounds and spike timing encodes consonant sounds. These distinct coding strategies likely contribute to the robust nature of speech sound representations and may help explain some aspects of developmental and acquired speech processing disorders. PMID:22426334
Decoding Articulatory Features from fMRI Responses in Dorsal Speech Regions.
Correia, Joao M; Jansma, Bernadette M B; Bonte, Milene
2015-11-11
The brain's circuitry for perceiving and producing speech may show a notable level of overlap that is crucial for normal development and behavior. The extent to which sensorimotor integration plays a role in speech perception remains highly controversial, however. Methodological constraints related to experimental designs and analysis methods have so far prevented the disentanglement of neural responses to acoustic versus articulatory speech features. Using a passive listening paradigm and multivariate decoding of single-trial fMRI responses to spoken syllables, we investigated brain-based generalization of articulatory features (place and manner of articulation, and voicing) beyond their acoustic (surface) form in adult human listeners. For example, we trained a classifier to discriminate place of articulation within stop syllables (e.g., /pa/ vs /ta/) and tested whether this training generalizes to fricatives (e.g., /fa/ vs /sa/). This novel approach revealed generalization of place and manner of articulation at multiple cortical levels within the dorsal auditory pathway, including auditory, sensorimotor, motor, and somatosensory regions, suggesting the representation of sensorimotor information. Additionally, generalization of voicing included the right anterior superior temporal sulcus associated with the perception of human voices as well as somatosensory regions bilaterally. Our findings highlight the close connection between brain systems for speech perception and production, and in particular, indicate the availability of articulatory codes during passive speech perception. Sensorimotor integration is central to verbal communication and provides a link between auditory signals of speech perception and motor programs of speech production. It remains highly controversial, however, to what extent the brain's speech perception system actively uses articulatory (motor), in addition to acoustic/phonetic, representations. In this study, we examine the role of articulatory representations during passive listening using carefully controlled stimuli (spoken syllables) in combination with multivariate fMRI decoding. Our approach enabled us to disentangle brain responses to acoustic and articulatory speech properties. In particular, it revealed articulatory-specific brain responses of speech at multiple cortical levels, including auditory, sensorimotor, and motor regions, suggesting the representation of sensorimotor information during passive speech perception. Copyright © 2015 the authors 0270-6474/15/3515015-11$15.00/0.
Comprehension of synthetic speech and digitized natural speech by adults with aphasia.
Hux, Karen; Knollman-Porter, Kelly; Brown, Jessica; Wallace, Sarah E
2017-09-01
Using text-to-speech technology to provide simultaneous written and auditory content presentation may help compensate for chronic reading challenges if people with aphasia can understand synthetic speech output; however, inherent auditory comprehension challenges experienced by people with aphasia may make understanding synthetic speech difficult. This study's purpose was to compare the preferences and auditory comprehension accuracy of people with aphasia when listening to sentences generated with digitized natural speech, Alex synthetic speech (i.e., Macintosh platform), or David synthetic speech (i.e., Windows platform). The methodology required each of 20 participants with aphasia to select one of four images corresponding in meaning to each of 60 sentences comprising three stimulus sets. Results revealed significantly better accuracy given digitized natural speech than either synthetic speech option; however, individual participant performance analyses revealed three patterns: (a) comparable accuracy regardless of speech condition for 30% of participants, (b) comparable accuracy between digitized natural speech and one, but not both, synthetic speech option for 45% of participants, and (c) greater accuracy with digitized natural speech than with either synthetic speech option for remaining participants. Ranking and Likert-scale rating data revealed a preference for digitized natural speech and David synthetic speech over Alex synthetic speech. Results suggest many individuals with aphasia can comprehend synthetic speech options available on popular operating systems. Further examination of synthetic speech use to support reading comprehension through text-to-speech technology is thus warranted. Copyright © 2017 Elsevier Inc. All rights reserved.
Miller, Nick; Nath, Uma; Noble, Emma; Burn, David
2017-06-01
To determine if perceptual speech measures distinguish people with Parkinson's disease (PD), multiple system atrophy with predominant parkinsonism (MSA-P) and progressive supranuclear palsy (PSP). Speech-language therapists blind to patient characteristics employed clinical rating scales to evaluate speech/voice in 24 people with clinically diagnosed PD, 17 with PSP and 9 with MSA-P, matched for disease duration (mean 4.9 years, standard deviation 2.2). No consistent intergroup differences appeared on specific speech/voice variables. People with PD were significantly less impaired on overall speech/voice severity. Analyses by severity suggested further investigation around laryngeal, resonance and fluency changes may characterize individual groups. MSA-P and PSP compared with PD were distinguished by severity of speech/voice deterioration, but individual speech/voice parameters failed to consistently differentiate groups.
Neural Representations Used by Brain Regions Underlying Speech Production
ERIC Educational Resources Information Center
Segawa, Jennifer Anne
2013-01-01
Speech utterances are phoneme sequences but may not always be represented as such in the brain. For instance, electropalatography evidence indicates that as speaking rate increases, gestures within syllables are manipulated separately but those within consonant clusters act as one motor unit. Moreover, speech error data suggest that a syllable's…
Autonomic Correlates of Speech versus Nonspeech Tasks in Children and Adults
ERIC Educational Resources Information Center
Arnold, Hayley S.; MacPherson, Megan K.; Smith, Anne
2014-01-01
Purpose: To assess autonomic arousal associated with speech and nonspeech tasks in school-age children and young adults. Method: Measures of autonomic arousal (electrodermal level, electrodermal response amplitude, blood pulse volume, and heart rate) were recorded prior to, during, and after the performance of speech and nonspeech tasks by twenty…
Weeks, Justin W; Zoccola, Peggy M
2015-12-01
Accumulating evidence supports fear of evaluation in general as important in social anxiety, including fear of positive evaluation (FPE) and fear of negative evaluation (FNE). The present study examined state responses to an impromptu speech task with a sample of 81 undergraduates. This study is the first to compare and contrast physiological responses associated with FPE and FNE, and to examine both FPE- and FNE-related changes in state anxiety/affect in response to perceived social evaluation during a speech. FPE uniquely predicted (relative to FNE/depression) increases in mean heart rate during the speech; in contrast, neither FNE nor depression related to changes in heart rate. Both FPE and FNE related uniquely to increases in negative affect and state anxiety during the speech. Furthermore, pre-speech state anxiety mediated the relationship between trait FPE and diminished positive affect during the speech. Implications for the theoretical conceptualization and treatment of social anxiety are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mantokoudis, Georgios; Dähler, Claudia; Dubach, Patrick; Kompis, Martin; Caversaccio, Marco D; Senn, Pascal
2013-01-01
To analyze speech reading through Internet video calls by profoundly hearing-impaired individuals and cochlear implant (CI) users. Speech reading skills of 14 deaf adults and 21 CI users were assessed using the Hochmair Schulz Moser (HSM) sentence test. We presented video simulations using different video resolutions (1280 × 720, 640 × 480, 320 × 240, 160 × 120 px), frame rates (30, 20, 10, 7, 5 frames per second (fps)), speech velocities (three different speakers), webcameras (Logitech Pro9000, C600 and C500) and image/sound delays (0-500 ms). All video simulations were presented with and without sound and in two screen sizes. Additionally, scores for live Skype™ video connection and live face-to-face communication were assessed. Higher frame rate (>7 fps), higher camera resolution (>640 × 480 px) and shorter picture/sound delay (<100 ms) were associated with increased speech perception scores. Scores were strongly dependent on the speaker but were not influenced by physical properties of the camera optics or the full screen mode. There is a significant median gain of +8.5%pts (p = 0.009) in speech perception for all 21 CI-users if visual cues are additionally shown. CI users with poor open set speech perception scores (n = 11) showed the greatest benefit under combined audio-visual presentation (median speech perception +11.8%pts, p = 0.032). Webcameras have the potential to improve telecommunication of hearing-impaired individuals.
Lee, Shao-Hsuan; Hsiao, Tzu-Yu; Lee, Guo-She
2015-06-01
Sustained vocalizations of vowels [a], [i], and syllable [mə] were collected in twenty normal-hearing individuals. On vocalizations, five conditions of different audio-vocal feedback were introduced separately to the speakers including no masking, wearing supra-aural headphones only, speech-noise masking, high-pass noise masking, and broad-band-noise masking. Power spectral analysis of vocal fundamental frequency (F0) was used to evaluate the modulations of F0 and linear-predictive-coding was used to acquire first two formants. The results showed that while the formant frequencies were not significantly shifted, low-frequency modulations (<3 Hz) of F0 significantly increased with reduced audio-vocal feedback across speech sounds and were significantly correlated with auditory awareness of speakers' own voices. For sustained speech production, the motor speech controls on F0 may depend on a feedback mechanism while articulation should rely more on a feedforward mechanism. Power spectral analysis of F0 might be applied to evaluate audio-vocal control for various hearing and neurological disorders in the future. Copyright © 2015 Elsevier B.V. All rights reserved.
Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco
2014-01-01
Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior.
NASA Technical Reports Server (NTRS)
Brenner, Malcolm; Shipp, Thomas
1988-01-01
In a study of the validity of eight candidate voice measures (fundamental frequency, amplitude, speech rate, frequency jitter, amplitude shimmer, Psychological Stress Evaluator scores, energy distribution, and the derived measure of the above measures) for determining psychological stress, 17 males age 21 to 35 were subjected to a tracking task on a microcomputer CRT while parameters of vocal production as well as heart rate were measured. Findings confirm those of earlier studies that increases in fundamental frequency, amplitude, and speech rate are found in speakers involved in extreme levels of stress. In addition, it was found that the same changes appear to occur in a regular fashion within a more subtle level of stress that may be characteristic, for example, of routine flying situations. None of the individual speech measures performed as robustly as did heart rate.