Science.gov

Sample records for rate tensile tests

  1. High Strain Rate Tensile Testing of DOP-26 Iridium

    SciTech Connect

    Schneibel, Joachim H; Carmichael Jr, Cecil Albert; George, Easo P

    2007-11-01

    The iridium alloy DOP-26 was developed through the Radioisotope Power Systems Program in the Office of Nuclear Energy of the Department of Energy. It is used for clad vent set cups containing radioactive fuel in radioisotope thermoelectric generator (RTG) heat sources which provide electric power for spacecraft. This report describes mechanical testing results for DOP-26. Specimens were given a vacuum recrystallization anneal of 1 hour at 1375 C and tested in tension in orientations parallel and perpendicular to the rolling direction of the sheet from which they were fabricated. The tests were performed at temperatures ranging from room temperature to 1090 C and strain rates ranging from 1 x 10{sup -3} to 50 s{sup -1}. Room temperature testing was performed in air, while testing at elevated temperatures was performed in a vacuum better than 1 x 10{sup -4} Torr. The yield stress (YS) and the ultimate tensile stress (UTS) decreased with increasing temperature and increased with increasing strain rate. Between 600 and 1090 C, the ductility showed a slight increase with increasing temperature. Within the scatter of the data, the ductility did not depend on the strain rate. The reduction in area (RA), on the other hand, decreased with increasing strain rate. The YS and UTS values did not differ significantly for the longitudinal and transverse specimens. The ductility and RA values of the transverse specimens were marginally lower than those of the longitudinal specimens.

  2. Effects of strain rate, test temperature and test environment on tensile properties of vandium alloys

    SciTech Connect

    Gubbi, A.N.; Rowcliffe, A.F.; Eatherly, W.S.; Gibson, L.T.

    1996-10-01

    Tensile testing was carried out on SS-3 tensile specimens punched from 0.762-mm-thick sheets of the large heat of V-4Cr-4Ti and small heats of V-3Cr-3Ti and V-6Cr-6Ti. The tensile specimens were annealed at 1000{degrees} for 2 h to obtain a fully recrystallized, fine grain microstructure with a grain size in the range of 10-19 {mu}m. Room temperature tests at strain rates ranging from 10{sup {minus}3} to 5 x 10{sup {minus}1}/s were carried out in air; elevated temperature testing up to 700{degrees}C was conducted in a vacuum better than 1 x 10{sup {minus}5} torr (<10{sup {minus}3} Pa). To study the effect of atomic hydrogen on ductility, tensile tests were conducted at room temperature in an ultra high vacuum chamber (UHV) with a hydrogen leak system.

  3. Tensile testing apparatus

    NASA Technical Reports Server (NTRS)

    Blackburn, L. B.; Ellingsworth, J. R. (Inventor)

    1985-01-01

    An improved mechanical extensometer is described for use with a constant load creep test machine. The dead weight of the extensometer is counterbalanced by two pairs of weights connected through a pulley system and to rod extension and leading into the furnace where the test sample is undergoing elevated temperature (above 500 F.) tensile testing. Novel gripper surfaces, conical tip and flat surface are provided in each sampling engaging platens to reduce the grip pressure normally required for attachment of the extensometer to the specimen and reduce initial specimen bending normally associated with foil-gage metal testing.

  4. Slow Strain Rate Tensile Testing to Assess the Ability of Superalloys to Resist Environment-Assisted Intergranular Cracking

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Banik, Anthony; McDevitt, Erin

    2014-01-01

    Intergranular fatigue crack initiation and growth due to environmental degradation, especially at notched features, can often limit the fatigue life of disk superalloys at high temperatures. For clear comparisons, the effects of alloy composition on cracking in air needs to be understood and compared separately from variables associated with notches and cracks such as effective stress concentration, plastic flow, stress relaxation, and stress redistribution. The objective of this study was to attempt using simple tensile tests of specimens with uniform gage sections to compare the effects of varied alloy composition on environment-assisted cracking of several powder metal and cast and wrought superalloys including ME3, LSHR, Udimet 720, ATI 718Plus alloy, Haynes 282, and Inconel 740. Slow and fast strain-rate tensile tests were found to be a useful tool to compare propensities for intergranular surface crack initiation and growth. The effects of composition and heat treatment on tensile fracture strain and associated failure modes were compared. Environment interactions were determined to often limit ductility, by promoting intergranular surface cracking. The response of various superalloys and heat treatments to slow strain rate tensile testing varied substantially, showing that composition and microstructure can significantly influence environmental resistance to cracking.

  5. Evaluation of nondestructive tensile testing

    NASA Technical Reports Server (NTRS)

    Bowe, J. J.; Polcari, S. M.

    1971-01-01

    The results of a series of experiments performed in the evaluation of nondestructive tensile testing of chip and wire bonds are presented. Semiconductor devices were subjected to time-temperature excursions, static-load life testing and multiple pre-stressing loads to determine the feasibility of a nondestructive tensile testing approach. The report emphasizes the importance of the breaking angle in determining the ultimate tensile strength of a wire bond, a factor not generally recognized nor implemented in such determinations.

  6. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  7. Tensile Testing: A Simple Introduction

    ERIC Educational Resources Information Center

    Carr, Martin

    2006-01-01

    Tensile testing may be used to decide, say, which steel to use in various constructions. Analogous testing can be done simply in the classroom using plasticine and helps to introduce pupils to the various properties studied in materials science.

  8. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  9. Tensile Test For Arboform Samples

    NASA Astrophysics Data System (ADS)

    Plavanescu (Mazurchevici), Simona; Quadrini, Fabrizio; Nedelcu, Dumitru

    2015-07-01

    Petroleum-based plastic materials constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is received particular attention. Our studied material, "Liquid wood" produced from lignin, natural fibres and natural additives, is completely biodegradable in natural environment, in normal conditions. This paper presents the behaviour of Arboform and Arboform reinforced with Aramidic Fibers tensile test analysis. Experimental data show that the tensile strength reached an average value of 15.8 MPa, the modulus of elasticity after tests is 3513.3MPA for Arboform and for the reinforcement the tensile strength is 23.625MPa, the modulus of elasticity after tests is 3411.5MPA, the materials present a brittle behaviour. The high mechanical properties of newly developed material, better than of other ordinary plastics, recommend it as a potential environment-friendly substituent for synthetic plastics, which are present in all fields of activity.

  10. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    SciTech Connect

    Zinkle, S.J.; Eatherly, W.S.

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  11. Uniaxial Tensile Test for Soil.

    DTIC Science & Technology

    1987-04-01

    by radiographs to be uniform. 8. Direct tensile triaxial tests performed by Conlon (1966), Bishop and Garga (1969), and Parry and Nadarajah (1974...Parry, R. H. G., and Nadarajah , V. 1974. "Anisotrophy in a Natural Soft Clayey Silt," Engineering Geology, Vol 8, No. 3, pp 287-309. 47 .• ’°"I Peters

  12. Manual for LDEF tensile tests

    NASA Technical Reports Server (NTRS)

    Witte, W. G., Jr.

    1985-01-01

    One of the experiments aboard the NASA Long Duration Exposure Facility (LDEF) consists of a tray of approximately one hundred tensile specimens of several candidate space structure composite materials. During the LDEF flight the materials will be subjected to the space environment and to possible contamination during launch and recovery. Tensile tests of representative samples were made before the LDEF flight to obtain baseline data. Similar tests will be made on control specimens stored on earth for the length of the LDEF flight and on recovered flight specimens. This manual codifies the details of testing, data acquisition, and handling used in obtaining the baseline data so that the same procedures and equipment will be used on the subsequent tests.

  13. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2006-01-10

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  14. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2007-08-21

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  15. Micro-tensile testing system

    DOEpatents

    Wenski, Edward G.

    2007-07-17

    A micro-tensile testing system providing a stand-alone test platform for testing and reporting physical or engineering properties of test samples of materials having thicknesses of approximately between 0.002 inch and 0.030 inch, including, for example, LiGA engineered materials. The testing system is able to perform a variety of static, dynamic, and cyclic tests. The testing system includes a rigid frame and adjustable gripping supports to minimize measurement errors due to deflection or bending under load; serrated grips for securing the extremely small test sample; high-speed laser scan micrometers for obtaining accurate results; and test software for controlling the testing procedure and reporting results.

  16. Use of Slow Strain Rate Tensile Testing to Assess the Ability of Several Superalloys to Resist Environmentally-Assisted Intergranular Cracking

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Banik, Anthony; McDevitt, Erin

    2014-01-01

    Intergranular fatigue crack initiation and growth due to environmental degradation, especially at notched features, can often limit the fatigue life of disk superalloys at high temperatures. For clear comparisons, the effects of alloy composition on cracking in air needs to be understood and compared separately from variables associated with notches and cracks such as effective stress concentration, plastic flow, stress relaxation, and stress redistribution. The objective of this study was to attempt using simple tensile tests of specimens with uniform gage sections to compare the effects of varied alloy composition on environment-assisted cracking of several powder metal and cast and wrought superalloys including ME3, LSHR, Udimet 720(TradeMark) ATI 718Plus(Registered TradeMark) alloy, Haynes 282(Trademark), and Inconel 740(TradeMark) Slow and fast strain-rate tensile tests were found to be a useful tool to compare propensities for intergranular surface crack initiation and growth. The effects of composition and heat treatment on tensile fracture strain and associated failure modes were compared. Environment interactions were determined to often limit ductility, by promoting intergranular surface cracking. The response of various superalloys and heat treatments to slow strain rate tensile testing varied substantially, showing that composition and microstructure can significantly influence environmental resistance to cracking.

  17. Effect of Load Rate on Tensile Strength of Various CFCCs at Elevated Temperatures: An Approach to Life Prediction Testing

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    Strength of three continuous fiber-reinforced ceramic composites, including SiC/CAS-11, SiC/MAS-5 and SiC/SiC, was determined as a function of test rate in air at 1100 - 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law tyw of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for the composite materials at least for the short range of lifetime.

  18. Temperature increase of Zircaloy-4 cladding tubes due to plastic heat dissipation during tensile tests at 0.1-10 s-1 strain rates

    NASA Astrophysics Data System (ADS)

    Hellouin de Menibus, Arthur; Auzoux, Quentin; Besson, Jacques; Crépin, Jérôme

    2014-11-01

    This study is focused on the impact of rapid Reactivity Initiated Accident (RIA) representative strain rates (about 1 s-1 NEA, 2010) on the behavior and fracture of unirradiated cold work stress relieved Zircaloy-4 cladding tubes. Uniaxial ring tests (HT) and plane strain ring tensile tests (PST) were performed in the 0.1-10 s-1 strain rate range, at 25 °C. The local temperature increase due to plastic dissipation was measured with a high-speed infrared camera. Limited temperature increases were measured at 0.1 s-1 strain rate. Limited but not strongly localized temperature increases were measured at 1 s-1. Large temperature increase were measured at 5 and 10 s-1 (142 °C at 5 s-1 strain rate in HT tests). The local temperature increase induced heterogeneous temperature fields, which enhanced strain localization and resulted in a reduction of the plastic elongation at fracture.

  19. High temperature tensile testing of ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1988-01-01

    The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

  20. Approaches for Tensile Testing of Braided Composites

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Salem, Jonathan A.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.; Martin, Richard E.

    2011-01-01

    For angleply composites, lamina tension and compression strengths are commonly determined by applying classical lamination theory to test data obtained from testing of angleply composite specimens. For textile composites such as 2D triaxial braids, analysis is more complex and standard test methods do not always yield reliable strength measurements. This paper describes recent research focused on development of more reliable tensile test methods for braided composites and presents preliminary data for various approaches. The materials investigated in this work have 0deg+/-60 2D triaxial braid architecture with nearly equal fiber volume fraction in each of the three fiber directions. Flat composite panels are fabricated by resin transfer molding (RTM) using six layers of the braided preform aligned along the 0deg fiber direction. Various epoxy resins are used as matrix materials. Single layer panels are also fabricated in order to examine local variations in deformation related to the braid architecture. Specimens are cut from these panels in the shape of standard straight-sided coupons, an alternative bowtie geometry, and an alternative notched geometry. Axial tensile properties are measured using specimens loaded along the 0deg fiber direction. Transverse tensile properties are measured using specimens loaded perpendicular to the 0deg fibers. Composite tubes are also fabricated by RTM. These tubes are tested by internal pressurization using a soft rubbery material sealed between the inside diameter of the tube and the load fixtures. The ends of the tube are unconstrained, so the primary load is in the hoop direction. Tubes are fabricated with the 0deg fibers aligned along the tube axis by overbraiding the preform on a mandrel. Since the loading is in the hoop direction, testing of the overbraided tube provides a measure of transverse tensile strength. Previous work has indicated that straight-sided coupons yield a transverse tensile strength that is much lower

  1. Effect of Strain Rate on Tensile Properties of Carbon Fiber Epoxy-Impregnated Bundle Composite

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-03-01

    The tensile tests for high tensile strength polyacrylonitrile (PAN)-based (T1000GB) carbon fiber epoxy-impregnated bundle composite at various strain rates ranging from 3.33 × 10-5 to 6.0 × 102 s-1 (various crosshead speeds ranging from 8.33 × 10-7 to 1.5 × 101 m/s) were investigated. The statistical distributions of the tensile strength were also evaluated. The results clearly demonstrated that the tensile strength of bundle composite slightly increased with an increase in the strain rate (crosshead speed) and the Weibull modulus of tensile strength for the bundle composite decreased with an increase in the strain rate (crosshead speed), there is a linear relation between the Weibull modulus and the average tensile strength on log-log scale.

  2. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  3. Experimental and numerical study on tensile strength of concrete under different strain rates.

    PubMed

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10(-7) s(-1) to 10(-4) s(-1) in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates.

  4. Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

    PubMed Central

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  5. Newly Designed Tensile Test System for in vitro Measurement of Mechanical Properties of Cytoskeletal Filaments

    NASA Astrophysics Data System (ADS)

    Deguchi, Shinji; Ohashi, Toshiro; Sato, Masaaki

    A tensile test system for isolated cytoskeletal filaments, which enables to control strain rate, was newly designed. A pair of piezo-driven cantilevers were used to manipulate the specimen and to measure tensile load from the deflection of one of the cantilevers. The displacements of the cantilevers were optically and electrically detected. The specimen strain, determined from the cantilever displacements, was used as a feedback signal. We proposed a servo-system for strain rate control in which a desired path for the strain transition was designated. The path was chosen as a triangular-shape waveform against time, along which the strain rate is kept constant. We measured tensile properties of a single stress fiber isolated from a smooth muscle cell with this system to obtain a stretching stiffness of 45nN per strain. Performance evaluation and the tensile test demonstrated that the system enabled to carry out strain rate-controlled tensile test.

  6. The Dynamic Tensile Behavior of Railway Wheel Steel at High Strain Rates

    NASA Astrophysics Data System (ADS)

    Jing, Lin; Han, Liangliang; Zhao, Longmao; Zhang, Ying

    2016-11-01

    The dynamic tensile tests on D1 railway wheel steel at high strain rates were conducted using a split Hopkinson tensile bar (SHTB) apparatus, compared to quasi-static tests. Three different types of specimens, which were machined from three different positions (i.e., the rim, web and hub) of a railway wheel, were prepared and examined. The rim specimens were checked to have a higher yield stress and ultimate tensile strength than those web and hub specimens under both quasi-static and dynamic loadings, and the railway wheel steel was demonstrated to be strain rate dependent in dynamic tension. The dynamic tensile fracture surfaces of all the wheel steel specimens are cup-cone-shaped morphology on a macroscopic scale and with the quasi-ductile fracture features on the microscopic scale.

  7. Polystyrene cryostat facilitates testing tensile specimens under liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Shogan, R. P.; Skalka, R. J.

    1967-01-01

    Lightweight cryostat made of expanded polystyrene reduces eccentricity in a tensile system being tested under liquid nitrogen. The cryostat is attached directly to the tensile system by a special seal, reducing misalignment effects due to cryostat weight, and facilitates viewing and loading of the specimens.

  8. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect

    Schulthess, Jason

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  9. Impact Tensile Testing of Stainless Steels at Various Temperatures

    SciTech Connect

    D. K. Morton

    2008-03-01

    Stainless steels are used for the construction of numerous spent nuclear fuel or radioactive material containers that may be subjected to high strains and moderate strain rates during accidental drop events. Mechanical characteristics of these base materials and their welds under dynamic loads in the strain rate range of concern (1 to 300 per second) are not well documented. However, research is being performed at the Idaho National Laboratory to quantify these characteristics. The work presented herein discusses tensile impact testing of dual-marked 304/304L and 316/316L stainless steel material specimens. Both base material and welded material specimens were tested at -20 oF, room temperature, 300 oF, and 600 oF conditions. Utilizing a drop weight impact test machine and 1/4-inch and 1/2-inch thick dog bone-shaped test specimens, a strain rate range of approximately 4 to 40 per second (depending on initial temperature conditions) was achieved. Factors were determined that reflect the amount of increased strain energy the material can absorb due to strain rate effects. Using the factors, elevated true stress-strain curves for these materials at various strain rates and temperatures were generated. By incorporating the strain rate elevated true stress-strain material curves into an inelastic finite element computer program as the defined material input, significant improvement in the accuracy of the computer analyses was attained. However, additional impact testing is necessary to achieve higher strain rates (up to 300 per second) before complete definition of strain rate effects can be made for accidental drop events and other similar energy-limited impulsive loads. This research approach, using impact testing and a total energy analysis methodology to quantify strain rate effects, can be applied to many other materials used in government and industry.

  10. Strain rate effects on tensile strength of iron green bodies

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Kuroyanagi, Yuki; Häggblad, Hans-Åke; Jonsén, Pär; Gustafsson, Gustaf

    2015-09-01

    Impact tensile strength of iron green bodies with densities of 7.2 and 7.4 g/cm3 was examined by Brazilian test using the split-Hopkinson pressure bar (Kolsky bar) method. The powder material used for the experiments was a press-ready premix containing Distaloy AE, graphite, and lubricant. During dynamic compression, the failure behavior of specimens was observed using a high-speed video camera. The failure stress and failure behavior of dynamic compressive tests were compared with those of static compressive tests.

  11. Modified ring stretch tensile testing of Zr-1Nb cladding

    SciTech Connect

    Cohen, A.B.; Majumdar, S.; Ruther, W.E.; Billone, M.C.; Chung, H.M.; Neimark, L.A.

    1998-03-01

    In a round robin effort between the US Nuclear Regulatory Commission, Institut de Protection et de Surete Nucleaire in France, and the Russian Research Centre-Kurchatov Institute, Argonne National Laboratory conducted 16 modified ring stretch tensile tests on unirradiated samples of zr-1Nb cladding, which is used in Russian VVER reactors. Test were conducted at two temperatures (25 and 400 C) and two strain rates (0.001 and 1 s{sup {minus}1}). At 25 C and 0.001 s{sup {minus}1}, the yield strength (YS), ultimate tensile strength (UTS), uniform elongation (UE), and total elongation (TE) were 201 MPa, 331 MPa, 18.2%, and 57.6%, respectively. At 400 C and 0.001 s{sup {minus}1}, the YS, UTS, UE, and TE were 109 MPa, 185 MPa, 15.4%, and 67.7%, respectively. Finally, at 400 C and 1 s{sup {minus}1}, the YS, UTS, UE, and TE were 134 MPa, 189 MPa, 18.9%, and 53.4%, respectively. The high strain rate tests at room temperature were not successful. Test results proved to be very sensitive to the amount of lubrication used on the inserts; because of the large contact area between the inserts and specimen, too little lubrication leads to significantly higher strengths and lower elongations being reported. It is also important to note that only 70 to 80% of the elongation takes place in the gauge section, depending on specimen geometry. The appropriate percentage can be estimated from a simple model or can be calculated from finite-element analysis.

  12. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  13. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  14. Demonstration of concurrent tensile testing and magnetic resonance elastography.

    PubMed

    Brinker, Spencer; Klatt, Dieter

    2016-10-01

    Magnetic Resonance Elastography (MRE) is a technique used to measure the mechanical properties of soft tissues and has already shown its diagnostic potential for pathologies involving fibrogenesis and neurodegeneration. Experimental investigation of loading during MRE is fairly unexplored and may help to better understand changing mechanical properties in relation to organ function. Tensile testing is a common technique for examining mechanical properties of materials and is used as the simultaneous comparison method with MRE in this study. 3D MRE data was acquired during quasistatic uniaxial tensile loading of an Ecoflex 0010 cylindrical specimen. Individual MRE scans at 1.5, 2.0, and 2.5kHz where performed on engineering strain increments of 20% from 0% to 140% while tensile reaction force was recorded using a load cell attached to an adjustable elongation slide. Tensile stress-strain relation resembled the Fung hyperelastic strain energy model. We observe that the MRE shear storage modulus is related to the state of tensile deformation. This study demonstrates the feasibility of simultaneous tensile testing during MRE and the new design can potentially be used for MRE calibration using pre-tension.

  15. Dynamic tensile fracture of mortar at ultra-high strain-rates

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Buzaud, E.; Chanal, P.-Y.

    2013-12-01

    During the lifetime of a structure, concrete and mortar may be exposed to highly dynamic loadings, such as impact or explosion. The dynamic fracture at high loading rates needs to be well understood to allow an accurate modeling of this kind of event. In this work, a pulsed-power generator has been employed to conduct spalling tests on mortar samples at strain-rates ranging from 2 × 104 to 4 × 104 s-1. The ramp loading allowed identifying the strain-rate anytime during the test. A power law has been proposed to fit properly the rate-sensitivity of tensile strength of this cementitious material over a wide range of strain-rate. Moreover, a specimen has been recovered damaged but unbroken. Micro-computed tomography has been employed to study the characteristics of the damage pattern provoked by the dynamic tensile loading.

  16. Mechanical properties of gold twinned nanocubes under different triaxial tensile rates

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Zhang, Guowei; Luo, Gang; Sun, Xiaoqing; Zhao, Jianwei

    2016-08-01

    The gold twinned nanocubes under different triaxial tensile rates are explored by molecular dynamics simulation. Hydrostatic stress and Mises stress are defined in order to understand triaxial stresses. Twin boundaries prevent dislocations between twin boundaries from developing and dislocation angles are inconspicuous, which causes little difference between triaxial stresses. The mechanical properties of the nanocubes under low and high tensile rates are different. The curves of nanocubes under high tensile rates are more abrupt than those under low tensile rates. When the tensile rate is extremely big, the loadings are out of the nanocubes and there are not deformation and fracture in the internal nanocubes.

  17. Polymer deformation gage measures thickness change in tensile tests

    NASA Technical Reports Server (NTRS)

    Broyles, H. F.; Broyles, H. H.

    1966-01-01

    Lightweight deformation gage attached to a polymer specimen determines the thickness changes undergone by the specimen during the testing of its tensile and elongation properties. Mechanical noise from outside sources is dampened when the assembly is hung on a light rubber band.

  18. Influence of Strain Rate on Tensile Strength of Woven Geotextile in the Selected Range of Temperature

    NASA Astrophysics Data System (ADS)

    Stępień, Sylwia; Szymański, Alojzy

    2015-06-01

    Investigation of geosynthetics behaviour has been carried out for many years. Before using geosynthetics in practice, the standard laboratory tests had been carried out to determine basic mechanical parameters. In order to examine the tensile strength of the sample which extends at a constant strain rate, one should measure the value of the tensile force and strain. Note that geosynthetics work under different conditions of stretching and temperatures, which significantly reduce the strength of these materials. The paper presents results of the tensile test of geotextile at different strain rates and temperatures from 20 °C to 100 °C. The aim of this study was to determine the effect of temperature and strain rate on tensile strength and strain of the woven geotextile. The article presents the method of investigation and the results. The data obtained allowed us to assess the parameters of material which should be considered in the design of the load-bearing structures that work at temperatures up to 100 °C.

  19. Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading

    NASA Technical Reports Server (NTRS)

    Gilat, Amos; Goldberg, Robert K.; Roberts, Gary D.

    2005-01-01

    The mechanical response of E-862 and PR-520 resins is investigated in tensile and shear loadings. At both types of loading the resins are tested at strain rates of about 5x10(exp 5), 2, and 450 to 700 /s. In addition, dynamic shear modulus tests are carried out at various frequencies and temperatures, and tensile stress relaxation tests are conducted at room temperature. The results show that the toughened PR-520 resin can carry higher stresses than the untoughened E-862 resin. Strain rate has a significant effect on the response of both resins. In shear both resins show a ductile response with maximum stress that is increasing with strain rate. In tension a ductile response is observed at low strain rate (approx. 5x10(exp 5) /s), and brittle response is observed at the medium and high strain rates (2, and 700 /s). The hydrostatic component of the stress in the tensile tests causes premature failure in the E-862 resin. Localized deformation develops in the PR-520 resin when loaded in shear. An internal state variable constitutive model is proposed for modeling the response of the resins. The model includes a state variable that accounts for the effect of the hydrostatic component of the stress on the deformation.

  20. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    NASA Astrophysics Data System (ADS)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  1. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling.

    PubMed

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-28

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10(3) to 10(4) s(-1) using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  2. Tensile test of dumbbell-shaped specimen in thickness direction

    NASA Astrophysics Data System (ADS)

    Iizuka, Takashi

    2016-10-01

    Sheet metal forming is widely used in manufacturing shops, and evaluation of forming limit for sheet metal is important. However, specimen shape influences on the fracture of the sheet metal. As one of methods to decrease these effects, an uniaxial tensile test using specimen dumbbell-shaped in thickness direction had been examined using FEM analysis. In this study, actually specimen dumbbell-shaped in thickness direction was fabricated using a new incremental sheet forging method, and uniaxial tensile test was conducted. Load-stroke diagram, fracture morphologies, stress-strain curves and shape after fracture were investigated, and effects of specimen shape were considered. Elongation was larger as using specimen dumbbell-shaped in the width direction. Stress-strain curves until necking occurred were less influenced by specimen shape. However, yield stress decreased and local elongation increased as using specimen dumbbell-shaped in the width direction. The reasons why these tendencies showed were considered in the view of specimen shapes.

  3. Apparatus for tensile testing plate-type ceramic specimens

    DOEpatents

    Liu, K.C.

    1993-08-24

    Apparatus is described for gripping a plate-type tensile specimen having generally T-shaped end regions in a dynamic tension fatigue testing apparatus comprising an annular housing having an open-ended elongated cavity therein, a plurality of hydraulic piston means supported by the housing in a spaced array about the cavity, and a specimen-supporting plate means overlying the piston means at one end of the elongated cavity and displaceable by said piston means in a longitudinal direction with respect to the longitudinal axis of the cavity, said apparatus for gripping a flat plate-type tensile specimen comprising: a pair of elongated pull rods each having oppositely disposed first and second end regions; a pair of mounting means carried by said plate means with each mounting means for pivotally attaching the first end region of each of said pull rods in a central region of said plate means for supporting said pair of elongated pull rods in a side-by-side relationship along a common longitudinal centerline within said cavity; recess means in the second end region of each of said pull rods in adjacently disposed surface regions thereof with said recess means facing one another and each adapted to receive one side of one of the generally T-shaped end regions of the plate-type tensile specimen; and load-bearing means positionable in each of said recess means and adapted to bear against a shoulder on each side of the generally T-shaped end region of the plate-type tensile specimen when a tensile loading is applied thereon.

  4. Optical strain measuring techniques for high temperature tensile testing

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1987-01-01

    A number of optical techniques used for the analysis of in-plane displacements or strains are reviewed. The application would be for the high temperature, approximately 1430 C (2600 F), tensile testing of ceramic composites in an oxidizing atmosphere. General descriptions of the various techniques and specifics such as gauge lengths and sensitivities are noted. Also, possible problems with the use of each method in the given application are discussed.

  5. Biaxial tensile testing and constitutive modeling of human supraspinatus tendon.

    PubMed

    Szczesny, Spencer E; Peloquin, John M; Cortes, Daniel H; Kadlowec, Jennifer A; Soslowsky, Louis J; Elliott, Dawn M

    2012-02-01

    The heterogeneous composition and mechanical properties of the supraspinatus tendon offer an opportunity for studying the structure-function relationships of fibrous musculoskeletal connective tissues. Previous uniaxial testing has demonstrated a correlation between the collagen fiber angle distribution and tendon mechanics in response to tensile loading both parallel and transverse to the tendon longitudinal axis. However, the planar mechanics of the supraspinatus tendon may be more appropriately characterized through biaxial tensile testing, which avoids the limitation of nonphysiologic traction-free boundary conditions present during uniaxial testing. Combined with a structural constitutive model, biaxial testing can help identify the specific structural mechanisms underlying the tendon's two-dimensional mechanical behavior. Therefore, the objective of this study was to evaluate the contribution of collagen fiber organization to the planar tensile mechanics of the human supraspinatus tendon by fitting biaxial tensile data with a structural constitutive model that incorporates a sample-specific angular distribution of nonlinear fibers. Regional samples were tested under several biaxial boundary conditions while simultaneously measuring the collagen fiber orientations via polarized light imaging. The histograms of fiber angles were fit with a von Mises probability distribution and input into a hyperelastic constitutive model incorporating the contributions of the uncrimped fibers. Samples with a wide fiber angle distribution produced greater transverse stresses than more highly aligned samples. The structural model fit the longitudinal stresses well (median R(2) ≥ 0.96) and was validated by successfully predicting the stress response to a mechanical protocol not used for parameter estimation. The transverse stresses were fit less well with greater errors observed for less aligned samples. Sensitivity analyses and relatively affine fiber kinematics suggest that

  6. Apparatus for tensile testing plate-type ceramic specimens

    DOEpatents

    Liu, Kenneth C.

    1993-01-01

    Apparatus for tensile testing plate-type ceramic specimens having dogbone- or T-shaped end sections without introducing bending stresses in the specimens during the application of a dynamic tensile loading on the specimens is described. A pair of elongated pull rods disposed in a side-by-side relationship are used to grip the shoulders on each T-shaped end section. The pull rods are pivotally attached to a piston-displaceable, disk-shaped member so as to be longitudinally movable with respect to one another effecting the self-alignment thereof with the shoulders on the T-shaped end sections of the specimen to compensate for shoulders being located in different longitudinal positions.

  7. On the off-axis tensile test for unidirectional composites

    NASA Technical Reports Server (NTRS)

    Nemeth, M. P.; Herakovich, C. T.; Post, D.

    1982-01-01

    The off axis tensile test was examined experimentally to obtain actual displacement fields over the surface of graphite polyimide coupon specimens. The experimental results were compared with approximate analytical solutions and generated finite element results. An optical method of high sensitivity moire interferometry was used to determine the actual displacements to high precision. The approximate analytical solution and the finite element results compare very favorably with the measured centerline displacements in the test section, and the finite element displacement fields provide excellent agreement with the moire displacements throughout the specimen. A 15 degree fiber orientation and coupon aspect ratios of 5 and 15 are presented.

  8. Tensile tests and metallography of brazed AISI 316L specimens after irradiation

    NASA Astrophysics Data System (ADS)

    Groot, P.; Franconi, E.

    1994-08-01

    Stainless steel type 316L tensile specimens were vacuum brazed with three kinds of alloys: BNi-5, BNi-6, and BNi-7. The specimens were irradiated up to 0.7 dpa at 353 K in the High Flux Reactor at JRC Petten, the Netherlands. Tensile tests were performed at a constant displacement rate of 10 -3 s -1 at room temperature in the ECN hot cell facility. BNi-5 brazed specimens showed ductile behaviour. Necking and fractures were localized in the plate material. BNi-6 and BNi-7 brazed specimens failed brittle in the brazed zone. This was preceded by uniform deformation of the plate material. Tensile test results of irradiated specimens showed higher stresses due to radiation hardening and a reduction of the elongation of the plate material compared to the reference. SEM examination of the irradiated BNi-6 and BNi-7 fracture surfaces showed nonmetallic phases. These phases were not found in the reference specimens.

  9. Effect of quench rate on microstructure and tensile properties of ALSL 4320 and 4340 steels

    NASA Astrophysics Data System (ADS)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1987-01-01

    A study has been made of the effect of quench rate on the microstructure and tensile properties of two commercial AISI 4320 and 4340 steels having fully martensitic structures. The steels were quenched from various temperatures from 1323 to 1473 K, at two different quench rates using iced brine (fast quench treatments) and oil held at 373 K (slow quench treatments). Tensile properties of these steels, after double-tempering at 473 K with intermediate quenching and refrigeration, were determined at ambient temperature (293 K) using an Instron test machine. The microstructural changes accompanying these quench rates were examined by means of optical and thin-foil transmission electron microscopic techniques. In the 4320 steel with a relatively high Ms temperature, the slow quench treatments compared to the fast quench treatments increased both the 0.2 pct proof stress and the ultimate tensile strength at similar total elongation levels, regardless of the prior austenite grain size, while the strength data of the slowly quenched steels exhibited a large scatter as the prior austenite grain size increased. However, in the 4340 steel with a relatively low Ms temperature tensile properties were less sensitive to quench rate, while the slow quench treatments compared to the fast quench treatments increased slightly only the 0.2 pct proof stress. From microstructural results, it is suggested that the beneficial effect on the strength of the slowly-quenched steels is caused by a dispersion-hardening effect due to carbon segregation or fine carbide precipitation in the martensite during the quench (i.e., autotempering).

  10. Method and device for tensile testing of cable bundles

    DOEpatents

    Robertson, Lawrence M; Ardelean, Emil V; Goodding, James C; Babuska, Vit

    2012-10-16

    A standard tensile test device is improved to accurately measure the mechanical properties of stranded cables, ropes, and other composite structures wherein a witness is attached to the top and bottom mounting blocks holding the cable under test. The witness is comprised of two parts: a top and a bottom rod of similar diameter with the bottom rod having a smaller diameter stem on its upper end and the top rod having a hollow opening in its lower end into which the stem fits forming a witness joint. A small gap is present between the top rod and the larger diameter portion of the bottom rod. A standard extensometer is attached to the top and bottom rods of the witness spanning this small witness gap. When a force is applied to separate the mounting blocks, the gap in the witness expands the same length that the entire test specimen is stretched.

  11. Effect of strain rate on the tensile material properties of human placenta.

    PubMed

    Manoogian, Sarah J; Bisplinghoff, Jill A; McNally, Craig; Kemper, Andrew R; Santago, Anthony C; Duma, Stefan M

    2009-09-01

    Automobile crashes are the largest cause of injury death for pregnant females and the leading cause of traumatic fetal injury mortality in the United States. Computational models, useful tools to evaluate the risk of fetal loss in motor vehicle crashes, are based on a limited number of quasistatic material tests of the placenta. This study presents a total of 64 uniaxial tensile tests on coupon specimens from six human placentas at three strain rates. Material properties of the placental tissue were evaluated at strain rates of 0.07/s, 0.70/s, and 7.00/s. The test data have average failure strains of 0.34, 0.36, and 0.37, respectively. Failure stresses of 10.8 kPa, 11.4 kPa, and 18.6 kPa correspond to an increase in strain rate from 0.07/s to 7.0/s. The results indicate rate dependence only when comparing the highest strain rate of 7.0/s to either of the lower rates. There is no significant rate dependence between 0.07/s and 0.70/s. When compared with previous testing of placental tissue, the current study addresses the material response to more strain rates as well as provides a much larger set of available data. In summary, tensile material properties for the placenta have been determined for use in computational modeling of pregnant occupant kinematics in events ranging from low impact activities to severe impacts such as in motor vehicle crashes.

  12. Tensile adhesion testing methodology for thermally sprayed coatings

    NASA Technical Reports Server (NTRS)

    Berndt, Christopher C.

    1990-01-01

    The structure of thermally sprayed coatings consists of lamellae which are oriented parallel to the substrate surface. The lamellae separate and fracture by distinctive mechanisms which are reflected in the failure morphology, and these may be described as adhesive (between the coating and substrate), cohesive (within the coating), or mixed mode. There is a large variability in the failure stress for any nominally identical group of coatings. A lower bound for the fracture toughness of alumina coatings can be calculated as 0.2 MNm exp -3/2. The coating strength values may also be treated as belonging to the statistical distribution of the Weibull function. The Weibull modulus of the coating strength varied from 1.4 to 3.8. This analysis infers that the flaw size within coatings is highly variable and that the flaws are nonuniformly dispersed. The present work focuses on the question of whether tensile adhesion tests are an appropriate testing method for thermally sprayed materials.

  13. A microdynamic version of the tensile test machine

    NASA Technical Reports Server (NTRS)

    Glaser, R. J.

    1991-01-01

    Very large space structures require structural reactions to control forces associated with nanometer-level displacements; JPL has accordingly built a tensile test machine capable of mN-level force measurements and nm-level displacement measurements, with a view to the study of structural linear joining technology at the lower limit of its resolution. The tester is composed of a moving table that is supported by six flexured legs and a test specimen cantilevered off the table to ground. Three vertical legs contain piezoactuators allowing changes in length up to 200 microns while generating axial load and bending moments. Displacements between ground and table are measured by means of three laser-interferometric channels.

  14. Novel approach to tensile testing of micro- and nanoscale fibers

    NASA Astrophysics Data System (ADS)

    Tan, E. P. S.; Lim, C. T.

    2004-08-01

    Due to the strength and size of the micro- and nanoscale fibers, larger conventional universal testing machines are not suitable in performing stretch test of such fibers. Existing microtensile testing machines are custom-made and are complex and expensive to construct. Here, a novel method of using an existing atomic force microscope (AFM)-based nanoindenation system for the tensile testing of microscale or bundled nanoscale fibers is proposed. The microscale poly (L-lactic-co-glycolic acid) fiber (˜25 μm diameter) was used as an example to illustrate this technique. The microfiber was first attached to a nanoindenter tip and the base via a custom-made holder to ensure that the microfiber was taut and vertically aligned. The force transducer of the nanoindenter was used to measure the tensile force required to stretch the microfiber. The microfiber was stretched using the stepper motor of the AFM system. The elongation of the microfiber was measured by subtracting the elongation of the transducer spring from the total elongation of the microfiber and transducer spring. A plot of the load against elongation of the microfiber was then obtained. The stress and strain of the microfiber was measured by subtracting the elongation of the transducer spring from the total elongation of the microfiber was then obtained. The stress and strain of the microfiber was obtained by dividing the load and elongation by cross-sectional area and gauge length, respectively. With this data, the mechanical behavior of the sample at small strains can be studied. This system is able to provide a high load resolution of 80 nN and displacement resolution of 0.5 nm. However, maximum load and sample elongation is limited and handling of the sample still remains a challenge.

  15. Effects of temperature and strain rate on the tensile properties of potassium-doped tungsten

    NASA Astrophysics Data System (ADS)

    Sasaki, Kenta; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira

    2015-06-01

    Tensile tests were performed on pure and K-doped tungsten at temperatures from 25 to 700 °C and strain rates between 10-5 and 10-1 s-1 in vacuum. The yield strength of both materials increased with increasing strain rate and decreasing temperature. The amount of change in the yield strength decreased with increasing temperature. The determination of activation volumes for plastic deformation highlighted that the rate-controlling process of the deformation behavior at lower temperatures was the same for both materials, namely, kink-pair formation on screw dislocations, and the process was not affected by potassium addition. The fracture strain of both materials increased with increasing strain rate and decreasing temperature, in the temperature range where the materials showed measurable ductility. K-doped W showed higher yield strength and a lower ductile-to-brittle transition temperature than pure W. No negative effect of K addition on strain rate- and temperature-induced changes in tensile properties was found. The analysis also highlighted the effectiveness of K addition, and of the grain refinement induced by it, for improving the mechanical properties of tungsten.

  16. Necking of Q&P steel during uniaxial tensile test with the aid of DIC technique

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Lin, Jianping; Min, Junying; Pang, Zheng; Ye, You

    2013-05-01

    A lot of research has been focused on the necking process during the plastic deformation of sheet metals, but the localized necking is rarely distinguished form diffused necking by experiments, due to the limit of measurement equipment and method. Quenching and Partitioning (Q&P) steel is a 3rd generation advanced high strength steel (AHSS). Its good combination of high strength and ductility ensures potential application in automobile industry. Uniaxial tensile tests of QP980 steel sheet at five strain rates are performed to investigate the necking process and the effect of strain rate on necking behavior of Q&P steel. Digital image correlation (DIC) method is applied during tensile tests, and evolutions of major strain, minor strain and normal strain distributions along gauge section of the tensile specimens are obtained. The diffused and localized necking strains are determined according to SWIFT necking theory and HILL necking theory respectively. The test results indicate that with the increasing of strain rate in the investigated range, the diffused necking strain decreases from 0.152 to 0.120 and localized necking strain decreases from 0.245 to 0.137. Meanwhile, the difference of the two strains decreases form 0.096 to 0.017. Thus it can be concluded that strain rate has an influence on both necking strains during the deformation of QP980 steel sheet. Diffused and localized necking strains are determined by uniaxial tensile tests with the aid of DIC technique and the effect of strain rate on necking strains is evaluated.

  17. Dynamic Tensile Properties of Iron and Steels for a Wide Range of Strain Rates and Strain

    NASA Astrophysics Data System (ADS)

    Kojima, Nobusato; Hayashi, Hiroyuki; Yamamoto, Terumi; Mimura, Koji; Tanimura, Shinji

    The tensile stress-strain curves of iron and a variety of steels, covering a wide range of strength level, over a wide strain rate range on the order of 10-3 ~ 103 s-1, were obtained systematically by using the Sensing Block Type High Speed Material Testing System (SBTS, Saginomiya). Through intensive analysis of these results, the strain rate sensitivity of the flow stress for the large strain region, including the viscous term at high strain rates, the true fracture strength and the true fracture strain were cleared for the material group of the ferrous metals. These systematical data may be useful to develop a practical constitutive model for computer codes, including a fracture criterion for simulations of the dynamic behavior in crash worthiness studies and of work-pieces subjected to dynamic plastic working for a wide strain rate range.

  18. Tensile tests of ITER TF conductors jacket materials

    NASA Astrophysics Data System (ADS)

    Anashkin, O. P.; Kеilin, V. E.; Krivykh, A. V.; Diev, D. N.; Dinisilov, A. S.; Shcherbakov, V. I.; Tronza, V. I.

    2012-06-01

    The set of very tough requirements has been formulated for TF jacket materials with extremely high plasticity at liquid helium temperature. The stainless steel 316LN-IG is recommended to be used for TF jacket tubes. Samples of 316LN-IG tubes (whole tubes and sub-size samples) made of the material from the same electro slag remelt have been tested in different conditions - as received tubes and tubes after prescribed compaction, 2.5% deformation at room temperature and heat treatment at 650 0C, 200 hours. The tensile tests were carried out at room, liquid nitrogen and liquid helium temperatures down to 4.2 K, meeting corresponding ASME and ASTM requirements. The low temperature testing devices are described. The tests results for sub-size samples and whole tubes show that the latter tests are considerably more representative and important for butt weld qualification at LHe temperature. It was observed that the ferromagnetic properties of all samples and especially of butt welds increase with lowering the temperature and increasing the degree of deformation. At LHe temperature a non-uniform and highly localized serrated deformations were observed.

  19. Direct laboratory tensile testing of select yielding rock bolt systems

    SciTech Connect

    VandeKraats, J.D.; Watson, S.O.

    1996-08-01

    Yielding rock bolt support systems have been developed to accommodate ground movement in shifting ground such as in coal operations; in creeping ground such as salt, trona, and potash; and in swelling ground associated with some clays. These systems, designed to remain intact despite ground movement, should enhance mine safety and help contain costs in areas where rebolting of rigid non-yielding systems is typically required. Four such systems were tested in straight tensile pulls in the laboratory. They include the Slip Nut System from Dywidag Systems International USA, Inc., Ischebeck`s bolt mounted Titan Load Indicator, Rocky Mountain Bolt Company`s Yielding Cable Bolt, and a rock bolt installed variation of the yielding steel post developed by RE/SPEC Inc. The first two systems are currently marketed products and the latter two are prototype systems. Each system responds to load and displacement by yielding in an unique manner. All are designed to yield at predetermined loads. A description of each system and its yield function is provided. Each system was tested over its prescribed yield range in a test machine. At least five tests were performed on each system. Each system yielded and continued to provide support according to its design. Each shows promise for ground control use in shifting or creeping rock. This work helps to illustrate the comparative differences in performance between these specialized systems and the applications where they may be most useful.

  20. TENSILE TESTING OF CARBON STEEL IN HIGH PRESSURE HYDROGEN

    SciTech Connect

    Duncan, A; Thad Adams, T; Ps Lam, P

    2007-05-02

    An infrastructure of new and existing pipelines and systems will be required to carry and to deliver hydrogen as an alternative energy source under the hydrogen economy. Carbon and low alloy steels of moderate strength are currently used in hydrogen delivery systems as well as in the existing natural gas systems. It is critical to understand the material response of these standard pipeline materials when they are subjected to pressurized hydrogen environments. The methods and results from a testing program to quantify hydrogen effects on mechanical properties of carbon steel pipeline and pipeline weld materials are provided. Tensile properties of one type of steel (A106 Grade B) in base metal, welded and heat affected zone conditions were tested at room temperature in air and high pressure (10.34 MPa or 1500 psig) hydrogen. A general reduction in the materials ability to plastically deform was noted in this material when specimens were tested in hydrogen. Furthermore, the primary mode of fracture was changed from ductile rupture in air to cleavage with secondary tearing in hydrogen. The mechanical test results will be applied in future analyses to evaluate service life of the pipelines. The results are also envisioned to be part of the bases for construction codes and structural integrity demonstrations for hydrogen service pipeline and vessels.

  1. On loading velocity oscillations during dynamic tensile testing with flying wheel systems

    NASA Astrophysics Data System (ADS)

    Erice, Borja; Roth, Christian; Gary, Gerard; Mohr, Dirk

    2015-09-01

    Flying Wheels (FW) provide a space-saving alternative to Split Hopkinson Bar (SHB) systems for generating the loading pulse for intermediate and high strain rate material testing. This is particularly attractive in view of performing ductile fracture experiments at intermediate strain rates that require a several milliseconds long loading pulse. More than 50 m long Hopkinson bars are required in that case, whereas the same kinetic energy (for a given loading velocity) can be stored in rather compact flying wheels (e.g. diameter of less than 1.5 m). To gain more insight into the loading capabilities of FW tensile testing systems, a simple analytical model is presented to analyze the loading history applied by a FW system. It is found that due to the presence of a puller bar that transmits the tensile load from the rotating wheel to the specimen, the loading velocity applied onto the specimen oscillates between about zero and twice the tangential loading speed applied by the FW. The theoretical and numerical evaluation for a specific 1.1 m diameter FW system revealed that these oscillations occur at a frequency in the kHz range, thereby questioning the approximate engineering assumption of a constant strain rate in FW tensile experiments at strain rates of the order of 100/s.

  2. Tensile Strength of Carbon Nanotubes Under Realistic Temperature and Strain Rate

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Cho, Kyeong-Jae; Srivastava, Deepak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Strain rate and temperature dependence of the tensile strength of single-wall carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from high-strain rate and temperature dependent molecular dynamics simulations, the model predicts that a defect free micrometer long single-wall nanotube at 300 K, stretched with a strain rate of 1%/hour, fails at about 9 plus or minus 1% tensile strain. This is in good agreement with recent experimental findings.

  3. The effectiveness of combined gripping method in tensile testing of UHMWPE single yarn

    NASA Astrophysics Data System (ADS)

    Wang, H. X.; Hazell, P. J.; Shankar, K.; Morozov, E. V.; Escobedo, J. P.

    2015-07-01

    This paper presents the experimental study on the effectiveness of combined gripping method employed in the tensile testing of UHMWPE (Dyneema® SK75) single yarn. Seven different solutions including epoxy, acrylic, and ethyl cyanoacrylate adhesives were tested under quasi-static loadings in order to determine the most effective adhesive for bonding UHMWPE single yarn to aluminium sheets. The ethyl cyanoacrylate adhesive combined with polyolefin surface primer was found to be the best choice which could prevent yarn slippage and ensure the failure of yarn occurs in the gauge section. The single yarns were then tested at three strain rates of 3.3×10-5, 3.3×10-3, and 0.33 s-1. The tensile strength, maximum strain, and Young's modulus were determined from the measured stress-strain curves and compared with the values from literature; the results showed these tensile properties of single yarn depend on strain rate over the range tested.

  4. High Strain Rate Tensile and Compressive Effects in Glassy Polymers

    DTIC Science & Technology

    2013-02-08

    polymers under high strain rates has been determined in compression. Some research programs have studied the combined effects of temperature and strain rate...glassy polymers to high strain rate loading in compression. More recently, research programs that study the combined effects of temperature and strain...Force Materiel Command  United States Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2013-006 High Strain Rate

  5. Investigation of the applicability of a tensile testing machine for measuring mucoadhesive strength.

    PubMed

    Dyvik, K; Graffner, C

    1992-01-01

    The applicability of a tensile testing machine (M30K, JJ Lloyd Instruments Ltd, GB) is investigated for measuring mucoadhesive strengths. A sample of an aqueous dispersion of a polymer with expected mucoadhesive properties is placed between two homemade discs of polyoxymethylene. The upper disc is mounted on a movable part of the machine while the lower disc is fixed on the stationary frame. A tensile force is submitted and the maximum detachment force at fracture and the adhesion work are estimated from the force displacement curve recorded. In some experiments, native mucous tissue of the large intestine of pigs was glued to the upper disc. Four polymers polycarbophil (Carbopol EX-55), carboxypolymethylene (Carbopol 934P), hydroxypropylmethylcellulose (Methocel K4M), and sodium alginate, are used in five different concentrations. At least three measurements are made of each polymer and concentration. Viscosity and osmolality are determined. By standardizing the time of sample equilibration and the run rate before measurement, it is possible to get good reproducibility of the tensile values. Based on the maximum nominal breaking force and the work consumed, it is concluded that the tensile strength is dependent both on the concentration and the type of polymer. The conclusions are the same independent of whether mucous pig tissue is used, or not. The same rank order in adhesive properties of the polymers is achieved as from using modified surface tensiometers.

  6. Tensile testing of nylon and Kevlar parachute materials under Federal specified temperature and relative humidity conditions

    SciTech Connect

    Botner, W.T.

    1980-01-01

    A small 10-ft x 12-ft temperature and relative humidity controlled room for tensile testing of parachute materials is presented. Tensile tests of nylon and Kevlar parachute materials indicate there is a negligible change in break strength of test samples soaked in the controlled environment vs samples soaked in ambient conditions.

  7. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOEpatents

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Asif, Syed Amanula Syed

    2013-05-07

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  8. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOEpatents

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Syed Asif, Syed Amanula

    2014-07-29

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  9. Effect of displacement rate on the tensile mechanics of pediatric cervical functional spinal units.

    PubMed

    Nuckley, David J; Hertsted, Suzanne M; Eck, Michael P; Ching, Randal P

    2005-11-01

    This study examined the effect of loading (displacement) rate on the tensile mechanics of cervical spine functional spinal units. A total of 40 isolated functional spinal units (two vertebrae and the adjoining soft tissues) from juvenile male baboons (10+/-0.6-human equivalent years old) were subjected to tensile loading spanning four orders of magnitude from 0.5 to 5000 mm/s. The stiffness, ultimate failure load, and corresponding displacement at failure were measured for each specimen and normalized by spinal geometry to examine the material properties as well as the structural properties. The tensile stiffness, failure load, normalized stiffness, and normalized failure load significantly increased (ANOVA, p<0.001) with increasing displacement rate. From the slowest to fastest loading rate, a two-fold increase in stiffness and four-fold increase in failure load were observed. The tensile failure strains (1.07+/-0.31 mm/mm strain) were not significantly correlated with loading rate (ANOVA, p=0.146). Both the functional (non-destructive stiffness and normalized stiffness) and failure mechanics of isolated functional spinal units exhibited a power-law relationship with displacement rate. Modeling efforts utilizing these rate-dependent characteristics will enhance our understanding of the tensile viscoelastic response of the spine and enable improved dynamic injury prevention schemes.

  10. Strength, Hardening, and Failure Observed by In Situ TEM Tensile Testing.

    PubMed

    Kiener, Daniel; Kaufmann, Petra; Minor, Andrew M

    2012-11-01

    We present in situ transmission electron microscope tensile tests on focused ion beam fabricated single and multiple slip oriented Cu tensile samples with thicknesses in the range of 100-200 nm. Both crystal orientations fail by localized shear. While failure occurs after a few percent plastic strain and limited hardening in the single slip case, the multiple slip samples exhibit extended homogenous deformation and necking due to the activation of multiple dislocation sources in conjunction with significant hardening. The hardening behavior at 1% plastic strain is even more pronounced compared to compression samples of the same orientation due to the absence of sample taper and the interface to the compression platen. Moreover, we show for the first time that the strain rate sensitivity of such FIB prepared samples is an order of magnitude higher than that of bulk Cu.

  11. Investigation on thermoformability of PLA by rheological and hot tensile tests

    NASA Astrophysics Data System (ADS)

    Garofalo, Emilia; Iannaccone, Giovanni; Scarfato, Paola; Di Maio, Luciano; Incarnato, Loredana

    2012-07-01

    In this work the correlation between the thermoformability of different grades of polylactide acid (PLA 4032D, PLA 4042D and PLA 2003D) and their mechanical, thermal, and rheological properties was explored. In particular, hot tensile tests, at different stretching temperatures and crosshead speeds, were performed in order to identify an optimum windows of temperature and strain rate for improved thermoforming performance. The properties measured from the creep experiments were correlated with the propensity of PLA sheet to sag, while the unrecovered strains by the creep recovery tests were associated to mold replication attitude of the materials investigated.

  12. Effects of temperature, strain rate, and vacancies on tensile and fatigue behaviors of silicon-based nanotubes

    NASA Astrophysics Data System (ADS)

    Jeng, Yeau-Ren; Tsai, Ping-Chi; Fang, Te-Hua

    2005-02-01

    This paper adopts the Tersoff-Brenner many-body potential function to perform molecular dynamics simulations of the tensile and fatigue behaviors of hypothetical silicon-based tubular nanostructures at various temperatures, strain rates, and vacancy percentages. The tensile test results indicate that with a predicted Young’s modulus of approximately 60GPa , silicon nanotubes (SiNTs) are significantly less stiff than conventional carbon nanotubes. It is observed that the presence of hydrogen has a significant influence on the tensile strength of SiNTs . Additionally, the present results indicate that the tensile strength clearly decreases with increasing temperature and with decreasing strain rate. Moreover, it is shown that the majority of the mechanical properties considered in the present study decrease with an increasing vacancy percentage. Regarding the fatigue tests, this study uses a standard theoretical model to derive curves of amplitude stress versus number of cycles for the current nanotubes. The results demonstrate that the fatigue limit of SiNTs increases with a decreasing vacancy percentage and with increasing temperature.

  13. Effects of strain-rate and pre-fatigue on tensile properties of laser welded joint of high strength steel plates

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Daimaruya, M.; Tsuda, H.; Horikawa, K.

    2006-08-01

    The impact tensile properties of laser welded butt joints of two kinds of high strength steel plates with the tensile strength level of 590 MPa and 780 MPa (denoted by HR590 and HR780, respectively), were investigated using split Hopkinson bar tensile testing apparatus. Impact tension tests for the joint specimens pre-fatigued were also carried out to examine the effect of pre-fatigue. There were no significant effects of strain-rate and pre-fatigue on the dynamic and quasi-static tensile strength of laser welded butt joints. However, the decrease in the elongation of HR780 welded joints subjected high cycle pre-fatigue was observed only at a high strain-rate. From the observation of fracture surface, it was found that the decrease in the elongation may be caused by a number of damages due to the combination of high cycle pre-fatigue and high strain-rate.

  14. Dependence of Dynamic Tensile Strength of Longyou Sandstone on Heat-Treatment Temperature and Loading Rate

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Xu, Ying; Wang, Wei; Kanopolous, Patrick

    2016-10-01

    As a material for famous historical underground rock caverns, Longyou sandstone (LS) may fail under the combination of high loading rate and high temperature. The thermal damage induced by various heat-treatment temperatures (150, 250, 350, 450, 600 and 850 °C) is first characterized by X-ray Micro-computed tomography (CT) method. The damage variable derived from the average CT value for heat-treated LS specimen and reference specimen without heat treatment was used to quantify the thermal damage. The dynamic tensile strengths of these LS samples under different dynamic loading rates (ranging from 24 to 540 GPa/s) were then obtained using the split Hopkinson pressure bar (SHPB) system. The dynamic tensile strength of LS increases with the loading rate at a given heat-treatment temperature, and the tensile strength at the same loading rate decreases with the heat-treatment temperature except for 450 °C. Based on the experimental data, an empirical equation was established to relate the dynamic tensile strength of LS to the loading rate and the heat-treatment temperature.

  15. Design and Validation of a Vacuum Assisted Anchorage for the Uniaxial Tensile Testing of Soft Materials

    PubMed Central

    Blose, Kory J.; Pichamuthu, Joseph E.; Weinbaum, Justin S.; Vorp, David A.

    2016-01-01

    Current commercial tensile testing systems use spring-loaded or other compression-based grips to clamp materials in place posing a problem for very soft or delicate materials that cannot withstand this mechanical clamping force. In order to perform uniaxial tensile tests on soft tissues or materials, we have created a novel vacuum-assisted anchor (VAA). Fibrin gels were subjected to uniaxial extension, and the testing data was used to determine material mechanical properties. Utilizing the VAA, we achieved successful tensile breaks of soft fibrin gels while finding statistically significant differences between the mechanical properties of gels fabricated at two different fibrinogen concentrations. PMID:27795696

  16. Constitutive modeling of the dynamic-tensile-extrusion test of PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; Brown, E. N.; Trujillo, C. P.; Gray, G. T.

    2017-01-01

    Use of polymers in defense, aerospace and industrial applications under extreme loading conditions makes prediction of the behavior of these materials very important. Crucial to this is knowledge of the physical damage response in association with phase transformations during loading and the ability to predict this via multi-phase simulation accounting for thermodynamical non-equilibrium and strain rate sensitivity. The current work analyzes Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during loading and subsequent tension are analyzed using a two-phase rate sensitive material model implemented in the CTH hydrocode. The calculations are compared with experimental high-speed photography. Deformation patterns and their link with changing loading modes are analyzed numerically and correlated to the test observations. It is concluded that the phase transformation is not as critical to the response of PTFE under Dyn-Ten-Ext loading as it is during the Taylor rod impact testing.

  17. Tensile behaviour of geopolymer-based materials under medium and high strain rates

    NASA Astrophysics Data System (ADS)

    Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio

    2015-09-01

    Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.

  18. Test system accurately determines tensile properties of irradiated metals at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Levine, P. J.; Skalka, R. J.; Vandergrift, E. F.

    1967-01-01

    Modified testing system determines tensile properties of irradiated brittle-type metals at cryogenic temperatures. The system includes a lightweight cryostat, split-screw grips, a universal joint, and a special temperature control system.

  19. Tensile Properties, Ferrite Contents, and Specimen Heating of Stainless Steels in Cryogenic Gas Tests

    SciTech Connect

    Ogata, T.; Yuri, T.; Ono, Y.

    2006-03-31

    We performed tensile tests at cryogenic temperatures below 77 K and in helium gas environment for SUS 304L and SUS 316L in order to obtain basic data of mechanical properties of the materials for liquid hydrogen tank service. We evaluate tensile curves, tensile properties, ferrite contents, mode of deformation and/or fracture, and specimen heating during the testing at 4 to 77 K. For both SUS 304L and 316L, tensile strength shows a small peak around 10 K, and specimen heating decreases above 30 K. The volume fraction of {alpha}-phase increases continuously up to 70 % with plastic strain, at approximately 15 % plastic strain for 304L and up to 35 % for 316L. There was almost no clear influence of testing temperature on strain-induced martensitic transformation at the cryogenic temperatures.

  20. Constitutive Modeling of the Dynamic-Tensile-Extrusion Test of PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, Anatoly; Brown, Eric; Trujillo, Carl; Gray, George

    2015-06-01

    Use of polymers in the defence, aerospace and industrial application at extreme conditions makes prediction of behaviour of these materials very important. Crucial to this is knowledge of the physical damage response in association with the phase transformations during the loading and the ability to predict this via multi-phase simulation taking the thermodynamical non-equilibrium and strain rate sensitivity into account. The current work analyses Dynamic-Tensile-Extrusion (DTE) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during the loading with subsequent tension are analysed using a two-phase rate sensitive material model implemented in the CTH hydrocode and the calculations are compared with experimental high-speed photography. The damage patterns and their link with the change of loading modes are analysed numerically and are correlated to the test observations.

  1. Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids

    NASA Astrophysics Data System (ADS)

    Dai, F.; Xia, K.; Luo, S. N.

    2008-12-01

    We propose and validate an indirect tensile testing method to measure the dynamic tensile strength of rocks and other brittle solids: semicircular bend (SCB) testing with a modified split Hopkinson pressure bar (SHPB) system. A strain gauge is mounted near the failure spot on the specimen to determine the rupture time. The momentum trap technique is utilized to ensure single pulse loading for postmortem examination. Tests without and with pulse shaping are conducted on rock specimens. The evolution of tensile stress at the failure spot is determined via dynamic and quasistatic finite element analyses with the dynamic loads measured from SHPB as inputs. Given properly shaped incident pulse, far-field dynamic force balance is achieved and the peak of the loading matches in time with the rupture onset of the specimen. In addition, the dynamic tensile stress history at the failure spot obtained from the full dynamic finite element analysis agrees with the quasistatic analysis. The opposite occurs for the test without pulse shaping. These results demonstrate that when the far-field dynamic force balance is satisfied, the inertial effects associated with stress wave loading are minimized and thus one can apply the simple quasistatic analysis to obtain the tensile strength in the SCB-SHPB testing. This method provides a useful and cost effective way to measure indirectly the dynamic tensile strength of rocks and other brittle materials.

  2. Validating Material Modelling of OFHC Copper Using Dynamic Tensile Extrusion (DTE) Test at Different Impact Velocity

    NASA Astrophysics Data System (ADS)

    Bonora, Nicola; Testa, Gabriel; Ruggiero, Andrew; Iannitti, Gianluca; Hörnqvist, Magnus; Mortazavi, Nooshin

    2015-06-01

    In the Dynamic Tensile Extrusion (DTE) test, the material is subjected to very large strain, high strain rate and elevated temperature. Numerical simulation, validated comparing with measurements obtained on soft-recovered extruded fragments, can be used to probe material response under such extreme conditions and to assess constitutive models. In this work, the results of a parametric investigation on the simulation of DTE test of annealed OFHC copper - at impact velocity ranging from 350 up to 420 m/s - using phenomenological and physically based models (Johnson-Cook, Zerilli-Armstrong and Rusinek-Klepaczko), are presented. Preliminary simulation of microstructure evolution was performed using crystal plasticity package CPFEM, providing, as input, the strain history obtained with FEM at selected locations along the extruded fragments. Results were compared with EBSD investigation.

  3. Validating material modelling for OFHC copper using dynamic tensile extrusion (DTE) test at different velocity impact

    NASA Astrophysics Data System (ADS)

    Bonora, N.; Testa, G.; Ruggiero, A.; Iannitti, G.; Colliander, M. Hörnquist; Mortazavi, N.

    2017-01-01

    In the Dynamic Tensile Extrusion (DTE) test, the material is subjected to very large strain, high strain rate and elevated temperature. Numerical simulation, validated comparing with measurements obtained on soft-recovered extruded fragments, can be used to probe material response under such extreme conditions and to assess constitutive models. In this work, the results of a parametric investigation on the simulation of DTE test of annealed OFHC copper - at impact velocity ranging from 350 up to 420 m/s - using the modified Rusinek-Klepaczko model, are presented. Simulation of microstructure evolution was performed using the visco-plastic self consistent model (VPSC), providing, as input, the velocity gradient history obtained with FEM at selected locations along the axis of the fragment trapped in the extrusion die. Finally, results are compared with EBSD analysis.

  4. Intrinsic tensile properties of cocoon silk fibres can be estimated by removing flaws through repeated tensile tests

    PubMed Central

    Rajkhowa, Rangam; Kaur, Jasjeet; Wang, Xungai; Batchelor, Warren

    2015-01-01

    Silk fibres from silkworm cocoons have lower strength than spider silk and have received less attention as a source of high-performance fibres. In this work, we have used an innovative procedure to eliminate the flaws gradually of a single fibre specimen by retesting the unbroken portion of the fibre, after each fracture test. This was done multiple times so that the final test may provide the intrinsic fibre strength. During each retest, the fibre specimen began to yield once the failure load of the preceding test was exceeded. For each fibre specimen, a composite curve was constructed from multiple tests. The composite curves and analysis show that strengths of mass-produced Muga and Eri cocoon silk fibres increased from 446 to 618 MPa and from 337 to 452 MPa, respectively. Similarly, their toughness increased from 84 to 136 MJ m−3 and from 61 to 104 MJ m−3, respectively. Composite plots produced significantly less inter-specimen variations compared to values from single tests. The fibres with reduced flaws as a result of retests in the tested section have a tensile strength and toughness comparable to naturally spun dragline spider silk with a reported strength of 574 MPa and toughness of 91–158 MJ m−3, which is used as a benchmark for developing high-performance fibres. This retesting approach is likely to provide useful insights into discrete flaw distributions and intrinsic mechanical properties of other fatigue-resistant materials. PMID:25948613

  5. Advances in post-necking flow curve identification of sheet metal through standard tensile testing

    NASA Astrophysics Data System (ADS)

    Coppieters, Sam; Cooreman, Steven; Debruyne, Dimitri; Kuwabara, Toshihiko

    2013-12-01

    The standard tensile test is still the most common material test to identify the hardening behavior of sheet metal. When using standard equipment and well-known analytical formulas, however, the hardening behavior can only be identified up to the point of maximum uniform elongation. Several methods which deal with the problem of extended flow curve identification of sheet metal through a tensile test have been proposed in the past. This paper gives an overview of the four classes of methods to identify post-necking hardening behavior of sheet metal through tensile testing. In addition, identification methods from the first (average values across the neck), second (Bridgeman correction, modified Siebel and Schwaigerer correction) and third class (special case of the VFM) are used to identify the post-necking hardening behavior of DC05. Finally, these results are used to assess the validity of the different methods.

  6. Acoustic emission monitoring of tensile testing of corroded and un-corroded clad aluminum 2024-T3 and characterization of effects of corrosion on AE source events and material tensile properties

    NASA Astrophysics Data System (ADS)

    Okafor, A. Chukwujekwu; Natarajan, Shridhar

    2014-02-01

    Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.

  7. Instrumented impact and residual tensile strength testing of eight-ply carbon eopoxy specimens

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1990-01-01

    Instrumented drop weight impact testing was utilized to examine a puncture-type impact on thin carbon-epoxy coupons. Four different material systems with various eight-ply lay-up configurations were tested. Specimens were placed over a 10.3-mm diameter hole and impacted with a smaller tup (4.2-mm diameter) than those used in previous studies. Force-time plots as well as data on absorbed energy and residual tensile strength were gathered and examined. It was found that a critical impact energy level existed for each material tested, at which point tensile strength began to rapidly decrease with increasing impact energy.

  8. Mechanical state assessment using lamb wave technique in static tensile tests

    NASA Astrophysics Data System (ADS)

    Burkov, M. V.; Shah, R. T.; Eremin, A. V.; Byakov, A. V.; Panin, S. V.

    2016-11-01

    The paper deals with the investigation of Lamb wave ultrasonic technique for damage (or mechanical state) evaluation of AA7068T3 specimens in the course of tensile testing. Two piezoelectric transducers (PZT), one of which is used as an actuator and the other as sensor, were adhesively bonded on the specimen surface using epoxy. Two frequencies of testing signals (60 kHz and 350 kHz) were used. The set of static tensile tests were performed. The recorded signals were processed to calculate the informative parameters in order to evaluate the changes in stress-strain state of the specimens and their microstructure.

  9. Mechanical tensile testing of titanium 15-3-3-3 and Kevlar 49 at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    James, B. L.; Martinez, R. M.; Shirron, P.; Tuttle, J.; Galassi, N. M.; McGuinness, D. S.; Puckett, D.; Francis, J. J.; Flom, Y.

    2012-06-01

    Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thermal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.

  10. Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques.

    PubMed

    Walsh, M T; Cunnane, E M; Mulvihill, J J; Akyildiz, A C; Gijsen, F J H; Holzapfel, G A

    2014-03-03

    The pathological changes associated with the development of atherosclerotic plaques within arterial vessels result in significant alterations to the mechanical properties of the diseased arterial wall. There are several methods available to characterise the mechanical behaviour of atherosclerotic plaque tissue, and it is the aim of this paper to review the use of uniaxial mechanical testing. In the case of atherosclerotic plaques, there are nine studies that employ uniaxial testing to characterise mechanical behaviour. A primary concern regarding this limited cohort of published studies is the wide range of testing techniques that are employed. These differing techniques have resulted in a large variance in the reported data making comparison of the mechanical behaviour of plaques from different vasculatures, and even the same vasculature, difficult and sometimes impossible. In order to address this issue, this paper proposes a more standardised protocol for uniaxial testing of diseased arterial tissue that allows for better comparisons and firmer conclusions to be drawn between studies. To develop such a protocol, this paper reviews the acquisition and storage of the tissue, the testing approaches, the post-processing techniques and the stress-strain measures employed by each of the nine studies. Future trends are also outlined to establish the role that uniaxial testing can play in the future of arterial plaque mechanical characterisation.

  11. Dependence on displacement rate of radiation-induced changes in microstructure and tensile properties of AISI 304 and 316

    SciTech Connect

    Brager, H.R.; Blackburn, L.D.; Greenslade, D.L.

    1983-08-01

    Annealed specimens of AISI 304 and 316 were irradiated in the EBR-II fast reactor at approx. 400/sup 0/C over a range of neutron fluxes and energy spectra. Tensile tests show that the hardening of the AISI 304 is sensitive to the displacement rate while the hardening of AISI 316 is not. However, the microstructures of both AISI 304 and 316 are influenced by displacement rate. The increase in yield strength of the specimens is correlated with the contribution of the various microstructural components produced during irradiation. The insensitivity in the hardening of AISI 316 to displacement rate arises because the strengthening contribution from precipitates increases with displacement rate, whereas the strengthening contribution from voids decreases.

  12. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  13. Determination of tensile and compressive moduli of laminae in unidirectionally reinforced laminate by flexural tests

    NASA Astrophysics Data System (ADS)

    Kuklinski, Mariusz

    2017-03-01

    The Euler-Bernoulli beam theory is widely used in engineering despite of various simplifications. One of which, that do matters in this article, is neglecting the difference between tensile and compressive moduli. Experimental tests reveal that for fibre reinforced composites tensile moduli are generally greater than compressive ones. This paper presents the results of testing the laminate composed of four unidirectionally glass reinforced laminae separated by layers of glass mat. The specimens were subjected to flexural, tensile and compressive loading in order to calculate corresponding moduli of elasticity. The results were compared using equations of Classical Beam Theory. Knowing the tensile and compressive moduli of glass mat reinforced laminae and performing flexural tests of laminate it is possible to calculate the tensile and compressive moduli of unidirectionally glass reinforced laminae. The experimental data taken into calculations correspond to linear normal strains of 0.0005 and 0.0025. The experimental data are consistent with results of calculations within acceptable margin of tolerance.

  14. ATI SAA Annex 3 Button Tensile Test Report I

    NASA Technical Reports Server (NTRS)

    Tang, Henry H.

    2013-01-01

    This report documents the results of a study carried out under Splace Act Agreement SAA-EA-10-004 between the National Aeronautics and Space Administration (NASA) and Astro Technology Incorpporated (ATI). NASA and ATI have entered into this agreement to collaborate on the development of technologies that can benefit both the US government space programs and the oil and gas industry. The report documents the results of a test done on an adnesive system for attaching new monitoring sensor devices to pipelines under Annex III of SAA-EA-10-004: "Proof-of-Concept Design and Testing of a Post Installed Sensing Device on Subsea Risers and Pipelines". The tasks of Annex III are to design and test a proof-of-concept sensing device for in-situ installation on pipelines, risers, or other structures deployed in deep water. The function of the sensor device is to measure various signals such as strain, stress and temperature. This study complements the work done, in Annex I of the SAA, on attaching a fiber optic sensing device to pipe via adhesive bonding. Both Annex I and Annex III studies were conducted in the Crew and Thermal System Division (CTSD) at the Johnson Space Center (JSC) in collaboration with ATI.

  15. Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2002-01-01

    A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

  16. High Velocity Tensile Test for Thin Plate Specimen with One Bar Method

    NASA Astrophysics Data System (ADS)

    Itabashi, Masaaki

    In order to design thin-walled impact-resistant structure, for example, an automotive body, dynamic behavior of thin plate is essential. So far, except for laminated composite materials, high velocity tensile test of thin plate specimen did not attract impact researchers' and engineers' attention very much. In this paper, the previous thin plate specimen assembly for the one bar method was improved. The one bar method has been utilized for cylindrical specimens of various solid materials and is known as an effective high velocity tensile testing technique. Unfortunately, the previous assembly introduced a tremendous initial peak on stress-strain curves, even for aluminum alloys. With a new specimen assembly, stress-strain curves for IF (Interstitial-atom Free) steel and 7075-T6 aluminum alloy obtained by the one bar method were almost equivalent to those obtained by the tensile version of the split Hopkinson pressure bar method.

  17. Effect of strain rate and temperature on the tensile properties of MANET II steel

    SciTech Connect

    Ghoneim, M.M.

    1997-08-01

    MANET II, a modified 12% Cr steel with the German designation DIN 1.4914, is a candidate structural material for the first wall and blanket in fusion reactors. In the present study, the tensile properties of this steel were investigated in the temperature range of 25 to 350 C at strain rates of 5 {times} 10{sup {minus}5}, 1.2 {times} 10{sup {minus}4}, and 1.2 {times} 10{sup {minus}3}s{sup {minus}1}. Both microstructure and fracture surfaces were examined using optical and scanning electron microscopic (SEM) techniques. The results showed that the steel suffers dynamic strain aging, although no serrated flow was observed. Yield strength, ultimate strength, and elongation showed negative strain rate sensitivity. Dynamic strain aging also affected the strain hardening rate. Results are discussed with regard to the chemical composition and fracture surface morphology.

  18. Powder flow studies III: tensile strength, consolidation ratio, flow rate, and capsule-filling-weight variation relationships.

    PubMed

    Chowhan, Z T; Yang, I C

    1981-08-01

    The tensile strength of consolidated powder beds was studied by applying a series of loads to the surface of the powder beds in a tensile tester. The results were plotted as tensile strength versus consolidation pressure. The linearity of these plots suggests a direct relationship between tensile strength and consolidation pressure. The following plots gave linear relationships: (1) tensile strength versus consolidation ratio, (b) tensile strength versus coefficient of variation of the filled weight of the capsules, and (c) logarithm of the tensile strength versus logarithm of the flow rate. These results suggest a direct relationship between tensile strength and consolidation ratio and their usefulness in studying powder flow. The physical significance of the empirical equation used in consolidation studies was explored. A comparison of the empirical equation with a theoretically derived equation, under certain assumptions, suggests that the consolidation ratio is a function of the ratio of the initial volume to the net volume and a function of the coefficient of Rankine. The coefficient of Rankine is a function of the angle of internal friction in the static powder bed.

  19. Mechanical Testing of TR-55 Rubber Thermally Aged Under Tensile Strain

    SciTech Connect

    Small IV, W; Alviso, C T; Wilson, T S; Chinn, S C; Maxwell, R S

    2009-03-10

    TR-55 rubber specimens were previously subjected to an aging process consisting of the application of a tensile strain of approximately 67%, 100%, 133%, or 167% elongation for 4, 8, 12, or 16 h at either 250 C or room temperature. Control specimens at the same temperatures/durations were not subjected to tensile strain. The specimens were allowed to recover at room temperature without external stimuli for over 100 days before tensile testing. A single dog bone was cut from each specimen and a stress-strain curve was obtained. The elastic modulus of each specimen was calculated. Specimens aged under tensile strain exhibited rubber-like behavior dependent on the aging elongation and duration. This behavior was not evident in the unstrained controls. For the unstrained controls, exposure to 250 C resulted in an increase in modulus relative to the unheated material independent of the heating duration. The tensile strain applied during the aging process caused a reduction in modulus relative to the controls; lower moduli were observed for the shorter aging durations. Slippage of the specimens in the grips prevented determination of ultimate strength, as all specimens either slipped completely out of the grip before failure or failed at the original grip edge after slipping.

  20. Strain rate dependence of the tensile properties of V-(4--5%)Cr-(4--5%)Ti irradiated in EBR-II and HFBR

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.; Robertson, J.P.; Rowcliffe, A.F.

    1998-03-01

    Elevated temperature tensile tests performed on V-(405)Cr-(4-5)Ti indicate that the yield stress increases with increasing strain rate for irradiation and test temperatures near 200 C, and decreases with increasing strain rate for irradiation and test temperatures near 400 C. This observation is in qualitative agreement with the temperature-dependent strain rate effects observed on unirradiated specimens, and implies that some interstitial solute remains free to migrate in irradiated specimens. Additional strain rate data at different temperatures are needed.

  1. Test report: effect of specimen orientation and location on the tensile properties of GTS forging 1472859

    SciTech Connect

    Melcher, Ryan J

    2008-02-12

    ASTM standardized tensile tests were performed on GTS WR-quality 1472859 forging (21-6- 9 material) to determine the dependence of tensile properties on specimen orientation (longitudinal vs. transverse) with respect to forging ‘grain flow’ and location within the forging. Statistical analyses of the results show that location has a statistically measurable effect on the longitudinal tensile properties (as compared to the error involved in tensile testing). However, this dependence of the properties with location, especially in the circumferential orientation, causes large variability in the results that clouds the statistical determination of any orientation effect. As a result, this forging is determined to be inhomogeneous along the forging length, with a significant range in properties observed (e.g. yield strengths from 85 to 117 ksi) and highest strength/lowest ductility in the spherical region. Additional specimens should be tested to acquire a higher resolution view of this inhomogeneity if the end use of the data is structural integrity analyses using spatially dependent properties; however, sufficient data is provided in this study to extract a statistical lower bound for conservative, homogeneous structural analysis.

  2. Biaxial Tensile Test of Cold Rolled IF Steel Sheet for Large Plastic Strain Range

    NASA Astrophysics Data System (ADS)

    Enatsu, Ryotaro; Kuwabara, Toshihiko

    2011-08-01

    Deformation behavior of cold rolled IF steel sheet (SPCE) under biaxial tension has been investigated for large plastic strain range over 15%. The test material was bent and TIG welded to form a tubular specimen with an outer diameter of 46.2 mm and wall thickness of 0.8 mm. The tubular specimens have been subjected to linear stress paths in the first quadrant of stress space with the use of a servo-controlled tension-internal pressure testing machine developed by one of the authors [T. Kuwabara, K. Yoshida, K. Narihara, S. Takahashi, Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure, Int. J. Plasticity 21, 101-117 (2005)]. Moreover, biaxial tensile tests using a cruciform specimen have also been carried out to more precisely measure the deformation behavior for a small strain range following initial yielding. True stress-true plastic strain curves, contours of plastic work in stress space and the directions of plastic strain rates have been measured and compared with those calculated using selected yield functions: the von Mises, Hill's quadratic and Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H., Chu, E., Plane stress yield function for aluminum alloy sheets—Part 1: Theory. Int. J. Plasticity 19, 1297-1319 (2003)]. The plastic deformation behavior up to a work equivalent plastic strain of ɛ0p = 0.19 has been successfully measured. It is found that the test material exhibits differential hardening and that the Yld2000-2d yield function with an exponent of six most closely predicts the contours of plastic work and the directions of plastic strain rates.

  3. Development of a miniature tensile Kolsky bar for dynamic testing of thin films

    NASA Astrophysics Data System (ADS)

    Paul, Jastin V.

    Mechanical properties such as yield stress and ultimate strength are most commonly obtained under quasi-static (strain rate of 10--4 s--1) loading conditions Materials such as metals, ceramics, and polymers may exhibit significant changes in mechanical response when subjected to high strain rate (102 --105 per second) conditions. The loading rate or strain rate can affect the material properties such as elastic modulus, yield strength, work hardening, and ductility. To ensure product quality and reliability under impact conditions, the mechanical responses of materials under dynamic loading conditions must be characterized. A Kolsky bar is a tool that can be used to study the uniaxial compressive constitutive behavior of materials under high strain rates. The goal of this thesis is to develop a miniature Tensile Kolsky bar that can be used to test materials with thickness on the order of 200 micrometers (thin foils). The system consists of a cylindrical launch tube with an internal striker, a rectangular incident bar and a transmitted bar. The specimen is held in pockets that were milled directly into the incident and transmitted bar. The rectangular incident and transmitted bars facilitate specimen and strain gage mounting. The rectangular section also provides a reduced cross sectional bar area compared to a bar of circular cross section with diameter equivalent to the width of the rectangular bar, which increases the system sensitivity. This thesis presents the detailed description of the miniature Kolsky bar device, specimen geometry, diagnostic techniques and different calibration and validation techniques used for developing the system. The Kolsky bar setup was used to test 99.9 percent pure magnesium at two different strain rates (5000 and 10000 per second). Specimens were cut from billets processed via the 4Bc equal channel angular extrusion route and were tested in three different directions: extrusion, longitudinal and transverse. The results from the

  4. Ten deg off-axis tensile test for intralaminar shear characterization of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1976-01-01

    A combined theoretical and experimental investigation was conducted to assess the suitability of the 10 deg off-axis tensile test specimen for the intralaminar shear characterization of unidirectional composites. Composite mechanics, a combined-stress failure criterion, and a finite element analysis were used to determine theoretically the stress-strain variation across the specimen width and the relative stress and strain magnitudes at the 10 deg plane. Strain gages were used to measure the strain variation across the specimen width at specimen midlength and near the end tabs. Specimens from Mod-I/epoxy, T-300/epoxy, and S-glass/epoxy were used in the experimental program. It was found that the 10 deg off-axis tensile test specimen is suitable for intralaminar shear characterization and it is recommended that it should be considered as a possible standard test specimen for such a characterization.

  5. Deformation Behavior of Severely Deformed Al and Related Mechanisms Through Warm Tensile Test

    NASA Astrophysics Data System (ADS)

    Charkhesht, V.; Kazeminezhad, M.

    2017-03-01

    Flow stress and ductility behaviors of the annealed and severely deformed Al were investigated at warm deformation temperatures. Constrained groove pressing (CGP) method as a severe plastic deformation process was used. The tensile test was carried out at the temperature range of the 298-573 K and strain rate range of 0.001-0.1 s-1 to present the elevated temperature deformation behavior utilizing hyperbolic sine constitutive equation. The flow stress of the CGPed sample is increased with the number of CGP passes and decreased with temperature. Dynamic recovery and strain softening are found as main restoration mechanisms. Flow stress amounts are not remarkably affected by the strain rate. Values of the elongation are decreased with the number of CGP passes. Values of the calculated strain rate sensitivity are utilized to justify the elongation behavior. Shear bands created by CGP remarkably decrease the fracture elongation values. Temperature interval of 298-473 K cannot remarkably affect the flow stress and ductility. The interval of 473-573 K is chosen as critical temperature interval in which the values of flow stress and elongation are remarkably decreased and increased, respectively. Increasing the temperature up to 573 K causes recrystallization in shear bands. Scanning electron microscope was used to study fracture surface which can truly predict the elongation behavior. With increasing the temperature, the shear decohesion area is gradually replaced with fully dimpled structures. Finally, hot deformation activation energy for CGPed samples was calculated about 85 kJ/mol which is close to the grain boundary diffusion activation energy in pure Al.

  6. Deformation Behavior of Severely Deformed Al and Related Mechanisms Through Warm Tensile Test

    NASA Astrophysics Data System (ADS)

    Charkhesht, V.; Kazeminezhad, M.

    2017-01-01

    Flow stress and ductility behaviors of the annealed and severely deformed Al were investigated at warm deformation temperatures. Constrained groove pressing (CGP) method as a severe plastic deformation process was used. The tensile test was carried out at the temperature range of the 298-573 K and strain rate range of 0.001-0.1 s-1 to present the elevated temperature deformation behavior utilizing hyperbolic sine constitutive equation. The flow stress of the CGPed sample is increased with the number of CGP passes and decreased with temperature. Dynamic recovery and strain softening are found as main restoration mechanisms. Flow stress amounts are not remarkably affected by the strain rate. Values of the elongation are decreased with the number of CGP passes. Values of the calculated strain rate sensitivity are utilized to justify the elongation behavior. Shear bands created by CGP remarkably decrease the fracture elongation values. Temperature interval of 298-473 K cannot remarkably affect the flow stress and ductility. The interval of 473-573 K is chosen as critical temperature interval in which the values of flow stress and elongation are remarkably decreased and increased, respectively. Increasing the temperature up to 573 K causes recrystallization in shear bands. Scanning electron microscope was used to study fracture surface which can truly predict the elongation behavior. With increasing the temperature, the shear decohesion area is gradually replaced with fully dimpled structures. Finally, hot deformation activation energy for CGPed samples was calculated about 85 kJ/mol which is close to the grain boundary diffusion activation energy in pure Al.

  7. A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals

    NASA Astrophysics Data System (ADS)

    Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.

    2017-01-01

    Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.

  8. A Microsample Tensile Test Application: Local Strength of Impact Welds Between Sheet Metals

    NASA Astrophysics Data System (ADS)

    Benzing, J. T.; He, M.; Vivek, A.; Taber, G. A.; Mills, M. J.; Daehn, G. S.

    2017-03-01

    Microsample tensile testing was conducted to evaluate the quality of impact welds created by vaporizing foil actuator welding. Tensile test samples with a gauge length of 0.6 mm were electro-discharge machined out of welds created between 1-mm-thick aluminum alloy type 6061 (AA6061) sheets and 6-mm-thick copper (Cu110) plates. Aluminum sheets were used as flyers, while copper plates acted as targets. Flyer sheets in T6 as well as T4 temper conditions were utilized to create welds. Some of the welds made with T4 temper flyers were heat treated to a T6 temper. It was found that the welds made with T4 temper flyers were slightly stronger (max. of 270 MPa) than those produced with T6 temper flyers. Generally, failure propagated in a brittle manner across the weld interface; however, elemental mapping reveals material transfer on either member of the welded system. This work proves the feasibility to apply microsample tensile testing to assess impact welding, even when conducted with flyer sheets of 1 mm or less, and provides insight that is complementary to other test methods.

  9. A novel strategy for utilizing voice coil servoactuators in tensile tests of low volume protein hydrogels

    PubMed Central

    Saqlain, Farees; Popa, Ionel; Fernández, Julio M.; Alegre-Cebollada, Jorge

    2015-01-01

    We present a novel tensile testing system optimized for the mechanical loading of microliter volume protein hydrogels. Our apparatus incorporates a voice coil servoactuator capable of carrying out fixed velocity extension-relaxation cycles as well as extension step protocols. The setup is equipped with an acrylic cuvette permitting day-long incubations in solution. To demonstrate the functionality of the device, we photochemically crosslinked polyproteins of the I91 immunoglobulin domain from the muscle protein titin to create solid hydrogels that recapitulate elastic properties of muscle. We present data from tensile tests of these low volume biomaterials that support protein unfolding as a main determinant of the elasticity of protein hydrogels. Our results demonstrate the potential use of protein hydrogels as biomaterials whose elastic properties dynamically respond to their environment. PMID:25960689

  10. Tensile test of pressureless-sintered silicon nitride at elevated temperature

    NASA Technical Reports Server (NTRS)

    Matsusue, K.; Fujisawa, Y.; Takahara, K.

    1985-01-01

    Uniaxial tensile strength tests of pressureless sintered silicon nitride were carried out in air at temperatures ranging from room temperature up to 1600 C. Silicon nitrides containing Y2O3, Al2O3, Al2O3-MgO, or MgO-CeO2 additives were tested. The results show that the composition of the additive used influences the strength characteristics of the silicon nitride. The tensile strength rapidly decreased at temperatures above 1000 C for the materials containing MgO as the additive and above 1000 C for the material with Y2O3. When the temperature increased to as high as 1300 C, the strength decreased to about 10 percent of the room temperature strength in each case. Observations of the fracture origin and of the crack propagation on the fracture surfaces are discussed.

  11. Microstructure and fracture behavior of F82H steel under different irradiation and tensile test conditions

    NASA Astrophysics Data System (ADS)

    Wang, K.; Dai, Y.; Spätig, P.

    2016-01-01

    Specimens of martensitic steel F82H were irradiated to doses ranging from 10.7 dpa/850 appm He to 19.6 dpa/1740 appm He at temperatures between 165 and 305 °C in the second experiment of SINQ Target Irradiation Program (STIP-II). Tensile tests were conducted at different temperatures and various fracture modes were observed. Microstructural changes including irradiation-induced defect clusters, dislocation loops and helium bubbles under different irradiation conditions were investigated using transmission electron microscopy (TEM). The deformation microstructures of tensile tested specimens were carefully examined to understand the underlying deformation mechanisms. Deformation twinning was for the first time observed in irradiated martensitic steels. A change of deformation mechanism from dislocation channeling to deformation twinning was observed when the fracture mode changed from rather ductile (quasi-cleavage) to brittle (intergranular or cleavage and intergranular mixed).

  12. Ethylene propylene cable degradation during LOCA research tests: tensile properties at the completion of accelerated aging

    SciTech Connect

    Bustard, L.D.

    1982-05-01

    Six ethylene-propylene rubber (EPR) insulation materials were aged at elevated temperature and radiation stress exposures common in cable LOCA qualification tests. Material samples were subjected to various simultaneous and sequential aging simulations in preparation for accident environmental exposures. Tensile properties subsequent to the aging exposure sequences are reported. The tensile properties of some, but not all, specimens were sensitive to the order of radiation and elevated temperature stress exposure. Other specimens showed more severe degradation when simultaneously exposed to radiation and elevated temperature as opposed to the sequential exposure to the same stresses. Results illustrate the difficulty in defining a single test procedure for nuclear safety-related qualification of EPR elastomers. A common worst-case sequential aging sequence could not be identified.

  13. Thermal and tensile strength testing of thermally-conductive adhesives and carbon foam

    NASA Astrophysics Data System (ADS)

    Chertok, M.; Fu, M.; Irving, M.; Neher, C.; Shi, M.; Tolfa, K.; Tripathi, M.; Vinson, Y.; Wang, R.; Zheng, G.

    2017-01-01

    Future collider detectors, including silicon tracking detectors planned for the High Luminosity LHC, will require components and mechanical structures providing unprecedented strength-to-mass ratios, thermal conductivity, and radiation tolerance. This paper studies carbon foam used in conjunction with thermally conductive epoxy and thermally conductive tape for such applications. Thermal performance and tensile strength measurements of aluminum-carbon foam-adhesive stacks are reported, along with initial radiation damage test results.

  14. Effects of carbon percentage, Stelmor cooling rate and laying head temperature on tensile strength gain in low carbon steels

    NASA Astrophysics Data System (ADS)

    Gade, Surya Prakash

    Low carbon steel wire rods are used to produce finished products such as fine wire, coat hangers, staples, and roofing nails. These products are subjected to excessively high work hardening rates during wire drawing process resulting in a variation in wire tensile strength. This research analyzes the effects of carbon percentage, StelmorRTM cooling rate and laying head temperature on the tensile strength gain in wire drawn low carbon steels using design of experiments. The probable reasons for variations in tensile strength gain are analyzed by observing the microstructural changes during experiments. Microstructural analysis was done extensively using optical microscope and Transmission Electron Microscope (TEM) and it was found that the tensile strength gain variation is mainly caused by the increase in the dislocation density in wire rod and wire due to high cooling rate and high laying head temperature, within the range considered. This research concludes that a low carbon wire rod can be produced with minimum tensile strength gain, lower dislocation density and finer ferrite grain size by maintaining a low cooling rate in the StelmorRTM cooling zone and low laying head temperature, which is the temperature at which the wire rod coils are laid on the Stelmor RTM deck. It is also concluded from the results of the present study that: (1) The lowest tensile strength gain is for NS 1006T-3 (0.07 wt.% Carbon) with low cooling rate of 14°F/s and low laying head temperature of 1500°F. (2) The highest tensile strength gain is for NS 1006T-3 with high cooling rate of 26°F/s and high laying head temperature of 1650°F. (3) The effect of StelmorRTM cooling rate and laying head temperature and their interaction are found to be the significant factors causing the variation in wire tensile strength gain. The StelmorRTM cooling rate has the most significant effect on tensile strength gain among the three factors. (4) The effect of carbon percentage on wire tensile strength

  15. Biomechanical Characterization of Human Soft Tissues Using Indentation and Tensile Testing

    PubMed Central

    Griffin, Michelle; Premakumar, Yaami; Seifalian, Alexander; Butler, Peter Edward; Szarko, Matthew

    2016-01-01

    Regenerative medicine aims to engineer materials to replace or restore damaged or diseased organs. The mechanical properties of such materials should mimic the human tissues they are aiming to replace; to provide the required anatomical shape, the materials must be able to sustain the mechanical forces they will experience when implanted at the defect site. Although the mechanical properties of tissue-engineered scaffolds are of great importance, many human tissues that undergo restoration with engineered materials have not been fully biomechanically characterized. Several compressive and tensile protocols are reported for evaluating materials, but with large variability it is difficult to compare results between studies. Further complicating the studies is the often destructive nature of mechanical testing. Whilst an understanding of tissue failure is important, it is also important to have knowledge of the elastic and viscoelastic properties under more physiological loading conditions. This report aims to provide a minimally destructive protocol to evaluate the compressive and tensile properties of human soft tissues. As examples of this technique, the tensile testing of skin and the compressive testing of cartilage are described. These protocols can also be directly applied to synthetic materials to ensure that the mechanical properties are similar to the native tissue. Protocols to assess the mechanical properties of human native tissue will allow a benchmark by which to create suitable tissue-engineered substitutes. PMID:28060331

  16. Effects of reclaimed asphalt pavement on indirect tensile strength test of foamed asphalt mix tested in dry condition

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    Indirect tensile strength (ITS) test was conducted to analyse strength of the foamed asphalt mixes incorporating reclaimed asphalt pavement. Samples were tested for ITS after cured in the oven at 40°C for 72 hours. This testing condition known as dry condition or unconditioned. Laboratory results show that reclaimed asphalt pavement (RAP) contents insignificantly affect the ITS results. ITS results significantly affected by foamed bitumen contents.

  17. Tensile Properties and Viscoelastic Model of a Polyimide Film

    NASA Astrophysics Data System (ADS)

    Zhang, Shengde; Mori, Syuhei; Sakane, Masao; Nagasawa, Tadashi; Kobayashi, Kaoru

    This paper presents tensile properties of a polyimide thin film used in electronic devices. Tensile tests were performed to determine Young's modulus, proportional limit, yield stress, ultimate tensile strength and elongation of the polyimide film. Effects of strain rate and temperature on the tensile properties were discussed. There was a little effect of strain rate on Young's modulus but proportional limit, yield stress and ultimate tensile strength increased with increasing strain rate. Only elongation decreased with strain rate. Young's modulus, proportional limit, yield stress and ultimate tensile strength decreased with increasing temperature, but elongation increased. Applicability of a viscoelastic model for describing the stress-strain curves of the polyimide film was discussed.

  18. Influence of pulse repetition rate of Er:YAG laser and dentin depth on tensile bond strength of dentin-resin interface.

    PubMed

    Gonçalves, Mariane; Corona, Silmara Aparecida Milori; Palma-Dibb, Regina Guenka; Pécora, Jesus Djalma

    2008-08-01

    The study evaluated the in vitro influence of pulse-repetition rate of Er:YAG laser and dentin depth on tensile bond strength of dentin-resin interface. Dentin surfaces of buccal or lingual surfaces from human third molars were submitted to tensile test in different depths (superficial, 1.0 and 1.5 mm) of the same dental area, using the same sample. Surface treatments were acid conditioning solely (control) and Er:YAG laser irradiation (80 mJ) followed by acid conditioning, with different pulse-repetition rates (1, 2, 3, or 4 Hz). Single bond/Z-250 system was used. The samples were stored in distilled water at 37 degrees C for 24 h, and then the first test (superficial dentine) was performed. The bond failures were analyzed. Following, the specimens were identified, grounded until 1.0- and 1.5-mm depths, submitted again to the treatments and to the second and, after that, to third-bond tests on a similar procedure and failure analysis. ANOVA and Tukey test demonstrated a significant difference (p < 0.001) for treatment and treatment x depth interaction (p < 0.05). The tested depths did not show influence (p > 0.05) on the bond strength of dentin-resin interface. It may be concluded that Er:YAG laser with 1, 2, 3, or 4 Hz combined with acid conditioning did not increase the resin tensile bond strength to dentin, regardless of dentin depth.

  19. Self-Healing Nanofiber-Reinforced Polymer Composites. 1. Tensile Testing and Recovery of Mechanical Properties.

    PubMed

    Lee, Min Wook; An, Seongpil; Jo, Hong Seok; Yoon, Sam S; Yarin, Alexander L

    2015-09-09

    The present work aims at development of self-healing materials capable of partially restoring their mechanical properties under the conditions of prolonged periodic loading and unloading, which is characteristic, for example, of aerospace applications. Composite materials used in these and many other applications frequently reveal multiple defects stemming from their original inhomogeneity, which facilitates microcracking and delamination at ply interfaces. Self-healing nanofiber mats may effectively prevent such damage without compromising material integrity. Two types of core-shell nanofibers were simultaneously electrospun onto the same substrate in order to form a mutually entangled mat. The first type of core-shell fibers consisted of resin monomer (dimethylsiloxane) within the core and polyacrylonitrile within the shell. The second type of core-shell nanofibers consisted of cure (dimethyl-methyl hydrogen-siloxane) within the core and polyacrylonitrile within the shell. These mutually entangled nanofiber mats were used for tensile testing, and they were also encased in polydimethylsiloxane to form composites that were also subsequently subjected to tensile testing. During tensile tests, the nanofibers can be damaged in stretching up to the plastic regime of deformation. Then, the resin monomer and cure was released from the cores and the polydimethylsiloxane resin was polymerized, which might be expected to result in the self-healing properties of these materials. To reveal and evaluate the self-healing properties of the polyacrylonitrile-resin-cure nanofiber mats and their composites, the results were compared to the tensile test results of the monolithic polyacrylonitrile nanofiber mats or composites formed by encasing polyacrylonitrile nanofibers in a polydimethylsiloxane matrix. The latter do not possess self-healing properties, and indeed, do not recover their mechanical characteristics, in contrast to the polyacrylonitrile-resin-cure nanofiber mats and

  20. Lamb wave ultrasonic evaluation of welded AA2024 specimens at tensile static and fatigue testing

    NASA Astrophysics Data System (ADS)

    Burkov, M. V.; Byakov, A. V.; Shah, R. T.; Lyubutin, P. S.; Panin, S. V.

    2015-10-01

    The paper deals with the investigation of Lamb waves ultrasonic testing technique applied for evaluation of different stress-strain and damaged state of aluminum specimens at static and fatigue loading in order to develop a Structural Health Monitoring (SHM) approach. The experimental results of tensile testing of AA2024T3 specimens with welded joints are presented. Piezoelectric transducers used as actuators and sensors were adhesively bonded to the specimen's surface using two component epoxy. The set of static and cyclic tensile tests with two frequencies of acoustic testing (50 kHz and 335 kHz) were performed. The recorded signals were processed to calculate the maximum envelope in order to evaluate the changes of the stress-strain state of the specimen and its microstructure during static tension. The registered data are analyzed and discussed in terms of signal attenuation due to the formation of fatigue defects during cyclic loading. Understanding the relations between acoustic signal features and fatigue damages will provide us the ability to determine the damage state of the structure and its residual lifetime in order to design a robust SHM system.

  1. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    PubMed

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  2. An Analytical Approach For Earing In Cylindrical Deep Drawing Based On Uniaxial Tensile Test Results

    NASA Astrophysics Data System (ADS)

    Mulder, J.; Vegter, H.

    2011-05-01

    The prediction of earing and wall thickness distribution in cylindrical deep drawing is a challenging task even for today's FEA programs with advanced yield loci like Yld2004-18p, BBC2003 or Vegter. The current work involves an analytical description of cylindrical deep drawing that is comparable in accuracy to advanced numerical models. The analytical approach shows the importance for these type of simulations of fitting the yield locus description to uniaxial tensile test results in different directions, considering the full hardening curves.

  3. Stiffness reductions during tensile fatigue testing of graphite/epoxy angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Odom, E. M.; Adams, D. F.

    1982-01-01

    Tensile fatigue data was generated under carefully controlled test conditions. A computerized data acquisition system was used to permit the measurement of dynamic modulus without interrupting the fatigue cycling. Two different 8-ply laminate configurations, viz, + or - 45 (2s) and + or - 67.5 (2s), of a T300/5208 graphite/epoxy composite were tested. The + or - 45 (2s) laminate did exhibit some modulus decay, although there was no well-defined correlation with applied stress level or number of cycles. The + or - 67.5 (2s) laminate did not exhibit any measurable modulus decay. Secondary effects observed included a small but distinct difference between modulus as measured statically and dynamically, a slight recovery of the modulus decay after a test interruption, and a significant viscoelastic (creep) response of the + or - 45 (2s) laminate during fatigue testing.

  4. Design and construction of a tensile tester for the testing of simple composites

    NASA Technical Reports Server (NTRS)

    Borst, Mark A.; Spiegel, F. Xavier

    1994-01-01

    The following is a design for a tensile tester which will be used to test the tensile strength and anisotropic properties of simple composites. These simple composites are suspected to be anisotropic primarily in a single plane. When the composites undergo a tensile force, they will undergo deformation, causing movement either to the left or right. The composites are suspect due to their method of construction. Each sample has a single layer of unidirectional continuous fibers embedded in a rubbery resin. It has been well established that a serious limitation of unidirectional fiber composites is the very large in-plane anisotropy. The design presented here incorporates a single degree of freedom such that distortion (to the left or right) due to anisotropic tendencies may be measured. The device will spend the vast majority of its time in an undergraduate materials lab. As a result, ease of use and durability are valued more highly than research grade accuracy. Additional concerns focus on the fact that this machine will be built as a student project. Issues which are dealt with during this design include: specimen configuration or shape; a method of applying consistent, linear tension force; a method of gripping specimen without affecting its overall properties; a method of collecting data; repeatability of data; ease of use; ease of construction; and cost. After the device has been constructed, it will be used to test the simple composites which were fabricated in house. A comparison will be made between composites manufactured using aluminum screening as the strengthening fibers and those manufactured using fiberglass screening.

  5. Tensile strain-rate sensitivity of tungsten/niobium composites at 1300 to 1600 K

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Titran, R. H.

    1992-01-01

    The tensile behavior of continuous tungsten fiber reinforced niobium composites (W/Nb), fabricated by an arc-spray process, was studied in the 1300 to 1600 K temperature range. The tensile properties of the fiber and matrix components as well as of the composites were measured and were compared to rule of mixtures (ROM) predictions. The deviation from the ROM was found to depend upon the chemistry of the tungsten alloy fibers, with positive deviations for ST300/Nb (i.e., stronger composite strength than the ROM) and negative or zero deviations for 218/Nb.

  6. Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

  7. Analysis of Sandwich Shells with Metallic Foam Cores based on the Uniaxial Tensile Test

    SciTech Connect

    Mata, H.; Fernandes, A. A.; Parente, M. P. L.; Jorge, R. Natal; Santos, A.; Valente, R. A. F.

    2011-05-04

    On this work, the authors present the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications, especially in automotive and aeronautical industries. This work is divided into two parts; in the first part the mathematical model used to describe the behavior of sandwich shells with metal cores form is presented and some numerical examples are presented. In the second part of this work, the numerical results are validated using the experimental results obtained from the mechanical experiments. Using the isotropic hardening crushable foam constitutive model, available on ABAQUS, a set of different mechanical tests were simulated. The isotropic hardening model available uses a yield surface that is an ellipse centered at the origin in the p-q stress plane. Using this constitutive model, the uniaxial tensile test for this material was simulated, and a comparison with the experimental results was made.

  8. The effect of strain rate and temperature on the tensile properties of Sn-3.5Ag solder

    SciTech Connect

    Lang Fengqun . E-mail: fqlang325@yahoo.co.jp; Tanaka, Hiroyuki; Munegata, Osamu; Taguchi, Toshihiko; Narita, Toshio

    2005-03-15

    The tensile response of Sn-3.5% Ag solder was investigated and compared with that of a Sn-37% Pb eutectic solder at various strain rates from 2.38x10{sup -6} s{sup -1} to 2.38x10{sup -3} s{sup -1} over the temperature range from -50 deg. C to 150 deg. C. The relationship between tensile strength, {sigma} {sub UTS}, and strain rate, {epsilon}', for Sn-3.5Ag can be expressed by the equation {sigma} {sub UTS}=A{epsilon}' {sup m}. The influence of temperature on the strain rate sensitivity index m was very slight for Sn-3.5Ag, whereas the m values of Sn-37Pb increased strongly with increasing temperature. The relationship between the tensile strength of the Sn-3.5Ag alloy and temperature follows an Arrhenius law, and the activation energy for creep was found to be 78 kJ/mol, close to that for the pipe diffusion controlled creep of tin. The microstructure and fracture morphologies of both solders were observed with a scanning electron microscope. Ag{sub 3}Sn particles were observed in the primary {beta}-Sn in the Sn-3.5Ag solder by transmission electron microscope.

  9. Modifications of system for elevated temperature tensile testing and stress-strain measurement of metal matrix composites

    SciTech Connect

    Diaz, J.O.

    1994-09-01

    Composites consisting of tungsten alloy wires in superalloy matrices are being studied because they offer the potential for increased strength compared to current materials used at temperatures up to a least 1093{degrees}C (2000{degrees}F). Previous research at the NASA Lewis Research Center and at other laboratories in the U.S., Europe, and Japan has demonstrated laboratory feasibility for fiber reinforced superalloys (FRS). The data for the mechanical and physical properties used to evaluate candidate materials is limited and a need exists for a more detailed and complete data base. The focus of this work was to develop a test procedure to provide a more complete FRS data base to quantitatively evaluate the composite`s potential for component applications. This paper will describe and discuss the equipment and procedures under development to obtain elevated temperature tensile stress-strain, strength and modulus data for the first generation of tungsten reinforced superalloy composite (TFRS) materials. Tensile stress-strain tests were conducted using a constant crosshead speed tensile testing machine and a modified load-strain measuring apparatus. Elevated temperature tensile tests were performed using a resistance wound commercial furnace capable of heating tests specimens up to 1093{degrees}C (2000{degrees}F). Tensile stress-strain data were obtained for hollow tubular stainless steel specimens serving as a prototype for future composite specimens.

  10. An In-situ Tensile Test Apparatus for Polymers in High Pressure Hydrogen

    SciTech Connect

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; Johnson, Kenneth I.; Skorski, Daniel C.; Tucker, Joseph C.; Roosendaal, Timothy J.; Dahl, Michael E.

    2014-10-10

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex-situ measurements of mechanical properties problematic. Designing in-situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in-situ tensile tester under high-pressure hydrogen environments up to 5,000 psi. Modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.

  11. An in situ tensile test apparatus for polymers in high pressure hydrogen

    SciTech Connect

    Alvine, K. J. Kafentzis, T. A.; Pitman, S. G.; Johnson, K. I.; Skorski, D.; Tucker, J. C.; Roosendaal, T. J.; Dahl, M. E.

    2014-10-15

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials such as Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up to 42 MPa (6000 psi). Modulus data from high-density polyethylene samples tested under high-pressure hydrogen at 35 MPa (5000 psi) are also reported as compared to baseline measurements taken in air.

  12. Analysis of Ninety Degree Flexure Tests for Characterization of Composite Transverse Tensile Strength

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Krueger, Ronald

    2001-01-01

    Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.

  13. Directionally solidified lamellar eutectic superalloys by edge-defined, film-fed growth. [including tensile tests

    NASA Technical Reports Server (NTRS)

    Hurley, G. F.

    1975-01-01

    A program was performed to scale up the edge-defined, film-fed growth (EFG) method for the gamma/gamma prime-beta eutectic alloy of the nominal composition Ni-19.7 Cb - 6 Cr-2.5 Al. Procedures and problem areas are described. Flat bars approximately 12 x 1.7 x 200 mm were grown, mostly at speeds of 38 mm/hr, and tensile tests on these bars at 25 and 1000 C showed lower strength than expected. The feasibility of growing hollow airfoils was also demonstrated by growing bars over 200 mm long with a teardrop shaped cross-section, having a major dimension of 12 mm and a maximum width of 5 mm.

  14. Fracture Testing with Surface Crack Specimens. [especially the residual tensile strength test

    NASA Technical Reports Server (NTRS)

    Orange, T. W.

    1974-01-01

    Recommendations are given for the design, preparation, and static fracture testing of surface crack specimens. The recommendations are preceded by background information including discussions of stress intensity factors, crack opening displacements, and fracture toughness values associated with surface crack specimens. Cyclic load and sustained load tests are discussed briefly.

  15. Tensile Stress-Strain Curves--III, Rolled Homogeneous Armor at a Strain Rate of 0.042 per second

    DTIC Science & Technology

    1977-06-01

    adhesive. The gage resistance is nominally 120 ohms and the nominal gage factor is 2.03. One strain gage pair measured the axial strain, the second gage...Proving Ground , MD, November 1976. AD #B0~6015L 8. G. E. Hauver, "The Alpha Phase Hugoniot of Rolled Homogeneous Armor ", BRL Memorandum Report No...1 i ’ ! .,: MEMORANDUM REPORT NO. 2760 "" ’ l TENSILE STRESS-STRAIN CURVES--Ill, ROLLED HOMOGENEOUS ARMOR AT A STRAIN RATE OF 0.42 S-l Ralph

  16. Comparison of the mechanical properties of NiTi/Cu bilayer by nanoindentation and tensile test: molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Fazeli, Sara; Vahedpour, Morteza; Khatiboleslam Sadrnezhaad, Sayed

    2016-12-01

    Molecular dynamics simulation was used to study of mechanical properties of NiTi/Cu bilayer by nanoindentation and tensile testing. A comparison has been made among mechanical properties measured and plastic deformation process at different copper thickness during nanoindnetation and tensile test of the samples. Embedded atom method potentials for describing of inter-atomic interaction and Nose-Hoover thermostat and barostat are employed in the simulation at 400 K. The results showed that as the copper film thickness decreased, the maximum load and hardness values increased during nanoindetation. Saha and Nix model is used to describe reduced young’s modulus behaviour of the bilayer system through nanoindentation. A good agreement among calculated reduced elastic modulus by nanoindentation test and young’s modulus behaviour via tensile test have been obtained. The ‘incoherent interface’ in both of nanoindentation test and tensile testing is one of the governing factors for the dislocation propagation, which resulted in significant strengthening of the bilayer. It was observed that during tensile test, only copper layers were necked and fractured in all of samples. However, the present study seeks to examine the effect of film thickness on the free energy values that is obtained using Jarzynski’s equality during nanoindentation. As the copper film thickness was decreased, the free energy difference increased. According to both techniques, the thin film copper thickness provides lower number of nucleation locations resulting in the higher value of yield strength, hardness and free energy difference during nanoindenation. Mechanical properties of bilayer systems are improved with decreasing of copper film thickness. However, it specifies that strengths of all bilayer systems have prominent increase in young’s modulus in compared to the pure NiTi.

  17. Grain Size Effect on Fracture Behavior of the Axis-Tensile Test of Inconel 718 Sheet

    NASA Astrophysics Data System (ADS)

    Liu, B. B.; Han, J. Q.; Zhao, R.; Liu, W.; Wan, M.

    2016-11-01

    Change in mechanical parts from macro-size to micro-size has become a trend in the metal- and alloy-forming process, with an increasing demand on micro-parts in the last decades. The material mechanical behaviors of micro-size parts are quite different from the conventional ones of macro-size parts due to size effect. It is necessary to further investigate the effects of grain size on material mechanisms in micro-scales, especially fracture behaviors. The fracture behaviors of Inconel 718 sheet with the thickness of 300 μm are studied by uniaxial tensile tests in different grain sizes ranging from 18 to 130 μm. The results show that fracture stress and strain decrease with the increase of grain size. A critical value in the specimen thickness (t) to grain size (d) ratio divides the strength levels into separate stages on the basis of an increase of the inverse of grain size. In addition, the grain size-dependent fracture morphology is changed in the number of dimples and micro-voids decreasing on the fracture surfaces and the sizes of micro-voids changing larger with the increase of grain size.

  18. Evaluation of the plastic yield locus for embossed sheet using biaxial tensile tests

    NASA Astrophysics Data System (ADS)

    Kim, Young-Suk; Oh, Seok-Hwan; Do, Van-Cuong; Lee, Bong-Hyun

    2016-11-01

    3D-structured (embossed) aluminium sheets have been used as heat insulation materials in automotive exhaust parts because the embossments on the sheets increase the surface area and reinforce the stiffness of exhaust components. Unlike the press-forming process for flat (non-embossed) sheets, however, that for embossed aluminium sheets is constrained by many restrictions given the distinct mechanical properties and geometric 3D shape of the latter. In designing sheet-stamping tools, manufacturers have recently used CAE technologies based on finite element analysis. Guaranteeing the effectiveness of CAE technologies necessitates information about the plastic yield criterion, which is determined primarily by performing a biaxial tensile test on cruciform-shaped specimens. We measured the yield locus of an embossed aluminium 3004-P sheet by using the camera vision method instead of strain gauge measurement because of the difficulty in attaching a strain gauge to the central region of the aluminium body. The measured yield locus of the studied sheet shows that its yield stress in equi-biaxial stress is smaller than the flat sheet yield locus measured by the strain gauge method. The shape of the yield locus of the embossed aluminium sheet also adequately corresponds with Logan-Hosford anisotropic yield function.

  19. Cubical Mass-Spring Model design based on a tensile deformation test and nonlinear material model.

    PubMed

    San-Vicente, Gaizka; Aguinaga, Iker; Tomás Celigüeta, Juan

    2012-02-01

    Mass-Spring Models (MSMs) are used to simulate the mechanical behavior of deformable bodies such as soft tissues in medical applications. Although they are fast to compute, they lack accuracy and their design remains still a great challenge. The major difficulties in building realistic MSMs lie on the spring stiffness estimation and the topology identification. In this work, the mechanical behavior of MSMs under tensile loads is analyzed before studying the spring stiffness estimation. In particular, the performed qualitative and quantitative analysis of the behavior of cubical MSMs shows that they have a nonlinear response similar to hyperelastic material models. According to this behavior, a new method for spring stiffness estimation valid for linear and nonlinear material models is proposed. This method adjusts the stress-strain and compressibility curves to a given reference behavior. The accuracy of the MSMs designed with this method is tested taking as reference some soft-tissue simulations based on nonlinear Finite Element Method (FEM). The obtained results show that MSMs can be designed to realistically model the behavior of hyperelastic materials such as soft tissues and can become an interesting alternative to other approaches such as nonlinear FEM.

  20. In-vitro tensile testing machine for vibration study of fresh rabbit Achilles tendon

    NASA Astrophysics Data System (ADS)

    Revel, Gian M.; Scalise, Alessandro; Scalise, Lorenzo; Pianosi, Antonella

    2001-10-01

    A lot of people, overall athletic one suffer from tendinitis or complete rupture of the Achilles tendon. This structure becomes inflamed and damaged mainly from a variety of mechanical forces and sometimes due to metabolic problems, such as diabetes or arthritis. Over the past three decades extensive studies have been performed on the structural and mechanical properties of Achilles tendon trying to explain the constitutive equations to describe and foresee tendon behavior. Among the various mechanical parameters, the vibrational behavior is also of interest. Several investigations are performed in order to study how the Achilles tendon vibrations influence the response of the muscle proprioception and human posture. The present article describes how in vitro tensile experiments can be performed, taking into account the need to simulate physiological condition of Achilles tendon and thus approaching some opened problems in the design of the experimental set-up. A new system for evaluating tendon vibrations by non contact techniques is proposed. Preliminary simple elongation tests are made extracting the main mechanical parameters: stress and strain at different fixed stretches, in order to characterize the tissue. Finally, a vibration study is made at each pretensioned tendon level evaluating the oscillating curves caused by a small hammer.

  1. Effect of Test Specimen Shape and Size on Interlaminar Tensile Properties of Advanced Carbon-Carbon Composites

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.

    2015-01-01

    The interlaminar tensile strength of 1000-tow T-300 fiber ACC-6 carbon-carbon composites was measured using the method of bonding the coupons to adherends at room temperature. The size, 0.70 to 1.963 inches maximum width or radius, and shape, round or square, of the test coupons were varied to determine if the test method was sensitive to these variables. Sixteen total variations were investigated and the results modeled.

  2. Exposure Assessment of a High-energy Tensile Test With Large Carbon Fiber Reinforced Polymer Cables.

    PubMed

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Michel, Silvain; Terrasi, Giovanni; Wang, Jing

    2015-01-01

    This study investigated the particle and fiber release from two carbon fiber reinforced polymer cables that underwent high-energy tensile tests until rupture. The failing event was the source of a large amount of dust whereof a part was suspected to be containing possibly respirable fibers that could cause adverse health effects. The released fibers were suspected to migrate through small openings to the experiment control room and also to an adjacent machine hall where workers were active. To investigate the fiber release and exposure risk of the affected workers, the generated particles were measured with aerosol devices to obtain the particle size and particle concentrations. Furthermore, particles were collected on filter samples to investigate the particle shape and the fiber concentration. Three situations were monitored for the control room and the machine hall: the background concentrations, the impact of the cable failure, and the venting of the exposed rooms afterward. The results showed four important findings: The cable failure caused the release of respirable fibers with diameters below 3 μm and an average length of 13.9 μm; the released particles did migrate to the control room and to the machine hall; the measured peak fiber concentration of 0.76 fibers/cm(3) and the overall fiber concentration of 0.07 fibers/cm(3) in the control room were below the Permissible Exposure Limit (PEL) for fibers without indication of carcinogenicity; and the venting of the rooms was fast and effective. Even though respirable fibers were released, the low fiber concentration and effective venting indicated that the suspected health risks from the experiment on the affected workers was low. However, the effect of long-term exposure is not known therefore additional control measures are recommended.

  3. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  4. Grips for Lightweight Tensile Specimens

    NASA Technical Reports Server (NTRS)

    Witte, William G., Jr.; Gibson, Walter D.

    1987-01-01

    Set of grips developed for tensile testing of lightweight composite materials. Double-wedge design substantially increases gripping force and reduces slippage. Specimen held by grips made of hardened wedges. Assembly screwed into load cell in tensile-testing machine.

  5. Tensile properties and strain rate sensitivity of Ti-47Al-2Cr-0.2Si sheet material with different microstructures

    SciTech Connect

    Clemens, H.; Glatz, W.; Appel, F.

    1996-08-01

    New materials based on gamma titanium aluminides (gamma alloys) have emerged as potential candidates for high temperature applications such as aerospace structural components (e.g., airframes, turbine components, thermal protection systems) and automotive parts (e.g., exhaust valves, turbocharger rotors). Because of their low density, high Young`s modulus, high-temperature strength retention, good oxidation and burn resistance, the so-called second generation gamma alloys are able to exceed the application temperature of advanced titanium alloys and also to replace nickel- and iron-based superalloys up to 800C. However, poor formability and low room temperature (RT) ductility resulting in low fracture toughness have limited possible applications. The present paper deals with the dependence of tensile properties of Ti-47Al-2Cr-0.2Si (composition in atomic-%) sheet material on microstructure and test conditions. Four different microstructures, i.e., fine-grained primary annealed (PA), near gamma (NG), duplex (DU) as well as coarse-grained fully lamellar (FL) have been investigated with emphasis on the influence of grain size, phase distribution, and strain rate on tensile properties at 700 C. Fractography was conducted by scanning electron microscopy (SEM) to examine the influence of temperature on the fracture behavior and to determine the onset of dynamic recrystallization effects.

  6. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    NASA Astrophysics Data System (ADS)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  7. The NanoBeamBalance: A passive, tensile-test device for the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wenger, M. P. E.; Mesquida, P.

    2011-05-01

    An add-on device is presented, which significantly expands the force measurement capabilities of the atomic force microscope (AFM). The device consists of a completely passive mechanism, which translates the vertical motion of the AFM tip in force measurements into a horizontal motion of two sample support pads. The advantage is that it is much easier to deposit microscopic samples from suspension onto flat surfaces than to attach them reliably between tip and a surface. The working-principle and the design of the device is comprehensively described and demonstrated on the example of collagen fibres with a diameter of a few μm. Well-defined tensile measurements in longitudinal direction were performed, showing that the tensile stiffness of collagen fibres from rat tail tendon decreases by a factor of 5 when rehydrated from a dried sample and slowly increases upon cross-linking with glutaraldehyde.

  8. Self-aligning hydraulic piston assembly for tensile testing of ceramic

    DOEpatents

    Liu, K.C.

    1987-08-18

    The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensile specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen regardless whether there is initial misalignment between the specimen load column assembly and housing axis. 4 figs.

  9. Self-aligning hydraulic piston assembly for tensile testing of ceramic

    DOEpatents

    Liu, Kenneth C.

    1987-01-01

    The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensil specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen irregardless whether there is initial misalignment between the specimen load column assembly and housing axis.

  10. High-speed imaging on static tensile test for unidirectional CFRP

    NASA Astrophysics Data System (ADS)

    Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke

    2008-11-01

    The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.

  11. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    NASA Astrophysics Data System (ADS)

    Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy

    2017-02-01

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  12. Dynamic-tensile-extrusion response of fluoropolymers

    SciTech Connect

    Brown, Eric N; Trujillo, Carl P; Gray, George T

    2009-01-01

    The current work applies the recently developed Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to polytetrafluoroethylene (PTFE) and polychlorotrifluoroethylene (PCTFE). Similar to the Taylor Impact Rod, Dynamic-Tensile-Extrusion is a strongly integrated test, probing a wide range of strain rates and stress states. However, the stress state is primarily tensile enabling investigation of dynamic tensile failure modes. Here we investigate the influence of this propensity to neck or not between PCTFE and PTFE on their response under dynamic tensile extrusion loading. The results of the Dyn-Ten-Ext technique are compared with two classic techniques. Both polymers have been investigated using Tensile Split Hopkinson Pressure Bar. The quasistatic and dynamic responses of both fluoro-polymers have been extensively characterized. The two polymers exhibit significantly different failure behavior under tensile loading at moderate strain rates. Polytetrafluoroethylene resists formation of a neck and exhibits significant strain hardening. Independent of temperature or strain rate, PTFE sustains true strains to failure of approximately 1.5. Polychlorotrifluoroethylene, on the other hand, consistently necks at true strains of approximately 0.05.

  13. Extreme Cold Testing of High Performance Fabric Materials: Gelbo Flex, Tensile Strength, and UV Exposure Test Results

    DTIC Science & Technology

    2014-07-01

    Antarctic environment. We developed irradiance exposure rates from Bernhard et al. (2008) and determined that 30 days (24 hr/day) of exposure at an UVA...for Testing and Materials. Bernhard , G., C. R. Booth, and J. C. Ehramjian. 2008. Comparison of UV irradiance measurements at Summit, Greenland

  14. Tensile testing of Fe and FeCr nanowires using molecular dynamics simulations

    SciTech Connect

    Byggmästar, J. Granberg, F.; Kuronen, A.; Nordlund, K.; Henriksson, K. O. E.

    2015-01-07

    Using molecular dynamics, we have studied the behaviour of cylindrical [001]-oriented Fe and FeCr nanowires under uniaxial tensile strain with both an embedded atom method (EAM) and a Tersoff-like bond order potential. The mechanical properties were analysed and the deformation mechanism was studied and compared between the potentials. The effects of chromium content and size of the wire were studied. Both potentials show elongation by deformation twinning in the 〈111〉/(211) system resulting in a significantly stiffer and stronger [110]-axial nanowire. The pure iron nanowires are elastically softer than bulk iron and an addition of chromium has both a softening and weakening effect. The bond order potential shows a strong dependence on chromium concentration, while the dependence is considerably weaker for the EAM potential.

  15. Advantages of a 3-parameter reduced constitutive model for the measurement of polymers elastic modulus using tensile tests

    NASA Astrophysics Data System (ADS)

    Blaise, A.; André, S.; Delobelle, P.; Meshaka, Y.; Cunat, C.

    2016-11-01

    Exact measurements of the rheological parameters of time-dependent materials are crucial to improve our understanding of their intimate relation to the internal bulk microstructure. Concerning solid polymers and the apparently simple determination of Young's modulus in tensile tests, international standards rely on basic protocols that are known to lead to erroneous values. This paper describes an approach allowing a correct measurement of the instantaneous elastic modulus of polymers by a tensile test. It is based on the use of an appropriate reduced model to describe the behavior of the material up to great strains, together with well-established principles of parameter estimation in engineering science. These principles are objective tools that are used to determine which parameters of a model can be correctly identified according to the informational content of a given data set. The assessment of the methodology and of the measurements is accomplished by comparing the results with those obtained from two other physical experiments, probing the material response at small temporal and length scales, namely, ultrasound measurements with excitation at 5 MHz and modulated nanoindentation tests over a few nanometers of amplitude.

  16. Stretch calculated from grip distance accurately approximates mid-specimen stretch in large elastic arteries in uniaxial tensile tests

    PubMed Central

    Tian, Lian; Henningsen, Joseph; Salick, Max R.; Crone, Wendy C.; Gunderson, McLean; Dailey, Seth H.; Chesler, Naomi C.

    2015-01-01

    The mechanical properties of vascular tissues affect hemodynamics and can alter disease progression. The uniaxial tensile test is a simple and effective method for determining the stress-strain relationship in arterial tissue ex vivo. To enable calculation of strain, stretch can be measured directly with image tracking of markers on the tissue or indirectly from the distance between the grips used to hold the specimen. While the imaging technique is generally considered more accurate, it also requires more analysis, and the grip distance method is more widely used. The purpose of this study is to compare the stretch of the testing specimen calculated from the grip distance method to that obtained from the imaging method for canine descending aortas and large proximal pulmonary arteries. Our results showed a significant difference in stretch between the two methods; however, this difference was consistently less than 2%. Therefore, the grip distance method is an accurate approximation of the stretch in large elastic arteries in the uniaxial tensile test. PMID:25881308

  17. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects

    NASA Astrophysics Data System (ADS)

    Koh, S. J. A.; Lee, H. P.; Lu, C.; Cheng, Q. H.

    2005-08-01

    Nanoscale research has been an area of active research over the past fifteen years. This is due to the overall enhanced properties of nanomaterials due to size effects, surface effects, and interface effects, which typically showed up in materials with characteristic size smaller than 100nm . This study focuses on the molecular dynamics (MD) simulation of an infinitely long, cylindrical platinum nanowire, with an approximate diameter of 1.4nm . The nanowire was subjected to uniaxial tensile strain along the [001] axis. The changes in crystal structure during deformation were analyzed and its mechanical properties were deduced from the simulation. Classical MD simulation was employed in this study, with the empirical Sutton-Chen pair functional used to describe the interatomic potential between the platinum atoms. The Berendsen loose-coupling thermostat was selected for finite-temperature control of the simulated system, with a time constant of 25% of the total relaxation time during each strain increment. The nanowire was subjected to strain rates of 0.04%, 0.4%, and 4.0%ps-1 , at simulation temperatures of 50 and 300K , in order to study the effects of different strain rates and thermal conditions on the deformation characteristics and mechanical properties of the nanowire. It was found that the stress-strain response of the nanowire showed clear periodic, stepwise dislocation-relaxation-recrystallization behavior at low temperature and strain rate, where crystal order and stability were highly preserved. The onset of amorphous crystal deformation occurred at 0.4%ps-1 , and fully amorphous deformation took place at 4.0%ps-1 , with amorphous melting detected at 300K . Due to higher entropy of the nanowire at higher temperature and strain rate, periodic stress-strain behavior became less clearly defined, and superplasticity behavior was observed. This characteristic was significantly enhanced due to the development of a single-walled helical substructure at 300K

  18. ESR (Erythrocyte Sedimentation Rate) Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Advertisement Proceeds from website advertising help sustain Lab Tests ... for trustworthy health information. Verify Compliance . Produced by Advertisement

  19. Influence of static tensile testing on the deformation behavior of Al-4% Cu alloy containing micro- and nanoparticles

    NASA Astrophysics Data System (ADS)

    Khrustalyov, Anton; Vorozhtov, Sergey; Kulkov, Sergey

    2016-11-01

    At present, aluminum alloys reinforced with nonmetallic particles are of great interest in various fields of science and technology due to their high specific strength, hardness, wear resistance, and other properties. At the same time there is a great interest in the study of processes occurring during plastic deformation of such materials under static tensile loading. Plastic flow of metals occurs through the creation and movement of linear defects (dislocations), in which there is a phenomenon of discontinuous yielding. An introduction of particles into aluminum alloy promotes a considerable increase of stiffness and specific strength of alloys, and the study of the deformation behavior of such alloys is of great interest. The objective of this research is to analyze mechanical properties and the deformation behavior of aluminum alloy with the identification of mechanisms of plastic deformation when introducing solid nonmetallic micro- and nanoparticles into the soft aluminum matrix. An analysis of the microstructure of the obtained alloys shows that the introduction of particles (Al2O3, TiB2, TiC) leads to a reduction of the alloy grain size from 350 to 170 µm while residual porosity does not exceed 2%. Tensile tests performed show that the change in the type and quantity of particles also changes characteristics of discontinuous yielding, thus resulting in an increase of yield strength (from 18 to 40 MPa), reduction of ductility (from 15 to 2%), and moreover a significant increase of tensile strength (from 77 to 130 MPa), as compared to the initial Al-4 wt % Cu alloy.

  20. Texture gradient evolution in Al-5%Ca-5%Zn sheet alloy after tensile deformation at high superplastic strain rate

    SciTech Connect

    Perez-Prado, M.T.; Cristina, M.C.; Torralba, M.; Ruano, O.A.; Gonzalez-Doncel, G.

    1996-12-15

    Texture inhomogeneities have been found in many materials. Given the significant influence of texture in industrial processes like superplastic forming of complex-shaped components, it is important to study the evolution of texture gradients under different testing conditions, particularly at high strain rates. Strong through-thickness texture-gradients have been observed in hot rolled Al alloys. As a consequence of the severe deformation during the hot rolling process, a well defined Brass texture-component (B-orientation) {l_brace}011{r_brace}<211> develops in the mid layer. The Al-5%Ca-5%Zn sheet alloy deforms superplastically when tested uniaxially at temperatures ranging from 350 to 450 C and at strain rates between 10{sup {minus}5}s{sup {minus}1} and 10{sup {minus}2}s{sup {minus}1}. The B-orientation, however, is not present in the texture of the as-rolled material, but it appears after straining in tension along the transverse direction under certain conditions of temperature and moderately high superplastic strain rates. In this work the evolution of the through-thickness texture-gradient in the Al-5%Ca-5% Zn sheet alloy when tested uniaxially in the transverse direction is investigated. Due to the importance of high strain rates in superplastic forming processes, tests at higher strain rates than those usually reported in the literature have been conducted. Current models which predict the appearance of the B-component are criticized on the light of these new findings.

  1. Semi-analytical and Numerical Studies on the Flattened Brazilian Splitting Test Used for Measuring the Indirect Tensile Strength of Rocks

    NASA Astrophysics Data System (ADS)

    Huang, Y. G.; Wang, L. G.; Lu, Y. L.; Chen, J. R.; Zhang, J. H.

    2015-09-01

    Based on the two-dimensional elasticity theory, this study established a mechanical model under chordally opposing distributed compressive loads, in order to perfect the theoretical foundation of the flattened Brazilian splitting test used for measuring the indirect tensile strength of rocks. The stress superposition method was used to obtain the approximate analytic solutions of stress components inside the flattened Brazilian disk. These analytic solutions were then verified through a comparison with the numerical results of the finite element method (FEM). Based on the theoretical derivation, this research carried out a contrastive study on the effect of the flattened loading angles on the stress value and stress concentration degree inside the disk. The results showed that the stress concentration degree near the loading point and the ratio of compressive/tensile stress inside the disk dramatically decreased as the flattened loading angle increased, avoiding the crushing failure near-loading point of Brazilian disk specimens. However, only the tensile stress value and the tensile region were slightly reduced with the increase of the flattened loading angle. Furthermore, this study found that the optimal flattened loading angle was 20°-30°; flattened load angles that were too large or too small made it difficult to guarantee the central tensile splitting failure principle of the Brazilian splitting test. According to the Griffith strength failure criterion, the calculative formula of the indirect tensile strength of rocks was derived theoretically. This study obtained a theoretical indirect tensile strength that closely coincided with existing and experimental results. Finally, this paper simulated the fracture evolution process of rocks under different loading angles through the use of the finite element numerical software ANSYS. The modeling results showed that the Flattened Brazilian Splitting Test using the optimal loading angle could guarantee the tensile

  2. Microcracking damage and the fracture process in relation to strain rate in human cortical bone tensile failure.

    PubMed

    Zioupos, Peter; Hansen, Ulrich; Currey, John D

    2008-10-20

    It is difficult to define the 'physiological' mechanical properties of bone. Traumatic failures in-vivo are more likely to be orders of magnitude faster than the quasistatic tests usually employed in-vitro. We have reported recently [Hansen, U., Zioupos, P., Simpson, R., Currey, J.D., Hynd, D., 2008. The effect of strain rate on the mechanical properties of human cortical bone. Journal of Biomechanical Engineering/Transactions of the ASME 130, 011011-1-8] results from tests on specimens of human femoral cortical bone loaded in tension at strain rates (epsilon ) ranging from low (0.08s(-1)) to high (18s(-1)). Across this strain rate range the modulus of elasticity generally increased, stress at yield and failure and strain at failure decreased for rates higher than 1s(-1), while strain at yield was invariant for most strain rates and only decreased at rates higher than 10s(-1). The results showed that strain rate has a stronger effect on post-yield deformation than on initiation of macroscopic yielding. In general, specimens loaded at high strain rates were brittle, while those loaded at low strain rates were much tougher. Here, a post-test examination of the microcracking damage reveals that microcracking was inversely related to the strain rate. Specimens loaded at low strain rates showed considerable post-yield strain and also much more microcracking. Partial correlation and regression analysis suggested that the development of post-yield strain was a function of the amount of microcracking incurred (the cause), rather than being a direct result of the strain rate (the excitation). Presumably low strain rates allow time for microcracking to develop, which increases the compliance of the specimen, making them tougher. This behaviour confirms a more general rule that the degree to which bone is brittle or tough depends on the amount of microcracking damage it is able to sustain. More importantly, the key to bone toughness is its ability to avoid a ductile

  3. Comparisons of planar and tubular biaxial tensile testing protocols of the same porcine coronary arteries

    PubMed Central

    Keyes, Joseph T; Lockwood, Danielle R; Utzinger, Urs; Montilla, Leonardo G; Witte, Russell S; Vande Geest, Jonathan P

    2013-01-01

    To identify the orthotropic biomechanical behavior of arteries, researchers typically perform stretch-pressure-inflation tests on tube-form arteries or planar biaxial testing of splayed sections. We examined variations in finite element simulations (FESs) driven from planar or tubular testing of the same coronary arteries to determine what differences exist when picking one testing technique versus another. Arteries were tested in tube-form first, then tested in planar-form, and fit to a Fung-type strain energy density function. Afterwards, arteries were modeled via finite element analysis looking at stress and displacement behavior in different scenarios (e.g., tube FESs with tube- or planar-driven constitutive models). When performing FESs of tube inflation from a planar-driven constitutive model, pressure-diameter results had an error of 12.3% compared to pressure-inflation data. Circumferential stresses were different between tube- and planar-driven pressure-inflation models by 50.4% with the planar-driven model having higher stresses. This reduced to 3.9% when rolling the sample to a tube first with planar-driven properties, then inflating with tubular-driven properties. Microstructure showed primarily axial orientation in the tubular and opening-angle configurations. There was a shift towards the circumferential direction upon flattening of 8.0 . There was also noticeable collagen uncrimping in the flattened tissue. PMID:23132151

  4. Comparisons of planar and tubular biaxial tensile testing protocols of the same porcine coronary arteries.

    PubMed

    Keyes, Joseph T; Lockwood, Danielle R; Utzinger, Urs; Montilla, Leonardo G; Witte, Russell S; Vande Geest, Jonathan P

    2013-07-01

    To identify the orthotropic biomechanical behavior of arteries, researchers typically perform stretch-pressure-inflation tests on tube-form arteries or planar biaxial testing of splayed sections. We examined variations in finite element simulations (FESs) driven from planar or tubular testing of the same coronary arteries to determine what differences exist when picking one testing technique vs. another. Arteries were tested in tube-form first, then tested in planar-form, and fit to a Fung-type strain energy density function. Afterwards, arteries were modeled via finite element analysis looking at stress and displacement behavior in different scenarios (e.g., tube FESs with tube- or planar-driven constitutive models). When performing FESs of tube inflation from a planar-driven constitutive model, pressure-diameter results had an error of 12.3% compared to pressure-inflation data. Circumferential stresses were different between tube- and planar-driven pressure-inflation models by 50.4% with the planar-driven model having higher stresses. This reduced to 3.9% when rolling the sample to a tube first with planar-driven properties, then inflating with tubular-driven properties. Microstructure showed primarily axial orientation in the tubular and opening-angle configurations. There was a shift towards the circumferential direction upon flattening of 8.0°. There was also noticeable collagen uncrimping in the flattened tissue.

  5. Experimental and Numerical Study on the Deformation Mechanism in AZ31B Mg Alloy Sheets Under Pulsed Electric-Assisted Tensile and Compressive Tests

    NASA Astrophysics Data System (ADS)

    Lee, Jinwoo; Kim, Se-Jong; Lee, Myoung-Gyu; Song, Jung Han; Choi, Seogou; Han, Heung Nam; Kim, Daeyong

    2016-06-01

    The uniaxial tensile and compressive stress-strain responses of AZ31B magnesium alloy sheet under pulsed electric current are reported. Tension and compression tests with pulsed electric current showed that flow stresses dropped instantaneously when the electric pulses were applied. Thermo-mechanical-electrical finite element analyses were also performed to investigate the effects of Joule heating and electro-plasticity on the flow responses of AZ31B sheets under electric-pulsed tension and compression tests. The proposed finite element simulations could reproduce the measured uniaxial tensile and compressive stress-strain curves under pulsed electric currents, when the temperature-dependent flow stress hardening model and thermal properties of AZ31B sheet were properly described in the simulations. In particular, the simulation results that fit best with experimental results showed that almost 100 pct of the electric current was subject to transform into Joule heating during electrically assisted tensile and compressive tests.

  6. Relating tensile, bending, and shear test data of asphalt binders to pavement performance

    SciTech Connect

    Chen, J.S.; Tsai, C.J.

    1998-12-01

    Eight different asphalt binders representing a wide range of applications for pavement construction were tested in uniaxial tension, bending, and shear stresses. Theoretical analyses were performed in this study to covert the data from the three engineering tests to stiffness moduli for predicting pavement performance. At low temperatures, high asphalt stiffness may induce pavement thermal cracking; thus, the allowable maximum stiffness was set at 1,000 MPa. At high temperatures, low asphalt stiffness may lead to pavement rutting (ruts in the road); master curves were constructed to rank the potential for rutting in the asphalts. All three viscoelastic functions were shown to be interchangeable within the linear viscoelastic region. When subjected to large deformation in the direct tension test, asphalt binders behaved nonlinear viscoelastic in which the data under bending, shear and tension modes were not comparable. The asphalts were, however, found toe exhibit linear viscoelasticity up to the failure point in the steady-state strain region.

  7. A curved beam test specimen for determining the interlaminar tensile strength of a laminated composite

    NASA Technical Reports Server (NTRS)

    Hiel, Clement C.; Sumich, Mark; Chappell, David P.

    1990-01-01

    A curved beam type of test specimen is evaluated for use in determining the through-the-thickness strength of laminated composites. Two variations of a curved beam specimen configuration (semi-circular and elliptical) were tested to failure using static and fatigue loads. The static failure load for the semi-circular specimens was found to be highly sensitive to flaw content, with the specimens falling into two distinct groups. This result supports the use of proof testing for structural validation. Static design allowables are derived based on the Weibull distribution. Fatigue data indicates no measured increase in specimen compliance prior to final fracture. All static and fatigue failures at room temperature dry conditions occurred catastrophically. The elliptical specimens demonstrated unusually high failure strengths indicating the presence of phenomena requiring further study. Results are also included for specimens exposed to a wet environment showing a matrix strength degradation due to moisture content. Further testing is under way to evaluate a fatigue methodology for matrix dominated failures based on residual static strength (wearout).

  8. A curved beam test specimen for determining the interlaminar tensile strength of a laminated composite

    NASA Technical Reports Server (NTRS)

    Hiel, Clement C.; Sumich, Mark; Chappell, David P.

    1991-01-01

    A curved beam type of test specimen is evaluated for use in determining the through-the-thickness strength of laminated composites. Two variations of a curved beam specimen configuration (semicircular and elliptical) were tested to failure using static and fatigue loads. The static failure load for the semicircular specimens was found to be highly sensitive to flaw content, with the specimens falling into two distinct groups. This result supports the use of proof testing for structural validation. Static design allowables are derived based on the Weibull distribution. Fatigue data indicates no measured increase in specimen compliance prior to final fracture. All static and fatigue failures at room temperature dry conditions occurred catastrophically. The elliptical specimens demonstrated unusually high failure strengths indicating the presence of phenomena requiring further study. Results are also included for specimens exposed to a wet environment showing a matrix strength degradation due to moisture content. Further testing is underway to evaluate a fatigue methodology for matrix dominated failures based on residual static strength (wearout).

  9. Effect of Heat Treatment and Layer Orientation on the Tensile Strength of a Crystalline Rock Under Brazilian Test Condition

    NASA Astrophysics Data System (ADS)

    Guha Roy, Debanjan; Singh, T. N.

    2016-05-01

    The effect of heat treatment and the layer orientation on the tensile properties of granitic gneiss were studied under the unconfined stress condition. The tensile strength of the samples was studied using a Brazilian configuration, and the geochemical and microstructural properties were studied using the X-ray diffraction technique as well as scanning electron microscopy (SEM), respectively. The fracture pattern and the geometrical analyses were performed using the digital photographs. The results show that both the heat treatment and layer orientation have strong control on the tensile strength, force-parallel and layer-parallel strains, and on the tensile fracture geometry. A general decrease in the tensile strength of the rock was documented with the increasing heat treatment. Although, in the heat-treated samples, X-ray diffraction study do not reveal any major change in the mineral composition, but the SEM shows the development of several micro-cracks in the grains. In the samples with different layer orientation, along with the changes in the tensile strength and layer-parallel to force-parallel strain ratio, the layer activation under shear stress is also noticed. Here, the ratio between the tensile to shear stress, acting along the layers is thought to be the major controlling factor of the tensile properties of rocks, which has many applications in mining, civil constructions, and waste disposal work.

  10. An open-end burst test method to obtain uniaxial hoop tensile properties of fuel cladding in a hot cell

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Masafumi; Aita, Makoto; Sakamoto, Kan; Higuchi, Toru

    2013-03-01

    The hoop stress-hoop strain relationship of fuel cladding is one of the essential input parameters for safety analysis of fuel rods. The three objectives of this paper were: to propose a burst test method for open-end tube specimens with the uniaxial hoop stress condition; to develop the necessary in-cell high temperature open-end burst (OEB) techniques to implement the method; and to determine the optimum specimen length for the proposed OEB test method. Silicone oil was selected as the pressurization medium, and it was sealed inside the specimens not by welding but by O-rings so that no axial tensile stress was induced in the specimens. The specimens with combined end plugs and O-rings were successfully assembled by manipulators in a hot cell, and a high temperature (⩽350 °C), high pressure (⩽100 MPa) seal was achieved. The optimum specimen length was determined by using ductile and embrittled tubes with various lengths of 30-60 mm and was found to be around 45 mm for typical BWR fuel rods. During the OEB test, internal pressure and diametral expansion were monitored to obtain the basic mechanical performance properties of the fuel cladding such as yield stress, ultimate strength, as well as the true hoop stress-hoop strain curve.

  11. Testing the ratio of two poisson rates.

    PubMed

    Gu, Kangxia; Ng, Hon Keung Tony; Tang, Man Lai; Schucany, William R

    2008-04-01

    In this paper we compare the properties of four different general approaches for testing the ratio of two Poisson rates. Asymptotically normal tests, tests based on approximate p -values, exact conditional tests, and a likelihood ratio test are considered. The properties and power performance of these tests are studied by a Monte Carlo simulation experiment. Sample size calculation formulae are given for each of the test procedures and their validities are studied. Some recommendations favoring the likelihood ratio and certain asymptotic tests are based on these simulation results. Finally, all of the test procedures are illustrated with two real life medical examples.

  12. Promoted Combustion Test Propagation Rate Data

    NASA Technical Reports Server (NTRS)

    Borstorff, J.; Jones, P.; Lowery, F.

    2002-01-01

    Combustion propagation rate data were examined for potential use in benchmarking a thermal model of the Promoted Combustion Test (PCT), and also for potential use in measuring the repeatability of PCT results.

  13. Servohydraulic methods for mechanical testing in the Sub-Hopkinson rate regime up to strain rates of 500 1/s.

    SciTech Connect

    Crenshaw, Thomas B.; Boyce, Brad Lee

    2005-10-01

    Tensile and compressive stress-strain experiments on metals at strain rates in the range of 1-1000 1/s are relevant to many applications such as gravity-dropped munitions and airplane accidents. While conventional test methods cover strain rates up to {approx}10 s{sup -1} and split-Hopkinson and other techniques cover strain rates in excess of {approx}1000 s{sup -1}, there are no well defined techniques for the intermediate or ''Sub-Hopkinson'' strain-rate regime. The current work outlines many of the challenges in testing in the Sub-Hopkinson regime, and establishes methods for addressing these challenges. The resulting technique for obtaining intermediate rate stress-strain data is demonstrated in tension on a high-strength, high-toughness steel alloy (Hytuf) that could be a candidate alloy for earth penetrating munitions and in compression on a Au-Cu braze alloy.

  14. Ex-situ tensile fatigue-creep testing: A powerful tool to simulate in-situ mechanical degradation in fuel cells

    NASA Astrophysics Data System (ADS)

    Sadeghi Alavijeh, A.; Venkatesan, S. V.; Khorasany, R. M. H.; Kim, W. H. J.; Kjeang, E.

    2016-04-01

    An ex-situ tensile fatigue and creep based accelerated stress test (TFC-AST) is proposed to evaluate the mechanical stability of catalyst coated membranes (CCMs) used in fuel cells. The fatigue-creep action of the TFC test is analyzed by tensile and hygrothermal expansion measurements on partially degraded specimens supplemented by microstructural characterization using transmission electron microscopy, revealing significant decay in mechanical properties as well as morphological rearrangement due to the combined fatigue and creep loading. Through comparison with in-situ hygrothermally degraded CCMs, the TFC-AST protocol is demonstrated to be an economical alternative to the costly in-situ mechanical accelerated stress tests that can reduce the test duration by more than 99%.

  15. Device for testing closure disks at high rates of change of pressure

    DOEpatents

    Merten, Jr., Charles W.

    1993-11-09

    A device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston.

  16. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    NASA Astrophysics Data System (ADS)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  17. HIV Testing Rates and Testing Locations, by Race and Ethnicity

    ERIC Educational Resources Information Center

    Rountree, Michele A.; Chen Lynn; Brown Adama; Pomeroy, Elizabeth C.

    2009-01-01

    The purpose of this study is to report the HIV testing rates among white Americans, African Americans, and Hispanic Americans and to identify the frequency of use of HIV testing locations according to a variety of sociodemographic variables. Data for this study came from the 2005 Behavioral Risk Factor Surveillance System (BRFSS). Participants in…

  18. Evaluation of the histological and mechanical features of tendon healing in a rabbit model with the use of second-harmonic-generation imaging and tensile testing

    PubMed Central

    Hase, E.; Sato, K.; Yonekura, D.; Minamikawa, T.; Takahashi, M.

    2016-01-01

    Objectives This study aimed to evaluate the histological and mechanical features of tendon healing in a rabbit model with second-harmonic-generation (SHG) imaging and tensile testing. Materials and Methods A total of eight male Japanese white rabbits were used for this study. The flexor digitorum tendons in their right leg were sharply transected, and then were repaired by intratendinous stitching. At four weeks post-operatively, the rabbits were killed and the flexor digitorum tendons in both right and left legs were excised and used as specimens for tendon healing (n = 8) and control (n = 8), respectively. Each specimen was examined by SHG imaging, followed by tensile testing, and the results of the two testing modalities were assessed for correlation. Results While the SHG light intensity of the healing tendon samples was significantly lower than that of the uninjured tendon samples, 2D Fourier transform SHG images showed a clear difference in collagen fibre structure between the uninjured and the healing samples, and among the healing samples. The mean intensity of the SHG image showed a moderate correlation (R2 = 0.37) with Young’s modulus obtained from the tensile testing. Conclusion Our results indicate that SHG microscopy may be a potential indicator of tendon healing. Cite this article: E. Hase, K. Sato, D. Yonekura, T. Minamikawa, M. Takahashi, T. Yasui. Evaluation of the histological and mechanical features of tendon healing in a rabbit model with the use of second-harmonic-generation imaging and tensile testing. Bone Joint Res 2016;5:577–585. DOI: 10.1302/2046-3758.511.BJR-2016-0162.R1. PMID:27881441

  19. An evaluation of the +/-45 deg tensile test for the determination of the in-plane shear strength of composite materials

    NASA Technical Reports Server (NTRS)

    Kellas, S.; Morton, J.; Jackson, K. E.

    1991-01-01

    The applicability of the +/-45 deg tensile test for the determination of the in-plane shear strength of advanced composite laminates is studied. The assumptions used for the development of the shear strength formulas were examined, and factors such as the specimen geometry and stacking sequence were assessed experimentally. It was found that the strength of symmetric and balanced +/-45 deg laminates depends primarily upon the specimen thickness rather than the specimen width. These findings have important implications for the +/-45 deg tensile test which is recommended by several organizations for the determination of the in-plane shear stress/strain response and the shear strength of continuous fiber reinforced composites. Modifications to the recommended practices for specimen selection and shear strength determination are suggested.

  20. Vacuum test fixture improves leakage rate measurements

    NASA Technical Reports Server (NTRS)

    Maier, H.; Marx, H.

    1966-01-01

    Cylindrical chamber, consisting of two matching halves, forms a vacuum test fixture for measuring leakage rates of individual connections, brazed joints, and entrance ports used in closed fluid flow line systems. Once the chamber has been sufficiently evacuated, atmospheric pressure holds the two halves together.

  1. Investigation of the elastic modulus, tensile and flexural strength of five skull simulant materials for impact testing of a forensic skin/skull/brain model.

    PubMed

    Falland-Cheung, Lisa; Waddell, J Neil; Chun Li, Kai; Tong, Darryl; Brunton, Paul

    2017-04-01

    Conducting in vitro research for forensic, impact and injury simulation modelling generally involves the use of a skull simulant with mechanical properties similar to those found in the human skull. For this study epoxy resin, fibre filled epoxy resin, 3D-printing filaments (PETG, PLA) and self-cure acrylic denture base resin were used to fabricate the specimens (n=20 per material group), according to ISO 527-2 IBB and ISO20795-1. Tensile and flexural testing in a universal testing machine was used to measure their tensile/flexural elastic modulus and strength. The results showed that the epoxy resin and fibre filled epoxy resin had similar tensile elastic moduli (no statistical significant difference) with lower values observed for the other materials. The fibre filled epoxy resin had a considerably higher flexural elastic modulus and strength, possibly attributed to the presence of fibres. Of the simulants tested, epoxy resin had an elastic modulus and flexural strength close to that of mean human skull values reported in the literature, and thus can be considered as a suitable skull simulant for a skin/skull/brain model for lower impact forces that do not exceed the fracture stress. For higher impact forces a 3D printing filament (PLA) may be a more suitable skull simulant material, due to its closer match to fracture stresses found in human skull bone. Influencing factors were also anisotropy, heterogeneity and viscoelasticity of human skull bone and simulant specimens.

  2. Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes.

    PubMed

    Laterreur, Véronique; Ruel, Jean; Auger, François A; Vallières, Karine; Tremblay, Catherine; Lacroix, Dan; Tondreau, Maxime; Bourget, Jean-Michel; Germain, Lucie

    2014-06-01

    Tissue engineering provides a promising alternative for small diameter vascular grafts, especially with the self-assembly method. It is crucial that these grafts possess mechanical properties that allow them to withstand physiological flow and pressure without being damaged. Therefore, an accurate assessment of their mechanical properties, especially the burst pressure, is essential prior to clinical release. In this study, the burst pressure of self-assembled tissue-engineered vascular substitutes was first measured by the direct method, which consists in pressurizing the construct with fluid until tissue failure. It was then compared to the burst pressure estimated by Laplace׳s law using data from a ring tensile test. The major advantage of this last method is that it requires a significantly smaller tissue sample. However, it has been reported as overestimating the burst pressure compared to a direct measurement. In the present report, it was found that an accurate estimation of the burst pressure may be obtained from a ring tensile test when failure internal diameter is used as the diameter parameter in Laplace׳s law. Overestimation occurs with the method previously reported, i.e. when the unloaded internal diameter is used for calculations. The estimation of other mechanical properties was also investigated. It was demonstrated that data from a ring tensile test provide an accurate estimate of the failure strain and the stiffness of the constructs when compared to measurements with the direct method.

  3. DWPF Macrobatch 2 Melt Rate Tests

    SciTech Connect

    Stone, M.E.

    2001-01-03

    The Defense Waste Processing Facility (DWPF) canister production rate must be increased to meet canister production goals. Although a number of factors exist that could potentially increase melt rate, this study focused on two: (1) changes in frit composition and (2) changes to the feed preparation process to alter the redox of the melter feed. These two factors were investigated for Macrobatch 2 (sludge batch 1B) utilizing crucible studies and a specially designed ''melt rate'' furnace. Other potential factors that could increase melt rate include: mechanical mixing via stirring or the use of bubblers, changing the power skewing to redistribute the power input to the melter, and elimination of heat loss (e.g. air in leakage). The melt rate testing in FY00 demonstrated that melt rate can be improved by adding a different frit or producing a much more reducing glass by the addition of sugar as a reductant. The frit that melted the fastest in the melt rate testing was Frit 165. A paper stud y was performed using the Product Composition Control System (PCCS) to determine the impact on predicted glass viscosity, liquidus, durability, and operating window if the frit was changed from Frit 200 to Frit 165. PCCS indicated that the window was very similar for both frits. In addition, the predicted viscosity of the frit 165 glass was 46 poise versus 84 poise for the Frit 200 glass. As a result, a change from Frit 200 to Frit 165 is expected to increase the melt rate in DWPF without decreasing waste loading.

  4. Analysis of the tensile stress-strain behavior of elastomers at constant strain rates. I - Criteria for separability of the time and strain effects

    NASA Technical Reports Server (NTRS)

    Hong, S. D.; Fedors, R. F.; Schwarzl, F.; Moacanin, J.; Landel, R. F.

    1981-01-01

    A theoretical analysis of the tensile stress-strain relation of elastomers at constant strain rate is presented which shows that the time and the stress effect are separable if the experimental time scale coincides with a segment of the relaxation modulus that can be described by a single power law. It is also shown that time-strain separability is valid if the strain function is linearly proportional to the Cauchy strain, and that when time-strain separability holds, two strain-dependent quantities can be obtained experimentally. In the case where time and strain effect are not separable, superposition can be achieved only by using temperature and strain-dependent shift factors.

  5. Humidity Testing for Human Rated Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Gary B.

    2009-01-01

    Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."

  6. Tensile Properties of Dyneema SK76 Single Fibers at Multiple Loading Rates Using a Direct Gripping Method

    DTIC Science & Technology

    2014-06-01

    AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Ultra-high- molecular -weight...AZCO, The Netherlands) are frequently used in protective armor, though ultra-high- molecular -weight polyethylene (UHMWPE) fibers such as Dyneema (DSM...The High Strain Rate Response of Ultra High Molecular Weight Polyethylene: From Fibre to Laminate. International Journal of Impact Engineering 2013

  7. Stress-induced martensitic transformation during tensile test of full-size TF conductor jacket tube at 4.2 K

    SciTech Connect

    Yang, H. H.; Li, S. P.; Wu, Z. X.; Huang, C. J.; Huang, R. J.; Li, L. F.

    2014-01-27

    The toroidal-field (TF) conductor jacket of International Thermonuclear Experimental Reactor (ITER) is made of modified 316LN stainless steel, which is influenced by heat treatment at approximately 650 °C for 200 h to produce Nb{sub 3}Sn superconducting materials at the final stage. Due to the high electromagnetic forces arising during magnet operation, higher mechanical properties of the jacket materials at cryogenic temperatures are required. In our work, mechanical properties of the full-size TF conductor jacket tube were investigated, which satisfied the ITER requirements. Stress-induced martensitic transformation mechanism during tensile test of the conductor jacket material at 4.2 K was characterized by means of in-situ temperature dependent XRD, vibrating sample magnetometer (VSM) and in conjunction with transmission electron microscopy (TEM). The tensile behavior related to the amount of stress-induced phase transformation at cryogenic temperature was also discussed.

  8. Vuilleumier Cooler Wear Rate Test Program

    DTIC Science & Technology

    1976-12-01

    such combination would be a silicon carbide or chromium silicide rider sliding against a hardcoated Inconel 718 liner. If rider wear is excessive, the...rupture energy These properties are related to experimental parameters that are easily measured. The elastic energy potential of a material is...ultimate strength. It is only necessary to realize that these bulk material properties depend on test conditions such as deformation rate and temperature

  9. Comparison and ranking of superelasticity of different austenite active nickel-titanium orthodontic archwires using mechanical tensile testing and correlating with its electrical resistivity

    PubMed Central

    Nagarajan, D.; Baskaranarayanan, Balashanmugam; Usha, K.; Jayanthi, M. S.; Vijjaykanth, M.

    2016-01-01

    Introduction: The application of light and continuous forces for optimum physiological response and the least damage to the tooth supporting structures should be the primary aim of an orthodontist. Nickel-titanium (NiTi) alloys with their desirable properties are one of the natural choices of the clinicians. Aim: This study was aimed to compare and rank them based on its tensile strength and electrical resistivity. Materials and Methods: The sample consisted of eight groups of 0.017 inch × 0.025 inch rectangular archwires from eight different manufacturers, and five samples from each group for tensile testing and nine samples for electrical resistivity tests were used. Data for stress at 10% strain and the initial slope were statistically analyzed with an analysis of variance and Scheffe tests with P < 0.05. The stress/strain plots of each product were ranked for superelastic behavior. The rankings of the wires tested were based primarily on the unloading curve's slope which is indicative of the magnitude of the deactivation force and secondarily on the length of the horizontal segment which is indicative of continuous forces during deactivation. For calculating the electric resistivity, the change in resistance after inducing strain in the wires was taken into account for the calculation of degree of martensite transformation and for ranking. Results: In tensile testing Ortho Organizers wires ranked first and GAC Lowland NiTi wires ranked last. For resistivity tests Ormco A wires were found superior and Morelli remained last. Conclusion: these rankings should be correlated clinically and need further studies. PMID:27829751

  10. 26 CFR 1.1274-4 - Test rate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 11 2013-04-01 2013-04-01 false Test rate. 1.1274-4 Section 1.1274-4 Internal... TAXES (CONTINUED) Special Rules for Determining Capital Gains and Losses § 1.1274-4 Test rate. (a) Determination of test rate of interest—(1) In general—(i) Test rate is the 3-month rate. Except as provided...

  11. 26 CFR 1.1274-4 - Test rate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 11 2011-04-01 2011-04-01 false Test rate. 1.1274-4 Section 1.1274-4 Internal... TAXES (CONTINUED) Special Rules for Determining Capital Gains and Losses § 1.1274-4 Test rate. (a) Determination of test rate of interest—(1) In general—(i) Test rate is the 3-month rate. Except as provided...

  12. 26 CFR 1.1274-4 - Test rate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 11 2014-04-01 2014-04-01 false Test rate. 1.1274-4 Section 1.1274-4 Internal... TAXES (CONTINUED) Special Rules for Determining Capital Gains and Losses § 1.1274-4 Test rate. (a) Determination of test rate of interest—(1) In general—(i) Test rate is the 3-month rate. Except as provided...

  13. Effect of Electron Beam Irradiation on Tensile Strength of Polypropylene

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Ikeda, Masayuki; Shimbo, Minoru; Miyano, Yasushi

    In this paper, the effects of the intensity of electron beam and the variation with time after irradiation of electron beam on the tensile strength of the polypropylene (PP), which is widely used as medicine containers, were investigated. PP with and without colorants were used first and samples irradiated under various intensity of EB. A tensile test on the irradiated samples with elapsed time after the irradiation of the electron beam was carried out. The effects of those factors on the tensile strength were discussed. The following results were obtained (1) The tensile strength of PP decreased due to the influence of the electron beam irradiation, however the rate of the decrease in strength was small compared with the original one. Furthermore, the rate of the decrease in strength was very small owing to the variation with time after the EB irradiation. (2) The tensile rupture strength of PP increased and the rupture strain owing to the influence of the electron beam irradiation compared with the original one. In addition, these rupture strength increased and the rupture strain decreased along with time after the irradiation of the electron beam. (3) The tensile rupture strain energy of PP decreased owing to the influence of the electron beam irradiation compared with the original one. In addition, the strain energy decreases with time after the irradiation of the electron beam. Moreover, the strength characteristics of PP with colorants received greater influence of electron beam compared with the one without colorants.

  14. Effect of Zn addition, strain rate and deformation temperature on the tensile properties of Sn-3.3 wt.% Ag solder alloy

    SciTech Connect

    Fawzy, A. . E-mail: afawzy1955@yahoo.com

    2007-04-15

    Stress-strain characteristics of the binary Sn-3.3 wt.% Ag and the tertiary Sn-3.3 wt.% Ag-1 wt.% Zn solder alloys were investigated at various strain rates (SR, {epsilon} {sup .}) from 2.6 x 10{sup -4} to 1.0 x 10{sup -2} s{sup -1} and deformation temperatures from 300 to 373 K. Addition of 1 wt.% Zn to the binary alloy increased the yield stress {sigma} {sub y} and the ultimate tensile stress {sigma} {sub UTS} while a decrease of ductility (total elongation {epsilon} {sub T}) was observed. Increasing the strain rate ({epsilon} {sup .}) increased both {sigma} {sub y} and {sigma} {sub UTS} according to the power law {sigma} = C {epsilon} {sup .m}. A normal decrease of {epsilon} {sub T} with strain rate was observed according to an empirical equation of the form {epsilon} {sub T} = A exp (- {lambda}{epsilon} {sup .}); A and {lambda} are constants. Increasing the deformation temperature decreased both {sigma} {sub y} and {sigma} {sub UTS} in both alloys, and decreased the total elongation {epsilon} {sub T} in the Zn-free binary alloy, whereas {epsilon} {sub T} was increased in the Zn-containing alloy. The activation energy was determined as 41 and 20 kJ mol{sup -1} for these alloys, respectively. The results obtained were interpreted in terms of the variation of the internal microstructure in both alloys. The internal microstructural variations in the present study were evaluated by optical microscopy, electron microscopy and X-ray diffraction. The results show the importance of Zn addition in enhancing the mechanical strength of the Sn-3.3 wt.% Ag base alloy.

  15. Gas cylinder release rate testing and analysis

    NASA Astrophysics Data System (ADS)

    Despres, Joseph; Sweeney, Joseph; Yedave, Sharad; Chambers, Barry

    2012-11-01

    There are varying cylinder technologies employed for the storage of gases, each resulting in a potentially different hazard level to the surroundings in the event of a gas release. Subatmospheric Gas delivery Systems Type I (SAGS I) store and deliver gases subatmospherically, while Subatmospheric Gas delivery Systems Type II (SAGS II) deliver gases subatmospherically, but store them at high pressure. Standard high pressure gas cylinders store and deliver their contents at high pressure. Due to the differences in these cylinder technologies, release rates in the event of a leak or internal component failure, can vary significantly. This paper details the experimental and theoretical results of different Arsine (AsH3) gas cylinder release scenarios. For the SAGS II experimental analysis, Fourier Transform Infrared Spectroscopy (FTIR) was used to determine the spatial concentration profiles when a surrogate gas, CF4, was released via a simulated leak within an ion implanter. Various SAGS I and SAGS II cylinder types and failure modes were tested. Additionally, theoretical analysis was performed to support an understanding of the different potential AsH3 leak rates. The results of this work show that the effects of a leak from the various cylinder types can be quite different, with the concentrations resulting from cylinders containing high pressure gas often being in excess of IDLH levels.

  16. Modelling of the effect of dislocation channel on intergranular microcrack nucleation in pre-irradiated austenitic stainless steels during low strain rate tensile loading

    NASA Astrophysics Data System (ADS)

    Evrard, Pierre; Sauzay, Maxime

    2010-10-01

    In the present article, the effect of dislocation channel on intergranular microcrack nucleation during the tensile deformation of pre-irradiated austenitic stainless steels is studied. Because several slip planes are activated within the dislocation channel, the simple dislocation pile-up model seems not well suited to predict grain boundary stress field. Finite element computations, using crystal plasticity laws and meshes including a channel of finite thickness, are also performed in order to study the effect of some microstructural characteristics on grain boundary stress field. Numerical results show that: the thickness and the length of the dislocation channel influence strongly the grain boundary normal stress field. The grain boundary orientation with respect the stress axis does not affect so much the grain boundary normal stresses close to the dislocation channel. On the contrary far away the dislocation channel, the grain boundary stress field depends on the grain boundary orientation. Based on these numerical results, an analytical model is proposed to predict grain boundary stress fields. It is valuable for large ranges of dislocation channel thickness, length as well as applied stress. Then, a macroscopic microcrack nucleation criterion is deduced based on the elastic-brittle Griffith model. The proposed criterion predicts correctly the influence of grain boundary characteristics (low-angle boundaries (LABs), non-coincident site lattice (non-CSL) high-angle boundaries (HABs), special grain boundaries (GBs)) on intergranular microcrack nucleation and the macroscopic tensile stress required for grain boundary microcrack nucleation for pre-irradiated austenitic stainless steels deformed in argon environment. The criterion based on a dislocation pile-up model (Smith and Barnby) underestimates strongly the nucleation stress. These results confirm that pile-up models are not well suited to predict microcrack nucleation stress in the case of dislocation

  17. Use of micro-tomography for validation of method to identify interfacial shear strength from tensile tests of short regenerated cellulose fibre composites

    NASA Astrophysics Data System (ADS)

    Hajlane, A.; Miettinen, A.; Madsen, B.; Beauson, J.; Joffe, R.

    2016-07-01

    The interfacial shear strength of short regenerated cellulose fibre/polylactide composites was characterized by means of an industry-friendly adhesion test method. The interfacial shear strength was back-calculated from the experimental tensile stress-strain curves of composites by using a micro-mechanical model. The parameters characterizing the microstructure of the composites, e.g. fibre length and orientation distributions, used as input in the model were obtained by micro-tomography. The investigation was carried out on composites with untreated and surface treated fibres with various fibre weight contents (5wt%, 10wt%, and 15wt% for untreated fibres, and 15wt% for treated fibres). The properties of fibres were measured by an automated single fibre tensile test method. Based on these results, the efficiency of the fibre treatment to improve fibre/matrix adhesion is evaluated, and the applicability of the method to measure the interfacial shear strength is discussed. The results are compared with data from previous work, and with other results from the literature.

  18. Device for testing closure disks at high rates of change of pressure

    DOEpatents

    Merten, C.W. Jr.

    1993-11-09

    A device is described for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston. 5 figures.

  19. PBX 9502 TENSILE ANALYSIS

    SciTech Connect

    Idar, D.J.; Larson, S.A.

    2000-10-01

    With the recent creation of the PX HE Core Surveillance Database, individual specimen surveillance values can be easily compared to the corresponding individual qualification values to evaluate for trends. A review of the data shows a broad scatter in measured stress-strain values. Using the available HE surveillance database, it is clear that the surveillance measurements from the two Cycle 15 charges fall within the range of qualification stress and strain values recorded previously for PBX 9502 lots and that no apparent stockpile-age related trends are evident in the tensile stress-strain data. As a result of this investigation, some changes are being made to the core surveillance specifications to minimize the effects on tensile data scatter due to temperature and humidity differences and method to method changes. These data analyses do point out the need for a comprehensive understanding of the effect of a number of variables, i.e. formulation and pressing method, density, stockpile age, lot-to-lot variations, temperature, and humidity on the mechanical property behavior of HE composite materials. Too often data have been compared without the relevant details made available to determine if the test conditions were nominally the same or different. These results also point out the critical need to establish useful stress-strain limits for qualification and surveillance testing of HEs.

  20. Effects of chemical composition and test conditions on the dynamic tensile response of Zr-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, F.; Laws, K.; Martinez, D.; Trujillo, C. P.; Brown, A. D.; Cerreta, E. K.; Hazell, P. J.; Ferry, M.; Quadir, M. Z.; Jiang, J.; Escobedo, J. P.

    2017-01-01

    The effects of impact velocity and temperature on the dynamic mechanical behavior of two bulk metallic (BMG) alloys with slightly different elemental compositions (Zr55Cu30Ni5Al30 and Zr46Cu38Ag8Al38) have been investigated. Bullet-shaped samples were accelerated by a gas gun to speeds in the 400˜600m/s range and tested at both room temperature and 250°C. The samples impacted steel extrusion dies which subjected the bullets to high strains at relatively high strain-rates. The extruded fragments were subsequently soft recovered by using low density foams and examined by means of optical/scanning electron microscopy and differential scanning calorimetry. It was found that shear banding was the dictating mechanism responsible for the fracture of all BMGs. At room temperature, the Zr55Cu30Ni5Al30 alloy exhibited a higher resistance to fragmentation than the Zr46Cu38Ag8Al38 alloy. At 250°C, significant melting was observed in the recovered fragments of both alloys, which indicates that the BMG glassy structure undergoes a melting process and deformation likely occurs homogeneously.

  1. Effects of chemical composition and test conditions on the dynamic tensile response of Zr-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, F.; Laws, K. J.; Trujillo, C. P.; Brown, A. D.; Cerreta, E. K.; Hazell, P. J.; Quadir, M. Z.; Ferry, M.; Escobedo, J. P.

    2015-06-01

    The effects of impact velocity and temperature on the dynamic mechanical behavior of two bulk metallic glasses (BMG) with slightly different elemental compositions (Zr55Cu30Ni5Al30 and Zr46Cu38Ag8Al38) have been investigated. Bullet-shaped samples were accelerated by a gas gun to speeds in the 400 ~ 600m/s range and tested at room temperature and 250 °C. The specimens impacted a steel extrusion die which subjected them to high strains at high strain-rates. The extruded samples were subsequently soft recovered by using low density foams. The deformed specimens were examined by optical and electron microscopy, x-ray diffraction and hardness measurements. The characterization results aided to assess the effect of chemical composition on the microstructural evolution, i.e. phase changes or crystallization, which might influence the ductility on the nominally brittle amorphous BMGs. The most significant results from this study will be presented. School of Engineering and Information Technology, UNSW Canberra.

  2. Test Review: Autism Spectrum Rating Scales

    ERIC Educational Resources Information Center

    Simek, Amber N.; Wahlberg, Andrea C.

    2011-01-01

    This article reviews Autism Spectrum Rating Scales (ASRS) which are designed to measure behaviors in children between the ages of 2 and 18 that are associated with disorders on the autism spectrum as rated by parents/caregivers and/or teachers. The rating scales include items related to behaviors associated with Autism, Asperger's Disorder, and…

  3. CHARACTERIZATION OF TENSILE STRENGTH OF GLOVEBOX GLOVES

    SciTech Connect

    Korinko, P.; Chapman, G.

    2012-02-29

    A task was undertaken to compare various properties of different glovebox gloves, having various compositions, for use in gloveboxes at the Savannah River Site (SRS). One aspect of this project was to determine the tensile strength (TS) of the gloves. Longitudinal tensile samples were cut from 15 different gloves and tensile tested. The stress, load, and elongation at failure were determined. All of the gloves that are approved for glovebox use and listed in the glovebox procurement specification met the tensile and elongation requirements. The Viton{reg_sign} compound gloves are not listed in the specification, but exhibited lower tensile strengths than permissible based on the Butyl rubber requirements. Piercan Polyurethane gloves were the thinnest samples and exhibited the highest tensile strength of the materials tested.

  4. Progressive failure of large deformation composites under dynamic tensile loading

    NASA Astrophysics Data System (ADS)

    Xing, Liqun

    The applications of polymer based composite materials in structural components under dynamic loading have increased dramatically. The accurate understanding and modeling of the material mechanical behavior is the basis for the composite structure design and analysis. This research was designed to investigate the progressive failure nature of woven polymer-based composites under dynamic tensile loading conditions. A plain-woven E-glass/vinyl ester composite was selected and a generalized anisotropic material characterization procedure was developed. Off-axial tensile dynamic loading experiments with different strain rates and temperature was conducted. A nonlinear and rate dependent constitutive model used for the polymer-based composites under tensile dynamic tensile loading was constructed. The comparison shows a good match with testing data and a good prediction of stress to failure values. A hybrid method that combined the classical laminate theory with material microstructure analysis was presented to model the large strain to failure phenomenon. A single material parameter failure criteria based on Monkman-Grant concept was built to represent the materials anisotropic and rate dependency natural for tensile loading. And the strength concept based on the material constitution relationship and failure criteria was established to for structure analyses.

  5. Tensile properties of epoxy encapsulants

    SciTech Connect

    Guess, T.R.; Wischmann, K.B.; Stavig, M.E.

    1993-02-01

    Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson's ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide information for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson's ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.

  6. Tensile properties of epoxy encapsulants

    SciTech Connect

    Guess, T.R.; Wischmann, K.B.; Stavig, M.E.

    1993-02-01

    Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson`s ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide information for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson`s ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.

  7. Tensile and compressive behavior of a swirl mat composite

    SciTech Connect

    Ruggles, M.B.

    1998-07-01

    The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the US Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on one representative reference material--an isocyanurate (polyurethane) reinforced with continuous strand, swirl-mat E-glass. The present report describes tensile and compressive testing and results for the reference composite. Behavior trends and proportional limit are established for both tension and compression. Damage development due to tensile loading and strain rate effects are discussed.

  8. Preliminary report on tests of tensile specimens with a part-through surface notch for a filament wound graphite/epoxy material

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Morris, D. H.

    1985-01-01

    The behavior of tensile coupons with surface notches of various semi-elliptical shapes were evaluated for specimens obtained from a filament wound graphite/epoxy cylinder. The quasi-static test results, in some instances, are inadequate for defining complete trend curves and the interpretive analysis is considered to be preliminary. Specimens with very shallow notches were observed to be notch insensitive and the unnotched strength from these specimens was determined to be 54.97 Ksi. The failure strain of the laminate was found to be 1.328%. Specimens with deeper notches were sensitive to notch depth, notch aspect ratio, and specimen width. Using the unnotched strength of 54.97 Ksi and Poe's general toughness parameter, the fracture toughness was estimated to be 27.2 Ksi square root of In. Isotropic linear elastic fracture mechanics together with the estimated fracture toughness correctly predicted the influence of notch depth, aspect ratio, and specimen finitewidth.

  9. Bond mobility mechanism in grain boundary embrittlement: First-principles tensile tests of Fe with a P-segregated {Sigma}3 grain boundary

    SciTech Connect

    Yuasa, Motohiro; Mabuchi, Mamoru

    2010-09-01

    First-principles simulated tensile tests have been performed on Fe with a P-segregated grain boundary to investigate the nature of the bond mobility mechanism in grain boundary embrittlement. The first site for bond breaking was the Fe-P bond, despite its high charge density. This is because the Fe-P bond exhibited the covalentlike characteristics of a localized bonding and the mobility of electrons was reduced. The breaking of the Fe-P bond accelerated the breaking of the Fe-Fe bond around the Fe-P bond because the Fe-P bond breaking affected the electron density of states of the Fe-Fe bond. Thus, P segregation enhanced the grain boundary embrittlement in Fe.

  10. Dependency of Shear Strength on Test Rate in SiC/BSAS Ceramic Matrix Composite at Elevated Temperature

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2003-01-01

    Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.

  11. 76 FR 1448 - Random Drug Testing Rate for Covered Crewmembers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... SECURITY Coast Guard Random Drug Testing Rate for Covered Crewmembers AGENCY: Coast Guard, DHS. ACTION: Notice of minimum random drug testing rate. SUMMARY: The Coast Guard has set the calendar year 2011 minimum random drug testing rate at 50 percent of covered crewmembers. DATES: The minimum random...

  12. 76 FR 79204 - Random Drug Testing Rate for Covered Crewmembers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... SECURITY Coast Guard Random Drug Testing Rate for Covered Crewmembers AGENCY: Coast Guard, DHS. ACTION: Notice of minimum random drug testing rate. SUMMARY: The Coast Guard has set the calendar year 2012 minimum random drug testing rate at 50 percent of covered crewmembers. DATES: The minimum random...

  13. 78 FR 4855 - Random Drug Testing Rate for Covered Crewmembers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ... SECURITY Coast Guard Random Drug Testing Rate for Covered Crewmembers AGENCY: Coast Guard, DHS. ACTION: Notice of minimum random drug testing rate. SUMMARY: The Coast Guard has set the calendar year 2013 minimum random drug testing rate at 25 percent of covered crewmembers. The Coast Guard will continue...

  14. Test and Evaluation of Reduced Rate Multiplexers.

    DTIC Science & Technology

    1981-08-01

    modems. However, recognizing the potential economics that could result from operating at data rates lower than 64 KB/S, this T&E program is structured to...modulation transmitted as a vestigial . sideband line signal, -16 dB carrier 2853 Hz added in quadrature, 4 level 4800 baud 9600 BIS, 4800/7200/9600 B

  15. Mini-tensile specimen application for sheets characterization

    NASA Astrophysics Data System (ADS)

    Džugan, J.; Rund, M.; Prantl, A.; Konopík, P.

    2017-02-01

    There are many cases when there is a shortage of the experimental material for detailed analysis and then small size specimens techniques becomes essential. The current paper deals with investigations of mini-tensile tests (MTT) application to metal sheets characterization. In the case of metal sheets assessment the most common are tensile tests for Lankford parameters and strain hardening determination. As most of the processes are not quasi-static and constant strain rate processes, thus assessment of strain rate hardening is also crucial part of the characterization. Previously developed and verified testing procedure of M-TTs for bulk materials is applied here for steel sheet made of DC01 characterization. Tests under quasi-static and dynamic loading conditions are carried out in order to describe above mentioned properties at room temperature. Accurate strain measurement is carried out with digital image correlation systems and results obtained with M-TTs are going to be confronted with standard size specimens’ results.

  16. Temperature and strain rate effects in high strength high conductivity copper alloys tested in air

    SciTech Connect

    Edwards, D.J.

    1998-03-01

    The tensile properties of the three candidate alloys GlidCop{trademark} Al25, CuCrZr, and CuNiBe are known to be sensitive to the testing conditions such as strain rate and test temperature. This study was conducted on GlidCop Al25 (2 conditions) and Hycon 3HP (3 conditions) to ascertain the effect of test temperature and strain rate when tested in open air. The results show that the yield strength and elongation of the GlidCop Al25 alloys exhibit a strain rate dependence that increases with temperature. Both the GlidCop and the Hycon 3 HP exhibited an increase in strength as the strain rate increased, but the GlidCop alloys proved to be the most strain rate sensitive. The GlidCop failed in a ductile manner irrespective of the test conditions, however, their strength and uniform elongation decreased with increasing test temperature and the uniform elongation also decreased dramatically at the lower strain rates. The Hycon 3 HP alloys proved to be extremely sensitive to test temperature, rapidly losing their strength and ductility when the temperature increased above 250 C. As the test temperature increased and the strain rate decreased the fracture mode shifted from a ductile transgranular failure to a ductile intergranular failure with very localized ductility. This latter observation is based on the presence of dimples on the grain facets, indicating that some ductile deformation occurred near the grain boundaries. The material failed without any reduction in area at 450 C and 3.9 {times} 10{sup {minus}4} s{sup {minus}1}, and in several cases failed prematurely.

  17. 75 FR 9018 - Pipeline Safety: Random Drug Testing Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Random Drug Testing Rate AGENCY... Percentage Rate for Random Drug Testing. SUMMARY: PHMSA has determined that the minimum random drug testing... percentage of covered employees for random drug testing. Pursuant to 49 CFR 199.105(c)(2), (3), and (4),...

  18. 77 FR 2606 - Pipeline Safety: Random Drug Testing Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Random Drug Testing Rate AGENCY... Percentage Rate for Random Drug Testing. SUMMARY: PHMSA has determined that the minimum random drug testing... percentage of covered employees for random drug testing. Pursuant to 49 CFR 199.105(c)(2), (3), and (4),...

  19. Improvement in Mechanical Properties of A356 Tensile Test Bars Cast in a Permanent Mold by Application of a Knife Ingate

    NASA Astrophysics Data System (ADS)

    Wang, Yaou; Schwam, David; Neff, David V.; Chen, Chai-Jung; Zhu, Xuejun

    2012-03-01

    As a standard test-bar permanent mold, the "Stahl" Mold has been widely used in foundries to assess the properties of cast alloys. However, inferior mechanical properties are often obtained with this mold due to shrinkage-induced microporosity in the gage section. In order to improve the mechanical properties, a design modification comprising a thin knife ingate between the feeder and test-bar cavity was evaluated in this work. The new design was studied by computer-aided simulation. Simulations predicted that the knife ingate improved the metal feeding capability and reduced the shrinkage microporosity at the gage section from 3 to 1 pct. Experimental verification work has been undertaken with aluminum alloy A356, and the results were analyzed by a statistics theory-based factorial analysis method. The new design resulted in main effects with ultimate tensile strength (UTS) improvement of 20 MPa (relative 12 pct) and elongation increment of 2 pct (relative 45 pct) for the as-cast test bars.

  20. Lethality Rate Estimation and Testing Procedures

    DTIC Science & Technology

    1989-09-11

    AUTHOR(S) Steven W. Rust, Paul I. Feder, Frederick R. Todt, Ronald L. Joiner Ila. TYPE OF REPORT 13b, IME .OVFRE 8 14. ATE OF PORT (VeerMontl.vay) 15...GD, and VX Administered Topically to Rabbits " (MREF Protocol 21, May 1985) to compare liquid or powder experimental decontaminants against the dual...chemical surety materick (CSM). The standardized screen is based on a lethality endpoint in laboratory albino rabbits . An essential aspect of this testing

  1. An in-plane tensile test for rheological and formability identification: comparison between experimental and numerical FLC

    SciTech Connect

    Leotoing, L.; Guines, D.; Ragneau, E.

    2011-05-04

    Both accurate constitutive laws and formability limits of materials are essential for a numerical optimization of sheet forming processes. To identify these behaviors, experimental databases are needed. In this work, experiments are performed from a biaxial device able to give for a unique in-plane specimen a good prediction of rheological parameters and formability. The proposed device is a servo-hydraulic testing machine provided with four independent dynamic actuators. By localizing necking in the central zone of the specimen, the strain path in this zone is controlled by the speed ratio between the two axes and the whole forming limit diagram can be covered. The experimental forming limit curve for the aluminium alloy AA5086 is determined thanks to a rigorous procedure for detecting the onset of necking in the specimen. Material parameters (constants of both hardening law and anisotropic yield criterion) are identified from the global measurement of force versus displacement curves by means of an inverse analysis procedure. Comparison between experimental and numerical forming limit curves are presented. For the numerical FLCs, two sets of material parameters are compared, the former is identified through the classical uniaxial test and the latter thanks to the dedicated cruciform specimen.

  2. Space-resolved diffusing wave spectroscopy measurements of the macroscopic deformation and the microscopic dynamics in tensile strain tests

    NASA Astrophysics Data System (ADS)

    Nagazi, Med-Yassine; Brambilla, Giovanni; Meunier, Gérard; Marguerès, Philippe; Périé, Jean-Noël; Cipelletti, Luca

    2017-01-01

    We couple a laser-based, space-resolved dynamic light scattering apparatus to a universal traction machine for mechanical extensional tests. We perform simultaneous optical and mechanical measurements on polyether ether ketone, a semi-crystalline polymer widely used in the industry. Due to the high turbidity of the sample, light is multiply scattered by the sample and the diffusing wave spectroscopy (DWS) formalism is used to interpret the data. Space-resolved DWS yields spatial maps of the sample strain and of the microscopic dynamics. An excellent agreement is found between the strain maps thus obtained and those measured by a conventional stereo-digital image correlation technique. The microscopic dynamics reveals both affine motion and plastic rearrangements. Thanks to the extreme sensitivity of DWS to displacements as small as 1 nm, plastic activity and its spatial localization can be detected at an early stage of the sample strain, making the technique presented here a valuable complement to existing material characterization methods.

  3. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Constant-rate aquifer... COMMISSION REVIEW AND APPROVAL OF PROJECTS Application Procedure § 806.12 Constant-rate aquifer testing. (a... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in...

  4. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Constant-rate aquifer... COMMISSION REVIEW AND APPROVAL OF PROJECTS Application Procedure § 806.12 Constant-rate aquifer testing. (a... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in...

  5. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Constant-rate aquifer... COMMISSION REVIEW AND APPROVAL OF PROJECTS Application Procedure § 806.12 Constant-rate aquifer testing. (a... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in...

  6. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Constant-rate aquifer... COMMISSION REVIEW AND APPROVAL OF PROJECTS Application Procedure § 806.12 Constant-rate aquifer testing. (a... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in...

  7. 18 CFR 806.12 - Constant-rate aquifer testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Constant-rate aquifer... COMMISSION REVIEW AND APPROVAL OF PROJECTS Application Procedure § 806.12 Constant-rate aquifer testing. (a... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in...

  8. Method and apparatus for determining tensile strength

    DOEpatents

    Ratigan, J.L.

    1982-05-28

    A method and apparatus is described for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

  9. Method and apparatus for determining tensile strength

    DOEpatents

    Ratigan, Joe L.

    1984-01-01

    A method and apparatus for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

  10. Finite element analysis of the high strain rate testing of polymeric materials

    NASA Astrophysics Data System (ADS)

    Gorwade, C. V.; Alghamdi, A. S.; Ashcroft, I. A.; Silberschmidt, V. V.; Song, M.

    2012-08-01

    Advanced polymer materials are finding an increasing range of industrial and defence applications. Ultra-high molecular weight polymers (UHMWPE) are already used in lightweight body armour because of their good impact resistance with light weight. However, a broader use of such materials is limited by the complexity of the manufacturing processes and the lack of experimental data on their behaviour and failure evolution under high-strain rate loading conditions. The current study deals with an investigation of the internal heat generation during tensile of UHMWPE. A 3D finite element (FE) model of the tensile test is developed and validated the with experimental work. An elastic-plastic material model is used with adiabatic heat generation. The temperature and stresses obtained with FE analysis are found to be in a good agreement with the experimental results. The model can be used as a simple and cost effective tool to predict the thermo-mechanical behaviour of UHMWPE part under various loading conditions.

  11. Controlling type-1 error rates in whole effluent toxicity testing

    SciTech Connect

    Smith, R.; Johnson, S.C.

    1995-12-31

    A form of variability, called the dose x test interaction, has been found to affect the variability of the mean differences from control in the statistical tests used to evaluate Whole Effluent Toxicity Tests for compliance purposes. Since the dose x test interaction is not included in these statistical tests, the assumed type-1 and type-2 error rates can be incorrect. The accepted type-1 error rate for these tests is 5%. Analysis of over 100 Ceriodaphnia, fathead minnow and sea urchin fertilization tests showed that when the test x dose interaction term was not included in the calculations the type-1 error rate was inflated to as high as 20%. In a compliance setting, this problem may lead to incorrect regulatory decisions. Statistical tests are proposed that properly incorporate the dose x test interaction variance.

  12. Micromechanics of ultra-toughened electrospun PMMA/PEO fibres as revealed by in-situ tensile testing in an electron microscope

    NASA Astrophysics Data System (ADS)

    Andersson, Richard L.; Ström, Valter; Gedde, Ulf W.; Mallon, Peter E.; Hedenqvist, Mikael S.; Olsson, Richard T.

    2014-09-01

    A missing cornerstone in the development of tough micro/nano fibre systems is an understanding of the fibre failure mechanisms, which stems from the limitation in observing the fracture of objects with dimensions one hundredth of the width of a hair strand. Tensile testing in the electron microscope is herein adopted to reveal the fracture behaviour of a novel type of toughened electrospun poly(methyl methacrylate)/poly(ethylene oxide) fibre mats for biomedical applications. These fibres showed a toughness more than two orders of magnitude greater than that of pristine PMMA fibres. The in-situ microscopy revealed that the toughness were not only dependent on the initial molecular alignment after spinning, but also on the polymer formulation that could promote further molecular orientation during the formation of micro/nano-necking. The true fibre strength was greater than 150 MPa, which was considerably higher than that of the unmodified PMMA (17 MPa). This necking phenomenon was prohibited by high aspect ratio cellulose nanocrystal fillers in the ultra-tough fibres, leading to a decrease in toughness by more than one order of magnitude. The reported necking mechanism may have broad implications also within more traditional melt-spinning research.

  13. J-integral testing as a function of rate

    SciTech Connect

    Salzbrenner, R.; VanDenAvyle, J.A.; Lutz, T.J.

    1984-01-01

    The essentials of J-integral elastic-plastic fracture toughness measurements are reviewed. Extending these methods to higher rates (K approx. = 10/sup 5/ ksi ..sqrt..in/s) requires improved measurements of load, load line displacement, and crack length. Two test methods developed here and under contract are presented along with results from tests on ductile cast iron at several rates and temperatures. The ductile to brittle transition temperature (DBTT) for the cast iron alloy increased with test rate, as is typical of ferritic steel alloys. Upper shelf toughness was higher at intermediate rates but decreased at the highest test rate. This work demonstrates two useful J-integral test methodologies to measure high rate fracture toughness.

  14. An Experimental Study of Dynamic Tensile Failure of Rocks Subjected to Hydrostatic Confinement

    NASA Astrophysics Data System (ADS)

    Wu, Bangbiao; Yao, Wei; Xia, Kaiwen

    2016-10-01

    It is critical to understand the dynamic tensile failure of confined rocks in many rock engineering applications, such as underground blasting in mining projects. To simulate the in situ stress state of underground rocks, a modified split Hopkinson pressure bar system is utilized to load Brazilian disc (BD) samples hydrostatically, and then exert dynamic load to the sample by impacting the striker on the incident bar. The pulse shaper technique is used to generate a slowly rising stress wave to facilitate the dynamic force balance in the tests. Five groups of Laurentian granite BD samples (with static BD tensile strength of 12.8 MPa) under the hydrostatic confinement of 0, 5, 10, 15, and 20 MPa were tested with different loading rates. The result shows that the dynamic tensile strength increases with the hydrostatic confining pressure. It is also observed that under the same hydrostatic pressure, the dynamic tensile strength increases with the loading rate, revealing the so-called rate dependency for engineering materials. Furthermore, the increment of the tensile strength decreases with the hydrostatic confinement, which resembles the static tensile behavior of rock under confining pressure, as reported in the literature. The recovered samples are examined using X-ray micro-computed tomography method and the observed crack pattern is consistent with the experimental result.

  15. 46 CFR 107.260 - Rated load test for cranes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Rated load test for cranes. 107.260 Section 107.260 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.260 Rated load test for cranes. (a) To...

  16. 46 CFR 107.260 - Rated load test for cranes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Rated load test for cranes. 107.260 Section 107.260 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.260 Rated load test for cranes. (a) To...

  17. 46 CFR 107.260 - Rated load test for cranes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Rated load test for cranes. 107.260 Section 107.260 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.260 Rated load test for cranes. (a) To...

  18. 46 CFR 107.260 - Rated load test for cranes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Rated load test for cranes. 107.260 Section 107.260 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.260 Rated load test for cranes. (a) To...

  19. 46 CFR 107.260 - Rated load test for cranes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Rated load test for cranes. 107.260 Section 107.260 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION Inspection and Certification § 107.260 Rated load test for cranes. (a) To...

  20. On simulation and analysis of variable-rate pumping tests.

    PubMed

    Mishra, Phoolendra Kumar; Vessilinov, Velimir; Gupta, Hoshin

    2013-01-01

    Analytical solutions for constant-rate pumping tests are widely used to infer aquifer properties. In this note, we implement a methodology that approximates the time-varying pumping record as a series of segments with linearly varying pumping rates. We validate our approach using an analytical solution for a sinusoidally varying pumping test. We also apply our methodology to analyze synthetic test data and compare the results with those from a commonly used method where rate variations are represented by a series of constant-rate steps.

  1. 105-KE Isolation Barrier Leak Rate Acceptance Test Report

    SciTech Connect

    McCracken, K.J.

    1995-06-14

    This Acceptance Test Report (ATR) contains the completed and signed Acceptance Procedure (ATP) for the 105-KE Isolations Barrier Leak Rate Test. The Test Engineer`s log, the completed sections of the ATP in the Appendix for Repeat Testing (Appendix K), the approved WHC J-7s (Appendix H), the data logger files (Appendices T and U), and the post test calibration checks (Appendix V) are included.

  2. Controlled-strain rate tests at very low strain rates of 2618 aluminum at 200 C

    NASA Technical Reports Server (NTRS)

    Ding, J. L.; Lee, S. R.

    1988-01-01

    Constant strain rate tests and constant load creep tests were performed on 2618 aluminum at 200 C. The strain rates used in the constant strain rate tests were 10 to the minus 6, 10 to the minus 7, 10 to the minum 8, and 10 to the minus 9/sec. Due to the fact that the strain rates in both tests were comparable to each other, the similarities between them can therefore be studied. It was concluded that metals are essentially rate sensitive at elevated temperatures. The traditional definition of creep and plasticity used in the classical creep analysis is actually a reflection of the material behavior under different loading conditions. A constitutive equation based on the test data under one loading condition should work well for other loading conditions as long as the strain rates are in the same range as those under which the material constants are determined.

  3. The effect of strain rate on the tensile properties of an Al[sub 2]O[sub 3p]/6061-T6 aluminum metal-matrix composite at low temperatures

    SciTech Connect

    Chia Chaw Perng; Jiun Ren Hwang; Ji Liang Doong )

    1993-08-01

    Alumina (Al[sub 2]O[sub 3]) particles reinforced aluminum matrix composites have recently become candidates for structural materials because of their good specific modulus and strength, and are considered to be valuable materials for aerospace and automobile industry applications. In view of such application, they might be processed or applied in high strain rate loading conditions, such as explosive forming, blast loading and metalworking, etc. Knowledge of the mechanical behavior of the metal matrix composites under high strain rate loading is a prerequisite. However, not much work related to this topic has been done. The objective of this study was to investigate the effect of the strain rate on the tensile properties of the Al[sub 2]O[sub 3p]/6061-T6 composite at low temperatures.

  4. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    SciTech Connect

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  5. Stress rate and proof-testing of silicon wafers

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1985-01-01

    Fracture mechanics test methods were applied to evaluate the proof-test characteristics of single-crystal silicon wafers. The results indicate that the strength distribution of silicon wafers is truncated by proof-testing. No subcritical crack growth occurred during proof-loading, as inferred from the lack of a stress-rate effect on strength. Mechanical proof-testing appears to be an effective method for eliminating weak samples before cell processing.

  6. Unified tensile fracture criterion.

    PubMed

    Zhang, Z F; Eckert, J

    2005-03-11

    We find that the classical failure criteria, i.e., maximum normal stress criterion, Tresca criterion, Mohr-Coulomb criterion, and von Mises criterion, cannot satisfactorily explain the tensile fracture behavior of the bulk metallic glass (BMG) materials. For a better description, we propose an ellipse criterion as a new failure criterion to unify the four classical criteria above and apply it to exemplarily describe the tensile fracture behavior of BMGs as well as a variety of other materials. It is suggested that each of the classical failure criteria can be unified by the present ellipse criterion depending on the difference of the ratio alpha=tau(0)/sigma(0).

  7. Measurement error of Young’s modulus considering the gravity and thermal expansion of thin specimens for in situ tensile testing

    NASA Astrophysics Data System (ADS)

    Ma, Zhichao; Zhao, Hongwei; Ren, Luquan

    2016-06-01

    Most miniature in situ tensile devices compatible with scanning/transmission electron microscopes or optical microscopes adopt a horizontal layout. In order to analyze and calculate the measurement error of the tensile Young’s modulus, the effects of gravity and temperature changes, which would respectively lead to and intensify the bending deformation of thin specimens, are considered as influencing factors. On the basis of a decomposition method of static indeterminacy, equations of simplified deflection curves are obtained and, accordingly, the actual gage length is confirmed. By comparing the effects of uniaxial tensile load on the change of the deflection curve with gravity, the relation between the actual and directly measured tensile Young’s modulus is obtained. Furthermore, the quantitative effects of ideal gage length l o, temperature change ΔT and the density ρ of the specimen on the modulus difference and modulus ratio are calculated. Specimens with larger l o and ρ present more obvious measurement errors for Young’s modulus, but the effect of ΔT is not significant. The calculation method of Young’s modulus is particularly suitable for thin specimens.

  8. User’s Guide for Getter Rate Test System

    SciTech Connect

    Elmore, Monte R.

    2007-06-27

    This User’s Guide describes the operation and maintenance of the Getter Rate Test System, including the mechanical equipment, instrumentation, and datalogger/computer components. The Getter Rate Test System includes equipment and instrumentation to conduct two getter rate tests simultaneously. The mechanical equipment comprises roughing and high-vacuum pumps, heated test chambers, standard hydrogen leaks, and associated piping and valves. Instrumentation includes thermocouples, pressure (vacuum) transducers, panel displays, analog-to-digital signal converter, and associated wiring. The datalogger/computer is a stand-alone computer with installed software to allow the user to record data input from the pressure transducers to data files and to calculate the getter rate from the data in an Excel® spreadsheet.

  9. High-Strain Rate Testing of Gun Propellants

    DTIC Science & Technology

    1988-12-01

    specimen is loaded beyond the elastic range. Instrumentation of the bars allows recording of the strain history in the bars during the test event. The...strain history on the input bar gives a record of the strain rate history in the sample. )The output bar strain history is proportional to the stress... history in the sample.) The data were compared to the results reported in the literature of earlier high strain rate tests on the same propellants. The

  10. Fighter pilots' heart rate, heart rate variation and performance during an instrument flight rules proficiency test.

    PubMed

    Mansikka, Heikki; Virtanen, Kai; Harris, Don; Simola, Petteri

    2016-09-01

    Increased task demand will increase the pilot mental workload (PMWL). When PMWL is increased, mental overload may occur resulting in degraded performance. During pilots' instrument flight rules (IFR) proficiency test, PMWL is typically not measured. Therefore, little is known about workload during the proficiency test and pilots' potential to cope with higher task demands than those experienced during the test. In this study, fighter pilots' performance and PMWL was measured during a real IFR proficiency test in an F/A-18 simulator. PMWL was measured using heart rate (HR) and heart rate variation (HRV). Performance was rated using Finnish Air Force's official rating scales. Results indicated that HR and HRV differentiate varying task demands in situations where variations in performance are insignificant. It was concluded that during a proficiency test, PMWL should be measured together with the task performance measurement.

  11. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  12. Generalized procedures for testing hypotheses about survival or recovery rates

    USGS Publications Warehouse

    Sauer, J.R.; Williams, B.K.

    1989-01-01

    Comparisons of survival or recovery rates from different time periods or geographic regions may be difficult to accomplish using the Z-tests suggested by Brownie et al. (1985). We propose a general Chi-square statistic that addresses an unambiguous null hypothesis of homogeneity among several survival or recovery rates. With this statistic, specific hypotheses of differences in rates can be simultaneously tested using contrasts. If necessary, a posteriori multiple comparisons can also be conducted that incorporate an adjustment for Type I error.

  13. High-Strain-Rate Compression Testing of Ice

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Lerch, Bradley A.

    2006-01-01

    In the present study a modified split Hopkinson pressure bar (SHPB) was employed to study the effect of strain rate on the dynamic material response of ice. Disk-shaped ice specimens with flat, parallel end faces were either provided by Dartmouth College (Hanover, NH) or grown at Case Western Reserve University (Cleveland, OH). The SHPB was adapted to perform tests at high strain rates in the range 60 to 1400/s at test temperatures of -10 and -30 C. Experimental results showed that the strength of ice increases with increasing strain rates and this occurs over a change in strain rate of five orders of magnitude. Under these strain rate conditions the ice microstructure has a slight influence on the strength, but it is much less than the influence it has under quasi-static loading conditions. End constraint and frictional effects do not influence the compression tests like they do at slower strain rates, and therefore the diameter/thickness ratio of the samples is not as critical. The strength of ice at high strain rates was found to increase with decreasing test temperatures. Ice has been identified as a potential source of debris to impact the shuttle; data presented in this report can be used to validate and/or develop material models for ice impact analyses for shuttle Return to Flight efforts.

  14. Variable-Rate Pumping Test Analysis for Aquifer Parameter Evaluation

    NASA Astrophysics Data System (ADS)

    Birdsell, K. H.; Mishra, P. K.

    2011-12-01

    The most common method to infer aquifer properties is based on analysis of drawdown and/or recovery data recorded from pumping tests. The analysis is frequently based on fitting observed pressure responses to appropriate analytical solutions for radial flow towards the pumping well. For mathematical simplicity, analytical solutions are commonly derived for constant-rate pumping conditions. However, often times the pumping rate during the test is varied either intentionally or due to technical difficulties during the test. Using principles of superposition, the constant-rate analytical solutions are frequently applied to analyze pumping tests that are conducted with variable pumping rates. In this study, we propose a novel methodology that approximates a time-varying pumping history as a series of segments with linearly varying pumping rates, and use it to evaluate the effects of pumping variation on aquifer parameter estimation. Our approach is demonstrated using existing analytical solutions for confined aquifers (Mishra and Neuman 2011), but it is also applicable to unconfined and/or leaky aquifers. The methodology is validated using a synthetic pumping test. We also apply our methodology to analyze the pumping test data by inversely estimating the apparent aquifer parameters using the code MADS (http://ees.lanl.gov/staff/monty/codes/mads).

  15. MELT RATE FURNACE TESTING FOR SLUDGE BATCH 5 FRIT OPTIMIZATION

    SciTech Connect

    Miller, D; Fox, K; Pickenheim, B; Stone, M

    2008-10-03

    Savannah River National Laboratory (SRNL) was requested to provide the Defense Waste Processing Facility (DWPF) with a frit composition for Sludge Batch 5 (SB5) to optimize processing. A series of experiments were designed for testing in the Melt Rate Furnace (MRF). This dry fed tool can be used to quickly determine relative melt rates for a large number of candidate frit compositions and lead to a selection for further testing. Simulated Sludge Receipt and Adjustment Tank (SRAT) product was made according to the most recent SB5 sludge projections and a series of tests were conducted with frits that covered a range of boron and alkali ratios. Several frits with relatively large projected operating windows indicated melt rates that would not severely impact production. As seen with previous MRF testing, increasing the boron concentration had positive impacts on melt rate on the SB5 system. However, there appears to be maximum values for both boron and sodium above which the there is a negative effect on melt rate. Based on these data and compositional trends, Frit 418 and a specially designed frit (Frit 550) have been selected for additional melt rate testing. Frit 418 and Frit 550 will be run in the Slurry Fed Melt Rate Furnace (SMRF), which is capable of distinguishing rheological properties not detected by the MRF. Frit 418 will be used initially for SB5 processing in DWPF (given its robustness to compositional uncertainty). The Frit 418-SB5 system will provide a baseline from which potential melt rate advantages of Frit 550 can be gauged. The data from SMRF testing will be used to determine whether Frit 550 should be recommended for implementation in DWPF.

  16. Microstructure Evolution in Alpha Iron during High Temperature Tensile Deformation

    NASA Astrophysics Data System (ADS)

    Thanh, Phi Hung Xuan

    The microstructural evolution of alpha iron under tensile deformation at high temperature (TH 0.5) and slow strain-rate (10-5 s-1 to 10-5 s-1) was investigated. The impetus for this study was the recent observation of Dynamic Abnormal Grain Growth (DAGG) in pure molybdenum under the same testing conditions. A high temperature tensile testing system was refurbished and assembled for this study. The testing system consists of an Centorr 2229 furnace system mounted on an Instron 1331 load frame. I designed the tensile grip and programmed the testing program to obtain data in the stress and strain regime of interest. Testing were done at both UC Davis and Los Alamos National Labs (LANL). Metallography techniques and electron backscattering diffraction (EBSD) technique in a scanning electron microscope were used to characterize the samples after testing. In addition to normal tensile tests at constant strain-rates where DAGG is proposed to occur, a series of strain-rate change tests were designed and performed. Strain-rate change tests were employed to extract activation area information that provided insight into the active mechanism of deformation of the material in addition to the information obtained from analysis of the stress-strain curve and the microstructure via optical microscopy and EBSD. The obtained stress-train curve data were compared with the stress-strain curves data in the literature for alpha iron in similar regime of deformation indicating that the dominant mechanism of deformation is dynamic recovery. The comparison includes past stress-strain curves and the data recorded in the Ashby Map. Optical and EBSD analysis showed that normal grain growth occurred in alpha iron during this testing regime. This lack of grain boundary pinning by impurity differs from that observed in Mo that exhibited DAGG. Activation area analysis showed that the activation area values of Fe are consistent with friction drag from the lattice being the active deformation

  17. Spacecraft Parachute Recovery System Testing from a Failure Rate Perspective

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2013-01-01

    Spacecraft parachute recovery systems, especially those with a parachute cluster, require testing to identify and reduce failures. This is especially important when the spacecraft in question is human-rated. Due to the recent effort to make spaceflight affordable, the importance of determining a minimum requirement for testing has increased. The number of tests required to achieve a mature design, with a relatively constant failure rate, can be estimated from a review of previous complex spacecraft recovery systems. Examination of the Apollo parachute testing and the Shuttle Solid Rocket Booster recovery chute system operation will clarify at which point in those programs the system reached maturity. This examination will also clarify the risks inherent in not performing a sufficient number of tests prior to operation with humans on-board. When looking at complex parachute systems used in spaceflight landing systems, a pattern begins to emerge regarding the need for a minimum amount of testing required to wring out the failure modes and reduce the failure rate of the parachute system to an acceptable level for human spaceflight. Not only a sufficient number of system level testing, but also the ability to update the design as failure modes are found is required to drive the failure rate of the system down to an acceptable level. In addition, sufficient data and images are necessary to identify incipient failure modes or to identify failure causes when a system failure occurs. In order to demonstrate the need for sufficient system level testing prior to an acceptable failure rate, the Apollo Earth Landing System (ELS) test program and the Shuttle Solid Rocket Booster Recovery System failure history will be examined, as well as some experiences in the Orion Capsule Parachute Assembly System will be noted.

  18. Optimized System to Improve Pumping Rate Stability During Aquifer Tests

    NASA Astrophysics Data System (ADS)

    Young, M. H.; Rasmussen, T. C.; Lyons, C.; Pennell, K. D.

    2001-12-01

    Aquifer hydraulic properties are commonly estimated using aquifer tests, which are based on an assumption of a uniform and constant pumping rate. Uncertainties in the flow rate across the borehole-formation interface can be caused by rapid changes in borehole water levels early in an aquifer test, increasing the dynamic head losses. A system is presented that substantially reduces these sources of uncertainty by explicitly accounting for dynamic head losses. The system optimizes the flow rate at the borehole-formation interface, lending it suitable for any type of aquifer test, including constant, step, or ramped withdrawal and injection, as well as sinusoidal. The system was demonstrated for both withdrawal and injection tests in three aquifers at the Savannah River Site. It employs commonly available components (e.g., datalogger, pressure transducers, a variable-speed pump motor, a flow controller, and flow meters), and is inexpensive, highly mobile, and easily set up. No modifications to the control system were required, though a small number of characteristics of the pumping and monitoring system were added to the operating program. The pumping system provided a statistically-significant, constant flow rate with time. The range in pumping variability (95 percent CI) was from +/-0.0041 gpm to +/-0.0144 gpm, across a wide range in field conditions. Additional analyses show that errors in early time pumping rates cause errors in aquifer property estimates, and that optimizing the pumping rates would provide a more error-free data set for estimating aquifer hydraulic properties.

  19. Effect of oxygen and oxidation on tensile behavior of V-5Cr-5Ti

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1996-04-01

    Oxidation studies were conducted on V-5Cr-5Ti alloy specimens in an air environment to evaluate the oxygen uptake of the alloy as a function of temperature and exposure time. The oxidation rates calculated from parabolic kinetic measurements of thermogravimetric testing and confirmed by microscopic analyses of cross sections of exposed specimens were 5, 17, and 27 {mu}m per year after exposure at 300, 400, and 500{degrees}C, respectively. Uniaxial tensile tests were conducted at room temperature and at 500{degrees}C on preoxidized specimens of the alloy to examine the effects of oxidation and oxygen migration on tensile strength and ductility. Microstructural characteristics of several of the tested specimens were determined by electron optics techniques. Correlations were developed between tensile strength and ductility of the oxidized alloy and microstructural characteristics such as oxide thickness, depth of hardened layer, depth on intergranular fracture zone, and transverse crack length.

  20. Experimental Investigations on Anisotropic Evolution of 304 Stainless Sheets under Tensile Pre-Strains

    NASA Astrophysics Data System (ADS)

    Teng, Lai; Guo, Cheng

    2011-08-01

    The anisotropic evolution of cold rolled 304 stainless steel sheets under pre-strains is investigated experimentally. Uni-axial tensile yield stress and r-value are measured in experiments to represent the anisotropy. The tensile pre-strains under plane stress are achieved by cutting large specimens into small one at different angles to rolling direction. Then the uni-axial tensile tests are performed on the small specimens to investigate the anisotropic evolution. It is found that the yield stress increases with the increase of the pre-strains and decreases with the increase of the angles. However, the changes of r-value are hardly affected by the pre-strains, the small changes of r-value show that the material may remember the rolling direction even after the pre-strains. The sigmoidal shape can be observed in the tensile curves, and its shape depends on the pre-strains and angles. The change of hardening rate can be divided into three stages, and is the most significant at 90° to the rolling direction in the three stages, at the same time the pre-strains cause noncoincidence of the hardening rate curves at the same angle. Moreover, the hardening rate depends on the directions of tensile loading. Second derivative of the hardening rate also can be divided into three stages, and the differences of three stages may mainly be controlled by the different volume fraction of martensite.

  1. Tensile deformation mechanisms of ABS/PMMA/EMA blends

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Gao, J.; Lin, S. X.; Zhang, P.; Huang, J.; Xu, L. L.

    2014-08-01

    The tensile deformation mechanisms of acrylonitrile - butadiene - styrene (ABS) / polymethyl methacrylate (PMMA) blends toughened by ethylene methacrylate (EMA) copolymer was investigated by analysing the fracture morphology. ABS/PMMA was blended with EMA copolymer by melt mixing technique using co-rotating twin extruder. Tensile tests show that the elongation at break of ABS/PMMA blends can be efficiently improved with the increase in EMA content. Fracture morphology of ABS/PMMA/EMA blends reveals that the material yield induced by hollowing-out of EMA particles and its propagation into yield zone is the main toughening mechanism. Moreover, the appearance that EMA particles in the central area are given priority to hollowing-out may be related to the skin-core structure of the injection moulded parts caused by the different cooling rate between surface and inside in the process of injection moulding.

  2. Tensile properties of irradiated surveillance coupons

    SciTech Connect

    Huang, F.H.; Blackburn, L.D.

    1994-06-01

    Tensile testing of austenitic steel and superalloy samples irradiated in the HMO 13 assembly was performed in support of the Fast Flux Test Facility (FFTF) Surveillance Program. Postirradiation yield stress, ultimate tensile stress, uniform elongation, total elongation, and reduction in area of 304 stainless steel (SS), 308 SS weld, 316 SS, A286, In718, and In718 weld were determined. Results showed the strength of austenitic steels increased while the ductility decreased as a result of irradiation. Low irradiation exposure produced little property change in In718. Overall, the tensile properties of HMO 13 surveillance coupons showed a lower magnitude of irradiation-induced property change than was expected based on earlier studies. Results from these tests gave no indications of unexpectedly severe irradiation damage to FFTF components.

  3. Initial SB4 Melt Rate Furnace Testing (U)

    SciTech Connect

    Smith, M

    2005-07-29

    The Defense Waste Processing Facility (DWPF) is presently vitrifying Sludge Batch 3 (SB3) and preparing to process Sludge Batch 4 (SB4) in late 2006 or early 2007. The final composition of SB4 has not been finalized, as various blending and/or washing strategies are still being considered. SB4 will be comprised of the contents of Tanks 5, 6, 7, 8, and 11 (which will be transferred to Tank 51) along with plutonium and neptunium solutions from F and H Canyons, and possibly material from Tank 4. Tank 4 was originally included in projections, but plans have since changed (after completion of these tests) and Tank 4 is no longer part of SB4 due to problems with sludge removal. Even though the final SB4 composition was not finalized at the time of this study, there were 20 bounding options documented that could be used for preliminary melt rate tests. At the time of these tests, the SB4 compositions described as ''SB4 1200 canister baseline'' and ''SB4 1200 canister baseline (one less washed)'' documented elsewhere were chosen for these tests. The 1200 canister describes the number of equivalent canisters that would be produced from the beginning of the current contract period before SB3 is blended with SB4. These compositions were chosen as they had the highest amount of SB4 in the blend and were therefore considered as worse case SB4 feeds with regards to melt rate. This is because SB4 has higher alumina levels of any sludge batch yet processed and alumina has a negative impact on the DWPF melt rate. This baseline sludge includes Tank 4 but does not include auxiliary waste streams such as the Actinide Removal Process (ARP) stream, which contains monosodium titanate (MST), entrained sludge, and various soluble sodium compounds as the result of filter cleaning and stream adjustment for transfer. These preliminary dry-fed Melt Rate Furnace (MRF) tests were needed to initially evaluate melt rate/waste throughput. This study addressed SB4 with Frits 418 and 320, the impact

  4. Theoretical Accuracy for ESTL Bit Error Rate Tests

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin

    1998-01-01

    "Bit error rate" [BER] for the purposes of this paper is the fraction of binary bits which are inverted by passage through a communication system. BER can be measured for a block of sample bits by comparing a received block with the transmitted block and counting the erroneous bits. Bit Error Rate [BER] tests are the most common type of test used by the ESTL for evaluating system-level performance. The resolution of the test is obvious: the measurement cannot be resolved more finely than 1/N, the number of bits tested. The tolerance is not. This paper examines the measurement accuracy of the bit error rate test. It is intended that this information will be useful in analyzing data taken in the ESTL. This paper is divided into four sections and follows a logically ordered presentation, with results developed before they are evaluated. However, first-time readers will derive the greatest benefit from this paper by skipping the lengthy section devoted to analysis, and treating it as reference material. The analysis performed in this paper is based on a Probability Density Function [PDF] which is developed with greater detail in a past paper, Theoretical Accuracy for ESTL Probability of Acquisition Tests, EV4-98-609.

  5. Microstructure, fracture characteristics, and tensile properties of two tungsten heavy alloys. Final report, January 1992-March 1993

    SciTech Connect

    Kennedy, E.W.

    1995-11-01

    The influence of microstructure on fracture behavior and tensile properties was investigated for two tungsten heavy alloys (93W-4.9Ni-2.1Fe and 91W-6Ni-3Co by weight-percentage) that are suitable materiai candidates for use as kinetic energy penetrators. Both alloys were evaluated in swaged and aged conditions. For comparable levels of swaging and aging, the W-Ni-Co alloy exhibited increased tensile strength and ductility compared to the W-Ni-Fe material. The W-Ni-Co alloy had a smaller average W grain size and a larger percentage of W in the matrix. Fracture surfaces of failed uniaxial tensile specimens tested at quasi-static and low-to-medium strain rates were characterized using scanning electron microscopy. The results indicate a strong relationship between microstructure, fracture behavior, and tensile properties as a function of alloy composition and strain rate.

  6. Slow strain rate testing of aluminum alloy 7050 in different tempers using various synthetic environments

    SciTech Connect

    Braun, R.

    1997-06-01

    The slow strain rate testing (SSRT) technique was used to investigate the stress corrosion cracking (SCC) behavior of aluminum alloy Al 7050 in different tempers in various electrolytes at the free-corrosion potential. Smooth tensile specimens were strained dynamically in the short transverse direction under permanent immersion conditions. Strain rates were from 5 {times} 10{sup {minus}8}/s to 1 {times} 10{sup {minus}4}/s. Using substitute ocean water, Al 7050 was found sensitive and immune to environmentally assisted cracking in the peak-aged temper T651 and in the over-aged temper T7351, respectively. In the less-over-aged heat treatment T7651, fracture energy data revealed a large scatter. An aqueous solution of 0.5 M sodium perchlorate was not conducive to environmentally assisted cracking. SSRT performed in an aqueous solution of 0.1 M sodium chloride + 0.05 M sodium sulfate + 0.05 M sodium nitrate + 0.01 M sodium bicarbonate at pH 3.5 indicated SCC susceptibility for Al 7050-T651. The latter electrolyte did not promote SCC with the alloy in the heat treatments T7651 and T7351. Scatter was observed in the fracture energy data of Al 7050-T7351 specimens dynamically strained in the mixed salt solution. Deterioration was attributed to pitting attack, as supported by fractography.

  7. Grain boundary sliding measurements during tensile creep of a single-phase alumina

    SciTech Connect

    Blanchard, C.R.; Lin, H.T.; Becher, P.F.

    1998-06-01

    The grain boundary sliding (GBS) behavior of a single-phase (relatively coarse-grained) alumina material was studied after tensile creep experiments were performed at 1,500 C at stress levels of 20 and 35 MPa. Specimens tested at 35 MPa exhibited a number of modes of GBS, including Mode II (shear) displacements, Mode I (opening) displacements, out-of-plane sliding displacements, and in-plane grain rotation. Strains in the grain boundaries due to Mode II GBS displacements ranged from 940% to 4,400%. Average Mode II GBS displacements ranged from 0.08 to 0.28 {micro}m in samples tested for 120 and 480 min, respectively, at 35 MPa. The GBS displacements were shown to fit a Weibull distribution. Tensile creep under a 35 MPa stress yielded a GBS rate of 9.5 {times} 10{sup {minus}6} {micro}m/s, while the 20 MPa stress resulted in a GBS rate of 2.2 {times} 10{sup {minus}6} {micro}m/s. The average Mode II GBS displacements increased linearly with specimen strain, suggesting that GBS may play an important role in creep cavitation during tensile creep. The data also revealed that compatibility and constraint rules appear to govern GBS behavior during tensile creep. GBS behavior during compressive creep will be compared to the tensile creep GBS measurements presented.

  8. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700...

  9. Optimized system to improve pumping rate stability during aquifer tests.

    PubMed

    Young, Michael H; Rasmussen, Todd C; Lyons, F Comer; Pennell, Kurt D

    2002-01-01

    Aquifer hydraulic properties are commonly estimated using aquifer tests, which are based on an assumption of a uniform and constant pumping rate. Substantial uncertainties in the flow rate across the borehole-formation interface can be induced by dynamic head losses, caused by rapid changes in borehole water levels early in an aquifer test. A system is presented that substantially reduces these sources of uncertainty by explicitly accounting for dynamic head losses. The system which employs commonly available components (including a datalogger, pressure transducers, a variable-speed pump motor, a flow controller, and flowmeters), is inexpensive, highly mobile, and easily set up. It optimizes the flow rate at the borehole-formation interface, making it suitable for any type of aquifer test, including constant, step, or ramped withdrawal and injection, as well as sinusoidal. The system was demonstrated for both withdrawal and injection tests in three aquifers at the Savannah River Site. No modifications to the control system were required, although a small number of characteristics of the pumping and monitoring system were added to the operating program. The pumping system provided a statistically significant, constant flow rate with time. The range in pumping variability (95% confidence interval) was from +/- 2.58 x 10(-4) L/sec to +/- 9.07 x 10(-4) L/sec, across a wide range in field and aquifer conditions.

  10. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Flow rating tests. 162.018-7 Section 162.018-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7...

  11. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700...

  12. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700...

  13. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Erythrocyte sedimentation rate test. 864.6700 Section 864.6700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6700...

  14. Improving Beta Test Evaluation Response Rates: A Meta-Evaluation

    ERIC Educational Resources Information Center

    Russ-Eft, Darlene; Preskill, Hallie

    2005-01-01

    This study presents a meta-evaluation of a beta-test of a customer service training program. The initial evaluation showed a low response rate. Therefore, the meta-evaluation focused on issues related to the conduct of the initial evaluation and reasons for nonresponse. The meta-evaluation identified solutions to the nonresponse problem as related…

  15. Effective Rating Scale Development for Speaking Tests: Performance Decision Trees

    ERIC Educational Resources Information Center

    Fulcher, Glenn; Davidson, Fred; Kemp, Jenny

    2011-01-01

    Rating scale design and development for testing speaking is generally conducted using one of two approaches: the measurement-driven approach or the performance data-driven approach. The measurement-driven approach prioritizes the ordering of descriptors onto a single scale. Meaning is derived from the scaling methodology and the agreement of…

  16. Tensile strength of dome rocks and lavas at Santiaguito dome complex, Guatemala

    NASA Astrophysics Data System (ADS)

    Hornby, Adrian; Lamb, Oliver; Lamur, Anthony; Lavallée, Yan

    2015-04-01

    Lava domes are inherently unstable structures, subject to intense gas flux and rapid variations in the state of stress. At shallow depths confining stresses are minimal and deformation is dilatant, occurring predominantly through tensile fractures. This fracture mode facilitates outgassing and contributes to the development of gas-and-ash activity as well as vulcanian eruptions. However, there is a paucity of tensile strength data for volcanic materials in the published literature, and we know of no paper which addresses this at high temperatures. We study the tensile strength of dome rocks collected at the Santiaguito dome complex, Guatemala, over a porosity range of 3-25%. Indirect tensile (Brazilian) tests were conducted on 40-mm diameter cores, by imposing a compressive displacement rate (radial to the core) of 4 micron/s at room temperature as well as an eruptive temperature of ca. 850 °C. An acoustic monitoring system is employed to track the nucleation, propagation and coalescence of fractures leading to complete sample failure. We find that the rocks' tensile strength exhibits a nonlinear decrease with porosity. Preliminary tests at high temperature indicate that some rocks exhibit a higher tensile strength (than at room temperature); in these experiments, samples containing a higher fraction of interstitial melt revealed an additional component of viscous flow. Further experiments conducted at higher strain rates will define the brittle response of the liquid during tensile failure. The data is compared against similar datasets for volcanic rocks. We will discuss implications for shallow volcanic processes ranging from dilation bands and tuffisite formation to gas-and-ash explosions and dome structural stability.

  17. Efficient field testing for load rating railroad bridges

    NASA Astrophysics Data System (ADS)

    Schulz, Jeffrey L.; Brett C., Commander

    1995-06-01

    As the condition of our infrastructure continues to deteriorate, and the loads carried by our bridges continue to increase, an ever growing number of railroad and highway bridges require load limits. With safety and transportation costs at both ends of the spectrum. the need for accurate load rating is paramount. This paper describes a method that has been developed for efficient load testing and evaluation of short- and medium-span bridges. Through the use of a specially-designed structural testing system and efficient load test procedures, a typical bridge can be instrumented and tested at 64 points in less than one working day and with minimum impact on rail traffic. Various techniques are available to evaluate structural properties and obtain a realistic model. With field data, a simple finite element model is 'calibrated' and its accuracy is verified. Appropriate design and rating loads are applied to the resulting model and stress predictions are made. This technique has been performed on numerous structures to address specific problems and to provide accurate load ratings. The merits and limitations of this approach are discussed in the context of actual examples of both rail and highway bridges that were tested and evaluated.

  18. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  19. Flight Test Techniques for Quantifying Pitch Rate and Angle of Attack Rate Dependencies

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.; Murri, Daniel G.

    2017-01-01

    Three different types of maneuvers were designed to separately quantify pitch rate and angle of attack rate contributions to the nondimensional aerodynamic pitching moment coefficient. These maneuvers combined pilot inputs and automatic multisine excitations, and were own with the subscale T-2 and Bat-4 airplanes using the NASA AirSTAR flight test facility. Stability and control derivatives, in particular C(sub mq) and C(sub m alpha(.)) were accurately estimated from the flight test data. These maneuvers can be performed with many types of aircraft, and the results can be used to increase simulation prediction fidelity and facilitate more accurate comparisons with wind tunnel experiments or numerical investigations.

  20. Tensile properties of textile composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm

    1992-01-01

    The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.

  1. Tensile properties of V-5Cr-5Ti alloy after exposure in air environment

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1997-04-01

    Oxidation studies were conducted on V-5Cr-5Ti alloy specimens in an air environment to evaluate the oxygen uptake behavior of the alloy as a function of temperature and exposure time. The oxidation rates, calculated from parabolic kinetic measurements of thermogravimetric testing and confirmed by microscopic analysis of cross sections of exposed specimens, were 5, 17, and 27 {mu}m per year after exposure at 300, 400, and 500{degrees}C, respectively. Uniaxial tensile tests were conducted at room temperature and at 500{degrees}C on preoxidized specimens of the alloy to examine the effects of oxidation and oxygen migration on tensile strength and ductility. Correlations were developed between tensile strength and ductility of the oxidized alloy and microstructural characteristics such as oxide thickness, depth of hardened layer, depth of intergranular fracture zone, and transverse crack length.

  2. An experimental evaluation of the tensile strength of impact ice

    NASA Technical Reports Server (NTRS)

    Xian, X.; Chu, M. L.; Scavuzzo, R. J.; Srivatsan, T. S.

    1989-01-01

    The evaluation of the tensile strength of impact built-up ice on structural components has been prompted by such problems as electrical transmission line losses and catastrophic failures in Arctic regions, deicing problems with fixed-wing and rotary-wing aircraft, etc. It is demonstrated that the conventional tensile-testing technique furnishes adequate data on artificially refrigerated ice, and helps establish the influence of extrinsic factors on ice tensile strength.

  3. Optical Methods For Automatic Rating Of Engine Test Components

    NASA Astrophysics Data System (ADS)

    Pritchard, James R.; Moss, Brian C.

    1989-03-01

    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  4. Covariates of the Rating Process in Hierarchical Models for Multiple Ratings of Test Items

    ERIC Educational Resources Information Center

    Mariano, Louis T.; Junker, Brian W.

    2007-01-01

    When constructed response test items are scored by more than one rater, the repeated ratings allow for the consideration of individual rater bias and variability in estimating student proficiency. Several hierarchical models based on item response theory have been introduced to model such effects. In this article, the authors demonstrate how these…

  5. Low-Temperature Mechanical Properties Of Fe-0.06c-18cr-10ni-0.4ti Austenitic Steel Determined Using Ring-Pull Tensile Tests And Microhardness Measurements

    SciTech Connect

    Neustroev, V. S.; Boev, E. V.; Garner, Francis A.

    2007-03-01

    Irradiated austenitic stainless steels removed from Russian water-cooled VVERs experience irradia-tion temperatures and He/dpa conditions that are very similar to steels to be used in ITER. Data are presented on the radiation hardening of the Russian analog of AISI 321 at 0.2 to 15 dpa in the range of 285 to 320оС. The Russian variant of the ring-pull tensile test was used to obtain mechanical prop-erty data. Microhardness tests on the ring specimens provide useful information throughout the de-formed regions, but at high hardening levels caution must be exercised before application of a widely accepted hardness-yield stress correlation to prediction of tensile properties. Low-nickel austenitic steels are very prone to form deformation martensite, a phase that increases strongly with the larger deformation levels characteristic of microhardness tests, especially when compared to the 0.2% de-formation used to define yield stress.

  6. The Effects of Defects on Tensile Properties of Cast ADC12 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Sakai, Hikoyuki

    2015-11-01

    To better understand the effects of cast defects on mechanical properties, cast aluminum alloys with various porosities were used. Porosity in the cast samples was created during the casting process, and to clearly identify the porosity effects on the mechanical properties, artificial defects (porosity-like tiny holes) were created mechanically. The tensile properties for the cast aluminum alloys appear to be attributed to the area fraction of the porosity on the fracture surface (namely, the defect rate, DR), although there were different trends because of the different stress concentrations: the ultimate tensile strength and 0.2 pct proof strength were linearly related to DR, while a non-linear correlation was detected for fracture strain. Even in Al alloys with small amounts of defects, significant reductions in the fracture strain were observed. These results were verified using tensile tests on specimens containing artificial defects. The effects of artificial defects on the tensile properties were further investigated using numerous tiny holes, created in several formations. The artificial defects (several small holes), lined up at perpendicular (90 deg) and 45 deg directions against the loading direction, made significant reductions in the tensile properties, even though only weak defect effects were observed for the 90 deg loading direction. No severe defect effects were obvious for the specimen with a tiny defect of ϕ0.1 mm, because of the lower stress concentration, compared to the microstructural effects in the cast Al alloys: the grain boundaries and the second phases. Such phenomena were clarified using tensile tests on cast samples with differently sized microstructures. There were no clear defect effects on the yield strength as the defect amount was less than 10 pct, and microstructural effects were not detected either in this case. Failure characteristics during tensile loading were revealed directly by in-situ strain observations using high

  7. Dynamic yield and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M.; Frage, N.

    2014-05-01

    Fully dense alumina samples with 0.6 μm grain size were produced from alumina powder using Spark Plasma Sintering and tested in two types of VISAR-instrumented planar impact tests. In the tests of the first type the samples of 0.28 to 6-mm thickness were loaded by 1-mm tungsten impactors accelerated up to a velocity of about 1 km/s. These tests were aimed to study the Hugoniot elastic limit (HEL) of the SPS-processed alumina and the decay of the elastic precursor wave with propagation distance. In the second type of test the samples of ~3-mm thickness were loaded by 1-mm copper impactors accelerated up to velocities 100-1000 m/s. These tests were aimed to study the dynamic tensile (spall) strength of the alumina. The data on tensile fracture of the alumina demonstrate a monotonic decline of the spall strength with the amplitude of the loading stress pulse. The data on the decay of the elastic precursor wave allows for determining the rates of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of shock-induced inelastic deformation and, thus, to derive some conclusions concerning the mechanisms responsible of the deformation.

  8. Dynamic yield and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, Inna; Zaretsky, E.; Kalabukhov, S.; Dariel, M.; Frage, N.

    2013-06-01

    Fully dense alumina samples with 0.6- μ grain size were produced from alumina powder using Spark Plasma Sintering and tested in two types of VISAR-instrumented planar impact tests.. In the tests of the first type the samples of 0.28 to 6-mm thickness were loaded by 1-mm tungsten impactors accelerated up to velocity of about 1 km/s. These tests were aimed to study of the Hugoniot elastic limit (HEL) of the SPS-processed alumina and the decay of the elastic precursor wave with the propagation distance. In the second type of the tests the samples of ~ 3-mm thickness were loaded by 1-mm copper impactors accelerated up to velocities 100-1000 m/s was. These tests were aimed to the study of the dynamic tensile (spall) strength of the alumina. The data on the decay of the elastic precursor wave allow determining the rates of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced plastic deformation and, thus, to derive some conclusions concerning the mechanisms responsible of the deformation. The data on the tensile fracture of the alumina demonstrate a monotonous decline of the spall strength with the amplitude of the loading stress pulse.

  9. NASA's Advanced Life Support Systems Human-Rated Test Facility.

    PubMed

    Henninger, D L; Tri, T O; Packham, N J

    1996-01-01

    Future NASA missions to explore the solar system will be long-duration missions, requiring human life support systems which must operate with very high reliability over long periods of time. Such systems must be highly regenerative, requiring minimum resupply, to enable the crews to be largely self-sufficient. These regenerative life support systems will use a combination of higher plants, microorganisms, and physicochemical processes to recycle air and water, produce food, and process wastes. A key step in the development of these systems is establishment of a human-rated test facility specifically tailored to evaluation of closed, regenerative life supports systems--one in which long-duration, large-scale testing involving human test crews can be performed. Construction of such a facility, the Advanced Life Support Program's (ALS) Human-Rated Test Facility (HRTF), has begun at NASA's Johnson Space Center, and definition of systems and development of initial outfitting concepts for the facility are underway. This paper will provide an overview of the HRTF project plan, an explanation of baseline configurations, and descriptive illustrations of facility outfitting concepts.

  10. Feed Preparation for Source of Alkali Melt Rate Tests

    SciTech Connect

    Stone, M. E.; Lambert, D. P.

    2005-02-26

    The purpose of the Source of Alkali testing was to prepare feed for melt rate testing in order to determine the maximum melt-rate for a series of batches where the alkali was increased from 0% Na{sub 2}O in the frit (low washed sludge) to 16% Na{sub 2}O in the frit (highly washed sludge). This document summarizes the feed preparation for the Source of Alkali melt rate testing. The Source of Alkali melt rate results will be issued in a separate report. Five batches of Sludge Receipt and Adjustment Tank (SRAT) product and four batches of Slurry Mix Evaporator (SME) product were produced to support Source of Alkali (SOA) melt rate testing. Sludge Batch 3 (SB3) simulant and frit 418 were used as targets for the 8% Na{sub 2}O baseline run. For the other four cases (0% Na{sub 2}O, 4% Na{sub 2}O, 12% Na{sub 2}O, and 16% Na{sub 2}O in frit), special sludge and frit preparations were necessary. The sludge preparations mimicked washing of the SB3 baseline composition, while frit adjustments consisted of increasing or decreasing Na and then re-normalizing the remaining frit components. For all batches, the target glass compositions were identical. The five SRAT products were prepared for testing in the dry fed melt-rate furnace and the four SME products were prepared for the Slurry-fed Melt-Rate Furnace (SMRF). At the same time, the impacts of washing on a baseline composition from a Chemical Process Cell (CPC) perspective could also be investigated. Five process simulations (0% Na{sub 2}O in frit, 4% Na{sub 2}O in frit, 8% Na{sub 2}O in frit or baseline, 12% Na{sub 2}O in frit, and 16% Na{sub 2}O in frit) were completed in three identical 4-L apparatus to produce the five SRAT products. The SRAT products were later dried and combined with the complementary frits to produce identical glass compositions. All five batches were produced with identical processing steps, including off-gas measurement using online gas chromatographs. Two slurry-fed melter feed batches, a 4% Na

  11. Mechanical shear and tensile characteristics of selected biomass stems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanical characteristics (stress and energy of tensile and shear modes) of selected biomass stems, such as big bluestem, bromegrass, and Barlow wheat were determined. A high capacity MTI-100K universal testing machine attached with standard tensile clamps and designed fabricated double-shear devic...

  12. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    SciTech Connect

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-28

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr{sub 2}O{sub 3} decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  13. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-01

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100-1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  14. Estimation of respiratory rate and heart rate during treadmill tests using acoustic sensor.

    PubMed

    Popov, B; Sierra, G; Telfort, V; Agarwal, R; Lanzo, V

    2005-01-01

    The objective was to test the robustness of an acoustic method to estimate respiratory rates (RR) during treadmill test. The accuracy was assessed by the comparison with simultaneous estimates from a capnograph, using as a common reference a pneumotachometer. Eight subjects without any pulmonary disease were enrolled. Tracheal sounds were acquired using a contact piezoelectric sensor placed on the subject's throat and analyzed using a combined investigation of the sound envelope and frequency content. The capnograph and pneumotachometer were coupled to a face mask worn by the subjects. There was a strong linear correlation between all three methods (r2ranged from 0.8 to 0.87), and the SEE ranged from 1.97 to 2.36. As a conclusion, the accuracy of the respiratory rate estimated from tracheal sounds on adult subjects during treadmill stress test was comparable to the accuracy of a commercial capnograph. The heart rate (HR) estimates can also be derived from carotid pulse using the same single sensor placed on the subject's throat. Compared to the pulse oximeter the results show an agreement of acoustic method with r2=0.76 and SEE = 3.51.

  15. The Tensile Properties of Advanced Nickel-Base Disk Superalloys During Quenching Heat Treatments

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, Pete T.; Biles, Tiffany; Konkel, William

    2001-01-01

    There is a need to increase the temperature capabilities of superalloy turbine disks. This would allow full utilization of higher temperature combustor and airfoil concepts under development. One approach to meet this goal is to modify the processing and chemistry of advanced alloys, while preserving the ability to use rapid cooling supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is to understand the key high temperature tensile properties of advanced alloys as they exist during supersolvus heat treatments. This could help in projecting cracking tendencies of disks during quenches from supersolvus heat treatments. The objective of this study was to examine the tensile properties of two advanced disk superalloys during simulated quenching heat treatments. Specimens were cooled from the solution heat treatment temperatures at controlled rates, interrupted, and immediately tensile tested at various temperatures. The responses and failure modes were compared and related to the quench cracking tendencies of disk forgings.

  16. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  17. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  18. Change in tensile properties of neoprene and nitrile gloves after repeated exposures to acetone and thermal decontamination.

    PubMed

    Gao, Pengfei; Tomasovic, Beth

    2005-11-01

    This study investigated the change in tensile properties of neoprene and nitrile gloves after repeated cycles of exposure to acetone, followed by thermal decontamination. The glove was exposed to acetone (outer surface in contact with chemical), subjected to thermal decontamination, and tested for the tensile strength and the ultimate elongation. Thermal decontamination was carried out inside an oven for 16 hours at 100 degrees C. The exposure/decontamination procedure was repeated for a maximum of 10 cycles. For neoprene versus acetone, the mean tensile strength consistently decreased after each exposure/decontamination cycle. Multiple comparisons indicated that the mean tensile strengths between the new swatches and each exposure/decontamination group were significantly different (p < 0.05). The loss of either tensile strength or ultimate elongation was less than 23% compared with new swatches after four exposure/decontamination cycles. Swatches with out acetone exposure were then cycled through the oven in the same manner. It was found that both the heat used for thermal decontamination and acetone exposure significantly affected the tensile strength and ultimate elongation. For nitrile gloves exposed to acetone, the mean tensile strength remained virtually unchanged (p > 0.05). The mean tensile strength for the new swatches was 37.1 MPa and the mean tensile strength after nine exposure/decontamination cycles was 36.0 MPa, with a loss less than 3%. The largest single cycle loss for ultimate elongation occurred during the first exposure/decontamination cycle for both glove materials. In our previous study, decisions regarding the effectiveness of the decontamination process were based on having no discernible change in the breakthrough time and steady-state permeation rate. The results of this study indicate that the effectiveness of the decontamination process cannot be based on permeation parameters alone but must also take into account the change in physical

  19. Sample size calculation for testing differences between cure rates with the optimal log-rank test.

    PubMed

    Wu, Jianrong

    2017-01-01

    In this article, sample size calculations are developed for use when the main interest is in the differences between the cure rates of two groups. Following the work of Ewell and Ibrahim, the asymptotic distribution of the weighted log-rank test is derived under the local alternative. The optimal log-rank test under the proportional distributions alternative is discussed, and sample size formulas for the optimal and standard log-rank tests are derived. Simulation results show that the proposed formulas provide adequate sample size estimation for trial designs and that the optimal log-rank test is more efficient than the standard log-rank test, particularly when both cure rates and percentages of censoring are small.

  20. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding

    PubMed Central

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10–20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%. PMID:26491719

  1. Round robin comparison of tensile results on GlidCop Al25

    SciTech Connect

    Edwards, D.J.; Zinkle, S.J.; Fabritsiev, S.A.; Pokrovsky, A.S.

    1998-09-01

    A round robin comparison of the tensile properties of GlidCop{trademark} Al25 oxide dispersion strengthened copper was initiated between collaborating laboratories to evaluate the test and analysis procedures used in the irradiation experiments in SRIAR in Dimitrovgrad. The tests were conducted using the same tensile specimen geometry as used in previous irradiation experiments, with tests at each laboratory being conducted in air or vacuum at 25, 150, and 300 C at a strain rate of 3 {times} 10{sup {minus}4} s{sup {minus}1}. The strength of the GlidCop Al25 decreased as the test temperature increased, with no observable effect of testing in air versus vacuum on the yield and ultimate strengths. The uniform elongation decreased by almost a factor of 3 when the test temperature was raised from room temperature to 300 C, but the total elongation remained roughly constant over the range of test temperatures. Any effect of testing in air on the ductility may have been masked by the scatter introduced into the results because each laboratory tested the specimens in a different grip setup. In light of this, the results of the round robin tests demonstrated that the test and analysis procedures produced essentially the same values for tensile yield and ultimate, but significant variability was present in both the uniform and total elongation measurements due to the gripping technique.

  2. Subtask 12E2: Effect of oxidation on tensile behavior of V-5Cr-5Ti alloy

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1995-03-01

    The objectives of this task are to (a) evaluate the oxygen uptake of V-5Cr-5Ti alloy as a function of temperature and oxygen partial pressure in the exposure environment, (b) examine the microstructural characteristics of oxide scales and oxygen entrapped at the grain boundaries in the substrate alloy, (c) evaluate the influence of oxygen uptake on the tensile properties of the alloy at room and elevated temperatures, (d) evaluate oxidation kinetics of the alloy with aluminum-enriched surface layers, and (e) determine the effect of oxygen uptake on the tensile behavior of the alloy. Oxidation studies were conducted on V-5Cr-5Ti alloy specimens at 500{degrees}C in an air environment. The oxidation rates calculated from measurements of thermogravimetric testing are 10, 17, and 25 {mu}m/y at 400, 450 and 500{degrees}C, respectively. Uniaxial tensile specimens were oxidized for several time periods in air at 500{degrees}C and subsequently tensile-tested at 500{degrees}C in air. The hardened layer in each of these oxidized specimens was confined to 75 gm after 1000 h exposure at 500{degrees}C. The influence of the 1000-h oxidation is to increase the ultimate tensile strength of the alloy by {approx}10% while decreasing the tensile rupture strain from 0.23 to 0.14. 4 figs.

  3. Tensile and Compressive Constitutive Response of 316 Stainless Steel at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.; Halford, G. R.

    1983-01-01

    Creep rate in compression is lower by factors of 2 to 10 than in tension if the microstructure of the two specimens is the same and are tested at equal temperatures and equal but opposite stresses. Such behavior is characteristic for monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.

  4. Tensile and compressive constitutive response of 316 stainless steel at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Muralidharan, U.; Halford, G. R.

    1982-01-01

    It is demonstrated that creep rate of 316 SS is lower by factors of 2 to 10 in compression than in tension if the microstructure is the same and tests are conducted at identical temperatures and equal but opposite stresses. Such behavior was observed for both monotonic creep and conditions involving cyclic creep. In the latter case creep rate in both tension and compression progressively increases from cycle to cycle, rendering questionable the possibility of expressing a time-stabilized constitutive relationship. The difference in creep rates in tension and compression is considerably reduced if the tension specimen is first subjected to cycles of tensile creep (reversed by compressive plasticity), while the compression specimen is first subjected to cycles of compressive creep (reversed by tensile plasticity). In both cases, the test temperature is the same and the stresses are equal and opposite. Such reduction is a reflection of differences in microstructure of the specimens resulting from different prior mechanical history.

  5. Tensile and Creep-Rupture Evaluation of a New Heat of Haynes Alloy 25

    SciTech Connect

    Shingledecker, J.P.; Glanton, D.B.; Martin, R.L.; Sparks, B.L.; Swindeman, R.W.

    2007-02-14

    From 1999 to 2006, a program was undertaken within the Materials Science and Technology Division, formerly the Metals and Ceramics Division, of Oak Ridge National Laboratory to characterize the tensile and creep-rupture properties of a newly produced heat of Haynes alloy 25 (L-605). Tensile properties from room temperature to 1100 C were evaluated for base material and welded joints aged up to 12,000 hours at 675 C. Creep and creep-rupture tests were conducted on base metal and cross-weldments from 650 to 950 C. Pressurized tubular creep tests were conducted to evaluate multiaxial creep-rupture response of the material. Over 800,000 hours of creep test data were generated during the test program with the longest rupture tests extending beyond 38,000 hours, and the longest creep-rate experiments exceeding 40,000 hours.

  6. Dynamic-Tensile-Extrusion of Polyurea

    NASA Astrophysics Data System (ADS)

    Furmanski, Jevan; Cady, Carl; Rae, Philip; Trujillo, Carl; Gray, G. T., III; Brown, Eric

    2011-06-01

    Polyurea was investigated under Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading where spherical projectiles were propelled at 440-509 m/s through an extrusion die with an area reduction of 87%. Momentum of the leading edge imposes a rapid tensile deformation on the extruding material. Polyurea is an elastomer with outstanding high-rate tensile performance of interest in the shock regime. Previous Dyn-Ten-Ext work on semi-crystalline polymers (PTFE, PCTFE) resulted in small-scale fragmentation of the polymer, and did not provide clear information on the evolution of tensile damage in those materials. The polyurea behaved very differently; the polymer first extruded a jet of apparently intact material, which then broke down via void formation and coalescence, followed by fibrillation and tearing of the material. Most of the material in the jet elastically retracted back into the die, and only a few fragments of torn material were liberated from the sample. The surface texture of all failed surfaces was rough indicating a considerable amount of energy was absorbed by sub-critical failure mechanisms. It is interesting to note that while damage nucleation appeared pervasive in the extruded jet, the samples were nevertheless recovered largely intact, with limited fragmentation.

  7. Effect of storage on tensile material properties of bovine liver.

    PubMed

    Lu, Yuan-Chiao; Kemper, Andrew R; Untaroiu, Costin D

    2014-01-01

    Cadaveric tissue models play an important role in the assessment and optimization of novel restraint systems for reducing abdominal injuries. However, the effect of tissue preservation by means of freezing on the material properties of abdominal tissues remains unknown. The goal of this study was to investigate the influence of frozen storage time on the material responses of the liver parenchyma in tensile loading. Specimens from ten bovine livers were equally divided into three groups: fresh, 30-day frozen storage, and 60-day frozen storage. All preserved specimens were stored at -12°C. Dog-bone specimens from each preservation group were randomly assigned to one of three strain rates (0.01s(-1), 0.1s(-1), and 1.0s(-1)) and tested to failure in tensile loading. The local material response recorded at the tear location and the global material response of the whole specimen of the liver parenchyma specimens were investigated based on the experimental data and optimized analytical material models. The local and global failure strains decreased significantly between fresh specimens and specimens preserved for 30 days (p<0.05), and between fresh specimens and specimens preserved for 60 days (p<0.05) for all three loading rates. Changes on the material model parameters were also observed between fresh and preserved specimens. Preservation by means of frozen storage was found to affect both the material and failure response of bovine liver parenchyma in tensile loading. The stiffness of the tissue increased with increased preservation time and increased strain rate. In summary, significant changes (p<0.05) between the failure strain of previously frozen liver parenchyma samples and fresh samples were demonstrated at both global and local levels in this study. In addition, nonlinear and viscoelastic characteristics of the liver parenchyma were observed in tension for both fresh and preserved samples.

  8. 40 CFR 280.104 - Local government bond rating test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... million or more, excluding refunded obligations, with a Moody's rating of Aaa, Aa, A, or Baa, or a..., or Baa, or a Standard & Poor's rating of AAA, AA, A, or BBB as the lowest rating for any rated...'s Baa or Standard & Poor's BBB) based on the most recent ratings published within the last 12...

  9. 40 CFR 280.104 - Local government bond rating test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... million or more, excluding refunded obligations, with a Moody's rating of Aaa, Aa, A, or Baa, or a..., or Baa, or a Standard & Poor's rating of AAA, AA, A, or BBB as the lowest rating for any rated...'s Baa or Standard & Poor's BBB) based on the most recent ratings published within the last 12...

  10. 40 CFR 280.104 - Local government bond rating test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... million or more, excluding refunded obligations, with a Moody's rating of Aaa, Aa, A, or Baa, or a..., or Baa, or a Standard & Poor's rating of AAA, AA, A, or BBB as the lowest rating for any rated...'s Baa or Standard & Poor's BBB) based on the most recent ratings published within the last 12...

  11. 40 CFR 280.104 - Local government bond rating test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... million or more, excluding refunded obligations, with a Moody's rating of Aaa, Aa, A, or Baa, or a..., or Baa, or a Standard & Poor's rating of AAA, AA, A, or BBB as the lowest rating for any rated...'s Baa or Standard & Poor's BBB) based on the most recent ratings published within the last 12...

  12. 40 CFR 280.104 - Local government bond rating test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... million or more, excluding refunded obligations, with a Moody's rating of Aaa, Aa, A, or Baa, or a..., or Baa, or a Standard & Poor's rating of AAA, AA, A, or BBB as the lowest rating for any rated...'s Baa or Standard & Poor's BBB) based on the most recent ratings published within the last 12...

  13. Tensile Strength of Carbon/Carbon Composites

    NASA Astrophysics Data System (ADS)

    Hatta, Hiroshi; Aoi, Tatsuji; Kawahara, Itaru; Kogo, Yasuo; Shiota, Ichiro

    In order to identify ruling mechanisms of tensile fracture of Carbon/Carbon composites (C/Cs), tensile tests were carried out for various C/Cs as functions of the density, heat treatment temperature, and interfacial strength between fiber and matrix. Three processing routes of preformed yarn, resin char, and HIP processes were adopted to densify C/Cs. These C/Cs were finally heat-treated at temperatures from 2273K to 3300K. The interfacial strength between fiber and matrix was varied by the selection of processing routes. As a result, two ruling failure mechanisms were identified. At density lower than 1.6g/cm3, the tensile fracture was controlled by stress transfer capability from the matrix to reinforcing fibers. However, at higher density than 1.6g/cm3, tensile strength was primarily governed by the interfacial strength between the matrix and fibers. Thus the latter mechanism is nearly same as ceramic matrix composites.

  14. 78 FR 78275 - Alcohol and Drug Testing: Determination of Minimum Random Testing Rates for 2014

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    .... SUMMARY: According to data from FRA's Management Information System, the rail industry's random drug... the industry-wide random alcohol testing violation rate has remained below 0.5 percent for the last... determination is effective December 26, 2013. FOR FURTHER INFORMATION CONTACT: Jerry Powers, FRA Drug...

  15. 75 FR 79308 - Alcohol and Drug Testing: Determination of Minimum Random Testing Rates for 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    .... SUMMARY: Using data from Management Information System annual reports, FRA has determined that the 2009... taken from FRA's Management Information System. Based on this data, the Administrator publishes a.... Because the industry-wide random drug testing positive rate has remained below 1.0 percent for the...

  16. Comparison of an Ampelisca abdita growth rate test with other standard amphipod sediment toxicity tests

    SciTech Connect

    Schafer, K.; Weston, D.P.

    1995-12-31

    Amphipod crustaceans are often used to measure the toxicity of bulk sediments. Acute lethal bioassays are commonly employed, but this study investigated the potential for using a chronic growth bioassay with Ampelisca abdita. A potential advantage of this method is that the growth rate could be a more sensitive measure of contamination than mortality. Growth rates for A. abdita in sediments spiked with cadmium and crude oil were compared to mortality rates in A. abdita, Eohaustorius estuaries, and Rhepoxynius abronius in sediments with the same concentrations of contaminants. A. abdita was more sensitive to cadmium than the other two species. For crude oil, there was a significant shift in size distribution from the control even at concentrations as low as 150 mg/kg of oil. The standard acute lethal tests for all species, on the other hand, did not show significant mortality until at least 1,600 mg/kg. The results confirm that growth rates are a more sensitive indicator of toxicity, and to at least the three contaminants tested, A. abdita is as sensitive as E. estuarius and R. abronius. This study also confirmed the reported high mortality rates of E. estuaries in San Francisco Bay sediments. The causes of this high mortality are unknown but give further reason for using A. abdita for toxicity tests in this region.

  17. Voltage stress effects on microcircuit accelerated life test failure rates

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1976-01-01

    The applicability of Arrhenius and Eyring reaction rate models for describing microcircuit aging characteristics as a function of junction temperature and applied voltage was evaluated. The results of a matrix of accelerated life tests with a single metal oxide semiconductor microcircuit operated at six different combinations of temperature and voltage were used to evaluate the models. A total of 450 devices from two different lots were tested at ambient temperatures between 200 C and 250 C and applied voltages between 5 Vdc and 15 Vdc. A statistical analysis of the surface related failure data resulted in bimodal failure distributions comprising two lognormal distributions; a 'freak' distribution observed early in time, and a 'main' distribution observed later in time. The Arrhenius model was shown to provide a good description of device aging as a function of temperature at a fixed voltage. The Eyring model also appeared to provide a reasonable description of main distribution device aging as a function of temperature and voltage. Circuit diagrams are shown.

  18. High temperature tensile properties of V-4Cr-4Ti

    SciTech Connect

    Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O.

    1998-09-01

    Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.

  19. Effect of temperature and microstructure on tensile and tensile creep properties of titanium silicon carbide in air

    NASA Astrophysics Data System (ADS)

    Radovic, Miladin

    The ternary carbide, Ti3SiC2, combines some of the best attributes of ceramics and metals. It is stable in inert atmospheres to temperatures above 2200°C, stiff and yet is readily machinable, oxidation, fatigue and thermal shock resistant and damage tolerant. Thus, Ti3SiC 2 is good candidate material for high temperature structural application. The aim of this work was to characterize its tensile and tensile creep properties. The mechanical behavior of Ti3SiC2 is characterized by a brittle-to-ductile (BTD) transition that is a function of strain rate. Its high strain rate sensitivity (≈0.50--0.6) is in the range that is more typical for superplastic materials, although it does not exhibit other attributes of superplasticity. Polycrystalline samples do not exhibit linear elastic behavior in tension even at room temperature. Room temperature loading-unloading tests result in closed hysteresis loops when the stress exceeds ≈120 MPa, suggesting that the mechanical response can be described as anelastic (viscoelastic). At high temperatures (1200°C) intense stress relaxation takes place; cycling loading-unloading tests at high temperature and low strain rates, demonstrate that the samples continue to elongate even during unloading, suggesting that Ti3SiC2 deforms viscoplastically. Tensile creep curves exhibit primary, steady state and tertiary regimes. The minimum creep rate can be represented by power law equation with a stress exponent of 1.5 for fine-grained (3--5 mum) samples, and 2 for coarse-grained (100--300 mum) ones. For both microstructures the activation energy for creep is ≈450 kJ/mol. The dependence on grain size is quite weak, implying that diffusion creep and/or creep mechanisms based on grain boundary sliding do not play a central role. Results of strain transient dip tests suggest that large internal stresses are developed during creep. Those internal stresses are believed to result in recoverable (anelastic) strains during unloading. The

  20. Low sampling rates bias outcomes from the Wingate test.

    PubMed

    Santos, E L; Novaes, J S; Reis, V M; Giannella-Neto, A

    2010-11-01

    The purpose of this work was to apply a simple method for acquisition of power output (PO) during the Wingate Anaerobic Test (WAnT) at a high sampling rate ( S(R)) and to compare the effect of lower S(R) on the measurements extracted from the PO. 26 male subjects underwent 2 WAnTs on a cycle ergometer. The reference PO was calculated at 30 Hz as a function of the linear velocity, the moment of inertia and the frictional load. The PO was sampled at 0.2, 0.5, 1, 2 and 5 Hz. Both the peak (16.03±2.22 W·kg (-1)) and mean PO (10.34±1.01 W·kg (-1)) presented lower relative values when the S(R) was lower. Peak PO was attenuated by 0.29-42.07% for decreasing sampling rates, resulting in different values for 0.2 and 1 Hz ( P<0.001). When the S(R) was 0.2 Hz, the time to peak was delayed by 53.81% ( P<0.001) and the fatigue index was attenuated by 22.12% ( P<0.001). In conclusion, due to the differences achieved here and the fact that the peak flywheel frequency is around 2.3 Hz, we strongly recommend that the PO be sampled at 5 Hz instead of 0.2 Hz in order to avoid biased errors and misunderstandings of the WAnT results.

  1. Tearing analysis of a new airship envelope material under uniaxial tensile load

    NASA Astrophysics Data System (ADS)

    Wang, F. X.; Xu, W.; Chen, Y. L.; Fu, G. Y.

    2016-07-01

    This paper experimentally investigated the tearing properties of a new kind of coated woven fabrics, GQ-6, made of ultra-high molecular weight polyethylene fiber. Such material can be used for the envelope materials of a stratospheric airship. First, the uniaxial tearing tests were carried out. Effects of the stretching rate, the initial crack length, and the initial crack orientation on the material's tearing tensile strength were investigated. Experimental results showed that the initial crack length and the initial crack orientation can be represented by the equivalent initial crack length while the stretching rate has a slight influence on tearing behavior of the uniaxial tensile specimens. Then analytical studies using three methods, i.e. Griffith energy theory, the stress intensity factor theory, and Thiele's empirical theory, among which, the stress intensity factor theory gives the best correlation with the test data. Finally, a 48mm threshold of the equivalent initial crack length was recommended to the envelope material in operation.

  2. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  3. Tensile Stress-Strain Results for 304L and 316L Stainless-Steel Plate at Temperature

    SciTech Connect

    R. K. Blandford; D. K. Morton; S. D. Snow; T. E. Rahl

    2007-07-01

    The Idaho National Laboratory (INL) is conducting moderate strain rate (10 to 200 per second) research on stainless steel materials in support of the Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP). For this research, strain rate effects are characterized by comparison to quasi-static tensile test results. Considerable tensile testing has been conducted resulting in the generation of a large amount of basic material data expressed as engineering and true stress-strain curves. The purpose of this paper is to present the results of quasi-static tensile testing of 304/304L and 316/316L stainless steels in order to add to the existing data pool for these materials and make the data more readily available to other researchers, engineers, and interested parties. Standard tensile testing of round specimens in accordance with ASTM procedure A 370-03a were conducted on 304L and 316L stainless-steel plate materials at temperatures ranging from -20 °F to 600 °F. Two plate thicknesses, eight material heats, and both base and weld metal were tested. Material yield strength, Young’s modulus, ultimate strength, ultimate strain, failure strength and failure strain were determined, engineering and true stress-strain curves to failure were developed, and comparisons to ASME Code minimums were made. The procedures used during testing and the typical results obtained are described in this paper.

  4. Friction at seismic slip rates: testing thermal weakening models experimentally

    NASA Astrophysics Data System (ADS)

    Nielsen, S. B.; Spagnuolo, E.; Violay, M.; Di Toro, G.

    2013-12-01

    Recent experiments systematically explore rock friction under crustal earthquake conditions (fast slip rate 1test various thermal weakening models (flash weakening, diffusion superplasticity, frictional melt lubrication) and to verify the direct or indirect role of temperature on friction. We show that in the absence of melting and/or pressurization, the weakening transient, the dynamic sliding friction and the restrengthening phase can be explained either by the flash weakening model (Archard, 1958; Rice, 2006; Noda et al., 2009) or by a simple model where the strength of the slip zone is directly controlled by an Arrhenious-like thermal dependance. In the presence of melting, which occurs quite easily in silicatic rocks under coseismic conditions, the data are well explained by the frictional melt model (Nielsen et al., 2008, 2010). Frictional heating is simple to compute but requires a rather costly and inefficient convolution (even with the use of FFT) for a dynamic, extended fault simulation. Hence we desing an efficient and accurate wavenumber approximation for a solution of the temperature evolution on the fault. Finally, we propose a compact and paractical model based on a small number of memory variables for the implementation of thermal weakening friction in seismic fault simulations.

  5. Stress Relaxation in Tensile Deformation of 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Li, Xifeng; Li, Jiaojiao; Ding, Wei; Zhao, Shuangjun; Chen, Jun

    2017-01-01

    Improved ductility by stress relaxation has been reported in different kinds of steels. The influence of stress relaxation and its parameters on the ductility of 304 stainless steel has not been established so far. Stress relaxation behavior during tensile tests at different strain rates is studied in 304 stainless steel. It is observed that stress relaxation can obviously increase the elongation of 304 stainless steel in all cases. The elongation improvement of interrupted tension reaches to 14.9% compared with monotonic tension at 0.05 s-1. Contradicting with the published results, stress drop during stress relaxation increases with strain at all strain rates. It is related with dislocation motion velocity variation and martensitic transformation.

  6. Tensile, Compression, Open-Hole Compression and Double Cantilever Beam Fracture Toughness Testing of Multiple NASA Langley Research Center Composite Materials

    NASA Technical Reports Server (NTRS)

    Adams, Donald F.

    1999-01-01

    The attached data summarizes the work performed by the Composite Materials Research Group at the University of Wyoming funded by the NASA LaRC Research Grant NAG-1-1294. The work consisted primarily of tension, compression, open-hole compression and double cantilever beam fracture toughness testing performed an a variety of NASA LaRC composite materials. Tests were performed at various environmental conditions and pre-conditioning requirements. The primary purpose of this work was to support the LaRC material development efforts. The data summaries are arranged in chronological order from oldest to newest.

  7. Tensile behavior of tungsten and tungsten-alloy wires from 1300 to 1600 K

    NASA Technical Reports Server (NTRS)

    Hee, Man Yun

    1988-01-01

    The tensile behavior of a 200-micrometer-diameter tungsten lamp (218CS-W), tungsten + 1.0 atomic percent (a/o) thoria (ST300-W), and tungsten + 0.4 a/o hafnium carbide (WHfC) wires was determined over the temperature range 1300 t0 1600 K at strain rates of 3.3 X 10 to the -2 to 3.3 X 10 to the -5/sec. Although most tests were conducted on as-drawn materials, one series of tests was undertaken on ST300-W wires in four different conditions: as-drawn and vacuum-annealed at 1535 K for 1 hr, with and without electroplating. Whereas heat treatment had no effect on tensile properties, electropolishing significantly increased both the proportional limit and ductility, but not the ultimate tensile strength. Comparison of the behavior of the three alloys indicates that the HfC-dispersed material possesses superior tensile properties. Theoretical calculations indicate that the strength/ductility advantage of WHfC is due to the resistance to recrystallization imparted by the dispersoid.

  8. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    NASA Astrophysics Data System (ADS)

    Huang, Haihong; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-10-01

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, Hp(y), induced by applied magnetic fields with different intensities measured through the tensile tests. The Hp(y), its slope coefficient KS and maximum gradient Kmax changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of Hp(y) and its slope coefficient KS increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, Hp(y) and KS reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of Hp(y) instead of changing the signal curve‧s profile; and the magnitude of Hp(y), KS, Kmax and the change rate of KS increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials.

  9. Dynamic tensile deformation and fracture of a highly particle-filled composite using SHPB and high-speed DIC method

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Chen, P.; Guo, B.; Huang, F.

    2012-08-01

    In this work, various tensile tests, including Brazilian disc test (BDT), flattened Brazilian disc (FBD) test and semi-circular bending (SCB) test, were carried out on a highly particle-filled composite by using a split Hopkinson pressure bar (SHPB). With the consideration of low strength and low wave impedance of the materials, a quartz crystal transducer was embedded in SHPB to measure the loading forces. A high-speed camera was used to capture the deformation and fracture process of materials. Digital image correlation (DIC) method was used to process these digital images to obtain the dynamic deformation information. Based on the measured strain fields, the crack growth path was determined and the failure mechanism of samples was analyzed. Combining SHPB and DIC method, the indirect tensile stress strain plots of disc samples were obtained, and the dynamic fracture toughness of materials was measured using both FBD and SCB tests. The results show that the tensile failure strength and fracture toughness increases with the increase of strain rates, exhibiting strain rate dependence. The high-speed DIC method combined with SHPB is effective to study the dynamic tensile behaviour of brittle materials with low strengths.

  10. Tensile strength of bovine trabecular bone.

    PubMed

    Kaplan, S J; Hayes, W C; Stone, J L; Beaupré, G S

    1985-01-01

    Data on the tensile and compressive properties of trabecular bone are needed to define input parameters and failure criteria for modeling total joint replacements. To help resolve differences in reports comparing tensile and compressive properties of trabecular bone, we have developed new methods, based on porous foam technology, for tensile testing of fresh/frozen trabecular bone specimens. Using bovine trabecular bone from an isotropic region from the proximal humerus as a model material, we measured ultimate strengths in tension and compression for two groups of 24 specimens each. The average ultimate strength in tension was 7.6 +/- 2.2 (95% C.I.) MPa and in compression was 12.4 +/- 3.2 MPa. This difference was statistically significant (p = 0.013) and was not related to density differences between the test groups (p = 0.28). Strength was related by a power-law function of the local apparent density, but, even accounting for density influences, isotropic bovine trabecular bone exhibits significantly lower strengths in tension than in compression.

  11. The tensile properties of single sugar palm (Arenga pinnata) fibre

    NASA Astrophysics Data System (ADS)

    Bachtiar, D.; Sapuan, S. M.; Zainudin, E. S.; Khalina, A.; Dahlan, K. Z. M.

    2010-05-01

    This paper presents a brief description and characterization of the sugar palm fibres, still rare in the scientific community, compared to other natural fibres employed in polymeric composites. Sugar palm fibres are cellulose-based fibres extracted from the Arenga pinnata plant. The characterization consists of tensile test and the morphological examination. The average tensile properties results of fibres such as Young's modulus is equal to 3.69 GPa, tensile strength is equal to 190.29 MPa, and strain at failure is equal to 19.6%.

  12. Microstructural Evolution of an Al-Alloyed Duplex Stainless Steel During Tensile Deformation Between 77 K and 473 K (-196 °C and 200 °C)

    NASA Astrophysics Data System (ADS)

    Rahimi, Reza; Ullrich, Christiane; Rafaja, David; Biermann, Horst; Mola, Javad

    2016-06-01

    Tensile deformation behavior of an Al-alloyed Fe-17Cr-6Mn-4Al-3Ni-0.45C (mass pct) duplex stainless steel containing approximately 20 vol pct ferrite was studied in the temperature range from 77 K to 473 K (-196 °C to 200 °C). While the elongation exhibited a maximum near room temperature, the yield strength continuously increased at lower tensile test temperatures. According to the microstructural examinations, the twinning-induced plasticity and the dislocation cell formation were the dominant deformation mechanisms in the austenite and ferrite, respectively. Reduction of the tensile ductility at T < 273 K (0 °C) was attributed to the ready material decohesion at the ferrite/austenite boundaries. Tensile testing at 473 K (200 °C) was associated with the serrated flow which was ascribed to the Portevin-Le Chatelier effect. Due to a rise in the stacking fault energy of austenite, the occurrence of mechanical twinning was impeded at higher tensile test temperatures. Furthermore, the evolution of microstructural constituents at room temperature was studied by interrupted tensile tests. The deformation in the austenite phase started with the formation of Taylor lattices followed by mechanical twinning at higher strains/stresses. In the ferrite phase, on the other hand, the formation of dislocation cells, cell refinement, and microbands formation occurred in sequence during deformation. Microhardness evolution of ferrite and austenite in the interrupted tensile test specimens implied a higher strain-hardening rate for the austenite as it clearly became the harder phase at higher tensile strain levels.

  13. An investigation on dynamic tensile properties of TiAl intermetallic alloy

    SciTech Connect

    Wang, Y.; Lin, T.L.; Zhou, Y.; Xia, Y.; Law, C.C.

    1999-07-01

    Room-temperature tensile properties of polycrystalline Ti-47Al-2Mn-2Nb alloy with nearly lamellar (NL) microstructures were investigated at the strain rate between 10{sup {minus}5} and 1,000 s{sup {minus}1} using a self-designed Split-Hopkinson tensile bar setup with a rotating disk and conventional testing machine. It was found that tensile ductility varies within a narrow range with the strain rate while dynamic strengths ({sigma}{sup d}) of the alloy are obviously higher than static strengths ({sigma}{sup s}). There exists a linear relationship between {sigma}{sup s} and the logarithm of the strain rate (ln{dot {epsilon}}), and between {sigma}{sup d} and the strain rate itself ({dot {epsilon}}). Fractography analysis indicated that the alloy fractured in a mixed mode of predominant transgranular cleavage and minor intergranular cracking under static and dynamic strain rates. Environmental effect was excluded from the main cause for the room-temperature brittleness of the investigated alloy.

  14. Dynamic-tensile-extrusion of polyurea

    NASA Astrophysics Data System (ADS)

    Furmanski, Jevan; Cady, Carl; Rae, Philip; Trujillo, Carl P.; Gray, George Thompson, III; Brown, Eric

    2012-03-01

    Polyurea was investigated under Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) loading where spherical projectiles were propelled at 440 to 509 ms-1 through a conical extrusion die with an area reduction of 87%. Momentum of the leading edge imposes a rapid tensile deformation on the extruded jet of material. Polyurea is an elastomer with outstanding high-rate tensile performance of interest in the shock regime. Previous Dyn-Ten-Ext work on semi-crystalline fluoropolymers (PTFE, PCTFE) elucidated irregular deformation and profuse stochastic-based damage and failure mechanisms, but with limited insight into damage inception or progression in those polymers. The polyurea behaved very differently; the polymer first extruded a jet of apparently intact material, which then broke down via void coalescence, followed by fibrillation and tearing of the material. Most of the material in the jet elastically retracted back into the die, and only a few unique fragments were formed. The surface texture of all failed surfaces was found to be tortuous and covered with drawn hair-like filaments, implying a considerable amount of energy was absorbed during damage progression.

  15. Tensile properties of palladium-silver alloys with absorbed hydrogen

    NASA Technical Reports Server (NTRS)

    Smith, R. J.; Otterson, D. A.

    1975-01-01

    The alloys 90Pd-10Ag, 80Pd-20Ag, 70Pd-30Ag, 60Pd-40Ag, and 50Pd-50Ag containing absorbed hydrogen were tested in tension. The results show the tensile properties to be independent of the phase transition. Also, hydrogen in the lattice does not necessarily cause embrittlement or poor elongation. The changes in the tensile properties appear dependent on the electron to atom site ratio.

  16. Incipient and Progressive Damage in Polyethylene Under Extreme Tensile Conditions

    SciTech Connect

    Furmanski, Jevan; Brown, Eric; Trujillo, Carl P.; Martinez, Daniel Tito; Gray, George T. III

    2012-06-07

    The Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) test was developed at LANL by Gray and coworkers to probe the tensile response of materials at large strains (>1) and high strain-rates (>1000/s) by firing projectiles through a conical die at 300-700 m/s. This technique has recently been applied to various polymers, such as the fluoropolymers PTFE (Teflon) and the chemically similar PCTFE, which respectively exhibited catastrophic fragmentation and distributed dynamic necking. This work details investigations of the Dyn-Ten-Ext response of high density polyethylene, both to failure and sub-critical conditions. At large extrusion ratios ({approx}7.4) and high velocities, such as those previously employed, HDPE catastrophically fragmented in a craze-like manner in the extruded jet. At more modest extrusion ratios and high velocities the specimen extruded a stable jet that ruptured cleanly, and at lower velocities was recovered intact after sustaining substantial internal damage. Thermomechanical finite element simulations showed that the damage corresponded to a locus of shear stress in the presence of hydrostatic tension. X-ray computed tomography corroborated the prediction of a shear damage mechanism by finding the region of partially damaged material to consist of macroscopic shear-mode cracks nearly aligned with the extrusion axis, originating from the location of damage inception.

  17. 21 CFR 864.6700 - Erythrocyte sedimentation rate test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the length of time required for the red cells in a blood sample to fall a specified distance or a... rate indicates tissue damage or inflammation. (b) Classification. Class I (general controls)....

  18. On the Strain Rate Sensitivity of Abs and Abs Plus Fused Deposition Modeling Parts

    NASA Astrophysics Data System (ADS)

    Vairis, A.; Petousis, M.; Vidakis, N.; Savvakis, K.

    2016-09-01

    In this work the effect of strain rate on the tensile strength of fused deposition modeling parts built with Acrylonitrile-butadiene-styrene (ABS) and ABS plus material is presented. ASTM D638-02a specimens were built with ABS and ABS plus and they were tested on a Schenck Trebel Co. tensile test machine at three different test speeds, equal, lower, and higher to the test speed required by the ASTM D638-02a standard. The experimental tensile strength results were compared and evaluated. The fracture surfaces of selected specimens were examined with a scanning electron microscope, to determine failure mode of the filament strands. It was found that, as the test speed increases, specimens develop higher tensile strength and have higher elastic modulus. Specimens tested in the highest speed of the experiment had on average about 10% higher elastic modulus and developed on average about 11% higher tensile strength.

  19. Dynamic tensile stress-strain characteristics of carbon/epoxy laminated composites in through-thickness direction

    NASA Astrophysics Data System (ADS)

    Nakai, Kenji; Yokoyama, Takashi

    2015-09-01

    The effect of strain rate up to approximately ɛ˙ = 102/s on the tensile stress-strain properties of unidirectional and cross-ply carbon/epoxy laminated composites in the through-thickness direction is investigated. Waisted cylindrical specimens machined out of the laminated composites in the through-thickness direction are used in both static and dynamic tests. The dynamic tensile stress-strain curves up to fracture are determined using the split Hopkinson bar (SHB). The low and intermediate strain-rate tensile stress-strain relations up to fracture are measured on an Instron 5500R testing machine. It is demonstrated that the ultimate tensile strength and absorbed energy up to fracture increase significantly, while the fracture strain decreases slightly with increasing strain rate. Macro- and micro-scopic examinations reveal a marked difference in the fracture surfaces between the static and dynamic tension specimens.

  20. Analysis of tensile bond strengths using Weibull statistics.

    PubMed

    Burrow, Michael F; Thomas, David; Swain, Mike V; Tyas, Martin J

    2004-09-01

    Tensile strength tests of restorative resins bonded to dentin, and the resultant strengths of interfaces between the two, exhibit wide variability. Many variables can affect test results, including specimen preparation and storage, test rig design and experimental technique. However, the more fundamental source of variability, that associated with the brittle nature of the materials, has received little attention. This paper analyzes results from micro-tensile tests on unfilled resins and adhesive bonds between restorative resin composite and dentin in terms of reliability using the Weibull probability of failure method. Results for the tensile strengths of Scotchbond Multipurpose Adhesive (3M) and Clearfil LB Bond (Kuraray) bonding resins showed Weibull moduli (m) of 6.17 (95% confidence interval, 5.25-7.19) and 5.01 (95% confidence interval, 4.23-5.8). Analysis of results for micro-tensile tests on bond strengths to dentin gave moduli between 1.81 (Clearfil Liner Bond 2V) and 4.99 (Gluma One Bond, Kulzer). Material systems with m in this range do not have a well-defined strength. The Weibull approach also enables the size dependence of the strength to be estimated. An example where the bonding area was changed from 3.1 to 1.1 mm diameter is shown. Weibull analysis provides a method for determining the reliability of strength measurements in the analysis of data from bond strength and tensile tests on dental restorative materials.

  1. Tensile Bond Strength of Latex-Modified Bonded Concrete Overlays

    NASA Astrophysics Data System (ADS)

    Dubois, Cameron; Ramseyer, Chris

    2010-10-01

    The tensile bond strength of bonded concrete overlays was tested using the in-situ pull-off method described in ASTM C 1583 with the goal of determining whether adding latex to the mix design increases bond strength. One slab of ductile concrete (f'c > 12,000 psi) was cast with one half tined, i.e. roughened, and one half steel-troweled, i.e. smooth. The slab surface was sectioned off and overlay mixtures containing different latex contents cast in each section. Partial cores were drilled perpendicular to the surface through the overlay into the substrate. A tensile loading device applied a direct tensile load to each specimen and the load was increased until failure occurred. The tensile bond strength was then calculated for comparison between the specimens.

  2. Tensile and creep behavior of a silicon carbide fiber-reinforced aluminosilicate composite

    SciTech Connect

    Khobaib, M.; Zawada, L.

    1991-08-01

    Tensile and tensile creep tests were conducted with a Nicalon/aluminosilicate (Si-C-O/1723) glass composite. Tensile tests were conducted at room temperature, and the creep tests were conducted at 600, 700, and 750 C. Room temperature tensile test failure features exhibited a tortuous crack path and extensive fiber pull-out. The failure features in creep were characterized by flat fracture and little fiber pull-out. The environment appeared to play a significant role in creep failure of this composite system. 6 refs.

  3. High strain-rate testing of parachute materials

    SciTech Connect

    Gwinn, K.W.; Totten, J.J.; Waye, D.E.

    1994-12-31

    Research at Sandia National Laboratories has shown a strain rate dependence of many materials used in the production of parachutes. Differences in strength of 30% have been found between strain rates of 12 sec{sup {minus}1} and slow rates normally used to define material properties for lightweight nylon cloth. These structures are sometimes deployed in a rapid fashion and the loading is experienced in milliseconds; the production of material data in the same loading regime is required for full understanding of material response. Also, material behavior suitable for structural analysis of these structures is required for successful analysis. This is especially important when different materials are used in the same fabric structure. Determining the distribution of load to various portions of a nylon and Kevlar parachute requires the correct moduli and material behavior in the analytical model. The effect of strain rate on the material properties of nylon and Kevlar components commonly used in parachute construction are reported in this paper. These properties are suitable for use in analytical models of these fabric structures.

  4. National Unmanned Aerial System Standardized Performance Testing and Rating (NUSTAR)

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2016-01-01

    The overall objective of the NUSTAR Capability is to offer standardized tests and scenario conditions to assess performance of the UAS. The following are goals of the NU-STAR: 1. Create a prototype standardized tests and scenarios that vehicles can be tested against. 2. Identify key performance parameters of all UAS and their standardized measurement strategy. 3. Develop standardized performance reporting method (e.g., consumer report style) to assist prospective buyers. 4. Identify key performance metrics that could be used by judged towards overall safety of the UAS and operations. 5. If vehicle certification standard is made by a regulatory agency, the performance of individual UAS could be compared against the minimum requirement (e.g., sense and avoid detection time, stopping distance, kinetic energy, etc.).

  5. Study of the {alpha}{double_prime} phase texture obtained by martensitic {beta}-{alpha}{double_prime} phase transformation induced by tensile test in a sheet of Ti5Al2Sn4Zr4Mo2Cr1Fe

    SciTech Connect

    Pionnier, D.; Humbert, M.; Philippe, M.J.; Combres, Y.

    1998-10-09

    The purpose was to investigate the texture development of the {alpha}{double_prime} orthorhombic martensite phase induced by stress within a commercial sheet of Ti5Al2Sn4Zr4Mo2Cr1Fe. First, the experimental textures of the initial b.c.c. phase, then of the b.c.c. phase and the {alpha}{double_prime} martensite phase after a uniaxial deformation were determined from pole figures. Comparison of the {alpha}{double_prime} experimental texture with a {alpha}{double_prime} texture, simulated with no variant selection from the b.c.c. texture of the initial {beta} matrix clearly shows that a strong variant selection was induced by stress. In order to better understand the formation of this {alpha}{double_prime} orthorhombic texture, texture transformations were simulated according to different variant selection assumptions. As a result, it was shown that the {alpha}{double_prime} orthorhombic texture is formed by the variants favorably oriented with respect to stresses induced during tensile test.

  6. Multiple Maximum Exposure Rates in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Ramon Barrada, Juan; Veldkamp, Bernard P.; Olea, Julio

    2009-01-01

    Computerized adaptive testing is subject to security problems, as the item bank content remains operative over long periods and administration time is flexible for examinees. Spreading the content of a part of the item bank could lead to an overestimation of the examinees' trait level. The most common way of reducing this risk is to impose a…

  7. Preliminary Flight Rating Tests of the HAST Propulsion System

    DTIC Science & Technology

    1975-01-01

    project engineer for propulsion was Mr. Fred Hewitt. Contractor personnel providing support included Messrs. William Bryne , James Auiler, Gary...Management Assembly ....... 11 Controlled Thrust Assembly .......... . Z Event Sequencing ................. 24 III TES.2 FACILITY...system will reliably perform the intended flight test missions, ( Z ) verify safe altitude ignition and operation so as to be able to certify flight safety

  8. Hot tensile tests of Inconel 718

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The physical metallurgy of near-solidus integranular cracking in Inconel 718 welds was investigated. The data, although inconclusive, suggest at least two mechanisms which might explain intergranular cracking (microfissuring) in the heat-affected zone of several high temperature alloys. One theory is based on the separation of intergranular liquid while the other involves mechanical failure of solid ligaments surrounded by intergranular liquid. Both mechanisms concentrate strain in the grain boundaries resulting in low strain (1%) intergranular brittleness. The mechanisms reported might also pertain to the physical metallurgy of casting, powder metallurgy sintering and hot isostatic pressing.

  9. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    SciTech Connect

    Martino, C. J.; Newell, J. D.; Williams, M. S.

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  10. Analysis on dynamic tensile extrusion behavior of UFG OFHC Cu

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Tae; Park, Leeju; Kim, Hak Jun; Kim, Seok Bong; Lee, Chong Soo

    2014-08-01

    Dynamic tensile extrusion (DTE) tests with the strain rate order of ~105 s-1 were conducted on coarse grained (CG) Cu and ultrafine grained (UFG) Cu. ECAP of 16 passes with route Bc was employed to fabricate UFG Cu. DTE tests were carried out by launching the sphere samples to the conical extrusion die at a speed of ~475 m/sec in a vacuumed gas gun system. UFG Cu was fragmented into 3 pieces and showed a DTE elongation of ~340%. CG Cu exhibited a larger DTE elongation of ~490% with fragmentation of 4 pieces. During DTE tests, dynamic recrystallization occurred in UFG Cu, but not in CG Cu. In order to examine the DTE behavior of CG Cu and UFG Cu under very high strain rates, a numerical analysis was undertaken by using a commercial finite element code (LS-DYNA 2D axis-symmetric model) with the Johnson - Cook model. The numerical analysis correctly predicted fragmentation and DTE elongation of CG Cu. But, the experimental DTE elongation of UFG Cu was much smaller than that predicted by the numerical analysis. This difference is discussed in terms of microstructural evolution of UFG Cu during DTE tests.

  11. Tensile properties of ceramic matrix fiber composites

    SciTech Connect

    Shin, D.W.; Auh, K.H.; Tanaka, Hidehiko

    1995-11-01

    The mechanical properties of various 2D ceramic matrix fiber composites were characterized by tension testing, using the gripping and alignment techniques developed in this work. The woven fabric composites used for the test had the basic combinations of Al{sub 2}O{sub 3} fabric/Al{sub 2}O{sub 3}, SiC fabric/SiC, and SiC monofilament uniweave fabric/SiC. Tension testing was performed with strain gauge and acoustic emission instrumentation to identify the first-matrix cracking stress and assure a valid alignment. The peak tensile stresses of these laminate composites were about one-third of the flexural strengths. The SiC monofilament uniweave fabric (14 vol%)/SiC composites showed a relatively high peak stress of 370 MPa in tension testing.

  12. Characterization of Damage in Triaxial Braid Composites Under Tensile Loading

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.

    2009-01-01

    Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.

  13. Workplace Breathing Rates: Defining Anticipated Values and Ranges for Respirator Certification Testing

    DTIC Science & Technology

    2004-09-01

    performance tests most affected by airflow rate are filter gas-life capacity, particulate filter efficiency, and respirator breathing resistances...efficacy when tested under standard laboratory protocols. The relevance and adequacy of airflow rates used in respirator certification testing has been... airflow conditions. NIOSH-approved non-powered APR chemical cartridges and canisters (filter systems) are tested at a constant flow rate of 64 liters

  14. 78 FR 77196 - Random Drug and Alcohol Testing Percentage Rates of Covered Aviation Employees for the Period of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... testing rate is based on the reported random drug test positive rate for the entire aviation industry. If... minimum random drug testing rate at 25%. In 2012, the random drug test positive rate was 0.456%. Therefore... random alcohol test violation rate. If the violation rate remains less than 0.50%, the Administrator...

  15. Tensile and burning properties of clay/phenolic/GF composite and its application

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Armunanto, V. Bram; Kristiawan, S. Adi

    2016-03-01

    Composite material has been widely used in automotive due to its properties can be improved by combining with reinforcement, like fiber and particle to enhance mechanical properties and burning resistance. This study aims to investigate the tensile and burning properties of hybrid composite combining glass fiber and clay in phenolic resin. The clay was produced from roof tile rejected by tile industries in Sokka, Kebumen, Indonesia. The composite was made using a press mold method for different number of laminates and orientation of woven-roving-glass-fiber/ WRGF (0/90 and ±45), and the total volume fraction of fiber and clay is constant 40%. The specimens were tested using universal testing machine for tensile properties and burning tests apparatus for burning resistance (time to ignite/ TTI and burning rate/ BR). The enhancing of the Clay/Penolic/GF composite can be performed by the increasing of GF laminates, and the composite with 0/90 orientation of WRGF has higher tensile strength and modulus compared to that with ±45 orientation of WRGF. Both composite with 0/90 and ±45 orientation of WRGF have similar burning resistance (TTI and BR) and the composite containing 13 laminates of WR-GF shows the best burning resistance. According to these properties, this composite has good opportunity to be applied as car body panels or other structure in industries due to save weight and high burning resistance.

  16. Validation of Empirically Derived Rating Scales for a Story Retelling Speaking Test

    ERIC Educational Resources Information Center

    Hirai, Akiyo; Koizumi, Rie

    2013-01-01

    In recognition of the rating scale as a crucial tool of performance assessment, this study aims to establish a rating scale suitable for a Story Retelling Speaking Test (SRST), which is a semidirect test of speaking ability in English as a foreign language for classroom use. To identify an appropriate scale, three rating scales, all of which have…

  17. 26 CFR 1.483-3 - Test rate of interest applicable to a contract.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... exchanges of land between related individuals. (b) Lower rate for certain sales or exchanges of land between related individuals—(1) Test rate. In the case of a qualified sale or exchange of land between related... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Test rate of interest applicable to a...

  18. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.3061 Section 29.3061... Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing. Tensile strength is not an important element of quality in Burley tobacco....

  19. Influence of temperature, composition, and grain size on the tensile failure of water ice: Implications for erosion on Titan

    NASA Astrophysics Data System (ADS)

    Litwin, Kimberly L.; Zygielbaum, Beth R.; Polito, Peter J.; Sklar, Leonard S.; Collins, Geoffrey C.

    2012-08-01

    Ice resistance to tensile fracture influences surface morphodynamics on outer planetary satellites such as Titan, yet measurements of tensile strength and fracture toughness of polycrystalline water ice at temperatures below terrestrial conditions (<220 K) have not been previously reported. We investigated these parameters from 260 K to 110 K using a walk-in freezer, and chilling by dry ice and liquid nitrogen. We also investigated the influence of solid impurity concentration and the spread in crystal grain size distribution. Although fracture toughness showed no sensitivity to temperature, we find that tensile strength increases with decreasing temperature at 7 kPa K-1 for all ice types tested. For pure water ice, samples made from uniform-sized seed crystals were stronger than mixed-grain-size ice, suggesting that strength is limited by the coarse tail of the size distribution. Samples tested submerged in liquid ethanol were 0.45 MPa weaker than in air; increasing porosity reduced tensile strength. Tensile strength increased linearly with concentration of urea, basalt and ammonium sulfate. These results suggest that on Titan and other icy satellites, the tensile strength of fine-grained polycrystalline water ice containing solid impurities may be several times greater than the 1 MPa value commonly used in modeling. For low strain rate processes where fracture propagation rather than fracture initiation limits strength, a temperature invariant fracture toughness of 0.15 MPa m1/2 is appropriate. Understanding ice diagenesis on Titan, and the resulting composition, grain size distribution, and porosity, is needed to accurately model surface processes that are limited by ice resistance to fracture.

  20. Modeling the tensile behavior of human Achilles tendon.

    PubMed

    Lewis, G; Shaw, K M

    1997-01-01

    Uniaxial quasi-static tensile stress, sigma versus strain, epsilon, data were obtained from 29 cadaveric Achilles tendons (donor ages: 36 to 100 years), at a strain rate of either 10 or 100%/s. These results were then used in modeling the elastic component of the tensile deformational behavior of this tissue. Two approaches were taken. In the first, it was shown that the following constitutive relation provided an excellent fit to the elastic section of the sigma-epsilon curve, sigma = C epsilon exp[D epsilon + F epsilon 2], with C, D and F being material constants, whose values for the present dataset were found to be C = 2.00 +/- 0.99, D = 0.089 +/- 0.087 and F = -0.0047 +/- 0.0095. The values of these coefficients were not statistically significantly affected by either donor age or test strain rate. In the second approach, the value of the modulus of elasticity of a filamentary polymer matrix composite material was computed as a function of various combinations of values of the modulus of elasticity of the fiber, the modulus of elasticity of the matrix, and angle of orientation of the principal material axes with respect to the reference coordinate axes (theta) for a fiber volume fraction of 0.6 and a material Poisson's ratio of 0.4. By comparing these results with the experimentally-obtained values of the tangent modulus of elasticity of the tendons (defined as the slope of the linear section of the post-toe zone in the sigma-epsilon plot), and assuming that the tendon may be idealized as a filamentary polymer matrix composite material, the suggestion is made that the winding angle of the fibers (collagen fibrils) in the tendon (taken to be equal to theta) is about 6 degrees.

  1. Long-Term Stability of Teacher Certification Test Objective Job Analysis Ratings.

    ERIC Educational Resources Information Center

    Silvestro, John R.; And Others

    Public school ratings of the importance of subject-matter test objectives associated with teacher certification tests were examined by means of a job-analysis survey conducted in 1986 and a similar survey conducted in 1993. It was predicted that there would be a high degree of change in the importance ratings assigned to these test objectives…

  2. Effect of Strain Rate on Mechanical Properties of Wrought Sintered Tungsten at Temperatures above 2500 F

    NASA Technical Reports Server (NTRS)

    Sikora, Paul F.; Hall, Robert W.

    1961-01-01

    Specimens of wrought sintered commercially pure tungsten were made from 1/8-inch swaged rods. All the specimens were recrystallized at 4050 F for 1 hour prior to testing at temperatures from 2500 to 4000 F at various strain rates from 0.002 to 20 inches per inch per minute. Results showed that, at a constant temperature, increasing the strain rate increased the ultimate tensile strength significantly. The effects of both strain rate and temperature on the ultimate tensile strength of tungsten may be correlated by the linear parameter method of Manson and Haferd and may be used to predict the ultimate tensile strength at higher temperatures, 4500 and 5000 F. As previously reported, ductility, as measured by reduction of area in a tensile test, decreases with increasing temperature above about 3000 F. Increasing the strain rate at temperatures above 3000 F increases the ductility. Fractures are generally transgranular at the higher strain rates and intergranular at the lower strain rates.

  3. Tensile strength on friction stir processed AMg5 (5083) aluminum alloy

    NASA Astrophysics Data System (ADS)

    Chumaevsky, A. V.; Eliseev, A. A.; Filippov, A. V.; Rubtsov, V. E.; Tarasov, S. Yu.

    2016-11-01

    The results of the tensile tests carried out both on AMg5 (5083) aluminum alloy samples base and those obtained using friction stir processing technique are reported. The tensile test samples have been prepared from the friction stir processed plates so that their tensile axis was parallel to the processing direction. The maximum tensile strength of the processed samples was 9% higher than of the base metal. The fractographic examination shows the presence of flat areas inherent of the brittle fracture in all three friction processed samples. The load-extension curves show that friction stir processing may suppress the serrated yielding.

  4. Tensile and tribological properties of high-crystallinity radiation crosslinked UHMWPE.

    PubMed

    Bistolfi, Alessandro; Turell, Mary Beth; Lee, Ying-Lung; Bellare, Anuj

    2009-07-01

    Osteolysis due to particulate wear debris associated with ultrahigh molecular weight polyethylene (UHMWPE) components of total joint replacement prostheses has been a major factor determining their in vivo lifetime. In recent years, radiation crosslinking has been employed to decrease wear rates in PE components, especially in acetabular cups of total hip replacement prostheses. A drawback of radiation crosslinking is that it leads to a crosslinked PE (or XPE) with lower mechanical properties compared with uncrosslinked PE. In contrast, high-crystallinity PEs are known to have several mechanical properties higher than conventional PE. In this study, we hypothesized that increasing the crystallinity of radiation crosslinked and remelted XPE would result in an increase in tensile properties without compromising wear resistance. High-pressure crystallization was performed on PE and XPE and analyzed for the resulting morphological alterations using differential scanning calorimeter, low voltage scanning electron microscopy, and ultrasmall angle X-ray scattering. Uniaxial tensile tests showed that high-pressure crystallization increased the tensile modulus and yield stress in both PE and XPE, decreased the ultimate strain and ultimate stress in PE but had no significant effect on ultimate strain or ultimate stress in XPE. Multidirectional wear tests demonstrated that high-pressure crystallization decreased the wear resistance of PE but had no effect on the wear resistance of XPE. In conclusion, this study shows that high-pressure crystallization can be effectively used to increase the crystallinity and modulus of XPE without compromising its superior wear resistance compared with PE.

  5. Tensile and tribological properties of high-crystallinity radiation crosslinked UHMWPE

    SciTech Connect

    Bistolfi, Alessandro; Turell, Mary Beth; Lee, Ying-Lung; Bellare, Anuj

    2009-09-02

    Osteolysis due to particulate wear debris associated with ultrahigh molecular weight polyethylene (UHMWPE) components of total joint replacement prostheses has been a major factor determining their in vivo lifetime. In recent years, radiation crosslinking has been employed to decrease wear rates in PE components, especially in acetabular cups of total hip replacement prostheses. A drawback of radiation crosslinking is that it leads to a crosslinked PE (or XPE) with lower mechanical properties compared with uncrosslinked PE. In contrast, high-crystallinity PEs are known to have several mechanical properties higher than conventional PE. In this study, we hypothesized that increasing the crystallinity of radiation crosslinked and remelted XPE would result in an increase in tensile properties without compromising wear resistance. High-pressure crystallization was performed on PE and XPE and analyzed for the resulting morphological alterations using differential scanning calorimeter, low voltage scanning electron microscopy, and ultrasmall angle X-ray scattering. Uniaxial tensile tests showed that high-pressure crystallization increased the tensile modulus and yield stress in both PE and XPE, decreased the ultimate strain and ultimate stress in PE but had no significant effect on ultimate strain or ultimate stress in XPE. Multidirectional wear tests demonstrated that high-pressure crystallization decreased the wear resistance of PE but had no effect on the wear resistance of XPE. In conclusion, this study shows that high-pressure crystallization can be effectively used to increase the crystallinity and modulus of XPE without compromising its superior wear resistance compared with PE.

  6. The tensile strength properties of CFRPs and GRRPs for Unnes electric car body material

    NASA Astrophysics Data System (ADS)

    Khumaedi, Muhammad; Sumbodo, Wirawan; Widodo, Rahmat Doni

    2016-04-01

    This paper describes composite materials tensile testing of electric car body material. The UNNES electric car body must be developed using a high strength and lightweight material. A fiber-reinforced plastic composite is widely used for the concerned objective. Selection of the type of composites, variations in fiber orientation, and the number of fiber layers will affect the tensile strength of the material. Composite materials use Carbon-fiber-reinforced plastics (CFRPs) and glass-fiber-reinforced plastics (GFRPs) variation to the fiber areal weight, variations in fiber orientation and the number of fiber layers. The CFRPs areal weight consists of 230 gsm and 400 gsm. The GFRPsareal weight consists of 400 gsm and 600 gsm. Fibre orientationsconsist of 0° and 45°. Number of fiber layers consists of one layer and two layers. Various variations were then tested to figure out their tensile to get ultimate tensile strength of materials. Standard test method for tensile test was conducted using ASTM D3039. Tensile specimen geometry used a type of balanced and symmetric fiber orientation, with 25mm in width, 250 mm in length, and 2.5 mm in thickness. The result shows that the more fiber areal weight and the layer number were used, the more its tensile strength would increase, beside it increased the ultimate tensile strength of the material for both glass and carbon fiber with 0o and 45o fiber arientation. Fiber plain wave with 45o has greater tensile strength compared to any other variation.

  7. Tensile behavior of inconel alloy X-750 in air and vacuum at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Pandey, M. C.; Taplin, D. M. R.; Mukherjee, A. K.

    1984-09-01

    Investigations carried out on the hot tensile properties of Inconel alloy X-750 at 700 °C in air and vacuum at different strain rates, in the range of 1 × 10-7 to 1.2 × 10-6 s-1, have shown that testing in air had a weakening effect on properties. Creep ductility in vacuum ( p 02 = 2.7 × 10-5 Pa) did not change appreciably with strain rate, but ductility varied markedly when tested in the air. Further, the ductility minimum occurred at 625 °C in air whereas considerable improvements in the creep ductilities were observed at 575 °C and 625 °C in the vacuum. The results indicated that the environmental interaction during testing enhanced the rate of cavitation damage causing premature failure in the material.

  8. Energy absorption behavior of polyurea coatings under laser-induced dynamic tensile and mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Jajam, Kailash; Lee, Jaejun; Sottos, Nancy

    2015-06-01

    Energy absorbing, lightweight, thin transparent layers/coatings are desirable in many civilian and military applications such as hurricane resistant windows, personnel face-shields, helmet liners, aircraft canopies, laser shields, blast-tolerant sandwich structures, sound and vibration damping materials to name a few. Polyurea, a class of segmented block copolymer, has attracted recent attention for its energy absorbing properties. However, most of the dynamic property characterization of polyurea is limited to tensile and split-Hopkinson-pressure-bar compression loading experiments with strain rates on the order of 102 and 104 s-1, respectively. In the present work, we report the energy absorption behavior of polyurea thin films (1 to 2 μm) subjected to laser-induced dynamic tensile and mixed-mode loading. The laser-generated high amplitude stress wave propagates through the film in short time frames (15 to 20 ns) leading to very high strain rates (107 to 108 s-1) . The substrate stress, surface velocity and fluence histories are inferred from the displacement fringe data. On comparing input and output fluences, test results indicate significant energy absorption by the polyurea films under both tensile and mixed-mode loading conditions. Microscopic examination reveals distinct changes in failure mechanisms under mixed-mode loading from that observed under pure tensile loading. Office of Naval Research MURI.

  9. Bit error rate testing of a proof-of-concept model baseband processor

    NASA Technical Reports Server (NTRS)

    Stover, J. B.; Fujikawa, G.

    1986-01-01

    Bit-error-rate tests were performed on a proof-of-concept baseband processor. The BBP, which operates at an intermediate frequency in the C-Band, demodulates, demultiplexes, routes, remultiplexes, and remodulates digital message segments received from one ground station for retransmission to another. Test methods are discussed and test results are compared with the Contractor's test results.

  10. NCME 2008 Presidential Address: The Impact of Anchor Test Configuration on Student Proficiency Rates

    ERIC Educational Resources Information Center

    Fitzpatrick, Anne R.

    2008-01-01

    Examined in this study were the effects of reducing anchor test length on student proficiency rates for 12 multiple-choice tests administered in an annual, large-scale, high-stakes assessment. The anchor tests contained 15 items, 10 items, or five items. Five content representative samples of items were drawn at each anchor test length from a…

  11. Type I Error Rate and Power of Some Alternative Methods to the Independent Samples "t" Test.

    ERIC Educational Resources Information Center

    Nthangeni, Mbulaheni; Algina, James

    2001-01-01

    Examined Type I error rates and power for four tests for treatment control studies in which a larger treatment mean may be accompanied by a larger treatment variance and examined these aspects of the independent samples "t" test and the Welch test. Evaluated each test and suggested conditions for the use of each approach. (SLD)

  12. Dynamic tensile characterization of a 4330 steel with kolsky bar techniques.

    SciTech Connect

    Song, Bo; Antoun, Bonnie R.; Connelly, Kevin

    2010-08-01

    There has been increasing demand to understand the stress-strain response as well as damage and failure mechanisms of materials under impact loading condition. Dynamic tensile characterization has been an efficient approach to acquire satisfactory information of mechanical properties including damage and failure of the materials under investigation. However, in order to obtain valid experimental data, reliable tensile experimental techniques at high strain rates are required. This includes not only precise experimental apparatus but also reliable experimental procedures and comprehensive data interpretation. Kolsky bar, originally developed by Kolsky in 1949 [1] for high-rate compressive characterization of materials, has been extended for dynamic tensile testing since 1960 [2]. In comparison to Kolsky compression bar, the experimental design of Kolsky tension bar has been much more diversified, particularly in producing high speed tensile pulses in the bars. Moreover, instead of directly sandwiching the cylindrical specimen between the bars in Kolsky bar compression bar experiments, the specimen must be firmly attached to the bar ends in Kolsky tensile bar experiments. A common method is to thread a dumbbell specimen into the ends of the incident and transmission bars. The relatively complicated striking and specimen gripping systems in Kolsky tension bar techniques often lead to disturbance in stress wave propagation in the bars, requiring appropriate interpretation of experimental data. In this study, we employed a modified Kolsky tension bar, newly developed at Sandia National Laboratories, Livermore, CA, to explore the dynamic tensile response of a 4330-V steel. The design of the new Kolsky tension bar has been presented at 2010 SEM Annual Conference [3]. Figures 1 and 2 show the actual photograph and schematic of the Kolsky tension bar, respectively. As shown in Fig. 2, the gun barrel is directly connected to the incident bar with a coupler. The cylindrical

  13. Dynamic tensile characterization of a 4330-V steel with kolsky bar techniques.

    SciTech Connect

    Song, Bo; Antoun, Bonnie R.; Connelly, Kevin

    2010-09-01

    There has been increasing demand to understand the stress-strain response as well as damage and failure mechanisms of materials under impact loading condition. Dynamic tensile characterization has been an efficient approach to acquire satisfactory information of mechanical properties including damage and failure of the materials under investigation. However, in order to obtain valid experimental data, reliable tensile experimental techniques at high strain rates are required. This includes not only precise experimental apparatus but also reliable experimental procedures and comprehensive data interpretation. Kolsky bar, originally developed by Kolsky in 1949 [1] for high-rate compressive characterization of materials, has been extended for dynamic tensile testing since 1960 [2]. In comparison to Kolsky compression bar, the experimental design of Kolsky tension bar has been much more diversified, particularly in producing high speed tensile pulses in the bars. Moreover, instead of directly sandwiching the cylindrical specimen between the bars in Kolsky bar compression bar experiments, the specimen must be firmly attached to the bar ends in Kolsky tensile bar experiments. A common method is to thread a dumbbell specimen into the ends of the incident and transmission bars. The relatively complicated striking and specimen gripping systems in Kolsky tension bar techniques often lead to disturbance in stress wave propagation in the bars, requiring appropriate interpretation of experimental data. In this study, we employed a modified Kolsky tension bar, newly developed at Sandia National Laboratories, Livermore, CA, to explore the dynamic tensile response of a 4330-V steel. The design of the new Kolsky tension bar has been presented at 2010 SEM Annual Conference [3]. Figures 1 and 2 show the actual photograph and schematic of the Kolsky tension bar, respectively. As shown in Fig. 2, the gun barrel is directly connected to the incident bar with a coupler. The cylindrical

  14. Development of a High-Temperature Tensile Tester for Micromechanical Characterization of Materials Supporting Meso-Scale ICME Models

    NASA Astrophysics Data System (ADS)

    Alam, Zafir; Eastman, David; Jo, Minjea; Hemker, Kevin

    2016-11-01

    A high-temperature tensile tester (HTTT) has been established for the evaluation of micro-mechanical properties of materials at the meso-scale. Metals and ceramics can now be tested at temperatures and strain rates between room temperature and 1200°C and 10-5 s-1 to 10-1 s-1, respectively. The samples are heated in a compact clam shell furnace and strain is measured directly in the sample gage with digital image correlation. The HTTT extracts representative mechanical properties, as evidenced by the similarity in the evaluated micro-tensile properties of a solid solution-strengthened Ni-base superalloy Ni-625 with that of the bulk. The effectiveness of the HTTT has also been demonstrated in evaluating the tensile and stress relaxation/short-term creep properties of a polycrystalline Ni-base superalloy René 88DT. The versatility in carrying out tensile, short-term creep, bend tests, and fracture toughness measurements makes the HTTT a robust experimental tool for small-scale and scale-specific benchmarking of multi-scale ICME models.

  15. Auditing HIV Testing Rates across Europe: Results from the HIDES 2 Study

    PubMed Central

    Raben, D.; Mocroft, A.; Rayment, M.; Mitsura, V. M.; Hadziosmanovic, V.; Sthoeger, Z. M.; Palfreeman, A.; Morris, S.; Kutsyna, G.; Vassilenko, A.; Minton, J.; Necsoi, C.; Estrada, V. P.; Grzeszczuk, A.; Johansson, V. Svedhem; Begovac, J.; Ong, E. L. C.; Cabié, A.; Ajana, F.; Celesia, B. M.; Maltez, F.; Kitchen, M.; Comi, L.; Dragsted, U. B.; Clumeck, N.; Gatell, J.; Gazzard, B.; d’Arminio Monforte, A.; Rockstroh, J.; Yazdanpanah, Y.; Champenois, K.; Jakobsen, M. L.; Sullivan, A.; Lundgren, J. D.

    2015-01-01

    European guidelines recommend the routine offer of an HIV test in patients with a number of AIDS-defining and non-AIDS conditions believed to share an association with HIV; so called indicator conditions (IC). Adherence with this guidance across Europe is not known. We audited HIV testing behaviour in patients accessing care for a number of ICs. Participating centres reviewed the case notes of either 100 patients or of all consecutive patients in one year, presenting for each of the following ICs: tuberculosis, non-Hodgkins lymphoma, anal and cervical cancer, hepatitis B and C and oesophageal candidiasis. Observed HIV-positive rates were applied by region and IC to estimate the number of HIV diagnoses potentially missed. Outcomes examined were: HIV test rate (% of total patients with IC), HIV test accepted (% of tests performed/% of tests offered) and new HIV diagnosis rate (%). There were 49 audits from 23 centres, representing 7037 patients. The median test rate across audits was 72% (IQR 32–97), lowest in Northern Europe (median 44%, IQR 22–68%) and highest in Eastern Europe (median 99%, IQR 86–100). Uptake of testing was close to 100% in all regions. The median HIV+ rate was 0.9% (IQR 0.0–4.9), with 29 audits (60.4%) having an HIV+ rate >0.1%. After adjustment, there were no differences between regions of Europe in the proportion with >0.1% testing positive (global p = 0.14). A total of 113 patients tested HIV+. Applying the observed rates of testing HIV+ within individual ICs and regions to all persons presenting with an IC suggested that 105 diagnoses were potentially missed. Testing rates in well-established HIV ICs remained low across Europe, despite high prevalence rates, reflecting missed opportunities for earlier HIV diagnosis and care. Significant numbers may have had an opportunity for HIV diagnosis if all persons included in IC audits had been tested. PMID:26560105

  16. Auditing HIV Testing Rates across Europe: Results from the HIDES 2 Study.

    PubMed

    Raben, D; Mocroft, A; Rayment, M; Mitsura, V M; Hadziosmanovic, V; Sthoeger, Z M; Palfreeman, A; Morris, S; Kutsyna, G; Vassilenko, A; Minton, J; Necsoi, C; Estrada, V P; Grzeszczuk, A; Johansson, V Svedhem; Begovac, J; Ong, E L C; Cabié, A; Ajana, F; Celesia, B M; Maltez, F; Kitchen, M; Comi, L; Dragsted, U B; Clumeck, N; Gatell, J; Gazzard, B; d'Arminio Monforte, A; Rockstroh, J; Yazdanpanah, Y; Champenois, K; Jakobsen, M L; Sullivan, A; Lundgren, J D

    2015-01-01

    European guidelines recommend the routine offer of an HIV test in patients with a number of AIDS-defining and non-AIDS conditions believed to share an association with HIV; so called indicator conditions (IC). Adherence with this guidance across Europe is not known. We audited HIV testing behaviour in patients accessing care for a number of ICs. Participating centres reviewed the case notes of either 100 patients or of all consecutive patients in one year, presenting for each of the following ICs: tuberculosis, non-Hodgkins lymphoma, anal and cervical cancer, hepatitis B and C and oesophageal candidiasis. Observed HIV-positive rates were applied by region and IC to estimate the number of HIV diagnoses potentially missed. Outcomes examined were: HIV test rate (% of total patients with IC), HIV test accepted (% of tests performed/% of tests offered) and new HIV diagnosis rate (%). There were 49 audits from 23 centres, representing 7037 patients. The median test rate across audits was 72% (IQR 32-97), lowest in Northern Europe (median 44%, IQR 22-68%) and highest in Eastern Europe (median 99%, IQR 86-100). Uptake of testing was close to 100% in all regions. The median HIV+ rate was 0.9% (IQR 0.0-4.9), with 29 audits (60.4%) having an HIV+ rate >0.1%. After adjustment, there were no differences between regions of Europe in the proportion with >0.1% testing positive (global p = 0.14). A total of 113 patients tested HIV+. Applying the observed rates of testing HIV+ within individual ICs and regions to all persons presenting with an IC suggested that 105 diagnoses were potentially missed. Testing rates in well-established HIV ICs remained low across Europe, despite high prevalence rates, reflecting missed opportunities for earlier HIV diagnosis and care. Significant numbers may have had an opportunity for HIV diagnosis if all persons included in IC audits had been tested.

  17. Tensile Properties of GRCop-84

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Loewenthal, William S.; Yun, Hee-Man

    2012-01-01

    This is a chapter in the final report on GRCop-84 for the Reusable Launch Vehicle (RLV) Second Generation/Project Constellation Program. It contains information on the tensile properties of GRCop-84. GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) was produced by extrusion and Hot Isostatic Pressing (HIPing). Some of the extrusions were rolled to plate and sheet while other extrusions were drawn into tubing. The material was further subjected to various heat treatments corresponding to annealing, anticipated typical brazing conditions, an end-of-life condition and various elevated temperature exposures to attempt to improve creep resistance. As anticipated, cold work increased strength while decreasing ductility. Annealing at 600 C (1112 F) and higher temperatures was effective. An exposure for 100 h at 500 C (932 F) resulted in an increase in strength rather than the anticipated decrease. High temperature simulated-braze cycles and thermal exposures lowered the strength of GRCop-84, but the deceases were small compared to precipitation strengthened copper alloys. It was observed that the excess Cr could form large precipitates that lower the reduction in area though it appears a minimum amount is required. Overall, GRCop-84 exhibits good stability of its tensile properties, which makes it an excellent candidate for rocket engine liners and many other high temperature applications.

  18. The Concurrent Validity of Standardized Achievement Tests by Content Area Using Teachers' Ratings as Criteria.

    ERIC Educational Resources Information Center

    Hopkins, Kenneth D.; And Others

    1985-01-01

    Forty-two fourth- and fifth-grade teachers rated their 1,032 students in the five curricular subjects: reading, mathematics, language arts, science, and social science. The teachers' ratings substantially agreed with students' scores on the Comprehensive Tests of Basic Skills, indicating the concurrent validity of standardized achievement tests.…

  19. 49 CFR 219.602 - FRA Administrator's determination of random drug testing rate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reported positive rate for the entire industry. All information used for this determination is drawn from... reports from railroads, and may make appropriate modifications in calculating the industry positive rate... testing through a consortium, the number of employees to be tested may be calculated for each...

  20. 49 CFR 219.608 - FRA Administrator's determination of random alcohol testing rate.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the violation rate for the entire industry. All information used for the determination is drawn from... reports from employers, and may make appropriate modifications in calculating the industry violation rate... alcohol testing through a consortium, the number of employees to be tested may be calculated for...

  1. 49 CFR 219.602 - FRA Administrator's determination of random drug testing rate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reported positive rate for the entire industry. All information used for this determination is drawn from... reports from railroads, and may make appropriate modifications in calculating the industry positive rate... testing through a consortium, the number of employees to be tested may be calculated for each...

  2. 49 CFR 219.608 - FRA Administrator's determination of random alcohol testing rate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the violation rate for the entire industry. All information used for the determination is drawn from... reports from employers, and may make appropriate modifications in calculating the industry violation rate... alcohol testing through a consortium, the number of employees to be tested may be calculated for...

  3. 49 CFR 219.608 - FRA Administrator's determination of random alcohol testing rate.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the violation rate for the entire industry. All information used for the determination is drawn from... reports from employers, and may make appropriate modifications in calculating the industry violation rate... alcohol testing through a consortium, the number of employees to be tested may be calculated for...

  4. 49 CFR 219.602 - FRA Administrator's determination of random drug testing rate.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reported positive rate for the entire industry. All information used for this determination is drawn from... reports from railroads, and may make appropriate modifications in calculating the industry positive rate... testing through a consortium, the number of employees to be tested may be calculated for each...

  5. 77 FR 75896 - Alcohol and Drug Testing: Determination of Minimum Random Testing Rates for 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    .... According to data from FRA's Management Information System, the rail industry's random drug testing positive... notice of determination is effective December 26, 2012. FOR FURTHER INFORMATION CONTACT: Elizabeth...

  6. Tensile Strength of Natural Fiber Reinforced Polyester Composite

    NASA Astrophysics Data System (ADS)

    Ismail, Al Emran; Awang, Muhd. Khairudin; Sa'at, Mohd Hisham

    2007-05-01

    Nowadays, increasing awareness of replacing synthetic fiber such as glass fiber has emerged due to environmental problems and pollutions. Automotive manufacturers also seek new material especially biodegradable material to be non-load bearing application parts. This present work discussed on the effect of silane treatment on coir fiber reinforced composites. From the results of tensile tests, fibers treated with silane have attained maximum material stiffness. However, to achieve maximum ultimate tensile strength and strain at failure performances, untreated fibers work very well through fiber bridging and internal friction between fiber and polymeric matrix. Scanning electron microscope (SEM) observations have coincided with these results.

  7. USING AN ADAPTER TO PERFORM THE CHALFANT-STYLE CONTAINMENT VESSEL PERIODIC MAINTENANCE LEAK RATE TEST

    SciTech Connect

    Loftin, B.; Abramczyk, G.; Trapp, D.

    2011-06-03

    Recently the Packaging Technology and Pressurized Systems (PT&PS) organization at the Savannah River National Laboratory was asked to develop an adapter for performing the leak-rate test of a Chalfant-style containment vessel. The PT&PS organization collaborated with designers at the Department of Energy's Pantex Plant to develop the adapter currently in use for performing the leak-rate testing on the containment vessels. This paper will give the history of leak-rate testing of the Chalfant-style containment vessels, discuss the design concept for the adapter, give an overview of the design, and will present results of the testing done using the adapter.

  8. Tensile and fatigue properties of Inconel 718 at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Malin, C. O.; Schmidt, E. H.

    1969-01-01

    Tests to determine the tensile and fatigue properties of Inconel 718 at cryogenic temperatures show that the alloy increases in strength at low temperatures, with very little change in toughness. The effect of surface finish and grain size on the fatigue properties was also determined.

  9. Tensile Properties and Failure Mechanism of 3D Woven Hollow Integrated Sandwich Composites

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Cai, Deng'an; Zhou, Guangming; Lu, Fangzhou

    2017-01-01

    Tensile properties and failure mechanism of 3D woven hollow integrated sandwich composites are investigated experimentally, theoretically and numerically in this paper. Firstly, the tensile properties are obtained by quasi-static tensile tests on the specimens in two principal directions of the sandwich panels, called warp and weft. The experimental results shows that the tensile performances of the warp are better than that of the weft. By observing the broken specimens, it is found that the touch parts between yarns are the main failure regions under tension. Then, a theoretical method is developed to predict the tensile properties. By comparing with the experimental data, the accuracy of the theoretical method is verified. Simultaneously, a finite element model is established to predict the tensile behavior of the composites. The numerical results agree well with the experimental data. Moreover, the simulated progressive damages show that the contact regions in the warp and weft tension are both the initial failure areas.

  10. Estimation procedures to measure and monitor failure rates of components during thermal-vacuum testing

    NASA Technical Reports Server (NTRS)

    Williams, R. E.; Kruger, R.

    1980-01-01

    Estimation procedures are described for measuring component failure rates, for comparing the failure rates of two different groups of components, and for formulating confidence intervals for testing hypotheses (based on failure rates) that the two groups perform similarly or differently. Appendix A contains an example of an analysis in which these methods are applied to investigate the characteristics of two groups of spacecraft components. The estimation procedures are adaptable to system level testing and to monitoring failure characteristics in orbit.

  11. A Miniaturized Split Hopkinson Pressure Bar for Very High Strain Rate Testing

    DTIC Science & Technology

    2004-03-01

    AFRL-MN-EG-TR-2005-7014 A Miniaturized Split Hopkinson Pressure Bar for Very High Strain Rate Testing Clive R. Siviour Physics and Chemistry of...Very High Strain Rate Testing 5. FUNDING NUMBERS PE: 61102F 6. AUTHOR(S) Clive R. Siviour, Jennifer L. Jordan PR: 2302...Measurements of material properties at very high rates of strain give an important insight into the structure of these materials, as well as

  12. The Effect of Reprocessing on the Tensile Properties of Composites

    NASA Astrophysics Data System (ADS)

    Bodur, Mehmet Safa; Bakkal, Mustafa; Berkalp, Omer Berk; Sadikoglu, Telem Gok

    2011-01-01

    In this study, waste cotton fabric reinforced polymer matrix composite material has been manufactured by a custom made recycling extruder. Composites with different reinforcement ratios as 12,5%wt ( 12,5%wtRPE ) and 25%wt ( 25%wtRPE ) were tested for their mechanical properties such as tensile strength and young's modulus. The material was then granulated down to the size enough to be used in the extrusion process in order to observe the effects of reprocessing. Reprocessing leads to improve Tensile Strength of composite materials and slows down the reduction of tensile strength of polyethylene. It was observed that composite materials were highly affected by the fiber orientation and acts as anisotropic material under the load.

  13. The tensile fatigue of wire rope: A new approach

    SciTech Connect

    Thorpe, T.W.; Rance, A.

    1983-05-01

    The fatigue behaviour in air and seawater of zinc coated steel wire taken from a 40 mm diameter wire rope has been studied. Seawater had little effect on short term tensile strength but it reduced fatigue life by an amount which increased with increasing mean stress and decreasing test frequency. The application of fretting during fatigue testing resulted in very low endurances, which were similar to those measured in fatigue tests on wire ropes.

  14. Acceptance test procedure for the 105-KW isolation barrier leak rate

    SciTech Connect

    McCracken, K.J.

    1995-05-19

    This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals. This Acceptance Test Procedure (ATP) has been prepared in accordance with CM-6-1 EP 4.2, Standard Engineering Practices.

  15. On the tensile strength of insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, Rui; Ouellette, Nicholas T.

    2016-08-01

    Collective animal groups are often described by the macroscopic patterns they form. Such global patterns, however, convey limited information about the nature of the aggregation as a whole. Here, we take a different approach, drawing on ideas from materials testing to probe the macroscopic mechanical properties of mating swarms of the non-biting midge Chironomus riparius. By manipulating ground-based visual features that tend to position the swarms in space, we apply an effective tensile load to the swarms, and show that we can quasi-statically pull single swarms apart into multiple daughter swarms. Our results suggest that swarms surprisingly have macroscopic mechanical properties similar to solids, including a finite Young’s modulus and yield strength, and that they do not flow like viscous fluids.

  16. Tensile Properties and Integrity of Clean Room and Low-Modulus Disposable Nitrile Gloves: A Comparison of Two Dissimilar Glove Types

    PubMed Central

    Phalen, Robert N.; Wong, Weng kee

    2012-01-01

    Background: The selection of disposable nitrile exam gloves is complicated by (i) the availability of several types or formulations, (ii) product variability, and (iii) an inability of common quality control tests to detect small holes in the fingers. Differences in polymer formulation (e.g. filler and plasticizer/oil content) and tensile properties are expected to account for much of the observed variability in performance. Objectives: This study evaluated the tensile properties and integrity (leak failure rates) of two glove choices assumed to contain different amounts of plasticizers/oils. The primary aims were to determine if the tensile properties and integrity differed and if associations existed among these factors. Additional physical and chemical properties were evaluated. Methods: Six clean room and five low-modulus products were evaluated using the American Society for Testing and Materials Method D412 and a modified water-leak test to detect holes capable of passing a virus or chemical agent. Results: Significant differences in the leak failure rates and tensile properties existed between the two glove types (P ≤ 0.05). The clean room gloves were about three times more likely to have leak failures (chi-square; P = 0.001). No correlation was observed between leak failures and tensile properties. Solvent extract, an indication of added plasticizer/oil, was not associated with leak failures. However, gloves with a maximum modulus <4 MPa or area density (AD) <11 g cm−2 were about four times less likely to leak. Conclusions: On average, the low-modulus gloves were a better choice for protection against aqueous chemical or biological penetration. The observed variability between glove products indicated that glove selection cannot rely solely on glove type or manufacturer labeling. Measures of modulus and AD may aid in the selection process, in contrast with common measures of tensile strength and elongation at break. PMID:22201179

  17. A Descriptive Analysis of Test Session Observation Checklist Ratings from the Woodcock Johnson III Standardization Sample

    ERIC Educational Resources Information Center

    Frisby, Craig L.; Osterlind, Steven J.

    2006-01-01

    Modern scale construction techniques have been used to develop scales measuring examiner ratings of examinees' test session behavior (TSB) on Wechsler and Stanford-Binet intelligence tests. This study analyzes data from the Test Session Observation Checklist (TSOC), a measure developed by post hoc rational analysis, from a portion of the Woodcock…

  18. Preliminary test results for Li-SOCl2 high-rate D cells

    NASA Astrophysics Data System (ADS)

    Bragg, Bobby J.; Johnson, Paul

    1992-02-01

    The performance and abuse characteristics of 55 D-size lithium-thionyl chloride (Li-SOCl2) cells are evaluated at relatively high rates. Results from the following tests are presented: shock test, vibration test, capacity performance, uninsulated short circuit, high temperature exposure, and overdischarge.

  19. Hardware test program for evaluation of baseline range/range rate sensor concept

    NASA Technical Reports Server (NTRS)

    Pernic, E.

    1985-01-01

    The test program Phase II effort provides additional design information in terms of range and range rate (R/R) sensor performance when observing and tracking a typical spacecraft target. The target used in the test program was a one-third scale model of the Hubble Space Telescope (HST) available at the MSFC test site where the tests were performed. A modified Bendix millimeter wave radar served as the R/R sensor test bed for evaluation of range and range rate tracking performance, and generation of radar signature characteristics of the spacecraft target. A summary of program test results and conclusions are presented along with detailed description of the Bendix test bed radar with accompaning instrumentation. The MSFC test site and facilities are described. The test procedures used to establish background levels, and the calibration procedures used in the range accuracy tests and RCS (radar cross section) signature measurements, are presented and a condensed version of the daily log kept during the 5 September through 17 September test period is also presented. The test program results are given starting with the RCS signature measurements, then continuing with range measurement accuracy test results and finally the range and range rate tracking accuracy test results.

  20. Testing and simulation of a polypropylene-glass fibre reinforced woven composite on a wide range of strain-rates

    NASA Astrophysics Data System (ADS)

    Martin, A.; Othman, R.; Rozycki, P.

    2012-08-01

    Medium costs composites materials are good candidates to develop lightweight and economical shock absorber for the next generation of cars. In this context we are interested in characterising and modelling of Twintex a long glass fiber reinforced polypropylene. Testing will be carried with a standard tensile rig and an original layout using a crossbow/Hopkinson rig. A special attention is made to compression behaviour identification, often neglected but critical for crash absorber behaviour. The model will be checked on the testing specimen and its validity will be discussed.

  1. Lactic acid jet test: in vitro erosion rates of glass ionomer dental cements containing radiopacifying elements.

    PubMed

    Williams, J A; Billington, R W; Pearson, G J

    1993-06-01

    The lactic acid jet test erosion rates were measured for 13 radiopaque glass ionomer dental materials obtained from a number of manufacturing sources. The erosion rate was compared with that found for the non-radiopaque restorative from the same manufacturer to determine whether the addition of an extra element had affected the resistance to erosion. Six materials were not significantly affected, six showed a significant increase in erosion rate. Only one material showed a reduced erosion rate. Materials containing a high proportion of any additive could show an increased erosion rate. Glass ionomer cements with or without radiopacifying elements had low erosion rates compared with other dental materials.

  2. Effects of Micro-structure and Micro-parameters on Brazilian Tensile Strength Using Flat-Joint Model

    NASA Astrophysics Data System (ADS)

    Xu, Xueliang; Wu, Shunchuan; Gao, Yongtao; Xu, Miaofei

    2016-09-01

    It has been widely accepted that tensile strength plays a dominant role in the failure mechanism of rock or rock-like material. Tensile strength is determined mainly via two methods: the direct tension test and Brazilian test. Due to the strictness of preparing the specimen and difficulty of conducting the direct tension test, Brazilian test has been widely applied to determine the tensile strength of geo-materials. However, there is no exact standard for Brazilian test specimen. Moreover, Brazilian tensile strength (BTS) is affected by many factors, such as loading rate, loading platen width, model size. So far, most parametric studies of geo-materials have involved compression tests, but few studies have systematically focused on Brazilian test. The continuum methods have difficulty reproducing the failure process of Brazilian test, and 2D discrete element methods can not reflect the real mechanical behavior of a 3D cylindrical disk specimen. Moreover, the standard bonded-particle model has intrinsic problems in simulating geo-materials. This paper, using a 3D flat-joint model (FJM3D), investigates the effects of micro-structure and micro-parameters on BTS. The micro-structure consists of model size, model resolution, and degree of heterogeneity. The micro-parameters include the average coordination number, crack density, and bond strength. The effects on BTS are summarized, and this summary will be useful for guiding future Brazilian tests. Finally, FJM3D is used to calibrate Brisbane tuff by Brazilian test and the uniaxial compression test. The simulation results are in good agreement with those measured from experiments, and the failure process of Brazilian test is analyzed in detail at the microscale. Because of the heterogeneity of rock, cracks initiate near the loading platen instead of the center of the specimen. Even so, BTS can be an useful tensile index for geo-materials in a triaxial stress state, which is similar to the physical situations, and

  3. SITE project. Phase 1: Continuous data bit-error-rate testing

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1992-01-01

    The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.

  4. Payload and Components Real-Time Automated Test System (PACRATS), Data Acquisition of Leak Rate and Pressure Data Test Procedure

    NASA Technical Reports Server (NTRS)

    Rinehart, Maegan L.

    2011-01-01

    The purpose of this activity is to provide the Mechanical Components Test Facility (MCTF) with the capability to obtain electronic leak test and proof pressure data, Payload and Components Real-time Automated Test System (PACRATS) data acquisition software will be utilized to display real-time data. It will record leak rates and pressure/vacuum level(s) simultaneously. This added functionality will provide electronic leak test and pressure data at specified sampling frequencies. Electronically stored data will provide ES61 with increased data security, analysis, and accuracy. The tasks performed in this procedure are to verify PACRATS only, and are not intended to provide verifications for MCTF equipment.

  5. 75 FR 1547 - Alcohol and Drug Testing: Determination of Minimum Random Testing Rates for 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... Transportation (DOT). ACTION: Notice of Determination. SUMMARY: Using data from Management Information System... alcohol program data taken from FRA's Management Information System. Based on this data, the Administrator... percent for drugs and 0.15 percent for alcohol. Because the industry-wide random drug testing...

  6. 76 FR 80781 - Alcohol and Drug Testing: Determination of Minimum Random Testing Rates for 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Federal Railroad Administration 49 CFR Part 219 RIN 2130-AA81 Alcohol and Drug Testing: Determination of... CONTACT: Lamar Allen, Alcohol and Drug Program Manager, Office of Safety Enforcement, Mail Stop 25...-6313); or Kathy Schnakenberg, FRA Alcohol/Drug Program Specialist, (telephone (719) 633-8955)....

  7. Elevated-temperature tensile properties of three heats of commercially heat-treated Alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    Three heats of commercially heat-treated alloy 718 were tensile tested over the temperature range from room temperature to 816{degree}C and at nominal strain rates from 6.7 {times} 10{sup {minus}6} to 6.7 {times} 10{sup {minus}3}/s. We examined data for yield strength, ultimate tensile strength, uniform elongation, total elongation, and reduction in area and also inspected tensile stress-strain behavior. Yield and ultimate tensile strengths for commercially heat-treated alloy 718 decrease very gradually with temperature from room temperature up to about 600{degree}C for a strain rate of 6.7 {times} 10{sup {minus}5}/s or to about 700{degree}C for a strain rate of 6.7 {times} 10{sup {minus}4}/s. Above these temperatures the strength drops off fairly rapidly. Reduction in area and total elongation data show minimum around 700{degree}C, with each ductility measure falling to 10% or less at the minimum. This minimum is more pranced and occurs at lower temperatures as strain rate decreases. Up to about 600{degree}C the ductility is typically around 30%. As the temperature reaches 816{degree}C the ductility again increases to perhaps 60%. The uniform elongation (plastic strain at peak load) decreases only slightly with temperature to about 500{degree}C then drops off rapidly and monotonically with temperature, reaching values less than 1% at 816{degree}C. At the highest test temperatures the load maximum may result, not from necking of the specimen, but from overaging of the precipitation-hardened microstructure. Stress-strain curves showed serrated deformations in the temperature range from 316 to 649{degree}C, although they occur only for the faster strain rates at the supper end of this temperature range. The serrations can be quite large, involving load drops of perhaps 40 to 80 MPa. The serrations typically begin within the first 2% of deformation and continue until fracture, although exceptions were noted. 16 refs., 14 figs., 3 tabs.

  8. An Efficient Implementation of Fixed Failure-Rate Ratio Test for GNSS Ambiguity Resolution.

    PubMed

    Hou, Yanqing; Verhagen, Sandra; Wu, Jie

    2016-06-23

    Ambiguity Resolution (AR) plays a vital role in precise GNSS positioning. Correctly-fixed integer ambiguities can significantly improve the positioning solution, while incorrectly-fixed integer ambiguities can bring large positioning errors and, therefore, should be avoided. The ratio test is an extensively used test to validate the fixed integer ambiguities. To choose proper critical values of the ratio test, the Fixed Failure-rate Ratio Test (FFRT) has been proposed, which generates critical values according to user-defined tolerable failure rates. This contribution provides easy-to-implement fitting functions to calculate the critical values. With a massive Monte Carlo simulation, the functions for many different tolerable failure rates are provided, which enriches the choices of critical values for users. Moreover, the fitting functions for the fix rate are also provided, which for the first time allows users to evaluate the conditional success rate, i.e., the success rate once the integer candidates are accepted by FFRT. The superiority of FFRT over the traditional ratio test regarding controlling the failure rate and preventing unnecessary false alarms is shown by a simulation and a real data experiment. In the real data experiment with a baseline of 182.7 km, FFRT achieved much higher fix rates (up to 30% higher) and the same level of positioning accuracy from fixed solutions as compared to the traditional critical value.

  9. An Efficient Implementation of Fixed Failure-Rate Ratio Test for GNSS Ambiguity Resolution

    PubMed Central

    Hou, Yanqing; Verhagen, Sandra; Wu, Jie

    2016-01-01

    Ambiguity Resolution (AR) plays a vital role in precise GNSS positioning. Correctly-fixed integer ambiguities can significantly improve the positioning solution, while incorrectly-fixed integer ambiguities can bring large positioning errors and, therefore, should be avoided. The ratio test is an extensively used test to validate the fixed integer ambiguities. To choose proper critical values of the ratio test, the Fixed Failure-rate Ratio Test (FFRT) has been proposed, which generates critical values according to user-defined tolerable failure rates. This contribution provides easy-to-implement fitting functions to calculate the critical values. With a massive Monte Carlo simulation, the functions for many different tolerable failure rates are provided, which enriches the choices of critical values for users. Moreover, the fitting functions for the fix rate are also provided, which for the first time allows users to evaluate the conditional success rate, i.e., the success rate once the integer candidates are accepted by FFRT. The superiority of FFRT over the traditional ratio test regarding controlling the failure rate and preventing unnecessary false alarms is shown by a simulation and a real data experiment. In the real data experiment with a baseline of 182.7 km, FFRT achieved much higher fix rates (up to 30% higher) and the same level of positioning accuracy from fixed solutions as compared to the traditional critical value. PMID:27347949

  10. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  11. Tensile Characterization of FRP Rods for Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Micelli, F.; Nanni, A.

    2003-07-01

    The application of FRP rods as an internal or external reinforcement in new or damaged concrete structures is based on the development of design equations that take into account the mechanical properties of FRP material systems.The measurement of mechanical characteristics of FRP requires a special anchoring and protocol, since it is well known that these characteristics depend on the direction and content of fibers. In this study, an effective tensile test method is described for the mechanical characterization of FRP rods. Twelve types of glass and carbon FRP specimens with different sizes and surface characteristics were tested to validate the procedure proposed. In all, 79 tensile tests were performed, and the results obtained are discussed in this paper. Recommendations are given for specimen preparation and test setup in order to facilitate the further investigation and standardization of the FRP rods used in civil engineering.

  12. Performance and Abuse Testing of 5 Year Old Low Rate and Medium Rate Lithium Thionyl Chloride Cells

    NASA Technical Reports Server (NTRS)

    Frerker, Rick; Zhang, Wenlin; Jeevarajan, Judith; Bragg, Bobby J.

    2001-01-01

    Most cells survived the 3 amp (A) over-discharge at room temperature for 2 hours. The cell that failed was the LTC-114 after high rate discharge of 500 mA similar to the results of the 1 A over-discharge test. Most cells opened during 0.05 Ohm short circuit test without incident but three LTC-111 cells exploded apparently due to a lack of a thermal cutoff switch. The LTC-114 cells exposed to a hard short of 0.05 Ohms recovered but the LTC-114 cells exposed to a soft short of 1 Ohm did not. This is probably due to the activation of a resetable fuse during a hard short. Fresh cells tend to survive exposure to higher temperatures than cells previously discharged at high rate (1 Amp). LTC-111 cells tend to vent at lower temperatures than the all LTC-114 cells and the LTC-115 cells that were previously discharged at rates exceeding 1 Amp.

  13. Development of the Speech Intelligibility Rating (SIR) test for hearing aid comparisons.

    PubMed

    Cox, R M; McDaniel, D M

    1989-06-01

    The Speech Intelligibility Rating (SIR) Test has been developed for use in clinical comparisons of hearing aid conditions. After listening to a short passage of connected speech, subjects generate a rating proportional to its intelligibility using an equal-appearing interval scale from 0 to 10. Before test passages are presented, the signal-to-babble ratio (SBR) is adjusted to a level that elicits intelligibility ratings of 7-8 for a "setup" passage. Then, with SBR held constant, three or more test passages are rated and the results averaged for each aided condition. This paper describes the generation of recorded test materials and their investigation using normally hearing listeners. Based on these data, a critical difference of about 2 scale intervals is recommended. A future paper will deal with results for hearing-impaired subjects.

  14. Tensile experiments and SEM fractography on bovine subchondral bone.

    PubMed

    Braidotti, P; Bemporad, E; D'Alessio, T; Sciuto, S A; Stagni, L

    2000-09-01

    Subchondral bone undecalcified samples, extracted from bovine femoral heads, are subjected to a direct tensile load. The Young's modulus of each sample is determined from repeated tests within the elastic limit. In a last test, the tensile load is increased up to the specimen failure, determining the ultimate tensile strength. The investigation is performed on both dry and wet specimens. The measured Young's modulus for dry samples is 10.3+/-2.5GPa, while that of wet samples is 3.5+/-1.2GPa. The ultimate tensile strengths are 36+/-10 and 30+/-7.5MPa for dry and wet specimens, respectively. SEM micrographs of failure surfaces show characteristic lamellar bone structures, with lamellae composed of calcified collagen fibers. Rudimentary osteon-like structures are also observed. Failure surfaces of wet samples show a marked fiber pull-out, while delamination predominates in dry samples. The obtained results are interpreted on the basis of the deformation mechanisms typical of fiber-reinforced laminated composite materials.

  15. Surfactant effects on soil aggregate tensile strength

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known regarding a soil aggregate's tensile strength response to surfactants that may be applied to alleviate soil water repellency. Two laboratory investigations were performed to determine surfactant effects on the tensile strength of 1) Ap horizons of nine wettable, agricultural soils co...

  16. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco...

  17. A miniscale ballistic test motor for propellant burning rate characterization from one motor firing

    NASA Astrophysics Data System (ADS)

    Rast, Robert H.; Boyles, Sharon M.; Obney, Phyllis

    1992-07-01

    A mini ballistic test motor for burn rate characterization from one motor firing has been developed. The small charge weight required for this motor allows ballistic characterization of small scale lot set evaluation and R&D propellant mixes in a rocket motor environment. This paper presents results comparing the mini-motor to the standard Naval Surface Warfare Center, Indian Head (IHDIVNAVSURFWARCEN) ballistic test motor, (BTM). Burn rate data from the standard BTM and mini BTM show excellent agreement.

  18. Deriving bioconcentration factors and somatic biotransformation rates from dietary bioaccumulation and depuration tests.

    PubMed

    Gobas, Frank A P C; Lo, Justin C

    2016-12-01

    The present study develops, applies, and tests a method for deriving empirical bioconcentration factors and somatic biotransformation rate constants from dietary bioaccumulation tests and simplified bioaccumulation experiments that measure depuration rates. In this approach, measurement of the chemical concentration in the water is not required. The method aims to improve bioaccumulation assessment, reduce cost and animal use, and shorten experiments. Environ Toxicol Chem 2016;35:2968-2976. © 2016 SETAC.

  19. Space Station Freedom delta pressure leakage rate comparison test data analysis report

    NASA Technical Reports Server (NTRS)

    Sorensen, E. B.

    1992-01-01

    Results are provided of a series of tests performed to identify the relationship between gas leakage rates across a seal at various internal to external pressure ratios. The results complement and provide insight into the analysis technique used to obtain the results presented in MSFC SSF/DEV/EL91-008, 'Space Station Freedom (S.S. Freedom) Seal Flaw Study with Delta Pressure Leak Rate Comparison Test Report.'

  20. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    NASA Astrophysics Data System (ADS)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  1. A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil

    SciTech Connect

    Hinchee, R.E.; Ong, S.K. )

    1992-10-01

    A in situ test method to measure the aerobic biodegradation rates of hydrocarbons in contaminated soil is presented. The test method provides an initial assessment of bioventing as a remediation technology for hydrocarbon-contaminated soil. The in situ respiration test consists of ventilating the contaminated soil of the unsaturated zone with air and periodically monitoring the depletion of oxygen (O[sub 2]) and production of carbon dioxide (CO[sub 2]) over time after the air is turned off. The test is simple to implement and generally takes about four to five days to complete. The test was applied at eight hydrocarbon-contaminated sites of different geological and climatic conditions. These sites were contaminated with petroleum products or petroleum fuels, except for two sites where the contaminants were primarily polycyclic aromatic hydrocarbons. Oxygen utilization rates for the eight sites ranged from 0.02 to 0.99 percent O[sub 2]/hour. Estimated biodegradation rates ranged from 0.4 to 19 mg/kg of soil/day. These rates were similar to the biodegradation rates obtained from field and pilot studies using mass balance methods. Estimated biodegradation rates based on O[sub 2] utilization were generally more reliable (especially for alkaline soils) than rates based on CO[sub 2] production, CO[sub 2] produced from microbial respiration was probably converted to carbonate under alkaline conditions. 14 refs., 5 figs., 4 tabs.

  2. A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil.

    PubMed

    Hinchee, R E; Ong, S K

    1992-10-01

    An in situ test method to measure the aerobic biodegradation rates of hydrocarbons in contaminated soil is presented. The test method provides an initial assessment of bioventing as a remediation technology for hydrocarbon-contaminated soil. The in situ respiration test consists of ventilating the contaminated soil of the unsaturated zone with air and periodically monitoring the depletion of oxygen (O2) and production of carbon dioxide (CO2) over time after the air is turned off. The test is simple to implement and generally takes about four to five days to complete. The test was applied at eight hydrocarbon-contaminated sites of different geological and climatic conditions. These sites were contaminated with petroleum products or petroleum fuels, except for two sites where the contaminants were primarily polycyclic aromatic hydrocarbons. Oxygen utilization rates for the eight sites ranged from 0.02 to 0.99 percent O2/hour. Estimated biodegradation rates ranged from 0.4 to 19 mg/kg of soil/day. These rates were similar to the biodegradation rates obtained from field and pilot studies using mass balance methods. Estimated biodegradation rates based on O2 utilization were generally more reliable (especially for alkaline soils) than rates based on CO2 production. CO2 produced from microbial respiration was probably converted to carbonate under alkaline conditions.

  3. Calorimeter measures high nuclear heating rates and their gradients across a reactor test hole

    NASA Technical Reports Server (NTRS)

    Burwell, D.; Coombe, J. R.; Mc Bride, J.

    1970-01-01

    Pedestal-type calorimeter measures gamma-ray heating rates from 0.5 to 7.0 watts per gram of aluminum. Nuclear heating rate is a function of cylinder temperature change, measured by four chromel-alumel thermocouples attached to the calorimeter, and known thermoconductivity of the tested material.

  4. 30 CFR 7.88 - Test to determine the gaseous ventilation rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engine to the dynamometer and attach the sampling and measurement devices specified in § 7.86. (2) A... shall be performed in the order listed in Table E-2. The test for determination of the particulate index... each rated speed and horsepower rating requested by the applicant according to Table E-2 in order...

  5. Understanding the Declining Canadian Homicide Rate: A Test of Holinger's Relative Cohort Size Hypothesis

    ERIC Educational Resources Information Center

    Leenaars, Antoon A.; Lester, David

    2004-01-01

    Homicide rates in Canada have shown a decline since 1975, but there has been little empirical study of this trend. P. Holinger (1987) predicted and confirmed that the size of the cohort aged 15-24 in the United States population was associated with the rise and fall of the homicide rate in that country. This study was designed to test this…

  6. Sediment bioaccumulation test with Lumbriculus variegatus (EPA test method 100.3) effects of feeding and organism loading rate

    EPA Science Inventory

    Sediment bioaccumulation test methodology of USEPA and ASTM in 2000 specifies that the Lumbriculus variegatus should not be fed during the 28-day exposure and recommends an organism loading rate of total organic carbon in sediment to organism dry weight of no less than 50:1. It ...

  7. 7 CFR 91.37 - Standard hourly fee rate for laboratory testing, analysis, and other services.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Standard hourly fee rate for laboratory testing, analysis, and other services. 91.37 Section 91.37 Agriculture Regulations of the Department of Agriculture... AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Fees...

  8. 7 CFR 91.37 - Standard hourly fee rate for laboratory testing, analysis, and other services.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Standard hourly fee rate for laboratory testing, analysis, and other services. 91.37 Section 91.37 Agriculture Regulations of the Department of Agriculture... AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS SERVICES AND GENERAL INFORMATION Fees...

  9. 78 FR 41129 - Market Test of Experimental Product - International Merchandise Return Service-Non-Published Rates

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Market Test of Experimental Product -- International Merchandise Return Service--Non-Published Rates AGENCY: U.S. Postal Service\\TM\\. ACTION: Notice. SUMMARY: The Postal Service hereby gives notice of a market test...

  10. Heart rate variability and autonomic function tests in HIV positive individuals in India.

    PubMed

    Sakhuja, Ankit; Goyal, Ankur; Jaryal, Ashok Kumar; Wig, Naveet; Vajpayee, Madhu; Kumar, Ajay; Deepak, Kishore Kumar

    2007-06-01

    Supine heart rate variability (HRV) and autonomic tests were carried to determine whether autonomic activity was affected in HIV positive patients. The pressor response following handgrip and cold pressor test was blunted in HIV+ patients, and the degree of dysfunction correlated with CD4 cell counts. The extent of autonomic impairment was mild and subclinical.

  11. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  12. False-positive rates associated with the use of multiple performance and symptom validity tests.

    PubMed

    Larrabee, Glenn J

    2014-06-01

    Performance validity test (PVT) error rates using Monte Carlo simulation reported by Berthelson and colleagues (in False positive diagnosis of malingering due to the use of multiple effort tests. Brain Injury, 27, 909-916, 2013) were compared with PVT and symptom validity test (SVT) failure rates in two nonmalingering clinical samples. At a per-test false-positive rate of 10%, Monte Carlo simulation overestimated error rates for: (i) failure of ≥2 out of 5 PVTs/SVT for Larrabee (in Detection of malingering using atypical performance patterns on standard neuropsychological tests. The Clinical Neuropsychologist, 17, 410-425, 2003) and ACS (Pearson, Advanced clinical solutions for use with WAIS-IV and WMS-IV. San Antonio: Pearson Education, 2009) and (ii) failure of ≥2 out of 7 PVTs/SVT for Larrabee (Detection of malingering using atypical performance patterns on standard neuropsychological tests. The Clinical Neuropsychologist, 17, 410-425, 2003; Malingering scales for the Continuous Recognition Memory Test and Continuous Visual Memory Test. The Clinical Neuropsychologist, 23, 167-180, 2009 combined). Monte Carlo overestimation is likely because PVT performances are atypical in pattern or degree for what occurs in actual neurologic, psychiatric, or developmental disorders. Consequently, PVT scores form skewed distributions with performance at ceiling and restricted range, rather than forming a standard normal distribution with mean of 0 and standard deviation of 1.0. These results support the practice of using ≥2 PVT/SVT failures as representing probable invalid clinical presentation.

  13. Local Population Characteristics and Hemoglobin A1c Testing Rates among Diabetic Medicare Beneficiaries

    PubMed Central

    Yasaitis, Laura C.; Bubolz, Thomas; Skinner, Jonathan S.; Chandra, Amitabh

    2014-01-01

    Background Proposed payment reforms in the US healthcare system would hold providers accountable for the care delivered to an assigned patient population. Annual hemoglobin A1c (HbA1c) tests are recommended for all diabetics, but some patient populations may face barriers to high quality healthcare that are beyond providers' control. The magnitude of fine-grained variations in care for diabetic Medicare beneficiaries, and their associations with local population characteristics, are unknown. Methods HbA1c tests were recorded for 480,745 diabetic Medicare beneficiaries. Spatial analysis was used to create ZIP code-level estimated testing rates. Associations of testing rates with local population characteristics that are outside the control of providers – population density, the percent African American, with less than a high school education, or living in poverty – were assessed. Results In 2009, 83.3% of diabetic Medicare beneficiaries received HbA1c tests. Estimated ZIP code-level rates ranged from 71.0% in the lowest decile to 93.1% in the highest. With each 10% increase in the percent of the population that was African American, associated HbA1c testing rates were 0.24% lower (95% CI −0.32–−0.17); for identical increases in the percent with less than a high school education or the percent living in poverty, testing rates were 0.70% lower (−0.95–−0.46) and 1.6% lower (−1.8–−1.4), respectively. Testing rates were lowest in the least and most densely populated ZIP codes. Population characteristics explained 5% of testing rate variations. Conclusions HbA1c testing rates are associated with population characteristics, but these characteristics fail to explain the vast majority of variations. Consequently, even complete risk-adjustment may have little impact on some process of care quality measures; much of the ZIP code-related variations in testing rates likely result from provider-based differences and idiosyncratic local factors not related to

  14. High Strain-Rate Compression Testing of a Ceramic Matrix Composite

    DTIC Science & Technology

    1992-12-01

    AD-A25 8 802 HIGH STRAIN-RATE COMPRESSION TESTING OF A CERAMIC MATRIX COMPOSITE AcQQ3L- For• by James M. Parker Avwii;a11itv Codes Si~ve i!nnd/or...Williams for their hands-on help in every aspect of the testing and analysis. Finally, you can’t have a dance without music and for this dance, the music...1 2 HIGH STRAIN-RATE COMPRESSION TESTING OF CERAMIC MATRIX COMPOSITES ........ ........... 3 3 DESCRIPTION OF LANXIDE® CERAMIC MATRIX COMPOSITE

  15. Bit error rate testing of fiber optic data links for MMIC-based phased array antennas

    NASA Astrophysics Data System (ADS)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-06-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  16. Bit error rate testing of fiber optic data links for MMIC-based phased array antennas

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Kunath, R. R.; Daryoush, A. S.

    1990-01-01

    The measured bit-error-rate (BER) performance of a fiber optic data link to be used in satellite communications systems is presented and discussed. In the testing, the link was measured for its ability to carry high burst rate, serial-minimum shift keyed (SMSK) digital data similar to those used in actual space communications systems. The fiber optic data link, as part of a dual-segment injection-locked RF fiber optic link system, offers a means to distribute these signals to the many radiating elements of a phased array antenna. Test procedures, experimental arrangements, and test results are presented.

  17. Strain distribution in Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass investigated by in situ tensile tests under synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Stoica, M.; Das, J.; Bednarcik, J.; Franz, H.; Mattern, N.; Wang, W. H.; Eckert, J.

    2008-07-01

    We report on the evolution of the atomic-scale strain tensor of ductile Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass under tensile loading by using x-ray synchrotron radiation. The same kind of samples was previously investigated under compressive loading and revealed yielding at 1690 MPa together with large deformability of up to 160% strain. In tension the samples fracture at a lower stress, 1500 MPa, with no sign of yielding or plastic deformation. With no macroplasticity observed under tension, large differences in the elastic constants obtained from the strain tensor and from ultrasonic sound velocity measurements are revealed. This paper presents in detail the measuring procedure as well as the calculation of the tensile tensor and pair distribution functions of Zr64.13Cu15.75Ni10.12Al10 at different stages of deformation. The results are discussed in comparison with other reported data obtained from x-ray diffraction measurements using synchrotron radiation.

  18. Improving NCLEX-RN pass rates by implementing a testing policy.

    PubMed

    Schroeder, Jean

    2013-01-01

    To improve the National Council Licensure Examination for Registered Nurses (NCLEX-RN) pass rates and to address the National League for Nursing Accrediting Commission's outcomes standard, a testing policy was developed and implemented at an associate degree of nursing (ADN) program located in a suburb south of Denver, CO. This article describes the testing policy strategies that were implemented by the ADN faculty to evaluate the curriculum. Strategies used for internal curriculum evaluation addressed test item writing, test blueprinting, and the use of item analysis data to evaluate and improve faculty-designed exams. Strategies used for external curriculum evaluation employed the use of HESI specialty exams that were administered at the completion of each course and HESI Exit Exams that were administered at the completion of the first and second years of the curriculum. These strategies were formalized with the development of a testing policy manual that described the procedures used to implement internal and external curriculum evaluation. To measure the effectiveness of the testing policy, NCLEX-RN outcomes were compared before and after implementing the testing policy. Findings indicated that the mean NCLEX-RN pass rate for the 5 years following implementation of the testing policy was significantly higher (P < .01) than the mean NCLEX-RN pass rate for the 5 years preceding implementation of the testing policy.

  19. The Tensile Behavior of High-Strength Carbon Fibers.

    PubMed

    Langston, Tye

    2016-08-01

    Carbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber's diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young's modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young's modulus) matched very well with the manufacturers' reported values at 20 mm gage lengths, but deviated significantly at other lengths.

  20. Surface, structural and tensile properties of proton beam irradiated zirconium

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  1. Tensile creep of alumina-silicon carbide ``nanocomposites``

    SciTech Connect

    Thompson, A.M.; Chan, H.M.; Harmer, M.P.

    1997-09-01

    The tensile creep behavior of an (Al{sub 2}O{sub 3}-SiC) nanocomposite that contains 5 vol% of 0.15 {micro}m SiC particles is examined in air under constant-load conditions. For a stress level of 100 MPa and in the temperature range of 1,200--1,300 C, the SiC reduces the creep rate of Al{sub 2}O{sub 3} by 2--3 orders of magnitude. In contrast to Al{sub 2}O{sub 3}, the nanocomposite exhibits no primary or secondary stages, with only tertiary creep being observed. Microstructural examination reveals extensive cavitation that is associated with SiC particles that are located at the Al{sub 2}O{sub 3} grain boundaries. Failure of the nanocomposite occurs via growth of subcritical cracks that are nucleated preferentially at the gauge corners. A modified test procedure enables creep lifetimes to be estimated and compared with creep rupture data. Several possible roles of the SiC particles are considered, including (1) chemical alteration of the Al{sub 2}O{sub 3} grain boundaries, (2) retarded diffusion along the Al{sub 2}O{sub 3}-SiC interface, and (3) inhibition of the accommodation process (either grain-boundary sliding or grain-boundary migration).

  2. The tensile and fatigue properties of DIN 1.4914 martensitic stainless steel after 590 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Victoria, M.

    1992-09-01

    Tensile and low cycle fatigue subsize specimens of DIN 1.4914 martensitic steel (MANET) have been irradiated with 590 MeV protons to doses up to 1 dpa and at temperatures between 363 and 703 K. The helium produced by spallation reactions was measured as 130 appm/dpa. A strong radiation hardening is found, which decreases as the irradiation temperature increases. The tensile elongation is reduced after irradiation, but the fracture mode is always ductile and transgranular. The radition hardening produced at low irradiation temperatures is recovered after annealing at higher temperatures. Continous softening is observed during low cycle fatigue testing. The rate of softening of the irradiated material is stonger than that of the unirradiated material and tends to reach the saturation level of the latter. The irradiation badly affects the fatigue life, particularly in the temperature domain of dynamic strain ageing between 553 and 653 K.

  3. The effect of hydrogen isotopes and helium on the tensile properties of 21-6-9 stainless steel

    SciTech Connect

    Morgan, M.J.; Lohmeier, D.

    1990-01-01

    High-energy-rate-forged (HERF) stainless steels are used as the materials of construction for pressure vessels designed for the containment of hydrogen and its isotopes. Hydrogen and helium, the decay product of tritium, are known to embrittle these materials. HERF stainless steels have a relatively good resistance to hydrogen-and-helium-induced embrittlement when compared to annealed stainless steels due to their high number density of dislocations, which act as traps for hydrogen and helium. However, the degree of embrittlement in these materials can vary considerably because of microstructure and yield strength variations introduced during the forging process. In this study the effect of hydrogen and tritium on the tensile properties of 21-6-9 stainless steel was measured as a function of HERF yield strength in the range of 660 to 930 MPa. The effect of microstructure was studied also be conducting tensile tests with HERF and annealed samples.

  4. HIV Testing and Diagnosis Rates in Kiev, Ukraine: April 2013 - March 2014

    PubMed Central

    Simmons, Ruth; Malyuta, Ruslan; Medoeva, Antonia; Kruglov, Yuri; Yurchenko, Alexander; Copas, Andrew; Porter, Kholoud

    2015-01-01

    Objective Data from Ukraine on risk factors for HIV acquisition are limited. We describe the characteristics of individuals testing for HIV in the main testing centres of the Ukrainian capital Kiev, including HIV risk factors, testing rates, and positivity rates. Methods As part of a larger study to estimate HIV incidence within Kiev City, we included questions on possible risk factors for HIV acquisition and testing history to existing systems in 4 infectious disease clinics. Data were provided by the person requesting an HIV test using a handheld electronic tablet. All persons (≥16yrs) presenting for an HIV test April 2013–March 2014 were included. Rates per 100,000 were calculated using region-specific denominators for Kiev. Results During the study period 6370 individuals tested for HIV, equivalent to a testing rate of 293.2 per 100,000. Of these, 467 (7.8%) were HIV-positive, with the highest proportion positive among 31–35 year olds (11.2%), males (9.4%), people who inject drugs (PWID) (17.9%) and men who have sex with men (MSM) (24.1%). Using published population size estimates of MSM, diagnosis rates for MSM ranged from 490.6to 1548.3/100,000. A higher proportion of heterosexual women compared to heterosexual men reported contact with PWID, (16% vs. 4.7%) suggesting a bridging in risk between PWID and their sexual partners. Conclusion Collection of HIV risk factor information in Kiev, essential for the purposes of developing effective HIV prevention and response tools, is feasible. The high percentage of MSM among those testing positive for HIV, may indicate a significant level of undisclosed sex between men in national figures. PMID:26322977

  5. Validation of the shear punch-tensile correlation technique using irradiated materials

    SciTech Connect

    Hankin, G.L.; Faulkner, R.G.; Toloczko, M.B.; Hamilton, M.L.

    1998-03-01

    It was recently demonstrated that tensile data could be successfully related to shear punch data obtained on transmission electron microscopy (TEM) discs for a variety of irradiated alloys exhibiting yield strengths that ranged from 100 to 800 MPa. This implies that the shear punch test might be a viable alternative for obtaining tensile properties using a TEM disk, which is much smaller than even the smallest miniature tensile specimens, especially when irradiated specimens are not available or when they are too radioactive to handle easily. The majority of the earlier tensile-shear punch correlation work was done using a wide variety of unirradiated materials. The current work extends this correlation effort to irradiated materials and demonstrates that the same relationships that related shear punch tests remain valid for irradiated materials. Shear punch tests were performed on two sets of specimens. In the first group, three simple alloys from the {sup 59}Ni isotopic doping series in the solution annealed and cold worked conditions were irradiated at temperatures ranging from 365 to 495 C in the Fast Flux Test Facility. The corresponding tensile data already existed for tensile specimens fabricated from the same raw materials and irradiated side-by-side with the disks. In the second group, three variants of 316 stainless steel were irradiated in FFTF at 5 temperatures between 400 and 730 C to doses ranging from 12.5 to 88 dpa. The specimens were in the form of both TEM and miniature tensile specimens and were irradiated side-by-side.

  6. Understanding High Recession Rates of Carbon Ablators Seen in Shear Tests in an Arc Jet

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Olson, Michael W.; Barnhardt, Michael D.; MacLean, Matthew

    2010-01-01

    High rates of recession in arc jet shear tests of Phenolic Impregnated Carbon Ablator (PICA) inspired a series of tests and analysis on FiberForm (a carbon preform used in the fabrication of PICA). Arc jet tests were performed on FiberForm in both air and pure nitrogen for stagnation and shear configurations. The nitrogen tests showed little or no recession, while the air tests of FiberForm showed recession rates similar to that of PICA (when adjusted for the difference in density). While mechanical erosion can not be ruled out, this is the first step in doing so. Analysis using a carbon oxidation boundary condition within DPLR was used to predict the recession rate of FiberForm. The analysis indicates that much of the anomalous recession behavior seen in shear tests may simply be an artifact of the non-flight like test configuration (copper upstream of the test article) a result of dissimilar enthalpy and oxygen concentration profiles on the copper. Shape change effects were also investigated and shown to be relatively small.

  7. Dynamic tensile strength of lunar rock types

    NASA Technical Reports Server (NTRS)

    Cohn, S. N.; Ahrens, T. J.

    1981-01-01

    The dynamic tensile strength of four rocks are determined. A flat plate impact experiment is employed to generate approximately one-microsecond-duration tensile stress pulses in rock samples by superposing rarefaction waves to induce fracture. It is noted that the effect of chemical weathering and other factors has not been explicitly studied. The given tensile strengths are based on a series of experiments on each rock where determination of incipient spallation is made by terminal microscopic examination. The data are generally consistent with previous determinations, at least one of which was for a significantly chemically altered but physically coherent rock.

  8. Effects of contingency contracting on study rate and test performance1

    PubMed Central

    Bristol, Marie M.; Sloane, Howard N.

    1974-01-01

    A contingency contracting program designed to increase study rate and subsequent test performance was implemented with a group of undergraduate psychology students. The function of the contingency contracting program in producing increased study rate was evaluated by individual experiments with each student in an experimental contracting group. The overall effect of the program on test performance was assessed by comparing the final scores for the course earned by the experimental group with those earned by two matched control groups. A reversal procedure established that contingency contracting did significantly increase the study rate of students of a wide range of ability. However, it was selectively effective in improving the test performance of below-average students only. Study rate gains in contracted courses did not generalize to noncontracted courses. Self-recording of study time in the absence of scheduled differential consequences did not improve test performance. Study rate under no-consequence conditions varied with test schedule. For both consequence and no-consequence groups, the correlation between study time and final score for the course was only moderate. PMID:4436175

  9. Fatigue crack growth in 2024-T3 aluminum under tensile and transverse shear stresses

    NASA Technical Reports Server (NTRS)

    Viz, Mark J.; Zehnder, Alan T.

    1994-01-01

    The influence of transverse shear stresses on the fatigue crack growth rate in thin 2024-T3 aluminum alloy sheets is investigated experimentally. The tests are performed on double-edge cracked sheets in cyclic tensile and torsional loading. This loading generates crack tip stress intensity factors in the same ratio as the values computed for a crack lying along a lap joint in a pressurized aircraft fuselage. The relevant fracture mechanics of cracks in thin plates along with the details of the geometrically nonlinear finite element analyses used for the test specimen calibration are developed and discussed. Preliminary fatigue crack growth data correlated using the fully coupled stress intensity factor calibration are presented and compared with fatigue crack growth data from pure delta K(sub I)fatigue tests.

  10. Specificity and false positive rates of the Test of Memory Malingering, Rey 15-item Test, and Rey Word Recognition Test among forensic inpatients with intellectual disabilities.

    PubMed

    Love, Christopher M; Glassmire, David M; Zanolini, Shanna Jordan; Wolf, Amanda

    2014-10-01

    This study evaluated the specificity and false positive (FP) rates of the Rey 15-Item Test (FIT), Word Recognition Test (WRT), and Test of Memory Malingering (TOMM) in a sample of 21 forensic inpatients with mild intellectual disability (ID). The FIT demonstrated an FP rate of 23.8% with the standard quantitative cutoff score. Certain qualitative error types on the FIT showed promise and had low FP rates. The WRT obtained an FP rate of 0.0% with previously reported cutoff scores. Finally, the TOMM demonstrated low FP rates of 4.8% and 0.0% on Trial 2 and the Retention Trial, respectively, when applying the standard cutoff score. FP rates are reported for a range of cutoff scores and compared with published research on individuals diagnosed with ID. Results indicated that although the quantitative variables on the FIT had unacceptably high FP rates, the TOMM and WRT had low FP rates, increasing the confidence clinicians can place in scores reflecting poor effort on these measures during ID evaluations.

  11. The Uniaxial Tensile Response of Porous and Microcracked Ceramic Materials

    SciTech Connect

    Pandey, Amit; Shyam, Amit; Watkins, Thomas R; Lara-Curzio, Edgar; Lara-Curzio, Edgar; Stafford, Randall; Hemker, Kevin J

    2014-01-01

    The uniaxial tensile stress-strain behavior of three porous ceramic materials was determined at ambient conditions. Test specimens in the form of thin beams were obtained from the walls of diesel particulate filter honeycombs and tested using a microtesting system. A digital image correlation technique was used to obtain full-field 2D in-plane surface displacement maps during tensile loading, and in turn, the 2D strains obtained from displacement fields were used to determine the Secant modulus, Young s modulus and initial Poisson s ratio of the three porous ceramic materials. Successive unloading-reloading experiments were performed at different levels of stress to decouple the linear elastic, anelastic and inelastic response in these materials. It was found that the stress-strain response of these materials was non-linear and that the degree of nonlinearity is related to the initial microcrack density and evolution of damage in the material.

  12. Are tensile and compressive Young's moduli of compact bone different?

    PubMed

    Barak, Meir M; Currey, John D; Weiner, Steve; Shahar, Ron

    2009-01-01

    This study examines the question of whether the stiffness (Young's modulus) of secondary osteonal cortical bone is different in compression and tension. Electronic speckle pattern interferometry (ESPI) is used to measure concurrently the compressive and tensile strains in cortical bone beams tested in bending. ESPI is a non-contact method of measuring surface deformations over the entire region of interest of a specimen, tested wet. The measured strain distributions across the beam, and the determination of the location of the neutral axis, demonstrate in a statistically-robust way that the tensile Young's modulus is slightly (6%), but significantly greater than that of the compressive Young's modulus. It is also shown that within a relatively small bone specimen there are considerable variations in the modulus, presumably caused by structural inhomogeneities.

  13. Population growth rate determinants for Arbacia: Evaluating ecological relevance of toxicity test endpoints

    SciTech Connect

    Nacci, D.; Gleason, T.; Munns, W.R. Jr.

    1995-12-31

    A population dynamics model for the sea urchin, Arbacia punctulata, was recently developed incorporating life stage endpoints frequently measured in acute and chronic toxicity studies. Model elasticity analysis was used to demonstrate that population growth rate was influenced most by adult survival and least by early life stage success, calling into question the ecological relevance of results from standardized Arbacia fertilization and larval development toxicity tests. Two approaches were used to continue this evaluation. Actual and hypothetical dose-response curves for toxicant exposures over multiple life stages were used to evaluate contributions to population growth rate of stage-specific toxicant effects. Additionally, relationships between critical life stages were developed from laboratory data for Arbacia. The results of this analysis underscore the importance of understanding both endpoint sensitivity to toxicants and sensitivity of population growth rate to test endpoints in determining the ecological relevance of toxicity tests results.

  14. Initial results of Alloy 600 crack growth rate testing in PWR environments

    SciTech Connect

    Foster, J.P.; Bamford, W.H.; Pathania, R.S.

    1995-12-31

    Initial crack growth rate results on the effects of stress intensity factor, temperature, material heat and experimental methods were studied on Alloy 600 control rod drive head penetrations using fracture mechanics samples. Crack growth rate data were obtained using the reverse DC potential difference crack monitoring method on 1/2T CT samples tested at temperatures of 310 to 330 C in 1200 ppm B + 2 ppm Li + 25 cc/kg H{sub 2} water. The results are consistent with a crack growth rate estimation model developed by Scott. Most of the heats tested to date are consistent with the Scott model; however, enhanced crack growth rates were exhibited by two heats with low grain boundary carbide coverage.

  15. The measurement of personal values in survey research: a test of alternative rating procedures.

    PubMed

    McCarty, J A; Shrum, L J

    2000-01-01

    When survey researchers are interested in measuring the personal values of respondents, they often use a rating rather than a ranking method because it is easier and faster to administer and yields data that are amenable to parametric statistical analyses. However, because personal values are inherently positive constructs, respondents often exhibit little differentiation among the values and end-pile their ratings toward the positive end of the scale. Such lack of differentiation may potentially affect the statistical properties of the values and the ability to detect relationships with other variables. Two experiments were conducted via mail surveys to general population samples to test alternative rating methods designed to increase differentiation and reduce end-piling in the rating of personal values. The results suggest that a procedure in which respondents first pick their most and least important values, then rate them (most-least), provides more differentiation and less end-piling than a simple rating procedure (rate-only). Increased differentiation for the most-least method influenced the fit of latent structure and resulted in more robust relations between the values ratings and other criterion variables. These results generalized across type of values scale, number of values rated, and number of rating points.

  16. The rate test of speciation: estimating the likelihood of non-allopatric speciation from reproductive isolation rates in Drosophila.

    PubMed

    Yukilevich, Roman

    2014-04-01

    Among the most debated subjects in speciation is the question of its mode. Although allopatric (geographical) speciation is assumed the null model, the importance of parapatric and sympatric speciation is extremely difficult to assess and remains controversial. Here I develop a novel approach to distinguish these modes of speciation by studying the evolution of reproductive isolation (RI) among taxa. I focus on the Drosophila genus, for which measures of RI are known. First, I incorporate RI into age-range correlations. Plots show that almost all cases of weak RI are between allopatric taxa whereas sympatric taxa have strong RI. This either implies that most reproductive isolation (RI) was initiated in allopatry or that RI evolves too rapidly in sympatry to be captured at incipient stages. To distinguish between these explanations, I develop a new "rate test of speciation" that estimates the likelihood of non-allopatric speciation given the distribution of RI rates in allopatry versus sympatry. Most sympatric taxa were found to have likely initiated RI in allopatry. However, two putative candidate species pairs for non-allopatric speciation were identified (5% of known Drosophila). In total, this study shows how using RI measures can greatly inform us about the geographical mode of speciation in nature.

  17. Elastic-plastic analysis of the SS-3 tensile specimen

    SciTech Connect

    Majumdar, S.

    1998-09-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior.

  18. Strain Rate and Stress Relaxation Effects on Pressuremeter Testing in Clays

    DTIC Science & Technology

    1992-03-01

    CHARACTERISTICS OF KAOLINITE AND GROUND SILICA 245 APPENDIX E COMPUTER PROGRAMS ....................... 248 0 0 0 0 0 0 0 iv LIST OF TABLES Table Page 3.1 A...Comparison of Three Types of Boundary Conditions in a Multiaxial Cubical Test Apparatus ................... 37 3.2 Properties of the Kaolinite and Kaolin...to 0.01 %/min Versus Strain Rate for Kaolinite Clay ................... 102 4.3 Shear Strength Normalized with Respect to 0.01 %/min Versus Strain Rate

  19. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2008-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This report discusses system configuration and the flight test results.

  20. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2007-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This paper discusses system configuration and the flight test results.

  1. Rapid-Rate Compression Testing of Sheet Materials at High Temperatures

    NASA Technical Reports Server (NTRS)

    Bernett, E. C.; Gerberich, W. W.

    1961-01-01

    This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities.

  2. The elevated temperature tensile properties of S-200E commercially pure beryllium

    SciTech Connect

    Henshall, G.A.; Torres, S.G.; Hanafee, J.E.

    1995-09-01

    The tensile properties of commercially pure beryllium are sensitive to temperature, impurity content, texture, grain size, and prior processing. Therefore, tensile tests have been conducted using the commercially pure S-200E Be commonly employed at Lawrence Livermore National Laboratory. These experiments were performed at temperatures ranging from 300 to 1100{degrees}C in the longitudinal and transverse orientations at the quasi-static strain rate of 5.5 x 10{sup -4} s{sup -1}. The results of these experiments reveal that the stress-strain curve is smooth, ie. without yield points or serrations, over the entire temperature range studied. The yield stress (YS) and ultimate tensile stress (UTS) decrease monotonically with increasing temperature. Similar strengths were measured for both the longitudinal and transverse orientations, with the latter exhibiting slightly lower YS and UTS values. The measured failure elongation (e{sub f}) vs. temperature curve is complex due to the competing effects of increasing basal-plane fracture stress with increasing temperature combined with the presence of hot shortness at intermediate temperatures. The latter is believed to be caused, at least partially, by the presence of free aluminum impurities at the grain boundaries. This hypothesis is supported by the measured increase in e{sub f} at 700{degrees}C following a 100-hr anneal at 750{degrees}C, which would remove free Al from the grain boundaries. Texture also was found to influence e{sub f}. The favorable orientation of the basal planes for initiation and propagation of cleavage cracks in longitudinal specimens results in a significantly decreased failure elongation compared with the transverse orientation. The effects of testing temperature and specimen orientation on the reduction in area were found to be similar to those described for e{sub f}.

  3. Subtask 12G2: Effects of dynamically charged helium on tensile properties of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE). One property of vanadium-base alloys that is not well understood in terms of their potential use as fusion reactor structural materials is the effect of simultaneous generation of helium and neutron damage under conditions relevant to fusion reactor operation. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600{degrees}C in the Li-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-4Cr-4Ti, an alloy identified as the most promising vanadium-base alloy for fusion reactors on the basis of its superior baseline and irradiation properties. Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room-temperature ductilities of DHCE specimens were higher than those of non-DHCE specimens (in which there was negligible helium generation), whereas strengths were lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to tritium-trick experiments in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE. 25 refs., 2 figs., 3 tabs.

  4. Heart rate variability with deep breathing as a clinical test of cardiovagal function.

    PubMed

    Shields, Robert W

    2009-04-01

    Research into heart rate variability (HRV) and respiration over the past 150 years has led to the insight that HRV with deep breathing (HRVdb) is a highly sensitive measure of cardiovagal or parasympathetic cardiac function. This sensitivity makes HRVdb an important part of the battery of cardiovascular autonomic function tests used in clinical autonomic laboratories. HRVdb is a reliable and sensitive clinical test for early detection of cardiovagal dysfunction in a wide range of autonomic disorders.

  5. Relationship between systolic time intervals and heart rate during four circulatory stress tests.

    PubMed

    Mäntysaari, M; Antila, K; Peltonen, T

    1984-01-01

    The linear regression equations between heart rate and systolic time intervals were calculated before and during a handgrip test, an orthostatic test, the Valsalva test and a cold pressor test. The subjects were 30 healthy men, average age 20 years. During the 1st min of orthostasis the regression line of the left ventricular ejection time (LVET) was significantly (P less than 0.05) steeper than at rest and that of the pre-ejection period (PEP) was significantly (P less than 0.01) less steep than at rest, and the regression between HR and the PEP/LVET ratio deviated significantly (P less than 0.001) from zero. During the Valsalva maneuver, the regression line of the LVET became significantly (P less than 0.001) steeper than at rest and the regression coefficient of the PEP changed from negative to positive, the difference being significant (P less than 0.001); the regression between HR and the PEP/LVET also deviated significantly (P less than 0.001) from zero. During the cold pressor test the regression line of the electromechanic systole (Q-S2 time) was significantly (P less than 0.01) less steep than at rest. It was concluded that the use of regression equations calculated for the systolic time intervals and heart rate at rest can lead to errors when applied to rate correction of systolic time intervals during an orthostatic, Valsalva, or a cold pressor test.

  6. Plasma metabolite levels predict bird growth rates: A field test of model predictive ability.

    PubMed

    Albano, Noelia; Masero, José A; Villegas, Auxiliadora; Abad-Gómez, José María; Sánchez-Guzmán, Juan M

    2011-09-01

    Bird growth rates are usually derived from nonlinear relationships between age and some morphological structure, but this procedure may be limited by several factors. To date, nothing is known about the capacity of plasma metabolite profiling to predict chick growth rates. Based on laboratory-trials, we here develop predictive logistic models of body mass, and tarsus and wing length growth rates in Gull-billed Tern Gelochelidon nilotica chicks from measurements of plasma metabolite levels at different developmental stages. The predictive model obtained during the fastest growth period (at the age of 12 days) explained 65-68% of the chicks' growth rates, with fasting triglyceride level explaining most of the variation in growth rate. At the end of pre-fledging period, β-hydroxybutyrate level was also a good predictor of growth rates. Finally, we carried out a field test to check the predictive capacity of the models in two colonies of wild Gull-billed Tern, comparing field-measured and model-predicted growth rates between groups. Both, measured and predicted growth rates, matched statistically. Plasma metabolite levels can thus be applied in comparative studies of chick growth rates when semi-precocial birds can be captured only once.

  7. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.

  8. Wear testing of crosslinked polyethylene: wear rate variability and microbial contamination.

    PubMed

    Brandt, J-M; Vecherya, A; Guenther, L E; Koval, S F; Petrak, M J; Bohm, E R; Wyss, U P

    2014-06-01

    The wear performance of two types of crosslinked polyethylene (Marathon™ and XLK™, DePuy Synthes Inc., Warsaw, IN) was evaluated in a pin-on-disc wear tester, a hip wear simulator, and a knee wear simulator. Sodium azide was used as the microbial inhibitor in the calf serum-based lubricant. In the pin-on-disc wear tester, the Marathon wear rate of 5.33±0.54mm(3)/Mc was significantly lower (p=0.002) than the wear rate of 6.43±0.60mm(3)/Mc for XLK. Inversely, the Marathon wear rate of 15.07±1.03mm(3)/Mc from the hip wear simulator was 2.2-times greater than the XLK wear rate of 6.71±1.03mm(3)/Mc from the knee wear simulator. Differences in implant design, conformity, GUR type, and kinematic test conditions were suggested to account for the difference between the wear rates generated in the different types of wear testing apparati. In all wear tests, sodium azide was ineffective at inhibiting microbial growth in the lubricant. Eight different organisms were identified in the lubricant samples from the wear tests, which suggested the necessity of using an alternative, more effective microbial inhibitor. Careful sample preparation and thorough cleaning has shown to improve the consistency of the wear results. The wear rates generated in the hip and knee wear simulators closely reflected the wear behaviour of Marathon and XLK reported in published data that were tested under similar conditions.

  9. Skeletal health in men with chronic lung disease: rates of testing, treatment, and fractures

    PubMed Central

    Sullivan, S. D.; Bartle, B.; Lee, T. A.

    2011-01-01

    Summary To advance our understanding of the burden of fractures among men, we studied a group of men at high risk for low bone strength due to lung disease. We found high rates of fractures but low rates of bone density testing that could predict fracture before it occurs. Introduction To advance understanding of the burden of fragility fractures and attention to bone health among men with chronic obstructive lung disease (COPD), we quantified rates of fragility fracture, bone density testing, and anti-resorptive treatment and calculated the number needed to screen (NNS) to prevent one hip fracture in a cohort of men with COPD. Methods Veterans Administration (VA) and VA–Medicare administrative data permitted a retrospective cohort study of 87,360 men aged 50 and older, newly diagnosed with COPD between 1999 and 2003. Logistic regression models including patient characteristics, morbidities, and medication use assessed the effect of covariates on fracture and probability of testing or treatment. Results Mean age was 66.8. Hip and wrist fracture rates were 3.99 and 1.31 per 1,000 person years, respectively. Mean follow-up was 2.67 years; 4.4% underwent bone densitometry; 2.8% filled anti-resorptive prescriptions. Age, white race/ethnicity, more COPD exacerbations, barbiturate use, and anti-Parkinson’s drug use were significantly associated with fracture. Age, and systemic corticosteroids were most significantly associated with testing or treatment. Based on published adherence and treatment effects, the cohort’s calculated NNS to prevent one hip fracture is 432. Conclusions Fracture rate was high and testing and treatment uncommon. The NNS of 432 to prevent one hip fracture is smaller than 731, the NNS for women aged 65–69 for whom universal screening is recommended. Attention to the bone health of this population is warranted. Future research must determine how testing and treatment impact overall quality of life and mortality of men with COPD. PMID

  10. Partitioned log-rank tests for the overall homogeneity of hazard rate functions.

    PubMed

    Liu, Yukun; Yin, Guosheng

    2016-03-19

    In survival analysis, it is routine to test equality of two survival curves, which is often conducted by using the log-rank test. Although it is optimal under the proportional hazards assumption, the log-rank test is known to have little power when the survival or hazard functions cross. To test the overall homogeneity of hazard rate functions, we propose a group of partitioned log-rank tests. By partitioning the time axis and taking the supremum of the sum of two partitioned log-rank statistics over different partitioning points, the proposed test gains enormous power for cases with crossing hazards. On the other hand, when the hazards are indeed proportional, our test still maintains high power close to that of the optimal log-rank test. Extensive simulation studies are conducted to compare the proposed test with existing methods, and three real data examples are used to illustrate the commonality of crossing hazards and the advantages of the partitioned log-rank tests.

  11. Plastic Behavior and Fracture of Aluminum and Copper in Torsion Tests

    SciTech Connect

    Bressan, Jose Divo

    2007-04-07

    Present work investigates the plastic behavior, work hardening and the beginning of plastic instabilities, of cylindrical specimens deformed by high speed cold plastic torsion tests and at low speed tensile test. The tests were carried out in a laboratory torsion test equipment and an universal tensile test machine. The tensile tests were performed at room temperature in an universal testing machine at low strain rate of 0.034/s. Experimental torsion tests were carried out at constant angular speed that imposed a constant shear strain rate to the specimen. In the tests, the rotation speed were set to 62 rpm and 200 rpm which imposed high strain rates of about 2/s and 6.5/s respectively. The torsion tests performed at room temperature on annealed commercial pure copper and aluminum. Two types of torsion specimen for aluminum were used: solid and tubular. The solid aluminum specimen curves presented various points of maximum torque. The tubular copper specimens showed two points of maximum. Shear bands or shear strain localization at specimen were possibly the mechanism of maximum torque points formation. The work hardening coefficient n and the strain rate sensitivity parameter m were evaluated from the equivalent stress versus strain curve from tensile and torsion tests. The n-value remained constant whereas the m-value increased ten folds for aluminum specimens: from tensile test m= 0.027 and torsion test m= 0.27. However, the hardening curves were sigmoidal.

  12. Rates of BRCA1/2 mutation testing among young survivors of breast cancer.

    PubMed

    Kehl, Kenneth L; Shen, Chan; Litton, Jennifer K; Arun, Banu; Giordano, Sharon H

    2016-01-01

    Guidelines in the United States recommend consideration of testing for mutations in the BRCA1 and BRCA2 genes for women diagnosed with breast cancer under age 45. Identification of mutations among survivors has implications for secondary prevention and familial risk reduction. Although only 10 % of breast cancers are diagnosed under age 45, there are approximately 2.8 million breast cancer survivors in the United States, such that the young survivor population likely numbers in the hundreds of thousands. However, little is known about genetic testing rates in this population. We assessed trends in BRCA1/2 testing among breast cancer survivors who were under age 45 at diagnosis and were treated from 2005 to 2012. Using insurance claims from a national database (MarketScan), we identified incident breast cancer cases among (1) women aged ≤40 and (2) women aged 41-45. We measured BRCA1/2 testing using Kaplan-Meier analysis and Cox proportional hazards models. Among 26,985 patients analyzed, BRCA1/2 testing rates increased with each year of diagnosis from 2005 to 2012 (P < 0.001). However, among women treated in earlier years, testing rates did not approach those of patients treated later, even after extended follow-up (median time from surgery to testing among patients treated in 2005, not reached; median time to testing among patients treated in 2012, 0.2 months for women aged ≤40 and 1.0 month for women aged 41-45). Women aged 41-45 had lower rates than women aged ≤40 throughout the analysis period (P < 0.001 for each year). BRCA1/2 testing rates among young women with incident breast cancer increased substantially in the last decade. However, most survivors treated in earlier years have never been tested. Our results demonstrate a need to better incorporate genetic counseling into survivorship and primary care for this population.

  13. Detecting trends in raptor counts: power and type I error rates of various statistical tests

    USGS Publications Warehouse

    Hatfield, J.S.; Gould, W.R.; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.

    1996-01-01

    We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.

  14. The Reliability of Pedalling Rates Employed in Work Tests on the Bicycle Ergometer.

    ERIC Educational Resources Information Center

    Bolonchuk, W. W.

    The purpose of this study was to determine whether a group of volunteer subjects could produce and maintain a pedalling cadence within an acceptable range of error. This, in turn, would aid in determining the reliability of pedalling rates employed in work tests on the bicycle ergometer. Forty male college students were randomly given four…

  15. Testing Strategies To Raise Immunization Rates. Report of the Joyce Foundation's Special Project on Immunization.

    ERIC Educational Resources Information Center

    Fischer, Sunny; Baron, Dan

    In many low-income communities, children are not properly immunized and are left vulnerable to completely preventable illnesses. This report provides information gained as a result of a 1-year funding project in the Chicago area to determine why so many children were not being immunized and how to increase immunization rates. The project tested 5…

  16. Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch

    SciTech Connect

    Pickett, J.B.; Martin, H.L.; Diener, G.A.

    1992-07-06

    In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

  17. Toxicity testing results on increased supernate treatment rate of 3700 gallons/batch. Revision 1

    SciTech Connect

    Pickett, J.B.; Martin, H.L.; Diener, G.A.

    1992-07-06

    In July, 1991, Reactor Materials increased the supernate treatment concentration in the M-Area Dilute Effluent Treatment Facility from 2700 gallons of supernate per 36000 gallon dilute wastewater batch to 3700 gallons/batch. This report summarizes the toxicity testing on the effluents of the increased treatment rate.(JL)

  18. Can the anaerobic potentially mineralizable nitrogen test improve predictions of fertilizer nitrogen rates in the Cornbelt?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Correctly estimating the amount of mineralizable nitrogen (N) can enhance nitrogen use efficiency. The anaerobic potentially mineralizable nitrogen (PMNAn) test is a tool that may help improve predictions of N uptake, grain yield, and the economical optimum nitrogen rate (EONR) of corn (Zea mays L...

  19. California Standards Test Scores and Attendance Rates in an Afterschool Program

    ERIC Educational Resources Information Center

    Diamond, Sandra M.

    2013-01-01

    The Problem: The purpose of this study was to investigate whether or not there were any statistically significant differences in the Mathematics California Standard Test scores and attendance rates for African American and Latina high school girls who participated in an afterschool program. Method: A quasi-experimental design was conducted with…

  20. Surface composition and barium evaporation rate of ``pedigreed'' impregnated tungsten dispenser cathodes during accelerated life testing

    NASA Astrophysics Data System (ADS)

    Tomich, D. H.; Mescher, J. A.; Grant, J. T.

    1987-03-01

    A study has been made of the surface composition and barium evaporation rate of "pedigreed" impregnated tungsten dispenser cathodes. The effect of air exposure on coated cathodes was examined and was found to have no significant effect on barium evaporation rate although in some cases longer reactivation times were required. No changes in surface topography were apparent following air exposure and reactivation. Life testing was done at 100°C above the typical operating temperature for the cathode, where the typical operating temperature was taken to be 950°C for coated cathodes and 1050°C for uncoated cathodes. The cathodes were examined at different stages of life testing, up to 1200 h. Significant decreases in barium evaporation rates were found after as few as 500 h of life testing. After 1000 h the evaporation rate had decreased more than an order of magnitude. Changes in surface composition were also found. The effects of tungsten particle size, used in manufacture of the billet, on barium evaporation rate were also studied but no correlation was found.

  1. Effects of head-down bed rest on complex heart rate variability: Response to LBNP testing

    NASA Technical Reports Server (NTRS)

    Goldberger, Ary L.; Mietus, Joseph E.; Rigney, David R.; Wood, Margie L.; Fortney, Suzanne M.

    1994-01-01

    Head-down bed rest is used to model physiological changes during spaceflight. We postulated that bed rest would decrease the degree of complex physiological heart rate variability. We analyzed continuous heart rate data from digitized Holter recordings in eight healthy female volunteers (age 28-34 yr) who underwent a 13-day 6 deg head-down bed rest study with serial lower body negative pressure (LBNP) trials. Heart rate variability was measured on a 4-min data sets using conventional time and frequency domain measures as well as with a new measure of signal 'complexity' (approximate entropy). Data were obtained pre-bed rest (control), during bed rest (day 4 and day 9 or 11), and 2 days post-bed rest (recovery). Tolerance to LBNP was significantly reduced on both bed rest days vs. pre-bed rest. Heart rate variability was assessed at peak LBNP. Heart rate approximate entropy was significantly decreased at day 4 and day 9 or 11, returning toward normal during recovery. Heart rate standard deviation and the ratio of high- to low-power frequency did not change significantly. We conclude that short-term bed rest is associated with a decrease in the complex variability of heart rate during LBNP testing in healthy young adult women. Measurement of heart rate complexity, using a method derived from nonlinear dynamics ('chaos theory'), may provide a sensitive marker of this loss of physiological variability, complementing conventional time and frequency domain statistical measures.

  2. Results of testing the Grambow rate law for use in HWVP glass durability correlations

    SciTech Connect

    Kuhn, W.L.; Bunnell, L.R.

    1996-03-01

    A theory based on Grambow`s work on hydration of glass as linear function of solution composition was evaluated. Use of Grambow`s linear rate law for correlation of durability with glass composition is not recommended. Dissolution rate of the glass was determined using the rate of release of sodium with an ion selective electrode. This method was tested first applying it to initial dissolution rate of several glasses at several temperatures with zero initial concentration of silicic acid. HW39-2, HW39-4, and SRL-202 from Savannah River were tested; there was significant scatter in the data, with the dissolution rates of HW39 glasses and the SRL glass being comparable within this scatter. The dissolution rate of SRL-202 at 80 C and pH 7 for silicic acid concentrations 0, 25, 50, and 100% saturation, was found to decrease dramatically at only 25% of the saturated silicic acid concentration, which does not conform to the linear theory.

  3. Savings tests: separating differences in rate of learning from differences in initial levels.

    PubMed

    Rescorla, Robert A

    2002-10-01

    Three experiments used a Pavlovian magazine-approach procedure in rats to explore, in 3 theoretically interesting cases, the inferences made from savings tests. In each experiment, a compound test procedure allowed the separation of differences in rate of acquiring new associative learning from differences in initial level of associative strength. Experiment 1 found that the slower acquisition after prior nonreinforced exposure (latent inhibition) reflected differences in learning rate, not initial level. By contrast, Experiments 2 and 3 found that the higher performance observed to a previously trained and extinguished stimulus, and lower performance observed to a conditioned inhibitor, both arose primarily because of differences in initial associative value. These experiments illustrate the usefulness of a novel testing procedure in sharpening the conclusions from savings procedures.

  4. Likelihood testing of seismicity-based rate forecasts of induced earthquakes in Oklahoma and Kansas

    USGS Publications Warehouse

    Moschetti, Morgan P.; Hoover, Susan M.; Mueller, Charles

    2016-01-01

    Likelihood testing of induced earthquakes in Oklahoma and Kansas has identified the parameters that optimize the forecasting ability of smoothed seismicity models and quantified the recent temporal stability of the spatial seismicity patterns. Use of the most recent 1-year period of earthquake data and use of 10–20-km smoothing distances produced the greatest likelihood. The likelihood that the locations of January–June 2015 earthquakes were consistent with optimized forecasts decayed with increasing elapsed time between the catalogs used for model development and testing. Likelihood tests with two additional sets of earthquakes from 2014 exhibit a strong sensitivity of the rate of decay to the smoothing distance. Marked reductions in likelihood are caused by the nonstationarity of the induced earthquake locations. Our results indicate a multiple-fold benefit from smoothed seismicity models in developing short-term earthquake rate forecasts for induced earthquakes in Oklahoma and Kansas, relative to the use of seismic source zones.

  5. Likelihood testing of seismicity-based rate forecasts of induced earthquakes in Oklahoma and Kansas

    NASA Astrophysics Data System (ADS)

    Moschetti, M. P.; Hoover, S. M.; Mueller, C. S.

    2016-05-01

    Likelihood testing of induced earthquakes in Oklahoma and Kansas has identified the parameters that optimize the forecasting ability of smoothed seismicity models and quantified the recent temporal stability of the spatial seismicity patterns. Use of the most recent 1 year period of earthquake data and use of 10-20 km smoothing distances produced the greatest likelihood. The likelihood that the locations of January-June 2015 earthquakes were consistent with optimized forecasts decayed with increasing elapsed time between the catalogs used for model development and testing. Likelihood tests with two additional sets of earthquakes from 2014 exhibit a strong sensitivity of the rate of decay to the smoothing distance. Marked reductions in likelihood are caused by the nonstationarity of the induced earthquake locations. Our results indicate a multiple-fold benefit from smoothed seismicity models in developing short-term earthquake rate forecasts for induced earthquakes in Oklahoma and Kansas, relative to the use of seismic source zones.

  6. Human liver finite element model validation using compressive and tensile experimental data - biomed 2013.

    PubMed

    Davis, Matthew L; Moreno, Daniel P; Vavalle, Nicholas A; Gayzik, F Scott

    2013-01-01

    Motor vehicle crashes commonly result in blunt abdominal trauma. Approximately 19,000 such injuries occur each year in the United States. While finite element models of the human body are becoming an important tool for injury assessment, their reliability depends on the accuracy of the material models used. Recently, Samur et al. proposed a hyperelastic and viscoelastic material model of the liver. The aim of this study was to compare the results of a computational model using this material law to uniaxial tension and compression data from biomechanical tests on liver samples by Kemper et al. In this study, the liver samples were modeled using the finite element method. Both the tension and compression test specimen geometries were created from descriptions in the literature. Each sample was meshed using four approaches: fine hexahedral, coarse hexahedral, fine tetrahedral, and coarse tetrahedral. The average element edge lengths of the coarse and fine meshes were 5 mm and 2.5 mm respectively. The samples were loaded in both tension and compression at four rates: 0.01 strain/sec, 0.1 strain/sec, 1 strain/sec, and 10 strain/sec. For each mesh type (n=4), strain rate (n=4), and loading condition (n=2), 32 simulations in total, the results were plotted against the published experimental data. The results were quantitatively evaluated for magnitude and phase agreement with the experimental data using an objective comparison software package, CORA. The model predicted the tensile response of the liver sample more accurately than the compressive response with an average CORA size error factor of 0.66 versus 0.19 for the compressive model (1 is a perfect match). The fine tetrahedral, fine hexahedral, and coarse hexahedral meshes predicted a similar response. The worst performing mesh was the coarse tetrahedral mesh, which had an average size error factor of 8.6% higher than the fine tetrahedral simulations. The peak stress in both tension and compression varied as a

  7. Making High-Tensile-Strength Amalgam Components

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  8. Cavitation mechanisms during tensile creep of an advanced silicon nitride

    SciTech Connect

    Lofaj, F.; Okada, A.; Usami, H.

    1996-12-31

    Creep cavitation was investigated by electron microscopic methods after tensile creep tests of a self-reinforced silicon nitride conducted at temperatures ranging from 1250 to 1400{degrees}C. Fast and intensive cavitation in the amorphous secondary phase and slow growth of cavities inside the large silicon nitride grains were observed. Two basic types of cavities in glassy boundary phase were found; rounded cavities on the facets of large grains and irregular cavities in pockets among the matrix grains. A driving force for cavitation in boundary phase on large grain facets is concluded to be local tensile stress on local irregularities of facets produced on the interfaces between large grains and finer matrix grains during grain boundary sliding (GBS). Dilatant hydrostatic tensile stresses generated in a matrix due to GBS were thought to be responsible for cavitation in multigrain junctions. Small cavities formed on the facets and large cavities penetrating through the whole large grains of silicon nitride were found after long-term tests. The stresses transferred from matrix to large grains are suggested as a driving force for slow growth of small cavities on the facets and their later penetration inside the large silicon nitride grains. Basic cavitation mechanisms in amorphous phase are thought to be GBS and viscous flow while solution-precipitation is responsible for cavity growth in large silicon nitride grains.

  9. Hemoglobin A1c Testing and Amputation Rates in Black, Hispanic, and White Medicare Patients

    PubMed Central

    Suckow, Bjoern D.; Newhall, Karina A.; Bekelis, Kimon; Faerber, Adrienne E.; Gottlieb, Daniel J.; Skinner, Jonathan S.; Stone, David H.; Goodney, Philip P.

    2016-01-01

    Background Major (above-knee or below-knee) amputation is a complication of diabetes and is seen more common among black and Hispanic patients. While amputation rates have declined for patients with diabetes in the last decade, it remains unknown if these improvements have equitably extended across racial groups and if measures of diabetic care, such as hemoglobin A1c testing, are associated with these improvements. We set out to characterize secular changes in amputation rates among black, Hispanic, and white patients, and to determine associations between hemoglobin A1c testing and amputation risk. Methods We identified 11,942,840 Medicare patients (55% female) with diabetes over the age of 65 years between 2002 and 2012 and followed them for a mean of 6.6 years. Of these, 86% were white, 11.5% were black, and 2.5% were Hispanic. We recorded the occurrence of major amputation and hemoglobin A1c testing during this time period and studied secular changes in amputation rate by race (black, Hispanic, and white). Finally, we examined associations between amputation risk and hemoglobin A1c testing. We measured both the presence of any testing and testing consistency using 3 categories: poor consistency (hemoglobin A1c testing in 0–50% of years), medium consistency (testing in 50–90% of years), and high consistency (testing in >90% of the years in the cohort). Results Between 2002 and 2012, the average major lower-extremity amputation rate in diabetic Medicare patients was 1.78 per 1,000 per year for black patients, 1.15 per 1,000 per year for Hispanic patients, and 0.56 per 1,000 per year for white patients (P < 0.001). Over the study period, the incidence of major amputation in Medicare patients with diabetes declined by 54%, from 1.15 per 1,000 in 2002 to 0.53 per 1,000 in 2012 (rate ratio = 0.53, 95% CI = 0.51–0.54). The reduction in amputation rate was similar across racial groups: 52% for black patients, 61% for Hispanic patients, and 55% for white patients

  10. A theoretical model to predict tensile deformation behavior of balloon catheter.

    PubMed

    Todo, Mitsugu; Yoshiya, Keiji; Matsumoto, Takuya

    2016-09-01

    In this technical note, a simple theoretical model was proposed to express the tensile deformation and fracture of balloon catheter tested by the ISO standard using piece-wise linear force-displacement relations. The model was then validated by comparing with the tensile force-displacement behaviors of two types of typical balloon catheters clinically used worldwide. It was shown that the proposed model can effectively be used to express the tensile deformation behavior and easily be handled by physicians who are not familiar with mechanics of materials.

  11. 10 CFR 431.264 - Uniform test method for the measurement of flow rate for commercial prerinse spray valves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... gallons per minute (gpm) or liters per minute (L/min), shall be conducted in accordance with the test... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of flow rate for... Valves Test Procedures § 431.264 Uniform test method for the measurement of flow rate for...

  12. 10 CFR 431.264 - Uniform test method for the measurement of flow rate for commercial prerinse spray valves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... gallons per minute (gpm) or liters per minute (L/min), shall be conducted in accordance with the test... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of flow rate for... Valves Test Procedures § 431.264 Uniform test method for the measurement of flow rate for...

  13. Influence of experimental protocol on response rate and repeatability of mechanical threshold testing in dogs

    PubMed Central

    Harris, L.K.; Murrell, J.C.; van Klink, E.G.M.; Whay, H.R.

    2015-01-01

    Mechanical threshold (MT) testing is widely used to measure nociceptive thresholds. However, there has been little research into factors that contribute to the response rate and repeatability (collectively termed ‘efficacy’) of MT testing protocols. The aim of this study was to investigate whether the efficacy of a protocol using a hand-held algometer to measure MTs (N) in healthy dogs (n = 12) was affected by varying (1) the area over which force was applied (tip diameter), (2) rate of force application, (3) position of dog during testing, and (4) anatomical site of testing. The effect of these factors on MT and the impact of individual dog effects on both efficacy and MT were also investigated. Overall, 3175/3888 tests (82%) resulted in a measurable response. The response rate was reduced by using wider tip diameters, testing at the tibia, and testing when the dog was lying down (compared to sitting upright). Wider tips were associated with higher, more variable MTs (mean ± standard deviation) with values of 4.18 ± 2.55 N for 2 mm diameter tips, 5.54 ± 3.33 for those of 4 mm, and 7.59 ± 4.73 for 8 mm tips. Individual dog effects had the most significant impact on efficacy and MT. The findings indicate that tip diameter, dog position, and anatomical site may affect both protocol efficacy and MTs, and should be taken into account when comparing different studies and in designing protocols to measure MTs in dogs. The predominant effect of the individual dog over other factors indicates that between-subject differences should always be accounted for in future studies. PMID:25744801

  14. Interfacial film formation: influence on oil spreading rates in lab basin tests and dispersant effectiveness testing in a wave tank.

    PubMed

    King, Thomas L; Clyburne, Jason A C; Lee, Kenneth; Robinson, Brian J

    2013-06-15

    Test facilities such as lab basins and wave tanks are essential when evaluating the use of chemical dispersants to treat oil spills at sea. However, these test facilities have boundaries (walls) that provide an ideal environment for surface (interfacial) film formation on seawater. Surface films may form from surfactants naturally present in crude oil as well as dispersant drift/overspray when applied to an oil spill. The objective of this study was to examine the impact of surface film formation on oil spreading rates in a small scale lab basin and on dispersant effectiveness conducted in a large scale wave tank. The process of crude oil spreading on the surface of the basin seawater was influenced in the presence of a surface film as shown using a 1st order kinetic model. In addition, interfacial film formation can greatly influence chemically dispersed crude oil in a large scale dynamic wave tank.

  15. Residual Stresses and Tensile Properties of Friction Stir Welded AZ31B-H24 Magnesium Alloy in Lap Configuration

    NASA Astrophysics Data System (ADS)

    Naik, Bhukya Srinivasa; Cao, Xinjin; Wanjara, Priti; Friedman, Jacob; Chen, Daolun

    2015-08-01

    AZ31B-H24 Mg alloy sheets with a thickness of 2 mm were friction stir welded in lap configuration using two tool rotational rates of 1000 and 1500 rpm and two welding speeds of 10 and 20 mm/s. The residual stresses in the longitudinal and transverse directions of the weldments were determined using X-ray diffraction. The shear tensile behavior of the lap joints was evaluated at low [233 K (-40 °C)], room [298 K (25 °C)], and elevated [453 K (180 °C)] temperatures. The failure load was highest for the lower heat input condition that was obtained at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s for all the test temperatures, due to the smaller hooking height, larger effective sheet thickness, and lower tensile residual stresses, as compared to the other two welding conditions that were conducted at a higher tool rotational rate or lower welding speed. The lap joints usually fractured on the advancing side of the top sheet near the interface between the thermo-mechanically affected zone and the stir zone. Elevated temperature testing of the weld assembled at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s led to the failure along the sheet interface in shear fracture mode due to the high integrity of the joint that exhibited large plastic deformation and higher total energy absorption.

  16. A test of whether rates of speciation were unusually high during the Cambrian radiation.

    PubMed

    Lieberman, B S

    2001-08-22

    The Cambrian radiation represents an interval when nearly 20 animal phyla appear in the fossil record in a short geological time span; however, whether this radiation also represents a period of extremely rapid speciation remains unclear. Here, a stochastic framework is used to test the null hypothesis that diversity changes in one of the dominant Early Cambrian groups, the olenelloid trilobites, could be produced by tempos of speciation known to have operated during later time periods. Two continuous-time models, the Yule model and the birth and death process model, and one discrete-time model, the Bienaymé-Galton-Watson branching process model, were used. No statistical evidence for uniquely high rates of speciation during the radiation in these trilobites was found when the continuous-time models were used with low or moderate extinction rates, the rates typically associated with the Cambrian radiation, although the p values are fairly low or, in one case, significant when high extinction rates were used. However, rates of speciation were higher than the average Phanerozoic rates of speciation. The discrete-time model produced equivocal results: either rates were unusually high or the model is inapplicable during the Cambrian radiation. This suggests that there was nothing unique about evolutionary processes relating to the tempo of speciation during the Cambrian radiation.

  17. Field test of a calcite dissolution rate law: Fort's Funnel Cave, Mammoth Cave National Park

    SciTech Connect

    Slunder, J.S. ); Groves, C.G. . Center for Cave and Karst Studies)

    1994-03-01

    The laboratory-derived calcite dissolution rate law of Plummer et al. (1978) is the most widely used and mechanistically detailed expression currently available for predicting dissolution rates as a function of water chemistry. Such rate expressions are of great use in understanding timescales associated with limestone karst development. Little work has gone into the field testing of the rate law under natural conditions. This work measured dissolution rates by a crystal weight loss experiment in Buffalo Creek within Fort's funnel Cave, which lies within a pristine, forested catchment of Mammoth Cave National Park. Continuous water chemistry sampling over the same period allowed a time-integrated prediction of the dissolution based on the Plummer et al. (1978) expression. Results indicate that the rate law overpredicted dissolution by a factor of about ten. This concurs with earlier laboratory work suggesting that the law tends to overpredict rates in solutions close to equilibrium with respect to calcite, as were the waters within this part of the groundwater flow system.

  18. Pressure Decay Testing Methodology for Quantifying Leak Rates of Full-Scale Docking System Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Wasowski, Janice L.; Garafolo, Nicholas G.; Penney, Nicholas; Steinetz, Bruce M.

    2010-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit and the Moon. This system, called the Low Impact Docking System, is a mechanism designed to connect the Orion Crew Exploration Vehicle to the International Space Station, the lunar lander (Altair), and other future Constellation Project vehicles. NASA Glenn Research Center is playing a key role in developing the main interface seal for this docking system. This seal will be relatively large with an outside diameter in the range of 54 to 58 in. (137 to 147 cm). As part of this effort, a new test apparatus has been designed, fabricated, and installed to measure leak rates of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Using this test apparatus, a pressure decay testing and data processing methodology has been developed to quantify full-scale seal leak rates. Tests performed on untreated 54 in. diameter seals at room temperature in a fully compressed state resulted in leak rates lower than the requirement of less than 0.0025 lbm, air per day (0.0011 kg/day).

  19. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    SciTech Connect

    Hankin, G.L.; Faulkner, R.G.; Hamilton, M.L.; Garner, F.A.

    1997-08-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within {+-}53 MPa. The accuracy of the correlation improves with increasing material strength, to within {+-} MPa for predicting tensile yield strengths in the range of 400-800 MPa.

  20. A comparative study on the restrictions of dynamic test methods

    NASA Astrophysics Data System (ADS)

    Majzoobi, GH.; Lahmi, S.

    2015-09-01

    Dynamic behavior of materials is investigated using different devices. Each of the devices has some restrictions. For instance, the stress-strain curve of the materials can be captured at high strain rates only with Hopkinson bar. However, by using a new approach some of the other techniques could be used to obtain the constants of material models such as Johnson-Cook model too. In this work, the restrictions of some devices such as drop hammer, Taylor test, Flying wedge, Shot impact test, dynamic tensile extrusion and Hopkinson bars which are used to characterize the material properties at high strain rates are described. The level of strain and strain rate and their restrictions are very important in examining the efficiency of each of the devices. For instance, necking or bulging in tensile and compressive Hopkinson bars, fragmentation in dynamic tensile extrusion and petaling in Taylor test are restricting issues in the level of strain rate attainable in the devices.