Microprocessor-Based Valved Controller
NASA Technical Reports Server (NTRS)
Norman, Arnold M., Jr.
1987-01-01
New controller simpler, more precise, and lighter than predecessors. Mass-flow controller compensates for changing supply pressure and temperature such as occurs when gas-supply tank becomes depleted. By periodically updating calculation of mass-flow rate, controller determines correct new position for valve and keeps mass-flow rate nearly constant.
O'Shaughnessy, P T; Hemenway, D R
2000-10-01
Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.
Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad
2006-06-06
A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.
NASA Astrophysics Data System (ADS)
Wang, Yunong; Cheng, Rongjun; Ge, Hongxia
2017-08-01
In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.
NASA Astrophysics Data System (ADS)
Eleiwi, Fadi; Laleg-Kirati, Taous Meriem
2018-06-01
An observer-based perturbation extremum seeking control is proposed for a direct-contact membrane distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D advection-diffusion equation model which has pump flow rates as process inputs. The objective of the controller is to optimise the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analysed, and simulations based on real DCMD process parameters for each control input are provided.
NASA Astrophysics Data System (ADS)
Wahid, A.; Prasetyo, A. P.
2018-03-01
This study describes the selection of controllers in the vacuum distillation unit (VDU) between a model predictive control (MPC) and a proportional-integral (PI) controller by comparing the integral square error (ISE) values. Design of VDU in this simulation is based on modified Metso Automation Inc. scheme. Controlled variables in this study are feed flow rate, feed temperature, top stage pressure, condenser level, bottom stage temperature, LVGO (light vacuum gas oil), MVGO (medium vacuum gas oil), and HVGO (heavy vacuum gas oil) flow rate. As a result, control performance improvements occurred as using MPC compared to PI controllers, when testing a set-point change, of feed flow rate control, feed temperature, top-stage pressure, bottom-stage temperature and flow rate of LVGO, MVGO, and HVGO, respectively, 36%, 6%, 92%, 53%, 90%, 96% and 88%. Only on condenser level control PI performs much better than the MPC. So PI controller is used for level condenser control. While for the test of disturbance rejection, by changing feed flow rate by 10%, there is improvement of control performance using MPC compared to PI controller on feed temperature control, top-stage pressure, bottom-stage temperature and flow rate LVGO, MVGO and HVGO 0.3%, 0.7%, 14%, 2.7%, 10.6% and 4.3%, respectively.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2001-01-01
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
Electrokinetic high pressure hydraulic system
Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.
2003-06-03
An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.
93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND ...
93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND SYSTEM 2, FACING WEST IN MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Packet Scheduling Mechanism to Improve Quality of Short Flows and Low-Rate Flows
NASA Astrophysics Data System (ADS)
Yokota, Kenji; Asaka, Takuya; Takahashi, Tatsuro
In recent years elephant flows are increasing by expansion of peer-to-peer (P2P) applications on the Internet. As a result, bandwidth is occupied by specific users triggering unfair resource allocation. The main packet-scheduling mechanism currently employed is first-in first-out (FIFO) where the available bandwidth of short flows is limited by elephant flows. Least attained service (LAS), which decides transfer priority of packets by the total amount of transferred data in all flows, was proposed to solve this problem. However, routers with LAS limit flows with large amount of transferred data even if they are low-rate. Therefore, it is necessary to improve the quality of low-rate flows with long holding times such as voice over Internet protocol (VoIP) applications. This paper proposes rate-based priority control (RBPC), which calculates the flow rate and control the priority by using it. Our proposed method can transfer short flows and low-rate flows in advance. Moreover, its fair performance is shown through simulations.
USDA-ARS?s Scientific Manuscript database
An aerial variable-rate application system consisting of a DGPS-based guidance system, automatic flow controller, and hydraulically controlled pump/valve was evaluated for response time to rapidly changing flow requirements and accuracy of application. Spray deposition position error was evaluated ...
Rossner, Alan; Farant, Jean Pierre; Simon, Philippe; Wick, David P
2002-11-15
Anthropogenic activities contribute to the release of a wide variety of volatile organic compounds (VOC) into microenvironments. Developing and implementing new air sampling technologies that allow for the characterization of exposures to VOC can be useful for evaluating environmental and health concerns arising from such occurrences. A novel air sampler based on the use of a capillary flow controller connected to evacuated canisters (300 mL, 1 and 6 L) was designed and tested. The capillary tube, used to control the flow of air, is a variation on a sharp-edge orifice flow controller. It essentially controls the velocity of the fluid (air) as a function of the properties of the fluid, tube diameter and length. A model to predict flow rate in this dynamic system was developed. The mathematical model presented here was developed using the Hagen-Poiseuille equation and the ideal gas law to predict flow into the canisters used to sample for long periods of time. The Hagen-Poiseuille equation shows the relationship between flow rate, pressure gradient, capillary resistance, fluid viscosity, capillary length and diameter. The flow rates evaluated were extremely low, ranging from 0.05 to 1 mL min(-1). The model was compared with experimental results and was shown to overestimate the flow rate. Empirical equations were developed to more accurately predict flow for the 300 mL, 1 and 6 L canisters used for sampling periods ranging from several hours to one month. The theoretical and observed flow rates for different capillary geometries were evaluated. Each capillary flow controller geometry that was tested was found to generate very reproducible results, RSD < 2%. Also, the empirical formulas developed to predict flow rate given a specified diameter and capillary length were found to predict flow rate within 6% of the experimental data. The samplers were exposed to a variety of airborne vapors that allowed for comparison of the effectiveness of capillary flow controllers to sorbent samplers and to an online gas chromatograph. The capillary flow controller was found to exceed the performance of the sorbent samplers in this comparison.
Control methods and systems for indirect evaporative coolers
Woods, Jason; Kozubal, Erik
2015-09-22
A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.
DOT National Transportation Integrated Search
1971-07-01
The problem of displaying visibility information to both : controller and pilot is discussed in the context of visibility : information flow in the airport-aircraft system. : The optimum amount of visibility information, as well as its : rate of flow...
An in vitro test bench reproducing coronary blood flow signals.
Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory
2015-08-07
It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.
Flow control for a paper-based microfluidic device by adjusting permeability of paper
NASA Astrophysics Data System (ADS)
Jang, Ilhoon; Kim, Gangjune; Song, Simon
2014-11-01
The paper-based microfluidics has attracted intensive attention as a prospective substitute for conventional microfluidic substrates used for a point-of-care diagnostics due to its superior advantages such as the cost effectiveness and production simplicity. Generally, a paper-based microfluidic device utilizes capillary force to drive a flow. Recent studies on flow control in such a device aimed at obtaining accurate and quantitative results by varying a channel geometry like width and length. According to the Darcy's law describing a flow in a porous media like paper, a flow rate can be adjusted the permeability of paper. In this study, we investigate a flow control method by adjusting the permeability of paper. We utilize the wax printing for the adjustment and the fabrication of paper channels. A rectangular wax pattern was printed on one inlet channel of a Y-channel geometry. By varying the brightness of the wax pattern, a relationship between the flow rate and permeability changes due to the wax was investigated. As a result, we obtained an effective permeability contour with respect to the wax pattern length and brightness. In addition, we developed a paper-based micromixer of which the mixing ratio was controlled precisely by adjusting the permeability.
Effect of stress, anxiety and depression on unstimulated salivary flow rate and xerostomia.
Gholami, Neda; Hosseini Sabzvari, Behrous; Razzaghi, Alireza; Salah, Shilan
2017-01-01
Background. Unstimulated salivary flow rate can be influenced by different factors. This study was undertaken to evaluate the effect of stress, anxiety and depression on unstimulated salivary flow rate in adults. Methods. A total of 247 adult subjects, randomly selected from patients referring to Zanjan Dental School, were included in this investigation. The study procedures consisted of collecting salivary samples (in 5 minutes), completing a form for feeling of xerostomia and completing Depression Anxiety Stress Scale (DASS) Questionnaire to assess the severity of stress, anxiety and depression. Based on the results, the patients were categorized in four groups: Low salivary flow rate plus xerostomia (group 1, n=60), normal salivary flow rate plus xerostomia (group 2, n=59), low salivary flow rate without xerostomia (group 3, n=60) and normal salivary flow rate without xerostomia (control group, n=68). Results. The frequencies of subjects with severe and major depression in groups 1, 2 and 3 were 31.4%, 11.7% and 8.5%, respectively, with 4.4% in the control group. The frequencies of subjects with severe stress in groups 1, 2 and 3 were 21.7%, 3.3% and 11.9%, respectively, with 1.5% in the control group. The frequencies of patients with severe anxiety in groups 1, 2 and 3 were 50%, 30% and 61.1%, respectively, with 4.4% in the control group. Stress, anxiety and depression exhibited a statistically significant relationship with unstimulated salivary flow rate and xerostomia (P<0.05). Conclusion. Stress, anxiety and depression can influence unstimulated salivary flow rate and lead to xerostomia.
NASA Astrophysics Data System (ADS)
Sek Tee, Kian; Sharil Saripan, Muhammad; Yap, Hiung Yin; Fhong Soon, Chin
2017-08-01
With the advancement in microfluidic technology, fluid flow control for syringe pump is always essential. In this paper, a mechatronic syringe pump will be developed and customized to control the fluid flow in a poly-dimethylsiloxane (PDMS) microfluidic device based on a polyimide laminating film. The syringe pump is designed to drive fluid with flow rates of 100 and 1000 μl/min which intended to drive continuous fluid in a polyimide based microfluidic device. The electronic system consists of an Arduino microcontroller board and a uni-polar stepper motor. In the system, the uni-polar stepper motor was coupled to a linear slider attached to the plunger of a syringe pump. As the motor rotates, the plunger pumps the liquid out of the syringe. The accuracy of the fluid flow rate was determined by adjusting the number of micro-step/revolution to drive the stepper motor to infuse fluid into the microfluidic device. With the precise control of the electronic system, the syringe pump could accurately inject fluid volume at 100 and 1000 μl/min into a microfluidic device.
Jenke, Christoph; Pallejà Rubio, Jaume; Kibler, Sebastian; Häfner, Johannes; Richter, Martin; Kutter, Christoph
2017-01-01
With the combination of micropumps and flow sensors, highly accurate and secure closed-loop controlled micro dosing systems for liquids are possible. Implementing a single stroke based control mode with piezoelectrically driven micro diaphragm pumps can provide a solution for dosing of volumes down to nanoliters or variable average flow rates in the range of nL/min to μL/min. However, sensor technologies feature a yet undetermined accuracy for measuring highly pulsatile micropump flow. Two miniaturizable in-line sensor types providing electrical readout—differential pressure based flow sensors and thermal calorimetric flow sensors—are evaluated for their suitability of combining them with mircopumps. Single stroke based calibration of the sensors was carried out with a new method, comparing displacement volumes and sensor flow volumes. Limitations of accuracy and performance for single stroke based flow control are described. Results showed that besides particle robustness of sensors, controlling resistive and capacitive damping are key aspects for setting up reproducible and reliable liquid dosing systems. Depending on the required average flow or defined volume, dosing systems with an accuracy of better than 5% for the differential pressure based sensor and better than 6.5% for the thermal calorimeter were achieved. PMID:28368344
Stability and sensitivity of ABR flow control protocols
NASA Astrophysics Data System (ADS)
Tsai, Wie K.; Kim, Yuseok; Chiussi, Fabio; Toh, Chai-Keong
1998-10-01
This tutorial paper surveys the important issues in stability and sensitivity analysis of ABR flow control of ATM networks. THe stability and sensitivity issues are formulated in a systematic framework. Four main cause of instability in ABR flow control are identified: unstable control laws, temporal variations of available bandwidth with delayed feedback control, misbehaving components, and interactions between higher layer protocols and ABR flow control. Popular rate-based ABR flow control protocols are evaluated. Stability and sensitivity is shown to be the fundamental issues when the network has dynamically-varying bandwidth. Simulation result confirming the theoretical studies are provided. Open research problems are discussed.
Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Tianyou; Jia, Yao; Wang, Hong
The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperaturemore » are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.« less
Development of digital flow control system for multi-channel variable-rate sprayers
USDA-ARS?s Scientific Manuscript database
Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Field Effect Flow Control in a Polymer T-Intersection Microfluidic Network
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan J.; Chang, Richard; Beamesderfer, Mike; Lee, Cheng S.; DeVoe, Don L.
2003-01-01
We present a study of induced pressure pumping in a polymer microchannel due to differential electroosmotic flow @OF) rates via field-effect flow control (FEFC). The experimental results demonstrate that the induced pressure pumping is dependent on the distance of the FEFC gate from the cathodic gate. A proposed flow model based on a linearly-decaying zeta potential profile is found to successfully predict experimental trends.
Predictive onboard flow control for packet switching satellites
NASA Technical Reports Server (NTRS)
Bobinsky, Eric A.
1992-01-01
We outline two alternate approaches to predicting the onset of congestion in a packet switching satellite, and argue that predictive, rather than reactive, flow control is necessary for the efficient operation of such a system. The first method discussed is based on standard, statistical techniques which are used to periodically calculate a probability of near-term congestion based on arrival rate statistics. If this probability exceeds a present threshold, the satellite would transmit a rate-reduction signal to all active ground stations. The second method discussed would utilize a neural network to periodically predict the occurrence of buffer overflow based on input data which would include, in addition to arrival rates, the distributions of packet lengths, source addresses, and destination addresses.
Salivary function and glycemic control in older persons with diabetes.
Chavez, E M; Taylor, G W; Borrell, L N; Ship, J A
2000-03-01
There is no consensus on the possible association between diabetes and salivary dysfunction in older persons with diabetes. This study's purpose was to investigate the effect of diabetes and glycemic control on salivary function in an older population. Twenty nine persons with type 2 diabetes and 23 nondiabetic control subjects participated (age range, 54-90 years). Diabetic status was determined by a glycosylated hemoglobin (HbA(1c)) test and a 2-hour glucose tolerance test. Poor glycemic control was defined as HbA(1c) >9%. Unstimulated whole saliva, unstimulated parotid, and stimulated parotid flow rates were measured, and subjects completed a standardized xerostomia questionnaire. Persons with poorly controlled diabetes had lower (P =.01) stimulated parotid flow rates than persons with well-controlled diabetes and nondiabetic control subjects. There were no significant differences in xerostomic complaints based on diabetic or glycemic control status or salivary flow rates. These results provide some evidence that poorly controlled diabetes may be associated with salivary dysfunction in older adults who have no concomitant complaints of xerostomia.
NASA Astrophysics Data System (ADS)
Gursoy, Kadir Ali; Yavuz, Mehmet Metin
2014-11-01
In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
2016-01-01
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Flow processes in electric discharge drivers
NASA Technical Reports Server (NTRS)
Baganoff, D.
1975-01-01
The performance of an electric discharge shock tube is discussed from the point of view that the conditions at the sonic station are the primary controlling variables (likewise in comparing designs), and that the analysis of the flow on either side of the sonic station should be done separately. The importance of considering mass-flow rate in matching a given driver design to the downstream flow required for a particular shock-wave speed is stressed. It is shown that a driver based on the principle of liquid injection (of H2) is superior to one based on the Ludwieg tube, because of the greater mass-flow rate and the absence of a massive diaphragm.
Flow-rate independent gas-mixing system for drift chambers, using solenoid valves
NASA Astrophysics Data System (ADS)
Sugano, K.
1991-03-01
We describe an inexpensive system for mixing argon and ethane gas for drift chambers which was used for an experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow-rate independent without readjustments. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running.
VOC Emission Reduction Study at the Hill Air Force Base Building 515 Painting Facility
1990-09-01
occurs during painting. A system for decreasing the flow to a downstream VOC emission control device can be designed that takes advantage of this...paint application process. A flow-reducing ventilation system that takes advantage of this operating characteristic can be designed in which the...flow from the second duct is vented to a VOC emission control device. The advantage of this system is that the flow rate to a VOC emission contro
Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing; Su, Ji; Zhang, Qiming
2004-01-01
An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.
Method of controlling temperature of a thermoelectric generator in an exhaust system
Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D
2013-05-21
A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.
2015-07-01
for the fluid flow controlled MEMS metamaterial with PDMS chamber. (b)-(d) shows the cantilever deformation with respect to increasing fluid flow...Firstly the metamaterial was integrated with a polydimethylsiloxane fluidic channel and the injection flow rate was varied from 0 to 5 ml/min
Seed Cotton Mass Flow Measurement in the Gin
USDA-ARS?s Scientific Manuscript database
Seed cotton mass flow measurement is necessary for the development of improved gin process control systems that can increase gin efficiency and improve fiber quality. Previous studies led to the development of a seed cotton mass flow rate sensor based on the static pressure drop across the blowbox, ...
Numerical Simulation of Fluidic Actuators for Flow Control Applications
NASA Technical Reports Server (NTRS)
Vasta, Veer N.; Koklu, Mehti; Wygnanski, Israel L.; Fares, Ehab
2012-01-01
Active flow control technology is finding increasing use in aerospace applications to control flow separation and improve aerodynamic performance. In this paper we examine the characteristics of a class of fluidic actuators that are being considered for active flow control applications for a variety of practical problems. Based on recent experimental work, such actuators have been found to be more efficient for controlling flow separation in terms of mass flow requirements compared to constant blowing and suction or even synthetic jet actuators. The fluidic actuators produce spanwise oscillating jets, and therefore are also known as sweeping jets. The frequency and spanwise sweeping extent depend on the geometric parameters and mass flow rate entering the actuators through the inlet section. The flow physics associated with these actuators is quite complex and not fully understood at this time. The unsteady flow generated by such actuators is simulated using the lattice Boltzmann based solver PowerFLOW R . Computed mean and standard deviation of velocity profiles generated by a family of fluidic actuators in quiescent air are compared with experimental data. Simulated results replicate the experimentally observed trends with parametric variation of geometry and inflow conditions.
Relationship between xerostomia and salivary flow rates in HIV-infected individuals.
Nittayananta, Wipawee; Chanowanna, Nilnara; Pruphetkaew, Nannapat; Nauntofte, Birgitte
2013-08-01
The aim of the present study was to determine the relationship between self-reported xerostomia and salivary flow rates among HIV-infected individuals. A cross-sectional study was performed on 173 individuals (81 HIV-infected individuals, mean age: 32 years, and 92 non-HIV controls, mean age: 30 years). Subjective complaints of dry mouth, based on a self-report of xerostomia questions, and dry mouth, based on a visual analogue scale (VAS), were recorded along with measurements of salivary flow rate of both unstimulated and wax-stimulated whole saliva. The relationship between subjective responses to the xerostomia questions, the VAS of dry mouth, and objective measurements of salivary flow rates were analyzed. Responses to the questions--Do you carry water or a saliva substitute? and Have you had taste disturbance?--were significantly different between HIV-infected and non-HIV individuals (P < 0.05). Individuals' responses to questions concerning dry mouth were significantly correlated with a low unstimulated salivary flow rate. A significant correlation between the VAS of dry mouth and salivary flow rates was observed (P = 0.023). Responses to self-reported xerostomia questions reflects low unstimulated salivary flow rates. Thus, questions concerning dry mouth might be useful tools to identify HIV-infected individuals with hyposalivation, especially at a resting stage. © 2013 Wiley Publishing Asia Pty Ltd.
Park, Kyungnam; Lee, Jangyoung; Kim, Soo-Young; Kim, Jinwoo; Kim, Insoo; Choi, Seung Pill; Jeong, Sikyung; Hong, Sungyoup
2013-06-01
This study assessed the method of fluid infusion control using an IntraVenous Infusion Controller (IVIC). Four methods of infusion control (dial flow controller, IV set without correction, IV set with correction and IVIC correction) were used to measure the volume of each technique at two infusion rates. The infused fluid volume with a dial flow controller was significantly larger than other methods. The infused fluid volume was significantly smaller with an IV set without correction over time. Regarding the concordance correlation coefficient (CCC) of infused fluid volume in relation to a target volume, IVIC correction was shown to have the highest level of agreement. The flow rate measured in check mode showed a good agreement with the volume of collected fluid after passing through the IV system. Thus, an IVIC could assist in providing an accurate infusion control. © 2013 Wiley Publishing Asia Pty Ltd.
Development and simulation of microfluidic Wheatstone bridge for high-precision sensor
NASA Astrophysics Data System (ADS)
Shipulya, N. D.; Konakov, S. A.; Krzhizhanovskaya, V. V.
2016-08-01
In this work we present the results of analytical modeling and 3D computer simulation of microfluidic Wheatstone bridge, which is used for high-accuracy measurements and precision instruments. We propose and simulate a new method of a bridge balancing process by changing the microchannel geometry. This process is based on the “etching in microchannel” technology we developed earlier (doi:10.1088/1742-6596/681/1/012035). Our method ensures a precise control of the flow rate and flow direction in the bridge microchannel. The advantage of our approach is the ability to work without any control valves and other active electronic systems, which are usually used for bridge balancing. The geometrical configuration of microchannels was selected based on the analytical estimations. A detailed 3D numerical model was based on Navier-Stokes equations for a laminar fluid flow at low Reynolds numbers. We investigated the behavior of the Wheatstone bridge under different process conditions; found a relation between the channel resistance and flow rate through the bridge; and calculated the pressure drop across the system under different total flow rates and viscosities. Finally, we describe a high-precision microfluidic pressure sensor that employs the Wheatstone bridge and discuss other applications in complex precision microfluidic systems.
1980-07-01
flow rate wet based on %02 (ACFMWX) RAO RGWO2 (Ts + 460 ) 29.92 2 2 x 530 (Pb + Ps/13.6) OPTION TWO 25. Percent oxygen in flue gas as calculated from...Flow Characteristics of Gas Stream A-29 A.3.5.1 Flow Rate A-29 A.3.5.2 Variations in Flow Rate A-30 A.3.5.3 Changes in Properties A-30 A.3.5.4 Control ...Size and Concentration B-3 B.l.l.2 Electrical Conditions B-5 B.1.1.3 Reentrainment of Dust B-7 B.l.l.4 Gas Flow Uniformity B-7 B.1.2 Flue Gas
Zloczower, Moshe; Reznick, Abraham Z; Zouby, Rula Obeid; Nagler, Rafael M
2007-06-01
Can salivary free radicals and antioxidant parameters be useful in general diagnosis and evaluation of diabetes mellitus Type II (DM)? Serum and salivary redox state of 40 diabetes mellitus patients were examined and compared with 20 controls. The involvement of salivary gland in diabetes mellitus has been suggested based on salivary flow rate and compositional alterations. In addition, the redox state of saliva of diabetes mellitus patients is different than that of normoglycemic control human subjects. This observation unveils the opportunity to use noninvasive saliva-based diagnostics for diabetes mellitus patients.
Optimum aerobic volume control based on continuous in-line oxygen uptake monitoring.
Svardal, K; Lindtner, S; Winkler, S
2003-01-01
Dynamic adaptation of the aerated volume to changing load conditions is essential to maximise the nitrogen removal performance and to minimise energy consumption. A control strategy is presented which provides optimum aerobic volume control (OAV-control concept) based on continuous in-line oxygen uptake monitoring. For ammonium concentrations below 1 mg/l the oxygen uptake rate shows a strong and almost linear dependency on the ammonium concentration. Therefore, the oxygen uptake rate is an ideal indicator for the nitrification performance in activated sludge systems. The OAV-control concept provides dynamic variation of the minimum aerobic volume required for complete nitrification and therefore maximises the denitrification performance. In-line oxygen uptake monitoring is carried out by controlling the oxygen concentration in a continuous aerated zone of the aeration tank and measuring the total air flow to the aeration tank. The total air flow to the aeration tank is directly proportional to the current oxygen uptake rate and can therefore be used as an indicator for the required aerobic volume. The instrumentation requirements for installation of the OAV-control are relatively low, oxygen sensors in the aeration tank and an on-line air flow measurement are needed. This enables individual control of aeration tanks operated in parallel at low investment costs. The OAV-control concept is installed at the WWTP Linz-Asten (1 Mio PE) and shows very good results. Full scale results are presented.
Plasma treatments of wool fiber surface for microfluidic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su
Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For thismore » reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.« less
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
NASA Astrophysics Data System (ADS)
Dixon, Emily M.; Elwood Madden, Andrew S.; Hausrath, Elisabeth M.; Elwood Madden, Megan E.
2015-04-01
Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295-298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures.
A flow-control mechanism for distributed systems
NASA Technical Reports Server (NTRS)
Maitan, J.
1991-01-01
A new approach to the rate-based flow control in store-and-forward networks is evaluated. Existing methods display oscillations in the presence of transport delays. The proposed scheme is based on the explicit use of an embedded dynamic model of a store-and-forward buffer in a controller's feedback loop. It is shown that the use of the model eliminates the oscillations caused by the transport delays. The paper presents simulation examples and assesses the applicability of the scheme in the new generation of high-speed photonic networks where transport delays must be considered.
Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih
2014-01-01
This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.
Lee, Jing-Nang; Lin, Tsung-Min
2014-01-01
This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390
An electronic flow control system for a variable-rate tree sprayer
USDA-ARS?s Scientific Manuscript database
Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...
NASA Astrophysics Data System (ADS)
Jones, M. R.; Soule, S. A.; Gonnermann, H. M.; Le Roux, V.; Clague, D. A.
2018-07-01
Quantitative metrics for eruption rates at mid-ocean ridges (MORs) would improve our understanding of the structure and formation of the uppermost oceanic crust and would provide a means to link volcanic processes with the conditions of the underlying magmatic system. However, these metrics remain elusive because no MOR eruptions have been directly observed. The possibility of disequilibrium degassing in mid-ocean ridge basalts (MORB), due to high eruptive depressurization rates, makes the analysis of volatile concentrations in MORB glass a promising method for evaluating eruption rates. In this study, we estimate magma ascent and lava flow emplacement rates during the 2011 eruption of Axial Seamount based on numerical modeling of diffusion-controlled bubble growth and new measurements of dissolved volatiles, vesicularity, and vesicle size distributions in erupted basalts. This dataset provides a unique view of the variability in magma ascent (∼0.02-1.2 m/s) and lava flow rates (∼0.1-0.7 m/s) during a submarine MOR eruption based on 50 samples collected from a >10 km long fissure system and three individual lava flow lobes. Samples from the 2011 eruption display an unprecedented range in dissolved CO2 concentrations, nearly spanning the full range observed on the global MOR system. The variable vesicularity and dissolved CO2 concentrations in these samples can be explained by differences in the extent of degassing, dictated by flow lengths and velocities during both vertical ascent and horizontal flow along the seafloor. Our results document, for the first time, the variability in magma ascent rates during a submarine eruption (∼0.02-1.2 m/s), which spans the global range previously proposed based on CO2 degassing. The slowest ascent rates are associated with hummocky flows while faster ascent rates produce channelized sheet flows. This study corroborates degassing-based models for eruption rates using comparisons with independent methods and documents the relationship between eruption dynamics, magma ascent rates, and the morphology of eruptive products. Globally, this approach allows interrogation of the processes that govern mid-ocean ridge eruptions and influence the formation of the oceanic crust.
Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster
NASA Astrophysics Data System (ADS)
Jaisankar, S.; Sheshadri, T. S.
2018-05-01
Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.
NASA Astrophysics Data System (ADS)
Garel, F.; Kaminski, E.; Tait, S.; Limare, A.
2010-12-01
A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In this regime, a thermal image provides a consistent estimate of the flow rate if the external cooling conditions are reasonably well constrained.
Lacour, C; Joannis, C; Schuetze, M; Chebbo, G
2011-01-01
This paper compares several real-time control (RTC) strategies for a generic configuration consisting of a storage tank with two overflow facilities. Two of the strategies only make use of flow rate data, while the third also introduces turbidity data in order to exercise dynamic control between two overflow locations. The efficiency of each strategy is compared over a wide range of system setups, described by two parameters. This assessment is performed by simulating the application of control strategies to actual measurements time series recorded on two sites. Adding turbidity measurements into an RTC strategy leads to a significant reduction in the annual overflow pollutant load. The pollutant spills spared by such a control strategy strongly depend on the site and on the flow rate based strategy considered as a reference. With the datasets used in this study, values ranging from 5 to 50% were obtained.
Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi
2017-09-15
In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kolari, K.; Havia, T.; Stuns, I.; Hjort, K.
2014-08-01
Restrictor valves allow proportional control of fluid flow but are rarely integrated in microfluidic systems. In this study, an optically actuated silicon membrane restrictor microvalve is demonstrated. Its actuation is based on the phase transition of paraffin, using a paraffin wax mixed with a suitable concentration of optically absorbing nanographite particles. Backing up the membrane with oil (the melted paraffin) allows for a compliant yet strong contact to the valve seat, which enables handling of high pressures. At flow rates up to 30 µL min-1 and at a pressure of 2 bars, the valve can successfully be closed and control the flow level by restriction. The use of this paraffin composite as an adhesive layer sandwiched between the silicon valve and glass eases fabrication. This type of restrictor valve is best suited for high pressure, low volume flow silicon-based nanofluidic systems.
Flow distribution in parallel microfluidic networks and its effect on concentration gradient
Guermonprez, Cyprien; Michelin, Sébastien; Baroud, Charles N.
2015-01-01
The architecture of microfluidic networks can significantly impact the flow distribution within its different branches and thereby influence tracer transport within the network. In this paper, we study the flow rate distribution within a network of parallel microfluidic channels with a single input and single output, using a combination of theoretical modeling and microfluidic experiments. Within the ladder network, the flow rate distribution follows a U-shaped profile, with the highest flow rate occurring in the initial and final branches. The contrast with the central branches is controlled by a single dimensionless parameter, namely, the ratio of hydrodynamic resistance between the distribution channel and the side branches. This contrast in flow rates decreases when the resistance of the side branches increases relative to the resistance of the distribution channel. When the inlet flow is composed of two parallel streams, one of which transporting a diffusing species, a concentration variation is produced within the side branches of the network. The shape of this concentration gradient is fully determined by two dimensionless parameters: the ratio of resistances, which determines the flow rate distribution, and the Péclet number, which characterizes the relative speed of diffusion and advection. Depending on the values of these two control parameters, different distribution profiles can be obtained ranging from a flat profile to a step distribution of solute, with well-distributed gradients between these two limits. Our experimental results are in agreement with our numerical model predictions, based on a simplified 2D advection-diffusion problem. Finally, two possible applications of this work are presented: the first one combines the present design with self-digitization principle to encapsulate the controlled concentration in nanoliter chambers, while the second one extends the present design to create a continuous concentration gradient within an open flow chamber. PMID:26487905
Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing.
Ganigué, Ramon; Jiang, Guangming; Liu, Yiqi; Sharma, Keshab; Wang, Yue-Cong; Gonzalez, José; Nguyen, Tung; Yuan, Zhiguo
2018-05-15
Water utilities worldwide spend annually billions of dollars to control sulfide-induced corrosion in sewers. Iron salts chemically oxidize and/or precipitate dissolved sulfide in sewage and are especially used in medium- and large-size sewers. Iron salt dosing rates are defined ad hoc, ignoring variation in sewage flows and sulfide levels. This often results in iron overdosing or poor sulfide control. Online dosing control can adjust the chemical dosing rates to current (and future) state of the sewer system, allowing high-precision, stable and cost-effective sulfide control. In this paper, we report a novel and robust online control strategy for the dosing of ferrous salt in sewers. The control considers the fluctuation of sewage flow, pH, sulfide levels and also the perturbation from rainfall. Sulfide production in the pipe is predicted using auto-regressive models (AR) based on current flow measurements, which in turn can be used to determine the dose of ferrous salt required for cost-effective sulfide control. Following comprehensive model-based assesment, the control was successfully validated and its effectiveness demonstrated in a 3-week field trial. The online control algorithm controlled sulfide below the target level (0.5 mg S/L) while reducing chemical dosing up to 30%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
Keohane, Kieran; Brennan, Des; Galvin, Paul; Griffin, Brendan T
2014-06-05
The increasing realisation of the impact of size and surface properties on the bio-distribution of drug loaded colloidal particles has driven the application of micro fabrication technologies for the precise engineering of drug loaded microparticles. This paper demonstrates an alternative approach for producing size controlled drug loaded PLGA based microparticles using silicon Microfluidic Flow Focusing Devices (MFFDs). Based on the precise geometry and dimensions of the flow focusing channel, microparticle size was successfully optimised by modifying the polymer type, disperse phase (Qd) flow rate, and continuous phase (Qc) flow rate. The microparticles produced ranged in sizes from 5 to 50 μm and were highly monodisperse (coefficient of variation <5%). A comparison of Ciclosporin (CsA) loaded PLGA microparticles produced by MFFDs vs conventional production techniques was also performed. MFFDs produced microparticles with a narrower size distribution profile, relative to the conventional approaches. In-vitro release kinetics of CsA was found to be influenced by the production technique, with the MFFD approach demonstrating the slowest rate of release over 7 days (4.99 ± 0.26%). Finally, MFFDs were utilised to produce pegylated microparticles using the block co-polymer, PEG-PLGA. In contrast to the smooth microparticles produced using PLGA, PEG-PLGA microparticles displayed a highly porous surface morphology and rapid CsA release, with 85 ± 6.68% CsA released after 24h. The findings from this study demonstrate the utility of silicon MFFDs for the precise control of size and surface morphology of PLGA based microparticles with potential drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
A simple, mass balance model of carbon flow in a controlled ecological life support system
NASA Technical Reports Server (NTRS)
Garland, Jay L.
1989-01-01
Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.
Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system
NASA Astrophysics Data System (ADS)
Manikandan, J.; Jayaraman, M.; Jayachandran, M.
2011-02-01
This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.
Microfluidic valve with cored glass microneedle for microinjection.
Lee, Sanghoon; Jeong, Wonje; Beebe, David J
2003-08-01
In this paper, a new microinjection device was constructed by fusing a glass microneedle and a PDMS-based microvalve. The microneedle was fabricated via traditional micropipette pulling. The PDMS-based microvalve regulates the fluid flow in the microchannel and microneedle. The 'ON/OFF' operation of the valve was controlled by manually supplied pneumatic pressure. The valve membrane utilized a two level geometry to improve control at low flow rates. The relation between pressure and flow was measured and the results showed that very small volumes of fluid (>1 nl) could be controlled. The valve operation was investigated by monitoring the tip of the needle and pneumatic pressure simultaneously and it demonstrated very stable 'ON/OFF' operation to the pressure change.
Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.
2011-01-01
Hourly fluctuations in flow from Glen Canyon Dam were increased in an attempt to limit the population of nonnative rainbow trout Oncorhynchus mykiss in the Colorado River, Arizona, due to concerns about negative effects of nonnative trout on endangered native fishes. Controlled floods have also been conducted to enhance native fish habitat. We estimated that rainbow trout incubation mortality rates resulting from greater fluctuations in flow were 23-49% (2003 and 2004) compared with 5-11% under normal flow fluctuations (2006-2010). Effects of this mortality were apparent in redd excavations but were not seen in hatch date distributions or in the abundance of the age-0 population. Multiple lines of evidence indicated that a controlled flood in March 2008, which was intended to enhance native fish habitat, resulted in a large increase in early survival rates of age-0 rainbow trout. Age-0 abundance in July 2008 was over fourfold higher than expected given the number of viable eggs that produced these fish. A hatch date analysis indicated that early survival rates were much higher for cohorts that hatched about 1 month after the controlled flood (~April 15) relative to those that hatched before this date. The cohorts that were fertilized after the flood were not exposed to high flows and emerged into better-quality habitat with elevated food availability. Interannual differences in age-0 rainbow trout growth based on otolith microstructure supported this hypothesis. It is likely that strong compensation in survival rates shortly after emergence mitigated the impact of incubation losses caused by increases in flow fluctuations. Control of nonnative fish populations will be most effective when additional mortality is applied to older life stages after the majority of density-dependent mortality has occurred. Our study highlights the need to rigorously assess instream flow decisions through the evaluation of population-level responses.
Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems
Ströbel, Ulrich; Rose-Meierhöfer, Sandra; Öz, Hülya; Brunsch, Reiner
2013-01-01
Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. PMID:23765272
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
Ding, Aimin; Cao, Huling; Wang, Lihua; Chen, Jiangang; Wang, Jian; He, Bosheng
2016-12-01
Benign prostatic hyperplasia is a common progressive disease in aging men, which leads to a significant impact on daily lives of patients. Continuous bladder irrigation (CBI) is a supplementary option for preventing the adverse events following transurethral resection of the prostate (TURP). Regulation of the flow rate based on the color of drainage bag is significant to prevent the clot formation and retention, which is controlled manually at present. To achieve a better control of flow rate and reduce inappropriate flow rate-related adverse effects, we designed an automatic flow rate controller for CBI applied with wireless sensor and evaluated its clinical efficacy. The therapeutic efficacy was evaluated in patients receiving the novel automatic bladder irrigation post-TURP in the experimental group compared with controls receiving traditional bladder irrigation in the control group. A total of 146 patients were randomly divided into 2 groups-the experimental group (n = 76) and the control group (n = 70). The mean irrigation volume of the experimental group (24.2 ± 3.8 L) was significantly lower than that of the controls (54.6 ± 5.4 L) (P < 0.05). Patients treated with automatic irrigation device had significantly decreased incidence of clot retention (8/76) and cystospasm (12/76) compared to controls (21/70; 39/70, P < 0.05). There was no significant difference between the 2 groups with regard to irrigation time (28.6 ± 2.7 vs 29.5 ± 3.4 hours, P = 0.077). The study suggests that the automatic regulating device applied with wireless sensor for CBI is safe and effective for patients after TURP. However, studies with a large population of patients and a long-term follow-up should be conducted to validate our findings.
Rogus-Pulia, Nicole M.; Larson, Charles; Mittal, Bharat B; Pierce, Marge; Zecker, Steven; Kennelty, Korey; Kind, Amy; Connor, Nadine P.
2016-01-01
Purpose Patients treated with chemoradiation for head and neck cancer frequently develop dysphagia. Tissue damage to the oral tongue causing weakness and decreases in saliva production may contribute to dysphagia. Yet, effects of these variables on swallowing-related measures are unclear. The purpose of this study was (1) to determine effects of chemoradiation on tongue pressures, as a surrogate for strength, and salivary flow rates and (2) to elucidate relationships among tongue pressures, saliva production, and swallowing efficiency by bolus type. Methods and Materials 21 patients with head and neck cancer treated with chemoradiation were assessed before and after treatment and matched with 21 healthy control participants who did not receive chemoradiation. Each participant was given a questionnaire to rate dysphagia symptoms. Videofluoroscopic evaluation of swallowing was used to determine swallowing efficiency; the Saxon test measured salivary flow rate; and the Iowa Oral Performance Instrument (IOPI) was used for oral tongue maximum and endurance measures. Results Results revealed significantly lower tongue endurance measures for patients post-treatment as compared to controls (p=.012). Salivary flow rates also were lower compared to pre-treatment (p=.000) and controls (p=.000). Simple linear regression analyses showed that change in salivary flow rate was predictive of change in swallow efficiency measures from pre- to post-treatment for 1mL thin liquid (p=.017), 3mL nectar-thick liquid (p=.026), and 3mL standard barium pudding (p=.011) boluses. Conclusions Based on these findings, it appears that chemoradiation treatment affects tongue endurance and salivary flow rate and these changes may impact swallow efficiency. These factors should be considered when planning treatment for dysphagia. PMID:27492408
40 CFR 1065.545 - Validation of proportional flow control for batch sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the estimate, SEE, of the sample flow rate versus the total flow rate. For each test interval, demonstrate that SEE was less than or equal to 3.5% of the mean sample flow rate. (b) For any pair of flow meters, use recorded sample and total flow rates, where total flow rate means the raw exhaust flow rate...
Design and Implementation of Automatic Air Flow Rate Control System
NASA Astrophysics Data System (ADS)
Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal
2016-08-01
Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.
Impute DC link (IDCL) cell based power converters and control thereof
Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad
2016-04-26
Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.
Modeling of liquid flow in surface discontinuities
NASA Astrophysics Data System (ADS)
Lobanova, I. S.; Meshcheryakov, V. A.; Kalinichenko, A. N.
2018-01-01
Polymer composite and metallic materials have found wide application in various industries such as aviation, rocket, car manufacturing, ship manufacturing, etc. Many design elements need permanent quality control. Ensuring high quality and reliability of products is impossible without effective nondestructive testing methods. One of these methods is penetrant testing using penetrating substances based on liquid penetration into defect cavities. In this paper, we propose a model of liquid flow to determine the rates of filling the defect cavities with various materials and, based on this, to choose optimal control modes.
NASA Astrophysics Data System (ADS)
Benyamine, Mebirika; Aussillous, Pascale; Dalloz-Dubrujeaud, Blanche
2017-06-01
Silos are widely used in the industry. While empirical predictions of the flow rate, based on scaling laws, have existed for more than a century (Hagen 1852, translated in [1] - Beverloo et al. [2]), recent advances have be made on the understanding of the control parameters of the flow. In particular, using continuous modeling together with a mu(I) granular rheology seem to be successful in predicting the flow rate for large numbers of beads at the aperture (Staron et al.[3], [4]). Moreover Janda et al.[5] have shown that the packing fraction at the outlet plays an important role when the number of beads at the apeture decreases. Based on these considerations, we have studied experimentally the discharge flow of a granular media from a rectangular silo. We have varied two main parameters: the angle of the hopper, and the bulk packing fraction of the granular material by using bidisperse mixtures. We propose a simple physical model to describe the effect of these parameters, considering a continuous granular media with a dilatancy law at the outlet. This model predicts well the dependance of the flow rate on the hopper angle as well as the dependance of the flow rate on the fine mass fraction of a bidisperse mixture.
Li, Xin; Gao, Deli; Chen, Xuyue
2017-06-08
Hydraulic extended-reach limit (HERL) model of horizontal extended-reach well (ERW) can predict the maximum measured depth (MMD) of the horizontal ERW. The HERL refers to the well's MMD when drilling fluid cannot be normally circulated by drilling pump. Previous model analyzed the following two constraint conditions, drilling pump rated pressure and rated power. However, effects of the allowable range of drilling fluid flow rate (Q min ≤ Q ≤ Q max ) were not considered. In this study, three cases of HERL model are proposed according to the relationship between allowable range of drilling fluid flow rate and rated flow rate of drilling pump (Q r ). A horizontal ERW is analyzed to predict its HERL, especially its horizontal-section limit (L h ). Results show that when Q min ≤ Q r ≤ Q max (Case I), L h depends both on horizontal-section limit based on rated pump pressure (L h1 ) and horizontal-section limit based on rated pump power (L h2 ); when Q min < Q max < Q r (Case II), L h is exclusively controlled by L h1 ; while L h is only determined by L h2 when Q r < Q min < Q max (Case III). Furthermore, L h1 first increases and then decreases with the increase in drilling fluid flow rate, while L h2 keeps decreasing as the drilling fluid flow rate increases. The comprehensive model provides a more accurate prediction on HERL.
NASA Astrophysics Data System (ADS)
Dong, L.
2017-12-01
Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin
Evaluation of Xerostomia and salivary flow rate in Hashimoto's Thyroiditis.
Agha-Hosseini, Farzaneh; Shirzad, Nooshin; Moosavi, Mahdieh-Sadat
2016-01-01
One of the most common causes of hypothyroidism is Hashimoto's Thyroiditis (HT). Early detection of dry mouth is critical in preserving and promoting systemic and oral health. In this study we have assessed, for the first time, salivary function and xerostomia in HT patients who have not been involved with Sjögren's syndrome. HT was diagnosed in 40 patients based on clinical findings and positive anti-thyroid peroxidase antibodies (anti-TPO). Controls, matched by sex, age and body mass index (BMI), and with no history of thyroid disease, were selected. A questionnaire was used for diagnosis of xerostomia. Saliva samples were taken between 8 a.m. and 9 a.m., and at least 2 hours after the last intake of food or drink. The flow rate was calculated in milliliters per minute. Xerostomia was significantly higher in patients with HT. Unstimulated salivary flow rate was significantly lower in the HT group. Stimulated salivary flow rate was lower in HT group, but the difference was not significant. The patients with HT experienced xerostomia, and their salivary flow rate was diminished. Spitting the saliva then assessing salivary flow rate based on milliliter per minute is non-invasive, fast, and simple for chair-side diagnosis of dry mouth. Autoimmune diseases can be accompanied by salivary gland dysfunction. This may be due to the effect of cytokines in the autoimmune process or because of thyroid hormone dysfunctions.
Chau, Destiny F; Vasilopoulos, Terrie; Schoepf, Miriam; Zhang, Christina; Fahy, Brenda G
2016-09-01
Complex surgical and critically ill pediatric patients rely on syringe infusion pumps for precise delivery of IV medications. Low flow rates and in-line IV filter use may affect drug delivery. To determine the effects of an in-line filter to remove air and/or contaminants on syringe pump performance at low flow rates, we compared the measured rates with the programmed flow rates with and without in-line IV filters. Standardized IV infusion assemblies with and without IV filters (filter and control groups) attached to a 10-mL syringe were primed and then loaded onto a syringe pump and connected to a 16-gauge, 16-cm single-lumen catheter. The catheter was suspended in a normal saline fluid column to simulate the back pressure from central venous circulation. The delivered infusate was measured by gravimetric methods at predetermined time intervals, and flow rate was calculated. Experimental trials for initial programmed rates of 1.0, 0.8, 0.6, and 0.4 mL/h were performed in control and filter groups. For each trial, the flow rate was changed to double the initial flow rate and was then returned to the initial flow rate to analyze pump performance for titration of rates often required during medication administration. These conditions (initial rate, doubling of initial rate, and return to initial rate) were analyzed separately for steady-state flow rate and time to steady state, whereas their average was used for percent deviation analysis. Differences between control and filter groups were assessed using Student t tests with adjustment for multiplicity (using n = 3 replications per group). Mean time from 0 to initial flow (startup delay) was <1 minute in both groups with no statistical difference between groups (P = 1.0). The average time to reach steady-state flow after infusion startup or rate changes was not statistically different between the groups (range, 0.8-5.5 minutes), for any flow rate or part of the trial (initial rate, doubling of initial rate, and return to initial rate), although the study was underpowered to detect small time differences. Overall, the mean steady-state flow rate for each trial was below the programmed flow rate with negative mean percent deviations for each trial. In the 1.0-mL/h initial rate trial, the steady-state flow rate attained was lower in the filter than the control group for the initial rate (P = 0.04) and doubling of initial rate (P = 0.04) with a trend during the return to initial rate (P = 0.06), although this same effect was not observed when doubling the initial rate trials of 0.8 or 0.6 mL/h or any other rate trials compared with the control group. With low flow rates used in complex surgical and pediatric critically ill patients, the addition of IV filters did not confer statistically significant changes in startup delay, flow variability, or time to reach steady-state flow of medications administered by syringe infusion pumps. The overall flow rate was lower than programmed flow rate with or without a filter.
Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.
Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel
2012-04-01
The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.
Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan
2013-05-13
Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.
Constraints of nonresponding flows based on cross layers in the networks
NASA Astrophysics Data System (ADS)
Zhou, Zhi-Chao; Xiao, Yang; Wang, Dong
2016-02-01
In the active queue management (AQM) scheme, core routers cannot manage and constrain user datagram protocol (UDP) data flows by the sliding window control mechanism in the transport layer due to the nonresponsive nature of such traffic flows. However, the UDP traffics occupy a large part of the network service nowadays which brings a great challenge to the stability of the more and more complex networks. To solve the uncontrollable problem, this paper proposes a cross layers random early detection (CLRED) scheme, which can control the nonresponding UDP-like flows rate effectively when congestion occurs in the access point (AP). The CLRED makes use of the MAC frame acknowledgement (ACK) transmitting congestion information to the sources nodes and utilizes the back-off windows of the MAC layer throttling data rate. Consequently, the UDP-like flows data rate can be restrained timely by the sources nodes in order to alleviate congestion in the complex networks. The proposed CLRED can constrain the nonresponsive flows availably and make the communication expedite, so that the network can sustain stable. The simulation results of network simulator-2 (NS2) verify the proposed CLRED scheme.
Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel
2016-09-01
Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Reaction Kernel Structure of a Slot Jet Diffusion Flame in Microgravity
NASA Technical Reports Server (NTRS)
Takahashi, F.; Katta, V. R.
2001-01-01
Diffusion flame stabilization in normal earth gravity (1 g) has long been a fundamental research subject in combustion. Local flame-flow phenomena, including heat and species transport and chemical reactions, around the flame base in the vicinity of condensed surfaces control flame stabilization and fire spreading processes. Therefore, gravity plays an important role in the subject topic because buoyancy induces flow in the flame zone, thus increasing the convective (and diffusive) oxygen transport into the flame zone and, in turn, reaction rates. Recent computations show that a peak reactivity (heat-release or oxygen-consumption rate) spot, or reaction kernel, is formed in the flame base by back-diffusion and reactions of radical species in the incoming oxygen-abundant flow at relatively low temperatures (about 1550 K). Quasi-linear correlations were found between the peak heat-release or oxygen-consumption rate and the velocity at the reaction kernel for cases including both jet and flat-plate diffusion flames in airflow. The reaction kernel provides a stationary ignition source to incoming reactants, sustains combustion, and thus stabilizes the trailing diffusion flame. In a quiescent microgravity environment, no buoyancy-induced flow exits and thus purely diffusive transport controls the reaction rates. Flame stabilization mechanisms in such purely diffusion-controlled regime remain largely unstudied. Therefore, it will be a rigorous test for the reaction kernel correlation if it can be extended toward zero velocity conditions in the purely diffusion-controlled regime. The objectives of this study are to reveal the structure of the flame-stabilizing region of a two-dimensional (2D) laminar jet diffusion flame in microgravity and develop a unified diffusion flame stabilization mechanism. This paper reports the recent progress in the computation and experiment performed in microgravity.
Control-structure ratings on the Chicago Sanitary and Ship Canal near Lockport, Illinois
Straub, Timothy D.; Johnson, Kevin K.; Hortness, Jon E.; Duncker, James J.
2012-01-01
The U.S. Army Corps of Engineers and the Metropolitan Water Reclamation District of Greater Chicago regulate flows through control structures along the Lake Michigan lakefront and the Chicago Sanitary and Ship Canal (CSSC) for Lake Michigan diversion accounting, flood control, sanitary, and navigation purposes. This report documents the measurement and computation of flow through the Lockport Controlling Works (LCW) and the Lockport Powerhouse. This analysis aided in evaluation of the ratings at both structures, and the development of new ratings at the controlling works. The LCW structure consists of seven 30-feet (ft) wide sluice gates and is used to divert water from the CSSC and into the Des Plaines River. The flow regimes for the sluice gate included both free and submerged weir. Forty and 491 flow values from U.S. Geological Survey streamflow-gaging stations were used to develop equations describing free- and submerged-weir flow, respectively, through the sluice gates. The equations were developed for canal headwater elevations ranging from -7.0 to -10.5 ft Chicago City Datum (CCD), and tailwater (Des Plaines River at Lockport) to headwater (CSSC-LCW-Base) ratios ranging from 0.31 to 0.66. The Lockport Powerhouse structure consists of nine 9-ft wide by 14-ft high sluice gates and two 10-ft diameter turbines. Both tailwater and no-tailwater effect flow regimes occurred during nine measurements. Also, the canal headwater elevations ranged from -2.74 to -8.45 ft CCD, and the gates were configured six different ways during the measurements.
Coordinating IMC-PID and adaptive SMC controllers for a PEMFC.
Wang, Guo-Liang; Wang, Yong; Shi, Jun-Hai; Shao, Hui-He
2010-01-01
For a Proton Exchange Membrane Fuel Cell (PEMFC) power plant with a methanol reformer, the process parameters and power output are considered simultaneously to avoid violation of the constraints and to keep the fuel cell power plant safe and effective. In this paper, a novel coordinating scheme is proposed by combining an Internal Model Control (IMC) based PID Control and adaptive Sliding Mode Control (SMC). The IMC-PID controller is designed for the reformer of the fuel flow rate according to the expected first-order dynamic properties. The adaptive SMC controller of the fuel cell current has been designed using the constant plus proportional rate reaching law. The parameters of the SMC controller are adaptively tuned according to the response of the fuel flow rate control system. When the power output controller feeds back the current references to these two controllers, the coordinating controllers system works in a system-wide way. The simulation results of the PEMFC power plant demonstrate the effectiveness of the proposed method. 2009 ISA. Published by Elsevier Ltd. All rights reserved.
A longitudinal analysis of salivary flow in control subjects and older adults with type 2 diabetes.
Chávez, E M; Borrell, L N; Taylor, G W; Ship, J A
2001-02-01
Many diabetics complain of xerostomia, a condition that can affect oral health, nutritional status, and diet selection. This study's purposes were (1) to investigate the effect on salivary flow of type 2 diabetes and change in glycemic control in a group of older adults over time and (2) to compare flow rates with subjective complaints of xerostomia. A total of 39 older adults, 24 with type 2 diabetes and 15 who were nondiabetic (controls), aged 54-90 years, participated in a 1-year follow-up study. Diabetic status was determined by means of glycosylated hemoglobin (HbA1c) levels and 2-hour glucose tolerance tests. Poor glycemic control was defined as HbA1c > 9%. Unstimulated whole, unstimulated parotid, and stimulated parotid saliva flow rates were measured for all subjects by a single examiner at baseline and 1 year later. Each subject completed a standardized xerostomia questionnaire at every visit. Age, sex, and duration of diabetes did not adversely affect salivary flow rates. Subjects with poorly controlled diabetes had significantly lower stimulated parotid saliva flow rates at both visits. There were no significant changes in flow rates over time on the basis of diabetic status or glycemic control. Subjects with diabetes reported significantly more complaints of thirst but not of xerostomia at 1 year. These results suggest that older adults with poorly controlled diabetes may have impaired salivary flow in comparison with subjects with better controlled diabetes and nondiabetic subjects, yet they may not have concomitant xerostomic complaints. There were no significant changes in salivary flow rates or glycemic control over the 1-year period.
Functional Changes of Diaphragm Type Shunt Valves Induced by Pressure Pulsation
NASA Astrophysics Data System (ADS)
Lee, Chong-Sun; Suh, Chang-Min; Ra, Young-Shin
Shunt valves used to treat patients with hydrocephalus were tested to investigate influence of pressure pulsation on their flow control characteristics. Our focus was on flow dynamic and functional changes of the small and thin diaphragms in the valves that serve as the main flow control mechanism and are made from silicone elastomer. Firstly, pressure-flow control curves were compared under pulsed and steady flow (without pulsation) conditions. Secondly, functional changes of the valves were tested after a long-term continuous pulsation with a peristaltic pump. Thirdly, flushing procedures selectively conducted by neurosurgeons were simulated with a fingertip pressed on the dome of the valves. As 20cc/hr of flow rate was adjusted at a constant pressure, application of 40mmH2O of pressure pulse increased flow rate through shunt valves more than 60%. As a 90cm length silicone catheter was connected to the valve outlet, increase in the flow rate was substantially reduced to 17.5%. Pressure-flow control characteristics of some valves showed significant changes after twenty-eight days of pressure pulsation at 1.0 Hz under 50.0cc/hr of flow rate. Flushing simulation resulted in temporary decrease in the pressure level. It took three hours to fully recover the normal pressure-flow control characteristics after the flushing. Our results suggest that shunt valves with a thin elastic diaphragm as the main flow control mechanism are sensitive to intracranial pressure pulsation or pressure spikes enough to change their pressure-flow control characteristics.
Pressure independence of granular flow through an aperture.
Aguirre, M A; Grande, J G; Calvo, A; Pugnaloni, L A; Géminard, J-C
2010-06-11
We experimentally demonstrate that the flow rate of granular material through an aperture is controlled by the exit velocity imposed on the particles and not by the pressure at the base, contrary to what is often assumed in previous work. This result is achieved by studying the discharge process of a dense packing of monosized disks through an orifice. The flow is driven by a conveyor belt. This two-dimensional horizontal setup allows us to independently control the velocity at which the disks escape the horizontal silo and the pressure in the vicinity of the aperture. The flow rate is found to be proportional to the belt velocity, independent of the amount of disks in the container and, thus, independent of the pressure in the outlet region. In addition, this specific configuration makes it possible to get information on the system dynamics from a single image of the disks that rest on the conveyor belt after the discharge.
Pāhoehoe flow cooling, discharge, and coverage rates from thermal image chronometry
Dehn, Jonathan; Hamilton, Christopher M.; Harris, A. J. L.; Herd, Richard A.; James, M.R.; Lodato, Luigi; Steffke, Andrea
2007-01-01
Theoretically- and empirically-derived cooling rates for active pāhoehoe lava flows show that surface cooling is controlled by conductive heat loss through a crust that is thickening with the square root of time. The model is based on a linear relationship that links log(time) with surface cooling. This predictable cooling behavior can be used assess the age of recently emplaced sheet flows from their surface temperatures. Using a single thermal image, or image mosaic, this allows quantification of the variation in areal coverage rates and lava discharge rates over 48 hour periods prior to image capture. For pāhoehoe sheet flow at Kīlauea (Hawai`i) this gives coverage rates of 1–5 m2/min at discharge rates of 0.01–0.05 m3/s, increasing to ∼40 m2/min at 0.4–0.5 m3/s. Our thermal chronometry approach represents a quick and easy method of tracking flow advance over a three-day period using a single, thermal snap-shot.
Urban base flow with low impact development
Bhaskar, Aditi; Hogan, Dianna M.; Archfield, Stacey A.
2016-01-01
A novel form of urbanization, low impact development (LID), aims to engineer systems that replicate natural hydrologic functioning, in part by infiltrating stormwater close to the impervious surfaces that generate it. We sought to statistically evaluate changes in a base flow regime because of urbanization with LID, specifically changes in base flow magnitude, seasonality, and rate of change. We used a case study watershed in Clarksburg, Maryland, in which streamflow was monitored during whole-watershed urbanization from forest and agricultural to suburban residential development using LID. The 1.11-km2 watershed contains 73 infiltration-focused stormwater facilities, including bioretention facilities, dry wells, and dry swales. We examined annual and monthly flow during and after urbanization (2004–2014) and compared alterations to nearby forested and urban control watersheds. We show that total streamflow and base flow increased in the LID watershed during urbanization as compared with control watersheds. The LID watershed had more gradual storm recessions after urbanization and attenuated seasonality in base flow. These flow regime changes may be because of a reduction in evapotranspiration because of the overall decrease in vegetative cover with urbanization and the increase in point sources of recharge. Precipitation that may once have infiltrated soil, been stored in soil moisture to be eventually transpired in a forested landscape, may now be recharged and become base flow. The transfer of evapotranspiration to base flow is an unintended consequence to the water balance of LID.
Identifying Hydrogeological Controls of Catchment Low-Flow Dynamics Using Physically Based Modelling
NASA Astrophysics Data System (ADS)
Cochand, F.; Carlier, C.; Staudinger, M.; Seibert, J.; Hunkeler, D.; Brunner, P.
2017-12-01
Identifying key catchment characteristics and processes which control the hydrological response under low-flow conditions is important to assess the catchments' vulnerability to dry periods. In the context of a Swiss Federal Office for the Environment (FOEN) project, the low-flow behaviours of two mountainous catchments were investigated. These neighboring catchments are characterized by the same meteorological conditions, but feature completely different river flow dynamics. The Roethenbach is characterized by high peak flows and low mean flows. Conversely, the Langete is characterized by relatively low peak flows and high mean flow rates. To understand the fundamentally different behaviour of the two catchments, a physically-based surface-subsurface flow HydroGeoSphere (HGS) model for each catchment was developed. The main advantage of a physically-based model is its ability to realistically reproduce processes which play a key role during low-flow periods such as surface-subsurface interactions or evapotranspiration. Both models were calibrated to reproduce measured groundwater heads and the surface flow dynamics. Subsequently, the calibrated models were used to explore the fundamental physics that control hydrological processes during low-flow periods. To achieve this, a comparative sensitivity analysis of model parameters of both catchments was carried out. Results show that the hydraulic conductivity of the bedrock (and weathered bedrock) controls the catchment water dynamics in both models. Conversely, the properties of other geological formations such as alluvial aquifer or soil layer hydraulic conductivity or porosity play a less important role. These results change significantly our perception of the streamflow catchment dynamics and more specifically the way to assess catchment vulnerability to dry period. This study suggests that by analysing catchment scale bedrock properties, the catchment dynamics and the vulnerability to dry period may be assessed.
A site-specific slurry application technique on grassland and on arable crops.
Schellberg, Jürgen; Lock, Reiner
2009-01-01
There is evidence that unequal slurry application on agricultural land contributes to N losses to the environment. Heterogeneity within fields demands adequate response by means of variable rate application. A technique is presented which allows site-specific application of slurry on grassland and arable land based on pre-defined application maps. The system contains a valve controlling flow rate by an on-board PC. During operation, flow rate is measured and scaled against set point values given in the application map together with the geographic position of the site. The systems worked sufficiently precise at a flow rate between 0 and 25 l s(-1) and an offset of actual slurry flow from set point values between 0.33 and 0.67 l s(-1). Long-term experimentation is required to test if site-specific application de facto reduces N surplus within fields and so significantly contributes to the unloading of N in agricultural areas.
Kondoh, Kei; Atiba, Ayman; Nagase, Kiyoshi; Ogawa, Shizuko; Miwa, Takashi; Katsumata, Teruya; Ueno, Hiroshi; Uzuka, Yuji
2015-08-01
In the present study, we compare a new carbon dioxide (CO2) absorbent, Yabashi lime(®) with a conventional CO2 absorbent, Sodasorb(®) as a control CO2 absorbent for Compound A (CA) and Carbon monoxide (CO) productions. Four dogs were anesthetized with sevoflurane. Each dog was anesthetized with four preparations, Yabashi lime(®) with high or low-flow rate of oxygen and control CO2 absorbent with high or low-flow rate. CA and CO concentrations in the anesthetic circuit, canister temperature and carbooxyhemoglobin (COHb) concentration in the blood were measured. Yabashi lime(®) did not produce CA. Control CO2 absorbent generated CA, and its concentration was significantly higher in low-flow rate than a high-flow rate. CO was generated only in low-flow rate groups, but there was no significance between Yabashi lime(®) groups and control CO2 absorbent groups. However, the CO concentration in the circuit could not be detected (≤5ppm), and no change was found in COHb level. Canister temperature was significantly higher in low-flow rate groups than high-flow rate groups. Furthermore, in low-flow rate groups, the lower layer of canister temperature in control CO2 absorbent group was significantly higher than Yabashi lime(®) group. CA and CO productions are thought to be related to the composition of CO2 absorbent, flow rate and canister temperature. Though CO concentration is equal, it might be safer to use Yabashi lime(®) with sevoflurane anesthesia in dogs than conventional CO2 absorbent at the point of CA production.
Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...
2016-05-24
We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less
Effects of inter-packet spacing on the delivery of multimedia content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapadia, A. C.; Feng, A. C.; Feng, W. C.
2001-01-01
Streaming multimedia content with UDP has become increasingly popular over distributed systems such as the Internet. However, because UDP does not possess any congestion-control mechanism and most best-effort trafic is served by the congestion-controlled TCP, UDP flows steal bandwidth from TCP to the point that TCP flows can starve for network resources. Furthermore, such applications may cause the Internet infrastructure to eventually suffer from congestion collapse because UDP trafic does not self-regulate itself. To address this problem, next-generation Internet routers will implement active queue-management schemes to punish malicious traffic, e.g., non-adaptive UDP flows, and to the improve the performance ofmore » congestion-controlled traffic, e.g., TCP flows. The arrival of such routers will cripple the performance of today's UDP-based multimedia applications. So, in this paper, we introduce the notion of inter-packet spacing with control feedback to enable these UDP-based applications to perform well in the next-generation Internet while being adaptive and self-regulating. When compared with traditional UDP-based multimedia streaming, we illustrate that our counterintuitive, interpacket-spacing scheme with control feedback can reduce packet loss by 90% without adversely affecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, rate-adjusting congestion control.« less
Evaluation of Xerostomia and salivary flow rate in Hashimoto’s Thyroiditis
Shirzad, Nooshin; Moosavi, Mahdieh-Sadat
2016-01-01
Background One of the most common causes of hypothyroidism is Hashimoto´s Thyroiditis (HT). Early detection of dry mouth is critical in preserving and promoting systemic and oral health. In this study we have assessed, for the first time, salivary function and xerostomia in HT patients who have not been involved with Sjögren´s syndrome. Material and Methods HT was diagnosed in 40 patients based on clinical findings and positive anti-thyroid peroxidase antibodies (anti-TPO). Controls, matched by sex, age and body mass index (BMI), and with no history of thyroid disease, were selected. A questionnaire was used for diagnosis of xerostomia. Saliva samples were taken between 8 a.m. and 9 a.m., and at least 2 hours after the last intake of food or drink. The flow rate was calculated in milliliters per minute. Results Xerostomia was significantly higher in patients with HT. Unstimulated salivary flow rate was significantly lower in the HT group. Stimulated salivary flow rate was lower in HT group, but the difference was not significant. Conclusions The patients with HT experienced xerostomia, and their salivary flow rate was diminished. Spitting the saliva then assessing salivary flow rate based on milliliter per minute is non-invasive, fast, and simple for chair-side diagnosis of dry mouth. Autoimmune diseases can be accompanied by salivary gland dysfunction. This may be due to the effect of cytokines in the autoimmune process or because of thyroid hormone dysfunctions. Key words:Thyroid, salivary gland, xerostomia. PMID:26595829
Fabrication and Operation of Paper-Based Analytical Devices
NASA Astrophysics Data System (ADS)
Jiang, Xiao; Fan, Z. Hugh
2016-06-01
This review focuses on the fabrication techniques and operational components of microfluidic paper-based analytical devices (μPADs). Being low-cost, user-friendly, fast, and simple, μPADs have seen explosive growth in the literature in the last decade. Many different materials and technologies have been employed to fabricate μPADs for various applications, including those that employ patterning, the creation of physical boundaries, and three-dimensional structures. In addition to fabrication techniques, flow control and other operational components in μPADs are of great interest. These components enable μPADs to control flow rates, direct flow paths via valves, sequentially deliver reagents automatically, and display test results, all of which will make μPADs more suitable for point-of-care applications.
An empirical method for estimating travel times for wet volcanic mass flows
Pierson, Thomas C.
1998-01-01
Travel times for wet volcanic mass flows (debris avalanches and lahars) can be forecast as a function of distance from source when the approximate flow rate (peak discharge near the source) can be estimated beforehand. The near-source flow rate is primarily a function of initial flow volume, which should be possible to estimate to an order of magnitude on the basis of geologic, geomorphic, and hydrologic factors at a particular volcano. Least-squares best fits to plots of flow-front travel time as a function of distance from source provide predictive second-degree polynomial equations with high coefficients of determination for four broad size classes of flow based on near-source flow rate: extremely large flows (>1 000 000 m3/s), very large flows (10 000–1 000 000 m3/s), large flows (1000–10 000 m3/s), and moderate flows (100–1000 m3/s). A strong nonlinear correlation that exists between initial total flow volume and flow rate for "instantaneously" generated debris flows can be used to estimate near-source flow rates in advance. Differences in geomorphic controlling factors among different flows in the data sets have relatively little effect on the strong nonlinear correlations between travel time and distance from source. Differences in flow type may be important, especially for extremely large flows, but this could not be evaluated here. At a given distance away from a volcano, travel times can vary by approximately an order of magnitude depending on flow rate. The method can provide emergency-management officials a means for estimating time windows for evacuation of communities located in hazard zones downstream from potentially hazardous volcanoes.
The role of soil weathering and hydrology in regulating chemical fluxes from catchments (Invited)
NASA Astrophysics Data System (ADS)
Maher, K.; Chamberlain, C. P.
2010-12-01
Catchment-scale chemical fluxes have been linked to a number of different parameters that describe the conditions at the Earth’s surface, including runoff, temperature, rock type, vegetation, and the rate of tectonic uplift. However, many of the relationships relating chemical denudation to surface processes and conditions, while based on established theoretical principles, are largely empirical and derived solely from modern observations. Thus, an enhanced mechanistic basis for linking global solute fluxes to both surface processes and climate may improve our confidence in extrapolating modern solute fluxes to past and future conditions. One approach is to link observations from detailed soil-based studies with catchment-scale properties. For example, a number of recent studies of chemical weathering at the soil-profile scale have reinforced the importance of hydrologic processes in controlling chemical weathering rates. An analysis of data from granitic soils shows that weathering rates decrease with increasing fluid residence times and decreasing flow rates—over moderate fluid residence times, from 5 days to 10 years, transport-controlled weathering explains the orders of magnitude variation in weathering rates to a better extent than soil age. However, the importance of transport-controlled weathering is difficult to discern at the catchment scale because of the range of flow rates and fluid residence times captured by a single discharge or solute flux measurement. To assess the importance of transport-controlled weathering on catchment scale chemical fluxes, we present a model that links the chemical flux to the extent of reaction between the soil waters and the solids, or the fluid residence time. Different approaches for describing the distribution of fluid residence times within a catchment are then compared with the observed Si fluxes for a limited number of catchments. This model predicts high solute fluxes in regions with high run-off, relief, and long flow paths suggesting that the particular hydrologic setting of a landscape will be the underlying control on the chemical fluxes. As such, we reinterpret the large chemical fluxes that are observed in active mountain belts, like the Himalaya, to be primarily controlled by the long reactive flow paths created by the steep terrain coupled with high amounts of precipitation.
Ding, Aimin; Cao, Huling; Wang, Lihua; Chen, Jiangang; Wang, Jian; He, Bosheng
2016-01-01
Abstract Background: Benign prostatic hyperplasia is a common progressive disease in aging men, which leads to a significant impact on daily lives of patients. Continuous bladder irrigation (CBI) is a supplementary option for preventing the adverse events following transurethral resection of the prostate (TURP). Regulation of the flow rate based on the color of drainage bag is significant to prevent the clot formation and retention, which is controlled manually at present. To achieve a better control of flow rate and reduce inappropriate flow rate–related adverse effects, we designed an automatic flow rate controller for CBI applied with wireless sensor and evaluated its clinical efficacy. Methods: The therapeutic efficacy was evaluated in patients receiving the novel automatic bladder irrigation post-TURP in the experimental group compared with controls receiving traditional bladder irrigation in the control group. Results: A total of 146 patients were randomly divided into 2 groups—the experimental group (n = 76) and the control group (n = 70). The mean irrigation volume of the experimental group (24.2 ± 3.8 L) was significantly lower than that of the controls (54.6 ± 5.4 L) (P < 0.05). Patients treated with automatic irrigation device had significantly decreased incidence of clot retention (8/76) and cystospasm (12/76) compared to controls (21/70; 39/70, P < 0.05). There was no significant difference between the 2 groups with regard to irrigation time (28.6 ± 2.7 vs 29.5 ± 3.4 hours, P = 0.077). Conclusion: The study suggests that the automatic regulating device applied with wireless sensor for CBI is safe and effective for patients after TURP. However, studies with a large population of patients and a long-term follow-up should be conducted to validate our findings. PMID:28033276
Method and apparatus for controlling fluid flow
Miller, J.R.
1980-06-27
A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.
Mathematical model of an indirect action fuel flow controller for aircraft jet engines
NASA Astrophysics Data System (ADS)
Tudosie, Alexandru-Nicolae
2017-06-01
The paper deals with a fuel mass flow rate controller with indirect action for aircraft jet engines. The author has identified fuel controller's main parts and its operation mode, then, based on these observations, one has determined motion equations of each main part, which have built system's non-linear mathematical model. In order to realize a better study this model was linearised (using the finite differences method) and then adimensionalized. Based on this new form of the mathematical model, after applying Laplace transformation, the embedded system (controller+engine) was described by the block diagram with transfer functions. Some Simulink-Matlab simulations were performed, concerning system's time behavior for step input, which lead to some useful conclusions and extension possibilities.
Effect of rotation rate on the forces of a rotating cylinder: Simulation and control
NASA Technical Reports Server (NTRS)
Burns, John A.; Ou, Yuh-Roung
1993-01-01
In this paper we present numerical solutions to several optimal control problems for an unsteady viscous flow. The main thrust of this work is devoted to simulation and control of an unsteady flow generated by a circular cylinder undergoing rotary motion. By treating the rotation rate as a control variable, we can formulate two optimal control problems and use a central difference/pseudospectral transform method to numerically compute the optimal control rates. Several types of rotations are considered as potential controls, and we show that a proper synchronization of forcing frequency with the natural vortex shedding frequency can greatly influence the flow. The results here indicate that using moving boundary controls for such systems may provide a feasible mechanism for flow control.
Design of a microfluidic system for red blood cell aggregation investigation.
Mehri, R; Mavriplis, C; Fenech, M
2014-06-01
The purpose of this paper is to design a microfluidic apparatus capable of providing controlled flow conditions suitable for red blood cell (RBC) aggregation analysis. The linear velocity engendered from the controlled flow provides constant shear rates used to qualitatively analyze RBC aggregates. The design of the apparatus is based on numerical and experimental work. The numerical work consists of 3D numerical simulations performed using a research computational fluid dynamics (CFD) solver, Nek5000, while the experiments are conducted using a microparticle image velocimetry system. A Newtonian model is tested numerically and experimentally, then blood is tested experimentally under several conditions (hematocrit, shear rate, and fluid suspension) to be compared to the simulation results. We find that using a velocity ratio of 4 between the two Newtonian fluids, the layer corresponding to blood expands to fill 35% of the channel thickness where the constant shear rate is achieved. For blood experiments, the velocity profile in the blood layer is approximately linear, resulting in the desired controlled conditions for the study of RBC aggregation under several flow scenarios.
Fincke, James R.
2003-09-23
Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.
Extensional channel flow revisited: a dynamical systems perspective
Meseguer, Alvaro; Mellibovsky, Fernando; Weidman, Patrick D.
2017-01-01
Extensional self-similar flows in a channel are explored numerically for arbitrary stretching–shrinking rates of the confining parallel walls. The present analysis embraces time integrations, and continuations of steady and periodic solutions unfolded in the parameter space. Previous studies focused on the analysis of branches of steady solutions for particular stretching–shrinking rates, although recent studies focused also on the dynamical aspects of the problems. We have adopted a dynamical systems perspective, analysing the instabilities and bifurcations the base state undergoes when increasing the Reynolds number. It has been found that the base state becomes unstable for small Reynolds numbers, and a transitional region including complex dynamics takes place at intermediate Reynolds numbers, depending on the wall acceleration values. The base flow instabilities are constitutive parts of different codimension-two bifurcations that control the dynamics in parameter space. For large Reynolds numbers, the restriction to self-similarity results in simple flows with no realistic behaviour, but the flows obtained in the transition region can be a valuable tool for the understanding of the dynamics of realistic Navier–Stokes solutions. PMID:28690413
Coulomb-coupled quantum-dot thermal transistors
NASA Astrophysics Data System (ADS)
Zhang, Yanchao; Yang, Zhimin; Zhang, Xin; Lin, Bihong; Lin, Guoxing; Chen, Jincan
2018-04-01
A quantum-dot thermal transistor consisting of three Coulomb-coupled quantum dots coupled to the respective electronic reservoirs by tunnel contacts is established. The heat flows through the collector and emitter can be controlled by the temperature of the base. It is found that a small change in the base heat flow can induce a large heat flow change in the collector and emitter. The huge amplification factor can be obtained by optimizing the Coulomb interaction between the collector and the emitter or by decreasing the tunneling rate at the base. The proposed quantum-dot thermal transistor may open up potential applications in low-temperature solid-state thermal circuits at the nanoscale.
Xia, Yan; Li, Ming; Kučerka, Norbert; Li, Shutao; Nieh, Mu-Ping
2015-02-01
We have designed and constructed a temperature-controllable shear flow cell for in-situ study on flow alignable systems. The device has been tested in the neutron diffraction and has the potential to be applied in the small angle neutron scattering configuration to characterize the nanostructures of the materials under flow. The required sample amount is as small as 1 ml. The shear rate on the sample is controlled by the flow rate produced by an external pump and can potentially vary from 0.11 to 3.8 × 10(5) s(-1). Both unidirectional and oscillational flows are achievable by the setting of the pump. The instrument is validated by using a lipid bicellar mixture, which yields non-alignable nanodisc-like bicelles at low T and shear-alignable membranes at high T. Using the shear cell, the bicellar membranes can be aligned at 31 °C under the flow with a shear rate of 11.11 s(-1). Multiple high-order Bragg peaks are observed and the full width at half maximum of the "rocking curve" around the Bragg's condition is found to be 3.5°-4.1°. It is noteworthy that a portion of the membranes remains aligned even after the flow stops. Detailed and comprehensive intensity correction for the rocking curve has been derived based on the finite rectangular sample geometry and the absorption of the neutrons as a function of sample angle [See supplementary material at http://dx.doi.org/10.1063/1.4908165 for the detailed derivation of the absorption correction]. The device offers a new capability to study the conformational or orientational anisotropy of the solvated macromolecules or aggregates induced by the hydrodynamic interaction in a flow field.
Columbus Payloads Flow Rate Anomalies
NASA Technical Reports Server (NTRS)
Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.
2011-01-01
The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.
Compact Instruments Measure Helium-Leak Rates
NASA Technical Reports Server (NTRS)
Stout, Stephen; Immer, Christopher
2003-01-01
Compact, lightweight instruments have been developed for measuring small flows of helium and/or detecting helium leaks in solenoid valves when the valves are nominally closed. These instruments do not impede the flows when the valves are nominally open. They can be integrated into newly fabricated valves or retrofitted to previously fabricated valves. Each instrument includes an upstream and a downstream thermistor separated by a heater, plus associated analog and digital heater-control, signal- conditioning, and data-processing circuits. The thermistors and heater are off-the-shelf surface mount components mounted on a circuit board in the flow path. The operation of the instrument is based on a well-established thermal mass-flow-measurement technique: Convection by the flow that one seeks to measure gives rise to transfer of heat from the heater to the downstream thermistor. The temperature difference measured by the thermistors is directly related to the rate of flow. The calibration curve from temperature gradient to helium flow is closely approximated via fifth-order polynomial. A microprocessor that is part of the electronic circuitry implements the calibration curve to compute the flow rate from the thermistor readings.
Estimation of inlet flow rates for image-based aneurysm CFD models: where and how to begin?
Valen-Sendstad, Kristian; Piccinelli, Marina; KrishnankuttyRema, Resmi; Steinman, David A
2015-06-01
Patient-specific flow rates are rarely available for image-based computational fluid dynamics models. Instead, flow rates are often assumed to scale according to the diameters of the arteries of interest. Our goal was to determine how choice of inlet location and scaling law affect such model-based estimation of inflow rates. We focused on 37 internal carotid artery (ICA) aneurysm cases from the Aneurisk cohort. An average ICA flow rate of 245 mL min(-1) was assumed from the literature, and then rescaled for each case according to its inlet diameter squared (assuming a fixed velocity) or cubed (assuming a fixed wall shear stress). Scaling was based on diameters measured at various consistent anatomical locations along the models. Choice of location introduced a modest 17% average uncertainty in model-based flow rate, but within individual cases estimated flow rates could vary by >100 mL min(-1). A square law was found to be more consistent with physiological flow rates than a cube law. Although impact of parent artery truncation on downstream flow patterns is well studied, our study highlights a more insidious and potentially equal impact of truncation site and scaling law on the uncertainty of assumed inlet flow rates and thus, potentially, downstream flow patterns.
Formation flow rate control method in multi-layer production
NASA Astrophysics Data System (ADS)
Muzipov, H. N.; Akhmadulin, R. К; Bakanovskaya, L. N.
2018-05-01
The article describes a method of flow rate control of separate formations in multilayer production by noises frequency response (FR). The noise FR is converted into electrical signals scaled in proportion to the flow rates using secondary facilities. The pump noise is suggested to be reduced with the quarter-wave acoustic resonator working as an acoustic filter.
Stochastic cycle selection in active flow networks.
Woodhouse, Francis G; Forrow, Aden; Fawcett, Joanna B; Dunkel, Jörn
2016-07-19
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models.
Stochastic cycle selection in active flow networks
NASA Astrophysics Data System (ADS)
Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn
2016-11-01
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.
Stochastic cycle selection in active flow networks
Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn
2016-01-01
Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186
Flow-rate control for managing communications in tracking and surveillance networks
NASA Astrophysics Data System (ADS)
Miller, Scott A.; Chong, Edwin K. P.
2007-09-01
This paper describes a primal-dual distributed algorithm for managing communications in a bandwidth-limited sensor network for tracking and surveillance. The algorithm possesses some scale-invariance properties and adaptive gains that make it more practical for applications such as tracking where the conditions change over time. A simulation study comparing this algorithm with a priority-queue-based approach in a network tracking scenario shows significant improvement in the resulting track quality when using flow control to manage communications.
Real time closed loop control of an Ar and Ar/O2 plasma in an ICP
NASA Astrophysics Data System (ADS)
Faulkner, R.; Soberón, F.; McCarter, A.; Gahan, D.; Karkari, S.; Milosavljevic, V.; Hayden, C.; Islyaikin, A.; Law, V. J.; Hopkins, M. B.; Keville, B.; Iordanov, P.; Doherty, S.; Ringwood, J. V.
2006-10-01
Real time closed loop control for plasma assisted semiconductor manufacturing has been the subject of academic research for over a decade. However, due to process complexity and the lack of suitable real time metrology, progress has been elusive and genuine real time, multi-input, multi-output (MIMO) control of a plasma assisted process has yet to be successfully implemented in an industrial setting. A Splasma parameter control strategy T is required to be adopted whereby process recipes which are defined in terms of plasma properties such as critical species densities as opposed to input variables such as rf power and gas flow rates may be transferable between different chamber types. While PIC simulations and multidimensional fluid models have contributed considerably to the basic understanding of plasmas and the design of process equipment, such models require a large amount of processing time and are hence unsuitable for testing control algorithms. In contrast, linear dynamical empirical models, obtained through system identification techniques are ideal in some respects for control design since their computational requirements are comparatively small and their structure facilitates the application of classical control design techniques. However, such models provide little process insight and are specific to an operating point of a particular machine. An ideal first principles-based, control-oriented model would exhibit the simplicity and computational requirements of an empirical model and, in addition, despite sacrificing first principles detail, capture enough of the essential physics and chemistry of the process in order to provide reasonably accurate qualitative predictions. This paper will discuss the development of such a first-principles based, control-oriented model of a laboratory inductively coupled plasma chamber. The model consists of a global model of the chemical kinetics coupled to an analytical model of power deposition. Dynamics of actuators including mass flow controllers and exhaust throttle are included and sensor characteristics are also modelled. The application of this control-oriented model to achieve multivariable closed loop control of specific species e.g. atomic Oxygen and ion density using the actuators rf power, Oxygen and Argon flow rates, and pressure/exhaust flow rate in an Ar/O2 ICP plasma will be presented.
Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya
2010-01-01
The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions
Chemistry resolved kinetic flow modeling of TATB based explosives
NASA Astrophysics Data System (ADS)
Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark
2012-03-01
Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.
NASA Astrophysics Data System (ADS)
Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro
2018-04-01
Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload observations could be effective for detecting sediment supply as a consequence of debris flow events.
Shaila, Mulki; Pai, G Prakash; Shetty, Pushparaj
2013-01-01
To evaluate the salivary protein concentration in gingivitis and periodontitis patients and compare the parameters like salivary total protein, salivary albumin, salivary flow rate, pH, buffer capacity and flow rate in both young and elderly patients with simple methods. One hundred and twenty subjects were grouped based on their age as young and elderly. Each group was subgrouped (20 subjects) as controls, gingivitis and periodontitis. Unstimulated whole saliva was collected from patients and flow rate was noted down during collection of the sample. Salivary protein estimation was done using the Biuret method and salivary albumin was assessed using the Bromocresol green method. pH was estimated with a pHmeter and buffering capacity was analyzed with the titration method. Student's t-test, Fisher's test (ANOVA) and Tukey HSD (ANOVA) tests were used for statistical analysis. A very highly significant rise in the salivary total protein and albumin concentration was noted in gingivitis and periodontitis subjects of both young and elderly. An overall decrease in salivary flow rate was observed among the elderly, and also the salivary flow rate of women was significantly lower than that of men. Significant associations between salivary total protein and albumin in gingivitis and periodontitis were found with simple biochemical tests. A decrease in salivary flow rate among elderly and among women was noted.
Wade, Matthew; Isom, Ryan; Georgescu, Dan; Olson, Randall J
2007-06-01
To determine the efficacy of the Cruise Control surge-limiting device (Staar Surgical) with phacoemulsification machines known to have high levels of surge. John A. Moran Eye Center Clinical Laboratories. In an in vitro study, postocclusion anterior chamber depth changes were measured in fresh phakic human eye-bank eyes using the Alcon Legacy and Bausch & Lomb Millennium venturi machines in conjunction with the Staar Cruise Control device. Both machines were tested with 19-gauge non-Aspiration Bypass System tips at high-surge settings (500 mm Hg vacuum pressure, 75 cm bottle height, 40 mL/min flow rate for the Legacy) and low-surge settings (400 mm Hg vacuum pressure, 125 cm bottle height, 40 mL/min flow rate for the Legacy). Adjusted parameters of flow, vacuum, and irrigation were used based on previous studies to create identical conditions for each device tested. The effect of the Cruise Control device on aspiration rates was also tested with both machines at the low-surge settings. At the high setting with the addition of Cruise Control, surge decreased significantly with the Legacy but was too large to measure with the Millennium venturi. At the low setting with the addition of Cruise Control, surge decreased significantly with both machines. Surge with the Millennium decreased from more than 1.0 mm to a mean of 0.21 mm +/- 0.02 (SD) (P<.0001). Surge with the Legacy decreased from a mean of 0.09 +/- 0.02 mm to 0.05 +/- 0 mm, a 42.9% decrease (P<.0001). The Millennium had the highest surge and aspiration rate before Cruise Control and the greatest percentage decrease in the surge and aspiration rates as a result of the addition of Cruise Control. In the Legacy machine, the Cruise Control device had a statistically and clinically significant effect. Cruise Control had a large effect on fluidics as well as surge amplitude with the Millennium machine. The greater the flow or greater the initial surge, the greater the impact of the Cruise Control device.
Evaluation of exhaled nitric oxide in schoolchildren at different exhalation flow rates.
Pedroletti, Christophe; Zetterquist, Wilhelm; Nordvall, Lennart; Alving, Kjell
2002-09-01
Nitric oxide (NO) in exhaled air is believed to reflect allergic inflammation in the airways. Measured levels of exhaled NO vary with the exhaled flow rate, which therefore must be standardized. The aim of this study was to estimate the optimal exhalation flow rate when measuring NO in exhaled air. We studied 15 asthmatic children (8-18 y) with elevated NO levels and 15 age-matched controls and focused on how the quality of the NO curve profile, the discriminatory power, and the reproducibility were influenced by the exhalation flow rate. We used an on-line system for NO measurements at six different exhalation flow rates in the interval of 11-382 mL/s. The fraction of exhaled nitric oxide (FENO) was highly flow-dependent as was expected. Intermediate flow rates yielded a flat and stable NO plateau and were considerably easier to interpret than those obtained at the highest and lowest flow rates. The ratio of FENO between asthmatics and controls was lower at higher flow rates and a considerable overlap in NO values was demonstrated at all flow rates except 50 mL/s. The reproducibility was much lower at more extreme flow rates and was best at 50 mL/s. We conclude that a target exhalation flow rate of approximately 50 mL/s is to be preferred using the single-breath method for on-line NO measurements in schoolchildren.
Simulation of ground-water flow in glaciofluvial aquifers in the Grand Rapids area, Minnesota
Jones, Perry M.
2004-01-01
A calibrated steady-state, finite-difference, ground-waterflow model was constructed to simulate ground-water flow in three glaciofluvial aquifers, defined in this report as the upper, middle, and lower aquifers, in an area of about 114 mi2 surrounding the city of Grand Rapids in north-central Minnesota. The calibrated model will be used by Minnesota Department of Health and communities in the Grand Rapids area in the development of wellhead protection plans for their water supplies. The model was calibrated through comparison of simulated ground-water levels to measured static water levels in 351 wells, and comparison of simulated base-flow rates to estimated base-flow rates for reaches of the Mississippi and Prairie Rivers. Model statistics indicate that the model tends to overestimate ground-water levels. The root mean square errors ranged from +12.83 ft in wells completed in the upper aquifer to +19.10 ft in wells completed in the middle aquifer. Mean absolute differences between simulated and measured water levels ranged from +4.43 ft for wells completed in the upper aquifer to +9.25 ft for wells completed in the middle aquifer. Mean algebraic differences ranged from +9.35 ft for wells completed in the upper aquifer to +14.44 ft for wells completed in the middle aquifer, with the positive differences indicating that the simulated water levels were higher than the measured water levels. Percentage errors between simulated and estimated base-flow rates for the three monitored reaches all were less than 10 percent, indicating good agreement. Simulated ground-water levels were most sensitive to changes in general-head boundary conductance, indicating that this characteristic is the predominant model input variable controlling steady-state water-level conditions. Simulated groundwater flow to stream reaches was most sensitive to changes in horizontal hydraulic conductivity, indicating that this characteristic is the predominant model input variable controlling steady-state flow conditions.
CFD Based Prediction of Discharge Coefficient of Sonic Nozzle with Surface Roughness
NASA Astrophysics Data System (ADS)
Bagaskara, Agastya; Agoes Moelyadi, Mochammad
2018-04-01
Due to its simplicity and accuracy, sonic nozzle is widely used in gas flow measurement, gas flow meter calibration standard, and flow control. The nozzle obtains mass flow rate by measuring temperature and pressure in the inlet during choked flow condition and calculate the flow rate using the one-dimensional isentropic flow equation multiplied by a discharge coefficient, which takes into account multiple non-isentropic effects, which causes the reduction in mass flow. Proper determination of discharge coefficient is crucial to ensure the accuracy of mass flow measurement by the nozzle. Available analytical solution for the prediction of discharge coefficient assumes that the nozzle wall is hydraulically smooth which causes disagreement with experimental results. In this paper, the discharge coefficient of sonic nozzle is determined using computational fluid dynamics method by taking into account the roughness of the wall. It is found that the result shows better agreement with the experiment data compared to the analytical result.
Numerical Investigation of Flow in a Centrifugal Compressor
NASA Astrophysics Data System (ADS)
Grishin, Yu. A.; Bakulin, V. N.
2015-09-01
With the use of the domestic software suite of computational hydrodynamics Flow Vision based on application of the method of control volumes, numerical simulation of air composition and delivery by a centrifugal compressor employed for supercharging a piston engine has been carried out. The head-flow characteristics of the compressor, as well as the 3D fields of flow velocity and pressure distributions in the elements of the compressor flow passage, including the interblade channels of the impeller, have been obtained for various regimes. In the regimes of diminished air flow rate, surging phenomena are identified, characterized by a return flow. The application of the technique of numerical experiment will make it possible from here on to carry out design optimization of the compressor flow passage profile and thus to improve its basic characteristics — the degree of pressure increase, compressed air flow rate, and the efficiency — as well as to reduce the costs of the development and production of compressors.
MULTI-LABORATORY STUDY OF FLOW-INDUCED HEMOLYSIS USING THE FDA BENCHMARK NOZZLE MODEL
Herbertson, Luke H.; Olia, Salim E.; Daly, Amanda; Noatch, Christopher P.; Smith, William A.; Kameneva, Marina V.; Malinauskas, Richard A.
2015-01-01
Multilaboratory in vitro blood damage testing was performed on a simple nozzle model to determine how different flow parameters and blood properties affect device-induced hemolysis and to generate data for comparison with computational fluid dynamics-based predictions of blood damage as part of an FDA initiative for assessing medical device safety. Three independent laboratories evaluated hemolysis as a function of nozzle entrance geometry, flow rate, and blood properties. Bovine blood anticoagulated with acid citrate dextrose solution (2–80 h post-draw) was recirculated through nozzle-containing and paired nozzle-free control loops for 2 h. Controlled parameters included hematocrit (36 ± 1.5%), temperature (25°C), blood volume, flow rate, and pressure. Three nozzle test conditions were evaluated (n = 26–36 trials each): (i) sudden contraction at the entrance with a blood flow rate of 5 L/min, (ii) gradual cone at the entrance with a 6-L/min blood flow rate, and (iii) sudden-contraction inlet at 6 L/min. The blood damage caused only by the nozzle model was calculated by subtracting the hemolysis generated by the paired control loop test. Despite high intralaboratory variability, significant differences among the three test conditions were observed, with the sharp nozzle entrance causing the most hemolysis. Modified index of hemolysis (MIHnozzle) values were 0.292 ± 0.249, 0.021 ± 0.128, and 1.239 ± 0.667 for conditions i–iii, respectively. Porcine blood generated hemolysis results similar to those obtained with bovine blood. Although the interlaboratory hemolysis results are only applicable for the specific blood parameters and nozzle model used here, these empirical data may help to advance computational fluid dynamics models for predicting blood damage. PMID:25180887
Boundary-layer-ingesting inlet flow control system
NASA Technical Reports Server (NTRS)
Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)
2010-01-01
A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.
Label-free in-flow detection of single DNA molecules using glass nanopipettes.
Gong, Xiuqing; Patil, Amol V; Ivanov, Aleksandar P; Kong, Qingyuan; Gibb, Thomas; Dogan, Fatma; deMello, Andrew J; Edel, Joshua B
2014-01-07
With the view of enhancing the functionality of label-free single molecule nanopore-based detection, we have designed and developed a highly robust, mechanically stable, integrated nanopipette-microfluidic device which combines the recognized advantages of microfluidic systems and the unique properties/advantages of nanopipettes. Unlike more typical planar solid-state nanopores, which have inherent geometrical constraints, nanopipettes can be easily positioned at any point within a microfluidic channel. This is highly advantageous, especially when taking into account fluid flow properties. We show that we are able to detect and discriminate between DNA molecules of varying lengths when motivated through a microfluidic channel, upon the application of appropriate voltage bias across the nanopipette. The effects of applied voltage and volumetric flow rates have been studied to ascertain translocation event frequency and capture rate. Additionally, by exploiting the advantages associated with microfluidic systems (such as flow control and concomitant control over analyte concentration/presence), we show that the technology offers a new opportunity for single molecule detection and recognition in microfluidic devices.
Modeling connected and autonomous vehicles in heterogeneous traffic flow
NASA Astrophysics Data System (ADS)
Ye, Lanhang; Yamamoto, Toshiyuki
2018-01-01
The objective of this study was to develop a heterogeneous traffic-flow model to study the possible impact of connected and autonomous vehicles (CAVs) on the traffic flow. Based on a recently proposed two-state safe-speed model (TSM), a two-lane cellular automaton (CA) model was developed, wherein both the CAVs and conventional vehicles were incorporated in the heterogeneous traffic flow. In particular, operation rules for CAVs are established considering the new characteristics of this emerging technology, including autonomous driving through the adaptive cruise control and inter-vehicle connection via short-range communication. Simulations were conducted under various CAV-penetration rates in the heterogeneous flow. The impact of CAVs on the road capacity was numerically investigated. The simulation results indicate that the road capacity increases with an increase in the CAV-penetration rate within the heterogeneous flow. Up to a CAV-penetration rate of 30%, the road capacity increases gradually; the effect of the difference in the CAV capability on the growth rate is insignificant. When the CAV-penetration rate exceeds 30%, the growth rate is largely decided by the capability of the CAV. The greater the capability, the higher the road-capacity growth rate. The relationship between the CAV-penetration rate and the road capacity is numerically analyzed, providing some insights into the possible impact of the CAVs on traffic systems.
Coolant and ambient temperature control for chillerless liquid cooled data centers
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.
2016-02-02
Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.
Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto
2016-01-01
This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076
Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto
2016-05-01
This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.
Volcke, E I P; van Loosdrecht, M C M; Vanrolleghem, P A
2006-01-01
The combined SHARON-Anammox process for treating wastewater streams with high ammonia load is the focus of this paper. In particular, partial nitritation in the SHARON reactor should be performed to such an extent that a nitrite:ammonium ratio is generated which is optimal for full conversion in an Anammox process. In the simulation studies performed in this contribution, the nitrite:ammonium ratio produced in a SHARON process with fixed volume, as well as its effect on the subsequent Anammox process, is examined for realistic influent conditions and considering both direct and indirect pH effects on the SHARON process. Several possible operating modes for the SHARON reactor, differing in control strategies for O2, pH and the produced nitrite:ammonium ratio and based on regulating the air flow rate and/or acid/base addition, are systematically evaluated. The results are quantified through an operating cost index. Best results are obtained by means of cascade feedback control of the SHARON effluent nitrite:ammonium ratio through setting an O2 set-point that is tracked by adjusting the air flow rate, combined with single loop pH control through acid/base addition.
DOSE CONTROLLER FOR AGUACLARA WATER TREATMENT PLANTS
The expected results include a proven design for a gravity powered dose controller that works for calcium hypochlorite or aluminum sulfate solutions. The dose controller will be coupled with plant flow rate measuring systems that have compatible relationships between flow rate...
Bernardi, Maria José; Reis, Alessandra; Loguercio, Alessandro Dourado; Kehrig, Ruth; Leite, Mariana Ferreira; Nicolau, José
2007-01-01
This study measured the flow rate, pH and buffering capacity of saliva from well- and poorly metabolically controlled Type 2 diabetic patients in three cities of the southern part of Brazil, compared with healthy individuals from the same cities. Whole saliva was collected by mechanical stimulation and buffering capacity and glucose level were measured. Blood was collected after 12 hours fasting and glucose and glycosylated haemoglobin concentrations were determined. The data were analysed by one-way ANOVA and Student-Newman-Keuls (alpha= 0.05). The flow rate was lower in the Type 2 diabetic patients, regardless of whether they were well or poorly metabolically controlled, compared with healthy individuals (p < 0.05). Salivary glucose concentration was higher in both diabetic patient groups, i.e. well and poorly metabolically controlled, than in the control (p < 0.05). The metabolic control of hyperglycaemia was not sufficient to improve the salivary flow rate or the salivary glucose concentration.
Cremer, J E; Cunningham, V J; Seville, M P
1983-09-01
Studies were made on the relationships between the rate of glucose metabolism, the transport of glucose between plasma and brain, cerebral blood flow, and blood content. Conscious control rats were compared with rats with intense tremors induced with cismethrin. The influence of plasma glucose concentration was studied by fasting some animals overnight prior to the induction of tremors. Mean plasma glucose was 8.83 mM in controls, 12.57 mM in fed rats with tremors, and 4.94 mM in rats fasted overnight prior to induction of tremors. Of 12 brain regions studied, nine showed an increased rate of glucose utilization in both fed and fasted trembling rats. Cerebellum had the highest percentage increase (200%). Rates of unidirectional glucose influx in fed trembling rats were significantly greater than those in controls in eight regions. In fasted animals, rates were the same as in controls, except in cerebellum, where it was 1.6 times higher. These high rates of glucose influx at low plasma glucose concentrations were indicative of a change in kinetic parameters of glucose transport. Unidirectional glucose influx rates were transformed to estimates of maximal transport rates (Tmax), based on the Michaelis-Menten equation. Average plasma glucose concentrations in regional capillaries (c) were calculated and shown to be maintained at values close to arterial plasma glucose concentrations (Ca), in all brain regions of each group. In trembling rats, Tmax for each brain region was higher than that in controls. In fasted rats with tremors, Tmax was higher in several brain regions than in fed rats. Tmax in cerebellum was 3.37, 4.71, and 7.89 mumol g-1 min-1 in control, fed trembling, and fasted trembling rats, respectively. Blood flow increased significantly in all regions in rats with tremors and was higher in fasted than in fed animals. There was only a weak correlation between blood flow and Tmax. Blood content of several regions increased in rats with tremors, and there was a strong correlation between Tmax and tissue blood volume. Results are consistent with localized regulatory links between blood flow, capillary surface area, and glucose transport in response to metabolic demand and hypoglycaemia. These involve changes in the linear velocity of blood through capillaries and in the extent of capillary recruitment.
Salivary flow rate and xerostomia in patients with type I and II diabetes mellitus
Hoseini, Amineh; Mirzapour, Ali; Bijani, Ali; Shirzad, Atena
2017-01-01
Background Diabetes mellitus is one of the most prevalent metabolic diseases, with complications such as decreased salivary flow rate and xerostomia. Objective This study aimed to determine the salivary flow rate and xerostomia in type I and II diabetic patients in comparison with healthy controls. Methods This case-control study was performed on diabetic patients of a private office in Babol, Iran, between May 2015 and October 2016. This study involved two study groups (type I and II diabetes, with 40 in each group) and two control groups (control I and II, with 35 in each group) which were age- and sex-matched with the related study groups. They were all selected through simple sampling. Unstimulated whole saliva was collected through Navazesh method and the salivary flow rate was measured (ml/min). Xerostomia was evaluated via Fox’s test. Moreover, the patients’ data were recorded including age, sex, disease duration, type of diabetes, fasting blood glucose (FBG) and HbA1C. The obtained data were statistically analyzed by using SPSS version 17. Independent-samples t-test, Chi-square, Pearson correlation and multiple comparison post-hoc tests were employed as appropriated. p<0.05 was considered significant. Results The mean salivary flow rate in type I diabetics (0.35±0.11 ml/min) was lower than that in control I (0.50±0.07 ml/min) (p=0.01). The same difference was observed between type II diabetics (0.37±0.13 ml/min) and control II groups (0.47±0.11 ml/min) (p=0.01). No significant difference was observed in the salivary flow rate between type I and II diabetics (p=0.345). Furthermore, xerostomia was higher in type I (2.70±2.50, 1.17±1.60) and II (2.65±2.20–1.62±1.50) diabetics compared with the related control groups (p=0.01), (p=0.02). Conclusion Type I, II diabetic patients revealed lower salivary flow rate and higher xerostomia compared with healthy controls. The salivary flow rate and xerostomia had inverse correlation. PMID:29038704
Salivary flow rate and xerostomia in patients with type I and II diabetes mellitus.
Hoseini, Amineh; Mirzapour, Ali; Bijani, Ali; Shirzad, Atena
2017-09-01
Diabetes mellitus is one of the most prevalent metabolic diseases, with complications such as decreased salivary flow rate and xerostomia. This study aimed to determine the salivary flow rate and xerostomia in type I and II diabetic patients in comparison with healthy controls. This case-control study was performed on diabetic patients of a private office in Babol, Iran, between May 2015 and October 2016. This study involved two study groups (type I and II diabetes, with 40 in each group) and two control groups (control I and II, with 35 in each group) which were age- and sex-matched with the related study groups. They were all selected through simple sampling. Unstimulated whole saliva was collected through Navazesh method and the salivary flow rate was measured (ml/min). Xerostomia was evaluated via Fox's test. Moreover, the patients' data were recorded including age, sex, disease duration, type of diabetes, fasting blood glucose (FBG) and HbA1C. The obtained data were statistically analyzed by using SPSS version 17. Independent-samples t-test, Chi-square, Pearson correlation and multiple comparison post-hoc tests were employed as appropriated. p<0.05 was considered significant. The mean salivary flow rate in type I diabetics (0.35±0.11 ml/min) was lower than that in control I (0.50±0.07 ml/min) (p=0.01). The same difference was observed between type II diabetics (0.37±0.13 ml/min) and control II groups (0.47±0.11 ml/min) (p=0.01). No significant difference was observed in the salivary flow rate between type I and II diabetics (p=0.345). Furthermore, xerostomia was higher in type I (2.70±2.50, 1.17±1.60) and II (2.65±2.20-1.62±1.50) diabetics compared with the related control groups (p=0.01), (p=0.02). Type I, II diabetic patients revealed lower salivary flow rate and higher xerostomia compared with healthy controls. The salivary flow rate and xerostomia had inverse correlation.
Critical capillary channel flow
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.
The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index D considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies result in a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate. It may serve as a road map for open capillary channel flow control.
Proportional mechanical ventilation through PWM driven on/off solenoid valve.
Sardellitti, I; Cecchini, S; Silvestri, S; Caldwell, D G
2010-01-01
Proportional strategies for artificial ventilation are the most recent form of synchronized partial ventilatory assistance and intra-breath control techniques available in clinical practice. Currently, the majority of commercial ventilators allowing proportional ventilation uses proportional valves to generate the flow rate pattern. This paper proposes on-off solenoid valves for proportional ventilation given their small size, low cost and short switching time, useful for supplying high frequency ventilation. A new system based on a novel fast switching driver circuit combined with on/off solenoid valve is developed. The average short response time typical of onoff solenoid valves was further reduced through the driving circuit for the implementation of PWM control. Experimental trials were conducted for identifying the dynamic response of the PWM driven on/off valve and for verifying its effectiveness in generating variable-shaped ventilatory flow rate patterns. The system was able to smoothly follow the reference flow rate patterns also changing in time intervals as short as 20 ms, achieving a flow rate resolution up to 1 L/min and repeatability in the order of 0.5 L/min. Preliminary results showed the feasibility of developing a stand alone portable device able to generate both proportional and high frequency ventilation by only using on-off solenoid valves.
A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions
Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène
2017-01-01
The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition. PMID:29036888
A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions.
Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène
2017-10-14
The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition.
Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitello, P A; Fried, L E; Howard, W M
2011-07-21
Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonationmore » wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.« less
W. E. Dietrich; J. McKean; D. Bellugi; T. Perron
2007-01-01
Shallow landslides on steep slopes often mobilize as debris flows. The size of the landslide controls the initial size of the debris flows, defines the sediment discharge to the channel network, affects rates and scales of landform development, and influences the relative hazard potential. Currently the common practice in digital terrain-based models is to set the...
Fast packet switching algorithms for dynamic resource control over ATM networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, R.P.; Keattihananant, P.; Chang, T.
1996-12-01
Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types ofmore » schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.« less
SDTCP: Towards Datacenter TCP Congestion Control with SDN for IoT Applications.
Lu, Yifei; Ling, Zhen; Zhu, Shuhong; Tang, Ling
2017-01-08
The Internet of Things (IoT) has gained popularity in recent years. Today's IoT applications are now increasingly deployed in cloud platforms to perform Big Data analytics. In cloud data center networks (DCN), TCP incast usually happens when multiple senders simultaneously communicate with a single receiver. However, when TCP incast happens, DCN may suffer from both throughput collapse for TCP burst flows and temporary starvation for TCP background flows. In this paper, we propose a software defined network (SDN)-based TCP congestion control mechanism, referred to as SDTCP, to leverage the features, e.g., centralized control methods and the global view of the network, in order to solve the TCP incast problems. When we detect network congestion on an OpenFlow switch, our controller can select the background flows and reduce their bandwidth by adjusting the advertised window of TCP ACK packets of the corresponding background flows so as to reserve more bandwidth for burst flows. SDTCP is transparent to the end systems and can accurately decelerate the rate of background flows by leveraging the global view of the network gained via SDN. The experiments demonstrate that our SDTCP can provide high tolerance for burst flows and achieve better flow completion time for short flows. Therefore, SDTCP is an effective and scalable solution for the TCP incast problem.
Extraction of long-chain fatty acids in isolated rat heart during acute low-flow ischemia.
Richter, W S; Fischer, S; Ernst, N; Munz, D L
2001-07-01
Although beta-oxidation of fatty acids is suppressed rapidly during ischemia, the behavior of fatty acid extraction at different flow rates is incompletely understood. This study assessed the relationship between flow and extraction of (123)I-iodophenylpentadecanoic acid (IPPA) in the isolated heart model, especially at low flow. Isolated hearts from male Wistar rats (n = 15) were subjected to retrograde perfusion with constant flow (Krebs Henseleit solution containing 10 mmol/L glucose). A latex balloon in the left ventricle allowed isovolumetric contractions and ventricular pressure measurements. The extraction of (123)I-IPPA was assessed with the indicator dilution technique and (99m)Tc-albumin as the intravascular reference. The flow was either increased from the control flow (8 mL/min) until 300% or reduced until 10%. (123)I-IPPA extraction was measured three times before and 10 min after flow alteration. The tracer uptake was estimated from the product of net extraction and flow. The mean (123)I-IPPA extraction at the control flow (third measurement) was 51.6% +/- 2.8%. Between flow rates of approximately 25% and 300%, (123)I-IPPA extraction increased exponentially at decreasing flow rates. At flow rates < or =25% of the control flow, (123)I-IPPA extraction was exponentially higher than predicted. (123)I-IPPA uptake and flow changed largely in parallel. During low flow, the rate-pressure product showed the expected decline (perfusion-contraction matching). The extraction of (123)I-IPPA is preserved and slightly increased (relative to flow) during acute low-flow ischemia.
Field Assessment of A Variable-rate Aerial Application System
USDA-ARS?s Scientific Manuscript database
Several experiments were conducted to evaluate the system response of a variable-rate aerial application controller to changing flow rates. The research is collaboration between the USDA, ARS, APTRU and Houma Avionics, USA, manufacturer of a widely used flow controller designed for agricultural airc...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Seong Lee
Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see whichmore » factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75 microns) under open environment, two factors were that considered as the affecting factors. They were the open rate and observation ranges. In this experiment, there was no significant effect on the lower limit. On the upper limit, the observation range had a significant effect. In addition, the interaction of open rate and observation range had a significant effect for the source of variation with 95% of confidence based on analysis of variance (ANOVA) results.« less
Waewsak, Chaiwat; Nopharatana, Annop; Chaiprasert, Pawinee
2010-01-01
Based on the developed neural-fuzzy control system for anaerobic hybrid reactor (AHR) in wastewater treatment and biogas production, the neural network with backpropagation algorithm for prediction of the variables pH, alkalinity (Alk) and total volatile acids (TVA) at present day time t was used as input data for the fuzzy logic to calculate the influent feed flow rate that was applied to control and monitor the process response at different operations in the initial, overload influent feeding and the recovery phases. In all three phases, this neural-fuzzy control system showed great potential to control AHR in high stability and performance and quick response. Although in the overloading operation phase II with two fold calculating influent flow rate together with a two fold organic loading rate (OLR), this control system had rapid response and was sensitive to the intended overload. When the influent feeding rate was followed by the calculation of control system in the initial operation phase I and the recovery operation phase III, it was found that the neural-fuzzy control system application was capable of controlling the AHR in a good manner with the pH close to 7, TVA/Alk < 0.4 and COD removal > 80% with biogas and methane yields at 0.45 and 0.30 m3/kg COD removed.
Gao, Yuqin; Yuan, Yu; Wang, Huaizhi; Schmidt, Arthur R; Wang, Kexuan; Ye, Liu
2017-05-01
The urban agglomeration polders type of flood control pattern is a general flood control pattern in the eastern plain area and some of the secondary river basins in China. A HEC-HMS model of Qinhuai River basin based on the flood control pattern was established for simulating basin runoff, examining the impact of urban agglomeration polders on flood events, and estimating the effects of urbanization on hydrological processes of the urban agglomeration polders in Qinhuai River basin. The results indicate that the urban agglomeration polders could increase the peak flow and flood volume. The smaller the scale of the flood, the more significant the influence of the polder was to the flood volume. The distribution of the city circle polder has no obvious impact on the flood volume, but has effect on the peak flow. The closer the polder is to basin output, the smaller the influence it has on peak flows. As the level of urbanization gradually improving of city circle polder, flood volumes and peak flows gradually increase compared to those with the current level of urbanization (the impervious rate was 20%). The potential change in flood volume and peak flow with increasing impervious rate shows a linear relationship.
Tuning-free controller to accurately regulate flow rates in a microfluidic network
NASA Astrophysics Data System (ADS)
Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun
2016-03-01
We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.
Tuning-free controller to accurately regulate flow rates in a microfluidic network
Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun
2016-01-01
We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587
Dynamic power flow controllers
Divan, Deepakraj M.; Prasai, Anish
2017-03-07
Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.
Creating fast flow channels in paper fluidic devices to control timing of sequential reactions.
Jahanshahi-Anbuhi, Sana; Chavan, Puneet; Sicard, Clémence; Leung, Vincent; Hossain, S M Zakir; Pelton, Robert; Brennan, John D; Filipe, Carlos D M
2012-12-07
This paper reports the development of a method to control the flow rate of fluids within paper-based microfluidic analytical devices. We demonstrate that by simply sandwiching paper channels between two flexible films, it is possible to accelerate the flow of water through paper by over 10-fold. The dynamics of this process are such that the height of the liquid is dependent on time to the power of 1/3. This dependence was validated using three different flexible films (with markedly different contact angles) and three different fluids (water and two silicon oils with different viscosities). These covered channels provide a low-cost method for controlling the flow rate of fluid in paper channels, and can be added following printing of reagents to control fluid flow in selected fluidic channels. Using this method, we redesigned a previously published bidirectional lateral flow pesticide sensor to allow more rapid detection of pesticides while eliminating the need to run the assay in two stages. The sensor is fabricated with sol-gel entrapped reagents (indoxyl acetate in a substrate zone and acetylcholinesterase, AChE, in a sensing zone) present in an uncovered "slow" flow channel, with a second, covered "fast" channel used to transport pesticide samples to the sensing region through a simple paper-flap valve. In this manner, pesticides reach the sensing region first to allow preincubation, followed by delivery of the substrate to generate a colorimetric signal. This format results in a uni-directional device that detects the presence of pesticides two times faster than the original bidirectional sensors.
An Ejector Air Intake Design Method for a Novel Rocket-Based Combined-Cycle Rocket Nozzle
NASA Astrophysics Data System (ADS)
Waung, Timothy S.
Rocket-based combined-cycle (RBCC) vehicles have the potential to reduce launch costs through the use of several different air breathing engine cycles, which reduce fuel consumption. The rocket-ejector cycle, in which air is entrained into an ejector section by the rocket exhaust, is used at flight speeds below Mach 2. This thesis develops a design method for an air intake geometry around a novel RBCC rocket nozzle design for the rocket-ejector engine cycle. This design method consists of a geometry creation step in which a three-dimensional intake geometry is generated, and a simple flow analysis step which predicts the air intake mass flow rate. The air intake geometry is created using the rocket nozzle geometry and eight primary input parameters. The input parameters are selected to give the user significant control over the air intake shape. The flow analysis step uses an inviscid panel method and an integral boundary layer method to estimate the air mass flow rate through the intake geometry. Intake mass flow rate is used as a performance metric since it directly affects the amount of thrust a rocket-ejector can produce. The design method results for the air intake operating at several different points along the subsonic portion of the Ariane 4 flight profile are found to under predict mass flow rate by up to 8.6% when compared to three-dimensional computational fluid dynamics simulations for the same air intake.
Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives.
Baigl, Damien
2012-10-07
Using light to control liquid motion is a new paradigm for the actuation of microfluidic systems. We review here the different principles and strategies to induce or control liquid motion using light, which includes the use of radiation pressure, optical tweezers, light-induced wettability gradients, the thermocapillary effect, photosensitive surfactants, the chromocapillary effect, optoelectrowetting, photocontrolled electroosmotic flows and optical dielectrophoresis. We analyze the performance of these approaches to control using light many kinds of microfluidic operations involving discrete pL- to μL-sized droplets (generation, driving, mixing, reaction, sorting) or fluid flows in microchannels (valve operation, injection, pumping, flow rate control). We show that a complete toolbox is now available to control microfluidic systems by light. We finally discuss the perspectives of digital optofluidics as well as microfluidics based on all optical fluidic chips and optically reconfigurable devices.
Lykov, Kirill; Li, Xuejin; Lei, Huan; ...
2015-08-28
When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and R- BCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain themore » flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon valida- tion of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the \\all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Lastly, we demonstrated the new methodology for simulating blood flow in ves- sels with multiple inlets and outlets, constructed using an angiogenesis model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lykov, Kirill; Li, Xuejin; Lei, Huan
When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and R- BCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain themore » flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon valida- tion of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the \\all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Lastly, we demonstrated the new methodology for simulating blood flow in ves- sels with multiple inlets and outlets, constructed using an angiogenesis model.« less
Lykov, Kirill; Li, Xuejin; Lei, Huan; Pivkin, Igor V; Karniadakis, George Em
2015-08-01
When blood flows through a bifurcation, red blood cells (RBCs) travel into side branches at different hematocrit levels, and it is even possible that all RBCs enter into one branch only, leading to a complete separation of plasma and RBCs. To quantify this phenomenon via particle-based mesoscopic simulations, we developed a general framework for open boundary conditions in multiphase flows that is effective even for high hematocrit levels. The inflow at the inlet is duplicated from a fully developed flow generated in a pilot simulation with periodic boundary conditions. The outflow is controlled by adaptive forces to maintain the flow rate and velocity gradient at fixed values, while the particles leaving the arteriole at the outlet are removed from the system. Upon validation of this approach, we performed systematic 3D simulations to study plasma skimming in arterioles of diameters 20 to 32 microns. For a flow rate ratio 6:1 at the branches, we observed the "all-or-nothing" phenomenon with plasma only entering the low flow rate branch. We then simulated blood-plasma separation in arteriolar bifurcations with different bifurcation angles and same diameter of the daughter branches. Our simulations predict a significant increase in RBC flux through the main daughter branch as the bifurcation angle is increased. Finally, we demonstrated the effectiveness of the new methodology in simulations of blood flow in vessels with multiple inlets and outlets, constructed using an angiogenesis model.
Air-flow regulation system for a coal gasifier
Fasching, George E.
1984-01-01
An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.
40 CFR 1066.125 - Data updating, recording, and control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... minimum recording frequency, such as for sample flow rates from a CVS that does not have a heat exchanger... exhaust flow rate from a CVS with a heat exchanger upstream of the flow measurement 1 Hz. 40 CFR 1065.545§ 1066.425 Diluted exhaust flow rate from a CVS without a heat exchanger upstream of the flow measurement...
An alternative arrangement of metered dosing fluid using centrifugal pump
NASA Astrophysics Data System (ADS)
Islam, Md. Arafat; Ehsan, Md.
2017-06-01
Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for industries in Bangladesh and have been implemented in two salt iodization plants at Narayangang.
40 CFR 63.1366 - Monitoring and inspection requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... scenario is implemented based on process knowledge and representative operating data. The procedures used... control scenarios in paragraphs (b)(1)(ii) through (xii) of this section, and are summarized in Table 3 of... also be monitored once a day. The minimum scrubber liquid flow rate or pressure drop shall be based on...
[Feasibility Study on Digital Signal Processor and Gear Pump of Uroflowmeter Calibration Device].
Yuan, Qing; Ji, Jun; Gao, Jiashuo; Wang, Lixin; Xiao, Hong
2016-08-01
It will cause hidden trouble on clinical application if the uroflowmeter is out of control.This paper introduces a scheme of uroflowmeter calibration device based on digital signal processor(DSP)and gear pump and shows studies of its feasibility.According to the research plan,we analyzed its stability,repeatability and linearity by building a testing system and carried out experiments on it.The flow test system is composed of DSP,gear pump and other components.The test results showed that the system could produce a stable water flow with high precision of repeated measurement and different flow rate.The test system can calibrate the urine flow rate well within the range of 9~50mL/s which has clinical significance,and the flow error is less than 1%,which meets the technical requirements of the calibration apparatus.The research scheme of uroflowmeter calibration device on DSP and gear pump is feasible.
Kastner, Elisabeth; Kaur, Randip; Lowry, Deborah; Moghaddam, Behfar; Wilkinson, Alexander; Perrie, Yvonne
2014-12-30
Microfluidics has recently emerged as a new method of manufacturing liposomes, which allows for reproducible mixing in miliseconds on the nanoliter scale. Here we investigate microfluidics-based manufacturing of liposomes. The aim of these studies was to assess the parameters in a microfluidic process by varying the total flow rate (TFR) and the flow rate ratio (FRR) of the solvent and aqueous phases. Design of experiment and multivariate data analysis were used for increased process understanding and development of predictive and correlative models. High FRR lead to the bottom-up synthesis of liposomes, with a strong correlation with vesicle size, demonstrating the ability to in-process control liposomes size; the resulting liposome size correlated with the FRR in the microfluidics process, with liposomes of 50 nm being reproducibly manufactured. Furthermore, we demonstrate the potential of a high throughput manufacturing of liposomes using microfluidics with a four-fold increase in the volumetric flow rate, maintaining liposome characteristics. The efficacy of these liposomes was demonstrated in transfection studies and was modelled using predictive modeling. Mathematical modelling identified FRR as the key variable in the microfluidic process, with the highest impact on liposome size, polydispersity and transfection efficiency. This study demonstrates microfluidics as a robust and high-throughput method for the scalable and highly reproducible manufacture of size-controlled liposomes. Furthermore, the application of statistically based process control increases understanding and allows for the generation of a design-space for controlled particle characteristics. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodgers, D. W.; Potter, K. E.; Shervais, J. W.; Champion, D. E.; Duncan, R. A.
2013-12-01
Project Hotspot's Kimama drill hole on the Snake River Plain, Idaho recovered a 1912 m thick section of basalt core that ranges in age from ~700 ka to at least 6.14 Ma, based on five 40Ar/39Ar analyses and twenty paleomagnetic age assignments. Fifty-four flow groups comprising 510 individual flows were defined, yielding an average recurrence interval of ~11,400 years between flows. Age-depth analysis indicate that, over thicknesses >150 m and age spans >500 k.y., accumulation rates were constant at 30 m/100 k.y. The existence and persistence of this linear accumulation rate for greater than 5 m.y. documents an external tectonic control on eruption dynamics. One conceptual model relates accumulation rates to horizontal crustal strain, such that far-field extension rate controls the periodicity of dikes that feed basalt flows. In this model, each of the 54 flow groups would have a deep-seated, relatively wide (1-10m) dike that branches upward into a network of narrow (10-100 cm) dikes feeding individual lava flows. Assuming an east-west lateral lava flow extent of up to 50 km, the Kimama data record a steady-state crustal strain rate of 10-9 to 10-10 y-1. This rate is comparable to modern, decadal strain rates measured with GPS in the adjacent Basin & Range province, but exceeds decadal strain rates of zero measured in the eastern Snake River Plain. Linear accumulation rates also provide insight into basalt subsidence history. In this model, the middle-upper crust subsides due to the added weight of lava flows, the added weight of mid-crustal sills/dikes, and thermal contraction in the wake of the Yellowstone hot spot. Isostatic compensation would occur in the (nearly) molten lower crust. Assuming constant surface elevation and a basalt density of 2.6 g/cm3, the lava flow weight would account for 87% of the burial through time, yielding a steady-state "tectonic" subsidence rate of 4 m/100 k.y. attributed to the driving forces of mid-crustal injection and/or thermal contraction. An even faster tectonic rate is likely, given the evidence for decreasing surface elevation through time. We propose that tectonic subsidence was a necessary condition for maintaining basalt eruption over such a long duration -- it would inhibit the growth of a topographic plateau and maintain an appropriate level of neutral buoyancy for the periodically ascending mantle-derived magma
Dynamic Modelling of the DEP Controlled Boiling in a Microchannel
NASA Astrophysics Data System (ADS)
Lackowski, Marcin; Kwidzinski, Roman
2018-04-01
The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.
An electrochemical pumping system for on-chip gradient generation.
Xie, Jun; Miao, Yunan; Shih, Jason; He, Qing; Liu, Jun; Tai, Yu-Chong; Lee, Terry D
2004-07-01
Within the context of microfluidic systems, it has been difficult to devise pumping systems that can deliver adequate flow rates at high pressure for applications such as HPLC. An on-chip electrochemical pumping system based on electrolysis that offers certain advantages over designs that utilize electroosmotic driven flow has been fabricated and tested. The pump was fabricated on both silicon and glass substrates using photolithography. The electrolysis electrodes were formed from either platinum or gold, and SU8, an epoxy-based photoresist, was used to form the pump chambers. A glass cover plate and a poly(dimethylsiloxane) (PDMS) gasket were used to seal the chambers. Filling of the chambers was accomplished by using a syringe to inject liquid via filling ports, which were later sealed using a glass cover plate. The current supplied to the electrodes controlled the rate of gas formation and, thus, the resulting fluid flow rate. At low backpressures, flow rates >1 microL/min have been demonstrated using <1 mW of power. Pumping at backpressures as high as 200 psi have been demonstrated, with 20 nL/min having been observed using <4 mW. By integrating two electrochemical pumps with a polymer electrospray nozzle, we have confirmed the successful generation of a solvent gradient via a mass spectrometer.
Coolant and ambient temperature control for chillerless liquid cooled data centers
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.
2017-08-29
Cooling control methods and systems include measuring a temperature of air provided to one or more nodes by an air-to-liquid heat exchanger; measuring a temperature of at least one component of the one or more nodes and finding a maximum component temperature across all such nodes; comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold; and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the one or more nodes based on the comparisons.
Powder Flux Regulation in the Laser Material Deposition Process
NASA Astrophysics Data System (ADS)
Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel
In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yan; Li, Ming; Kučerka, Norbert
We have designed and constructed a temperature-controllable shear flow cell for in-situ study on flow alignable systems. The device has been tested in the neutron diffraction and has the potential to be applied in the small angle neutron scattering configuration to characterize the nanostructures of the materials under flow. The required sample amount is as small as 1 ml. The shear rate on the sample is controlled by the flow rate produced by an external pump and can potentially vary from 0.11 to 3.8 × 10{sup 5} s{sup −1}. Both unidirectional and oscillational flows are achievable by the setting ofmore » the pump. The instrument is validated by using a lipid bicellar mixture, which yields non-alignable nanodisc-like bicelles at low T and shear-alignable membranes at high T. Using the shear cell, the bicellar membranes can be aligned at 31 °C under the flow with a shear rate of 11.11 s{sup −1}. Multiple high-order Bragg peaks are observed and the full width at half maximum of the “rocking curve” around the Bragg’s condition is found to be 3.5°–4.1°. It is noteworthy that a portion of the membranes remains aligned even after the flow stops. Detailed and comprehensive intensity correction for the rocking curve has been derived based on the finite rectangular sample geometry and the absorption of the neutrons as a function of sample angle [See supplementary material at http://dx.doi.org/10.1063/1.4908165 for the detailed derivation of the absorption correction]. The device offers a new capability to study the conformational or orientational anisotropy of the solvated macromolecules or aggregates induced by the hydrodynamic interaction in a flow field.« less
Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges
2013-11-29
Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.
NASA Astrophysics Data System (ADS)
Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut
2017-03-01
This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.
Further Testing of an Amine-based Pressure-Swing System for Carbon Dioxide and Humidity Control
NASA Technical Reports Server (NTRS)
Lin, Amy; Smith, Frederick; Sweterlitsch, Jeffrey; Nalette, Tim A.; Papale, William
2008-01-01
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Those test results were reported in a 2007 ICES paper. A second test article was incorporated for a third phase of testing, and that test article was modified to allow pressurized gas purge regeneration on the launch pad in addition to the standard vacuum regeneration in space. Metabolic rates and chamber volumes were also adjusted to reflect current programmatic standards. The third phase of tests was performed during the spring and summer of 2007. Tests were run with a range of operating conditions, varying: cycle time, vacuum pressure (or purge gas flow rate), air flow rate, and crew activity levels. Results of this testing are presented and potential flight operational strategies discussed.
Evaluation of salivary glucose, IgA and flow rate in diabetic patients: a case-control study.
Bakianian Vaziri, P; Vahedi, M; Mortazavi, H; Abdollahzadeh, Sh; Hajilooi, M
2010-01-01
An association between diabetes mellitus and alterations in the oral cavity has been noted. In this study, we evaluated differences between salivary IgA, glucose and flow rate in diabetic patients compared with healthy controls. Forty patients with type 1 diabetes, 40 patients with type 2 diabetes and 40 healthy controls were selected. Whole unstimulated saliva samples were collected by the standard method and the salivary flow rate was determined. Nephelometric and Pars method were used to measure salivary IgA and salivary glucose concentrations, respectively. Statistical analysis was performed by Chi-square and t test. There were no significant differences in salivary IgA and glucose concentrations between type 1 and type 2 diabetic patients and their matched control subjects (P>0.05). Salivary flow rate was significantly lower in diabetic patients (P<0.05). In addition, DMFT was higher in diabetic patients than the controls. Determination of salivary constituents may be useful in the description and management of oral findings in diabetic patients.
Methods to quantify seepage beneath Levee 30, Miami-Dade County, Florida
Sonenshein, R.S.
2001-01-01
A two-dimensional, cross-sectional, finite-difference, ground-water flow model and a simple application of Darcy?s law were used to quantify ground-water flow (from a wetlands) beneath Levee 30 in Miami-Dade County, Florida. Geologic and geophysical data, vertical seepage data from the wetlands, canal discharge data, ground-water-level data, and surface-water-stage data collected during 1995 and 1996 were used as boundary conditions and calibration data for the ground-water flow model and as input for the analytical model. Vertical seepage data indicated that water from the wetlands infiltrated the subsurface, near Levee 30, at rates ranging from 0.033 to 0.266 foot per day when the gates at the control structures along Levee 30 canal were closed. During the same period, stage differences between the wetlands (Water Conservation Area 3B) and Levee 30 canal ranged from 0.11 to 1.27 feet. A layer of low-permeability limestone, located 7 to 10 feet below land surface, restricts vertical flow between the surface water in the wetlands and the ground water. Based on measured water-level data, ground-water flow appears to be generally horizontal, except in the direct vicinity of the canal. The increase in discharge rate along a 2-mile reach of the Levee 30 canal ranged from 9 to 30 cubic feet per second per mile and can be attributed primarily to ground-water inflow. Flow rates in Levee 30 canal were greatest when the gates at the control structures were open. The ground-water flow model data were compared with the measured ground-water heads and vertical seepage from the wetlands. Estimating the horizontal ground-water flow rate beneath Levee 30 was difficult owing to the uncertainty in the horizontal hydraulic conductivity of the main flow zone of the Biscayne aquifer. Measurements of ground-water flows into Levee 30 canal, a substantial component of the water budget, were also uncertain, which lessened the ability to validate the model results. Because of vertical flows near Levee 30 canal and a very low hydraulic gradient east of the canal, a simplified Darcian approach simulated with the ground-water flow model does not accurately estimate the horizontal ground-water flow rate. Horizontal ground-water flow rates simulated with the ground-water flow model (for a 60-foot-deep by 1-foot-wide section of the Biscayne aquifer) ranged from 150 to 450 cubic feet per day west of Levee 30 and from 15 to 170 cubic feet per day east of Levee 30 canal. Vertical seepage from the wetlands, within 500 feet of Levee 30, generally accounted for 10 to 15 percent of the total horizontal flow beneath the levee. Simulated horizontal ground-water flow was highest during the wet season and when the gates at the control structures were open.
40 CFR 89.415 - Fuel flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Fuel flow measurement specifications... Emission Test Procedures § 89.415 Fuel flow measurement specifications. The fuel flow rate measurement instrument must have a minimum accuracy of 2 percent of the engine maximum fuel flow rate. The controlling...
Bozkurt, Selim; van de Vosse, Frans N; Rutten, Marcel C M
Continuous-flow left ventricular assist devices (CF-LVADs) generally operate at a constant speed, which reduces pulsatility in the arteries and may lead to complications such as functional changes in the vascular system, gastrointestinal bleeding, or both. The purpose of this study is to increase the arterial pulse pressure and pulsatility by controlling the CF-LVAD flow rate. A MicroMed DeBakey pump was used as the CF-LVAD. A model simulating the flow rate through the aortic valve was used as a reference model to drive the pump. A mock circulation containing two synchronized servomotor-operated piston pumps acting as left and right ventricles was used as a circulatory system. Proportional-integral control was used as the control method. First, the CF-LVAD was operated at a constant speed. With pulsatile-speed CF-LVAD assistance, the pump was driven such that the same mean pump output was generated. Continuous and pulsatile-speed CF-LVAD assistance provided the same mean arterial pressure and flow rate, while the index of pulsatility increased significantly for both arterial pressure and pump flow rate signals under pulsatile speed pump support. This study shows the possibility of improving the pulsatility of CF-LVAD support by regulating pump speed over a cardiac cycle without reducing the overall level of support.
Static Flow Characteristics of a Mass Flow Injecting Valve
NASA Technical Reports Server (NTRS)
Mattern, Duane; Paxson, Dan
1995-01-01
A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.
NASA Technical Reports Server (NTRS)
Ghatas, Rania W.; Comstock, James R., Jr.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.
2015-01-01
This study examined air traffic controller acceptability ratings based on the effects of differing horizontal miss distances (HMDs) for encounters between UAS and manned aircraft. In a simulation of the Dallas/Fort Worth (DFW) East-side airspace, the CAS-1 experiment at NASA Langley Research Center enlisted fourteen recently retired DFW air traffic controllers to rate well-clear volumes based on differing HMDs that ranged from 0.5 NM to 3.0 NM. The controllers were tasked with rating these HMDs from "too small" to "too excessive" on a defined, 1-5, scale and whether these distances caused any disruptions to the controller and/or to the surrounding traffic flow. Results of the study indicated a clear favoring towards a particular HMD range. Controller workload was also measured. Data from this experiment and subsequent experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely and efficiently integrate UAS into the NAS.
SDTCP: Towards Datacenter TCP Congestion Control with SDN for IoT Applications
Lu, Yifei; Ling, Zhen; Zhu, Shuhong; Tang, Ling
2017-01-01
The Internet of Things (IoT) has gained popularity in recent years. Today’s IoT applications are now increasingly deployed in cloud platforms to perform Big Data analytics. In cloud data center networks (DCN), TCP incast usually happens when multiple senders simultaneously communicate with a single receiver. However, when TCP incast happens, DCN may suffer from both throughput collapse for TCP burst flows and temporary starvation for TCP background flows. In this paper, we propose a software defined network (SDN)-based TCP congestion control mechanism, referred to as SDTCP, to leverage the features, e.g., centralized control methods and the global view of the network, in order to solve the TCP incast problems. When we detect network congestion on an OpenFlow switch, our controller can select the background flows and reduce their bandwidth by adjusting the advertised window of TCP ACK packets of the corresponding background flows so as to reserve more bandwidth for burst flows. SDTCP is transparent to the end systems and can accurately decelerate the rate of background flows by leveraging the global view of the network gained via SDN. The experiments demonstrate that our SDTCP can provide high tolerance for burst flows and achieve better flow completion time for short flows. Therefore, SDTCP is an effective and scalable solution for the TCP incast problem. PMID:28075347
Oil production by entrained pyrolysis of biomass and processing of oil and char
Knight, James A.; Gorton, Charles W.
1990-01-02
Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.
NASA Astrophysics Data System (ADS)
Garel, F.; Kaminski, E.; Tait, S.; Limare, A.
2011-12-01
During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a transient evolution of the radiated heat flux closely related to the variations of the flow area. The study of experiments with time-variable effusion rates finally gives first leads on the inertia of the thermal surface structure. This is to be related to the time-period over which the thermal proxy averages the actual effusion rate, hence to the acquisition frequency appropriate for a thermal monitoring of effusive volcanic eruptions.
Reference NO2 calibration system for ground-based intercomparisons during NASA's GTE/CITE 2 mission
NASA Technical Reports Server (NTRS)
Fried, Alan; Nunnermacker, Linda; Cadoff, Barry; Sams, Robert; Yates, Nathan
1990-01-01
An NO2 calibration system, based on a permeation device and a two-stage dynamic dilution system, was designed, constructed, and characterized at the National Bureau of Standards. In this system, calibrant flow entering the second stage was controlled without contacting a metal flow controller, and permeation oven temperature and flow were continuously maintained, even during transport. The system performance and the permeation emission rate were characterized by extensive laboratory tests. This system was capable of accurately delivering known NO2 concentrations in the ppbv and sub-ppbv concentration range with a total uncertainty of approximately 10 percent. The calibration system was placed on board NASA research aircraft at both the Wallops Island and Ames research facilities. There it was employed as the reference standard in NASA's Global Tropospheric Experiment/Chemical Instrumental Test and Evaluation 2 mission in August 1986.
Innovative flow controller for time integrated passive sampling using SUMMA canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, P.; Farant, J.P.; Cole, H.
1996-12-31
To restrict the entry of gaseous contaminants inside evacuated vessels such as SUMMA canisters, mechanical flow controllers are used to collect integrated atmospheric samples. From the passive force generated by the pressure gradient, the motion of gas can be controlled to obtain a constant flow rate. Presently, devices based on the principle of critical orifices are used and they are all limited to an upper integrated sampling time. A novel flow controller which can be designed to achieve any desired sampling time when used on evacuated vessels was recently developed. It can extend the sampling time for hours, days, weeksmore » or even months for the benefits of environmental, engineering and toxicological professionals. The design of the controller is obtained from computer simulations done with an original set of equations derived from fluid mechanic and gas kinetic laws. To date, the experimental results have shown excellent agreement, with predictions obtained from the mathematical model. This new controller has already found numerous applications. Units able to deliver a constant sampling rate between vacuum and approximately -10 inches Hg during continuous long term duration have been used with SUMMA canisters of different volumes (500 ml, 1 litre and 61). Essentially, any combination of sampling time and sampler volume is possible. The innovative flow controller has contributed to an air quality assessment around a sanitary landfill (indoor/outdoor), and inside domestic wastewater and pulpmill sludge treatment facilities. It is presently being used as an alternative methodology for atmospheric sampling in the Russian orbital station Mir. This device affords true long term passive monitoring of selected gaseous air pollutants for environmental studies. 14 refs., 3 figs.« less
Jahrome, Ommid K; Hoefer, Imo; Houston, Graeme J; Stonebridge, Peter A; Blankestijn, Peter J; Moll, Frans L; de Borst, Gert J
2011-01-01
The primary patency rate of arteriovenous (AV) grafts is limited by distal venous anastomosis stenosis or occlusion due to intimal hyperplasia associated with distal graft turbulence. The normal blood flow in native arteries is spiral laminar flow. Standard vascular grafts do not produce spiral laminar flow at the distal anastomosis. Vascular grafts which induce a spiral laminar flow distally result in lower turbulence, particularly near the vessel wall. This initial study compares the hemodynamic effects of a spiral flow-inducing graft and a standard graft in a new AV carotid to jugular vein crossover graft porcine model. Four spiral flow grafts and 4 control grafts were implanted from the carotid artery to the contralateral jugular vein in 4 pigs. Two animals were terminated after 48 hours and 2 at 14 days. Graft patency was assessed by selective catheter digital angiography, and the flow pattern was assessed by intraoperative flow probe and color Doppler ultrasound (CDU) measurements. The spiral grafts were also assessed at enhanced flow rates using an external roller pump to simulate increased flow rates that may occur during dialysis using a standard dialysis needle cannulation. The method increased the flow rate through the graft by 660 ml/min. The graft distal anastomotic appearances were evaluated by explant histopathology. All grafts were patent at explantation with no complications. All anastomoses were found to be wide open and showed no significant angiographic stenosis at the distal anastomosis in both spiral and control grafts. CDU examinations showed a spiral flow pattern in the spiral graft and double helix pattern in the control graft. No gross histopathological effects were seen in either spiral or control grafts. This porcine model is robust and allows hemodynamic flow assessment up to 14 days postimplantation. The spiral flow-inducing grafts produced and maintained spiral flow at baseline and enhanced flow rates during dialysis needle cannulation, whereas control grafts did not produce spiral flow through the distal anastomosis. There was no deleterious effect of the spiral flow-inducing graft on macroscopic and histological examination. The reducing effect of spiral flow on intima hyperplasia formation will be the subject of further study using the same AV graft model at a longer period of implantation.
Li, Hongxia; Vermeirssen, Etiënne L M; Helm, Paul A; Metcalfe, Chris D
2010-11-01
The uptake of polar organic contaminants into polar organic chemical integrative samplers (POCIS) varies with environmental factors, such as water flow rate. To evaluate the influence of water flow rate on the uptake of contaminants into POCIS, flow-controlled field experiments were conducted with POCIS deployed in channel systems through which treated sewage effluent flowed at rates between 2.6 and 37 cm/s. Both pharmaceutical POCIS and pesticide POCIS were exposed to effluent for 21 d and evaluated for uptake of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting substances (EDS). The pesticide POCIS had higher uptake rates for PPCPs and EDS than the pharmaceutical POCIS, but there are some practical advantages to using pharmaceutical POCIS. The uptake of contaminants into POCIS increased with flow rate, but these effects were relatively small (i.e., less than twofold) for most of the test compounds. There was no relationship observed between the hydrophobicity (log octanol/water partition coefficient, log K(OW)) of model compounds and the effects of flow rate on the uptake kinetics by POCIS. These data indicate that water flow rate has a relatively minor influence on the accumulation of PPCPs and EDS into POCIS. © 2010 SETAC.
Amand, L; Carlsson, B
2013-01-01
Ammonium feedback control is increasingly used to determine the dissolved oxygen (DO) set-point in aerated activated sludge processes for nitrogen removal. This study compares proportional-integral (PI) ammonium feedback control with a DO profile created from a mathematical minimisation of the daily air flow rate. All simulated scenarios are set to reach the same treatment level of ammonium, based on a daily average concentration. The influent includes daily variations only and the model has three aerated zones. Comparisons are made at different plant loads and DO concentrations, and the placement of the ammonium sensor is investigated. The results show that ammonium PI control can achieve the best performance if the DO set-point is limited at a maximum value and with little integral action in the controller. Compared with constant DO control the best-performing ammonium controller can achieve 1-3.5% savings in the air flow rate, while the optimal solution can achieve a 3-7% saving. Energy savings are larger when operating at higher DO concentrations.
Wanty, R.B.; Berger, B.R.
2006-01-01
Base- and precious-metal mineral deposits comprise anomalous concentrations of metals and associated elements, which may be useful subjects for study as analogs for migration of environmental contaminants. In the geologic past, hydrothermal mineral deposits formed at the intersection of favorable geologic, hydrologic and geochemical gradients. In the present, weathering of these sulfide-rich deposits occurs as a result of the interplay between rates of oxygen supply versus rates of ground or surface-water flow. Transport and spatial dispersion of elements from a mineral deposit occurs as a function of competing rates of water flow versus rates of attenuation mechanisms such as adsorption, dilution, or (co)precipitation. In this paper we present several case studies from mineralized and altered sedimentary and crystalline aquifers in the western United States to illustrate the geologic control of ground-water flow and solute transport, and to demonstrate how this combined approach leads to a more complete understanding of the systems under study as well as facilitating some capability to predict major flow directions in aquifers.
Investigation of Spray Cooling Schemes for Dynamic Thermal Management
NASA Astrophysics Data System (ADS)
Yata, Vishnu Vardhan Reddy
This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
High pressure die casting of Fe-based metallic glass.
Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András
2016-10-11
Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.
High pressure die casting of Fe-based metallic glass
NASA Astrophysics Data System (ADS)
Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András
2016-10-01
Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.
High pressure die casting of Fe-based metallic glass
Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András
2016-01-01
Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780
Separation Control in a Multistage Compressor Using Impulsive Surface Injection
NASA Technical Reports Server (NTRS)
Wundrow, David W.; Braunscheidel, Edward P.; Culley, Dennis E.; Bright, Michelle M.
2006-01-01
Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.
Spectrum Efficiency Through Dynamic Spectrum Access Techniques (Briefing Charts)
2014-06-01
Telemetry Data Sources IP BASED TELEMETRY STATION Flow control • Volume- based • Credit- based • Rate- based Signaling using custom protocols or standards...Responsible for all T&E infrastructure assessment within the Major Range and Test Facility Base (MRTFB) DoD Directive 3200.11 • Administer three...Memorandum Unleashing of the Wireless Broadband Revolution THE WHY: Based on the view that “we are now beginning the next transformation in
A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.
Robles, A; Latrille, E; Ruano, M V; Steyer, J P
2017-01-01
The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.
The dynamic nature of crystal growth in pores
Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; ...
2016-09-12
We report that the kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO 2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocitiesmore » predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Lastly, accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.« less
1981-08-01
provide the lowest rate of momentum outflow and thus yield maximum diffuser efficiency. In their study, Wolf and Johnston (Ref. 1.12) used screens made...other words, the uniform velocity at the diffuser exit implies the lowest exit velocity attainable for a given flow rate and lowest rate of momentum ... momentum , and energy and the equation of state. The procedures of manipulating these partial differential iations into an analytical model for analyzing
Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon
2013-01-01
Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis. PMID:24404074
Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon
2013-01-01
Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T < 10 s). For performance demonstrations, the proposed method was applied to evaluate blood viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for simultaneous measurement of viscosity and flow rate of whole blood circulating in the complex fluid network, with sensorless and label-free detection. Furthermore, the proposed method will be used in evaluating variations in the viscosity of human blood during cardiopulmonary bypass procedures or hemodialysis.
Fan, Yi; Boukerkour, Youcef; Blanc, Thibault; Umbanhowar, Paul B; Ottino, Julio M; Lueptow, Richard M
2012-11-01
Segregation and mixing of granular mixtures during heap formation has important consequences in industry and agriculture. This research investigates three different final particle configurations of bidisperse granular mixtures--stratified, segregated and mixed--during filling of quasi-two-dimensional silos. We consider a large number and wide range of control parameters, including particle size ratio, flow rate, system size, and heap rise velocity. The boundary between stratified and unstratified states is primarily controlled by the two-dimensional flow rate, with the critical flow rate for the transition depending weakly on particle size ratio and flowing layer length. In contrast, the transition from segregated to mixed states is controlled by the rise velocity of the heap, a control parameter not previously considered. The critical rise velocity for the transition depends strongly on the particle size ratio.
NASA Astrophysics Data System (ADS)
Person, Mark; McIntosh, Jennifer; Bense, Victor; Remenda, V. H.
2007-09-01
While the geomorphic consequences of Pleistocene megafloods have been known for some time, it has been only in the past 2 decades that hydrogeologists and glaciologists alike have begun to appreciate the important impact that ice sheet-aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America. In this paper, we document the numerous lines of geochemical, isotopic, and geomechanical evidence of ice sheet hydrogeology across North America. We also review the mechanical, thermal, and hydrologic processes that control subsurface fluid migration beneath ice sheets. Finite element models of subsurface fluid flow, permafrost formation, and ice sheet loading are presented to investigate the coupled nature of transport processes during glaciation/deglaciation. These indicate that recharge rates as high as 10 times modern values occurred as the Laurentide Ice Sheet overran the margins of sedimentary basins. The effects of ice sheet loading and permafrost formation result in complex transient flow patterns within aquifers and confining units alike. Using geochemical and environmental isotopic data, we estimate that the volume of glacial meltwater emplaced at the margins of sedimentary basins overrun by the Laurentide Ice Sheet totals about 3.7 × 104 km3, which is about 0.2% of the volume of the Laurentide Ice Sheet. Subglacial infiltration estimates based on continental-scale hydrologic models are even higher (5-10% of meltwater generated). These studies in sum call into question the widely held notion that groundwater flow patterns within confined aquifer systems are controlled primarily by the water table configuration during the Pleistocene. Rather, groundwater flow patterns were likely much more complex and transient in nature than has previously been thought. Because Pleistocene recharge rates are believed to be highly variable, these studies have profound implications for water resource managers charged with determining sustainable pumping rates from confined aquifers that host ice sheet meltwater.
Dynamic neural networking as a basis for plasticity in the control of heart rate.
Kember, G; Armour, J A; Zamir, M
2013-01-21
A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.
Paper pump for passive and programmable transport
Wang, Xiao; Hagen, Joshua A.; Papautsky, Ian
2013-01-01
In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 μl/s to 1.7 μl/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications. PMID:24403999
Hemdan, A; Abdel-Aziz, Omar
2018-04-01
Run time is a predominant factor in HPLC for quality control laboratories especially if there is large number of samples have to be analyzed. Working at high flow rates cannot be attained with silica based particle packed column due to elevated backpressure issues. The use of monolithic column as an alternative to traditional C-18 column was tested for fast separation of pharmaceuticals, where the results were very competitive. The performance comparison of both columns was tested for separation of anti-diabetic combination containing Metformin, Pioglitazone and Glimepiride using Gliclazide as an internal standard. Working at high flow rates with less significant backpressure was obtained with the monolithic column where the run time was reduced from 6 min in traditional column to only 1 min in monolithic column with accepted resolution. The structure of the monolith contains many pores which can adapt the high flow rate of the mobile phase. Moreover, peak symmetry and equilibration time were more efficient with monolithic column.
Oldenburg, Curtis M.; Freifeld, Barry M.; Pruess, Karsten; Pan, Lehua; Finsterle, Stefan; Moridis, George J.
2012-01-01
In response to the urgent need for estimates of the oil and gas flow rate from the Macondo well MC252-1 blowout, we assembled a small team and carried out oil and gas flow simulations using the TOUGH2 codes over two weeks in mid-2010. The conceptual model included the oil reservoir and the well with a top boundary condition located at the bottom of the blowout preventer. We developed a fluid properties module (Eoil) applicable to a simple two-phase and two-component oil-gas system. The flow of oil and gas was simulated using T2Well, a coupled reservoir-wellbore flow model, along with iTOUGH2 for sensitivity analysis and uncertainty quantification. The most likely oil flow rate estimated from simulations based on the data available in early June 2010 was about 100,000 bbl/d (barrels per day) with a corresponding gas flow rate of 300 MMscf/d (million standard cubic feet per day) assuming the well was open to the reservoir over 30 m of thickness. A Monte Carlo analysis of reservoir and fluid properties provided an uncertainty distribution with a long tail extending down to 60,000 bbl/d of oil (170 MMscf/d of gas). The flow rate was most strongly sensitive to reservoir permeability. Conceptual model uncertainty was also significant, particularly with regard to the length of the well that was open to the reservoir. For fluid-entry interval length of 1.5 m, the oil flow rate was about 56,000 bbl/d. Sensitivity analyses showed that flow rate was not very sensitive to pressure-drop across the blowout preventer due to the interplay between gas exsolution and oil flow rate. PMID:21730177
Prevalence of xerostomia and the salivary flow rate in diabetic patients.
Malicka, Barbara; Kaczmarek, Urszula; Skośkiewicz-Malinowska, Katarzyna
2014-01-01
Diabetes is a metabolic disease characterized by hyperglycemia, which results from relative or absolute insulin deficiency. One of the first oral symptoms of diabetes is xerostomia. The aim of the study was to determine the prevalence of the xerostomia symptoms and salivary flow rate in diabetic patients according to the type of diabetes, the level of metabolic control and the duration of the disease. The study involved 156 adult patients of both sexes including 34 patients with diabetes type 1 (group C1), 59 with diabetes type 2 (group C2), and 63 generally healthy individuals as two control groups, sex- and age-matched to the diabetic group. The patients suffering from both types of diabetes were additionally subdivided according to the level of metabolic control and the duration of the disease. Xerostomia was diagnosed with the use of a specially prepared questionnaire and Fox's test. Moreover, the salivary flow rate of resting mixed saliva was measured. In type 1 diabetics, a significantly lower salivary flow rate in comparison to the age-matched control group (0.38 ± 0.19 mL/min vs. 0.53 ± 0.20 mL/min, p < 0.01) was found. However in type 2 diabetics, a slight lower salivary flow rate was noticed (on average, 20% lower). Dry mouth was far more frequently diagnosed in type 1 diabetics than in the control group. In type 1 diabetics, in comparison to healthy subjects, a significantly lower resting flow rate of saliva and significantly higher prevalence of xerosomia were observed, but in type 2 diabetics, only a trend of such variability was observed.
Dynamic Response during PEM Fuel Cell Loading-up
Pei, Pucheng; Yuan, Xing; Gou, Jun; Li, Pengcheng
2009-01-01
A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.
Nakamura, T; Hara, H; Ijima, F; Arai, T; Kira, S
1984-03-01
To study the dynamics of pleural liquid, 250 ml of saline labeled with markers were injected into the pleural cavity of anesthetized dogs. For 3 h, liquid volume and concentration of these markers were measured. In a control group of dogs, the turnover rate of pleural liquid was 19.6 +/- 5.6 ml/min and lymphatic flow was 0.58 +/- 0.07 ml/min. In a group of pneumonectomized dogs, the turnover rate and lymphatic flow fell to about one fourth of those in the control group. When the left pulmonary artery was occluded, the turnover rate was halved, but lymphatic flow was not significantly different from that in the control group. These results suggest that the turnover rate of pleural liquid is dependent on the area of contact between pleural liquid and pleura and on the blood flow of the pleura. In addition, it appears that changes in pleural liquid volume are dependent on lymphatic flow.
Sheybani, Roya; Cobo, Angelica; Meng, Ellis
2015-08-01
We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.
Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives
NASA Astrophysics Data System (ADS)
Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark
2011-06-01
Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.
The selective use of functional optical variables in the control of forward speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies presented here show that this ability is far greater for pilots than non-pilots, as would be expected since pilots must control vehicular speed over a variety of altitudes where flow rates change independently of forward speed. These studies also show that this ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. Subjective judgment data also indicated that awareness of altitude and ground texture density did not mediate ground speed awareness.
Meinhardt, J P; Ashton, B A; Annich, G M; Quintel, M; Hirschl, R B
2003-05-30
To evaluate the influence of pump system and flow pattern on expiratory airway collapse (EAC) in total perfluorocarbon ventilation. - Prospective, controlled, randomized animal trial for determination of (1) post-mortem changes by repeated expiration procedures (EP) with a constant flow piston pump (PP) before and after sacrifice (n = 8 rabbits), (2) differences between pump systems by subjecting animals to both PP and roller pump (RP) circuits for expiration (n = 16 rabbits). EP were performed using a servo-controlled shut-off at airway pressures < 25 cm H subset 2O randomly with either pump at different flows. - Expired volumes before and after sacrifice were not significantly different. PP and RP revealed identical mean flows, while significantly more liquid was drained using PP (p<0.05). Increasing differences towards higher flow rates indicated profound flow pulsatility in RP. - (1) post-mortem changes in expired volumes are not significant, (2) EAC is related to flow rate and pump system; (3) relationship between expiratory flow rate and drainable liquid volume is linear inverse; (4) PP provides higher drainage than RP. - Expiratory airway collapse is related to flow rate and pump system, post mortem changes in expirable volumes are not significant. Relationship between expiratory flow rate and drainable liquid volume is linear inverse, piston pump expiration provides higher drainage volumes than roller pump expiration.
Calibration of sonic valves for the laminar flow control, leading-edge flight test
NASA Technical Reports Server (NTRS)
Petley, D. H.; Alexander, W., Jr.; Wright, A. S., Jr.; Vallas, M.
1985-01-01
Sonic needle valves were calibrated to measure and control airflow in the suction system for the leading-edge flight test. The procedure and results for the calibration flow test of 4:41 flight valves are given. Mass-flow rates, which ranged from 0.001 to 0.012 lbm/sec, and maximum back pressure were measured for total temperatures from -30 F to 75 F and total pressures from 120 to 540 psf. Correlating equations are obtained for mass-flow rate as a function of total pressure, total temperature, and valve opening length. The most important aspect of flow measurement and control is found to be the measurement of valve opening length.
NASA Astrophysics Data System (ADS)
Diak, Bradley James
Forming limit predictions that incorporate crystal plasticity models still cannot adequately predict the deformation performance of polycrystalline materials. The reason for the limitation in predictive power is that the constitutive equations used to connect to the atomic scale assume an affine deformation which do not have a physical basis, but give general trends. This study was undertaken to better elucidate the microplastic process and how it manifests itself phenomenologically. In this endeavour, the strain rate sensitivity of the flow stress was identified as one parameter that greatly affects the forming limit. Hence, an attempt was made to properly define and measure the strain rate sensitivity according to the dictates of thermodynamics. The thermodynamics of systems can delineate the evolution of the state of a material if the state variables can be characterized and measured. Inevitably, these variables must be determined at constant structure. Using the theory of thermally activated flow, where the movement of dislocations past obstacles is the rate controlling step, the mechanical testing techniques have been designed to statistically assess the dynamic evolution of the microstructure by controlling the temperature, T, and strain rate, dotvarepsilon, and measuring the stress, sigma, mean slip distance, lambda, and mean slip velocity, dotlambda, to define sigma=f(lambda,dotlambda, T). The apparent activation volume, which characterizes the obstacle resistance of strain centres, is determined at constant structure by applying the strain rate change technique. Strain rate sensitivity data are compared to the Cottrell-Stokes relation, and the Haasen plot is used to separate the different contributions to the flow stress. Using these precise measurements at interrupted segments of strain, the evolution of a microstructure during plastic flow can be monitored. By this examination of different rate controlling obstacles, the microstructural parameters which correlate to formability were assessed. Detailed experimental evidence is given for different aluminum alloys containing mainly fast or slow diffusing solute species, transition precipitates, dispersed particles, and/or dislocation debris. These systems of Al-Fe, Al-Cr, Al-Cu, Al-Mg, and Al-Mg-Si, all displayed unique dislocation-defect interactions which could be elucidated by the current theory of thermally activated flow.
Perera, Mahamalage Kusumitha; Englehardt, James D; Tchobanoglous, George; Shamskhorzani, Reza
2017-05-15
Denitrifying membrane bioreactors (MBRs) are being found useful in water reuse treatment systems, including net-zero water (nearly closed-loop), non-reverse osmosis-based, direct potable reuse (DPR) systems. In such systems nitrogen may need to be controlled in the MBR to meet the nitrate drinking water standard in the finished water. To achieve efficient nitrification and denitrification, the addition of alkalinity and external carbon may be required, and control of the carbon feed rate is then important. In this work, an onsite, two-chamber aerobic nitrifying/denitrifying MBR, representing one unit process of a net-zero water, non-reverse osmosis-based DPR system, was modeled as a basis for control of the MBR internal recycling rate, aeration rate, and external carbon feed rate. Specifically, a modification of the activated sludge model ASM2dSMP was modified further to represent the rate of recycling between separate aerobic and anoxic chambers, rates of carbon and alkalinity feed, and variable aeration schedule, and was demonstrated versus field data. The optimal aeration pattern for the modeled reactor configuration and influent matrix was found to be 30 min of aeration in a 2 h cycle (104 m 3 air/d per 1 m 3 /d average influent), to ultimately meet the nitrate drinking water standard. Optimal recycling ratios (inter-chamber flow to average daily flow) were found to be 1.5 and 3 during rest and mixing periods, respectively. The model can be used to optimize aeration pattern and recycling ratio in such MBRs, with slight modifications to reflect reactor configuration, influent matrix, and target nitrogen species concentrations, though some recalibration may be required. Copyright © 2017 Elsevier Ltd. All rights reserved.
Olvera-Trejo, D; Velásquez-García, L F
2016-10-18
This study reports the first MEMS multiplexed coaxial electrospray sources in the literature. Coaxial electrospraying is a microencapsulation technology based on electrohydrodynamic jetting of two immiscible liquids, which allows precise control with low size variation of the geometry of the core-shell particles it generates, which is of great importance in numerous biomedical and engineering applications, e.g., drug delivery and self-healing composites. By implementing monolithic planar arrays of miniaturized coaxial electrospray emitters that work uniformly in parallel, the throughput of the compound microdroplet source is greatly increased, making the microencapsulation technology compatible with low-cost commercial applications. Miniaturized core-shell particle generators with up to 25 coaxial electrospray emitters (25 emitters cm -2 ) were fabricated via stereolithography, which is an additive manufacturing process that can create complex microfluidic devices at a small fraction of the cost per device and fabrication time associated with silicon-based counterparts. The characterization of devices with the same emitter structure but different array sizes demonstrates uniform array operation. Moreover, the data demonstrate that the per-emitter current is approximately proportional to the square root of the flow rate of the driving liquid, and it is independent of the flow rate of the driven liquid, as predicted by the theory. The core/shell diameters and the size distribution of the generated compound microparticles can be modulated by controlling the flow rates fed to the emitters.
Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines
NASA Astrophysics Data System (ADS)
Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.
Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.
Bandwidth turbulence control based on flow community structure in the Internet
NASA Astrophysics Data System (ADS)
Wu, Xiaoyu; Gu, Rentao; Ji, Yuefeng
2016-10-01
Bursty flows vary rapidly in short period of time, and cause fierce bandwidth turbulence in the Internet. In this letter, we model the flow bandwidth turbulence process by constructing a flow interaction network (FIN network), with nodes representing flows and edges denoting bandwidth interactions among them. To restrain the bandwidth turbulence in FIN networks, an immune control strategy based on flow community structure is proposed. Flows in community boundary positions are immunized to cut off the inter-community turbulence spreading. By applying this control strategy in the first- and the second-level flow communities separately, 97.2% flows can effectively avoid bandwidth variations by immunizing 21% flows, and the average bandwidth variation degree reaches near zero. To achieve a similar result, about 70%-90% immune flows are needed with targeted control strategy based on flow degrees and random control strategy. Moreover, simulation results showed that the control effect of the proposed strategy improves significantly if the immune flow number is relatively smaller in each control step.
Ultrahigh throughput microfluidic platform for in-air production of microscale droplets
NASA Astrophysics Data System (ADS)
Tirandazi, Pooyan; Healy, John; Hidrovo, Carlos H.
2017-11-01
In-air droplet formation inside microfluidic networks is an alternative technique to the conventional in-liquid systems for creating uniform, microscale droplets. Recent works have highlighted and quantified the use of a gaseous continuous phase for controlled generation of droplets in the Dripping regime in planar structures. Here we demonstrate a new class of non-planar droplet-based systems which rely on controlled breakup of a liquid microjet within a high speed flow of air inside a confined microfluidic flow-focusing PDMS channel. We investigate the physics of confined gas-liquid flows and the effect of geometry on the behavior of a liquid water jet in a gaseous flow. Droplet breakup in the Jetting regime is studied both numerically and experimentally and the results are compared. We show droplet production capability at rates higher than 100 KHz with droplets ranging from 15-30 μm in diameter and a polydispersity index of less than 15%. This work represents an important investigation into the Jetting regime in confined microchannels. The ability to control jet behavior, generation rate, and droplet size in gas-liquid microflows will further expand the potential applications of this system for high throughput operations in material synthesis and biochemical analysis. We acknowledge funding support from NSF CAREER Award Grant CBET-1522841.
Quantifying Hydrate Formation in Gas-rich Environments Using the Method of Characteristics
NASA Astrophysics Data System (ADS)
You, K.; Flemings, P. B.; DiCarlo, D. A.
2015-12-01
Methane hydrates hold a vast amount of methane globally, and have huge energy potential. Methane hydrates in gas-rich environments are the most promising production targets. We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation in such environments (Figure 1). Our solution shows that hydrate saturation is constant with time and space in a homogeneous system. Hydrate saturation is controlled by the initial thermodynamic condition of the system, and changed by the gas fractional flow. Hydrate saturation increases with the initial distance from the hydrate phase boundary. Different gas fractional flows behind the hydrate solidification front lead to different gas saturations at the hydrate solidification front. The higher the gas saturation at the front, the less the volume available to be filled by hydrate, and hence the lower the hydrate saturation. The gas fractional flow depends on the relative permeability curves, and the forces that drive the flow. Viscous forces (the drive for flow induced from liquid pressure gradient) dominate the flow, and hydrate saturation is independent on the gas supply rates and the flow directions at high gas supply rates. Hydrate saturation can be estimated as one minus the ratio of the initial to equilibrium salinity. Gravity forces (the drive for flow induced from the gravity) dominate the flow, and hydrate saturation depends on the flow rates and the flow directions at low gas supply rates. Hydrate saturation is highest for upward flow, and lowest for downward flow. Hydrate saturation decreases with the flow rate for upward flow, and increases with the flow rate for downward flow. This analytical solution illuminates how hydrate is formed by gas (methane, CO2, ethane, propane) flowing into brine-saturated sediments at both the laboratory and geological scales (Figure 1). It provides an approach to generalize the understanding of hydrate solidification in gas-rich environments, although complicated numerical models have been developed previously. Examples of gas expulsion into hydrate stability zones and the associated hydrate formation in both laboratory and geological scales, and CO2 sequestration into CO2-hydrates near the seafloor and under the permafrost will be presented.
NASA Astrophysics Data System (ADS)
Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem
2011-11-01
Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.
Boundary-Layer-Ingesting Inlet Flow Control
NASA Technical Reports Server (NTRS)
Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.
2008-01-01
An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong
2015-08-01
A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale ratesmore » of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however, not affected by the flow rate because molecular diffusion limits reductant supply to the micropore domain interior. Domain-based macroscopic models were evaluated to scale redox reaction rates from the pore to macroscopic scales. A single domain model, which ignores subgrid transport heterogeneity deviated significantly from the pore-scale results. Further analysis revealed that the rate expression for hematite reduction was not scalable from the pore to porous media using the single domain model. A three-domain model, which effectively considers subgrid reactive diffusion in the micropore and macropore domains, significantly improved model description. Overall this study revealed the importance of subgrid transport heterogeneity in the manifestation of redox reaction rates in porous media and in scaling reactions from the pore to porous media. The research also supported that the domain-based scaling approach can be used to directly scale redox reactions in porous media with subgrid transport heterogeneity.« less
Microfluidic proportional flow controller
Prentice-Mott, Harrison; Toner, Mehmet; Irimia, Daniel
2011-01-01
Precise flow control in microfluidic chips is important for many biochemical assays and experiments at microscale. While several technologies for controlling fluid flow have been implemented either on- or off-chip, these can provide either high-speed or high-precision control, but seldom could accomplish both at the same time. Here we describe a new on-chip, pneumatically activated flow controller that allows for fast and precise control of the flow rate through a microfluidic channel. Experimental results show that the new proportional flow controllers exhibited a response time of approximately 250 ms, while our numerical simulations suggest that faster actuation down to approximately 50 ms could be achieved with alternative actuation schemes. PMID:21874096
Access control mechanism of wireless gateway based on open flow
NASA Astrophysics Data System (ADS)
Peng, Rong; Ding, Lei
2017-08-01
In order to realize the access control of wireless gateway and improve the access control of wireless gateway devices, an access control mechanism of SDN architecture which is based on Open vSwitch is proposed. The mechanism utilizes the features of the controller--centralized control and programmable. Controller send access control flow table based on the business logic. Open vSwitch helps achieve a specific access control strategy based on the flow table.
Managing Counterparty Risk in an Unstable Financial System
ERIC Educational Resources Information Center
Belmont, David
2012-01-01
The recent flow of headlines excoriating bankers and financiers for malfeasance, fraud, and collusion has been almost biblical in proportion. Counterparties that appeared creditworthy based on financial statements and ratings have revealed that they are impaired either due to computer errors, control failures, malfeasance, or potential regulatory…
Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A
2007-09-04
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.
Loyd, S. J.; Becker, T. W.; Conrad, C. P.; Lithgow-Bertelloni, C.; Corsetti, F. A.
2007-01-01
The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by ∼0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past. PMID:17720806
Fach, S; Sitzenfrei, R; Rauch, W
2009-01-01
It is state of the art to evaluate and optimise sewer systems with urban drainage models. Since spill flow data is essential in the calibration process of conceptual models it is important to enhance the quality of such data. A wide spread approach is to calculate the spill flow volume by using standard weir equations together with measured water levels. However, these equations are only applicable to combined sewer overflow (CSO) structures, whose weir constructions correspond with the standard weir layout. The objective of this work is to outline an alternative approach to obtain spill flow discharge data based on measurements with a sonic depth finder. The idea is to determine the relation between water level and rate of spill flow by running a detailed 3D computational fluid dynamics (CFD) model. Two real world CSO structures have been chosen due to their complex structure, especially with respect to the weir construction. In a first step the simulation results were analysed to identify flow conditions for discrete steady states. It will be shown that the flow conditions in the CSO structure change after the spill flow pipe acts as a controlled outflow and therefore the spill flow discharge cannot be described with a standard weir equation. In a second step the CFD results will be used to derive rating curves which can be easily applied in everyday practice. Therefore the rating curves are developed on basis of the standard weir equation and the equation for orifice-type outlets. Because the intersection of both equations is not known, the coefficients of discharge are regressed from CFD simulation results. Furthermore, the regression of the CFD simulation results are compared with the one of the standard weir equation by using historic water levels and hydrographs generated with a hydrodynamic model. The uncertainties resulting of the wide spread use of the standard weir equation are demonstrated.
Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, David A.
2009-01-01
In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO2(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws. ?? 2009 Elsevier Ltd.
Identifying High-Rate Flows Based on Sequential Sampling
NASA Astrophysics Data System (ADS)
Zhang, Yu; Fang, Binxing; Luo, Hao
We consider the problem of fast identification of high-rate flows in backbone links with possibly millions of flows. Accurate identification of high-rate flows is important for active queue management, traffic measurement and network security such as detection of distributed denial of service attacks. It is difficult to directly identify high-rate flows in backbone links because tracking the possible millions of flows needs correspondingly large high speed memories. To reduce the measurement overhead, the deterministic 1-out-of-k sampling technique is adopted which is also implemented in Cisco routers (NetFlow). Ideally, a high-rate flow identification method should have short identification time, low memory cost and processing cost. Most importantly, it should be able to specify the identification accuracy. We develop two such methods. The first method is based on fixed sample size test (FSST) which is able to identify high-rate flows with user-specified identification accuracy. However, since FSST has to record every sampled flow during the measurement period, it is not memory efficient. Therefore the second novel method based on truncated sequential probability ratio test (TSPRT) is proposed. Through sequential sampling, TSPRT is able to remove the low-rate flows and identify the high-rate flows at the early stage which can reduce the memory cost and identification time respectively. According to the way to determine the parameters in TSPRT, two versions of TSPRT are proposed: TSPRT-M which is suitable when low memory cost is preferred and TSPRT-T which is suitable when short identification time is preferred. The experimental results show that TSPRT requires less memory and identification time in identifying high-rate flows while satisfying the accuracy requirement as compared to previously proposed methods.
40 CFR 63.1657 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollution control practices that minimizes emissions per § 63.6(e)(1)(i). (c) Shop opacity. The owner or... monitoring device that continuously records the volumetric flow rate through each separately ducted hood. (3... records the volumetric flow rate at the inlet of the air pollution control device and must check and...
40 CFR 63.1657 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollution control practices that minimizes emissions per § 63.6(e)(1)(i). (c) Shop opacity. The owner or... monitoring device that continuously records the volumetric flow rate through each separately ducted hood. (3... records the volumetric flow rate at the inlet of the air pollution control device and must check and...
40 CFR 63.1657 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollution control practices that minimizes emissions per § 63.6(e)(1)(i). (c) Shop opacity. The owner or... monitoring device that continuously records the volumetric flow rate through each separately ducted hood. (3... records the volumetric flow rate at the inlet of the air pollution control device and must check and...
Tank depletion flow controller
Georgeson, Melvin A.
1976-10-26
A flow control system includes two bubbler tubes installed at different levels within a tank containing such as radioactive liquid. As the tank is depleted, a differential pressure transmitter monitors pressure differences imparted by the two bubbler tubes at a remote, shielded location during uniform time intervals. At the end of each uniform interval, balance pots containing a dense liquid are valved together to equalize the pressures. The resulting sawtooth-shaped signal generated by the differential pressure transmitter is compared with a second sawtooth signal representing the desired flow rate during each time interval. Variations in the two signals are employed by a control instrument to regulate flow rate.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.
Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa
2014-01-01
In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005
A Low-Power Thermal-Based Sensor System for Low Air Flow Detection
Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.
2016-01-01
Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186
Variability in venom volume, flow rate and duration in defensive stings of five scorpion species.
van der Meijden, Arie; Coelho, Pedro; Rasko, Mykola
2015-06-15
Scorpions have been shown to control their venom usage in defensive encounters, depending on the perceived threat. Potentially, the venom amount that is injected could be controlled by reducing the flow speed, the flow duration, or both. We here investigated these variables by allowing scorpions to sting into an oil-filled chamber, and recording the accreting venom droplets with high-speed video. The size of the spherical droplets on the video can then be used to calculate their volume. We recorded defensive stings of 20 specimens representing 5 species. Significant differences in the flow rate and total expelled volume were found between species. These differences are likely due to differences in overall size between the species. Large variation in both venom flow speed and duration are described between stinging events of single individuals. Both venom flow rate and flow duration correlate highly with the total expelled volume, indicating that scorpions may control both variables in order to achieve a desired end volume of venom during a sting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.
Li, Xuanyu; Jiang, Xingyu
2017-12-24
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Nakamachi, Kazuo; Fujiwara, Taku; Kawaguchi, Yukio; Tsuno, Hiroshi
The high loading rate oxidation ditch (OD) system with dual dissolved oxygen (DO) control has been developed for the purpose of advanced wastewater treatment and cost saving. For the purpose of scale-up to the real scale, the clean water experiments were conducted, with the full scale oxidation ditch with diffused aeration and vertical flow boosters, to examine the effect to the dual DO control by the design and operational factors, which include a flow characteristics and a oxygen supply capability. In this study, the flow characteristics of the OD channel were analyzed using a tank number and circulation ratio as the parameters. The analysis showed the complicated flow characteristics of the OD channel, which changed from the plug flow to the completely mixing transiently. Based on the tank number N =65~100 which were obtained from the tracer tests, a model of DO mass balance was constructed, then the accurate method for estimate the overall oxygen transfer coefficients was proposed. The potential error of the conventional method in the specific conditions was indicated. In addition, the effect of the flow characteristics on the design and operational parameters of the dual DO control, which include the circulation time or the DO profile, was clarified.
Caries prevalence in chronic alcoholics and the relationship to salivary flow rate and pH.
Dukić, Walter; Dobrijević, Tanja Trivanović; Katunarić, Marina; Lesić, Stjepanka
2013-03-01
The aim of this study was to investigate the dental status of alcoholics; to evaluate the relationship of unstimulated and stimulated saliva pH on their decayed/missing/filled teeth (DMFT); and to evaluate the relationship of unstimulated and stimulated salivary flow rate on their DMFT. A cross-sectional study was conducted in patients treated for alcohol dependency (n = 70; mean age 41.7 years) and a control group of non-alcoholics (n = 70; mean age 39.1 years). Examinations for dental caries were conducted using the World Health Organization (WHO) criteria and questionnaires. The correlation between nominal variables was determined using chi2 test (alpha = 0.05). The correlation between interval variables was determined using Pearson's correlation coefficient. The mean DMFT was similar in alcoholics (14.40) and the control group (13.44) (p > 0.05). There was a statistically significant correlation between alcoholism and unstimulated salivary flow rate (p < 0.05), but no relationship on DMFT was recorded. No statistically significant differences were found between alcoholics and controls in terms of stimulated salivary flow rate (p > 0.05) or stimulated salivary flow on DMFT (p > 0.05). There was a statistically significant correlation between alcoholism and the pH value of stimulated saliva (p < 0.01). There was no correlation between the amount of alcohol consumed and the number of carious lesions (p > 0.05). No major differences were found with respect to overall DMFT in alcoholics compared to the control group. Alcoholism and stimulated salivary flow rate showed no correlation. Unstimulated salivary flow rate as well as the pH values of both unstimulated and stimulated saliva, were lower in the alcoholic group.
Flow monitoring and control system for injection wells
Corey, John C.
1993-01-01
A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.
Flow monitoring and control system for injection wells
Corey, J.C.
1993-02-16
A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.
Han, Jin Feng; Liu, Shuo; Dai, Jun; Qiu, Hao
2018-02-01
With the aim to control and reduce rainfall and snowmelt runoff in northern cities in China, the summer runoff and spring snowmelt runoff in the studied area were simulated with the establishment of storm water management model (SWMM). According to the climate characteristics and the situation of the studied area, the low impact development (LID) green ecological strategies suitable for the studied area were established. There were three kinds of management strategies being used, including extended green roof, snow and rainwater harvesting devices, and grass-swales or trenches. We examined the impacts of those integrated green ecological measures on the summer rainfall and spring snowmelt runoff and their mitigation effects on the drainage network pressure. The results showed that the maximum flow rates of the measured rainfall in May 24th, June 10th and July 18th 2016 were 2.7, 6.2 and 7.4 m 3 ·s -1 respectively. The peak flow rates at different return periods of 1, 2, 5, 10 years were 2.39, 3.91, 6.24 and 7.85 m 3 ·s -1 , respectively. In the snowmelt period, the peak flow appeared at the beginning of March. The LID measures had positive effect on peak flow reduction, and thus delayed peak time and relieved drainage pressure. The flow reduction rate was as high as 70%. Moreover, the snow harvesting devices played a positive role in controlling snowmelt runoff in spring.
Self-regulating flow control device
Humphreys, Duane A.
1984-01-01
A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.
1991-01-01
the permit. Monthly maximum and average test results are submitted to the USEPA with an approximation of the weekly flow rate . The quantity of flow is...flow rate . The storm flow data and drainage system hydraulic capacity are being reviewed by Sajan. Inc., Seattle. Figure 2. Visible Soil Staining at...approach is to collect composite samples of the flow, which will reduce fluctuations and allow a more accu- rate determination of total loadings with
Tyree, M T
1983-10-01
Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches.Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to -60 to -80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight.These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw.
Tyree, Melvin T.
1983-01-01
Sap flow rates and sap pressure changes were measured in dormant sugar maple trees (Acer saccharum Marsh.). In the forest, sap flow rates and pressure changes were measured from tap holes drilled into tree trunks in mature trees and sap flow rates were measured from the base of excised branches. Excised branches were also brought into the laboratory where air temperature could be carefully controlled in a refrigerated box and sap flow rates and sap pressures were measured from the cut base of the branches. Under both forest and laboratory conditions, sap uptake occurred as the wood temperature declined but much more rapid sap uptake correlated with the onset of the freezing exotherm. When sap pressures were measured under conditions of negligible volume displacement, the sap pressure rapidly fell to −60 to −80 kilopascals at the start of the freezing exotherm. The volume of water uptake and the rate of uptake depended on the rate of freezing. A slow freezing rate correlated with a large volume of water uptake, a fast freezing rate induced a smaller volume of water uptake. The volume of water uptake ranged from 0.02 to 0.055 grams water per gram dry weight of sapwood. The volume of water exuded after thawing was usually less than the volume of uptake so that after several freezing and thawing cycles the sapwood water content increased from 0.7 to 0.8 grams water per gram dry weight. These results are discussed in terms of a physical model of the mechanism of maple sap uptake and exudation first proposed by P. E. R. O'Malley. The proposed mechanism of sap uptake is by vapor distillation in air filled wood fiber lumina during the freezing of minor branches. Gravity and pressurized air bubbles (compressed during freezing) cause sap flow from the canopy down the tree after the thaw. PMID:16663208
NASA Astrophysics Data System (ADS)
Liu, Yinyan; Deng, Yuchi; Zhang, Maomao; Yu, Peining; Li, Yi
2017-09-01
Oil-water two-phase flows are commonly found in the production processes of the petroleum industry. Accurate online measurement of flow rates is crucial to ensure the safety and efficiency of oil exploration and production. A research team from Tsinghua University has developed an experimental apparatus for multiphase flow measurement based on an electrical capacitance tomography (ECT) sensor, an electrical resistance tomography (ERT) sensor, and a venturi tube. This work presents the phase fraction and flow rate measurements of oil-water two-phase flows based on the developed apparatus. Full-range phase fraction can be obtained by the combination of the ECT sensor and the ERT sensor. By data fusion of differential pressures measured by venturi tube and the phase fraction, the total flow rate and single-phase flow rate can be calculated. Dynamic experiments were conducted on the multiphase flow loop in horizontal and vertical pipelines and at various flow rates.
Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies.
Munn, L L; Melder, R J; Jain, R K
1994-01-01
The parallel plate flow chamber provides a controlled environment for determinations of the shear stress at which cells in suspension can bind to endothelial cell monolayers. By decreasing the flow rate of cell-containing media over the monolayer and assessing the number of cells bound at each wall shear stress, the relationship between shear force and binding efficiency can be determined. The rate of binding should depend on the delivery of cells to the surface as well as the intrinsic cell-surface interactions; thus, only if the cell flux to the surface is known can the resulting binding curves be interpreted correctly. We present the development and validation of a mathematical model based on the sedimentation rate and velocity profile in the chamber for the delivery of cells from a flowing suspension to the chamber surface. Our results show that the flux depends on the bulk cell concentration, the distance from the entrance point, and the flow rate of the cell-containing medium. The model was then used in a normalization procedure for experiments in which T cells attach to TNF-alpha-stimulated HUVEC monolayers, showing that a threshold for adhesion occurs at a shear stress of about 3 dyn/cm2. Images FIGURE 1 FIGURE 2 PMID:7948702
Minimum data requirement for neural networks based on power spectral density analysis.
Deng, Jiamei; Maass, Bastian; Stobart, Richard
2012-04-01
One of the most critical challenges ahead for diesel engines is to identify new techniques for fuel economy improvement without compromising emissions regulations. One technique is the precise control of air/fuel ratio, which requires the measurement of instantaneous fuel consumption. Measurement accuracy and repeatability for fuel rate is the key to successfully controlling the air/fuel ratio and real-time measurement of fuel consumption. The volumetric and gravimetric measurement principles are well-known methods for measurement of fuel consumption in internal combustion engines. However, the fuel flow rate measured by these methods is not suitable for either real-time control or real-time measurement purposes because of the intermittent nature of the measurements. This paper describes a technique that can be used to find the minimum data [consisting of data from just 2.5% of the non-road transient cycle (NRTC)] to solve the problem concerning discontinuous data of fuel flow rate measured using an AVL 733S fuel meter for a medium or heavy-duty diesel engine using neural networks. Only torque and speed are used as the input parameters for the fuel flow rate prediction. Power density analysis is used to find the minimum amount of the data. The results show that the nonlinear autoregressive model with exogenous inputs could predict the particulate matter successfully with R(2) above 0.96 using 2.5% NRTC data with only torque and speed as inputs.
Seebacher, Frank; Franklin, Craig E
2007-11-01
Changes in blood flow are a principal mechanism of thermoregulation in vertebrates. Changes in heart rate will alter blood flow, although multiple demands for limited cardiac output may compromise effective thermoregulation. We tested the hypothesis that regional differences in blood flow during heating and cooling can occur independently from changes in heart rate. We measured heart rate and blood pressure concurrently with blood flow in the crocodile, Crocodylus porosus. We measured changes in blood flow by laser Doppler flowmetry, and by injecting coloured microspheres. All measurements were made under different heat loads, with and without blocking cholinergic and beta-adrenergic receptors (autonomic blockade). Heart rates were significantly faster during heating than cooling in the control animals, but not when autonomic receptors were blocked. There were no significant differences in blood flow distribution between the control and autonomic blockade treatments. In both treatments, blood flow was directed to the dorsal skin and muscle and away from the tail and duodenum during heating. When the heat source was switched off, there was a redistribution of blood from the dorsal surface to the duodenum. Blood flow to the leg skin and muscle, and to the liver did not change significantly with thermal state. Blood pressure was significantly higher during the autonomic blockade than during the control. Thermal time constants of heating and cooling were unaffected by the blockade of autonomic receptors. We concluded that animals partially compensated for a lack of differential heart rates during heating and cooling by redistributing blood within the body, and by increasing blood pressure to increase flow. Hence, measures of heart rate alone are insufficient to assess physiological thermoregulation in reptiles.
William Wenerick; Ken M. Fritz; Mitchell S. Kostich
2016-01-01
Classifying streams according to permanence is important in determining regulatory jurisdiction and in implementing pollution control programs. Administrators of these programs need rapid methods for making timely and defensible decisions.
109. EAST WALL OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. ...
109. EAST WALL OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. 751): TEMPERATURE, FLOW RATE, AND HUMIDITY MONITORING CONTROLS FOR SYSTEM 1 AND SYSTEM 2 AIR HANDLING - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
92. EAST WALL OF MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. ...
92. EAST WALL OF MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770). TEMPERATURE, FLOW RATE, AND HUMIDITY MONITORING CONTROLS FOR SYSTEM 1 AND SYSTEM 2 AIR HANDLING. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Moon, Byeong-Ui; Jones, Steven G; Hwang, Dae Kun; Tsai, Scott S H
2015-06-07
We present a technique that generates droplets using ultralow interfacial tension aqueous two-phase systems (ATPS). Our method combines a classical microfluidic flow focusing geometry with precisely controlled pulsating inlet pressure, to form monodisperse ATPS droplets. The dextran (DEX) disperse phase enters through the central inlet with variable on-off pressure cycles controlled by a pneumatic solenoid valve. The continuous phase polyethylene glycol (PEG) solution enters the flow focusing junction through the cross channels at a fixed flow rate. The on-off cycles of the applied pressure, combined with the fixed flow rate cross flow, make it possible for the ATPS jet to break up into droplets. We observe different droplet formation regimes with changes in the applied pressure magnitude and timing, and the continuous phase flow rate. We also develop a scaling model to predict the size of the generated droplets, and the experimental results show a good quantitative agreement with our scaling model. Additionally, we demonstrate the potential for scaling-up of the droplet production rate, with a simultaneous two-droplet generating geometry. We anticipate that this simple and precise approach to making ATPS droplets will find utility in biological applications where the all-biocompatibility of ATPS is desirable.
Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.
Jiongxin, Xu
2004-05-01
The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.
NASA Astrophysics Data System (ADS)
Behrens, Alison Anne
Reacting flow studies in a novel dump combustor facility focused on increasing volumetric heat release rates, under stable burning conditions, and understanding the physical mechanisms governing flame anchoring in an effort to extend range and maneuverability of compact, low drag, air-breathing engines. Countercurrent shear flow was enhanced within the combustor as the primary control variable. Experiments were performed burning premixed JP10/air and methane/air in a dump combustor using reacting flow particle image velocimetry (PIV) and chemiluminescence as the primary diagnostics. Stable combustion studies burning lean mixtures of JP10/air aimed to increase volumetric heat release rates through the implementation of countercurrent shear control. Countercurrent shear flow was produced by creating a suction flow from a low pressure cavity connected to the dump combustor via a gap directly below the trailing edge. Chemiluminescence measurements showed that enhancing countercurrent shear within the combustor doubles volumetric heat release rates. PIV measurements indicate that counterflow acts to increase turbulent kinetic energy while maintaining constant strain rates. This acts to increase flame surface area through flame wrinkling without disrupting the integrity of the flame. Flame anchorability is one of the most important fundamental aspects to understand when trying to enhance turbulent combustion in a high-speed engine without increasing drag. Studies burning methane/air mixtures used reacting flow PIV to study flame anchoring. The operating point with the most stable flame anchor exhibited a correspondingly strong enthalpy flux of products into reactants via a single coherent structure positioned downstream of the step. However, the feature producing a strong flame anchor, i.e. a single coherent structure, also is responsible for combustion instabilities, therefore making this operating point undesirable. Counterflow control was found to create the best flow features for stable, robust, compact combustion. Enhancing countercurrent shear flow within a dump combustor enhances burning rates, provides a consistent pump of reaction-initiating combustion products required for sustained combustion, while maintaining flow three dimensionality needed to disrupt combustion instabilities. Future studies will focus on geometric and control scenarios that further reduce drag penalties while creating these same flow features found with countercurrent shear thus producing robust operating points.
Energy conservation with automatic flow control valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, D.
Automatic flow control valves are offered in a wide range of sizes starting at 1/2 in. with flow rates of 0.5 gpm and up. They are also provided with materials and end connections to meet virtually any fan-coil system requirement. Among these are copper sweat type valves; ductile iron threaded valves; male/female threaded brass valves; and combination flow control/ball valves with union ends.
Control of skin blood flow, sweating, and heart rate - Role of skin vs. core temperature
NASA Technical Reports Server (NTRS)
Wyss, C. R.; Brengelmann, G. L.; Johnson, J. M.; Rowell, L. B.; Niederberger, M.
1974-01-01
A study was conducted to generate quantitative expressions for the influence of core temperature, skin temperature, and the rate of change of skin temperature on sweat rate, skin blood flow, and heart rate. A second goal of the study was to determine whether the use of esophageal temperature rather than the right atrial temperature as a measure of core temperature would lead to different conclusions about the control of measured effector variables.
Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.
Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi
2017-05-01
Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.
Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin
NASA Astrophysics Data System (ADS)
Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi
2017-05-01
Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.
NASA Astrophysics Data System (ADS)
Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao
2017-06-01
High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.
Ötvös, Sándor B; Mándity, István M; Fülöp, Ferenc
2011-08-01
A simple and efficient flow-based technique is reported for the catalytic deuteration of several model nitrogen-containing heterocyclic compounds which are important building blocks of pharmacologically active materials. A continuous flow reactor was used in combination with on-demand pressure-controlled electrolytic D(2) production. The D(2) source was D(2)O, the consumption of which was very low. The experimental set-up allows the fine-tuning of pressure, temperature, and flow rate so as to determine the optimal conditions for the deuteration reactions. The described procedure lacks most of the drawbacks of the conventional batch deuteration techniques, and additionally is highly selective and reproducible.
Siudikiene, Jolanta; Machiulskiene, Vita; Nyvad, Bente; Tenovuo, Jorma; Nedzelskiene, Irena
2006-02-01
The aim of this study was to investigate the relationship among type 1 diabetes mellitus, dental caries, and salivary status in children. The study comprised 68, 10-15-yr-old diabetics, and 68, age- and gender-matched non-diabetic controls. Diabetics were categorized into well-to-moderately controlled (HbA1c < 9.0%) and poorly controlled (HbA1c >or= 9.0%) groups. Caries was recorded by assessing lesion activity at non-cavitated and cavity levels. Teeth were examined visually for the presence of dental plaque. Saliva was analyzed for unstimulated and stimulated flow rates, buffer effect, mutans streptococci, lactobacilli, and yeasts. Diabetics had fewer caries and plaque, lower salivary flow rates and buffer effect, and more frequent growth of yeasts than their non-diabetic controls. Well-to-moderately controlled diabetics had fewer decayed surfaces and lower counts of mutans streptococci and yeasts than poorly controlled diabetics, but the level of metabolic control of diabetes had no influence on salivary flow rates and buffer effect. High caries levels in diabetics were significantly associated with age, plaque score, and decreased unstimulated salivary flow rate, but were not associated with the level of metabolic control of diabetes. High caries experience in this study population could be related to plaque accumulation and/or to changes in saliva induced by diabetes mellitus.
Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient
NASA Astrophysics Data System (ADS)
Peterson, C. J.; Vukasinovic, B.; Glezer, A.
2017-11-01
The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.
Generalized Fluid System Simulation Program (GFSSP) - Version 6
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Moore, Ric; Schallhorn, Paul
2015-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a finite-volume based general-purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, flow control valves and external body forces such as gravity and centrifugal. The thermo-fluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. The integrated fluid library supplies thermodynamic and thermo-physical properties of 36 fluids, and 24 different resistance/source options are provided for modeling momentum sources or sinks in the branches. Users can introduce new physics, non-linear and time-dependent boundary conditions through user-subroutine.
Controlling Flows Of Two Ingredients For Spraying
NASA Technical Reports Server (NTRS)
Chandler, Huel H.
1995-01-01
Closed-loop servo control subsystem incorporated, as modification, into system controlling flows of two ingredients mixed and sprayed to form thermally insulating foams on large tanks. Provides steady flows at specified rates. Foams produced smoother and of higher quality. Continued use of system results in substantial reduction in cost stemming from close control of application of foam and consequent reduced use of material.
Zheng, Xinqian; Zhang, Yangjun; Yang, Mingyang; Bamba, Takahiro; Tamaki, Hideaki
2013-03-01
This is part II of a two-part paper involving the development of an asymmetrical flow control method to widen the operating range of a turbocharger centrifugal compressor with high-pressure ratio. A nonaxisymmetrical self-recirculation casing treatment (SRCT) as an instance of asymmetrical flow control method is presented. Experimental and numerical methods were used to investigate the impact of nonaxisymmetrical SRCT on the surge point of the centrifugal compressor. First, the influence of the geometry of a symmetric SRCT on the compressor performance was studied by means of numerical simulation. The key parameter of the SRCT was found to be the distance from the main blade leading edge to the rear groove (S r ). Next, several arrangements of a nonaxisymmetrical SRCT were designed, based on flow analysis presented in part I. Then, a series of experiments were carried out to analyze the influence of nonaxisymmetrical SRCT on the compressor performance. Results show that the nonaxisymmetrical SRCT has a certain influence on the performance and has a larger potential for stability improvement than the traditional symmetric SRCT. For the investigated SRCT, the surge flow rate of the compressor with the nonaxisymmetrical SRCTs is about 10% lower than that of the compressor with symmetric SRCT. The largest surge margin (smallest surge flow rate) can be obtained when the phase of the largest S r is coincident with the phase of the minimum static pressure in the vicinity of the leading edge of the splitter blades.
The influence of underlying topography on lava channel networks and flow behavior (Invited)
NASA Astrophysics Data System (ADS)
Dietterich, H. R.; Cashman, K. V.; Rust, A.
2013-12-01
New high resolution mapping of historical lava flows in Hawai';i reveals complex topographically controlled channel networks. Network morphologies range from distributary systems dominated by branching around local obstacles, to tributary systems constricted by topographic confinement. Because channel networks govern the distribution of lava within the flow, they can dramatically alter the effective volumetric flux, which affects both flow length and advance rate. The influence of flow bifurcations is evidenced by (1) channelized flows from Pu';u ';O';o episodes 1-20 at Kilauea Volcano, where flow front velocities decreased by approximately half each time a flow split, and (2) the length of confined flows, such as the Mauna Loa 1859 flow, which traveled twice as far as the distributary Mauna Loa 1984 flow, despite similar effusion rates and durations. To study the underlying controls on flow bifurcations, we have undertaken a series of analogue experiments with golden syrup (a Newtonian fluid) to better understand the physics of obstacle interaction and its influence on flow behavior and morphology. Controlling the effusion rate and surface slope, we extrude flows onto a surface with a cylindrical or V-shaped obstacle of variable angle. When the flow is sufficiently fast, a stationary wave forms upslope of the obstacle; if the stationary wave is sufficiently high, the flow can overtop, rather than split around, the obstacle. The stationary wave height increases with flow velocity and with the effective obstacle width. Evidence for stationary waves in Hawaiian lava flows comes from both photographs of active flows and waveforms frozen into solidified flows. We have also performed a preliminary set of similar experiments with molten basalt to identify the effect of cooling and investigate flow merging. In these experiments, a stationary wave develops upslope of the obstacle, which allows the surface to cool and thicken. After splitting, the syrup experiments show minimal impact of the split on flow advance, except in cases where the flow is very thin, and surface tension controls the flow behavior. In contrast, the experiments with molten basalt slow markedly, as measured by both flow front and surface velocities. This difference demonstrates the effect of cooling and crust formation on flowing lava. Crust formation also controls the ability of split flows to merge below an obstacle, such that flows can converge only at high flow rates, which limits time for crust formation, and at narrow obstacle angles, which limits the lateral spreading required for convergence. Our experiments qualitatively support theoretical descriptions of crustal controls on flow spreading and levee development, but our poor knowledge of the appropriate parameter values, particularly that of the strength of the viscoelastic crust, prevents a quantitative comparison. These experiments, and our observations from natural systems, have significant implications for predicting lava flow behavior and inform efforts to mitigate flow hazards with diversion barriers.
Flow chemistry to control the synthesis of nano and microparticles for biomedical applications.
Hassan, Natalia; Oyarzun-Ampuero, Felipe; Lara, Pablo; Guerrero, Simón; Cabuil, Valérie; Abou-Hassan, Ali; Kogan, Marcelo J
2014-03-01
In this article we review the flow chemistry methodologies for the controlled synthesis of different kind of nano and microparticles for biomedical applications. Injection mechanism has emerged as new alternative for the synthesis of nanoparticles due to this strategy allows achieving superior levels of control of self-assemblies, leading to higher-ordered structures and rapid chemical reactions. Self-assembly events are strongly dependent on factors such as the local concentration of reagents, the mixing rates, and the shear forces, which can be finely tuned, as an example, in a microfluidic device. Injection methods have also proved to be optimal to elaborate microsystems comprising polymer solutions. Concretely, extrusion based methods can provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. We provide an update of synthesis of nano and microparticles such as core/shell, Janus, nanocrystals, liposomes, and biopolymeric microgels through flow chemistry, its potential bioapplications and future challenges in this field are discussed.
Ischemia-reperfusion injury in the isolated rat lung. Role of flow and endogenous leukocytes.
Seibert, A F; Haynes, J; Taylor, A
1993-02-01
Microvascular lung injury caused by ischemia-reperfusion (IR) may occur via leukocyte-dependent and leukocyte-independent pathways. Leukocyte-endothelial adhesion may be a rate-limiting step in IR lung injury. Leukocyte adhesion to microvascular endothelium occurs when the attractant forces between leukocyte and endothelium are greater than the kinetic energy of the leukocyte and the vascular wall shear rate. We hypothesized (1) that isolated, buffer-perfused rat lungs are not free of endogenous leukocytes, (2) that endogenous leukocytes contribute to IR-induced microvascular injury as measured by the capillary filtration coefficient (Kfc), and (3) that a reduction of perfusate flow rate would potentiate leukocyte-dependent IR injury. Sixty lungs were divided into four groups: (1) low-flow controls, (2) high-flow controls, (3) low-flow IR, and (4) high-flow IR. Microvascular injury was linearly related to baseline perfusate leukocyte concentrations at both low (r = 0.78) and high (r = 0.82) flow rates. Kfc in the high-flow IR group (0.58 +/- 0.03 ml/min/cm H2O/100 g) was less (p < 0.05) than Kfc in the low-flow IR group (0.82 +/- 0.07), and in both groups Kfc values were significantly greater than low-flow (0.34 +/- 0.03) and high-flow (0.31 +/- 0.01) control Kfc values after 75 min. Retention of leukocytes in the lung, evaluated by a tissue myeloperoxidase assay, was greatest in the low-flow IR group. We conclude (1) that isolated, buffer-perfused rat lungs contain significant quantities of leukocytes and that these leukocytes contribute to IR lung injury, and (2) that IR-induced microvascular injury is potentiated by low flow.
Ibayashi, Haruhisa; Nishiyama, Tomohiro; Tanaka, Masayuki; Pham, Truong-Minh; Yano, Junko; Sakai, Kazuyo; Kobayashi, Atsushi; Yakura, Naonori; Matsuda, Shinya
2009-07-01
The purpose of this study is to evaluate the effects of the authors' oral health care program on the stimulated whole salivary flow rate and buffer capacity before and after a 6-month intervention. The authors conducted the intervention study among 25 participants with diabetes. The salivary flow rate and buffer capacity were evaluated before and after this intervention. Overall, the results showed a significant increase in salivary flow rate and no significant change in buffer capacity. Also, it was likely that salivary flow rate significantly increased among patients with more than 20 remaining teeth and patients with well-controlled diabetes. The findings suggest that this program for type 2 diabetes led to an increase in the stimulated whole salivary flow rate.
Hemolytic potential of hydrodynamic cavitation.
Chambers, S D; Bartlett, R H; Ceccio, S L
2000-08-01
The purpose of this study was to determine the hemolytic potentials of discrete bubble cavitation and attached cavitation. To generate controlled cavitation events, a venturigeometry hydrodynamic device, called a Cavitation Susceptibility Meter (CSM), was constructed. A comparison between the hemolytic potential of discrete bubble cavitation and attached cavitation was investigated with a single-pass flow apparatus and a recirculating flow apparatus, both utilizing the CSM. An analytical model, based on spherical bubble dynamics, was developed for predicting the hemolysis caused by discrete bubble cavitation. Experimentally, discrete bubble cavitation did not correlate with a measurable increase in plasma-free hemoglobin (PFHb), as predicted by the analytical model. However, attached cavitation did result in significant PFHb generation. The rate of PFHb generation scaled inversely with the Cavitation number at a constant flow rate, suggesting that the size of the attached cavity was the dominant hemolytic factor.
NASA Astrophysics Data System (ADS)
Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung
2017-04-01
The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.
Combinational concentration gradient confinement through stagnation flow.
Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung
2016-01-21
Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.
Jin, Bo; Zhao, Haibo; Zheng, Chuguang; Liang, Zhiwu
2017-01-03
Exergy-based methods are widely applied to assess the performance of energy conversion systems; however, these methods mainly focus on a certain steady-state and have limited applications for evaluating the control impacts on system operation. To dynamically obtain the thermodynamic behavior and reveal the influences of control structures, layers and loops, on system energy performance, a dynamic exergy method is developed, improved, and applied to a complex oxy-combustion boiler island system for the first time. The three most common operating scenarios are studied, and the results show that the flow rate change process leads to less energy consumption than oxygen purity and air in-leakage change processes. The variation of oxygen purity produces the largest impact on system operation, and the operating parameter sensitivity is not affected by the presence of process control. The control system saves energy during flow rate and oxygen purity change processes, while it consumes energy during the air in-leakage change process. More attention should be paid to the oxygen purity change because it requires the largest control cost. In the control system, the supervisory control layer requires the greatest energy consumption and the largest control cost to maintain operating targets, while the steam control loops cause the main energy consumption.
Design and performance of a dynaniic gas flux chamber.
Reichman, Rivka; Rolston, Dennis E
2002-01-01
Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.
Abulon, Dina Joy K; Buboltz, David C
2015-02-01
To measure flow rate of balanced salt solution and IOP during simulated vitrectomy using two sets of high-speed dual-pneumatic probes. A closed-model eye system measured IOP and flow rate of a balanced salt solution through infusion cannula. The Constellation Vision System was tested with two sets of high-speed dual-pneumatic probes (UltraVit 23-gauge and enhanced 25+-gauge 5000-cpm probes; UltraVit 23-gauge and enhanced 25+-gauge 7500-cpm probes; n = 6 each) under different vacuum levels and cut rates in three duty cycle modes. In both probe sets, flow rates were dependent on cut rate with the biased open and biased closed duty cycles. Flow rates were highest with the biased open duty cycle, lower with the 50/50 duty cycle, and lowest with the biased closed duty cycle. IOP, as expected, was inversely associated with flow rate using both probe sets. The 7500-cpm probes offer greater control and customization compared with 5000-cpm probes under certain experimental conditions. At maximum cut rates, performance of 7500-cpm probes was similar to that of 5000-cpm probes, suggesting that 7500-cpm probes may be used without sacrifice of flow rate and IOP stability. Customization of vitrectomy parameters allows greater surgeon control during vitrectomy and may expand the usefulness of vitrectomy probes.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges
2014-01-10
Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time. Copyright © 2013 Elsevier B.V. All rights reserved.
A High Precision $3.50 Open Source 3D Printed Rain Gauge Calibrator
NASA Astrophysics Data System (ADS)
Lopez Alcala, J. M.; Udell, C.; Selker, J. S.
2017-12-01
Currently available rain gauge calibrators tend to be designed for specific rain gauges, are expensive, employ low-precision water reservoirs, and do not offer the flexibility needed to test the ever more popular small-aperture rain gauges. The objective of this project was to develop and validate a freely downloadable, open-source, 3D printed rain gauge calibrator that can be adjusted for a wide range of gauges. The proposed calibrator provides for applying low, medium, and high intensity flow, and allows the user to modify the design to conform to unique system specifications based on parametric design, which may be modified and printed using CAD software. To overcome the fact that different 3D printers yield different print qualities, we devised a simple post-printing step that controlled critical dimensions to assure robust performance. Specifically, the three orifices of the calibrator are drilled to reach the three target flow rates. Laboratory tests showed that flow rates were consistent between prints, and between trials of each part, while the total applied water was precisely controlled by the use of a volumetric flask as the reservoir.
Variable flow control for a nuclear reactor control rod
Carleton, Richard D.; Bhattacharyya, Ajay
1978-01-01
A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.
Flow behaviour of negatively buoyant jets in immiscible ambient fluid
NASA Astrophysics Data System (ADS)
Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.
2012-01-01
In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.
Sakai, Yusuke; Hattori, Koji; Yanagawa, Fumiki; Sugiura, Shinji; Kanamori, Toshiyuki; Nakazawa, Kohji
2014-07-01
Microfluidic devices permit perfusion culture of three-dimensional (3D) tissue, mimicking the flow of blood in vascularized 3D tissue in our body. Here, we report a microfluidic device composed of a two-part microfluidic chamber chip and multi-microwell array chip able to be disassembled at the culture endpoint. Within the microfluidic chamber, an array of 3D tissue aggregates (spheroids) can be formed and cultured under perfusion. Subsequently, detailed post-culture analysis of the spheroids collected from the disassembled device can be performed. This device facilitates uniform spheroid formation, growth analysis in a high-throughput format, controlled proliferation via perfusion flow rate, and post-culture analysis of spheroids. We used the device to culture spheroids of human hepatocellular carcinoma (HepG2) cells under two controlled perfusion flow rates. HepG2 spheroids exhibited greater cell growth at higher perfusion flow rates than at lower perfusion flow rates, and exhibited different metabolic activity and mRNA and protein expression under the different flow rate conditions. These results show the potential of perfusion culture to precisely control the culture environment in microfluidic devices. The construction of spheroid array chambers allows multiple culture conditions to be tested simultaneously, with potential applications in toxicity and drug screening. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sato, Emi; Matsuda, Kouhei
2018-06-11
The purpose of this study was to examine cerebral blood flow in the frontal cortex area during personality self-rating tasks. Our two hypotheses were (1) cerebral blood flow varies based on personality rating condition and (2) cerebral blood flow varies based on the personality traits. This experiment measured cerebral blood flow under 3 personal computer rating conditions and 2 questionnaire conditions. Comparing the rating conditions, the results of the t-test indicated that cerebral blood flow was higher in the questionnaire condition than it was in the personal computer condition. With respect to the Big Five, the result of the correlation coefficient, that is, cerebral blood flow during a personality rating task, changed according to the trait for agreeableness. The results of the analysis of the 5-cluster on individual differences indicated that certain personality traits were related to the factors that increased or decreased cerebral blood flow. An analysis of variance indicated that openness to experience and Behavioural Activation System-drive was significant given that participants with high intellectual curiosity were motivated in this experiment, thus, their cerebral blood flow may have increased. The significance of this experiment was that by employing certain performance measures we could examine differences in physical changes based on personality traits. © 2018 International Union of Psychological Science.
Development of a Small Area Sniffer
NASA Technical Reports Server (NTRS)
Meade, Laurie A.
1995-01-01
The aim of this project is to develop and implement a sniffer that is capable of measuring the mass flow rate of air through a small area of pinholes whose diameters are on the magnitude of thousandths of an inch. The sniffer is used to scan a strip of a leading edge panel, which is being used in a hybrid laminar flow control experiment, in order to survey the variations in the amount of air that passes through the porous surface at different locations. Spanwise scans are taken at different chord locations by increasing the pressure in a control volume that is connected to the sniffer head, and recording the drop in pressure as the air is allowed to flow through the tiny holes. This information is used to obtain the mass flow through the structure. More importantly, the deviations from the mean flow rate are found and used to determine whether there are any significant variations in the flow rate from one area to the next. The preliminary results show little deviation in the spanwise direction. These results are important when dealing with the location and amount of suction that will be applied to the leading edge in the active laminar flow control experiment.
NASA Technical Reports Server (NTRS)
Jackson, M. E.
1995-01-01
This report presents the Space Station Furnace Facility (SSFF) thermal control system (TCS) preliminary control system design and analysis. The SSFF provides the necessary core systems to operate various materials processing furnaces. The TCS is defined as one of the core systems, and its function is to collect excess heat from furnaces and to provide precise cold temperature control of components and of certain furnace zones. Physical interconnection of parallel thermal control subsystems through a common pump implies the description of the TCS by coupled nonlinear differential equations in pressure and flow. This report formulates the system equations and develops the controllers that cause the interconnected subsystems to satisfy flow rate tracking requirements. Extensive digital simulation results are presented to show the flow rate tracking performance.
Topological transitions in unidirectional flow of nematic liquid crystal
NASA Astrophysics Data System (ADS)
Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou
2015-11-01
Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.
Performance Mapping Studies in Redox Flow Cells
NASA Technical Reports Server (NTRS)
Hoberecht, M. A.; Thaller, L. H.
1981-01-01
Pumping power requirements in any flow battery system constitute a direct parasitic energy loss. It is therefore useful to determine the practical lower limit for reactant flow rates. Through the use of a theoretical framework based on electrochemical first principles, two different experimental flow mapping techniques were developed to evaluate and compare electrodes as a function of flow rate. For the carbon felt electrodes presently used in NASA-Lewis Redox cells, a flow rate 1.5 times greater than the stoichiometric rate seems to be the required minimum.
Dodds, M W; Dodds, A P
1997-04-01
The objective of this study was to determine whether improvements in the level of diabetic control in a group of subjects with poorly controlled non-insulin-dependent diabetes mellitus influence salivary output and composition. Repeated whole unstimulated and stimulated parotid saliva samples were collected from diabetic patients attending an outpatient diabetes education program and a matched nondiabetic control group. Saliva was analyzed for flow rates, parotid protein concentration and composition, and amylase activity. Subjective responses to questions about salivary hypofunction were tested. There were no significant differences in whole unstimulated and stimulated parotid flow rates or stimulated parotid protein concentration and composition between diabetics and the control group. Amylase activity was higher in diabetics and decreased with improved glycemic control. Subjects reporting taste alterations had higher mean blood glucose levels than subjects with normal taste sensation. Poorly controlled non-insulin-dependent diabetes mellitus has no influence on saliva output, although amylase activity may be elevated, and there may be taste alterations.
Effects of Multiple Nozzles on Asymmetric Ejector Performance
NASA Technical Reports Server (NTRS)
Lineberry, D.; Landrum, B.
2005-01-01
This paper presents a comparison of a single nozzle and a dual nozzle strut based ejector. The results are focused on the fluid properties in the ejector duct. The research focused on choking mechanisms, mass flow entrainment, and mixing duct pressure distributions. The two ejectors were tests at equivalent primary mass flow rates. This corresponds to chamber pressures ranging from 100 psi to 900 psi in the single nozzle strut and 50 psi to 450 psi in the dual nozzle strut. Secondary flow was drawn from the lab at atmospheric pressure, and was not controlled. The secondary flow was found to choke at a value of 2.3 lb/s for a primary mass flow rate at approximately 2.1 lb/s for both ejectors. This choke was believed to be a mass addition choke rather than a traditional aerodynamic choke. The mixing duct pressure distribution exhibited two distinct trends at "low pressure" trend and at "high pressure" trend. For the low pressure trend, the mixing length for the ejectors remained fixed around 20 inches, regardless of the chamber pressure. For the higher pressure trend, the mixing length was considerably longer and increased with increasing chamber pressure. At high chamber pressures (high mass flow rates), a supersonic core flow was present at the exit of the duct. For these cases, the two streams did not have time to mix by the end of the duct.
Sheldon, Gerard P.
1963-01-01
In chronic obstructive lung disease (asthma, chronic bronchitis, obstructive emphysema) there is a segmental reduction in the caliber of the airways, which always results in obstruction to air-flow. Increased airway resistance is a physiological expression of airway obstruction. The addition of inspiratory flow rate control to an intermittent positive pressure breathing device permits slow filling of a lung with obstructed airways, and is presented as a simple means of reducing the high pulmonary flow resistance and increasing the tidal volume. ImagesFigure 1. PMID:13977070
Model-based flow rate control for an orfice-type low-volume air sampler
USDA-ARS?s Scientific Manuscript database
The standard method of measuring air suspended particulate matter concentration per volume of air consists of continuously drawing a defined volume of air across a filter over an extended period of time, then measuring the mass of the filtered particles and dividing it by the total volume sampled ov...
Selective Use of Optical Variables to Control Forward Speed
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Awe, Cynthia A.; Hart, Sandra G. (Technical Monitor)
1994-01-01
Previous work on the perception and control of simulated vehicle speed has examined the contributions of optical flow rate (angular visual speed) and texture, or edge rate (frequency of passing terrain objects or markings) on the perception and control of forward speed. However, these studies have not examined the ability to selectively use edge rate or flow rate. The two studies reported here show that subjects found it very difficult to arbitrarily direct attention to one or the other of these variables; but that the ability to selectively use these variables is linked to the visual contextual information about the relative validity (linkage with speed) of the two variables. The selectivity also resulted in different velocity adaptation levels for events in which flow rate and edge rate specified forward speed. Finally, the role of visual context in directing attention was further buttressed by the finding that the incorrect perception of changes in ground texture density tended to be coupled with incorrect perceptions of changes in forward speed.
NASA Astrophysics Data System (ADS)
Glaze, L. S.; Baloga, S. M.; Garvin, J. B.; Quick, L. C.
2014-05-01
Lava flows and flow fields on Venus lack sufficient topographic data for any type of quantitative modeling to estimate eruption rates and durations. Such modeling can constrain rates of resurfacing and provide insights into magma plumbing systems.
Mass-flow-rate-controlled fluid flow in nanochannels by particle insertion and deletion.
Barclay, Paul L; Lukes, Jennifer R
2016-12-01
A nonequilibrium molecular dynamics method to induce fluid flow in nanochannels, the insertion-deletion method (IDM), is introduced. IDM inserts and deletes particles within distinct regions in the domain, creating locally high and low pressures. The benefits of IDM are that it directly controls a physically meaningful quantity, the mass flow rate, allows for pressure and density gradients to develop in the direction of flow, and permits treatment of complex aperiodic geometries. Validation of IDM is performed, yielding good agreement with the analytical solution of Poiseuille flow in a planar channel. Comparison of IDM to existing methods indicates that it is best suited for gases, both because it intrinsically accounts for compressibility effects on the flow and because the computational cost of particle insertion is lowest for low-density fluids.
Control of Leakage Flow by Triple Squealer Configuration in Axial Flow Turbine
NASA Astrophysics Data System (ADS)
El-Ghandour, Mohamed; Ibrahim, Mohammed K.; Mori, Koichi; Nakamura, Yoshiaki
A new turbine blade tip shape called triple squealer is proposed. This shape is based on the conventional double squealer, and the cavity on the tip surface is divided into two parts by using a third squealer along the blade camber line. The effect of the ratio of groove depth to span (GDS ratio) was investigated. The flat-tip case (baseline case) and double-squealer case were calculated for comparison. In-house, unstructured, 3D, Navier-Stokes, finite volume, multiblock code with DES (Detached Eddy Simulation) as turbulence model was used to calculate the flow field around the tip. The computational results show that the reduction in the mass flow rate of the leakage flow for the triple squealer is 15.69% compared to the flat-tip case.
Numerical Investigation of the Interaction of Counterflowing Jets and Supersonic Capsule Flows
NASA Technical Reports Server (NTRS)
Venkatachari, Balaji Shankar; Ito, Yasushi; Cheng, Gary; Chang, Chau-Lyan
2011-01-01
Use of counterflowing jets ejected into supersonic freestreams as a flow control concept to modify the external flowfield has gained renewed interest with regards to potential retropropulsion applications pertinent to entry, descent, and landing investigations. This study describes numerical computations of such a concept for a scaled wind-tunnel capsule model by employing the space-time conservation element solution element viscous flow solver with unstructured meshes. Both steady-state and time-accurate computations are performed for several configurations with different counterflowing jet Mach numbers. Axisymmetric computations exploring the effect of the jet flow rate and jet Mach number on the flow stability, jet interaction with the bow shock and its subsequent impact on the aerodynamic and aerothermal loads on the capsule body are carried out. Similar to previous experimental findings, both long and short penetration modes exist at a windtunnel Mach number of 3.48. It was found that both modes exhibit non-stationary behavior and the former is much more unstable than the latter. It was also found that the unstable long penetration mode only exists in a relatively small range of the jet mass flow rate. Solution-based mesh refinement procedures are used to improve solution accuracy and provide guidelines for a more effective mesh generation procedure for parametric studies. Details of the computed flowfields also serve as a means to broaden the knowledge base for future retropropulsion design studies.
Pressurized tundish for controlling a continuous flow of molten metal
Lewis, Thomas W.; Hamill, Jr., Paul E.; Ozgu, Mustafa R.; Padfield, Ralph C.; Rego, Donovan N.; Brita, Guido P.
1990-01-01
A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.
Open-channel integrating-type flow meter
Koopman, K.C.
1971-01-01
A relatively inexpensive meter for measuring cumulative flow in open channels with a rated control,. called a "totalizer", was developed. It translates the nonlinear function of gage height to flow by use of a cam and a float. A variable resistance element in an electronic circuit is controlled by the float so that the electron flow in the circuit corresponds to the flow of water. The flow of electricity causes electroplating of an electrode with silver. The amount of silver deposited is proportionate to the flow of water. The total flow of water is determined by removing the silver from the electrode at a fixed rate with ·an electronic device and recording the time for removal with a counter. The circuit is designed so that the ,resultant reading on the counter is in acre-feet of water.
Sensor-based demand controlled ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Almeida, A.T.; Fisk, W.J.
In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation ratesmore » are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.« less
Martin, Alexis; Margoum, Christelle; Jolivet, Antoine; Assoumani, Azziz; El Moujahid, Bachir; Randon, Jérôme; Coquery, Marina
2018-04-01
There is a need to determine time-weighted average concentrations of polar contaminants such as pesticides by passive sampling in environmental waters. Calibration data for silicone rubber-based passive samplers are lacking for this class of compounds. The calibration data, sampling rate (R s ), and partition coefficient between silicone rubber and water (K sw ) were precisely determined for 23 pesticides and 13 candidate performance reference compounds (PRCs) in a laboratory calibration system over 14 d for 2 water flow velocities, 5 and 20 cm s -1 . The results showed that an in situ exposure duration of 7 d left a silicone rubber rod passive sampler configuration in the linear or curvilinear uptake period for 19 of the pesticides studied. A change in the transport mechanism from polymer control to water boundary layer control was observed for pesticides with a log K sw of approximately 3.3. The PRC candidates were not fully relevant to correct the impact of water flow velocity on R s . We therefore propose an alternative method based on an overall resistance to mass transfer model to adjust R s from laboratory experiments to in situ hydrodynamic conditions. We estimated diffusion coefficients (D s ) and thickness of water boundary layer (δ w ) as adjustable model parameters. Log D s values ranged from -12.13 to -10.07 m 2 s -1 . The estimated δ w value showed a power function correlation with water flow velocity. Environ Toxicol Chem 2018;37:1208-1218. © 2017 SETAC. © 2017 SETAC.
Dental caries in diabetes mellitus: role of salivary flow rate and minerals.
Jawed, Muhammad; Shahid, Syed M; Qader, Shah A; Azhar, Abid
2011-01-01
This study was designed to evaluate the possible protective role of salivary factors like salivary flow rate and adequate level of calcium, phosphate, and fluoride in diabetes mellitus type 2 patients with dental caries. A total of 398 diabetes mellitus type 2 patients with dental caries and 395 age- and sex-matched non-diabetic subjects with dental caries were included as controls, all of whom gave informed consent. All subjects were divided into four groups according to their age. Decayed, missed, and filled teeth (DMFT) were scored to indicate the severity of dental caries. Saliva was collected, flow rate was noted, and calcium, phosphate, and fluoride were analyzed. The blood glucose, HbA1c, and DMFT indices were found to be significantly high in diabetic patients as compared to controls. The salivary flow rate, calcium, phosphate, and fluoride were found to be significantly low whereas no significant difference was found in salivary magnesium in patients as compared to controls. Optimum salivary flow rate is responsible for establishing protective environment against dental caries. Adequate level of salivary calcium, phosphate, and fluoride is also involved in significant deposition of these minerals in plaque, which greatly reduces the development of caries in the adjacent enamel of teeth. Copyright © 2011 Elsevier Inc. All rights reserved.
On the derivation of flow rating curves in data-scarce environments
NASA Astrophysics Data System (ADS)
Manfreda, Salvatore
2018-07-01
River monitoring is a critical issue for hydrological modelling that relies strongly on the use of flow rating curves (FRCs). In most cases, these functions are derived by least-squares fitting which usually leads to good performance indices, even when based on a limited range of data that especially lack high flow observations. In this context, cross-section geometry is a controlling factor which is not fully exploited in classical approaches. In fact, river discharge is obtained as the product of two factors: 1) the area of the wetted cross-section and 2) the cross-sectionally averaged velocity. Both factors can be expressed as a function of the river stage, defining a viable alternative in the derivation of FRCs. This makes it possible to exploit information about cross-section geometry limiting, at least partially, the uncertainty in the extrapolation of discharge at higher flow values. Numerical analyses and field data confirm the reliability of the proposed procedure for the derivation of FRCs.
NASA Astrophysics Data System (ADS)
Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo
2012-02-01
We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min-1, 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.
Kim, Kyungnam; Jeong, Sohee; Woo, Ju Yeon; Han, Chang-Soo
2012-02-17
We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min(-1), 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.
RTD-based Material Tracking in a Fully-Continuous Dry Granulation Tableting Line.
Martinetz, M C; Karttunen, A-P; Sacher, S; Wahl, P; Ketolainen, J; Khinast, J G; Korhonen, O
2018-06-06
Continuous manufacturing (CM) offers quality and cost-effectiveness benefits over currently dominating batch processing. One challenge that needs to be addressed when implementing CM is traceability of materials through the process, which is needed for the batch/lot definition and control strategy. In this work the residence time distributions (RTD) of single unit operations (blender, roller compactor and tablet press) of a continuous dry granulation tableting line were captured with NIR based methods at selected mass flow rates to create training data. RTD models for continuous operated unit operations and the entire line were developed based on transfer functions. For semi-continuously operated bucket conveyor and pneumatic transport an assumption based the operation frequency was used. For validation of the parametrized process model, a pre-defined API step change and its propagation through the manufacturing line was computed and compared to multi-scale experimental runs conducted with the fully assembled continuous operated manufacturing line. This novel approach showed a very good prediction power at the selected mass flow rates for a complete continuous dry granulation line. Furthermore, it shows and proves the capabilities of process simulation as a tool to support development and control of pharmaceutical manufacturing processes. Copyright © 2018. Published by Elsevier B.V.
Control volume based hydrocephalus research; a phantom study
NASA Astrophysics Data System (ADS)
Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy
2009-11-01
Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.
Influence of Dai-kenchu-to (DKT) on human portal blood flow.
Ogasawara, Takashi; Morine, Yuji; Ikemoto, Tetsuya; Imura, Satoru; Fujii, Masahiko; Soejima, Yuji; Shimada, Mitsuo
2008-01-01
Dai-kenchu-to (DKT) is known as an herbal medicine used for postoperative ileus. However, no report exists about the effect of DKT on portal blood flow. The aim of this study is to clarify the influence of DKT on portal blood flow. To healthy volunteers (Healthy; n = 6), cirrhotic patients (Cirrhosis; n = 7) and liver-transplant patients (LTx; n = 3), DKT (2.5g) with 100mL of warm water was orally administrated in the DKT group, and only warm water was administrated in the control group. The portal blood flow rate (M-VEL: cm/sec.) and portal blood flow (Flow volume: mL/min.) was measured each time after administration using an ultrasonic Doppler method. Furthermore, the arterial blood pressure and heart rate was measured at the same time points. In the DKT group, a significant increase of M-VEL (120%) and flow volume (150%) 30 minutes after administration was observed in both Healthy and Cirrhosis in comparison with the control group. In LTx, there was also a significant increase of flow volume (128%) 30 minutes after administration. However, there was no change in average blood pressure and heart rate in all groups. DKT increases portal blood flow in early phase after oral administration without any significant changes in the blood pressure and heart rate.
Capes, D; Martin, K; Underwood, R
1997-10-01
The aim of this study was to investigate the flow performance of the mechanical Springfusor 30 short model and the electronic Graseby MS16A. Flow rate was measured gravimetrically in a temperature-controlled cabinet. There was no statistically significant difference between the Graseby and Springfusor syringe drivers in the flow rate error at 25 degrees C. The percentage of flow rates within +/-20% accuracy during a 35-min periods at 25 degrees C was significantly less with the Graseby, being 91.9% compared with 100% for the Springfusor. Only 58.2% of flow rates with the Graseby were within the manufacturer claimed accuracy of +/-5%. The flow rate of the Springfusor was affected by temperature; at 30 degrees C the mean flow rate was 10.8% greater than at 25 degrees C. These results indicate that the Springfusor 30 had less flow rate variation than the Graseby MS16A. However, this would not be expected to cause noticeable clinical effects when used for opioid infusion in palliative care.
Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons.
Ferro, Ari M; Adham, Tareq; Berra, Brett; Tsao, David
2013-01-01
Poplar and willow tree stands were installed in 2003 at a site in Raleigh, North Carolina containing total petroleum hydrocarbon - contaminated groundwater. The objective was groundwater uptake and plume control. The water table was 5 to 6 m below ground surface (bgs) and therefore methods were used to encourage deep root development. Growth rates, rooting depth and sap flow were measured for trees in Plot A located in the center of the plume and in Plot B peripheral to the plume. The trees were initially sub-irrigated with vertically installed drip-lines and by 2005 had roots 4 to 5 m bgs. Water balance calculations suggested groundwater uptake. In 2007, the average sap flow was higher for Plot B (approximately 59 L per day per tree) than for Plot A (approximately 23 L per day per tree), probably as a result of TPH-induced stress in Plot A. Nevertheless, the estimated rate of groundwater uptake for Plot A was sufficient, relative to the calculated rate of groundwater flux beneath the stand, that a high level of plume control was achieved based on MODFLOW modeling results. Down-gradient groundwater monitoring wells installed in late 2011 should provide quantitative data for plume control.
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Markusic, T. E.; Stanojev, B. J.
2007-01-01
Two prototype bismuth propellant feed systems were constructed and operated in conjunction with a propellant vaporizer. One system provided bismuth to a vaporizer using gas pressurization but did not include a means to measure the flow rate. The second system incorporated an electromagnetic pump to provide fine control of the hydrostatic pressure and a new type of in-line flow sensor that was developed for accurate, real-time measurement of the mass flow rate. High-temperature material compatibility was a driving design requirement for the pump and flow sensor, leading to the selection of Macor for the main body of both components. Posttest inspections of both components revealed no degradation of the material. The gas pressurization system demonstrated continuous pressure control over a range from zero to 200 torr. In separate proof-of-concept experiments, the electromagnetic pump produced a linear pressure rise as a function of current that compared favorably with theoretical pump pressure predictions, producing a pressure rise of 10 kPa at 30 A. Preliminary flow sensor operation indicated a bismuth flow rate of 6 mg/s with an uncertainty of plus or minus 6%. An electronics suite containing a real-time controller was successfully used to control the entire system, simultaneously monitoring all power supplies and performing data acquisition duties.
Fluid Mechanics of Wing Adaptation for Separation Control
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)
1997-01-01
The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.
MFCVs (Manual Flow Control Valves) in the Lab
2009-07-07
ISS020-E-017705 (7 July 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, works at a rotated rack in the Destiny laboratory of the International Space Station during in-flight maintenance (IFM) to adjust the periodic flow rate of manual flow control valves for coolant loops.
MFCVs (Manual Flow Control Valves) in the Lab
2009-07-07
ISS020-E-017710 (7 July 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, works at a rotated rack in the Destiny laboratory of the International Space Station during in-flight maintenance (IFM) to adjust the periodic flow rate of manual flow control valves for coolant loops.
Al Abachi, Mouayed Q.; Hadi, Hind
2012-01-01
Simple and sensitive normal and reverse flow injection methods for spectrophotometric determination of thiamine hydrochloride (THC) at the microgram level were proposed and optimized. Both methods are based on the reaction between THC and diazotized metoclopramide in alkaline medium. Beer’s law was obeyed over the range of 10–300 and 2–90 μg/mL, the limits of detection were 2.118 and 0.839 μg/mL and the sampling rates were 80 and 95 injections per hour for normal and reverse flow injection methods respectively. The application of both methods to commercially available pharmaceuticals produced acceptable results. The flow system is suitable for application in quality control processes. PMID:29403765
McGinn, Patrick J; MacQuarrie, Scott P; Choi, Jerome; Tartakovsky, Boris
2017-01-01
In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L -1 d -1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.
Formulation and Implementation of Inflow/Outflow Boundary Conditions to Simulate Propulsive Effects
NASA Technical Reports Server (NTRS)
Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian
2018-01-01
Boundary conditions appropriate for simulating flow entering or exiting the computational domain to mimic propulsion effects have been implemented in an adaptive Cartesian simulation package. A robust iterative algorithm to control mass flow rate through an outflow boundary surface is presented, along with a formulation to explicitly specify mass flow rate through an inflow boundary surface. The boundary conditions have been applied within a mesh adaptation framework based on the method of adjoint-weighted residuals. This allows for proper adaptive mesh refinement when modeling propulsion systems. The new boundary conditions are demonstrated on several notional propulsion systems operating in flow regimes ranging from low subsonic to hypersonic. The examples show that the prescribed boundary state is more properly imposed as the mesh is refined. The mass-flowrate steering algorithm is shown to be an efficient approach in each example. To demonstrate the boundary conditions on a realistic complex aircraft geometry, two of the new boundary conditions are also applied to a modern low-boom supersonic demonstrator design with multiple flow inlets and outlets.
Norman, Mya A; Evans, Christine E; Fuoco, Anthony R; Noble, Richard D; Koval, Carl A
2005-10-01
Electrokinetic flow provides a mechanism for a variety of fluid pumping schemes. The design and characterization of an electrochemically driven pump that utilizes porous carbon electrodes, iodide/triiodide redox electrolytes, and Nafion membranes is described. Fluid pumping by the cell is reversible and controlled by the cell current. Chronopotentiometry experiments indicate that the total available fluid that can be pumped in a single electrolysis without gas evolution is determined solely by the initial concentration of electrolyte and the applied current. The magnitude of the fluid flow at a given current is determined by the nature of the cation in the electrolyte and by the water absorption properties of the Nafion membrane. For 1 M aqueous electrolytes, pumping rates ranging from 1 to 14 microL/min were obtained for current densities of 10-30 mA/cm2 of membrane area. Molar volume changes for the I3-/I- redox couple and for the alkali cation migration contribute little to the observed volumetric flow rates; the magnitude of the flow is dominated by the migration-induced flow of water.
Space-based detection of wetlands' surface water level changes from L-band SAR interferometry
Wdowinski, S.; Kim, S.-W.; Amelung, F.; Dixon, T.H.; Miralles-Wilhelm, F.; Sonenshein, R.
2008-01-01
Interferometric processing of JERS-1 L-band Synthetic Aperture Radar (SAR) data acquired over south Florida during 1993-1996 reveals detectable surface changes in the Everglades wetlands. Although our study is limited to south Florida it has implication for other large-scale wetlands, because south Florida wetlands have diverse vegetation types and both managed and natural flow environments. Our analysis reveals that interferometric coherence level is sensitive to wetland vegetation type and to the interferogram time span. Interferograms with time spans less than six months maintain phase observations for all wetland types, allowing characterization of water level changes in different wetland environments. The most noticeable changes occur between the managed and the natural flow wetlands. In the managed wetlands, fringes are organized, follow patterns related to some of the managed water control structures and have high fringe-rate. In the natural flow areas, fringes are irregular and have a low fringe-rate. The high fringe rate in managed areas reflects dynamic water topography caused by high flow rate due to gate operation. Although this organized fringe pattern is not characteristic of most large-scale wetlands, the high level of water level change enables accurate estimation of the wetland InSAR technique, which lies in the range of 5-10??cm. The irregular and low rate fringe pattern in the natural flow area reflects uninterrupted flow that diffuses water efficiently and evenly. Most of the interferograms in the natural flow area show an elongated fringe located along the transitional zone between salt- and fresh-water wetlands, reflecting water level changes due to ocean tides. ?? 2007 Elsevier Inc. All rights reserved.
Stability Of Oscillatory Rotating-Disk Boundary Layers
NASA Astrophysics Data System (ADS)
Morgan, Scott; Davies, Christopher
2017-11-01
The rotating disk boundary layer has long been considered as an archetypal model for studying the stability of three-dimensional boundary-layer flows. It is one of the few truly three-dimensional configurations for which there is an exact similarity solution of the Navier-Stokes equations. Due to a crossflow inflexion point instability, the investigation of strategies for controlling the behaviour of disturbances that develop in the rotating disk flow may prove to be helpful for the identification and assessment of aerodynamical technologies that have the potential to maintain laminar flow over swept wings. We will consider the changes in the stability behaviour which arise when the base-flow is altered by imposing a periodic modulation in the rotation rate of the disk surface. Following similar work by Thomas et al., preliminary results indicate that this modification can lead to significant stabilising effects. Current work encompasses linearised DNS, complemented by a local in time analysis made possible by imposing an artificial frozen flow approximation. This is deployed together with a more exact global treatment based upon Floquet theory, which avoids the need for any simplification of the temporal dependency of the base-flow.
Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability
NASA Astrophysics Data System (ADS)
Robinett, Rush D.; Wilson, David G.
2009-10-01
This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.
Yiotis, Charilaos; Manetas, Yiannis
2010-07-01
A combination of gas exchange and various chlorophyll fluorescence measurements under varying O(2) and CO(2) partial pressures were used to characterize photosynthesis in green, stomata-bearing petioles of Zantedeschia aethiopica (calla lily) while corresponding leaves served as controls. Compared to leaves, petioles displayed considerably lower CO(2) assimilation rates, limited by both stomatal and mesophyll components. Further analysis of mesophyll limitations indicated lower carboxylating efficiencies and insufficient RuBP regeneration but almost similar rates of linear electron transport. Accordingly, higher oxygenation/carboxylation ratios were assumed for petioles and confirmed by experiments under non-photorespiratory conditions. Higher photorespiration rates in petioles were accompanied by higher cyclic electron flow around PSI, the latter being possibly linked to limitations in electron transport from intermediate electron carriers to end acceptors and low contents of PSI. Based on chlorophyll fluorescence methods, similar conclusions can be drawn for green pedicels, although gas exchange in these organs could not be applied due to their bulky size. Since our test plants were not subjected to stress we argue that higher photorespiration and cyclic electron flow rates are innate attributes of photosynthesis in stalks of calla lily. Active nitrogen metabolism may be inferred, while increased cyclic electron flow may provide the additional ATP required for the enhanced photorespiratory activity in petiole and pedicel chloroplasts and/or the decarboxylation of malate ascending from roots.
Yang, Wei-fa; Liao, Gui-qing; Hakim, Samer G; Ouyang, Dai-qiao; Ringash, Jolie; Su, Yu-xiong
2016-03-01
To evaluate the efficacy of concomitant administration of pilocarpine on radiation-induced xerostomia in patients with head and neck cancers. The PubMed, Web of Science, Cochrane Library, and ClinicalTrials were searched to identify randomized, controlled trials studying the effect of concomitant administration of pilocarpine for radiation-induced xerostomia. Included trials were systematically reviewed, and quantifiable outcomes were pooled for meta-analysis. Outcomes of interest included salivary flow, clinician-rated xerostomia grade, patient-reported xerostomia scoring, quality of life, and adverse effects. Six prospective, randomized, controlled trials in 8 articles were included in this systematic review. The total number of patients was 369 in the pilocarpine group and 367 in the control group. Concomitant administration of pilocarpine during radiation could increase the unstimulated salivary flow rate in a period of 3 to 6 months after treatment, and also reduce the clinician-rated xerostomia grade. Patient-reported xerostomia was not significantly impacted by pilocarpine in the initial 3 months but was superior at 6 months. No significant difference of stimulated salivary flow rate could be confirmed between the 2 arms. Adverse effects of pilocarpine were mild and tolerable. The concomitant administration of pilocarpine during radiation increases unstimulated salivary flow rate and reduces clinician-rated xerostomia grade after radiation. It also relieves patients' xerostomia at 6 months and possibly at 12 months. However, pilocarpine has no effect on stimulated salivary flow rate. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Wei-fa; Liao, Gui-qing; Hakim, Samer G.
Purpose: To evaluate the efficacy of concomitant administration of pilocarpine on radiation-induced xerostomia in patients with head and neck cancers. Methods and Materials: The PubMed, Web of Science, Cochrane Library, and ClinicalTrials were searched to identify randomized, controlled trials studying the effect of concomitant administration of pilocarpine for radiation-induced xerostomia. Included trials were systematically reviewed, and quantifiable outcomes were pooled for meta-analysis. Outcomes of interest included salivary flow, clinician-rated xerostomia grade, patient-reported xerostomia scoring, quality of life, and adverse effects. Results: Six prospective, randomized, controlled trials in 8 articles were included in this systematic review. The total number of patientsmore » was 369 in the pilocarpine group and 367 in the control group. Concomitant administration of pilocarpine during radiation could increase the unstimulated salivary flow rate in a period of 3 to 6 months after treatment, and also reduce the clinician-rated xerostomia grade. Patient-reported xerostomia was not significantly impacted by pilocarpine in the initial 3 months but was superior at 6 months. No significant difference of stimulated salivary flow rate could be confirmed between the 2 arms. Adverse effects of pilocarpine were mild and tolerable. Conclusions: The concomitant administration of pilocarpine during radiation increases unstimulated salivary flow rate and reduces clinician-rated xerostomia grade after radiation. It also relieves patients' xerostomia at 6 months and possibly at 12 months. However, pilocarpine has no effect on stimulated salivary flow rate.« less
Flink, Håkan
2007-01-01
Reduced salivary flow is a condition that affects oral health. Its prevalence is unknown in young and middle-aged adults and there is no known treatment that permanently increases the salivary flow rate. Reduced salivary flow is related to dental caries, the most common oral disease. Reduced salivary flow is often found in individuals with insufficient food intake and thereby insufficient nutrition to the salivary glands. One nutrition related factor that has been proposed to effect salivary flow rate is iron deficiency. The aims of the thesis were to investigate i) the prevalence of reduced salivary flow rate in different age groups of adults, ii) the relationship between reduced salivary flow rate, general health and dental caries, iii) the influence of time of measurement on reduced salivary flow rate, and iv) if reduced salivary flow rates could be increased by iron supplementation. In Study I saliva was collected from 1427 individuals aged 20-69 years. A questionnaire was answered regarding subjective oral dryness, general diseases, use of drugs, BMI (Body Mass Index) and use of tobacco. In Study II saliva was collected from 48 patients with active caries and 48 caries-inactive patients. A blood sample was analysed for serum ferritin. In Study III the unstimulated salivary flow rate was tested at 7:30 and 11:30 a.m. in 108 individuals, age 15-46 years. The participants were allocated to one of three groups (very low < 0.1 mL/min, low 0.1-0.2 mL/min and normal > 0.2 mL/min) based on the the unstimulated salivary flow rate at 7:30 a.m. Different aspects of the perception of oral dryness were rated using Visual Analogue Scales. In Study IV a double-blind, randomized controlled trial was carried out on 50 individuals with a low unstimulated whole salivary flow rate and low serum ferritin. Half the individuals received 60 mg of iron orally twice a day for 3 months, while the other half received placebo. In Study I it was found that the prevalence of very low (< 0.1 mL/min) and low (0.10-0.19 mL/min) unstimulated salivary flow rate were similar for different age groups up to 50 years, ranging between 10.9-17.8% and 17.3-22.7%, respectively. Multiple logistic regression revealed that above age 50, female gender, 'having fewer than 20 teeth', and taking xerogenic drugs significantly increased the risk of very low unstimulated salivary flow rate. In Study II 32 individuals (67%) in the caries active group had low unstimulated salivary flow rate compared with 13 individuals (27%) in the caries inactive group. There was no difference in serum ferritin levels between the two groups. Study III showed for all groups a statistically significant increase in unstimulated salivary flow rate at 11:30 a.m. compared with 7:30 a.m., all of similar magnitude (0.08-0.09 mL/min). In the group with very low salivary flow rate, 70% at 11:30 a.m. exceeded the 0.1 mL/min limit. There were significant difference in perception of oral dryness between the normal group and both the low and the very low groups. In Study IV no statistically significant difference was found between the groups after treatment for the unstimulated flow rate and in the subjective assessments of oral dryness. The prevalence of reduced salivary flow rates is consistent and prevalent in younger and middle-aged adults (< 50 years). Very low salivary flow rates are related to high Body Mass Index (BMI) and diagnosed diseases in younger adults, but to medication in older adults. Reduced salivary flow rate in young adult women is related to caries. The time of measurement of salivary flow rates influences diagnosis of hyposalivation. Iron supplementation does not enhance salivary flow.
Multiphase flow calculation software
Fincke, James R.
2003-04-15
Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.
NASA Astrophysics Data System (ADS)
Golder, K.; Burr, D. M.; Tran, L.
2017-12-01
Regional volcanic processes shaped many planetary surfaces in the Solar System, often through the emplacement of long, voluminous lava flows. Terrestrial examples of this type of lava flow have been used as analogues for extensive martian flows, including those within the circum-Cerberus outflow channels. This analogy is based on similarities in morphology, extent, and inferred eruptive style between terrestrial and martian flows, which raises the question of how these lava flows appear comparable in size and morphology on different planets. The parameters that influence the areal extent of silicate lavas during emplacement may be categorized as either inherent or external to the lava. The inherent parameters include the lava yield strength, density, composition, water content, crystallinity, exsolved gas content, pressure, and temperature. Each inherent parameter affects the overall viscosity of the lava, and for this work can be considered a subset of the viscosity parameter. External parameters include the effusion rate, total erupted volume, regional slope, and gravity. To investigate which parameter(s) may control(s) the development of long lava flows on Mars, we are applying a computational numerical-modelling to reproduce the observed lava flow morphologies. Using a matrix of boundary conditions in the model enables us to investigate the possible range of emplacement conditions that can yield the observed morphologies. We have constructed the basic model framework in Model Builder within ArcMap, including all governing equations and parameters that we seek to test, and initial implementation and calibration has been performed. The base model is currently capable of generating a lava flow that propagates along a pathway governed by the local topography. At AGU, the results of model calibration using the Eldgá and Laki lava flows in Iceland will be presented, along with the application of the model to lava flows within the Cerberus plains on Mars. We then plan to convert the model into Python, for easy modification and portability within the community.
Bubble pump: scalable strategy for in-plane liquid routing.
Oskooei, Ali; Günther, Axel
2015-07-07
We present an on-chip liquid routing technique intended for application in well-based microfluidic systems that require long-term active pumping at low to medium flowrates. Our technique requires only one fluidic feature layer, one pneumatic control line and does not rely on flexible membranes and mechanical or moving parts. The presented bubble pump is therefore compatible with both elastomeric and rigid substrate materials and the associated scalable manufacturing processes. Directed liquid flow was achieved in a microchannel by an in-series configuration of two previously described "bubble gates", i.e., by gas-bubble enabled miniature gate valves. Only one time-dependent pressure signal is required and initiates at the upstream (active) bubble gate a reciprocating bubble motion. Applied at the downstream (passive) gate a time-constant gas pressure level is applied. In its rest state, the passive gate remains closed and only temporarily opens while the liquid pressure rises due to the active gate's reciprocating bubble motion. We have designed, fabricated and consistently operated our bubble pump with a variety of working liquids for >72 hours. Flow rates of 0-5.5 μl min(-1), were obtained and depended on the selected geometric dimensions, working fluids and actuation frequencies. The maximum operational pressure was 2.9 kPa-9.1 kPa and depended on the interfacial tension of the working fluids. Attainable flow rates compared favorably with those of available micropumps. We achieved flow rate enhancements of 30-100% by operating two bubble pumps in tandem and demonstrated scalability of the concept in a multi-well format with 12 individually and uniformly perfused microchannels (variation in flow rate <7%). We envision the demonstrated concept to allow for the consistent on-chip delivery of a wide range of different liquids that may even include highly reactive or moisture sensitive solutions. The presented bubble pump may provide active flow control for analytical and point-of-care diagnostic devices, as well as for microfluidic cells culture and organ-on-chip platforms.
Pressurized tundish for controlling a continuous flow of molten metal
Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.
1990-07-24
A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.
NASA Astrophysics Data System (ADS)
Iftekhar, Ahmed Tashfin; Ho, Jenny Che-Ting; Mellinger, Axel; Kaya, Tolga
2017-03-01
Sweat-based physiological monitoring has been intensively explored in the last decade with the hopes of developing real-time hydration monitoring devices. Although the content of sweat (electrolytes, lactate, urea, etc.) provides significant information about the physiology, it is also very important to know the rate of sweat at the time of sweat content measurements because the sweat rate is known to alter the concentrations of sweat compounds. We developed a calorimetric based flow rate sensor using PolydimethylSiloxane that is suitable for sweat rate applications. Our simple approach on using temperature-based flow rate detection can easily be adapted to multiple sweat collection and analysis devices. Moreover, we have developed a 3D finite element analysis model of the device using COMSOL Multiphysics™ and verified the flow rate measurements. The experiment investigated flow rate values from 0.3 μl/min up to 2.1 ml/min, which covers the human sweat rate range (0.5 μl/min-10 μl/min). The 3D model simulations and analytical model calculations covered an even wider range in order to understand the main physical mechanisms of the device. With a verified 3D model, different environmental heat conditions could be further studied to shed light on the physiology of the sweat rate.
Passive control of a biventricular assist device with compliant inflow cannulae.
Gregory, Shaun David; Pearcy, Mark John; Timms, Daniel
2012-08-01
Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow balancing Starling response is diminished in both ventricles. The reliability of sensor and sensorless-based control systems which aim to control VAD flow based on preload has limitations, and, thus, an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a CIC could potentially be used as a passive control system to prevent suction events in rotary left, right, and biventricular support. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Väänänen, J; Memet, S; Günther, T; Lilja, M; Cimbritz, M; la Cour Jansen, J
2017-10-01
For chemically enhanced primary treatment (CEPT) with microsieving, a feedback proportional integral controller combined with a feedforward compensator was used in large pilot scale to control effluent water turbidity to desired set points. The effluent water turbidity from the microsieve was maintained at various set points in the range 12-80 NTU basically independent for a number of studied variations in influent flow rate and influent wastewater compositions. Effluent turbidity was highly correlated with effluent chemical oxygen demand (COD). Thus, for CEPT based on microsieving, controlling the removal of COD was possible. Thereby incoming carbon can be optimally distributed between biological nitrogen removal and anaerobic digestion for biogas production. The presented method is based on common automation and control strategies; therefore fine tuning and optimization for specific requirements are simplified compared to model-based dosing control.
Anderson, Eric J; Falls, Thomas D; Sorkin, Adam M; Tate, Melissa L Knothe
2006-01-01
Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study) at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV) experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable. PMID:16672051
Granular flow in a rotating drum: Experiments and theory
NASA Astrophysics Data System (ADS)
Hung, C. Y.; Stark, C. P.; Capart, H.; Li, L.; Smith, B.; Grinspun, E.
2015-12-01
Erosion at the base of a debris flow fundamentally controls how large the flow will become and how far it will travel. Experimental observations of this important phenomenon are rather limited, and this lack has led theoretical treatments to making ad hoc assumptions about the basal process. In light of this, we carried out a combination of laboratory experiments and theoretical analysis of granular flow in a rotating drum, a canonical example of steady grain motion in which entrainment rates can be precisely controlled. Our main result is that basal sediment is entrained as the velocity profile adjusts to imbalance in the flow of kinetic energy.Our experimental apparatus consisted of a 40cm-diameter drum, 4cm-deep, half-filled with 2.3mm grains. Rotation rates varied from 1-70 rpm. We varied the effective scale by varying effective gravity from 1g to 70g on a geotechnical centrifuge. The field of grain motion was recorded using high-speed video and mapped using particle tracking velocimetry. In tandem we developed a depth-averaged theory using balance equations for mass, momentum and kinetic energy. We assumed a linearized GDR Midi granular rheology [da Cruz, 2005] and a Coulomb friction law along the sidewalls [Jop et al., 2005]. A scaling analysis of our equations yields a dimensionless "entrainment number" En, which neatly parametrizes the flow geometry in the drum for a wide range of variables, e.g., rotation rate and effective gravity. At low En, the flow profile is planar and kinetic energy is balanced locally in the flow layer. At high En, the flow profile is sigmoidal (yin-yang shaped) and the kinetic energy is dominated by longitudinal, streamwise transfer. We observe different scaling behavior under each of these flow regimes, e.g., between En and kinetic energy, surface slope and flow depth. Our theory correctly predicts their scaling exponents and the value of En at which the regime transition takes place. We are also able to make corrections for Coriolis and dilation effects that improve the match between theory and experiment.
Augmentative effect of pulsatility on the wall shear stress in tube flow.
Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K
1999-08-01
Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.
Luna, M; Gastone, F; Tosco, T; Sethi, R; Velimirovic, M; Gemoets, J; Muyshondt, R; Sapion, H; Klaas, N; Bastiaens, L
2015-10-01
The paper reports a pilot injection test of microsized zerovalent iron (mZVI) dispersed in a guar gum shear thinning solution. The test was performed in the framework of the EU research project AQUAREHAB in a site in Belgium contaminated by chlorinated aliphatic hydrocarbons (CAHs). The field application was aimed to overcome those critical aspects which hinder mZVI field injection, mainly due to the colloidal instability of ZVI-based suspensions. The iron slurry properties (iron particles size and concentration, polymeric stabilizer type and concentration, slurry viscosity) were designed in the laboratory based on several tests (reactivity tests towards contaminants, sedimentation tests and rheological measurements). The particles were delivered into the aquifer through an injection well specifically designed for controlled-pressure delivery (approximately 10 bars). The well characteristics and the critical pressure of the aquifer (i.e. the injection pressure above which fracturing occurs) were assessed via two innovative injection step rate tests, one performed with water and the other one with guar gum. Based on laboratory and field preliminary tests, a flow regime at the threshold between permeation and preferential flow was selected for mZVI delivery, as a compromise between the desired homogeneous distribution of the mZVI around the injection point (ensured by permeation flow) and the fast and effective injection of the slurry (guaranteed by high discharge rates and injection pressure, resulting in the generation of preferential flow paths). A monitoring setup was designed and installed for the real-time monitoring of relevant parameters during injection, and for a fast determination of the spatial mZVI distribution after injection via non-invasive magnetic susceptibility measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
Fluid flow measurements by means of vibration monitoring
NASA Astrophysics Data System (ADS)
Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano
2015-11-01
The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.
NASA Astrophysics Data System (ADS)
Liu, Yang; Geng, Cong; Zhu, Yunke; Peng, Jinfeng; Xu, Junrui
2017-04-01
Using a controlled thermal simulator system, hybrid carbon nanotube-aluminum reinforced ZA27 composites were subjected to hot compression testing in the temperature range of 473-523 K with strain rates of 0.01-10 s-1. Based on experimental results, a developed-flow stress model was established using a constitutive equation coupled with strain to describe strain softening arising from dynamic recrystallization. The intrinsic workability was further investigated by constructing three-dimensional (3D) processing maps aided by optical observations of microstructures. The 3D processing maps were constructed based on a dynamic model of materials to delineate variations in the efficiency of power dissipation and flow instability domains. The instability domains exhibited adiabatic shear band and flow localization, which need to be prevented during hot processing. The recommended domain is predicated to be within the temperature range 550-590 K and strain rate range 0.01-0.35 s-1. In this state, the main softening mechanism is dynamic recrystallization. The results from processing maps agree well with the microstructure observations.
NASA Astrophysics Data System (ADS)
Dufoyer, A.; Lecoq, N.; Massei, N.; Marechal, J. C.
2017-12-01
Physics-based modeling of karst systems remains almost impossible without enough accurate information about the inner physical characteristics. Usually, the only available hydrodynamic information is the flow rate at the karst outlet. Numerous works in the past decades have used and proven the usefulness of time-series analysis and spectral techniques applied to spring flow, precipitations or even physico-chemical parameters, for interpreting karst hydrological functioning. However, identifying or interpreting the karst systems physical features that control statistical or spectral characteristics of spring flow variations is still challenging, not to say sometimes controversial. The main objective of this work is to determine how the statistical and spectral characteristics of the hydrodynamic signal at karst springs can be related to inner physical and hydraulic properties. In order to address this issue, we undertake an empirical approach based on the use of both distributed and physics-based models, and on synthetic systems responses. The first step of the research is to conduct a sensitivity analysis of time-series/spectral methods to karst hydraulic and physical properties. For this purpose, forward modeling of flow through several simple, constrained and synthetic cases in response to precipitations is undertaken. It allows us to quantify how the statistical and spectral characteristics of flow at the outlet are sensitive to changes (i) in conduit geometries, and (ii) in hydraulic parameters of the system (matrix/conduit exchange rate, matrix hydraulic conductivity and storativity). The flow differential equations resolved by MARTHE, a computer code developed by the BRGM, allows karst conduits modeling. From signal processing on simulated spring responses, we hope to determine if specific frequencies are always modified, thanks to Fourier series and multi-resolution analysis. We also hope to quantify which parameters are the most variable with auto-correlation analysis: first results seem to show higher variations due to conduit conductivity than the ones due to matrix/conduit exchange rate. Future steps will be using another computer code, based on double-continuum approach and allowing turbulent conduit flow, and modeling a natural system.
Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape
NASA Astrophysics Data System (ADS)
Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.
2017-12-01
Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and improve management of our critical water resources.
Sun, Jianyu; Liang, Peng; Yan, Xiaoxu; Zuo, Kuichang; Xiao, Kang; Xia, Junlin; Qiu, Yong; Wu, Qing; Wu, Shijia; Huang, Xia; Qi, Meng; Wen, Xianghua
2016-04-15
Reducing the energy consumption of membrane bioreactors (MBRs) is highly important for their wider application in wastewater treatment engineering. Of particular significance is reducing aeration in aerobic tanks to reduce the overall energy consumption. This study proposed an in situ ammonia-N-based feedback control strategy for aeration in aerobic tanks; this was tested via model simulation and through a large-scale (50,000 m(3)/d) engineering application. A full-scale MBR model was developed based on the activated sludge model (ASM) and was calibrated to the actual MBR. The aeration control strategy took the form of a two-step cascaded proportion-integration (PI) feedback algorithm. Algorithmic parameters were optimized via model simulation. The strategy achieved real-time adjustment of aeration amounts based on feedback from effluent quality (i.e., ammonia-N). The effectiveness of the strategy was evaluated through both the model platform and the full-scale engineering application. In the former, the aeration flow rate was reduced by 15-20%. In the engineering application, the aeration flow rate was reduced by 20%, and overall specific energy consumption correspondingly reduced by 4% to 0.45 kWh/m(3)-effluent, using the present practice of regulating the angle of guide vanes of fixed-frequency blowers. Potential energy savings are expected to be higher for MBRs with variable-frequency blowers. This study indicated that the ammonia-N-based aeration control strategy holds promise for application in full-scale MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Numerical simulations of flow fields through conventionally controlled wind turbines & wind farms
NASA Astrophysics Data System (ADS)
Emre Yilmaz, Ali; Meyers, Johan
2014-06-01
In the current study, an Actuator-Line Model (ALM) is implemented in our in-house pseudo-spectral LES solver SP-WIND, including a turbine controller. Below rated wind speed, turbines are controlled by a standard-torque-controller aiming at maximum power extraction from the wind. Above rated wind speed, the extracted power is limited by a blade pitch controller which is based on a proportional-integral type control algorithm. This model is used to perform a series of single turbine and wind farm simulations using the NREL 5MW turbine. First of all, we focus on below-rated wind speed, and investigate the effect of the farm layout on the controller calibration curves. These calibration curves are expressed in terms of nondimensional torque and rotational speed, using the mean turbine-disk velocity as reference. We show that this normalization leads to calibration curves that are independent of wind speed, but the calibration curves do depend on the farm layout, in particular for tightly spaced farms. Compared to turbines in a lone-standing set-up, turbines in a farm experience a different wind distribution over the rotor due to the farm boundary-layer interaction. We demonstrate this for fully developed wind-farm boundary layers with aligned turbine arrangements at different spacings (5D, 7D, 9D). Further we also compare calibration curves obtained from full farm simulations with calibration curves that can be obtained at a much lower cost using a minimal flow unit.
NASA Astrophysics Data System (ADS)
Yang, Jubiao; Krane, Michael; Zhang, Lucy
2013-11-01
Vocal fold vibrations and the glottal jet are successfully simulated using the modified Immersed Finite Element method (mIFEM), a fully coupled dynamics approach to model fluid-structure interactions. A self-sustained and steady vocal fold vibration is captured given a constant pressure input at the glottal entrance. The flow rates at different axial locations in the glottis are calculated, showing small variations among them due to the vocal fold motion and deformation. To further facilitate the understanding of the phonation process, two control volume analyses, specifically with Bernoulli's equation and Newton's 2nd law, are carried out for the glottal flow based on the simulation results. A generalized Bernoulli's equation is derived to interpret the correlations between the velocity and pressure temporally and spatially along the center line which is a streamline using a half-space model with symmetry boundary condition. A specialized Newton's 2nd law equation is developed and divided into terms to help understand the driving mechanism of the glottal flow.
A system for calibrating seepage meters used to measure flow between ground water and surface water
Rosenberry, Donald O.; Menheer, Michael A.
2006-01-01
The in-line flowmeter used with this system is incapable of measuring seepage rates below about 7 centimeters per day. Smaller seepage rates can be measured manually. The seepage- control system also can be modified for measuring slower seepage rates with the use of two flowmeters and a slightly different water-routing system, or a fluid-metering pump can be used to control flow through the flux tank instead of an adjustable-height reservoir.
Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control
NASA Technical Reports Server (NTRS)
Lin, Amy; Smith, Frederick; Sweterlitsch, Jeffrey; Graf, John; Nalette, Tim; Papale, William; Campbell, Melissa; Lu, Sao-Dung
2007-01-01
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control is crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well-suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels. Results of this testing are presented and potential flight operational strategies discussed.
From Magma Fracture to a Seismic Magma Flow Meter
NASA Astrophysics Data System (ADS)
Neuberg, J. W.
2007-12-01
Seismic swarms of low-frequency events occur during periods of enhanced volcanic activity and have been related to the flow of magma at depth. Often they precede a dome collapse on volcanoes like Soufriere Hills, Montserrat, or Mt St Helens. This contribution is based on the conceptual model of magma rupture as a trigger mechanism. Several source mechanisms and radiation patterns at the focus of a single event are discussed. We investigate the accelerating event rate and seismic amplitudes during one swarm, as well as over a time period of several swarms. The seismic slip vector will be linked to magma flow parameters resulting in estimates of magma flux for a variety of flow models such as plug flow, parabolic- or friction controlled flow. In this way we try to relate conceptual models to quantitative estimations which could lead to estimations of magma flux at depth from seismic low-frequency signals.
Valve for controlling solids flow
Staiger, M. Daniel
1985-01-01
A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.
Valve for controlling solids flow
Staiger, M.D.
1982-09-29
A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.
Research on software behavior trust based on hierarchy evaluation
NASA Astrophysics Data System (ADS)
Long, Ke; Xu, Haishui
2017-08-01
In view of the correlation software behavior, we evaluate software behavior credibility from two levels of control flow and data flow. In control flow level, method of the software behavior of trace based on support vector machine (SVM) is proposed. In data flow level, behavioral evidence evaluation based on fuzzy decision analysis method is put forward.
Yu, I-Chen; Tsai, Yun-Fang; Fang, Ji-Tseng; Yeh, Mei-Ming; Fang, Jia-You; Liu, Chieh-Yu
2016-11-01
Dry mouth (xerostomia) is a common symptom in hemodialysis patients, which is associated with a reduced salivary flow. Xerostomia affects patients' oral health and quality of life. The aim of this study was to investigate using a mouthwash as a means to reduce xerostomia and improve saliva flow rates in hemodialysis patients. A randomized controlled trial. Three dialysis centers in Northern Taiwan served as the study sites. Patients were purposively sampled from three hemodialysis centers in Taiwan and randomly assigned to one of three groups: pure water mouthwash; n=41, licorice mouthwash; n=44, or no mouthwash (control); n=37. The Summated Xerostomia Inventory, and unstimulated whole salivary flow rate measured dry mouth and salivary flow, respectively. Data was collected at baseline, dialysis Day 5 and Day 10. One hundred twenty-two patients participated in this study. Baselines were adjusted for any imbalances in variables and generalized estimating equations analysed the data. Compared to control, a pure water mouthwash resulted in an increase in the unstimulated salivary flow rate of 25.85×10 -3 mL/min and 25.78×10 -3 mL/min (p<0.05) at Day 5 and Day 10, respectively. The estimated effect size was 1.38. However, there was no significant decrease in Summated Xerostomia Inventory scores. The licorice mouthwash also significantly improved the unstimulated salivary flow rates to 114.92×10 -3 mL/min, and 131.61×10 -3 mL/min at Day 5 and Day 10, respectively (p< 0.001). However, in contrast to the pure water mouthwash, the licorice mouthwash resulted in a significant improvement in the scores for the Summated Xerostomia Inventory (p<0.001). Although a pure water or a licorice mouthwash and improved the objective measure of salivary flow rate, only the licorice mouthwash provided subjective relief of xerostomia. This suggests the use of a licorice mouthwash may effectively relieve feelings of dry mouth in hemodialysis patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C
2009-01-01
Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.
Sulter, A M; Wit, H P
1996-11-01
Glottal volume velocity waveform characteristics of 224 subjects, categorized in four groups according to gender and vocal training, were determined, and their relations to sound-pressure level, fundamental frequency, intra-oral pressure, and age were analyzed. Subjects phonated at three intensity conditions. The glottal volume velocity waveforms were obtained by inverse filtering the oral flow. Glottal volume velocity waveforms were parameterized with flow-based (minimum flow, ac flow, average flow, maximum flow declination rate) and time-based parameters (closed quotient, closing quotient, speed quotient), as well as with derived parameters (vocal efficiency and glottal resistance). Higher sound-pressure levels, intra-oral pressures, and flow-parameter values (ac flow, maximum flow declination rate) were observed, when compared with previous investigations. These higher values might be the result of the specific phonation tasks (stressed /ae/ vowel in a word and a sentence) or filtering processes. Few statistically significant (p < 0.01) differences in parameters were found between untrained and trained subjects [the maximum flow declination rate and the closing quotient were higher in trained women (p < 0.001), and the speed quotient was higher in trained men (p < 0.005)]. Several statistically significant parameter differences were found between men and women [minimum flow, ac flow, average flow, maximum flow declination rate, closing quotient, glottal resistance (p < 0.001), and closed quotient (p < 0.005)]. Significant effects of intensity condition were observed on ac flow, maximum flow declination rate, closing quotient, and vocal efficiency in women (p < 0.005), and on minimum flow, ac flow, average flow, maximum flow declination rate, closed quotient, and vocal efficiency in men (p < 0.01).
High flow rate nozzle system with production of uniform size droplets
Stockel, I.H.
1990-10-16
Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.
High flow rate nozzle system with production of uniform size droplets
Stockel, Ivar H.
1990-01-01
Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.
Control-Structure Ratings on the Fox River at McHenry and Algonquin, Illinois
Straub, Timothy D.; Johnson, Gary P.; Hortness, Jon E.; Parker, Joseph R.
2009-01-01
The Illinois Department of Natural Resources-Office of Water Resources operates control structures on a reach of the Fox River in northeastern Illinois between McHenry and Algonquin. The structures maintain water levels in the river for flood-control and recreational purposes. This report documents flow ratings for hinged-crest gates, a broad-crested weir, sluice gates, and an ogee spillway on the control structures at McHenry and Algonquin. The ratings were determined by measuring headwater and tailwater stage along with streamflow at a wide range of flows at different gate openings. Standard control-structure rating techniques were used to rate each control structure. The control structures at McHenry consist of a 221-feet(ft)-long broad-crested weir, a 4-ft-wide fish ladder, a 50-ft-wide hinged-crest gate, five 13.75-ft-wide sluice gates, and a navigational lock. Sixty measurements were used to rate the McHenry structures. The control structures at Algonquin consist of a 242-ft-long ogee spillway and a 50-ft-wide hinged-crest gate. Forty-one measurements were used to rate the Algonquin control structures.
Rossner, Alan; Farant, Jean-Pierre
2004-02-01
Evacuated canisters have been used for many years to collect ambient air samples for gases and vapors. Recently, significant interest has arisen in using evacuated canisters for personal breathing zone sampling as an alternative to sorbent sampling. A novel flow control device was designed and built at McGill University. The flow control device was designed to provide a very low flow rate, <0.5 mL/min, to allow a sample to be collected over an extended period of time. Previous experiments run at McGill have shown agreement between the mathematical and empirical models to predict flow rate. The flow control device combined with an evacuated canister (capillary flow control-canister) was used in a series of experiments to evaluate its performance against charcoal tubes and diffusive badges. Air samples of six volatile organic compounds were simultaneously collected in a chamber using the capillary flow control-canister, charcoal tubes, and diffusive badges. Five different concentrations of the six volatile organic compounds were evaluated. The results from the three sampling devices were compared to each other and to concentration values obtained using an online gas chromatograph (GC). Eighty-four samples of each method were collected for each of the six chemicals. Results indicate that the capillary flow control-canister device compares quite favorably to the online GC and to the charcoal tubes, p > 0.05 for most of the tests. The capillary flow control-canister was found to be more accurate for the compounds evaluated, easier to use, and easier to analyze than charcoal tubes and passive dosimeter badges.
NASA Astrophysics Data System (ADS)
Tirandazi, Pooyan; Hidrovo, Carlos
2015-11-01
Over the last few years, microfluidic systems known as Lab-on-a-Chip (LOC) and micro total analysis systems (μTAS) have been increasingly developed as essential components for numerous biochemical applications. Droplet microfluidics, however, provides a distinctive attribute for delivering and processing discrete as well as ultrasmall volumes of fluid, which make droplet-based systems more beneficial over their continuous-phase counterparts. Droplet generation in its conventional scheme usually incorporates the injection of a liquid (water) into a continuous immiscible liquid (oil) medium. In this study we demonstrate a novel scheme for controlled generation of monodisperse droplets in confined gas-liquid microflows. We experimentally investigate the manipulation of water droplets in flow-focusing configurations using a high inertial air stream. Different flow regimes are observed by varying the gas and liquid flow rates, among which, the ``dripping regime'' where monodisperse droplets are generated is of great importance. The controlled size and generation rate of droplets in this region provide the capability for precise and contaminant-free delivery of microliter to nanoliter volumes of fluid. Furthermore, the high speed droplets generated in this method represent the basis for a new approach based on droplet pair collisions for fast efficient micromixing which provides a significant development in modern LOC and μTAS devices. This project is currently being supported by an NSF CAREER Award grant CBET-1151091.
John, C; Langer, K
2014-06-13
Nanoparticles used as drug delivery systems are of growing interest in the pharmaceutical field. Understanding the behaviour and effects of nanosystems in the human body is dependent on comprehensive characterisation of the systems especially with regard to size and size distribution. Asymmetrical flow field-flow fractionation (AF4) is a promising method for this challenge as this technique enables chromatographic separation of particles and solute molecules according to their respective size. Within this study AF4 was used for the characterisation of human serum albumin (HSA) based nanoparticles. In a first part, the most important aspects of method development like the choice of cross flow rate, focusing and the increase of sample concentration via outlet stream splitting on the sample separation were evaluated. Sample fractionation was controlled by inline-coupling of a dynamic light scattering detector (DLS, Zetasizer) and was confirmed by DLS batch mode measurements. In a second part the applicability of field-flow fractionation for characterisation of the HSA particle formation process by a desolvation method was evaluated. A time dependent particle formation was observed which was controlled by the amount of desolvating agent. Furthermore, field-flow fractionation in combination with in-line dynamic light scattering was used to monitor the increase of particle diameter during PEGylation of the resulting HSA nanoparticles. The separation of nanoparticles from dissolved polyethylene glycol (PEG) could successfully be used for determination of the particles' PEGylation degree. Copyright © 2014 Elsevier B.V. All rights reserved.
Oxygen-Mass-Flow Calibration Cell
NASA Technical Reports Server (NTRS)
Martin, Robert E.
1996-01-01
Proposed calibration standard for mass flow rate of oxygen based on conduction of oxygen ions through solid electrolyte membrane made of zirconia and heated to temperature of 1,000 degrees C. Flow of oxygen ions proportional to applied electric current. Unaffected by variations in temperature and pressure, and requires no measurement of volume. Calibration cell based on concept used to calibrate variety of medical and scientific instruments required to operate with precise rates of flow of oxygen.
Walliczek-Dworschak, Ute; Schöps, Franz; Feron, Gilles; Brignot, Helene; Hähner, Antje; Hummel, Thomas
2017-10-01
This study investigated the relation of the fungiform taste papillae density and saliva composition with the taste perception of patients suffering from diagnosed taste disorders. For this purpose, 81 patients and 40 healthy subjects were included. Taste was measured by means of regional and whole mouth chemosensory tests, and electrogustometry. Olfaction was assessed using the Sniffin Sticks. Fungiform papillae were quantified using the "Denver Papillae Protocol for Objective Analysis of Fungiform Papillae". In addition, salivary parameters [flow rate, total proteins, catalase, total anti-oxidative capacity (TAC), carbonic anhydrase VI (caVI), and pH] were determined and the Beck Depression Inventory was administered. Patients showed less taste papillae compared to healthy subjects. The number of papillae correlated with total taste strip score and salivary flow rate. Regarding salivary parameters, the flow rate, protein concentration, and TAC of patients were higher compared to controls. In addition, salivary flow rate, protease, caVI, and catalase values correlated with the summed taste strip score. Regarding various taste disorders, salty-dysgeusia patients showed the lowest taste test scores compared to those with bitter or metal-dysgeusia. Olfactory function of patients was significantly worse compared to healthy controls. This difference was most pronounced for ageusia patients. Compared to controls, patients also exhibited higher depressive symptoms. The density of fungiform papillae seemed to be positively associated with taste perception. Furthermore, patients exhibited changes in saliva composition (higher salivary flow rate, increased protein concentration, proteolysis, and TAC) compared to controls indicating that assessment of saliva may be critical for the diagnostic procedure in taste disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Type 1 diabetes mellitus, xerostomia, and salivary flow rates.
Moore, P A; Guggenheimer, J; Etzel, K R; Weyant, R J; Orchard, T
2001-09-01
The Oral Health Science Institute at the University of Pittsburgh has completed a cross-sectional epidemiologic study of 406 subjects with type 1 diabetes and 268 control subjects without diabetes that assessed the associations between oral health and diabetes. This report describes the prevalence of dry-mouth symptoms (xerostomia), the prevalence of hyposalivation in this population, and the possible interrelationships between salivary dysfunction and diabetic complications. The subjects with diabetes were participants in the Pittsburgh Epidemiology of Diabetes Complications study who were enrolled in an oral health substudy. Control subjects were spouses or best friends of participants or persons recruited from the community through advertisements in local newspapers. Assessments of salivary function included self-reported xerostomia measures and quantification of resting and stimulated whole saliva flow rates. Subjects with diabetes reported symptoms of dry mouth more frequently than did control subjects. Salivary flow rates were also impaired in the subjects with diabetes. Regression models of potential predictor variables were created for the 3 self-reported xerostomia measures and 4 salivary flow rate variables. Of the medical diabetic complications studied (ie, retinopathy, peripheral and autonomic neuropathy, nephropathy, and peripheral vascular disease), only neuropathy was found to be associated with xerostomia and decreased salivary flow measures. A report of dry-mouth symptoms was associated with current use of cigarettes, dysgeusia (report of a bad taste), and more frequent snacking behavior. Xerogenic medications and elevated fasting blood glucose concentrations were significantly associated with decreased salivary flow. Resting salivary flow rates less than 0.01 mL/min were associated with a slightly higher prevalence of dental caries. Subjects who reported higher levels of alcohol consumption were less likely to have lower rates of stimulated salivary flow. Subjects with type 1 diabetes who had developed neuropathy more often reported symptoms of dry mouth as well as symptoms of decreased salivary flow rates. Because of the importance of saliva in the maintenance and the preservation of oral health, management of oral diseases in diabetic patients should include a comprehensive evaluation of salivary function.
Apparatus and method for combusting low quality fuel
Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas
2003-11-04
A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, K.; Steefel, C. I.; White, A.F.
2009-02-25
In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals inmore » the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and thus total mass removed from the weathering profile. Our analysis suggests that secondary clay precipitation is as important as aqueous transport in governing the amount of dissolution that occurs within a profile because clay minerals exert a strong control over the reaction affinity of the dissolving primary minerals. The modeling also indicates that the weathering advance rate and the total mass of mineral dissolved is controlled by the thermodynamic saturation of the primary dissolving phases plagioclase and K-feldspar, as is evident from the difference in propagation rates of the reaction fronts for the two minerals despite their very similar kinetic rate laws.« less
Control volume based hydrocephalus research
NASA Astrophysics Data System (ADS)
Cohen, Benjamin; Voorhees, Abram; Wei, Timothy
2008-11-01
Hydrocephalus is a disease involving excess amounts of cerebral spinal fluid (CSF) in the brain. Recent research has shown correlations to pulsatility of blood flow through the brain. However, the problem to date has presented as too complex for much more than statistical analysis and understanding. This talk will highlight progress on developing a fundamental control volume approach to studying hydrocephalus. The specific goals are to select physiologically control volume(s), develop conservation equations along with the experimental capabilities to accurately quantify terms in those equations. To this end, an in vitro phantom is used as a simplified model of the human brain. The phantom's design consists of a rigid container filled with a compressible gel. The gel has a hollow spherical cavity representing a ventricle and a cylindrical passage representing the aquaducts. A computer controlled piston pump supplies pulsatile volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity, and volume change as functions of time. Independent pressure measurements and flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients.
Cvijetic, Neda; Tanaka, Akihiro; Kanonakis, Konstantinos; Wang, Ting
2014-08-25
We demonstrate the first SDN-controlled optical topology-reconfigurable mobile fronthaul (MFH) architecture for bidirectional coordinated multipoint (CoMP) and low latency inter-cell device-to-device (D2D) connectivity in the 5G mobile networking era. SDN-based OpenFlow control is used to dynamically instantiate the CoMP and inter-cell D2D features as match/action combinations in control plane flow tables of software-defined optical and electrical switching elements. Dynamic re-configurability is thereby introduced into the optical MFH topology, while maintaining back-compatibility with legacy fiber deployments. 10 Gb/s peak rates with <7 μs back-to-back transmission latency and 29.6 dB total power budget are experimentally demonstrated, confirming the attractiveness of the new approach for optical MFH of future 5G mobile systems.
Design Optimization Tool for Synthetic Jet Actuators Using Lumped Element Modeling
NASA Technical Reports Server (NTRS)
Gallas, Quentin; Sheplak, Mark; Cattafesta, Louis N., III; Gorton, Susan A. (Technical Monitor)
2005-01-01
The performance specifications of any actuator are quantified in terms of an exhaustive list of parameters such as bandwidth, output control authority, etc. Flow-control applications benefit from a known actuator frequency response function that relates the input voltage to the output property of interest (e.g., maximum velocity, volumetric flow rate, momentum flux, etc.). Clearly, the required performance metrics are application specific, and methods are needed to achieve the optimal design of these devices. Design and optimization studies have been conducted for piezoelectric cantilever-type flow control actuators, but the modeling issues are simpler compared to synthetic jets. Here, lumped element modeling (LEM) is combined with equivalent circuit representations to estimate the nonlinear dynamic response of a synthetic jet as a function of device dimensions, material properties, and external flow conditions. These models provide reasonable agreement between predicted and measured frequency response functions and thus are suitable for use as design tools. In this work, we have developed a Matlab-based design optimization tool for piezoelectric synthetic jet actuators based on the lumped element models mentioned above. Significant improvements were achieved by optimizing the piezoceramic diaphragm dimensions. Synthetic-jet actuators were fabricated and benchtop tested to fully document their behavior and validate a companion optimization effort. It is hoped that the tool developed from this investigation will assist in the design and deployment of these actuators.
Highly controllable ICP etching of GaAs based materials for grating fabrication
NASA Astrophysics Data System (ADS)
Weibin, Qiu; Jiaxian, Wang
2012-02-01
Highly controllable ICP etching of GaAs based materials with SiCl4/Ar plasma is investigated. A slow etching rate of 13 nm/min was achieved with RF1 D 10 W, RF2 D 20 W and a high ratio of Ar to SiCl4 flow. First order gratings with 25 nm depth and 140 nm period were fabricated with the optimal parameters. AFM analysis indicated that the RMS roughness over a 10 × 10 μm2 area was 0.3 nm, which is smooth enough to regrow high quality materials for devices.
Macropore system characteristics controls on non-reactive solute transport at different flow rates
NASA Astrophysics Data System (ADS)
Larsbo, Mats; Koestel, John
2014-05-01
Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.
Effects of Distortion on Mass Flow Plug Calibration
NASA Technical Reports Server (NTRS)
Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.
2015-01-01
A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.
Experimental constraints on the outgassing dynamics of basaltic magmas
NASA Astrophysics Data System (ADS)
Pioli, L.; Bonadonna, C.; Azzopardi, B. J.; Phillips, J. C.; Ripepe, M.
2012-03-01
The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies. Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10-2-102 m/s), conduit diameters (100-2 m), and magma viscosities (3-300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103-104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.
NASA Technical Reports Server (NTRS)
Allan Brian G.; Owens, Lewis, R.
2006-01-01
This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a miss alignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery that was 0.01 lower than the experiment as was seen in the baseline. Comparison of the flow features the jet case revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.
NASA Astrophysics Data System (ADS)
Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.
2017-02-01
Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume <=100 mm3, for the four dose metrics light fluence, photosensitizer photobleaching rate, PDT dose and [1O2]rx. PDT dose is defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.
NASA Astrophysics Data System (ADS)
Jiemsakul, Thanakorn; Manakasettharn, Supone; Kanharattanachai, Sivakorn; Wanna, Yongyuth; Wangsuya, Sujint; Pratontep, Sirapat
2017-01-01
We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO2 laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs.
Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise
2016-11-23
We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.
Control method for turbocharged diesel engines having exhaust gas recirculation
Kolmanovsky, Ilya V.; Jankovic, Mrdjan J; Jankovic, Miroslava
2000-03-14
A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.
DOT National Transportation Integrated Search
2009-05-01
The Texas Department of Transportation (TxDOT) uses ramp control signals (also called ramp meters or : flow signals) to control the rate at which vehicles enter the freeway. This helps TxDOT (1) promote a more : consistent and uniform flow of traffic...
NASA Technical Reports Server (NTRS)
Albright, A. E.
1984-01-01
A glycol-exuding porous leading edge ice protection system was tested in the NASA Icing Research Tunnel. Stainless steel mesh, laser drilled titanium, and composite panels were tested on two general aviation wing sections. Two different glycol-water solutions were evaluated. Minimum glycol flow rates required for anti-icing were obtained as a function of angle of attack, liquid water content, volume median drop diameter, temperature, and velocity. Ice accretions formed after five minutes of icing were shed in three minutes or less using a glycol fluid flow equal to the anti-ice flow rate. Two methods of predicting anti-ice flow rates are presented and compared with a large experimental data base of anti-ice flow rates over a wide range of icing conditions. The first method presented in the ADS-4 document typically predicts flow rates lower than the experimental flow rates. The second method, originally published in 1983, typically predicts flow rates up to 25 percent higher than the experimental flow rates. This method proved to be more consistent between wing-panel configurations. Significant correlation coefficients between the predicted flow rates and the experimental flow rates ranged from .867 to .947.
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System.
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-20
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input-output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy.
Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow
NASA Astrophysics Data System (ADS)
Jaiswal, S.; Bandyopadhyay, P.; Sen, A.
2015-11-01
A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.
Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kamotani, Y.
2000-01-01
Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.
Modified schirmer test--a screening tool for xerostomia among subjects on antidepressants.
Kumar, Nerella Narendra; Panchaksharappa, Mamatha Gowda; Annigeri, Rajeshwari G
2014-08-01
The aim of the present study is to assess salivary flow rate in the subjects who were on antidepressant medications and its comparison with healthy controls and assessment of unstimulated salivary flow rate by modified Schirmer test (MST) and volumetric method (spitting method) for evaluation of xerostomia and whether any correlation exists between two methods. Thirty subjects who were on antidepressants were divided into two groups: tricyclic antidepressants (TCA) and selective sertonin reuptake inhibitors (SSRI) of 15 each, compared with 30 age and gender matched controls. Unstimulated salivary flow rate was measured by both MST and spitting method. The unstimulated salivary flow rate measured by MST at the end of 3rd minute was 13.7 ± 10.08, 19.86 ± 8.95 and 31.0 ± 5.4 mm and by spitting method was 0.12 ± 0.07, 0.19 ± 0.10 and 0.30 ± 0.75 ml/min in TCA, SSRI and controls respectively (p<0.001). The Pearson correlation coefficient of r=0.85 shows excellent correlation between the two screening tests. Sensitivity and Specificity of MST was 90.9% and 31.5%. Salivary flow rate was less in antidepressant subjects when compared to the healthy controls. Results of the present study showed an excellent correlation excellent correlation between the two screening tests which suggests that MST can be routinely used as chair-side screening tool to evaluate hyposalivation which is time saving, patient friendly and specific of salivary secretions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Theoretical and Numerical Investigation of the Cavity Evolution in Gypsum Rock
NASA Astrophysics Data System (ADS)
Li, Wei; Einstein, Herbert H.
2017-11-01
When water flows through a preexisting cylindrical tube in gypsum rock, the nonuniform dissolution alters the tube into an enlarged tapered tube. A 2-D analytical model is developed to study the transport-controlled dissolution in an enlarged tapered tube, with explicit consideration of the tapered geometry and induced radial flow. The analytical model shows that the Graetz solution can be extended to model dissolution in the tapered tube. An alternative form of the governing equations is proposed to take advantage of the invariant quantities in the Graetz solution to facilitate modeling cavity evolution in gypsum rock. A 2-D finite volume model was developed to validate the extended Graetz solution. The time evolution of the transport-controlled and the reaction-controlled dissolution models for a single tube with time-invariant flow rate are compared. This comparison shows that for time-invariant flow rate, the reaction-controlled dissolution model produces a positive feedback between the tube enlargement and dissolution, while the transport-controlled dissolution does not.
Characteristic Analysis and Experiment of a Dynamic Flow Balance Valve
NASA Astrophysics Data System (ADS)
Bin, Li; Song, Guo; Xuyao, Mao; Chao, Wu; Deman, Zhang; Jin, Shang; Yinshui, Liu
2017-12-01
Comprehensive characteristics of a dynamic flow balance valve of water system were analysed. The flow balance valve can change the drag efficient automatically according to the condition of system, and the effective control flowrate is constant in the range of job pressure. The structure of the flow balance valve was introduced, and the theoretical calculation formula for the variable opening of the valve core was derived. A rated pressure of 20kPa to 200kPa and a rated flowrate of 10m3/h were offered in the numerical work. Static and fluent CFX analyses show good behaviours: through the valve core structure optimization and improve design of the compressive spring, the dynamic flow balance valve can stabilize the flowrate of system evidently. And experiments show that the flow control accuracy is within 5%.
Water balance in irrigation districts. Uncertainty in on-demand pressurized networks
NASA Astrophysics Data System (ADS)
Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente
2015-04-01
In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.
NASA Astrophysics Data System (ADS)
Breidenthal, Robert
2003-11-01
Using heuristic arguments, the fundamental effect of acceleration on dissipation in self-similar turbulence is explored. If the ratio of the next vortex rotation period to the last one is always constant, a flow is temporally self-similar. This implies that the vortex rotation period is a linear function of time. For ordinary, unforced turbulence, the period increases linearly in time. However, by imposing an external e-folding time scale on the flow that decreases linearly in time, the dissipation rate is changed from that of the corresponding unforced flow. The dissipation rate depends on the time rate of change of the rotation period as well as the dimensions of the dynamic quantity controlling the flow. For almost all canonical laboratory flows, acceleration reduces the dissipation and entrainment rates. An example is the exponential jet, where the flame length increases by about 20conventional jet. An exception is Rayleigh-Taylor flow, where acceleration increases the dissipation rate.
NASA Technical Reports Server (NTRS)
Dingell, Charles W. (Inventor); Quintana, Clemente E. (Inventor); Le, Suy (Inventor); Clark, Michael R. (Inventor); Cloutier, Robert E. (Inventor); Hafermalz, David Scott (Inventor)
2009-01-01
A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point includes a sintered metal material. A method of dissipating heat using a sublimator includes a sublimation plate having a thermal element and a control point. The thermal element is disposed adjacent to a feed water channel and the control point is disposed between at least a portion of the thermal element and a large pore substrate. The method includes controlling a flow rate of feed water to the large pore substrate at the control point and supplying heated coolant to the thermal element. Sublimation occurs in the large pore substrate and the controlling of the flow rate of feed water is independent of time. A sublimator includes a sublimation plate having a thermal element disposed adjacent to a feed water channel and a control point disposed between at least a portion of the thermal element and a large pore substrate. The control point restricts a flow rate of feed water from the feed water channel to the large pore substrate independent of time.
40 CFR 1065.202 - Data updating, recording, and control.
Code of Federal Regulations, 2010 CFR
2010-07-01
... means. § 1065.514, § 1065.530 Steady-state and ramped-modal duty cycle reference and feedback speeds and... mean value per test interval. § 1065.530, § 1065.545 Diluted exhaust flow rate from a CVS with a heat exchanger upstream of the flow measurement N/A 1 Hz. § 1065.530, § 1065.545 Diluted exhaust flow rate from a...
Ellingson, William A.; Forster, George A.
1999-11-02
Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.
Controlling mixing and segregation in time periodic granular flows
NASA Astrophysics Data System (ADS)
Bhattacharya, Tathagata
Segregation is a major problem for many solids processing industries. Differences in particle size or density can lead to flow-induced segregation. In the present work, we employ the discrete element method (DEM)---one type of particle dynamics (PD) technique---to investigate the mixing and segregation of granular material in some prototypical solid handling devices, such as a rotating drum and chute. In DEM, one calculates the trajectories of individual particles based on Newton's laws of motion by employing suitable contact force models and a collision detection algorithm. Recently, it has been suggested that segregation in particle mixers can be thwarted if the particle flow is inverted at a rate above a critical forcing frequency. Further, it has been hypothesized that, for a rotating drum, the effectiveness of this technique can be linked to the probability distribution of the number of times a particle passes through the flowing layer per rotation of the drum. In the first portion of this work, various configurations of solid mixers are numerically and experimentally studied to investigate the conditions for improved mixing in light of these hypotheses. Besides rotating drums, many studies of granular flow have focused on gravity driven chute flows owing to its practical importance in granular transportation and to the fact that the relative simplicity of this type of flow allows for development and testing of new theories. In this part of the work, we observe the deposition behavior of both mono-sized and polydisperse dry granular materials in an inclined chute flow. The effects of different parameters such as chute angle, particle size, falling height and charge amount on the mass fraction distribution of granular materials after deposition are investigated. The simulation results obtained using DEM are compared with the experimental findings and a high degree of agreement is observed. Tuning of the underlying contact force parameters allows the achievement of realistic results and is used as a means of validating the model against available experimental data. The tuned model is then used to find the critical chute length for segregation based on the hypothesis that segregation can be thwarted if the particle flow is inverted at a rate above a critical forcing frequency. The critical frequency, fcrit, is inversely proportional to the characteristic time of segregation, ts. Mixing is observed instead of segregation when the chute length L < U avgts, where Uavg denotes the average stream-wise flow velocity of the particles. While segregation is often an undesired effect, sometimes separating the components of a particle mixture is the ultimate goal. Rate-based separation processes hold promise as both more environmentally benign as well as less energy intensive when compared to conventional particle separations technologies such as vibrating screens or flotation methods. This approach is based on differences in the kinetic properties of the components of a mixture, such as the velocity of migration or diffusivity. In this portion of the work, two examples of novel rate-based separation devices are demonstrated. The first example involves the study of the dynamics of gravity-driven particles through an array of obstacles. Both discrete element (DEM) simulations and experiments are used to augment the understanding of this device. Dissipative collisions (both between the particles themselves and with the obstacles) give rise to a diffusive motion of particles perpendicular to the flow direction and the differences in diffusion lengths are exploited to separate the particles. The second example employs DEM to analyze a ratchet mechanism where a current of particles can be produced in a direction perpendicular to the energy input. In this setup, a vibrating saw-toothed base is employed to induce different mobility for different types of particles. The effect of operating conditions and design parameters on the separation efficiency are discussed. Keywords: granular flow, particle, mixing, segregation, discrete element method, particle dynamics, tumbler, chute, periodic flow inversion, collisional flow, rate-based separation, ratchet, static separator, dissipative particle dynamics, non-spherical droplet.
Design and Fabrication of a PDMS Microchip Based Immunoassay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Guocheng; Wang, Wanjun; Wang, Jun
2010-07-01
In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close amore » 200µm wide micro channel with flow rate up to 20µl/min.« less
Aerothermodynamic heating and performance analysis of a high-lift aeromaneuvering AOTV concept
NASA Technical Reports Server (NTRS)
Menees, G. P.; Brown, K. G.; Wilson, J. F.; Davies, C. B.
1985-01-01
The thermal-control requirements for design-optimized aeromaneuvering performance are determined for space-based applications and low-earth orbit sorties involving large, multiple plane-inclination changes. The leading-edge heating analysis is the most advanced developed for hypersonic-rarefied flow over lifting surfaces at incidence. The effects of leading-edge bluntness, low-density viscous phenomena, and finite-rate flow-field chemistry and surface catalysis are accounted for. The predicted aerothermodynamic heating characteristics are correlated with thermal-control and flight-performance capabilities. The mission payload capability for delivery, retrieval, and combined operations is determined for round-trip sorties extending to polar orbits. Recommendations are given for future design refinements. The results help to identify technology issues required to develop prototype operational systems.
Association of salivary calcium, phosphate, pH and flow rate on oral health: A study on 90 subjects.
Fiyaz, Mohamed; Ramesh, Amitha; Ramalingam, Karthikeyan; Thomas, Biju; Shetty, Sucheta; Prakash, Prashanth
2013-07-01
This study was designed to compare inorganic salivary calcium, phosphate, flow rate and pH of un-stimulated saliva and oral hygiene of healthy subjects, patients with periodontitis and dental caries and to correlate salivary calcium level with the number of intact teeth. The present study consisted of 90 patients aged between 18 and 55 years and were divided into three groups, periodontitis, dental caries and controls. Oral hygiene index-simplified, probing pocket depth, clinical attachment level and number of teeth present, teeth with active carious lesions were recorded. Salivary flow rate and pH was recorded and subjected to biochemical investigation. Estimation of inorganic calcium and phosphate was performed by colorimetric method. Results showed statistically significant increase in salivary inorganic calcium and phosphate levels, poor oral hygiene status, pH and salivary flow rate in patients with periodontitis when compared with dental caries group and controls. Individuals who have increased salivary inorganic calcium, phosphate, pH, flow rate and maintain poor oral hygiene could be at a higher risk for developing periodontitis and may have less dental caries and more number of intact teeth.
Association of salivary calcium, phosphate, pH and flow rate on oral health: A study on 90 subjects
Fiyaz, Mohamed; Ramesh, Amitha; Ramalingam, Karthikeyan; Thomas, Biju; Shetty, Sucheta; Prakash, Prashanth
2013-01-01
Background and Objectives: This study was designed to compare inorganic salivary calcium, phosphate, flow rate and pH of un-stimulated saliva and oral hygiene of healthy subjects, patients with periodontitis and dental caries and to correlate salivary calcium level with the number of intact teeth. Materials and Methods: The present study consisted of 90 patients aged between 18 and 55 years and were divided into three groups, periodontitis, dental caries and controls. Oral hygiene index-simplified, probing pocket depth, clinical attachment level and number of teeth present, teeth with active carious lesions were recorded. Salivary flow rate and pH was recorded and subjected to biochemical investigation. Estimation of inorganic calcium and phosphate was performed by colorimetric method. Results: Results showed statistically significant increase in salivary inorganic calcium and phosphate levels, poor oral hygiene status, pH and salivary flow rate in patients with periodontitis when compared with dental caries group and controls. Interpretation and Conclusion: Individuals who have increased salivary inorganic calcium, phosphate, pH, flow rate and maintain poor oral hygiene could be at a higher risk for developing periodontitis and may have less dental caries and more number of intact teeth. PMID:24174724
40 CFR 90.301 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the test engine is operated using a steady state test cycle on an engine dynamometer. The exhaust... concentrations are converted to mass emission rates in grams per hour based on either fuel flow, fuel flow and engine intake air flow, or exhaust volume flow. Weighted emission rates are reported as grams per brake...
Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying
2015-12-10
The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.
Water outlet control mechanism for fuel cell system operation in variable gravity environments
NASA Technical Reports Server (NTRS)
Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)
2007-01-01
A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.
Fiber/proppant mixtures control proppant flowback in South Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, P.R.; King, M.T.; Morris, M.
1995-12-31
Backproduction of proppant from hydraulic fractures (proppant flowback) is a continuing operational problem in the oil and gas industry. Up to 20% of the proppant can be flowed back after the treatment. Curable resin-coated proppants are used to control proppant production, but are known to chemically interact with fracturing fluids and may be prone to several failure mechanisms. Curable resin-coated proppants also require either well shut-in or the use of activators at low temperatures. A new method to control proppant flowback relies on fibers mixed with the proppant to stabilize the proppant pack. The main advantage of this patented technologymore » is that it is physical rather than chemical. Therefore, proppant flowback is controlled without specific shut-in time, temperature, or pressure constraints. This paper presents flowback results from fractures of dry gas wells (<1 millidarcy permeability) where fiber/proppant mixtures were used to control proppant flow-back (11 cases). Fluid flowback rate, gas rate and proppant production were monitored during the cleanup period. These wells are compared to wells where either curable resin-coated proppants or no flowback control were used (15 cases). The fiber/proppant mixtures controlled flowback of proppant for both sand and ceramic proppants when used with all the proppant or in only the last part of proppant (tail-in). Flowback could begin right after the fracturing equipment was rigged down (15 to 30 minutes). Cleanup fluid flow rates were up to ten times higher than previously obtainable with curable resin-coated proppants and less proppant was flowed back. Faster flowback rates also resulted in earlier onset of gas production and reduced flowback time. Fibers allow greater latitude in flowback rate than curable resin-coated proppants without the need for shut-in time.« less
NASA Astrophysics Data System (ADS)
Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter
2015-09-01
Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.
Minimum viewing angle for visually guided ground speed control in bumblebees.
Baird, Emily; Kornfeldt, Torill; Dacke, Marie
2010-05-01
To control flight, flying insects extract information from the pattern of visual motion generated during flight, known as optic flow. To regulate their ground speed, insects such as honeybees and Drosophila hold the rate of optic flow in the axial direction (front-to-back) constant. A consequence of this strategy is that its performance varies with the minimum viewing angle (the deviation from the frontal direction of the longitudinal axis of the insect) at which changes in axial optic flow are detected. The greater this angle, the later changes in the rate of optic flow, caused by changes in the density of the environment, will be detected. The aim of the present study is to examine the mechanisms of ground speed control in bumblebees and to identify the extent of the visual range over which optic flow for ground speed control is measured. Bumblebees were trained to fly through an experimental tunnel consisting of parallel vertical walls. Flights were recorded when (1) the distance between the tunnel walls was either 15 or 30 cm, (2) the visual texture on the tunnel walls provided either strong or weak optic flow cues and (3) the distance between the walls changed abruptly halfway along the tunnel's length. The results reveal that bumblebees regulate ground speed using optic flow cues and that changes in the rate of optic flow are detected at a minimum viewing angle of 23-30 deg., with a visual field that extends to approximately 155 deg. By measuring optic flow over a visual field that has a low minimum viewing angle, bumblebees are able to detect and respond to changes in the proximity of the environment well before they are encountered.
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Owens, Lewis R.
2006-01-01
This paper will investigate the validation of the NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as a baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet experiment conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a free-stream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the fanface diameter. The numerical simulations with and without tunnel walls are performed, quantifying tunnel wall effects on the BLI inlet flow. A comparison is made between the numerical simulations and the BLI inlet experiment for the baseline and VG vane cases at various inlet mass flow rates. A comparison is also made to a BLI inlet jet configuration for varying actuator mass flow rates at a fixed inlet mass flow rate. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCP avg, very well within the designed operating range of the BLI inlet. A comparison of the average total pressure recovery showed that the simulations were able to predict the trends but had a negative 0.01 offset when compared to the experimental levels. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion levels for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a misalignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery offset that was 0.01 lower than the experiment as was seen in the baseline. Comparisons of the flow features for the jet cases revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungowski, W.M.; Weiss, M.H.; Price, G.R.
1996-01-01
A study of pressure oscillations occurring in small centrifugal compressor systems without a plenum is presented. Active and passive surge control were investigated theoretically and experimentally for systems with various inlet and discharge piping configurations. The determination of static and dynamic stability criteria was based on Greitzer`s (1981) lumped parameter model modified to accommodate capacitance of the piping. Experimentally, passive control using globe valves closely coupled to the compressor prevented the occurrence of surge even with the flow reduced to zero. Active control with a sleeve valve located at the compressor was effective but involved a significant component of passivemore » throttling which reduced the compressor efficiency. With an oscillator connected to a short side branch at the compressor, effective active control was achieved without throttling. Both methods of active control reduced the flow rate at surge onset by about 30%. In general, the experiments qualitatively confirmed the derived stability criteria.« less
Pressure-based high-order TVD methodology for dynamic stall control
NASA Astrophysics Data System (ADS)
Yang, H. Q.; Przekwas, A. J.
1992-01-01
The quantitative prediction of the dynamics of separating unsteady flows, such as dynamic stall, is of crucial importance. This six-month SBIR Phase 1 study has developed several new pressure-based methodologies for solving 3D Navier-Stokes equations in both stationary and moving (body-comforting) coordinates. The present pressure-based algorithm is equally efficient for low speed incompressible flows and high speed compressible flows. The discretization of convective terms by the presently developed high-order TVD schemes requires no artificial dissipation and can properly resolve the concentrated vortices in the wing-body with minimum numerical diffusion. It is demonstrated that the proposed Newton's iteration technique not only increases the convergence rate but also strongly couples the iteration between pressure and velocities. The proposed hyperbolization of the pressure correction equation is shown to increase the solver's efficiency. The above proposed methodologies were implemented in an existing CFD code, REFLEQS. The modified code was used to simulate both static and dynamic stalls on two- and three-dimensional wing-body configurations. Three-dimensional effect and flow physics are discussed.
Nucleation of protein crystals under the influence of solution shear flow.
Penkova, Anita; Pan, Weichun; Hodjaoglu, Feyzim; Vekilov, Peter G
2006-09-01
Several recent theories and simulations have predicted that shear flow could enhance, or, conversely, suppress the nucleation of crystals from solution. Such modulations would offer a pathway for nucleation control and provide a novel explanation for numerous mysteries in nucleation research. For experimental tests of the effects of shear flow on protein crystal nucleation, we found that if a protein solution droplet of approximately 5 microL (2-3 mm diameter at base) is held on a hydrophobic substrate in an enclosed environment and in a quasi-uniform constant electric field of 2 to 6 kV cm(-1), a rotational flow with a maximum rate at the droplet top of approximately 10 microm s(-1) is induced. The shear rate varies from 10(-3) to 10(-1) s(-1). The likely mechanism of the rotational flow involves adsorption of the protein and amphiphylic buffer molecules on the air-water interface and their redistribution in the electric field, leading to nonuniform surface tension of the droplet and surface tension-driven flow. Observations of the number of nucleated crystals in 24- and 72-h experiments with the proteins ferritin, apoferritin, and lysozyme revealed that the crystals are typically nucleated at a certain radius of the droplet, that is, at a preferred shear rate. Variations of the rotational flow velocity resulted in suppression or enhancement of the total number of nucleated crystals of ferritin and apoferritin, while all solution flow rates were found to enhance lysozyme crystal nucleation. These observations show that shear flow may strongly affect nucleation, and that for some systems, an optimal flow velocity, leading to fastest nucleation, exists. Comparison with the predictions of theories and simulations suggest that the formation of ordered nuclei in a "normal" protein solution cannot be affected by such low shear rates. We conclude that the flow acts by helping or suppressing the formation of ordered nuclei within mesoscopic metastable dense liquid clusters. Such clusters were recently shown to exist in protein solutions and to constitute the first step in the nucleation mechanism of many protein and nonproteinsystems.
Vovkun, T V; Yanchuk, P I; Shtanova, L Y; Shalamay, A S
2015-01-01
We have investigated the action of quercetin (in a modified form--Corvitin, BCPP, Ukraine) on the rate of blood flow in the pancreas, liver and gastric mucosa of rats with acute pancreatitis (AP) caused by administration of L-arginine. The rate of blood flow was measured by hydrogen clearance method with electrochemical his generation using Polarographs Lr-9 (Czech Republic). During the first 10 days after modelling of AP in these organs it was observed a gradual decrease compared to the intact animals in the rate of blood flow by 42% (P < 0.01) in the pancreas; by 61% (P < 0.001) in the liver and by 64% (P < 0.001) in the gastric mucosa, i.e., the most significant changes occurred in the gastric mucosa, the least--in the tissue of the pancreas. Compared with the control group of animals with modelling acute pancreatitis which during 20 days was administered only saline, application of Corvitin (5 mg/kg, 1 time per day from 11 to 20 days of experiment) in varying degrees promoted to the recovery of the rate of blood flow in all investigated organs: in the pancreas--fully, in the liver--almost entirely and in the gastric mucosa--only partially. Thus, based on obtained results Corvitin can be recommended for partial or complete correction of blood flow disturbances, which arise in the pancreas and other organs of the digestive system in AP. Corvitin can improve the functional state of these organs in the early stages of the disease and accelerate the full restoration of their functions.
Apparatus and method for controlling autotroph cultivation
Fuxman, Adrian M; Tixier, Sebastien; Stewart, Gregory E; Haran, Frank M; Backstrom, Johan U; Gerbrandt, Kelsey
2013-07-02
A method includes receiving at least one measurement of a dissolved carbon dioxide concentration of a mixture of fluid containing an autotrophic organism. The method also includes determining an adjustment to one or more manipulated variables using the at least one measurement. The method further includes generating one or more signals to modify the one or more manipulated variables based on the determined adjustment. The one or more manipulated variables could include a carbon dioxide flow rate, an air flow rate, a water temperature, and an agitation level for the mixture. At least one model relates the dissolved carbon dioxide concentration to one or more manipulated variables, and the adjustment could be determined by using the at least one model to drive the dissolved carbon dioxide concentration to at least one target that optimize a goal function. The goal function could be to optimize biomass growth rate, nutrient removal and/or lipid production.
NASA Astrophysics Data System (ADS)
Saeed, O.; Duru, L.; Yulin, D.
2018-05-01
A proposed microfluidic design has been fabricated and simulated using COMSOL Multiphysics software, based on two physical models included in this design. The device’s ability to create a narrow stream of the core sample by controlling the sheath flow rates Qs1 and Qs2 in both peripheral channels was investigated. The main target of this paper is to study the possibility of combing the hydrodynamic and magnetic techniques, in order to achieve a high rate of cancer cells separation from a cell mixture and/or buffer sample. The study has been conducted in two stages, firstly, the effects of the sheath flow rates (Qs1 and Qs2) on the sample stream focusing were studied, to find the proposed device effectiveness optimal conditions and its capability in cell focusing, and then the magnetic mechanism has been utilized to finalize the pre-labelled cells separation process.
Recent improvements of the French liquid micro-flow reference facility
NASA Astrophysics Data System (ADS)
Florestan, Ogheard; Sandy, Margot; Julien, Savary
2018-02-01
According to the mission of the national reference laboratory, LNE-CETIAT achieved in 2012 the construction and accreditation of a modern and innovative calibration laboratory based on the gravimetric method. The measurement capabilities cover a flow rate range for liquid from 10 kg · h-1 down to 1 g · h-1 with expanded relative uncertainties from 0.1% to 0.6% (k = 2). Since 2012, several theoretical and experimental studies have allowed a better knowledge and control over uncertainty sources and have decreased calibration time. When dealing with liquid micro-flow using a reference method such as the gravimetric method, several difficulties have to be overcome. The main improvements described in this paper relate to the enhancement of the evaporation trap system, the merging of the four dedicated measurement lines into one, and the implementation of a gravimetric dynamic ‘flying’ method for the calculation of the reference flow rate. The evaporation-avoiding system has been replaced by an oil layer in order to remove the possibility of condensation of water on both the weighed vessel and the immersed capillary. The article describes the experimental method used to quantify the effect of surface tension of water/oil/air interfaces on the weighed mass. The traditional static gravimetric method has been upgraded by a dynamic ‘flying’ gravimetric method. The article presents the newly implemented method, its validation and its advantages compared to the static method. The four dedicated weighing devices, dispatched over four sub-ranges of flow rate, have been merged leading to the use of only one weighing scale with the same uncertainties on the reference flow rate. The article discusses the new uncertainty budget over the full flow rate range capability. Finally, the article discusses the improvements still under development and the general prospects of liquid micro-flow metrology.
A numerical study of transition control by periodic suction-blowing
NASA Technical Reports Server (NTRS)
Biringen, Sedat
1987-01-01
The applicability of active control of transition by periodic suction-blowing is investigated via direct numerical simulations of the Navier-Stokes equations. The time-evolution of finite-amplitude disturbances in plane channel flow is compared in detail with and without control. The analysis indicates that, for relatively small three dimensional amplitudes, a two dimensional control effectively reduces disturbance growth rates even for linearly unstable Reynolds numbers. After the flow goes through secondary instability, three dimensional control seems necessary to stabilize the flow. An investigation of the temperature field suggests that passive temperature contamination is operative to reflect the flow dynamics during transition.
Gas pre-warming for improving performances of heated humidifiers in neonatal ventilation.
Schena, E; De Paolis, E; Silvestri, S
2011-01-01
Adequate temperature and humidification of gas delivered must be performed during long term neonatal ventilation to avoid potential adverse health effects. Literature shows that performances of heated humidifiers are, at least in some cases, quite poor. In this study, a novel approach to gas conditioning, consisting of gas warming upstream the humidification chamber, is presented. Gas pre-warming, in combination with a control strategy based on a mathematical model taking into account a number of parameters, allows to significantly improve the heated humidifier performances. The theoretical model has been validated and experimental trials have been carried out in the whole volumetric flow-rate (Q) range of neonatal ventilation (lower than 10 L · min(-1)). Experimental results (temperature values ranging from 36 °C to 38 °C and relative humidity values from 90 % to 98 % in the whole range of Q) show values very close to the ideal thermo-hygrometric conditions. The proposed solution allows to avoid vapor condensation at low flow rates and decrease of relative humidity at high flow rates.
Selective sequential precipitation of dissolved metals in mine drainage from coal mine
NASA Astrophysics Data System (ADS)
Yim, Giljae; Bok, Songmin; Ji, Sangwoo; Oh, Chamteut; Cheong, Youngwook; Han, Youngsoo; Ahn, Joosung
2017-04-01
In abandoned mines in Korea, a large amount of mine drainage continues to flow out and spread pollution. In purification of the mine drainage a massive amount of sludge is generated as waste. Since this metal sludge contains high Fe, Al and Mn oxides, developing the treatment method to recover homogeneous individual metal with high purity may beneficial to recycle waste metals as useful resources and reduce the amount of sludge production. In this regard, we established a dissolved metals selective precipitation process to treat Waryong Industry's mine drainage. The process that selectively precipitates metals dissolved in mine drainage is a continuous Fe-buffer-Al process, and each process consists of the neutralization tank, the coagulation tank, and the settling tank. Based on this process, this study verified the operational applicability of the Fe and Al selective precipitation. Our previous study revealed that high-purity Fe and Al precipitates could be recovered at a flow rate of 1.5 ton/day, while the lower purity was achieved when the rate was increased to about 3 ton/day due to the difficulty in reagent dosage control. In the current study was conducted to increase the capacity of the system to recover Fe and Al as high-purity precipitates at a flow rate of 10 ton/day with the ensured continuous operations by introducing an automatic reagent injection system. The previous study had a difficulty in controlling the pH and operating system continuously due to the manually controlled reagent injection system. To upgrade this and ensure the optimal pH in a stable way, a continuous reagent injection system was installed. The result of operation of the 10 ton/day system confirmed that the scaled-up process could maintain the stable recovery rates and purities of precipitates on site.
NASA Astrophysics Data System (ADS)
Carr, B. B.; Clarke, A. B.; Arrowsmith, R.; Vanderkluysen, L.
2015-12-01
Sinabung is a 2460 m high andesitic stratovolcano in North Sumatra, Indonesia. Its ongoing eruption has produced a 2.9 km long lava flow with two active summit lobes and frequent pyroclastic flows (≤ 5 km long) with associated plumes over 5 km high. Large viscous lava flows of this type are common at volcanoes around the world, but are rarely observed while active. This eruption therefore provides a special opportunity to observe and study the mechanisms of emplacement and growth of an active lava flow. In September 2014, we conducted a field campaign to collect ground-based photographs to analyze with Structure-from-Motion photogrammetric techniques. We built multiple 3D models from which we estimate the volume of the lava flow and identify areas where the flow was most active. Thermal infrared and visual satellite images provide information on the effusive eruption from its initiation in December 2013 to the present and allow us to estimate the eruption rate, advance rate and rheological characteristics of the flow. According to our DEMs the flow volume as of September 2014 was 100 Mm3, providing an average flow rate of 4.5 m3/s, while comparison of two DEMs from that month suggests that most growth occurred at the SE nose of the flow. Flow advancement was initially controlled by the yield strength of the flow crust while eruption and flow advance rates were at their highest in January-March 2014. A period of slow front advancement and inflation from March - October 2014 suggests that the flow's interior had cooled and that propagation was limited by the interior yield strength. This interpretation is supported by the simultaneous generation of pyroclastic flows due to collapse of the upper portion of the lava flow and consequent lava breakout and creation of new flow lobes originating from the upper reaches in October 2014 and June 2015. Both lobes remain active as of August 2015 and present a significant hazard for collapse and generation of pyroclastic flows. We use a pre-eruption DEM of Sinabung provided by the Badan Informasi Geospasial (Indonesia) to identify over 20 older lava flows at Sinabung. The active flow appears to represent a typical eruption of Sinabung, with its length and area similar to previous flows.
Nonintrusive Flow Rate Determination Through Space Shuttle Water Coolant Loop Floodlight Coldplate
NASA Technical Reports Server (NTRS)
Werlink, Rudolph; Johnson, Harry; Margasahayam, Ravi
1997-01-01
Using a Nonintrusive Flow Measurement System (NFMS), the flow rates through the Space Shuttle water coolant coldplate were determined. The objective of this in situ flow measurement was to prove or disprove a potential block inside the affected coldplate had contributed to a reduced flow rate and the subsequent ice formation on the Space Shuttle Discovery. Flow through the coldplate was originally calculated to be 35 to 38 pounds per hour. This application of ultrasonic technology advanced the envelope of flow measurements through use of 1/4-inch-diameter tubing, which resulted in extremely low flow velocities (5 to 30 pounds per hour). In situ measurements on the orbiters Discovery and Atlantis indicated both vehicles, on the average, experienced similar flow rates through the coldplate (around 25 pounds per hour), but lower rates than the designed flow. Based on the noninvasive checks, further invasive troubleshooting was eliminated. Permanent monitoring using the NFMS was recommended.
Intracycle angular velocity control of cross-flow turbines
NASA Astrophysics Data System (ADS)
Strom, Benjamin; Brunton, Steven L.; Polagye, Brian
2017-08-01
Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.
City traffic flow breakdown prediction based on fuzzy rough set
NASA Astrophysics Data System (ADS)
Yang, Xu; Da-wei, Hu; Bing, Su; Duo-jia, Zhang
2017-05-01
In city traffic management, traffic breakdown is a very important issue, which is defined as a speed drop of a certain amount within a dense traffic situation. In order to predict city traffic flow breakdown accurately, in this paper, we propose a novel city traffic flow breakdown prediction algorithm based on fuzzy rough set. Firstly, we illustrate the city traffic flow breakdown problem, in which three definitions are given, that is, 1) Pre-breakdown flow rate, 2) Rate, density, and speed of the traffic flow breakdown, and 3) Duration of the traffic flow breakdown. Moreover, we define a hazard function to represent the probability of the breakdown ending at a given time point. Secondly, as there are many redundant and irrelevant attributes in city flow breakdown prediction, we propose an attribute reduction algorithm using the fuzzy rough set. Thirdly, we discuss how to predict the city traffic flow breakdown based on attribute reduction and SVM classifier. Finally, experiments are conducted by collecting data from I-405 Freeway, which is located at Irvine, California. Experimental results demonstrate that the proposed algorithm is able to achieve lower average error rate of city traffic flow breakdown prediction.
Lee, Kevin S; Boccazzi, Paolo; Sinskey, Anthony J; Ram, Rajeev J
2011-05-21
This work reports on an instrument capable of supporting automated microscale continuous culture experiments. The instrument consists of a plastic-PDMS device capable of continuous flow without volume drift or evaporation. We apply direct computer controlled machining and chemical bonding fabrication for production of fluidic devices with a 1 mL working volume, high oxygen transfer rate (k(L)a≈0.025 s(-1)), fast mixing (2 s), accurate flow control (±18 nL), and closed loop control over temperature, cell density, dissolved oxygen, and pH. Integrated peristaltic pumps and valves provide control over input concentrations and allow the system to perform different types of cell culture on a single device, such as batch, chemostat, and turbidostat continuous cultures. Continuous cultures are demonstrated without contamination for 3 weeks in a single device and both steady state and dynamically controlled conditions are possible. © The Royal Society of Chemistry 2011
NASA Astrophysics Data System (ADS)
Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn; Prata, Fred; Kazahaya, Ryunosuke; Nakamichi, Haruhisa; Iguchi, Masato
2017-12-01
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Here we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan. Six infrasound stations deployed from 12-20 February 2015 recorded the explosions. We compute numerical Green's functions using 3-D Finite Difference Time Domain modeling and a high-resolution digital elevation model. The inversion, assuming a simple acoustic monopole source, provides realistic eruption masses and excellent fit to the data for the majority of the explosions. The inversion results are compared to independent eruption masses derived from ground-based ash collection and volcanic gas measurements. Assuming realistic flow densities, our infrasound-derived eruption masses for ash-rich eruptions compare favorably to the ground-based estimates, with agreement ranging from within a factor of two to one order of magnitude. Uncertainties in the time-dependent flow density and acoustic propagation likely contribute to the mismatch between the methods. Our results suggest that realistic and accurate infrasound-based eruption mass and mass flow rate estimates can be computed using the method employed here. If accurate volcanic flow parameters are known, application of this technique could be broadly applied to enable near real-time calculation of eruption mass flow rates and total masses. These critical input parameters for volcanic eruption modeling and monitoring are not currently available.
Quantitative passive soil vapor sampling for VOCs--Part 4: Flow-through cell.
McAlary, Todd; Groenevelt, Hester; Seethapathy, Suresh; Sacco, Paolo; Crump, Derrick; Tuday, Michael; Schumacher, Brian; Hayes, Heidi; Johnson, Paul; Parker, Louise; Górecki, Tadeusz
2014-05-01
This paper presents a controlled experiment comparing several quantitative passive samplers for monitoring concentrations of volatile organic compound (VOC) vapors in soil gas using a flow-through cell. This application is simpler than conventional active sampling using adsorptive tubes because the flow rate does not need to be precisely measured and controlled, which is advantageous because the permeability of subsurface materials affects the flow rate and the permeability of geologic materials is highly variable. Using passive samplers in a flow-through cell, the flow rate may not need to be known exactly, as long as it is sufficient to purge the cell in a reasonable time and minimize any negative bias attributable to the starvation effect. An experiment was performed in a 500 mL flow-through cell using a two-factor, one-half fraction fractional factorial test design with flow rates of 80, 670 and 930 mL min(-1) and sample durations of 10, 15 and 20 minutes for each of five different passive samplers (passive Automatic Thermal Desorption Tube, Radiello®, SKC Ultra, Waterloo Membrane Sampler™ and 3M™ OVM 3500). A Summa canister was collected coincident with each passive sampler and analyzed by EPA Method TO-15 to provide a baseline for comparison of the passive sampler concentrations. The passive sampler concentrations were within a factor of 2 of the Summa canister concentrations in 32 of 35 cases. Passive samples collected at the low flow rate and short duration showed low concentrations, which is likely attributable to insufficient purging of the cell after sampler placement.
End-to-End Flow Control for Visual-Haptic Communication under Bandwidth Change
NASA Astrophysics Data System (ADS)
Yashiro, Daisuke; Tian, Dapeng; Yakoh, Takahiro
This paper proposes an end-to-end flow controller for visual-haptic communication. A visual-haptic communication system transmits non-real-time packets, which contain large-size visual data, and real-time packets, which contain small-size haptic data. When the transmission rate of visual data exceeds the communication bandwidth, the visual-haptic communication system becomes unstable owing to buffer overflow. To solve this problem, an end-to-end flow controller is proposed. This controller determines the optimal transmission rate of visual data on the basis of the traffic conditions, which are estimated by the packets for haptic communication. Experimental results confirm that in the proposed method, a short packet-sending interval and a short delay are achieved under bandwidth change, and thus, high-precision visual-haptic communication is realized.
Drag reduction in a turbulent channel flow using a passivity-based approach
NASA Astrophysics Data System (ADS)
Heins, Peter; Jones, Bryn; Sharma, Atul
2013-11-01
A new active feedback control strategy for attenuating perturbation energy in a turbulent channel flow is presented. Using a passivity-based approach, a controller synthesis procedure has been devised which is capable of making the linear dynamics of a channel flow as close to passive as is possible given the limitations on sensing and actuation. A controller that is capable of making the linearized flow passive is guaranteed to globally stabilize the true flow. The resulting controller is capable of greatly restricting the amount of turbulent energy that the nonlinearity can feed back into the flow. DNS testing of a controller using wall-sensing of streamwise and spanwise shear stress and actuation via wall transpiration acting upon channel flows with Reτ = 100 - 250 showed significant reductions in skin-friction drag.
NASA Astrophysics Data System (ADS)
Raatschen, W.; Sjoegren, M.
The subject of indoor and outdoor air quality has generated a great deal of attention in many countries. Areas of concern include outgassing of building materials as well as occupant-generated pollutants such as carbon dioxide, moisture, and odors. Progress has also been made towards addressing issues relating to the air tightness of the building envelope. Indoor air quality studies indicate that better control of supply flow rates as well as the air distribution pattern within buildings are necessary. One method of maintaining good indoor air quality without extensive energy consumption is to control the ventilation rate according to the needs and demands of the occupants, or to preserve the building envelope. This is accomplished through the use of demand controlled ventilating (DCV) systems. The specific objective of Annex 18 is to develop guidelines for demand controlled ventilating systems based on state of the art analyses, case studies on ventilation effectiveness, and proposed ventilation rates for different users in domestic, office, and school buildings.
Stock, Jonathan D.; Montgomery, David R.; Collins, Brian D.; Dietrich, William E.; Sklar, Leonard
2005-01-01
Until recently, published rates of incision of bedrock valleys came from indirect dating of incised surfaces. A small but growing literature based on direct measurement reports short-term bedrock lowering at geologically unsustainable rates. We report observations of bedrock lowering from erosion pins monitored over 1–7 yr in 10 valleys that cut indurated volcanic and sedimentary rocks in Washington, Oregon, California, and Taiwan. Most of these channels have historically been stripped of sediment. Their bedrock is exposed to bed-load abrasion, plucking, and seasonal wetting and drying that comminutes hard, intact rock into plates or equant fragments that are removed by higher flows. Consequent incision rates are proportional to the square of rock tensile strength, in agreement with experimental results of others. Measured rates up to centimeters per year far exceed regional long-term erosion-rate estimates, even for apparently minor sediment-transport rates. Cultural artifacts on adjoining strath terraces in Washington and Taiwan indicate at least several decades of lowering at these extreme rates. Lacking sediment cover, lithologies at these sites lower at rates that far exceed long-term rock-uplift rates. This rate disparity makes it unlikely that the long profiles of these rivers are directly adjusted to either bedrock hardness or rock-uplift rate in the manner predicted by the stream power law, despite the observation that their profiles are well fit by power-law plots of drainage area vs. slope. We hypothesize that the threshold of motion of a thin sediment mantle, rather than bedrock hardness or rock-uplift rate, controls channel slope in weak bedrock lithologies with tensile strengths below ∼3–5 MPa. To illustrate this hypothesis and to provide an alternative interpretation for power-law plots of area vs. slope, we combine Shields' threshold transport concept with measured hydraulic relationships and downstream fining rates. In contrast to fluvial reaches, none of the hundreds of erosion pins we installed in steep valleys recently scoured to bedrock by debris flows indicate any postevent fluvial lowering. These results are consistent with episodic debris flows as the primary agent of bedrock lowering in the steepest parts of the channel network above ∼0.03–0.10 slope.
Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition
NASA Astrophysics Data System (ADS)
Fan, Lili; Li, Zhen; Li, Xiao; Wang, Kunlin; Zhong, Minlin; Wei, Jinquan; Wu, Dehai; Zhu, Hongwei
2011-12-01
Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed.Graphene domains in different shapes have been grown on copper substrates via atmospheric pressure chemical vapour deposition by controlling the growth process parameters. Under stabilized conditions, graphene domains tend to be six-fold symmetric hexagons under low flow rate methane with some domains in an irregular hexagonal shape. After further varying the growth duration, methane flow rate, and temperature, graphene domains have developed shapes from hexagon to shovel and dendrite. Two connecting modes, through overlap and merging of adjacent graphene domains, are proposed. Electronic supplementary information (ESI) available: Schematics of CVD setups for graphene growth, Raman spectra and SEM images. See DOI: 10.1039/c1nr11480h
Controls on Lava Flow Morphology and Propagation: Using Laboratory Analogue Experiments
NASA Astrophysics Data System (ADS)
Peters, S.; Clarke, A. B.
2017-12-01
The morphology of lava flows is controlled by eruption rate, composition, cooling rate, and topography [Fink and Griffiths, 1990; Gregg and Fink, 2000, 2006]. Lava flows are used to understand how volcanoes, volcanic fields, and igneous provinces formed and evolved [Gregg and Fink., 1996; Sheth, 2006]. This is particularly important for other planets where compositional data is limited and historical context is nonexistent. Numerical modeling of lava flows remains challenging, but has been aided by laboratory analog experiments [Gregg and Keszrthelyi, 2004; Soule and Cashman, 2004]. Experiments using polyethylene glycol (PEG) 600 wax have been performed to understand lava flow emplacement [Fink and Griffiths, 1990, 1992; Gregg and Fink, 2000]. These experiments established psi (hereafter denoted by Ψ), a dimensionless parameter that relates crust formation and advection timescales of a viscous gravity current. Four primary flow morphologies corresponding to discreet Ψ ranges were observed. Gregg and Fink [2000] also investigated flows on slopes and found that steeper slopes increase the effective effusion rate producing predicted morphologies at lower Ψ values. Additional work is needed to constrain the Ψ parameter space, evaluate the predictive capability of Ψ, and determine if the preserved flow morphology can be used to indicate the initial flow conditions. We performed 514 experiments to address the following controls on lava flow morphology: slope (n = 282), unsteadiness/pulsations (n = 58), slope & unsteadiness/pulsations (n = 174), distal processes, and emplacement vs. post-emplacement morphologies. Our slope experiments reveal a similar trend to Gregg and Fink [2000] with the caveat that very high and very low local & source eruption rates can reduce the apparent predictive capability of Ψ. Predicted Ψ morphologies were often produced halfway through the eruption. Our pulse experiments are expected to produce morphologies unique to each eruption rate and promote tube formation and compound flows. Post-emplacement morphologies are modified by a variety of factors (e.g. solidification, deflation), which may not preserve the initial morphology produced during an eruption. Relating this morphology to the eruption conditions is pertinent to understanding the evolution of planetary surfaces.
Precessing rotating flows with additional shear: stability analysis.
Salhi, A; Cambon, C
2009-03-01
We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally, both flow cases are briefly discussed in view of a subsequent nonlinear study using pseudospectral direct numerical simulations, which is a natural continuation of RDT.
2011-02-24
shape. At higher concentrations, the albumin would not flow through the extruder. Quarter 4 We used our temperature-controlled extruder to create...albumin stents with an outside diameter from 2 mm and various inner lumen diameters. Dissolution studies in flowing blood indicated that the stents 3...at the same rate. Determined that gamma sterilization procedure does not affect dissolution. Determined that flow rate affects the dissolution rate
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, S. M.; Garvin, James B.; Quick, Lynnae C.
2014-01-01
Investigation of lava flow deposits is a key component of Investigation II.A.1 in the VEXAG Goals, Objectives and Investigations. Because much of the Venus surface is covered in lava flows, characterization of lava flow emplacement conditions(eruption rate and eruption duration) is critical for understanding the mechanisms through which magma is stored and released onto the surface as well as for placing constraints on rates of volcanic resurfacing throughout the geologic record preserved at the surface.
An electromagnetic microvalve for pneumatic control of microfluidic systems.
Liu, Xuling; Li, Songjing
2014-10-01
An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices. © 2014 Society for Laboratory Automation and Screening.
Estimation of Blood Flow Rates in Large Microvascular Networks
Fry, Brendan C.; Lee, Jack; Smith, Nicolas P.; Secomb, Timothy W.
2012-01-01
Objective Recent methods for imaging microvascular structures provide geometrical data on networks containing thousands of segments. Prediction of functional properties, such as solute transport, requires information on blood flow rates also, but experimental measurement of many individual flows is difficult. Here, a method is presented for estimating flow rates in a microvascular network based on incomplete information on the flows in the boundary segments that feed and drain the network. Methods With incomplete boundary data, the equations governing blood flow form an underdetermined linear system. An algorithm was developed that uses independent information about the distribution of wall shear stresses and pressures in microvessels to resolve this indeterminacy, by minimizing the deviation of pressures and wall shear stresses from target values. Results The algorithm was tested using previously obtained experimental flow data from four microvascular networks in the rat mesentery. With two or three prescribed boundary conditions, predicted flows showed relatively small errors in most segments and fewer than 10% incorrect flow directions on average. Conclusions The proposed method can be used to estimate flow rates in microvascular networks, based on incomplete boundary data and provides a basis for deducing functional properties of microvessel networks. PMID:22506980
Initial experience with a microprocessor controlled current based defibrillator.
Dalzell, G W; Cunningham, S R; Anderson, J; Adgey, A A
1989-01-01
Intramyocardial current flow is a critical factor in successful ventricular defibrillation. The main determinants of intramyocardial current flow during transthoracic countershock are the selected energy and the transthoracic impedance of the patient. To optimise the success of the first shock and to titrate energy dosage according to each patient's transthoracic impedance, a microprocessor controlled current based defibrillator was developed. It was compared with a conventional energy based protocol of 200 J (delivered energy), 200 J, then 360 J if required in 42 consecutive episodes of ventricular fibrillation in 33 men and seven women. The mean (SD) predicted transthoracic impedance was 69.9 (14.0) omega. First shock success with the standard protocol was 80.9%, and first or second shock success was 95.2%. The microprocessor controlled current based defibrillator automatically measured transthoracic impedance and calculated the energy required to develop a selected current in each patient. A current protocol of 30 A, 30 A, then 40 A, if required, was used in 29 men and 12 women with 41 episodes of ventricular fibrillation. Transthoracic impedance (mean 65.1 (15.9) omega) was similar to that in the energy protocol group and success rates for first shock (82.9%) and first or second shocks (97.5%) were also similar. The mean delivered energy per shock with the current based defibrillator for first or second shock success was significantly less (144.8 J) with the energy protocol (200 J). The mean peak current of successful shocks was also significantly reduced (29.0 v 31.9 A). A current based defibrillator titrates energy according to transthoracic impedance; it has a success rate comparable to conventional defibrillators but it delivers significantly less energy and current per shock. Images Fig 1 PMID:2757862
Assessment of glomerular filtration rate and effective renal plasma flow in cystic fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spino, M.; Chai, R.P.; Isles, A.F.
1985-07-01
A study was conducted to examine renal function in 10 healthy control subjects and eight patients with cystic fibrosis in stable condition. Sequential bolus injections of /sup 99m/Tc-DTPA and /sup 125/I-OIH were administered to assess glomerular filtration rate and effective renal plasma flow, respectively. Blood was subsequently collected for 3 hours, and urine for 24 hours. Renal clearances of both radioisotope markers were virtually identical in patients and controls. Inasmuch as neither glomerular filtration rate nor effective renal plasma flow was enhanced in patients with cystic fibrosis, increased clearance of drugs in these patients is unlikely to be the resultmore » of enhanced glomerular filtration or tubular secretion.« less
Stoliker, Deborah L.; Repert, Deborah A.; Smith, Richard L.; Song, Bongkeun; LeBlanc, Denis R.; McCobb, Timothy D.; Conaway, Christopher; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B.
2016-01-01
The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.
Stoliker, Deborah L; Repert, Deborah A; Smith, Richard L; Song, Bongkeun; LeBlanc, Denis R; McCobb, Timothy D; Conaway, Christopher H; Hyun, Sung Pil; Koh, Dong-Chan; Moon, Hee Sun; Kent, Douglas B
2016-04-05
The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.
Vision-based system for the control and measurement of wastewater flow rate in sewer systems.
Nguyen, L S; Schaeli, B; Sage, D; Kayal, S; Jeanbourquin, D; Barry, D A; Rossi, L
2009-01-01
Combined sewer overflows and stormwater discharges represent an important source of contamination to the environment. However, the harsh environment inside sewers and particular hydraulic conditions during rain events reduce the reliability of traditional flow measurement probes. In the following, we present and evaluate an in situ system for the monitoring of water flow in sewers based on video images. This paper focuses on the measurement of the water level based on image-processing techniques. The developed image-based water level algorithms identify the wall/water interface from sewer images and measure its position with respect to real world coordinates. A web-based user interface and a 3-tier system architecture enable the remote configuration of the cameras and the image-processing algorithms. Images acquired and processed by our system were found to reliably measure water levels and thereby to provide crucial information leading to better understand particular hydraulic behaviors. In terms of robustness and accuracy, the water level algorithm provided equal or better results compared to traditional water level probes in three different in situ configurations.
An engineering analysis of a closed cycle plant growth module
NASA Technical Reports Server (NTRS)
Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.
1986-01-01
The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.
Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module
NASA Technical Reports Server (NTRS)
Motil, Brian; Santen, Mark A.
1993-01-01
The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.
Flow distribution analysis on the cooling tube network of ITER thermal shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Kwanwoo; Chung, Wooho; Noh, Chang Hyun
2014-01-29
Thermal shield (TS) is to be installed between the vacuum vessel or the cryostat and the magnets in ITER tokamak to reduce the thermal radiation load to the magnets operating at 4.2K. The TS is cooled by pressurized helium gas at the inlet temperature of 80K. The cooling tube is welded on the TS panel surface and the composed flow network of the TS cooling tubes is complex. The flow rate in each panel should be matched to the thermal design value for effective radiation shielding. This paper presents one dimensional analysis on the flow distribution of cooling tube networkmore » for the ITER TS. The hydraulic cooling tube network is modeled by an electrical analogy. Only the cooling tube on the TS surface and its connecting pipe from the manifold are considered in the analysis model. Considering the frictional factor and the local loss in the cooling tube, the hydraulic resistance is expressed as a linear function with respect to mass flow rate. Sub-circuits in the TS are analyzed separately because each circuit is controlled by its own control valve independently. It is found that flow rates in some panels are insufficient compared with the design values. In order to improve the flow distribution, two kinds of design modifications are proposed. The first one is to connect the tubes of the adjacent panels. This will increase the resistance of the tube on the panel where the flow rate is excessive. The other design suggestion is that an orifice is installed at the exit of tube routing where the flow rate is to be reduced. The analysis for the design suggestions shows that the flow mal-distribution is improved significantly.« less
NASA Astrophysics Data System (ADS)
Moore, Joel; Lichtner, Peter C.; White, Art F.; Brantley, Susan L.
2012-09-01
The reactive transport model FLOTRAN was used to forward-model weathering profiles developed on granitic outwash alluvium over 40-3000 ka from the Merced, California (USA) chronosequence as well as deep granitic regolith developed over 800 ka near Davis Run, Virginia (USA). Baseline model predictions that used laboratory rate constants (km), measured fluid flow velocities (v), and BET volumetric surface areas for the parent material (AB,mo) were not consistent with measured profiles of plagioclase, potassium feldspar, and quartz. Reaction fronts predicted by the baseline model are deeper and thinner than the observed, consistent with faster rates of reaction in the model. Reaction front depth in the model depended mostly upon saturated versus unsaturated hydrologic flow conditions, rate constants controlling precipitation of secondary minerals, and the average fluid flow velocity (va). Unsaturated hydrologic flow conditions (relatively open with respect to CO2(g)) resulted in the prediction of deeper reaction fronts and significant differences in the separation between plagioclase and potassium feldspar reaction fronts compared to saturated hydrologic flow (relatively closed with respect to CO2(g)). Under saturated or unsaturated flow conditions, the rate constant that controls precipitation rates of secondary minerals must be reduced relative to laboratory rate constants to match observed reaction front depths and measured pore water chemistry. Additionally, to match the observed reaction front depths, va was set lower than the measured value, v, for three of the four profiles. The reaction front gradients in mineralogy and pore fluid chemistry could only be modeled accurately by adjusting values of the product kmAB,mo. By assuming km values were constrained by laboratory data, field observations were modeled successfully with TST-like rate equations by dividing measured values of AB,mo by factors from 50 to 1700. Alternately, with sigmoidal or Al-inhibition rate models, this adjustment factor ranges from 5 to 170. Best-fit models of the wetter, hydrologically saturated Davis Run profile required a smaller adjustment to AB,mo than the drier hydrologically unsaturated Merced profiles. We attributed the need for large adjustments in va and AB,mo necessary for the Merced models to more complex hydrologic flow that decreased the reactive surface area in contact with bulk flow water, e.g., dead-end pore spaces containing fluids that are near or at chemical equilibrium. Thus, rate models from the laboratory can successfully predict weathering over millions of years, but work is needed to understand how to incorporate changes in what controls the relationship between reactive surface area and hydrologic flow.
Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis
NASA Astrophysics Data System (ADS)
Bulusu, Kartik V.; Plesniak, Michael W.
2015-11-01
In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.
PAB3D Simulations of a Nozzle with Fluidic Injection for Yaw Thrust-Vector Control
NASA Technical Reports Server (NTRS)
Deere, Karen A.
1998-01-01
An experimental and computational study was conducted on an exhaust nozzle with fluidic injection for yaw thrust-vector control. The nozzle concept was tested experimentally in the NASA Langley Jet Exit Test Facility (JETF) at nozzle pressure ratios up to 4 and secondary fluidic injection flow rates up to 15 percent of the primary flow rate. Although many injection-port geometries and two nozzle planforms (symmetric and asymmetric) were tested experimentally, this paper focuses on the computational results of the more successful asymmetric planform with a slot injection port. This nozzle concept was simulated with the Navier-Stokes flow solver, PAB3D, invoking the Shih, Zhu, and Lumley algebraic Reynolds stress turbulence model (ASM) at nozzle pressure ratios (NPRs) of 2,3, and 4 with secondary to primary injection flow rates (w(sub s)/w(sub p)) of 0, 2, 7 and 10 percent.
Flow rate limitation in open wedge channel under microgravity
NASA Astrophysics Data System (ADS)
Wei, YueXing; Chen, XiaoQian; Huang, YiYong
2013-08-01
A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computational Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dimensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.
Ultrasound Mediated Microbubbles Destruction Augmented Sonolysis: An In Vitro and In Vivo Study.
Cui, Hai; Zhu, Qiong; Gao, Yunhua; Xia, Hongmei; Tan, Kaibin; He, Ying; Liu, Zheng; Xu, Yali
2017-01-01
This study was aimed at exploring ultrasound mediated microbubbles destruction (UMMD) assisted sonolysis in both the in vitro and in vivo clots. Therapeutic ultrasound (TUS) and lipid microbubbles (MBs) were used in whole blood clots and divided into the control, TUS group, and TUS + MB group. Thrombolytic rates and microscopy were performed. Color Doppler flow imaging (CDFI) and angiography were performed to evaluate the recanalization rates and flow scores in femoral arterial thrombus (FAT) in rabbits. FAT were dyed with H&E. The average thrombolytic ratios of TUS + MB group were significantly higher than those of TUS group and the control group (both P < 0.05). Clots had different pathological changes. Recanalization rates and flow scores in TUS + MB group were significantly higher than the control and TUS group. Flow scores and recanalization ratios were grade 0 in 0% of the control group, grade I in 25% of TUS group, and grade II or higher in 87.5% of TUS + MB group after 30 min sonolysis. Both the in vitro and in vivo sonolysis can be significantly augmented by the introduction of MBs without thrombolytic agents, which might be induced by the enhanced cavitation via UMMD.
The Congress Should Control Federal Credit Programs to Promote Economic Stabilization.
1981-10-21
economic stability since 1960. The current rate of direct and guaranteed loan flows will exceed $70 billion annually in fiscal 1981. Recently, the Congress and the Administration have proposed a credit budget to limit the rapid growth of Federal credit. GAO demonstrates in this report that the best point of program control is the amount of the interest rate subsidy. Controlling subsidy levels rather than program activity levels would allocate credit efficiently and would, at the same time, lead to Federal credit flows that would contribute to the economic stabilization
Electro-osmotically driven liquid delivery method and apparatus
Rakestraw, David J.; Anex, Deon S.; Yan, Chao; Dadoo, Rajeev; Zare, Richard N.
1999-01-01
Method and apparatus for controlling precisely the composition and delivery of liquid at sub-.mu.L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-.mu.L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column.
High pressure flow-rate switch
NASA Technical Reports Server (NTRS)
Gale, G. P.
1970-01-01
Flow-rate switch adjusts easily over a wide switching range and operates uniformly over many cycles. It adapts easily to control of various fluids and has the possibility of introducing multi-point switching. Novel design features include the tapered spool, balanced porting, capillary-bypass lubrication, and capillary-restriction damping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, Gene; Lustbader, Jason Aaron
The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was used to explore control strategies for an electric vehicle combined loop system. Three system variants of increased complexity and efficiency were explored: a glycol-based positive temperature coefficient heater (PTC), PTC with power electronics and electric motor (PEEM) waste heat recovery, and PTC with PEEM waste heat recovery plus heat pump versions. Additionally, the benefit of electric motor preheating was considered. A two-level control strategy was developed where the mode selection and component control were treated separately. Only the parameters typically available by vehicle sensors were used to control themore » system. The control approach included a mode selection algorithm and controllers for the compressor speed, cabin blower flow rate, coolant flow rate, and the front-end heat exchanger coolant bypass rate. The electric motor was bypassed by the cooling circuit until its temperature exceeded the coolant inlet temperature. The impact of these thermal systems on electric vehicle range during warmup was simulated for the Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Test (HWFET2X) drive cycles weighted 45%/55% respectively. A range of ambient temperatures from -20 degrees C to +20 degrees C was considered. NREL's Future Automotive Systems Technology Simulator (FASTSim) vehicle modeling tool showed up to a 10.9% improvement in range for the full system over the baseline during warmup from cold soak. The full system with preheat showed up to 17% improvement in range.« less
Volcanism on differentiated asteroids (Invited)
NASA Astrophysics Data System (ADS)
Wilson, L.
2013-12-01
The Dawn spacecraft's investigation of 4 Vesta, best-preserved of the early-forming differentiated asteroids, prompts a reappraisal of factors controlling igneous activity on such bodies. Analogy with melt transfer in zones of partial melting on Earth implies that silicate melts moved efficiently within asteroid mantles in complex networks of veins and dikes, so that only a few percent of the mantle consisted of melt at any one time. Thus even in cases where large amounts of mantle melting occurred, the melts did not remain in the mantle to form "magma oceans", but instead migrated to shallow depths. The link between magma flow rate and the stresses needed to keep fractures open and allow flow fast enough to avoid excessive cooling implies that only within asteroids with radii more than ~190-250 km would continuous magma flow from mantle to surface be possible. In all smaller asteroids (including Vesta) magma must have accumulated in sills at the base of the lithosphere (the conductively controlled ~10 km thick thermal boundary layer) or in crustal magma reservoirs near its base. Magma would then have erupted intermittently to the surface from these steadily replenished reservoirs. The average rates of eruption to the surface (or shallow intrusion) should balance the magma production rate, but since magma could accumulate and erupt intermittently from these reservoirs, the instantaneous eruption rates could be hundreds to thousands of cubic m/s, comparable to historic basaltic eruption rates on Earth and very much greater than the average mantle melting rate. The absence of asteroid atmospheres makes explosive eruptions likely even if magmas are volatile-poor. On asteroids with radii less than ~100 km, gases and sub-mm pyroclastic melt droplets would have had speeds exceeding the escape speed assuming a few hundred ppm volatiles, and only cm sized or larger clasts would have been retained. On larger bodies almost all pyroclasts will have returned to the surface after passing through optically dense fire fountains. At low eruption rates and high volatile contents many clasts cooled to form spatter or cinder deposits, but at high eruption rates and low volatile contents most clasts landed hot and coalesced into lava ponds to feed lava flows. Lava flow thickness varies with surface slope, acceleration due to gravity, and lava yield strength induced by cooling. Low gravity on asteroids caused flows to be relatively thick which reduced the effects of cooling, and many flows probably attained lengths of tens of km and stopped as a result of cessation of magma supply from the reservoir rather than cooling. On most asteroids larger than 100 km radius experiencing more than ~30% mantle melting, the erupted volcanic deposits will have buried the original chondritic surface layers of the asteroid to such great depths that they were melted, or at least heavily thermally metamorphosed, leaving no present-day meteoritical evidence of their prior existence. Tidal stresses from close encounters between asteroids and proto-planets may have very briefly increased melting and melt migration speeds in asteroid interiors but only gross structural disruption would have greatly have changed volcanic histories.
NASA Astrophysics Data System (ADS)
Azizi, Mohammad Ali; Brouwer, Jacob
2017-10-01
A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
Nitrate Removal Rates in Denitrifying Bioreactors During Storm Flows
NASA Astrophysics Data System (ADS)
Pluer, W.; Walter, T.
2017-12-01
Field denitrifying bioreactors are designed to reduce excess nitrate (NO3-) pollution in runoff from agricultural fields. Field bioreactors saturate organic matter to create conditions that facilitate microbial denitrification. Prior studies using steady flow in lab-scale bioreactors showed that a hydraulic retention time (HRT) between 4 and 10 hours was optimal for reducing NO3- loads. However, during storm-induced events, flow rate and actual HRT fluctuate. These fluctuations have the potential to disrupt the system in significant ways that are not captured by the idealized steady-flow HRT models. The goal of this study was to investigate removal rate during dynamic storm flows of variable rates and durations. Our results indicate that storm peak flow and duration were not significant controlling variables. Instead, we found high correlations (p=0.004) in average removal rates between bioreactors displaying a predominantly uniform flow pattern compared with bioreactors that exhibited preferential flow (24.4 and 21.4 g N m-3 d-1, respectively). This suggests that the internal flow patterns are a more significant driver of removal rate than external factors of the storm hydrograph. Designing for flow patterns in addition to theoretical HRT will facilitate complete mixing within the bioreactors. This will help maximize excess NO3- removal during large storm-induced runoff events.
Selenium Speciation and Management in Wet FGD Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K; Richardson, M; Blythe, G
2012-02-29
This report discusses results from bench- and pilot-scale simulation tests conducted to determine the factors that impact selenium speciation and phase partitioning in wet FGD systems. The selenium chemistry in wet FGD systems is highly complex and not completely understood, thus extrapolation and scale-up of these results may be uncertain. Control of operating parameters and application of scrubber additives have successfully demonstrated the avoidance or decrease of selenite oxidation at the bench and pilot scale. Ongoing efforts to improve sample handling methods for selenium speciation measurements are also discussed. Bench-scale scrubber tests explored the impacts of oxidation air rate, tracemore » metals, scrubber additives, and natural limestone on selenium speciation in synthetic and field-generated full-scale FGD liquors. The presence and concentration of redox-active chemical species as well as the oxidation air rate contribute to the oxidation-reduction potential (ORP) conditions in FGD scrubbers. Selenite oxidation to the undesirable selenate form increases with increasing ORP conditions, and decreases with decreasing ORP conditions. Solid-phase manganese [Mn(IV)] appeared to be the significant metal impacting the oxidation of selenite to selenate. Scrubber additives were tested for their ability to inhibit selenite oxidation. Although dibasic acid and other scrubber additives showed promise in early clear liquor (sodium based and without calcium solids) bench-scale tests, these additives did not show strong inhibition of selenite oxidation in tests with higher manganese concentrations and with slurries from full-scale wet FGD systems. In bench-tests with field liquors, addition of ferric chloride at a 250:1 iron-to-selenium mass ratio sorbed all incoming selenite to the solid phase, although addition of ferric salts had no impact on native selenate that already existed in the field slurry liquor sample. As ORP increases, selenite may oxidize to selenate more rapidly than it sorbs to ferric solids. Though it was not possible to demonstrate a decrease in selenium concentrations to levels below the project'ale testing were evident at the pilot scale. Specifically, reducing oxidation air rate and ORP tends to either retain selenium as selenite in the liquor or shift selenium phase partitioning to the solid phase. Oxidation air flow rate control may be one option for managing selenium behavior in FGD scrubbers. Units that cycle load widely may find it more difficult to impact ORP conditions with oxidation air flow rate control alone. Because decreasing oxidation air rates to the reaction tank showed that all new selenium reported to the solids, the addition of ferric chloride to the pilot scrubber could not show further improvements in selenium behavior. Ferric chloride addition did shift mercury to the slurry solids, specifically to the fine particles. Several competing pathways may govern the reporting of selenium to the slurry solids: co-precipitation with gypsum into the bulk solids and sorption or co-precipitation with iron into the fine particles. Simultaneous measurement of selenium and mercury behavior suggests a holistic management strategy is best to optimize the fate of both of these elements in FGD waters. Work conducted under this project evaluated sample handling and analytical methods for selenium speciation in FGD waters. Three analytical techniques and several preservation methods were employed. Measurements of selenium speciation over time indicated that for accurate selenium speciation, it is best to conduct measurements on unpreserved, filtered samples as soon after sampling as possible. The capital and operating costs for two selenium management strategies were considered: ferric chloride addition and oxidation air flow rate control. For ferric chloride addition, as might be expected the reagent makeup costs dominate the overall costs, and range from 0.22 to 0.29 mills/kWh. For oxidation air flow rate control, a cursory comparison of capital costs and turndown capabilities for multi-stage and single-stage centrifugal blowers and several flow control methods was completed. For greenfield systems, changing the selection of blower type and flow control method may have payback periods of 4 to 5 years or more if based on energy savings alone. However, the benefits to managing redox chemistry in the scrubber could far outweigh the savings in electricity costs under some circumstances.« less
Afterload-dependent flow fluctuation of centrifugal pump: should it be actively fixed?
Nishida, H; Akazawa, T; Nishinaka, T; Aomi, S; Endo, M; Koyanagi, H
1998-05-01
To evaluate the clinical meaning and effects of afterload-dependent flow fluctuation in a centrifugal pump, concomitant measurement of flow rate and mixed venous oxygen saturation (SVO2) was performed in 5 cases of open heart surgery in which the patients underwent cardiopulmonary bypass (CPB) with the Terumo Capiox centrifugal pump. Continuous measurement of SVO2 using the 3M CDI System 100 was performed with a disposable cuvette incorporated into the drainage circuit. After the target flow rate of 2.4 L/min/m2 was obtained under a nonbeating condition, the pump rotational speed was fixed. During the cooling and low temperature period, SVO2 decreased as the flow rate spontaneously decreased but still stayed around 80% even with a 15-20% decrease in blood flow rate. This indicates that a luxury perfusion condition is ensured as long as the body temperature is kept low. In contrast, during the rewarming period, SVO2 decreased to around 70-75% despite a 15-25% spontaneous increase in flow rate. Although this level of SVO2 still indicates adequate systemic perfusion, there is a possibility of regional hypoperfusion in patients with such conditions as cerebrovascular disease. In conclusion, although diligent adjustment of the physiological fluctuating flow rate in the centrifugal pump seems unnecessary during conventional open heart surgery, manual control may be necessary especially during the rewarming period, normothermic surgery, or circulatory assist for shocked patients. From this study, we also conclude that the major benefit of the afterload-independent autoflow control system of the centrifugal pump is the improvement of safety in terms of the fixed reservoir level and the handling of cardiopulmonary bypass.
Coupled Flow and Mechanics in Porous and Fractured Media*
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Newell, P.; Bishop, J.
2012-12-01
Numerical models describing subsurface flow through deformable porous materials are important for understanding and enabling energy security and climate security. Some applications of current interest come from such diverse areas as geologic sequestration of anthropogenic CO2, hydro-fracturing for stimulation of hydrocarbon reservoirs, and modeling electrochemistry-induced swelling of fluid-filled porous electrodes. Induced stress fields in any of these applications can lead to structural failure and fracture. The ultimate goal of this research is to model evolving faults and fracture networks and flow within the networks while coupling to flow and mechanics within the intact porous structure. We report here on a new computational capability for coupling of multiphase porous flow with geomechanics including assessment of over-pressure-induced structural damage. The geomechanics is coupled to the flow via the variation in the fluid pore pressures, whereas the flow problem is coupled to mechanics by the concomitant material strains which alter the pore volume (porosity field) and hence the permeability field. For linear elastic solid mechanics a monolithic coupling strategy is utilized. For nonlinear elastic/plastic and fractured media, a segregated coupling is presented. To facilitate coupling with disparate flow and mechanics time scales, the coupling strategy allows for different time steps in the flow solve compared to the mechanics solve. If time steps are synchronized, the controller allows user-specified intra-time-step iterations. The iterative coupling is dynamically controlled based on a norm measuring the degree of variation in the deformed porosity. The model is applied for evaluation of the integrity of jointed caprock systems during CO2 sequestration operations. Creation or reactivation of joints can lead to enhanced pathways for leakage. Similarly, over-pressures can induce flow along faults. Fluid flow rates in fractures are strongly dependent on the effective hydraulic aperture, which is a non-linear function of effective normal stress. The dynamically evolving aperture field updates the effective, anisotropic permeability tensor, thus resulting in a highly coupled multiphysics problem. Two models of geomechanical damage are discussed: critical shear-slip criteria and a sub-grid joint model. Leakage rates through the caprock resulting from the joint model are compared to those assuming intact material, allowing a correlation between potential for leakage and injection rates/pressures, for various in-situ stratigraphies. *This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Hysteretic behavior of stage-discharge relationships in urban streams
NASA Astrophysics Data System (ADS)
Miller, A. J.; Lindner, G. A.
2009-12-01
Reliable stage-discharge relationships or rating curves are of critical importance for accurate calculation of streamflow and maintenance of long-term flow records. Urban streams offer particular challenges for the maintenance of accurate rating curves. It is often difficult or impossible to collect direct discharge measurements at high flows, many of which are generated by short-duration high-intensity summer thunderstorms, both because of dangerous conditions in the channel and also because the stream rises and falls so rapidly that field crews cannot reach sites in time and sometimes cannot make measurements rapidly enough to keep pace with changing water levels even when they are on site during a storm. Work in urban streams in the Baltimore metropolitan area has shown that projection of rating curves beyond the range of measured flows can lead to overestimation of flood peaks by as much as 100%, and these can only be corrected when adequate field data are available to support modeling efforts. Even moderate flows that are above safe wading depth and velocity may best be estimated using hydraulic models. Current research for NSF CNH project 0709659 includes the application of 2-d depth-averaged hydraulic models to match existing rating curves over a range of low to moderate flows and to extend rating curves for higher flows, based on field collection of high-water marks. Although it is generally assumed that stage-discharge relationships are single-valued, we find that modeling results in small urban streams often generate hysteretic relationships, with higher discharges on the rising limb of the hydrograph than on the falling limb. The difference between discharges for the same stage on the rising and falling limb can be on the order of 20-30% even for in-channel flows that are less than 1 m deep. As safety considerations dictate that it is preferable to make direct discharge measurements on the falling limb of the hydrograph, the higher direct measurements used in many rating curves probably have been collected on the falling limb and therefore may not capture the correct stage-discharge relationship for the rising limb. In some cases model results selected only from the falling limb are able to match the existing rating curve very closely. Although hysteresis may be explained with reference to the innate properties of the flood wave, other factors also lead to hysteretic behavior. Downstream constrictions and obstructions associated with urban infrastructure may cause substantial backwater effects, particularly during flood flows. Flood conditions at tributary confluences also can exert a controlling influence upstream. Based on our results we recommend that at some sites it is advisable to develop separate rating curves for the rising and falling limbs, and to develop a range of modeling scenarios for predicting the range of potential uncertainty.
Optical Flow Estimation for Flame Detection in Videos
Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen
2014-01-01
Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042
The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques
NASA Astrophysics Data System (ADS)
Tang, Chao
Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The results show that the correction significantly reduces the errors due to the partial volume effect. We apply the correction method to the data of in vivo studies. Because the blood flow is not known, the results of correction are tested according to the common knowledge (such as cardiac output) and conservation of flow. For example, the volume of blood flowing to the brain should be equal to the volume of blood flowing from the brain. Our measurement results are very convincing.
Modeling dynamic accumulation of gas hydrates in Shenhu area, northern South China Sea
NASA Astrophysics Data System (ADS)
Su, Z.; Cao, Y.; Wu, N.
2013-12-01
The accumulation of the hydrates in Shenhu area on northern continental slope of the South China Sea (SCS) could not be well quantified by the numerical models. The formation mechanism of the hydrate deposits remains an open question. Here, a conceptual model was applied for illustrating the formation pattern of hydrate accumulation in Shenhu area based on the studies of sedimentary and tectonic geologies. Our results indicated that the present hydrate deposits were a development of 'ancient hydrates' in the faulted sediment. The dynamic accumulation of the hydrates was further quantified by using a numerical model with two controlling parameters of seafloor sedimentation rate and water flow rate. The model results were testified with the hydrate saturations derived from the chloride abnormalities at site SH2 in Shenhu area. It suggested that the hydrate accumulation in Shenhu area had experienced two typical stages. In the first stage, the gas hydrates grew in the fractured sediment ~1.5 Ma. High permeability of the fractured sediment permitted rapid water flow that carrying methane gas toward the seafloor. Massive gas transformed to gas hydrate in the gas hydrate stability zone (GHSZ) at water flow rate of 50m/kyr within 40kyrs. The 'ancient hydrate' filled 20% volume of the sediment pores in the stage. The second stage was initiated after ending of the last faulting activity. The water flow rate dropped to 0.7m/kyr due to quick burial of fine-grained sediments. Inadequate gas supply could merely sustain hydrate growth slowly at the base of GHSZ, and ultimately yielded the current hydrate deposits in Shenhu area after a subsequent evolution of 1.5 Myrs.
NASA Astrophysics Data System (ADS)
Tian, Meng; Sun, Yueqing; Zhang, Chuanfang (John); Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui
2017-10-01
Electrochemical flow capacitor (EFC) is a promising technology for grid energy storage, which combines the fast charging/discharging capability of supercapacitors with the scalable energy capacity of flow batteries. In this study, we report a high-power-density EFC using mesoporous carbon microspheres (MCMs) as suspension electrodes. By using a simple yet effective spray-drying technique, monodispersed MCMs with average particle size of 5 μm, high BET surface area of 1150-1267 m2 g-1, large pore volume of 2-4 cm3 g-1 and controllable mesopore size of 7-30 nm have been successfully prepared. The resultant MCMs suspension electrode shows excellent stability and considerable high capacitance of 100 F g-1 and good cycling ability (86% of initial capacitance after 10000 cycles). Specially, the suspension electrode exhibits excellent rate performance with 75% capacitance retention from 2 to 100 mV s-1, significantly higher than that of microporous carbon electrodes (20∼30%), due to the developed mesoporous channels facilitating for rapid ion diffusion. In addition, the electrochemical responses on both negative and positive suspension electrodes are studied, based on which an optimal capacitance matching between them is suggested for large-scale EFC unit.
Erosion and deposition on a debris-flow fan
NASA Astrophysics Data System (ADS)
Densmore, A. L.; Schuerch, P.; Rosser, N. J.; McArdell, B. W.
2011-12-01
The ability of a debris flow to entrain or deposit sediment controls the downstream evolution of flow volume, and ultimately dictates both the geomorphic impact of the flow and the potential hazard that it represents. Our understanding of the patterns of, and controls on, such flow volume changes remains extremely limited, however, partly due to a poor mechanistic grasp of the interactions between debris flows and their bed and banks. In addition, we lack a good understanding of the cumulative long-term effects of sequences of flows in a single catchment-fan system. Here we begin to address these issues by using repeated terrestrial laser scanning (TLS) to characterize the detailed surface change associated with the passage of multiple debris flows on the Illgraben fan, Switzerland. We calculate surface elevation change along a 300 m study reach, and from this derive the downfan rate of flow volume change, or lag rate; for comparison, we also derive the spatially-averaged lag rate over the entire ~2 km length of the fan. Lag rates are broadly comparable over both length scales, indicating that flow behavior does not vary significantly across the fan for most flows, but importantly we find that flow volume at the fan head is a poor predictor of volume at the fan toe. The sign and magnitude of bed elevation change scale with local flow depth; at flow depths < 2 m, erosion and deposition are approximately equally likely, but erosion becomes increasingly dominant for flow depths > 2 m. On the Illgraben fan, this depth corresponds to a basal shear stress of 3-4 kPa. Because flow depth is in part a function of channel cross-sectional topography, which varies strongly both within and between flows, this result indicates that erosion and deposition are likely to be highly dynamic. The dependence of flow volume change on both the channel topography and the flow history may thus complicate efforts to predict debris-flow inundation areas by simple flow routing. We then apply a 2d numerical model of debris-flow fan evolution to explore the key controls on debris-flow routing and topographic development over sequences of multiple flows. We find that fan topographic roughness plays an important role in both channel development and fan surface stability. We also find that, while first-order fan shape is largely insensitive to the input flow sequence, second-order variables such as the pattern of surface exposure ages and the distribution of channel characteristics hold more promise as robust recorders of past flow conditions. Further work is needed to understand the degree to which the TLS-derived (and Illgraben-specific) relationship between bed elevation change and flow depth can be applied in different settings, and to elucidate the role played by coarse debris in controlling patterns of erosion and deposition.
Ares I Reaction Control System Propellant Feedline Decontamination Modeling
NASA Technical Reports Server (NTRS)
Pasch, James J.
2010-01-01
The objective of the work presented here is to quantify the effects of purge gas temperature, pressure, and mass flow rate on Hydrazine (Hz) decontamination rates of the Ares I Roll Control System and Reaction Control System. A survey of experts in this field revealed the absence of any decontamination rate prediction models. Three basic decontamination methods were identified for analysis and modeling. These include low pressure eduction, high flow rate purge, and pulse purge. For each method, an approach to predict the Hz mass transfer rate, as a function of system pressure, temperature, and purge gas mass flow rate, is developed based on the applicable physics. The models show that low pressure eduction is two orders of magnitude more effective than the high velocity purge, which in turn is two orders of magnitude more effective than the pure diffusion component of pulse purging of deadheads. Eduction subjects the system to low pressure conditions that promote the extraction of Hz vapors. At 120 F, Hz is saturated at approximately 1 psia. At lower pressures and 120 F, Hz will boil, which is an extremely efficient means to remove liquid Hz. The Hz boiling rate is predicted by equating the rate at which energy is added to the saturated liquid Hz through heaters at the tube outer wall with the energy removed from the liquid through evaporation. Boil-off fluxes were predicted by iterating through the range of local pressures with limits set by the minimum allowed pressure of 0.2 psia and maximum allowed wall temperature of 120 F established by the heaters, which gives a saturation pressure of approximately 1.0 psia. Figure 1 shows the resulting boil-off fluxes as a function of local eduction pressure. As depicted in figure 1, the flux is a strong inverse function of eduction pressure, and that minimizing the eduction pressure maximizes the boil-off flux. Also, higher outer wall temperatures lead to higher boil-off fluxes and allow for boil-off over a greater range of eduction pressures.
Syed, Atiq U.; Bennett, James P.; Rachol, Cynthia M.
2005-01-01
Four dams on the Kalamazoo River between the cities of Plainwell and Allegan, Mich., are in varying states of disrepair. The Michigan Department of Environmental Quality (MDEQ) and U.S. Environmental Protection Agency (USEPA) are considering removing these dams to restore the river channels to pre-dam conditions. This study was initiated to identify sediment characteristics, monitor sediment transport, and predict sediment resuspension and deposition under varying hydraulic conditions. The mathematical model SEDMOD was used to simulate streamflow and sediment transport using three modeling scenarios: (1) sediment transport simulations for 730 days (Jan. 2001 to Dec. 2002), with existing dam structures, (2) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with existing dam structures, and (3) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with dams removed. Sediment transport simulations based on the 1947 flood hydrograph provide an estimate of sediment transport rates under maximum flow conditions. These scenarios can be used as an assessment of the sediment load that may erode from the study reach at this flow magnitude during a dam failure. The model was calibrated using suspended sediment as a calibration parameter and root mean squared error (RMSE) as an objective function. Analyses of the calibrated model show a slight bias in the model results at flows higher than 75 m3/s; this means that the model-simulated suspended-sediment transport rates are higher than the observed rates; however, the overall calibrated model results show close agreement between simulated and measured values of suspended sediment. Simulation results show that the Kalamazoo River sediment transport mechanism is in a dynamic equilibrium state. Model results during the 730-day simulations indicate significant sediment erosion from the study reach at flow rates higher than 55 m3/s. Similarly, significant sediment deposition occurs during low to average flows (monthly mean flows between 25.49 m3/s and 50.97 m3/s) after a high-flow event. If the flow continues to stay in the low to average range the system shifts towards equilibrium, resulting in a balancing effect between sediment deposition and erosion rates. The 1947 flood-flow simulations show approximately 30,000 m3 more instream sediments erosion for the first 21 days of the dams removed scenario than for the existing-dams scenario, with the same initial conditions for both scenarios. Application of a locally weighted regression smoothing (LOWESS) function to simulation results of the dams removed scenario indicates a steep downtrend with high sediment transport rates during the first 21 days. In comparison, the LOWESS curve for the existing-dams scenario shows a smooth transition of sediment transport rates in response to the change in streamflow. The high erosion rates during the dams-removed scenario are due to the absence of the dams; in contrast, the presence of dams in the existing-dams scenario helps reduce sediment erosion to some extent. The overall results of 60-day simulations for the 1947 flood show no significant difference in total volume of eroded sediment between the two scenarios, because the dams in the study reach have low heads and no control gates. It is important to note that the existing-dams and dams-removed scenarios simulations are run for only 60 days; therefore, the simulations take into account the changes in sediment erosion and deposition rates only during that time period. Over an extended period, more erosion of instream sediments would be expected to occur if the dams are not properly removed than under the existing conditions. On the basis of model simulations, removal of dams would further lower the head in all the channels. This lowering of head could produce higher flow velocities in the study reach, which ultimately would result in accelerated erosion rates.
Turbofan Engine Simulated in a Graphical Simulation Environment
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Guo, Ten-Huei
2004-01-01
Recently, there has been an increase in the development of intelligent engine technology with advanced active component control. The computer engine models used in these control studies are component-level models (CLM), models that link individual component models of state space and nonlinear algebraic equations, written in a computer language such as Fortran. The difficulty faced in performing control studies on Fortran-based models is that Fortran is not supported with control design and analysis tools, so there is no means for implementing real-time control. It is desirable to have a simulation environment that is straightforward, has modular graphical components, and allows easy access to health, control, and engine parameters through a graphical user interface. Such a tool should also provide the ability to convert a control design into real-time code, helping to make it an extremely powerful tool in control and diagnostic system development. Simulation time management is shown: Mach number versus time, power level angle versus time, altitude versus time, ambient temperature change versus time, afterburner fuel flow versus time, controller and actuator dynamics, collect initial conditions, CAD output, and component-level model: CLM sensor, CAD input, and model output. The Controls and Dynamics Technologies Branch at the NASA Glenn Research Center has developed and demonstrated a flexible, generic turbofan engine simulation platform that can meet these objectives, known as the Modular Aero-Propulsion System Simulation (MAPSS). MAPSS is a Simulink-based implementation of a Fortran-based, modern high pressure ratio, dual-spool, low-bypass, military-type variable-cycle engine with a digital controller. Simulink (The Mathworks, Natick, MA) is a computer-aided control design and simulation package allows the graphical representation of dynamic systems in a block diagram form. MAPSS is a nonlinear, non-real-time system composed of controller and actuator dynamics (CAD) and component-level model (CLM) modules. The controller in the CAD module emulates the functionality of a digital controller, which has a typical update rate of 50 Hz. The CLM module simulates the dynamics of the engine components and uses an update rate of 2500 Hz, which is needed to iterate to balance mass and energy among system components. The actuators in the CAD module use the same sampling rate as those in the CLM. Two graphs of normalized spool speed versus time in seconds and one graph of normalized average metal temperature versus time in seconds is shown. MAPSS was validated via open-loop and closed-loop comparisons with the Fortran simulation. The preceding plots show the normalized results of a closed-loop comparison looking at three states of the model: low-pressure spool speed, high-pressure spool speed, and the average metal temperature measured from the combustor to the high-pressure turbine. In steady state, the error between the simulations is less than 1 percent. During a transient, the difference between the simulations is due to a correction in MAPSS that prevents the gas flow in the bypass duct inlet from flowing forward instead of toward the aft end, which occurs in the Fortran simulation. A comparison between MAPSS and the Fortran model of the bypass duct inlet flow for power lever angles greater than 35 degrees is shown.
Closed-Loop Control of Chemical Injection Rate for a Direct Nozzle Injection System
Cai, Xiang; Walgenbach, Martin; Doerpmond, Malte; Schulze Lammers, Peter; Sun, Yurui
2016-01-01
To realize site-specific and variable-rate application of agricultural pesticides, accurately metering and controlling the chemical injection rate is necessary. This study presents a prototype of a direct nozzle injection system (DNIS) by which chemical concentration transport lag was greatly reduced. In this system, a rapid-reacting solenoid valve (RRV) was utilized for injecting chemicals, driven by a pulse-width modulation (PWM) signal at 100 Hz, so with varying pulse width the chemical injection rate could be adjusted. Meanwhile, a closed-loop control strategy, proportional-integral-derivative (PID) method, was applied for metering and stabilizing the chemical injection rate. In order to measure chemical flow rates and input them into the controller as a feedback in real-time, a thermodynamic flowmeter that was independent of chemical viscosity was used. Laboratory tests were conducted to assess the performance of DNIS and PID control strategy. Due to the nonlinear input–output characteristics of the RRV, a two-phase PID control process obtained better effects as compared with single PID control strategy. Test results also indicated that the set-point chemical flow rate could be achieved within less than 4 s, and the output stability was improved compared to the case without control strategy. PMID:26805833
Boersen, Johannes T; Groot Jebbink, Erik; Versluis, Michel; Slump, Cornelis H; Ku, David N; de Vries, Jean-Paul P M; Reijnen, Michel M P J
2017-12-01
Endovascular aneurysm repair (EVAR) with a modular endograft has become the preferred treatment for abdominal aortic aneurysms. A novel concept is endovascular aneurysm sealing (EVAS), consisting of dual endoframes surrounded by polymer-filled endobags. This dual-lumen configuration is different from a bifurcation with a tapered trajectory of the flow lumen into the two limbs and may induce unfavorable flow conditions. These include low and oscillatory wall shear stress (WSS), linked to atherosclerosis, and high shear rates that may result in thrombosis. An in vitro study was performed to assess the impact of EVAR and EVAS on flow patterns and WSS. Four abdominal aortic aneurysm phantoms were constructed, including three stented models, to study the influence of the flow divider on flow (Endurant [Medtronic, Minneapolis, Minn], AFX [Endologix, Irvine, Calif], and Nellix [Endologix]). Experimental models were tested under physiologic resting conditions, and flow was visualized with laser particle imaging velocimetry, quantified by shear rate, WSS, and oscillatory shear index (OSI) in the suprarenal aorta, renal artery (RA), and common iliac artery. WSS and OSI were comparable for all models in the suprarenal aorta. The RA flow profile in the EVAR models was comparable to the control, but a region of lower WSS was observed on the caudal wall compared with the control. The EVAS model showed a stronger jet flow with a higher shear rate in some regions compared with the other models. Small regions of low WSS and high OSI were found near the distal end of all stents in the common iliac artery compared with the control. Maximum shear rates in each region of interest were well below the pathologic threshold for acute thrombosis. The different stent designs do not influence suprarenal flow. Lower WSS is observed in the caudal wall of the RA after EVAR and a higher shear rate after EVAS. All stented models have a small region of low WSS and high OSI near the distal outflow of the stents. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Membrane has high urea-rejection properties
NASA Technical Reports Server (NTRS)
Johnson, C. C.; Wydeven, T.
1977-01-01
Membranes are synthesized from ethylene and nitrogen in RF plasma at low power, gas-flow rates, and pressure. Ethylene and nitrogen are used because flow rate and partial pressure of each gas can be independently controlled to produce optimum conditions for synthesizing membrane. Membrane is particularly useful in recycling and purifying water.
40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642 SSV...
40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642 SSV...
40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642 SSV...
40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642 SSV...
Field-effect Flow Control in Polymer Microchannel Networks
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.
2003-01-01
A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.
Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography.
Kim, Jongwook; Michelin, Sébastien; Hilbers, Michiel; Martinelli, Lucio; Chaudan, Elodie; Amselem, Gabriel; Fradet, Etienne; Boilot, Jean-Pierre; Brouwer, Albert M; Baroud, Charles N; Peretti, Jacques; Gacoin, Thierry
2017-09-01
Rare-earth phosphors exhibit unique luminescence polarization features originating from the anisotropic symmetry of the emitter ion's chemical environment. However, to take advantage of this peculiar property, it is necessary to control and measure the ensemble orientation of the host particles with a high degree of precision. Here, we show a methodology to obtain the photoluminescence polarization of Eu-doped LaPO 4 nanorods assembled in an electrically modulated liquid-crystalline phase. We measure Eu 3+ emission spectra for the three main optical configurations (σ, π and α, depending on the direction of observation and the polarization axes) and use them as a reference for the nanorod orientation analysis. Based on the fact that flowing nanorods tend to orient along the shear strain profile, we use this orientation analysis to measure the local shear rate in a flowing liquid. The potential of this approach is then demonstrated through tomographic imaging of the shear rate distribution in a microfluidic system.
Development of monitoring and control system for a mine main fan based on frequency converter
NASA Astrophysics Data System (ADS)
Zhang, Y. C.; Zhang, R. W.; Kong, X. Z.; Y Gong, J.; Chen, Q. G.
2013-12-01
In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production.
Juckem, Paul F.
2009-01-01
A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition, the model routes tributary base flow through the river network to the Rock River. The parameter-estimation code PEST was linked to the GFLOW model to select the combination of parameter values best able to match more than 8,000 water-level measurements and base-flow estimates at 9 streamgages. Results from the calibrated GFLOW model show simulated (1) ground-water-flow directions, (2) ground-water/surface-water interactions, as depicted in a map of gaining and losing river and lake sections, (3) ground-water contributing areas for selected tributary rivers, and (4) areas of relatively local ground water captured by rivers. Ground-water flow patterns are controlled primarily by river geometries, with most river sections gaining water from the ground-water-flow system; losing sections are most common on the downgradient shore of lakes and reservoirs or near major pumping centers. Ground-water contributing areas to tributary rivers generally coincide with surface watersheds; however the locations of ground-water divides are controlled by the water table, whereas surface-water divides are controlled by surface topography. Finally, areas of relatively local ground water captured by rivers generally extend upgradient from rivers but are modified by the regional flow pattern, such that these areas tend to shift toward regional ground-water divides for relatively small rivers. It is important to recognize the limitations of this regional-scale model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale flow systems (hundreds to thousands of feet) associated with minor water bodies are not considered; as a result, the model is not currently designed for simulating site-specifi
Caries and salivary status in young adults with type 1 diabetes.
Edblad, E; Lundin, S A; Sjödin, B; Aman, J
2001-01-01
The aim of this study was to evaluate the salivary status, prevalence of caries and the status of primary dentition, when primary teeth were exfoliated, in 41 patients, 18-24 years of age, with type 1 diabetes since childhood in comparison with age- and sex-matched non-diabetic controls. The blood glucose and glycosylated haemoglobin concentration (HbA1c), dosage of daily insulin and retinal fundus photography was recorded for the diabetic group. According to the concentration of HbA1c, the diabetic patients were divided into well and poorly controlled groups. The study was based on three intra-oral photos, dental examination including intra-oral radiographs, flow rate and buffering capacity of the saliva and amount of Streptococcus mutans and Lactobacilli. Retrospective data regarding the primary dentition was found in the dental files of each patient, and are based on the last registration for respective tooth before exfoliation. The patients with type 1 diabetes, without any relationship to metabolic control, displayed more initial buccal caries compared to healthy controls (p<0.01). No significant differences concerning the status of saliva (neither flow rate, buffering capacity nor amount of Streptococcus mutans and Lactobacilli), manifest caries or the status of the primary dentition were seen. We conclude that initial, but not manifest caries seems to be overrepresented in young adults with type 1 diabetes. These patients, thus, need more intense efforts regarding dental health care to prevent the development from initial to manifest caries.
NASA Technical Reports Server (NTRS)
Srokowski, A. J.
1978-01-01
The problem of obtaining accurate estimates of suction requirements on swept laminar flow control wings was discussed. A fast accurate computer code developed to predict suction requirements by integrating disturbance amplification rates was described. Assumptions and approximations used in the present computer code are examined in light of flow conditions on the swept wing which may limit their validity.
Droplet-counting Microtitration System for Precise On-site Analysis.
Kawakubo, Susumu; Omori, Taichi; Suzuki, Yasutada; Ueta, Ikuo
2018-01-01
A new microtitration system based on the counting of titrant droplets has been developed for precise on-site analysis. The dropping rate was controlled by inserting a capillary tube as a flow resistance in a laboratory-made micropipette. The error of titration was 3% in a simulated titration with 20 droplets. The pre-addition of a titrant was proposed for precise titration within an error of 0.5%. The analytical performances were evaluated for chelate titration, redox titration and acid-base titration.
Soppe, A I A; Heijman, S G J; Gensburger, I; Shantz, A; van Halem, D; Kroesbergen, J; Wubbels, G H; Smeets, P W M H
2015-06-01
The need to improve the access to safe water is generally recognized for the benefit of public health in developing countries. This study's objective was to identify critical parameters which are essential for improving the performance of ceramic pot filters (CPFs) as a point-of-use water treatment system. Defining critical production parameters was also relevant to confirm that CPFs with high-flow rates may have the same disinfection capacity as pots with normal flow rates. A pilot unit was built in Cambodia to produce CPFs under controlled and constant conditions. Pots were manufactured from a mixture of clay, laterite and rice husk in a small-scale, gas-fired, temperature-controlled kiln and tested for flow rate, removal efficiency of bacteria and material strength. Flow rate can be increased by increasing pore sizes and by increasing porosity. Pore sizes were increased by using larger rice husk particles and porosity was increased with larger proportions of rice husk in the clay mixture. The main conclusions: larger pore size decreases the removal efficiency of bacteria; higher porosity does not affect the removal efficiency of bacteria, but does influence the strength of pots; flow rates of CPFs can be raised to 10-20 L/hour without a significant decrease in bacterial removal efficiency.
A Capillary Flow Dynamics-Based Sensing Modality for Direct Environmental Pathogen Monitoring.
Klug, Katherine E; Reynolds, Kelly A; Yoon, Jeong-Yeol
2018-04-20
Toward ultra-simple and field-ready biosensors, we demonstrate a novel assay transducer mechanism based on interfacial property changes and capillary flow dynamics in antibody-conjugated submicron particle suspensions. Differential capillary flow is tunable, allowing pathogen quantification as a function of flow rate through a paper-based microfluidic device. Flow models based on interfacial and rheological properties indicate a significant relationship between the flow rate and the interfacial effects caused by target-particle aggregation. This mechanism is demonstrated for assays of Escherichia coli K12 in water samples and Zika virus (ZIKV) in blood serum. These assays achieved very low limits of detection compared with other demonstrated methods (1 log CFU/mL E. coli and 20 pg/mL ZIKV whole virus) with an operating time of 30 s, showing promise for environmental and health monitoring. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sheathless Size-Based Acoustic Particle Separation
Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang
2012-01-01
Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502
NASA Astrophysics Data System (ADS)
Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming
2013-05-01
An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.
Nap environment control considering respiration rate and music tempo by using sensor agent robot
NASA Astrophysics Data System (ADS)
Nakaso, Sayaka; Mita, Akira
2015-03-01
We propose a system that controls a nap environment considering respiration rates and music tempo by using a sensor agent robot. The proposed system consists of two sub-systems. The first sub-system measures respiration rates using optical flow. We conducted preparatory experiments to verify the accuracy of this sub-system. The experimental results showed that this sub-system can measure the respiration rates accurately despite several positional relationships. It was also shown that the accuracy could be affected by clothes, movements and light. The second sub-system we constructed was the music play sub-system that chooses music with the certain tempo corresponding to the respiration rates measured by the first sub-system. We conducted verification experiments to verify the effectiveness of this music play sub-system. The experimental results showed the effectiveness of varying music tempo based on the respiration rates in taking a nap. We also demonstrated this system in a real environment; a subject entered into the room being followed by ebioNα. When the subject was considered sleeping, ebioNα started measuring respiration rates, controlling music based on the respiration rates. As a result, we showed that this system could be realized. As a next step, we would like to improve this system to a nap environment control system to be used in offices. To realize this, we need to update the first sub-system measuring respiration rates by removing disturbances. We also need to upgrade music play sub-system considering the numbers of tunes, the kinds of music and time to change music.
NASA Astrophysics Data System (ADS)
Lohse, K. A.; Sanderman, J.; Amundson, R. G.
2005-12-01
Patterns of precipitation and runoff in California are changing and likely to influence the structure and functioning of watersheds. Studies have demonstrated that hydrologic flushing during seasonal transitions in Mediterranean ecosystems can exert a strong control on nitrogen (N) export, yet few studies have examined the influence of different hydrological flow paths on rates and forms of nitrogen (N) losses. Here we illuminate the influence of variations in precipitation and hydrological pathways on the rate and form of N export along a toposequence of a well-characterized Mediterranean catchment in northern California. As a part of a larger study examining particulate and dissolved carbon loss, we analyzed seasonal patterns of dissolved organic nitrogen (DON), nitrate and ammonium concentrations in rainfall, throughfall, matrix and preferential flow, and stream samples over the course of one water year. We also analyzed seasonal soil N dynamics along this toposequence. During the transition to the winter rain season, but prior to any soil water displacement to the stream, DON and nitrate moved through near-surface soils as preferential flow. Once hillslope soils became saturated, saturated subsurface flow flushed nitrate from the hollow resulting in high stream nitrate/DON concentrations. Between storms, stream nitrate/DON concentrations were lower and appeared to reflect deep subsurface water flow chemistry. During the transition to the wet season, rates of soil nitrate production were high in the hollow relative to the hillslope soils. In the spring, these rates systematically declined as soil moisture decreased. Results from our study suggest seasonal fluctuations in soil moisture control soil N cycling and seasonal changes in the hydrological connection between hillslope soils and streams control the seasonal production and export of hydrologic N.
NASA Astrophysics Data System (ADS)
Nunes, J. P. P.; Bijeljic, B.; Blunt, M. J.
2015-12-01
Carbonate rocks are notoriously difficult to characterize. Their abrupt facies variations give rise to drastic changes in the petrophysical properties of the reservoir. Such heterogeneity, when further associated with variations in rock mineralogy due to diagenetic processes, result in a challenging scenario to model from the pore to the field scale. Micro-CT imaging is one of the most promising technologies to characterize porous rocks. The understanding at the pore scale of reactive and non-reactive transport is being pushed forward by recent developments in both imaging capability - 3D images with resolution of a few microns - and in modeling techniques - flow simulations in giga-cell models. We will present a particle-based method capable of predicting the evolution of petrophysical properties of carbonate cores subjected to CO2 injection at reservoir conditions (i.e. high pressures and temperatures). Reactive flow is simulated directly on the voxels of high resolution micro-CT images of rocks. Reactants are tracked using a semi-analytical streamline tracing algorithm and rock-fluid interaction is controlled by the diffusive flux of particles from the pores to the grains. We study the impact of the flow field heterogeneity and of the injection rate on the sample-averaged (i.e. effective) reaction rate of calcite dissolution in three rocks of increasing complexity: a beadpack, an oolitic limestone and a bioclastic limestone. We show how decreases in the overall dissolution rate depend on both the complexity of the pore space and also on the flow rate. This occurs even in chemically homogenous rocks. Our results suggest that the large differences observed between laboratory and field scale rates could, in part, be explained by the inhomogeneity in the flow field at the pore scale and the consequent transport-limited flux of reactants at the solid surface. Our results give valuable insight into the processes governing carbonate dissolution and provide a starting point to the refinement of upscaling techniques for reactive flows. Potential impacts for reservoir development and monitoring will also be discussed.
Lava flow-field morphology: A case study from Mount Etna, Sicily
NASA Technical Reports Server (NTRS)
Guest, J. E.; Hughes, J. W.; Duncan, A. M.
1987-01-01
The morphology of lava flows is often taken as an indicator of the broad chemical composition of the lava, especially when interpreting extraterrestrial volcanoes using spacecraft images. The historical lavas of the active volcano Mount Etna in Sicily provide an excellent opportunity to examine the controls on flow field morphology. In this study only flow produced by flank eruptions after the middle of the 18th century are examined. The final form of a flow-field may be more indicative of the internal plumbing of the volcano, which may control such factors as the effusion, rate, duration of eruption, volume of available magma, rate of de-gassing, and lava rheology. Different flow morphologies on Etna appear to be a good indicator of differing conditions within the volcanic pile. Thus the spatial distribution of different flow types on an extraterrestrial volcano may provide useful information about the plumbing conditions of that volcano, rather than necessarily providing information on the composition of materials erupted.
Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States
Schmidt, K.M.; Menges, C.M.; ,
2003-01-01
Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.
Rate-based congestion control in networks with smart links, revision. B.S. Thesis - May 1988
NASA Technical Reports Server (NTRS)
Heybey, Andrew Tyrrell
1990-01-01
The author uses a network simulator to explore rate-based congestion control in networks with smart links that can feed back information to tell senders to adjust their transmission rates. This method differs in a very important way from congestion control in which a congested network component just drops packets - the most commonly used method. It is clearly advantageous for the links in the network to communicate with the end users about the network capacity, rather than the users unilaterally picking a transmission rate. The components in the middle of the network, not the end users, have information about the capacity and traffic in the network. The author experiments with three different algorithms for calculating the control rate to feed back to the users. All of the algorithms exhibit problems in the form of large queues when simulated with a configuration modeling the dynamics of a packet-voice system. However, the problems are not with the algorithms themselves, but with the fact that feedback takes time. If the network steady-state utilization is low enough that it can absorb transients in the traffic through it, then the large queues disappear. If the users are modified to start sending slowly, to allow the network to adapt to a new flow without causing congestion, a greater portion of the network's bandwidth can be used.
Modeling and Control of Airport Queueing Dynamics under Severe Flow Restrictions
NASA Technical Reports Server (NTRS)
Carr, Francis; Evans, Antony; Clarke, John-Paul; Deron, Eric
2003-01-01
Based on field observations and interviews with controllers at BOS and EWR, we identify the closure of local departure fixes as the most severe class of airport departure restrictions. A set of simple queueing dynamics and traffic rules are developed to model departure traffic under such restrictions. The validity of the proposed model is tested via Monte Carlo simulation against 10 hours of actual operations data collected during a case-study at EWR on June 29,2000. In general, the model successfully reproduces the aggregate departure congestion. An analysis of the average error over 40 simulation runs indicates that flow-rate restrictions also significantly impact departure traffic; work is underway to capture these effects. Several applications and what-if scenarios are discussed for future evaluation using the calibrated model.
Performance of three systems for warming intravenous fluids at different flow rates.
Satoh, J; Yamakage, M; Wasaki, S I; Namiki, A
2006-02-01
This study compared the intravenous fluid warming capabilities of three systems at different flow rates. The devices studied were a water-bath warmer, a dry-heat plate warmer, and an intravenous fluid tube warmer Ambient temperature was controlled at 22 degrees to 24 degrees C. Normal saline (0.9% NaCl) at either room temperature (21 degrees to 23 degrees C) or at ice-cold temperature (3 degrees to 5 degrees C) was administered through each device at a range of flow rates (2 to 100 ml/min). To mimic clinical conditions, the temperature of the fluid was measured with thermocouples at the end of a one metre tube connected to the outflow of the warmer for the first two devices and at the end of the 1.2 m warming tubing for the intravenous fluid tube warmer The temperature of fluid delivered by the water bath warmer increased as the flow rate was increased up to 15 to 20 ml/min but decreased with greater flow rates. The temperature of the fluid delivered by the dry-heat plate warmer significantly increased as the flow rate was increased within the range tested (due to decreased cooling after leaving the device at higher flow rates). The temperature of fluid delivered by the intravenous fluid tube warmer did not depend on the flow rate up to 20 ml/min but significantly and fluid temperature-dependently decreased at higher flow rates (>30 ml/min). Under the conditions of our testing, the dry heat plate warmer delivered the highest temperature fluid at high flow rates.
Exploring Granular Flows at Intermediate Velocities
NASA Astrophysics Data System (ADS)
Brodsky, E. E.; van der Elst, N.
2012-12-01
Geophysical and geomorphological flows often encompass a wide range of strain rates. Landslides accelerate from nearly static conditions to velocities in the range of meters/seconds. The rheology of granular flows for the end-members is moderately well-understood, but the constitutive low at intermediate velocities is largely unexplored. Here we present evidence that granular flows transition through a regime in which internally generated acoustic waves play a critical role in controlling rheology. In laboratory experiments on natural sand under shear in a commercial rheometer, we observe that the steady-state flows at intermediate velocities are compacted relative to the end members. In a confined volume, this compaction results in a decrease in stress on the boundaries. We establish the key role of the acoustic waves by measuring the noise generated by the shear flows with an accelerometer and then exciting the flow with similar amplitude noise under lower shear rate conditions. The observed compaction for a given amplitude noise is the same in both cases, regardless of whether the noise is generated internally by the grains colliding or artificially applied externally. The boundaries of this acoustically controlled regime can be successfully predicted through non-dimensional analysis balancing the overburden, acoustic pressure and granular inertial terms. In our laboratory experiments, this regime corresponds to 0.1 to 10 cm/s. The controlling role of acoustic waves in intermediate velocities is significant because: (1) Geological systems must pass through this regime on their route to instability. (2) Acoustic waves are much more efficiently generated by angular particles, likely to be found in natural samples, than by perfectly spherical particles, which are more tractable for laboratory and theoretical studies. Therefore, this regime is likely to be missed in many analog and computational approaches. (3) Different mineralogies and shapes result in different noise generation. Therefore, there is a potential to extrapolate and predict rheological behavior of an active flow through studies of the recoverable granular products.Steady-state thickness vs. shear rate for angular sand and glass beads. Individual curves represent multiple up-going and down-going velocity ramps, and thick error bars show means and standard deviations between runs. Thickness is independent of shear rate at low shear rates, and strongly dependent on shear rate for intermediate and high shear rates. Compaction is observed at intermediate shear rates for angular sand, but not for smooth glass beads.
Development of a graphical method for choosing the optimal mode of traffic light
NASA Astrophysics Data System (ADS)
Novikov, A. N.; Katunin, A. A.; Novikov, I. A.; Kravchenko, A. A.; Shevtsova, A. G.
2018-05-01
Changing the transportation infrastructure for improving the main characteristics of the transportation flow is the key problem in transportation planning, therefore the main question lies in the ability to plan the change of the main indicators for the long term. In this investigation, an analysis of the city’s population has been performed and the most difficult transportation segment has been identified. During its identification, the main characteristics of the transportation flow have been established. For the evaluation of these characteristics until 2025, an analysis of the available methods of establishing changes in their values has been conducted. During the analysis of the above mentioned methods of evaluation of the change in intensity, based on the method of extrapolation, three scenarios of the development of the transportation system have been identified. It has been established that the most favorable method of controlling the transportation flow in the entrance to the city is the long term control of the traffic system. For the first time, with the help of the authors, based on the investigations of foreign scientists and the mathematical analysis of the changes in intensiveness on the main routes of the given road, the method of graphically choosing the required control plan has been put forward. The effectiveness of said organization scheme of the transportation system has been rated in the Transyt-14 program, with the analysis of changes in the main characteristics of the transportation flow.
Method and apparatus for controlling accidental releases of tritium
Galloway, T.R.
1980-04-01
An improvement is described in a tritium control system based on a catalytic oxidation reactor wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release. 1 fig.
Method and apparatus for controlling accidental releases of tritium
Galloway, Terry R. [Berkeley, CA
1980-04-01
An improvement in a tritium control system based on a catalytic oxidation reactor wherein accidental releases of tritium into room air are controlled by flooding the catalytic oxidation reactor with hydrogen when the tritium concentration in the room air exceeds a specified limit. The sudden flooding with hydrogen heats the catalyst to a high temperature within seconds, thereby greatly increasing the catalytic oxidation rate of tritium to tritiated water vapor. Thus, the catalyst is heated only when needed. In addition to the heating effect, the hydrogen flow also swamps the tritium and further reduces the tritium release.
Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow
NASA Astrophysics Data System (ADS)
Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha
We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.
NASA Astrophysics Data System (ADS)
Anwar, Y.; Setyasih, I.; Setiawan, M. A.; Christanto, N.
2018-04-01
Evaluation study for such a regional spatial plan (RTRW) in Indonesia has not been evaluated for its effectiveness in controlling the surface run off that contributed to streamflow. This necessity can be accomplishsed by applying a modeling approach, such as Soil Water Assessment Tool (SWAT). The objectives of this research are 1) to simulate the streamflow of Wakung watershed based on actual landuse, 2) to predict streamflow of Wakung watershed based on RTRW, and 3) to evaluate the effectiveness of the RTRW of Pemalang District in controling streamflow rate at Wakung Watershed. ArcSWAT model was used to determine the erosion rate prediction. The model was then calibrated by using SWATCUP. Model performance were tested by using R2 and ENS. The calibration and validation results showed that R2 and ENS (monthly) > 0.5. The result of SWAT simulation in Wakung sub-watershed reaching 161 - 4950 m3/s/years for W-A scenario (actual landuse and weather data of 2013), for scenario W-R (RTRW and weather data of 2013), 330 - 4919 m3/s/year. The comparison between actual and spatial plan land use data for stream flow is showing that the W-A scenario is lower than the W-R scenario in 19 sub watersheds. This is because there are many plans for adding land use for urban and intensive horticulture land in areas with steep slopes (> 25%). This condition is caused by the demands of fulfilling the needs of settlement and food for people in the Wakung watershed.
Does water content or flow rate control colloid transport in unsaturated porous media?
Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B
2014-04-01
Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.
Wang, Xiaoyan; Liu, Baoqin; Lu, Bin; Zhang, Yanmei; Wang, Liran; Li, Haijin; Han, Xue; Ding, Dan
2017-03-12
To observe the effects of micro-invasive embedding combined with montelukast sodium and simple montelukast sodium for children cough variant asthma (CVA). A total of 240 patients were randomly assigned into an observation group and a control group, 120 cases in each one. Considering of cases dropping, 101 patients in the observation group and 105 cases in the control group were included. Montelukast sodium chewable tablets were applied before sleep for 3 months in the control group, 5 mg a time, once a day. Based on the treatment as the control group, micro-invasive embedding was used for 3 months in the observation group, twice in the first month and once in the other two months. The acupoints were Feishu (BL 13), Danzhong (CV 17), Dingchuan (EX-B 1), and Zusanli (ST 36). Follow-up was conducted 9 months after treatment in the two groups. The cough score, serum immunoglobulin (IgE, IgG, IgA), platelet activating factor (PAF) were observed before and after treatment. The indices were compared before and after treatment and at follow-up, including pulmonary function indices[peak expiratory flow rate (PEF), forced expiratory volume at the 1st second (FEV1)], and small airway function indices[forced expiratory flow rate with remaining 25% vital capacity (MEF25%), forced expiratory flow rate with remaining 50% vital capacity (MEF50%), forced expiratory flow rate with remaining 75% vital capacity (MEF75%) and mid expiratory flow rate (MEF25%-75%)]. Also, the total effects were evaluated. ①The total effective rate in the observation group was 93.1% (94/101), which was better than 87.6% (92/105) in the control group ( P <0.05). The cough disappearance time of the cured children in the observation group was (10.38±2.64) d, and it was shorter than (10.72 ±2.60) d of those in the control group ( P <0.05). After treatment, the cough score apparently decreased compared with those before treatment in the two groups (both P <0.05), with better result in the observation group ( P <0.05). At follow-up, the recurrence frequency of the observation group was (1.43±1.20), and it was less than (1.91±1.71) in the control group ( P <0.05). ②The levels of serum IgA and IgG after treatment in the two groups increased, and those of serum IgE and PAF decreased, compared with those before treatment. There was statistically significance except IgG in the control group before and after treatment (all P <0.05), with better Results in the observation group after treatment (all P <0.05). ③ Compared with those before treatment, all the pulmonary function indices were improved obviously after treatment and at follow-up in the two groups (all P <0.05), without statistically significance between the two groups (both P >0.05). ④ There was no statistically significance before and after treatment on small airway function indices in the two groups (all P >0.05). The indices at follow-up increased compared with those before treatment in the two groups (all P <0.05), with better Results in the observation group (all P <0.05). Micro-invasive embedding combined with montelukast sodium achieved de-finite effect for children CVA, which can improve the body's immune and microcirculation. The effect is better than that of simple montelukast sodium on improving small airway function, etc.
A water-powered Energy Harvesting system with Bluetooth Low Energy interface
NASA Astrophysics Data System (ADS)
Kroener, M.; Allinger, K.; Berger, M.; Grether, E.; Wieland, F.; Heller, S.; Woias, P.
2016-11-01
This paper reports the design, and testing of a water turbine generator system for typical flow rates in domestic applications, with an integrated power management and a Bluetooth low energy (BLE) based RF data transmission interface. It is based on a commercially available low cost hydro generator. The generator is built into a housing with optimized reduced fluidic resistance to enable operation with flow rates as low as 6 l/min. The power management combines rectification, buffering, defined start-up, and circuit protection. An MSP430FR5949 microcontroller is used for data acquisition and processing. The data are transmitted via RF, using a Bluegiga BLE112 module in advertisement mode, to a PC where the measured flow rate is stored and displayed. The transmission rate of the wireless sensor node (WSN) is set to 1 Hz if enough power is available, which is the case for flow rates above 5.5 l/min. The electronics power demand is calculated to be 340 μW in average, while the generator is capable of delivering more than 200 mW for flow rates above 15 l/min.