Acute and Subacute Toxicity of Safranal, a Constituent of Saffron, in Mice and Rats
Hosseinzadeh, Hossein; Sadeghi Shakib, Saied; Khadem Sameni, Abbas; Taghiabadi, Elahe
2013-01-01
The acute and sub-acute toxicity of safranal were studied in rat and mice within 2 and 21 days after exposure, respectively. For subacute toxicity, changes in weight as well as biochemical, hematological and pathological parameters were studied. The intraperitoneal LD50 values of safranal were 1.48 mL/kg in male mice, 1.88 mL/kg in female mice and 1.50 mL/kg in male rats. Oral LD50 values were 21.42 mL/kg in male mice, 11.42 mL/kg in female mice and 5.53 mL/kg in male rats. For subacute toxicity, safranal was administered orally to male rats once daily for 21 days. In hematological tests, a significant decrease in RBC counts, hematocrit, hemoglobin and platelets were observed. Safranal decreased cholesterol, triglyceride and alkalin phosphatase. Lactate dehydrogenase and serum urea nitrogen were increased by safranal. Histological studies indicated that safranal did not have any toxic effect on the heart, liver and spleen. However, pathological changes were seen in the kidney and lung. According to LD50 values, safranal was low-toxic in acute intraperitoneal route and practically non-toxic in acute oral administration in both mice and rats. In subacute toxicity, safranal changed some hematological and biochemical parameters. PMID:24250576
Acute Oral Toxicity of Trimethylolethane Trinitrate (TMETN) in Sprague- Dawley Rats
1989-07-01
classification scheme of Hodge and Steiner, these results indicate that TMETN is a slightly toxic compound.1 20. ON-RIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT...the classification scheme of Hodge and Sterner, these results indcate that TMETN is a slightly toxic compound. KEY WORDS: Acute Oral Toxicit-y...Dawley rats and 1027.4 63.7 mg/kg in female Sprague-Dawley rats. These MLD values place TMETN in the "slightly toxic" range by the system of Hodge and
Hor, Sook Yee; Ahmad, Mariam; Farsi, Elham; Lim, Chung Pin; Asmawi, Mohd Zaini; Yam, Mun Fei
2011-10-11
Coriolus versicolor, which is known as Yun Zhi, is one of the commonly used Chinese medicinal herbs. Recent studies have demonstrated its antitumor activities on cancer cells which led to its widespread use in cancer patient. However, little toxicological information is available regarding its safety. The present study evaluated the potential toxicity of Coriolus versicolor standardized water extract after acute and subchronic administration in rats. In acute toxicity study, Coriolus versicolor water extract was administered by oral gavage to Sprague-Dawley (SD) rats (6 males, 6 females) at single doses of varying concentrations 1250, 2500 and 5000 mg/kg. In subchronic toxicity study, the extract was administered orally at doses of 1250, 2500 and 5000 mg/kg/day for 28 days to male and female SD rats respectively. General behavior, adverse effects and mortality were determined throughout the experimental period. Haematological and biochemical parameters, relative organ weights and histopathological were evaluated at the end of the experiment. There were no mortality and signs of toxicity in acute and subchronic toxicity studies. In the single dose acute toxicity and repeated dose 28-day subchronic toxicity studies, there were no significant difference in body weight, relative organ weight, haematological parameters, clinical chemistry, gross pathology and histopathology between treatment and control groups. Coriolus versicolor water extract did not cause remarkable adverse effect in SD rats. The oral lethal dose of Coriolus versicolor water extract is more than 5000 mg/kg and no-observed-adverse-effect level (NOAEL) of the extract for both male and female rats is 5000 mg/kg per day for 28 days. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Acute toxicity and primary irritancy of alkylalkanolamines.
Ballantyne, B; Leung, H W
1996-12-01
The acute handling hazards of several alkylalkanolamines were determined by investigating their potential acute toxicity and primary irritancy. Materials studied were N-methylethanolamine (MEA), N, N, -dimethylethanolamine (DMEA), N, N, -dimethylisopropanolamine (DMIPA), N-methyldiethanolamine (MDEA), and tertbutyldiethanolamine (BDEA). All these alkylalkanolamines were of comparable acute peroral toxicity in the rat (LD50 range 1.48-2.83 ml/kg). By 24 h occluded epicutaneous contact in the rabbit, MEA, DMEA and DMIPA were of moderate acute percutaneous toxicity (LD50 range 1.13-2.0 ml/kg), MDEA was of slight acute percutaneous toxicity (LD50 male 9.85 ml/kg, female 10.90 ml/kg), and BDEA of intermediate toxicity (LD50 6.4 ml/kg). Due to differences in vapor pressure the acute vapor exposure toxicity of the alkylalkanolamines to rats varied; MEA, MDEA and BDEA were of a low order of acute toxicity, and DMIPA was moderately toxic with an LT50 of 3.2 h for a saturated vapor atmosphere exposure. A 4 h-LC50 (rat combined sex) of 1461 ppm was determined for DMEA. All alkylalkanolamines studied, except MDEA, were moderately to markedly irritating and caused variable degrees of skin corrosivity; MDEA caused only transient minor skin irritation. In accord with the skin irritancy results, the eye irritancy from 0.005 ml MEA, DMEA, DMIPA and BDEA was severe, and that from MDEA was slight. Exposure to these compounds has implications for occupational health procedures.
ORAL TOXICITY OF 1,3-DICHLOROPROPANE: ACUTE, SHORT-TERM, AND LONG-TERM STUDIES IN RATS
The objective of this investigation was to characterize the acute and short- and long-term toxic potency of orally administered 1,2-dichloropropane (DCP). In the acute and short-term studies, male rats of 250-300 g were gavaged with 0, 100, 250, 500, or 1000 mg DCP/kg in corn oil...
Effects of a long-acting mutant bacterial cocaine esterase on acute cocaine toxicity in rats
Collins, Gregory T.; Zaks, Matthew E.; Cunningham, Alyssa R.; St. Clair, Carley; Nichols, Joseph; Narasimhan, Diwahar; Ko, Mei-Chuan; Sunahara, Roger K.; Woods, James H.
2011-01-01
Background A longer acting, double mutant bacterial cocaine esterase (CocE T172R/G173Q; DM CocE) has been shown to protect mice from cocaine-induced lethality, inhibit the reinforcing effects of cocaine in rats, and reverse cocaine’s cardiovascular effects in rhesus monkeys. The current studies evaluated the effectiveness of DM CocE to protect against, and reverse cocaine’s cardiovascular, convulsant, and lethal effects in male and female rats. Methods Pretreatment studies were used to determine the effectiveness and in vivo duration of action for DM CocE to protect rats against the occurrence of cardiovascular changes, convulsion and lethality associated with acute cocaine toxicity. Posttreatment studies were used to evaluate the capacity of DM CocE to rescue rats from the cardiovascular and lethal effects of large doses of cocaine. In addition, male and female rats were studied to determine if there were any potential effects of sex on the capacity of DM CocE to protect against, or reverse acute cocaine toxicity in rats. Results Pretreatment with DM CocE dose-dependently protected rats against cocaine-induced cardiovascular changes, convulsion and lethality, with higher doses active for up to 4 hrs, and shifting cocaine-induced lethality at least 10-fold to the right. In addition to dose-dependently recovering rats from an otherwise lethal dose of cocaine, post-treatment with DM CocE also reversed the cardiovascular effects of cocaine. There were no sex-related differences in the effectiveness of DM CocE to protect against, or reverse acute cocaine toxicity. Conclusions Together, these results support the development of DM CocE for the treatment of acute cocaine toxicity. PMID:21481548
Safety assessment of hydroethanolic rambutan rind extract: acute and sub-chronic toxicity studies.
Thinkratok, Aree; Suwannaprapha, Parin; Srisawat, Rungrudee
2014-10-01
This study evaluated the safety of rambutan rind extract (RRE) in male Wistar rats. While acute toxicity was evaluated by feeding the rats with single doses of RRE (1000, 2000, 3000, 4000, and 5000 mg/kg) and its sub-chronic toxicity was observed in rats orally administered with RRE (500, 1000, and 2000 mg/kg) daily for 30 days. In acute toxicity study, the LD50 was found to be greater than 5000 mg/kg of RRE. In sub-chronic toxicity study, no mortality and sign of toxicity was found up to 1000 mg/kg/day of RRE. At 2000 mg/kg/day dose, the mortality rate was 12.5%. Significant decreases in body weight gain and food consumption were found in both acute and sub-chronic toxicity studies. In acute toxicity study, all the studied doses of RRE did not alter serum levels of triglyceride (TG), aspartate aminotransferase (AST) andalanine aminotransferase (ALT). In sub-chronic toxicity study, all studied doses of RRE significantly decreased plasma levels of TG and blood urea nitrogen, but did not alter plasma levels of AST and ALT. TC levels did not show any significant change in both the studies. The obtained results provide basic information for in vivo experimental studies of the pharmacological potentiality of RRE.
Acute toxicity of some nerve agents and pesticides in rats.
Misik, Jan; Pavlikova, Ruzena; Cabal, Jiri; Kuca, Kamil
2015-01-01
Highly toxic organophosphorus compounds (V- and G-nerve agents) were originally synthesized for warfare or as agricultural pesticides. Data on their acute toxicity are rare and patchy. Therefore, there is a need for integrated summary comparing acute toxicity of organophosphates using different administration routes in the same animal model with the same methodology. Based on original data, a summary of in vivo acute toxicity of selected V- and G-nerve agents (tabun, sarin, soman, VX, Russian VX) and organophosphates paraoxon (POX) and diisopropyl fluorophosphate (DFP) in rats has been investigated. Male Wistar rats were exposed to organophosphates in several administration routes (i.m., i.p., p.o, s.c., p.c.). The acute toxicity was evaluated by the assessment of median lethal dose (LD50, mg kg(-1)) 2, 4, and 24 hours post exposure. V-agents were the most toxic presented with LD50 ranged from 0.0082 mg kg(-1) (VX, i.m.) to 1.402 mg kg(-1) (Russian VX, p.o.), followed by G-agents (LD50 = 0.069 mg kg(-1)/soman, i.m./ - 117.9 mg kg(-1)/sarin, p.c./), organophosphate POX and DFP (LD50 = 0.321 mg kg(-1)/POX, i.m./ - 420 mg kg(-1)/DFP, p.c./). Generally, i.m. administration was the most toxic throughout all tested agents and ways of administration (LD50 = 0.0082 mg kg(-1)/VX/ - 1.399 mg kg(-1)/DFP/) whereas p.c. way was responsible for lowest acute toxicity (LD50 = 0.085 mg kg(-1)/VX/ - 420 mg kg(-1)/DFP/). The acute toxicity of selected organophosphorus compounds is summarized throughout this study. Although the data assessed in rats are rather illustrative prediction for human, it presents a valuable contribution, indicating the toxic potential and harmfulness of organophosphates.
Acute Toxicity and Cytotoxicity of Pereskia aculeata, a Highly Nutritious Cactaceae Plant.
Silva, Debora O; Seifert, Mauricio; Nora, Fabiana R; Bobrowski, Vera L; Freitag, Rogerio A; Kucera, Heidi R; Nora, Leonardo; Gaikwad, Nilesh W
2017-04-01
Pereskia aculeata is a Cactaceae plant with valuable nutritional properties, including terrific amounts of protein, minerals, vitamins, and fiber. However, P. aculeata is reported to contain antinutrients and alkaloids in its leaves. In addition, in a study on growth and development, Wistar rats fed with P. aculeata and casein as protein source grew less than the control group (fed with casein only). Therefore, in this study, we evaluated, for the first time, the oral acute toxicity of P. aculeata in rats and also the cytotoxicity behavior of the plant on lettuce seeds. The acute toxicity research was carried out using dried P. aculeata ethanolic extract, in three different doses, administered by gavage to 24 female Wistar rats. The rats were then examined for signs of toxicity, food intake, body weight, and fecal excretion fluctuations, as well as histopathological alterations, using eight different body tissues. The acute toxicity study did not show any difference among the groups in either clinical evaluation or histopathological analyses. For the cytotoxicity study, dried P. aculeata ethanolic extract was applied on lettuce seeds in five different concentrations. These seeds were evaluated for germination, root and shoot length, and mitotic index. The results show that P. aculeata extract affects lettuce root and shoot growth, but not germination or mitotic index. In conclusion, the acute toxicity on rats and the cytogenotoxicity on lettuce of P. aculeata are neglectable, validating the potential of this plant to be used as a functional food.
Consensus Modeling of Oral Rat Acute Toxicity
An acute toxicity dataset (oral rat LD50) with about 7400 compounds was compiled from the ChemIDplus database. This dataset was divided into a modeling set and a prediction set. The compounds in the prediction set were selected so that they were present in the modeling set used...
Toxicological assessment of combined lead and cadmium: acute and sub-chronic toxicity study in rats.
Yuan, Guiping; Dai, Shujun; Yin, Zhongqiong; Lu, Hongke; Jia, Renyong; Xu, Jiao; Song, Xu; Li, Li; Shu, Yang; Zhao, Xinghong
2014-03-01
The exposure to chemical mixtures is a common and important determinant of toxicity and receives concern for their introduction by inhalation and ingestion. However, few in vivo mixture studies have been conducted to understand the health effects of chemical mixtures compared with single chemicals. In this study, the acute and 90day sub-chronic toxicity tests of combined Pb and Cd were conducted. In the acute toxicity test, the LD50 value of Pb(NO3)2 and CdCl2 mixture by the oral route was 2696.54mg/kg by Bliss method. The sub-chronic treatment revealed that the low-dose combination of Pb and Cd exposures can significantly change the physiological and biochemical parameters of the blood of Sprague-Dawley (SD) rats with dose-response relationship and causes microcytic hypochromic anemia and the damages of liver and kidney of the SD rats to various degrees. Histopathological exams showed that the target organs of Pb and Cd were testicle, liver, and kidneys. These observations suggest that Pb and Cd are practically additive-toxic for the SD rats in oral acute toxicity studies. The lowest observed adverse-effect level in rats may be lower than a dose of 29.96mg/(kgbwday) when administered orally for 90 consecutive days. Copyright © 2014 Elsevier Ltd. All rights reserved.
Toxicity Studies on Antiradiation Agents.
1979-03-01
Mice 193-403 WI 2823 Acute Oral and IP Toxicity in Guinea Pigs 193-404 WR 2823 14-Day IV Toxicity in Rats 193-405 WI 2823 Acute IV Toxicity in Dogs ...193-406 W 2823 14-Day Subacute IV Toxicity in Dogs 193-407 WI 2721 28-Day Oral Toxicity in Monkeys 193-408 WI 2529 Acute Oral Toxicity in Mice 193-409... Dogs 193-415 WI 149, 024 Acute IV Toxicity in Monkeys 193-416 WI 149, 024 2-Week IV Toxicity in Dogs 193-417 WI 149, 024 2-Week Toxicity in Monkeys 193
Acute and chronic toxicities of Bacopa monnieri extract in Sprague-Dawley rats.
Sireeratawong, Seewaboon; Jaijoy, Kanjana; Khonsung, Parirat; Lertprasertsuk, Nirush; Ingkaninan, Kornkanok
2016-07-27
Bacopa monnieri is a medicinal plant which has long been used in Ayurvedic medicines to augment brain function and to improve memory. The purpose of our study was to identify and evaluate possible toxic effects of B. monnieri extract in rats by assessing hematological, biochemical, and histopathological parameters. Acute oral toxicity of Bacopa monnieri extract was studied in female rats by giving a single orally administered dose at a level of 5,000 mg/kg. The rats were monitored for toxic signs for 14 days. In the chronic toxicity test, groups of both female and male rats were given daily oral doses of B. monnieri extract at dose levels of either 30, 60, 300 or 1,500 mg/kg for 270 days. The behavior and health of the animals was then monitored. At the end of the observation period, the body and organ weights of the rats in each group were measured. Blood was collected and necropsy was performed to evaluate their hematology, blood clinical chemistry, and microanatomy. The acute toxicity test found no significant differences between the experimental and the control group rats. In the chronic toxicity test, animal behavior and health of the experimental groups were normal, just as in the control rats. All values of other parameters assessed remained within the normal range. A single oral administration of B. monnieri extract at the dose of 5,000 mg/kg did not cause any serious undesirable effects. B. monnieri extract at doses of 30, 60, 300 and 1,500 mg/kg given for 270 days did not produce any toxicity in rats.
Acute and sub-acute oral toxicity of Dracaena cinnabari resin methanol extract in rats.
Al-Afifi, Nashwan Abdullah; Alabsi, Aied Mohammed; Bakri, Marina Mohd; Ramanathan, Anand
2018-02-05
Dracaena cinnabari (DC) is a perennial tree that located on the Southern coast of Yemen native to the Socotra Island. This tree produces a deep red resin known as the Dragon's blood, the Twobrother's Blood or Damm Alakhwain. The current study performed to evaluate the safety of the DC resin methanol extract after a single or 28 consecutive daily oral administrations. In assessing the safety of DC resin methanol extract, acute and sub-acute oral toxicity tests performed following OECD guidelines 423 and 407, respectively, with slight modifications. In acute oral toxicity test, DC resin methanol extract administered to female Sprague Dawley rats by oral gavage at a single dose of 300 and 2000 mg/kg body weight. Rats observed for toxic signs for 14 days. In sub-acute oral toxicity test, DC resin methanol extract administered to the rats by oral gavage at 500, 1000, and 1500 mg/kg body weight daily up to 28 days to male and female Spradgue Dawley rats. The control and high dose in satellite groups were also maintained and handled as the previous groups to determine the late onset toxicity of DC resin methanol extract. At the end of each test, hematological and biochemical analysis of the collected blood were performed as well as gross and microscopic pathology. In acute oral toxicity, no treatment-related death or toxic signs were observed. It revealed that the DC resin methanol extract could be well tolerated up to the dose 2000 mg/kg body weight and could be classified as Category 5. The sub-acute test observations indicated that there are no treatment-related changes up to the high dose level compared to the control. Food consumption, body weight, organ weight, hematological parameters, biochemical parameters and histopathological examination (liver, kidney, heart, spleen and lung) revealed no abnormalities. Water intake was significantly higher in the DC resin methanol extract treated groups compared to the control. This study demonstrates tolerability of DC resin methanol extract administered daily for 28 days up to 1500 mg/kg dose.
Scholz, Stefan; Ortmann, Julia; Klüver, Nils; Léonard, Marc
2014-08-01
Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos. Copyright © 2014 Elsevier Inc. All rights reserved.
Alternative models developed for estimating acute systemic toxicity are generally evaluated using in vivo LD50 values. However, in vivo acute systemic toxicity studies can produce variable results, even when conducted according to accepted test guidelines. This variability can ma...
Alternative models developed for estimating acute systemic toxicity are generally evaluated using in vivo LD50 values. However, in vivo acute systemic toxicity studies can produce variable results, even when conducted according to accepted test guidelines. This variability can ma...
Antioxidant and Toxicity Studies of 50% Methanolic Extract of Orthosiphon stamineus Benth
Lim, Chung Pin; Fung Ang, Lee; Por, Lip Yee; Wong, Siew Tung; Asmawi, Mohd. Zaini
2013-01-01
The present study evaluated the antioxidant activity and potential toxicity of 50% methanolic extract of Orthosiphon stamineus (Lamiaceae) leaves (MEOS) after acute and subchronic administration in rats. Superoxide radical scavenging, hydroxyl radical scavenging, and ferrous ion chelating methods were used to evaluate the antioxidant properties of the extract. In acute toxicity study, single dose of MEOS, 5000 mg/kg, was administered to rats by oral gavage, and the treated rats were monitored for 14 days. While in the subchronic toxicity study, MEOS was administered orally, at doses of 1250, 2500, and 5000 mg/kg/day for 28 days. From the results, MEOS showed good superoxide radical scavenging, hydroxyl radical scavenging, ferrous ion chelating, and antilipid peroxidation activities. There was no mortality detected or any signs of toxicity in acute and subchronic toxicity studies. Furthermore, there was no significant difference in bodyweight, relative organ weight, and haematological and biochemical parameters between both male and female treated rats in any doses tested. No abnormality of internal organs was observed between treatment and control groups. The oral lethal dose determined was more than 5000 mg/kg and the no-observed-adverse-effect level (NOAEL) of MEOS for both male and female rats is considered to be 5000 mg/kg per day. PMID:24490155
Ajibade, Temitayo Olabisi; Arowolo, Ruben; Olayemi, Funsho Olakitike
2013-05-07
The seeds of Moringa oleifera were collected, air-dried, pulverized, and subjected to cold extraction with methanol. The methanol extract was screened phytochemically for its chemical components and used for acute and sub-acute toxicity studies in rats. The phytochemical screening revealed the presence of saponins, tannins, terpenes, alkaloids, flavonoids, carbohydrates, and cardiac glycosides but the absence of anthraquinones. Although signs of acute toxicity were observed at a dose of 4,000 mg kg-1 in the acute toxicity test, and mortality was recorded at 5,000 mg kg-1, no adverse effect was observed at concentrations lower than 3,000 mg kg-1. The median lethal dose of the extract in rat was 3,873 mg kg-1. Sub-acute administration of the seed extract caused significant (p<0.05) increase in the levels of alanine and aspartate transferases (ALT and AST), and significant (p<0.05) decrease in weight of experimental rats, at 1,600 mg kg-1. The study concludes that the extract of seeds of M. oleifera is safe both for medicinal and nutritional uses.
Wang, Jianying; Huang, Wenhu; Thibault, Stephane; Brown, Thomas P; Bobrowski, Walter; Gukasyan, Hovhannes J; Evering, Winston; Hu, Wenyue; John-Baptiste, Annette; Vitsky, Allison
2017-02-01
Detecting and monitoring exocrine pancreatic damage during nonclinical and clinical testing is challenging because classical biomarkers amylase and lipase have limited sensitivity and specificity. Novel biomarkers for drug-induced pancreatic injury are needed to improve safety assessment and reduce late-stage attrition rates. In a series of studies, miR-216a and miR-217 were evaluated as potential biomarkers of acute exocrine pancreatic toxicity in rats. Our results revealed that miR-216a and miR-217 were almost exclusively expressed in rat pancreas and that circulating miR-216a and miR-217 were significantly increased in rats following administration of established exocrine pancreatic toxicants caerulein (CL) and 1-cyano-2-hydroxy-3-butene (CHB) as well as in rats administered a proprietary molecule known to primarily affect the exocrine pancreas. Conversely, neither microRNA was increased in rats administered a proprietary molecule known to cause a lesion at the pancreatic endocrine-exocrine interface (EEI) or in rats administered an established renal toxicant. Compared with amylase and lipase, increases in miR-216a and miR-217 were of greater magnitude, persisted longer, and/or correlated better with microscopic findings within the exocrine pancreas. Our findings demonstrate that in rats, miR-216a and miR-217 are sensitive and specific biomarkers of acute exocrine pancreatic toxicity that may add value to the measurement of classical pancreatic biomarkers.
Acute toxicity of nickel nanoparticles in rats after intravenous injection
Magaye, Ruth R; Yue, Xia; Zou, Baobo; Shi, Hongbo; Yu, Hongsheng; Liu, Kui; Lin, Xialu; Xu, Jin; Yang, Cui; Wu, Aiguo; Zhao, Jinshun
2014-01-01
This study was carried out to add scientific data in regard to the use of metallic nanoparticles in nanomedicine. The acute toxicity of nickel (Ni) nanoparticles (50 nm), intravenously injected through the dorsal penile vein of Sprague Dawley rats was evaluated in this study. Fourteen days after injection, Ni nanoparticles induced liver and spleen injury, lung inflammation, and caused cardiac toxicity. These results indicate that precautionary measures should be taken with regard to the use of Ni nanoparticles or Ni compounds in nanomedicine. PMID:24648736
García, Liseth; Bulnes, Carlos; Melchor, Gleiby; Vega, Ernesto; Ileana, Miranda; de Oca, Nivian Montes; Hidalgo, Leopoldo; Marrero, Eva
2004-10-01
The nematophagous fungus, Pochonia chlamydosporia var. catenulata (Kamyschlco ex Barron & Onions) Zare & W-Gams, was investigated as a potential biocontrol agent in integrated pest management strategy for Meloidogyne incognita (Kofoid and White) Chitwood in vegetable crops in Cuba. An acute oral and dermal toxicity/patogenicity study was performed to determine the safety of this fungus in non-target organisms. In the first study, a 1-dose level of 5 x 10(8) units of the microbial pest control agent/treated rat was used. Mortality or clinical signs were not evident and no adverse effects on body weight, hematology, microbiology and gross or microscopic pathology were observed. Food and water consumption was not significantly different between control and treated groups. In the acute dermal toxicity study, there was neither mortality nor clinical signs of toxicity, and no toxic effects in gross and microscopic pathology were detected. Thus, Pochonia chlamydosporia var. catenulate (Vcc-108, IMI SD 187), administered oral and dermally to rats and rabbits respectively, was safe in toxicity/pathogenicity studies.
Acute Toxicity of a Number of Chemicals of Interest to the Air Force
1979-03-01
Acid Azelaic Acid Dimer Acid N-Benzyl-3, 7-Dioctyl Phenothiazine Phenothiazine Dioctyl Phenothiazine Sebacic Acid ...liquid) 1,4-dihydroxyanthraquinone (solid) Sulfurized 9-octadecenoic acid (liquid) Azelaic acid (solid) Dimer acid (liquid) N-benzyl-3,7-dicotyl...dihydroxyanthra- Rat >5000 5000(0) Below Toxic quinone Sulfurized 9-octa- Rat >5000 5000(0) Below Toxic decenoic acid Azelaic acid Rat >5000
Al-Asmari, Abdulrahman K; Khan, Haseeb A; Manthiri, Rajamohamed A; Al-Khlaiwi, Ahmad A; Al-Asmari, Bayan A; Ibrahim, Khalid E
2018-05-08
Echis pyramidum is a highly poisonous viper snake. Previous studies have shown acute phase hepatic and renal toxicities of Echis pyramidum venom (EPV) in rats. This study reports the protective effects of a natural herbal compound quercetin (QRC) on EPV-induced hepatic and renal toxicities in rats. A singly injection of EPV (4.76 mg/kg) caused significant increase in serum biomarkers of liver and kidney function. Pre-treatment of QRC (10 mg/kg) significantly reduced the toxic effects of EPV on functional impairment in liver and kidneys of rats. Administration of QRC also reversed EPV-induced increase in lipid peroxidation and decrease in total thiols. The histopathology of liver showed fat accumulation, focal degeneration and cytoplasmic vacuolation of hepatocytes in EPV treated rats. EPV also caused renal tubular dilation and focal atrophy of glomerular tufts in rat kidneys. Administration of QRC prevented EPV-induced structural tissue damage in liver and kidneys of rats. In conclusion, QRC significantly inhibited the acute phase toxic effects of EPV on liver and kidneys of rats by preventing the oxidative stress in these organs. QRC is also known for its anti-inflammatory, anti-edema, anti-hemorrhagic and PLA2-inhibitory properties and therefore may be regarded as a multi-action antidote against snake venom toxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Alcohol and acute pancreatitis. An experimental study in the rat.
Jalovaara, P; Apaja, M
1978-01-01
The effect of chronic alcohol pretreatment and various pancreatobiliary secretions on the severity of experimental pancreatitis was studied in the rat. 95 rats were pretreated with ethanol (20% w/v, 1.1 ml/100 g body weight) five times weekly for 10 to 12 weeks by gastric intubation. 88 rats served as controls. Pancreatic lesions were produced by retograde injection of different pancreatobiliary secretions into the pancreatic ducts. The secretions were collected from both normal and chronically alcohol-fed rats, and each was used for induction of experimental pancreatitis in the control and alcohol pretreated rats. Bile obtained from normal rats was no more toxic to the pancreas than 0.9% saline solution, while bile obtained from the chronically alcohol-fed rats caused significantly more serious lesions to the pancreas than did normal rat bile. Bile-pancreatic juice (mixture of secretions at papilla of Vater) of normal and chronically alcohol-fed rats was as toxic as the bile of the alcohol-fed rats. Alcohol pretreatment had no significant effect on the severity of pancreatitis when control and alcohol-fed groups separately or the whole material according to pretreatment was examined. These results suggest that the metabolic effects of ethanol on the pancreas as such do not sensitize the pancreas to acute pancreatitis. An exogenous mechanism is required. The reflux of toxic alcoholic bile into the pancreas might act as an induction factor in acute alcohol pancreatitis.
Acute and subacute toxicity of 10B-paraboronophenylalanine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniyama, K.; Fujiwara, H.; Kuno, T.
1989-07-01
The acute and subacute toxicities of 10B-paraboronophenylalanine (10B-BPA) were investigated in the rat, according to the Good Laboratory Practice Standard for safety studies on drugs in Japan. In the acute toxicity test of 10B-BPA, LD50 values of acidic 10B-BPA for intraperitoneal and subcutaneous injections were 640 mg/kg for male and 710 mg/kg for female rats, and more than 1,000 mg/kg for male and female rats, respectively. The LD50 values of neutral 10B-BPA for intraperitoneal and subcutaneous injections were more than 3,000 mg/kg for male and female rats. The difference in LD50 values between acidic and neutral 10B-BPA may be attributedmore » to the acidity of material. From the subacute toxicity test, in which the rats were injected daily subcutaneously for 28 days, the following toxic effects of 10B-BPA were observed. Increase in ketone level in the urine was induced in all rats treated with 10B-BPA. High dose of 10B-BPA (1,500 mg/kg) induced increase in spleen weight and reticulocyte count, and decrease in hemoglobin count, thereby suggesting that 10B-BPA causes hemolysis. Increases in the leukocyte count and the ratio of neutrophils and lymphocytes were also observed in rats treated with a high dose of 10B-BPA. This may be attributed to local reactions at the injection site. There were no significant differences in the findings between control rats and rats treated with a low dose of 10B-BPA (300 mg/kg). Thus, low doses of neutral 10B-BPA may be available for use as a drug.« less
AN "INJURY-TIME INTEGRAL" MODEL FOR RELATING ACUTE TO CHRONIC INJURY TO PHOSGENE
ABSTRACT
The present study compares acute and subchronic episodic exposures to phosgene to test the applicability of the "concentration x time" (C x T) product as a measure of exposure dose, and to relate acute toxicity and adaptive responses to chronic toxicity. Rats (m...
Acute and subacute oral toxicity of periodate salts in rats.
Lent, Emily May; Crouse, Lee C B; Eck, William S
2017-02-01
Periodate salts are being developed as potential replacements for perchlorate due to potential health hazards associated with exposure to perchlorate. The aim of this study was to investigate acute and subacute effects of periodate salts in rats. Acute oral toxicity of potassium and sodium periodate was determined using the Sequential Stage-Wise Probit method. The LD 50 for potassium periodate was 732 (95% CI = 539-838, slope = 13.4) and 685 mg/kg (95% CI = 580-809, slope = 10.6) for females and males, respectively. The LD 50 for sodium periodate was 318 (95% CI = 292-347, slope = 24.3) and 741 mg/kg (95% CI = 704-779, slope = 31.2) for females and males, respectively. In the subacute study, rats were administered sodium periodate at five doses (1/16 LD 50 up to LD 50 ) or distilled water for 14-days via oral gavage. Female rats in the 318 mg/kg-day group and male rats in the 185, 370, and 741 mg/kg-day groups exhibited moribundity, kidney toxicity, uremia, and a stress response. BMDL 10 s of 17.2 and 33.7 mg/kg-day were derived for females and males, respectively. Comparison with the NOAEL for perchlorate-induced thyroid toxicity in rats (0.009 mg/kg-day) suggests sodium periodate is less toxic than perchlorate on a subacute basis. Copyright © 2016. Published by Elsevier Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-06
... follows: ``Chronic Toxicity Test of SPL in Rats'' (Fujino, et al.) (Ref. 2); ``Acute and Subacute Toxicity Tests of SPL'' (Fujino, et al.) (mice and rats) (Ref. 3); ``Teratologenicity Study of SPL in Rats and... Inoculation with Herpes Simplex Virus'' (Department of Microbiology, School of Medicine, Kyushu University...
Research interested in oxidative stress markers following exposure to VOCsThis dataset is associated with the following publication:Kodavanti , P., J. Royland , D.A. Moore-Smith, J. Beas, J. Richards , T. Beasley , P. Evansky , and P.J. Bushnell. Acute and Subchronic Toxicity of Inhaled Toluene in Male Long-Evans Rats: Oxidative Stress Markers in Brain. NEUROTOXICOLOGY. Elsevier B.V., Amsterdam, NETHERLANDS, 51: 10-19, (2015).
Guex, Camille Gaube; Reginato, Fernanda Ziegler; Figueredo, Kássia Caroline; da Silva, Andreia Regina Haas da; Pires, Fernanda Brum; Jesus, Roberta da Silva; Lhamas, Cibele Lima; Lopes, Gilberti Helena Hübscher; Bauermann, Liliane de Freitas
2018-06-01
Olea europaea L., popularly known as olive, is a plant widely used worldwide. Its leaves, fruit and oil are extensively consumed and present important pharmacological properties. However, studies regarding the toxicity of olive leaves are still limited in the literature. Therefore, the aim of the study was to investigate acute and subacute oral toxicities of the ethanolic extract of olive leaves (EEO) in Wistar rats through histopathology and biochemical and hematological parameters. Acute toxicity was assessed using a single dose of 2000 mg/kg of EEO administered by oral gavage to male and female rats. To assess subacute toxicity, EEO was administered during 28 days at different doses (100, 200 and 400 mg/kg) to male and female rats. At the end of the experiments, the liver and kidney were removed and examined microscopically, and blood was collected for hematological and biochemical parameters. A single dose of 2000 mg/kg did not induce mortality or any signs of toxicity among the animals treated. Animals exposed to EEO during 28 days did not present sign of abnormalities. Results demonstrated that EEO did not induce toxicity after exposure to single and repeated doses. However, more studies are needed to fully understand implications for human safety. Copyright © 2018 Elsevier Inc. All rights reserved.
Combinatorial QSAR Modeling of Rat Acute Toxicity by Oral Exposure
Quantitative Structure-Activity Relationship (QSAR) toxicity models have become popular tools for identifying potential toxic compounds and prioritizing candidates for animal toxicity tests. However, few QSAR studies have successfully modeled large, diverse mammalian toxicity end...
Acute oral toxicity and biodistribution study of zinc-aluminium-levodopa nanocomposite
NASA Astrophysics Data System (ADS)
Kura, Aminu Umar; Saifullah, Bullo; Cheah, Pike-See; Hussein, Mohd Zobir; Azmi, Norazrina; Fakurazi, Sharida
2015-03-01
Layered double hydroxide (LDH) is an inorganic-organic nano-layered material that harbours drug between its two-layered sheets, forming a sandwich-like structure. It is attracting a great deal of attention as an alternative drug delivery (nanodelivery) system in the field of pharmacology due to their relative low toxic potential. The production of these nanodelivery systems, aimed at improving human health through decrease toxicity, targeted delivery of the active compound to areas of interest with sustained release ability. In this study, we administered zinc-aluminium-LDH-levodopa nanocomposite (ZAL) and zinc-aluminium nanocomposite (ZA) to Sprague Dawley rats to evaluate for acute oral toxicity following OECD guidelines. The oral administration of ZAL and ZA at a limit dose of 2,000 mg/kg produced neither mortality nor acute toxic signs throughout 14 days of the observation. The percentage of body weight gain of the animals showed no significant difference between control and treatment groups. Animal from the two treated groups gained weight continuously over the study period, which was shown to be significantly higher than the weight at the beginning of the study ( P < 0.05). Biochemical analysis of animal serum showed no significant difference between rats treated with ZAL, ZA and controls. There was no gross lesion or histopathological changes observed in vital organs of the rats. The results suggested that ZAL and ZA at 2,000 mg/kg body weight in rats do not induce acute toxicity in the animals. Elemental analysis of tissues of treated animals demonstrated the wider distribution of the nanocomposite including the brain. In summary, findings of acute toxicity tests in this study suggest that zinc-aluminium nanocomposite intercalated with and the un-intercalated were safe when administered orally in animal models for short periods of time. It also highlighted the potential distribution ability of Tween-80 coated nanocomposite after oral administration.
Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure
Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...
Acute and sub-chronic toxicity studies of honokiol microemulsion.
Zhang, Qianqian; Li, Jianguo; Zhang, Wei; An, Quan; Wen, Jianhua; Wang, Aiping; Jin, Hongtao; Chen, Shizhong
2015-04-01
The purpose of this study was to investigate the acute and sub-chronic toxicity of honokiol microemulsion. In the acute toxicity tests, the mice were intravenously injected graded doses of honokiol microemulsion and were observed for toxic symptoms and mortality daily for 14 days. In the sub-chronic toxicity study, rats were injected honokiol microemulsion at doses of 100, 500, 2500 μg/kg body weight (BW) for 30 days. After 30 days treatment and 14 days recovery, the rats were sacrificed for hematological, biochemical and histological examination. In the acute toxicity tests, the estimated median lethal dosage (LD50) was 50.5mg/kg body weight in mice. In the sub-chronic toxicity tests, the non-toxic reaction dose was 500 μg/kg body weight. In each treatment group, degeneration or/and necrosis in vascular endothelial cells and structure change of vessel wall can be observed in the injection site (cauda vein) of a few animals while there were no changes in the vessels of other organs. The overall findings of this study indicate that the honokiol microemulsion is non-toxic up to 500 μg/kg body weight, and it has irritation to the vascular of the injection site which should be paid attention to in clinical medication. Copyright © 2015. Published by Elsevier Inc.
Deshpande, Pallavi O; Mohan, Vishwaraman; Thakurdesai, Prasad Arvind
2017-01-01
To evaluate acute oral toxicity (AOT), subchronic (90-day repeated dose) toxicity, mutagenicity, and genotoxicity potential of IDM01, the botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek ( Trigonella foenum-graecum L) seed extract in laboratory rats. The AOT and subchronic (90-day repeated dose) toxicity were evaluated using Sprague-Dawley rats as per the Organisation for Economic Co-operation and Development (OECD) guidelines No. 423 and No. 408, respectively. During the subchronic study, the effects on body weight, food and water consumption, organ weights with hematology, clinical biochemistry, and histology were studied. The mutagenicity and genotoxicity of IDM01 were evaluated by reverse mutation assay (Ames test, OECD guideline No. 471) and chromosome aberration test (OECD guideline No. 473), respectively. The IDM01 did not show mortality or treatment-related adverse signs during acute (limit dose of 2000 mg/kg) and subchronic (90-day repeated dose of 250, 500, and 1000 mg/kg with 28 days of recovery period) administration. The IDM01 showed oral median lethal dose (LD50) >2000 mg/kg during AOT study. The no-observed adverse effect level (NOAEL) of IDM01 was 500 mg/kg. IDM01 did not show mutagenicity up to a concentration of 5000 μg/plate during Ames test and did not induce structural chromosomal aberrations up to 50 mg/culture. IDM01 was found safe during preclinical acute and subchronic (90-day repeated dose) toxicity in rats without mutagenicity or genotoxicity. Acute oral toxicity, subchronic (90-day) oral toxicity, mutagenicity and genotoxicity of IDM01 (4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract) was evaluated.The median lethal dose, LD50, of IDM01 was more than 2000 mg/kg of body weight in rats.No observed adverse effect level (NOAEL) of IDM01 was 500 mg/kg of body weight in rats.IDM01 was found safe during acute and subchronic oral toxicity studies in rats without mutagenicity or genotoxicity potetial. Abbreviations Used: 2-AA: 2-aminoanthracene; 2-AF: 2-aminofluorene; 4 NQNO: 4-nitroquinolene-N-oxide; 4HI: 4-hydroxyisoleucine; ANOVA: Analysis of variance; AOT: Acute oral toxicity; DM: Diabetes mellitus; IDM01: The Botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract; LD50: Median lethal dose; MMS: Methyl methanesulfonate; NAD: No abnormality detected; OECD: Organisation for Economic Co-operation and Development; SD: Standard deviation; UV: Ultraviolet; VC: Vehicle control. 2-AA: 2-aminoanthracene; 2-AF: 2-aminofluorene; 4 NQNO: 4-nitroquinolene-N-oxide; 4HI: 4-hydroxyisoleucine; ANOVA: Analysis of variance; AOT: Acute oral toxicity; DM: Diabetes mellitus; IDM01: The Botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract; LD50: Median lethal dose; MMS: Methyl methanesulfonate; NAD: No abnormality detected; OECD: Organisation for Economic Co-operation and Development; SD: Standard deviation; UV: Ultraviolet; VC: Vehicle control.
Deshpande, Pallavi O.; Mohan, Vishwaraman; Thakurdesai, Prasad Arvind
2017-01-01
Objective: To evaluate acute oral toxicity (AOT), subchronic (90-day repeated dose) toxicity, mutagenicity, and genotoxicity potential of IDM01, the botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek (Trigonella foenum-graecum L) seed extract in laboratory rats. Materials and Methods: The AOT and subchronic (90-day repeated dose) toxicity were evaluated using Sprague-Dawley rats as per the Organisation for Economic Co-operation and Development (OECD) guidelines No. 423 and No. 408, respectively. During the subchronic study, the effects on body weight, food and water consumption, organ weights with hematology, clinical biochemistry, and histology were studied. The mutagenicity and genotoxicity of IDM01 were evaluated by reverse mutation assay (Ames test, OECD guideline No. 471) and chromosome aberration test (OECD guideline No. 473), respectively. Results: The IDM01 did not show mortality or treatment-related adverse signs during acute (limit dose of 2000 mg/kg) and subchronic (90-day repeated dose of 250, 500, and 1000 mg/kg with 28 days of recovery period) administration. The IDM01 showed oral median lethal dose (LD50) >2000 mg/kg during AOT study. The no-observed adverse effect level (NOAEL) of IDM01 was 500 mg/kg. IDM01 did not show mutagenicity up to a concentration of 5000 μg/plate during Ames test and did not induce structural chromosomal aberrations up to 50 mg/culture. Conclusions: IDM01 was found safe during preclinical acute and subchronic (90-day repeated dose) toxicity in rats without mutagenicity or genotoxicity. SUMMARY Acute oral toxicity, subchronic (90-day) oral toxicity, mutagenicity and genotoxicity of IDM01 (4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract) was evaluated.The median lethal dose, LD50, of IDM01 was more than 2000 mg/kg of body weight in rats.No observed adverse effect level (NOAEL) of IDM01 was 500 mg/kg of body weight in rats.IDM01 was found safe during acute and subchronic oral toxicity studies in rats without mutagenicity or genotoxicity potetial. Abbreviations Used: 2-AA: 2-aminoanthracene; 2-AF: 2-aminofluorene; 4 NQNO: 4-nitroquinolene-N-oxide; 4HI: 4-hydroxyisoleucine; ANOVA: Analysis of variance; AOT: Acute oral toxicity; DM: Diabetes mellitus; IDM01: The Botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract; LD50: Median lethal dose; MMS: Methyl methanesulfonate; NAD: No abnormality detected; OECD: Organisation for Economic Co-operation and Development; SD: Standard deviation; UV: Ultraviolet; VC: Vehicle control. 2-AA: 2-aminoanthracene; 2-AF: 2-aminofluorene; 4 NQNO: 4-nitroquinolene-N-oxide; 4HI: 4-hydroxyisoleucine; ANOVA: Analysis of variance; AOT: Acute oral toxicity; DM: Diabetes mellitus; IDM01: The Botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract; LD50: Median lethal dose; MMS: Methyl methanesulfonate; NAD: No abnormality detected; OECD: Organisation for Economic Co-operation and Development; SD: Standard deviation; UV: Ultraviolet; VC: Vehicle control PMID:28539737
Toxicopathological Evaluation of Hydroethanol Extract of Dianthus basuticus in Wistar Rats
Ashafa, Anofi Omotayo Tom
2015-01-01
Background. Dianthus basuticus is a commonly used medicinal plant in Basotho traditional medicine for the treatment of diabetes, but there is no report on its safety or toxicity. Therefore, we evaluated the toxicity profile of the hydroethanol whole plant extract of Dianthus basuticus in Wistar rats. Methods. Acute toxicity test was performed with single oral administration of 100–3200 mg/kg body weight of D. basuticus extract to rats and the animals were observed for 14 days for signs of toxicity. The subacute toxicity experiment was conducted by oral administration of graded doses (200, 400, and 800 mg/kg) of D. basuticus extract daily for 28 days. Behavioural changes as well as haematological, biochemical, and histological parameters were then evaluated. Results. There was no observable sign of toxicity in the acute toxicity test. There were significant decreases (P < 0.05) in the feed and water intake as well as total cholesterol and triglycerides of the D. basuticus extract-treated rats in subacute toxicity study. There were no treatment related differences in the haematological, biochemical, and histopathological evaluations. Conclusions. Administration of hydroethanol extract of D. basuticus may be safe at the dosages tested in this study but its continuous usage can cause anorexia. PMID:26504473
Acute and Subchronic Toxicological Evaluations of Allium rotundum L.: A Dietary Plant from Iran.
Hosseinzadeh, Leila; Farhangian, Sajad; Hajialyani, Marziyeh; Bahari, Arash; Farzaei, Mohammad Hosein
2018-04-25
Allium rotundum L. is a dietary plant with diverse nutritional and herbal applications. According to its widespread application in Iranians' diets, understanding the possible adverse effects and toxic activities could be of major importance. The aim of this study was to establish the acute and subchronic toxicity profile of the hydroalcoholic extract of Allium rotundum on male and female Wistar rats. The acute study indicated no adverse effect or toxic activity after administration of the extract, suggesting that the LD 50 value is up to 5,000 mg/kg body weight for the extract. The subchronic study at three doses (250, 500, and 750 mg/kg body weight/day) supported the results of acute study and revealed that no abnormal change or toxicity was induced by the extract in both male and female Wistar rats. All the biochemical and hematological parameters of the treated rats were in historical range after long-term administration of the extract. The histopathological examination also revealed no lesion or alteration in the tissue of vital organs (kidney, liver, heart, lung, and spleen). The NOAEL (no observed adverse effect level) value was high enough (greater than 750 mg/kg body weight/ day) to conclude the nontoxic nature of this extract. The safety of this extract was affirmed by the acute and subchronic toxic studies and suggested that this plant could be a proper and effective dietary plant due to its high nutritive value and inherent therapeutic properties.
Anadón, Arturo; Martínez, Maria A; Ares, Irma; Castellano, Victor; Martínez-Larrañaga, Maria R; Corzo-Martínez, Marta; Moreno, F Javier; Villamiel, Mar
2014-03-01
In order to potentially use sodium caseinate (SC) glycated with galactose (Gal) in the food industry as a new functional ingredient with proved technological and biological properties, an evaluation of oral acute toxicity has been carried out. An acute safety study with SC-Gal glycoconjugates in the Wistar rat with a single oral gavage dose of 2,000 mg/kg of body weight was conducted. The SC-Gal glycoconjugates were well tolerated; no adverse effects or mortality was observed during the 2-week observation period. No abnormal signs, behavioral changes, body weight changes, or alterations in food and water consumption occurred. After this period, no changes in hematological and serum chemistry parameters, organ weights, or gross pathology or histopathology were detected. It was concluded that SC-Gal glycoconjugates obtained via the Maillard reaction were well tolerated in rats at an acute oral dose of 2,000 mg/kg of body weight. The SC-Gal glycoconjugates have a low order of acute toxicity, and the oral 50 % lethal dose for male and female rats is in excess of 2,000 mg/kg of body weight.
Salga, Muhammad Saleh; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen; Abdelwahab, Siddig Ibrahim
2012-01-01
The current study described the synthesis and the in vivo acute oral toxicity evaluations in Sprague Dawley rats. The compounds were characterized by elemental analyses, LC-MS, FTIR, 1H NMR, 13C NMR and UV-visible spectroscopy. In the acute toxicity study, a single administration of the compounds was performed orally to the rats at the single doses of 2000 mg/kg and they were then monitored for possible side effects, mortality or behavioral changes up to 14 days. The serum level of aspartate (AST), alanine aminotransferases (ALT), alkaline phosphate (ALP), triglyceride, high density lipoprotein (HDL), immunoglobulins (GAM) and the C-reactive proteins did not significantly change. The hematological indices white blood cells (WBC), haematocrit (HCT), red blood cells (RBC), mean corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH) were within the normal range. The renal function indices examined were also within the reference range. Generally, the compounds exhibited low toxic effects as required for further in vivo therapeutic studies. PMID:22408397
Ko, J-L; Tsai, C-H; Liu, T-C; Lin, M-Y; Lin, H-L; Ou, C-C
2016-08-01
Grape skin and seeds contain large amounts of phytochemicals such as polyphenols, resveratrol, and proanthocyanidins, which possess antioxidant activities. Cisplatin is widely used in the treatment of cancer. High doses of cisplatin have also been known to produce acute adverse effects. The aim of this study was to investigate the protective effects of antioxidant properties of whole grape juice (with skin and seeds) on cisplatin-induced acute gastrointestinal tract disorders and nephrotoxicity in Wistar rats. Gastric emptying is significantly increased in whole grape juice-pretreated rats when compared to cisplatin treatment alone. The expression of ghrelin mRNA of stomach is increased in rats with whole grape juice. However, pretreatment with whole grape juice did not reduce renal function markers in acute renal toxicity. No significant changes were recorded in the oxidative stress/antioxidant status parameters of any study group. In contrast, pretreatment with whole grape juice slightly improved tubular cell vacuolization, tubular dilatation, and cast formation in renal tubules. These results show that consumption of whole grape juice induces somewhat beneficial effects in preventing cisplatin-mediated dyspepsia but does not offer protection against cisplatin-induced acute renal toxicity. © The Author(s) 2015.
Acute and subchronic toxicological evaluation of Mequindox in Wistar rats.
Ihsan, Awais; Wang, Xu; Huang, Xian-ju; Liu, Yu; Liu, Qin; Zhou, Wen; Yuan, Zong-hui
2010-01-01
We studied an acute and subchronic oral toxicity of Mequindox (MEQ), a quinoxaline 1,4-dioxide antimicrobial promoter, in Wistar rats according to OECD guidelines. For acute toxicity study, single doses of MEQ at 175, 550 and 2000 mg/kg b.w. were administered to rats by oral gavage. The calculated LD(50) was 550 mg/kg b.w. In subchronic study, rats were fed diets containing 0, 55, 110 or 275 mg MEQ/kg. There was a reduction in body weight of rats fed 275 mg MEQ/kg diet. At 90 days autopsy, a significant decrease in the kidney weight was observed in males while an increase in relative liver and adrenal weights were observed in females fed 275 mg MEQ/kg diet. There was a significant increased in alanineaminotransferase (ALT) and malondialdehyde (MDA) concentrations in males, superoxide dismutase (SOD) activities in females, and aspartateaminotransferase (AST) levels in serum of both genders fed 275 mg MEQ/kg diet. Other toxic effects of 275 mg MEQ/kg diet included significant decrease in sodium and significant increase in potassium concentrations in serum in both genders. We may conclude that MEQ can induce hepatic and adrenal histological changes as well as leaking of different serum constituents in Wistar rats. Copyright 2010 Elsevier Inc. All rights reserved.
Preclinical animal acute toxicity studies of new developed MRI contrast agent based on gadolinium
NASA Astrophysics Data System (ADS)
Nam, I. F.; Zhuk, V. V.
2015-04-01
Acute toxicity test of new developed MRI contrast agent based on disodium salt of gadopentetic acid complex were carried out on Mus musculus and Sprague Dawley rats according to guidelines of preclinical studies [1]. Groups of six animals each were selected for experiment. Death and clinical symptoms of animals were recorded during 14 days. As a result the maximum tolerated dose (MTD) for female mice is 2.8 mM/kg of body weight, male mice - 1.4 mM/kg, female rats - 2.8 mM/kg, male rats - 5.6 mM/kg of body weight. No Observed Adverse Effect Dose (NOAEL) for female mice is 1.4 mM/kg, male mice - 0.7 mM/kg, male and female rats - 0.7 mM/kg. According to experimental data new developed MRI contrast agent based on Gd-DTPA complex is low-toxic.
Balogun, Fatai Oladunni; Tom Ashafa, Anofi Omotayo
2016-01-01
The present study evaluated the safety of aqueous root extract of Dicoma anomala (AQRED) through acute and subchronic toxicity studies. Single oral dose of AQRED at the concentration of 0, 5, 300, and 2000 mg/kg as well as 125, 250, and 500 mg/kg/day was administered to rats for 14-day acute and 90-day subchronic oral toxicity studies. The results revealed no mortalities or observed clinical signs of toxicity in all the rats during both investigation periods. In subchronic toxicity testing, administration of AQRED also did not cause any changes in body weight as well as food and water consumption patterns. The haematological parameters and blood chemistry revealed no significant difference (p > 0.05) between the treatment and the control except in platelet count, alkaline phosphatase, and sodium levels where there was a significant increase (p < 0.05), although there was also a significant reduction (p < 0.05) in alanine transaminase, aspartate transaminase, and creatinine when compared to control. However, these changes were not reflecting the results from histology. Conclusively, the obtained results suggested that the LD50 of AQRED is in excess of 2000 mg/kg and its oral administration for 90 days revealed that it is unlikely to be toxic, hence, safe. PMID:27200099
Evaluation of acute and sub-acute toxicity of Pinus eldarica bark extract in Wistar rats
Ghadirkhomi, Akram; Safaeian, Leila; Zolfaghari, Behzad; Agha Ghazvini, Mohammad Reza; Rezaei, Parisa
2016-01-01
Objective: Pinus eldarica (P. eldarica) is one of the most common pines in Iran which has various bioactive constituents and different uses in traditional medicine. Since there is no documented evidence for P. eldarica safety, the acute and sub-acute oral toxicities of hydroalcoholic extract of P. eldarica bark were investigated in male and female Wistar rats in this study. Materials and Methods: In the acute study, a single dose of extract (2000 mg/kg) was orally administered and animals were monitored for 7 days. In the sub-acute study, repeated doses (125, 250 and 500 mg/kg/day) of the extract were administered for 28 days and biochemical, hematological and histopathological parameters were evaluated. Results: Our results showed no sign of toxicity and no mortality after single or repeated administration of P. eldarica. The median lethal dose (LD50) of P. eldarica was determined to be higher than 2000 mg/kg. The mean body weight and most of the biochemical and hematological parameters showed normal levels. There were only significant decreases in serum triglyceride levels at the doses of 250 and 500 mg/kg of the extract in male rats (p<0.05 and p<0.01, respectively) and in monocyte counts at the highest dose of the extract in both male and female rats (p<0.05). Mild inflammation was also found in histological examination of kidney and liver tissues at the highest dose of extract. Conclusion: Oral administration of the hydroalcoholic extract of P. eldarica bark may be considered as relatively non-toxic particularly at the doses of 125 and 250 mg/kg. PMID:27761426
Han, Chung-Tack; Kim, Myoung-Jun; Moon, Seol-Hee; Jeon, Yu-Rim; Hwang, Jae-Sik; Nam, Chunja; Park, Chong-Woo; Lee, Sun-Ho; Na, Jae-Bum; Park, Chan-Sung; Park, Hee-Won; Lee, Jung-Min; Jang, Ho-Song; Park, Sun-Hee; Han, Kyoung-Goo; Choi, Young Whan
2015-01-01
Lithospermum erythrorhizon has long been used as a traditional oriental medicine. In this study, the acute and 28-day subacute oral dose toxicity studies of hexane extracts of the roots of L. erythrorhizon (LEH) were performed in Sprague-Dawley rats. In the acute toxicity study, LEH was administered once orally to 5 male and 5 female rats at dose levels of 500, 1,000, and 2,000 mg/kg. Mortality, clinical signs, and body weight changes were monitored for 14 days. Salivation, soft stool, soiled perineal region, compound-colored stool, chromaturia and a decrease in body weight were observed in the extract-treated groups, and no deaths occurred during the study. Therefore, the approximate lethal dose (ALD) of LEH in male and female rats was higher than 2,000 mg/kg. In the subacute toxicity study, LEH was administered orally to male and female rats for 28 days at dose levels of 25, 100, and 400 mg/kg/day. There was no LEH-related toxic effect in the body weight, food consumption, ophthalmology, hematology, clinical chemistry and organ weights. Compound-colored (black) stool, chromaturia and increased protein, ketone bodies, bilirubin and occult blood in urine were observed in the male and female rats treated with the test substance. In addition, the necropsy revealed dark red discoloration of the kidneys, and the histopathological examination showed presence of red brown pigment or increased hyaline droplets in the renal tubules of the renal cortex. However, there were no test substance-related toxic effects in the hematology and clinical chemistry, and no morphological changes were observed in the histopathological examination of the kidneys. Therefore, it was determined that there was no significant toxicity because the changes observed were caused by the intrinsic color of the test substance. These results suggest that the no-observed-adverse-effect Level (NOAEL) of LEH is greater than 400 mg/kg/day in both sexes. PMID:26877842
Han, Chung-Tack; Kim, Myoung-Jun; Moon, Seol-Hee; Jeon, Yu-Rim; Hwang, Jae-Sik; Nam, Chunja; Park, Chong-Woo; Lee, Sun-Ho; Na, Jae-Bum; Park, Chan-Sung; Park, Hee-Won; Lee, Jung-Min; Jang, Ho-Song; Park, Sun-Hee; Han, Kyoung-Goo; Choi, Young Whan; Lee, Hye-Yeong; Kang, Jong-Koo
2015-12-01
Lithospermum erythrorhizon has long been used as a traditional oriental medicine. In this study, the acute and 28-day subacute oral dose toxicity studies of hexane extracts of the roots of L. erythrorhizon (LEH) were performed in Sprague-Dawley rats. In the acute toxicity study, LEH was administered once orally to 5 male and 5 female rats at dose levels of 500, 1,000, and 2,000 mg/kg. Mortality, clinical signs, and body weight changes were monitored for 14 days. Salivation, soft stool, soiled perineal region, compound-colored stool, chromaturia and a decrease in body weight were observed in the extract-treated groups, and no deaths occurred during the study. Therefore, the approximate lethal dose (ALD) of LEH in male and female rats was higher than 2,000 mg/kg. In the subacute toxicity study, LEH was administered orally to male and female rats for 28 days at dose levels of 25, 100, and 400 mg/kg/day. There was no LEH-related toxic effect in the body weight, food consumption, ophthalmology, hematology, clinical chemistry and organ weights. Compound-colored (black) stool, chromaturia and increased protein, ketone bodies, bilirubin and occult blood in urine were observed in the male and female rats treated with the test substance. In addition, the necropsy revealed dark red discoloration of the kidneys, and the histopathological examination showed presence of red brown pigment or increased hyaline droplets in the renal tubules of the renal cortex. However, there were no test substance-related toxic effects in the hematology and clinical chemistry, and no morphological changes were observed in the histopathological examination of the kidneys. Therefore, it was determined that there was no significant toxicity because the changes observed were caused by the intrinsic color of the test substance. These results suggest that the no-observed-adverse-effect Level (NOAEL) of LEH is greater than 400 mg/kg/day in both sexes.
Acute and subacute toxicity of Schinus terebinthifolius bark extract.
Lima, L B; Vasconcelos, C F B; Maranhão, H M L; Leite, V R; Ferreira, P A; Andrade, B A; Araújo, E L; Xavier, H S; Lafayette, S S L; Wanderley, A G
2009-12-10
Schinus terebinthifolius Raddi (Anacardiaceae) has long been used in traditional Brazilian medicine, especially to treat inflammatory and haemostatic diseases. The objective of this study was to evaluate the acute and subacute toxicity (45 days) of Schinus terebinthifolius via the oral route in Wistar rats of both sexes. For the acute toxicity test, the dried extract of Schinus terebinthifolius bark was administered in doses from 0.625 to 5.0 g/kg (n=5/group/sex) and in the subacute toxicity test the following doses were used: 0.25, 0.625 and 1.5625 g/kg/day (n=13/group/sex), for 45 consecutive days. In the acute toxicity test, Schinus terebinthifolius did not produce any toxic signs or deaths. The subacute treatment with Schinus terebinthifolius did not alter either the body weight gain or the food and water consumption. The hematological and biochemical analysis did not show significant differences in any of the parameters examined in female or male groups, except in two male groups, in which the treatment with Schinus terebinthifolius (0.25 and 0.625 g/kg) induced an increase of mean corpuscular volume values (2.9 and 2.6%, respectively). These variations are within the physiological limits described for the specie and does not have clinical relevance. The acute and subacute administration of the dried extract of Schinus terebinthifolius bark did not produced toxic effects in Wistar rats.
To better characterize the behavioral toxicity of pyrethroid insecticides, comparisons were made of the effects of cismethrin and deltamethrin exposure on motor activity and the acoustic startle response in male Long-Evans rats. Acute dose-effect, acute time course, and 30-day re...
Kim, Jin Sik; Song, Kyung Seuk; Sung, Jae Hyuck; Ryu, Hyun Ryol; Choi, Byung Gil; Cho, Hyun Sun; Lee, Jin Kyu; Yu, Il Je
2013-08-01
To clarify the health risks related to silver nanoparticles (Ag-NPs), we evaluated the genotoxicity, acute oral and dermal toxicity, eye irritation, dermal irritation and corrosion and skin sensitisation of commercially manufactured Ag-NPs according to the OECD test guidelines and GLP. The Ag-NPs were not found to induce genotoxicity in a bacterial reverse mutation test and chromosomal aberration test, although some cytotoxicity was observed. In acute oral and dermal toxicity tests using rats, none of the rats showed any abnormal signs or mortality at a dose level of ∼ 2000 mg/kg. Similarly, acute eye and dermal irritation and corrosion tests using rabbits revealed no significant clinical signs or mortality and no acute irritation or corrosion reaction for the eyes and skin. In a skin sensitisation test using guinea pigs, one animal (1/20) showed discrete or patchy erythema, thus Ag-NPs can be classified as a weak skin sensitiser.
TOXICITY PATHWAY ANALYSIS IN AGING BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE
The influence of aging on susceptibility to environmental stressors is poorly understood. To investigate the contribution of different life stages on response to toxicants, we examined the effects of acute exposure by oral gavage of the volatile organic solvent toluene (0.00, 0.3...
Ghonghadze, M; Antelava, N; Liluashvili, K; Okujava, M; Pachkoria, K
2017-02-01
Nowadays drug-induced hepatotoxicity is urgent problem worldwide. Currently more than 1000 drugs are hepatotoxic and most often are the reason of acute fulminant hepatitis and hepatocellular failure, the states requiring liver transplantation. The paracetamol induced liver toxicity is related with accumulation of its toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which is the free radical and enhances peroxidation of lipids, disturbs the energy status and causes death of hepatocytes. During our research we investigated and assessed the efficacy of acetylcysteine, corvitin and their combination in rat model of paracetamol induced acute toxic hepatitis. The study was performed on mature white male Wistar rates with body mass 150-180 g. 50 rats were randomly divided into 5 groups (10 rats in each group). To get the model of acute toxic hepatitis single intraperitoneal injection of paracetamol solution was used (750 mg/kg). Toxic hepatitis was treated with intrapertoneal administration of 40mg/kg acetylcysteine or 100mg/kg corvitin, as well as with combination of these drugs. Monotherapy with acetylcysteine and corvitin of paracetamol induced toxic hepatitis improved the liver function, decreased relative mass of the liver and animal mortality. The treatment of toxic hepatitis was most effective in the case of simultaneous administration of acetylcysteine and corvitin. The normal value of laboratory tests (ALT, ACT, alkaline phosphatase, total and unconjugated bilirubin) was reached and mortality was not more observed. On the bases of obtained data was concluded that acetylcysteine and corvitin have almost equal hepatoprotective activity. The combination of two drugs actually improves the liver function. The most pronounced hepatoprotective effect may be due to synergic action of acetylcysteine and corvitin and such regime can be recommended for correction of liver function.
Saitoh, M; Umemura, T; Kawasaki, Y; Momma, J; Matsushima, Y; Sakemi, K; Isama, K; Kitajima, S; Ogawa, Y; Hasegawa, R; Suzuki, T; Hayashi, M; Inoue, T; Ohno, Y; Sofuni, T; Kurokawa, Y; Tsuda, M
1999-07-01
2-Mercaptobenzimidazole (2-MBI), a rubber antioxidant, is known to exhibit potent antithyroid toxicity in rats and is a candidate as an environmental endocrine disrupter. 2-Mercaptomethylbenzimidazoles (a 1:1 mixture of 4-methyl and 5-methyl isomers, MMBIs), are also employed industrially as rubber antioxidants and are suspected to exert antithyroid toxicity such as 2-MBI. In this investigation, acute and subacute oral toxicity studies of MMBIs in Wistar rats were conducted. The clinical signs of acute oral toxicity were observed including decreased spontaneous movement, a paralytic gait, salivation and lacrimation, and adoption of prone and lateral positions. The LD50 was estimated to be 330 mg/kg. In the subacute oral toxicity study, male and female rats were treated with MMBIs by gavage at doses of 0 (corn oil), 4, 20 and 100 mg/kg for 28 consecutive days followed by a 2-week recovery period for the control and highest dose groups. Body weight and food consumption, clinical signs, organ weights, clinical biochemistry and haematological parameters including clotting times and micronuclei induction in bone marrow erythropoeitic cells, and histopathology were examined. Relative organ weights of lung, liver and kidney, and serum cholesterol and phospholipid significantly increased in male rats treated with MMBIs at doses of 20 and 100 mg/kg. Male rats administered 100 mg/kg MMBIs exhibited a 1.8-fold increase in thyroid weight associated with histopathological changes but not altered serum thyroid hormone levels. Female rats administered 100 mg MMBIs/kg exhibited significant increases of liver and kidney but not thyroid weights, and serum cholesterol level. The antithyroid toxicity of MMBIs in rats was estimated to be one-tenth that of 2-MBI. No-observed-effect levels for male and female rats were found to be 4 and 20 mg/kg, respectively, in this subacute oral toxicity study.
Oxidative stress in rat kidneys due to 3,4-methylenedioxymetamphetamine (ecstasy) toxicity.
Ninković, Milica; Selaković, Vesna; Dukić, Mirjana; Milosavljević, Petar; Vasiljević, Ivana; Jovanović, Marina; Malicević, Zivorad
2008-02-01
The mechanism of MDMA (3,4-methylenedioxymethamphetamine)-induced toxicity is believed to be, in part, due to enhanced oxidative stress. As MDMA is eliminated via the kidney, the aim of this study was to investigate whether MDMA created conditions of oxidative stress within rat kidney. Adult male Wistar rats were divided into three groups, control treatment (water), acute MDMA administration (single oral dose: 5, 10, 20 or 40 mg/kg body weight) and subacute MDMA administration (5, 10, or 20 mg/kg body weight per day during 14 days). Animals were sacrificed 8 h after the single oral MDMA administration in the acute MDMA administration group and after the last MDMA administration in the subacute MDMA administration group. Rectal temperature measurements, oxidative stress status parameters and histological examinations were performed. In all MDMA-administered rats, rectal temperature markedly increased peaking approximately 1 h after MDMA ingestion. Superoxide dismutase activity and thiobarbituric acid reactive substances increased after MDMA administration. Histological examinations of the kidney revealed dose-dependent disruption of tissue structure in subacute MDMA-administered rats. The latter was not observed in acute MDMA-administered rats.
Low, Bin-Seng; Das, Prashanta Kumar; Chan, Kit-Lam
2014-07-01
The roots of Eurycoma longifolia Jack are popularly sought as herbal medicinal supplements to improve libido and general health amongst the local ethnic population. The major quassinoids of E. longifolia improved spermatogenesis and fertility but toxicity studies have not been well documented. The reproductive toxicity, two generation of foetus teratology and the up-and-down acute toxicity were investigated in Sprague-Dawley rats orally treated with quassinoid-rich E. longifolia extract (TAF273). The results showed that the median lethal dose (LD50 ) of TAF273 for female and male rats was 1293 and >2000 mg/kg, respectively. Fertility index and litter size of the TAF273 treated were significantly increased when compared with those of the non-treated animals. The TAF273-treated dams decreased in percentage of pre-implantation loss, post-implantation loss and late resorption. No toxic symptoms were observed on the TAF273-treated pregnant female rats and their foetuses were normal. The no-observed adverse effect level (NOAEL) obtained from reproductive toxicity and teratology studies of TAF273 in rats was 100 mg/kg body weight/day, being more than 10-fold lower than the LD50 value. Thus, any human dose derived from converting the rat doses of 100 mg/kg and below may be considered as safe for further clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.
AGE-RELATED TOXICITY PATHWAY ANALYSIS IN BROWN NORWAY RAT BRAIN FOLLOWING ACUTE TOLUENE EXPOSURE
The influence of aging on susceptibility to environmental exposures is poorly understood. To investigate-the contribution of different life stages on response to toxicants, we examined the effects of an acute exposure to the volatile organic compound, toluene (0.0 or 1.0 g/kg), i...
Rasekh, Hamid Reza; Hosseinzadeh, Leila; Mehri, Soghra; Kamli-Nejad, Mohammad; Aslani, Majid; Tanbakoosazan, Farahnaz
2012-01-01
Objective(s) Ocimum basilicum L. is widely used in folk medicine of many countries including . Both O. basilicum and its oil extract have received considerable attention for their potential medicinal properties, but there are a few reports about possible toxicity of this plant. Therefore, in the present study, acute and subchronic toxicity of O. basilicum hydroalcohlic extract have been evaluated in Wistar rats. Materials and Methods For the acute toxicity assessment, five groups of 10 animals (5 male, 5 female) received four different single dose of extract orally, the animals were, then, kept under observation for 14 days. For subchronic toxicity, the animals were divided into four groups (5 male, 5 female) and were gavaged daily by 50, 200 and 500 mg/kg of extract. Mortality, clinical signs, body weight changes, food and water consumption, and hematological and biochemical parameters were monitored during the study period. On the 45th day, animals were sacrificed and gross findings, weight of liver and left kidney and liver histological markers were assessed. Results The results of acute study indicated that LD50 of O. basilicum is higher than 5 mg/kg. In subchronic study, no adverse effects were observed on serum parameters in male and female rats. The hematological results showed a reduction in the hematocrit, platelets and RBC in both sexes. No abnormalities were observed in other parameters. Conclusion Based on the results of this study, present data suggest that hematologic system could serve as a target organ in oral toxicity of this plant. PMID:23493182
Arun, M; Asha, V V
2007-04-20
Physalis peruviana is a medicinal herb used by Muthuvan tribes and Tamilian native who reside in the shola forest regions of Kerala, India against jaundice. It was evaluated for its antihepatotoxic, phytochemical analysis and the acute toxicity of the most promising extract in rats. Water, ethanol and hexane extracts of Physalis peruviana (500mg/kg body weight) showed antihepatotoxic activities against CCl(4) induced hepatotoxicity. The ethanol and hexane extracts showed moderate activity compared to water extract, which showed activity at a low dose of 125mg/kg. The results were judged from the serum marker enzymes. Histopathological changes induced by CCl(4) were also significantly reduced by the extract. Further, the extract administration to rats resulted in an increase in hepatic GSH and decrease in MDA. Preliminary phytochemical analysis revealed the presence of various components in the crude aqueous extract. The extract was found to be devoid of any conspicuous acute toxicity in rats.
Ríos-León, Karla; Fuertes-Ruiton, Cesar; Arroyo, Jorge; Ruiz, Julio
2017-01-01
To determine the toxicity and chemoprotective effect of the alkaloid extract of Melocactus bellavistensis against colon cancer induced in rats using 1,2-dimethylhydrazine (DMH). The alkaloid extract was obtained from the fleshy part of M. bellavistensis, and an acute toxicity test was then carried out on 30 mice of the Balb C57 strain. To assess its chemoprotective effect, colon cancer was induced in 45 Holtzman rats using DMH according to the following experimental design: one control group received 2 mL/kg sodium polysorbate, and four groups received 20 mg/kg DMH plus 0, 1, 5, or 10 mg/kg M. bellavistensis alkaloid extract. With a sample of 5 g of alkaloid extract, an LD50 greater than 1000 mg/mL was determined in the acute toxicity test. Histological indicators revealed that the 5 and 10 mg/kg doses had significant anti-tumor activity with 100% neoplasia inhibition against DMH- induced colon cancer in rats. Under experimental conditions, the alkaloid extract of M. bellavistensis has a chemoprotective effect against DMH-induced colon cancer in rats.
Liju, Vijayasteltar B; Jeena, Kottarapat; Kuttan, Ramadasan
2013-03-01
The present study investigated the acute, subchronic and genotoxicity of turmeric essential oil (TEO) from Curcuma longa L. Acute administration of TEO was done as single dose up to 5 g of TEO per kg body weight and subchronic toxicity study for thirteen weeks was done by daily oral administration of TEO at doses 0.1, 0.25 and 0.5 g/kg b.wt. in Wistar rats. There were no mortality, adverse clinical signs or changes in body weight; water and food consumption during acute as well as subchronic toxicity studies. Indicators of hepatic function such as aspartate aminotransferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP) were unchanged in treated animals compared to untreated animals. Oral administration of TEO for 13 weeks did not alter total cholesterol, triglycerides, markers of renal function, serum electrolyte parameters and histopathology of tissues. TEO did not produce any mutagenicity to Salmonella typhimurium TA-98, TA-100, TA-102 and TA-1535 with or without metabolic activation. Administration of TEO to rats (1 g/kg b.wt.) for 14 days did not produce any chromosome aberration or micronuclei in rat bone marrow cells and did not produce any DNA damage as seen by comet assay confirming the non toxicity of TEO. Copyright © 2012 Elsevier Ltd. All rights reserved.
The acute lethal dose 50 (LD50) of caffeine in albino rats.
Adamson, Richard H
2016-10-01
An acute LD50 is a statistically derived amount of a substance that can be expected to cause death in 50% of the animals when given by a specified route as a single dose and the animals observed for a specified time period. Although conducting routine acute toxicity testing in rodents has been criticized, it can serve useful functions and also have practical implications. Material safety data sheets (MSDS) will reflect the acute toxicity of a substance and may require workers to wear protective gear, if appropriate, based on the LD50. There is no information in the scientific published literature which calculates a mean LD50 and standard deviation for caffeine administered orally to rats, using studies performed under good laboratory practice (GLP) or equivalent. This report does that and should be useful to manufacturers, packagers, transporters and regulators of this material. Using data from studies that are reproducible and reliable, the most accurate estimate of the acute LD50 of caffeine administered orally in male albino rats is hereby reported to be 367/mg/kg. Copyright © 2016 Elsevier Inc. All rights reserved.
Toxicity studies of the water extract from the calyces of Hibiscus sabdariffa L. in rats.
Sireeratawong, Seewaboon; Itharat, Arunporn; Khonsung, Parirat; Lertprasertsuke, Nirush; Jaijoy, Kanjana
2013-01-01
Acute and chronic toxicities of the water extract from calyces of Hibiscus sabdariffa were studied in male and female rats. After 14 days of a single oral administration of test substance 5,000 mg/kg body weight, measurement of the body and organ weights, necropsy and health monitoring were performed. No signs and differences of the weights or behaviour compared to the control rats were observed. The results indicated that the single oral administration of H. sabdariffa extract in the amount of 5,000 mg/kg body weight does not produce acute toxicity. The chronic toxicity was determined by oral feeding both male and female rats daily with the extract at the doses of 50, 100, and 200 mg/kg body weight for 270 days. The examinations of signs, animal behaviour and health monitoring showed no defects in the test groups compared to the control groups. Both test and control groups (day 270th) and satellite group (day 298th) were analysed by measuring their final body and organ weights, taking necropsy, and examining haematology, blood clinical chemistry, and microanatomy. Results showed no differences from the control groups. Overall, our study demonstrated that an oral administration of H. sabdariffa extract at the doses of 50, 100 and 200 mg/kg body weight for 270 days does not cause chronic toxicity in rat.
1997-01-16
Administration Following Physical and Environmental Stressors in Fischer-344 and Lewis Female Rats" Name of Candidate: Kelly Brown Doctor...Title ofDissertation: Examination ofAcute Sensitivity to Morphine and Morphine Self- Administration Following Physical and Environmental Stressors in...to tolerance, toxicity, or addiction liability. IV Examination ofAcute Sensitivity to Morphine and Morphine Self-Administration Following Physical and
Tsukamoto, Masatsugu; Miyamoto, Hiroshi; Ando, Yoshiki; Eto, Shuichi; Akiyama, Takayuki; Yonekura, Yutaka; Mawatari, Masaaki
2014-01-01
To reduce the incidence of implant-associated infection, we previously developed a novel coating technology using hydroxyapatite (HA) containing silver (Ag). This study examined in vivo acute and subacute toxicity associated with the Ag-HA coating in rat tibiae. Ten-week-old rats received implantation of HA-, 2% Ag-HA-, or 50% Ag-HA-coated titanium rods. Concentrations of silver in serum, brain, liver, kidneys, and spleen were measured in the acute phase (2–4 days after treatment) and subacute phase (4–12 weeks after treatment). Biochemical and histological examinations of those organs were also performed. Mean serum silver concentration peaked in the acute phase and then gradually decreased. Mean silver concentrations in all examined organs from the 2% Ag-HA coating groups showed no significant differences compared with the HA coating group. No significant differences in mean levels of glutamic-oxaloacetic transaminase, glutamic-pyruvic transaminase, lactate dehydrogenase, creatinine, or blood urea nitrogen were seen between the three groups and controls. Histological examinations of all organs revealed no abnormal pathologic findings. No acute or subacute toxicity was seen in vivo for 2% Ag-HA coating or HA coating. Ag-HA coatings on implants may represent biologically safe antibacterial biomaterials and may be of value for reducing surgical-site infections related to implantation. PMID:24779019
Acute and subacute toxicity evaluation of ethanolic extract from fruits of Schinus molle in rats.
Ferrero, Adriana; Minetti, Alejandra; Bras, Cristina; Zanetti, Noelia
2007-09-25
Ethanolic and hexanic extracts from fruits and leaves of Schinus molle showed ability to control several insect pests. Potential vertebrate toxicity associated with insecticidal plants requires investigation before institutional promotion. The aim of the present study was to evaluate the acute and subacute toxicity of ethanolic extracts from fruits of Schinus molle in rats. The plant extract was added to the diet at 2g/kg body weight/day during 1 day to evaluate acute toxicity and at 1g/kg body weight/day during 14 days to evaluate subacute toxicity. At the end of the exposure and after 7 days, behavioral and functional parameters in a functional observational battery and motor activity in an open field were assessed. Finally, histopathological examinations were conducted on several organs. In both exposures, an increase in the arousal level was observed in experimental groups. Also, the landing foot splay parameter increased in the experimental group after acute exposure. Only the subacute exposure produced a significant increase in the motor activity in the open field. All these changes disappeared after 7 days. None of the exposures affected the different organs evaluated. Our results suggest that ethanolic extracts from fruits and leaves of Schinus molle should be relatively safe to use as insecticide.
In Vitro Methods To Measure Toxicity Of Chemicals
2004-12-01
industrial compounds for toxicity will require high-throughput in vitro assays with which to select candidate compounds for more intensive animal...for estimating the starting dose for the rat oral acute toxicity test, thus reducing and refining the use of animals in the toxicological
Past, Present and Emerging Toxicity Issues for Jet Fuel
2011-01-01
Statistically significant dominant lethal effects were not observed for either mice or rats (Air Force, 1978). However, because of the small sample...Adams, M.M., 2004. Immunological and hematological effects observed in B6C3F1 mice exposed to JP-8 jet fuel for 14 days. J. Toxicol. Environ. Health A...acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with
[Preclinical prognosis of pyracetam and picamilon safety based on acute toxicity data].
Bugaeva, L I; Spasov, A A; Verovskiĭ, V E; Iezhitsa, I N
2003-01-01
A comparative acute toxicity test of the nootropic drugs piracetam and picamilon was performed on rats. The study was based on the principles of integral evaluation of the drug effect upon the functional and behavioral state of animals. It was found that the conventional therapeutic index does not coincide with the actual therapeutic activity range. Piracetam and picamilon, while exhibiting significantly different toxicity, are characterized by approximately equal ranges of the therapeutic activity.
Experimental toxicology of pyrolysis and combustion hazards.
Cornish, H H; Hahn, K J; Barth, M L
1975-01-01
Data are presented on the acute toxicity (mortality only) of the thermal degradation products of polymers obtained by two methods of degradation. One system utilized a slowly increasing temperature (5 degrees C/min) and gradual degradation of the polymer with the rats being exposed to degradation products as they were evolved. In this system the more toxic polymers included wool, polypropylene, poly(vinyl chloride), and urethane foam. The second system utilized conditions of rapid combustion and exposure of rats to the total products of combustion for a period of 4 hr. In this system the more toxic materials included red oak, cotton, acrylonitrile-butadiene-styrene (ABS), and styrene-acrylonitrile. It is of interest to note that the natural product wool is among the least toxic under these rapid combustion conditions and among the most toxic under slow pyrolysis conditions. Other materials also vary in the comparative toxicity of their thermal degradation products, depending upon the conditions of degradation and animal exposure. The two experimental techniques presented here may well represent the two extreme conditions of rapid combustion versus slow pyrolysis. Intermediate types of fire situations might be expected to result in relative acute toxicities somewhere between these two extremes. This report deals with acute toxicity on the basis of mortality data only and does not include other parameters of toxicity such as organ weights and histopathology. PMID:1175552
Ragavan, Gokulakannan; Muralidaran, Yuvashree; Sridharan, Badrinathan; Nachiappa Ganesh, Rajesh; Viswanathan, Pragasam
2017-07-01
Garlic oil nanoemulsion was formulated using ultrasonic emulsification and the optimized garlic oil nanoemulsion ratio (1:2) of oil: surfactant showed spherical, with tiny droplet size 24.9 ± 1.11 nm. It was observed that the prepared nanoemulsion has the zeta potential of -42.63 ± 1.58 mV and a low polydispersity index of 0.2 ± 0.09 with excellent stability. The formulation was subjected to in vivo acute and sub-acute toxicity. In acute toxicity study, single oral administration of 18.63 ml of garlic oil nanoemulsion/kg resulted in immediate mortality. However, garlic oil nanoemulsion (0.46 ml/kg) and tween 80 (0.5 ml/kg) administered rats did not exhibit any toxicity and showed no changes in hematological and histological parameters. Further, both preventive and curative studies of garlic oil nanoemulsion were evaluated in high-fat diet fed dyslipidemic Wistar rats. Garlic oil nanoemulsion administered groups showed a significant effect in reducing the levels of lipid profiles (p < 0.001) compared to atorvastatin and garlic oil. Evaluation of lipid deposits in hepatic tissues was analyzed by Oil Red O staining, which revealed that garlic oil nanoemulsion administered rats markedly reduced the fat depots. Our findings suggest that garlic oil nano-emulsified form reduced toxicity and improved efficacy in preventing and treating dyslipidemia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Endocrine and metabolic aspects of the acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorski, J.R.
1988-01-01
Toxic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were characterized in male Sprague-Dawley rats in order to elucidate the mechanism of acute toxicity of this potent halogenated hydrocarbon. Studies in TCDD-treated, pair-fed control and ad libitum-fed control rates, as well as in thyroidectomized, adrenalectomized and hypophysectomized, revealed differential hormonal, toxicologic and histophathologic responses suggesting that these manifestations of TCDD exposure are the results of an insult to intermediary metabolism. Tissue specific alterations in de novo fatty acid synthesis were directly related to differential changes observed in thyroid hormone homeostasis. The increased hepatic de novo fatty acid synthesis provided a likely mechanism for themore » documented fact that TCDD-treated rats lose more body weight than corresponding pair-fed controls because de novo fatty acid synthesis represents an energy inefficient metabolic process. Experiments in adrenalectomized and hypophysectomized rats led to the hypothesis that severe hypoglycemia due to inhibition of gluconeogenesis is the cause of TCDD-induced death. A subsequent characterization of gluconeogenesis in TCDD-treated rats confirmed this hypothesis.« less
Safety assessments of subcutaneous doses of aragonite calcium carbonate nanocrystals in rats
NASA Astrophysics Data System (ADS)
Jaji, Alhaji Zubair; Zakaria, Zuki Abu Bakar; Mahmud, Rozi; Loqman, Mohamad Yusof; Hezmee, Mohamad Noor Mohamad; Abba, Yusuf; Isa, Tijani; Mahmood, Saffanah Khuder
2017-05-01
Calcium carbonate nanoparticles have shown promising potentials in the delivery of drugs and metabolites. There is however, a paucity of information on the safety of their intentional or accidental over exposures to biological systems and general health safety. To this end, this study aims at documenting information on the safety of subcutaneous doses of biogenic nanocrystals of aragonite polymorph of calcium carbonate derived from cockle shells (ANC) in Sprague-Dawley (SD) rats. ANC was synthesized using the top-down method, characterized using the transmission electron microscopy and field emission scanning electron microscope and its acute and repeated dose 28-day trial toxicities were evaluated in SD rats. The results showed that the homogenous 30 ± 5 nm-sized spherical pure aragonite nanocrystals were not associated with mortality in the rats. Severe clinical signs and gross and histopathological lesions, indicating organ toxicities, were recorded in the acute toxicity (29,500 mg/m2) group and the high dose (5900 mg/m2) group of the repeated dose 28-day trial. However, the medium- (590 mg/m2 body weight) and low (59 mg/m2)-dose groups showed moderate to mild lesions. The relatively mild lesions observed in the low toxicity dosage group marked the safety margin of ANC in SD rats. It was concluded from this study that the toxicity of CaCO3 was dependent on the particulate size (30 ± 5 nm) and concentration and the route of administration used.
Kassa, Jiri; Karasova, Jana Zdarova; Sepsova, Vendula; Caisberger, Filip; Bajgar, Jiri
2011-10-01
The ability of 2 combinations of oximes (HI-6 + trimedoxime and HI-6 + K203) to reactivate VX-inhibited acetylcholinesterase and reduce acute toxicity of VX was compared with the reactivating and therapeutic efficacy of antidotal treatment involving a single oxime (HI-6, trimedoxime, K203) in rats and mice. Our results showed that the reactivating efficacy of both combinations of oximes studied in rats is significantly higher than the reactivating efficacy of all individual oximes in diaphragm and roughly corresponds to the most effective individual oxime in blood and brain. Both combinations of oximes were found to be more effective in the reduction of acute lethal toxicity of VX in mice than the antidotal treatment involving the most efficacious individual oxime although the difference is not significant. Based on the obtained data, we can conclude that the antidotal treatment involving the chosen combinations of oximes brings benefit for the reactivation of VX-inhibited acetylcholinesterase in rats and for the antidotal treatment of VX-induced acute poisoning in mice.
Acute toxicity of sodium formononetin-3'-sulphonate (Sul-F) in Sprague-Dawley rats and Beagle dogs.
Li, Guisheng; Yang, Menglin; Hao, Xinmiao; Li, Chunmei; Gao, Yonglin; Tao, Jun
2015-11-01
Sodium formononetin-3'-sulphonate (Sul-F, C16H12O7SNa), a water-soluble derivate of formononetin, provided significant neuroprotective and cardioprotective effects in vitro and in vivo. The aim of this study was to evaluate acute toxicity of Sul-F after intravenous administration in rats and dogs. Animals were intravenously administered Sul-F at the maximum dosage of 2000 mg/kg and 1000 mg/kg in rats and dogs, respectively. After treatment, rats and dogs were monitored for 14 days. Body weight, clinical signs, the hematological and biochemical findings, and pathological examination were performed. The results showed that no Sul-F related clinical signs of toxicity or mortality were observed in rats. Of note, the transient vomiting was found in dogs after Sul-F administration 15-20 min. In addition, a white crystal, non-metabolic Sul-F, was found after urine volatilization in Sul-F treated animals (rats and dogs). However, neither biochemical findings nor histopathological changes due to Sul-F treatment were found in tests. In summary, the present study results provided practical guidance for selecting a safe dosage for Sul-F further studies and clinical trials in the future. Copyright © 2015 Elsevier Inc. All rights reserved.
THE CANNABINOID RECEPTOR ANTAGONIST AM251 INCREASES PARAOXON AND CHLORPYRIFOS OXON TOXICITY IN RATS
Liu, Jing; Pope, Carey
2014-01-01
Organophosphorus anticholinesterases (OPs) elicit acute toxicity by inhibiting acetylcholinesterase (AChE), leading to acetylcholine accumulation and overstimulation of cholinergic receptors. Endocannabinoids (eCBs, e.g., arachidonoyl ethanolamide [AEA] and 2-arachidonoyl glycerol [2-AG]) are neuromodulators that regulate neurotransmission by reducing neurotransmitter release. The eCBs are degraded by the enzymes fatty acid amide hydrolase (FAAH, primarily involved in hydrolysis of AEA) and monoacylglycerol lipase (MAGL, primarily responsible for metabolism of 2-AG). We previously reported that the cannabinoid receptor agonist WIN 55,212-2 reduced cholinergic toxicity after paraoxon exposure. This study compared the effects of the cannabinoid receptor antagonist AM251 on acute toxicity following either paraoxon (PO) or chlorpyrifos oxon (CPO). CPO was more potent in vitro than PO at inhibiting AChE (≈ 2 fold), FAAH (≈ 8 fold), and MAGL (≈ 19 fold). Rats were treated with vehicle, PO (0.3 and 0.6 mg/kg, sc.) or CPO (6 and 12 mg/kg, sc.) and subsets treated with AM251 (3 mg/kg, ip; 30 min after OP). Signs of toxicity were recorded for four hours and rats were then sacrificed. OP-treated rats showed dose-related involuntary movements, with AM251 increasing signs of toxicity with the lower dosages. PO and CPO elicited excessive secretions, but AM251 had no apparent effect with either OP. Lethality was increased by AM251 with the higher dosage of PO, but no lethality was noted with either dosage of CPO, with or without AM251. Both OPs caused extensive inhibition of hippocampal AChE and FAAH (>80–90%), but only CPO inhibited MAGL (37–50%). These results provide further evidence that eCB signaling can influence acute OP toxicity. The selective in vivo inhibition of MAGL by CPO may be important in the differential lethality noted between PO and CPO with AM251 co-administration. PMID:25447325
A comparative assessment of the acute inhalation toxicity of vanadium compounds.
Rajendran, N; Seagrave, J C; Plunkett, L M; MacGregor, J A
2016-11-01
Vanadium compounds have become important in industrial processes, resulting in workplace exposure potential and are present in ambient air as a result of fossil fuel combustion. A series of acute nose-only inhalation toxicity studies was conducted in both rats and mice in order to obtain comparative data on the acute toxicity potential of compounds used commercially. V 2 O 3 , V 2 O 4 , and V 2 O 5 , which have different oxidation states (+3, +4, +5, respectively), were delivered as micronized powders; the highly water-soluble and hygroscopic VOSO 4 (+4) could not be micronized and was instead delivered as a liquid aerosol from an aqueous solution. V 2 O 5 was the most acutely toxic micronized powder in both species. Despite its lower overall percentage vanadium content, a liquid aerosol of VOSO 4 was more toxic than the V 2 O 5 particles in mice, but not in rats. These data suggest that an interaction of characteristics, i.e., bioavailability, solubility and oxidation state, as well as species sensitivity, likely affect the toxicity potential of vanadium compounds. Based on clinical observations and gross necropsy findings, the lung appeared to be the target organ for all compounds. The level of hazard posed will depend on the specific chemical form of the vanadium. Future work to define the inhalation toxicity potential of vanadium compounds of various oxidation states after repeated exposures will be important in understanding how the physico-chemical and biological characteristics of specific vanadium compounds interact to affect toxicity potential and the potential risks posed to human health.
Acute Inhalation Toxicity of T-2 Mycotoxin in the Rat and Guinea Pig
1990-01-01
2/kg body weight for the guinea pig . These data show that inhaled T-2 toxin is approximately 20 times more toxic to the rat (0.05 mg T-2/kg body wt...inhaled vs 1.0 mg T-2/kg body wt ip) and at least twice as toxic to the guinea pig (0.4 mg T-2/kg body wt inhaled vs 1-2 mg T-2/kg body wt ip) than ip...administered T-2 toxin. Histopathologic examination of major organs in both the rat and guinea pig after respiratory exposure to T-2 toxin indicated
Toxicity and repellency to rats of actidione
Traub, R.; DeWitt, J.B.; Welch, J.F.; Newman, D.
1950-01-01
The antibiotic actidione was found to be highly repellent to laboratory rats and to significantly reduce gnawing attacks upon treated paperboards. Rats refused to accept food or water containing this material even under conditions of acute starvation and died of starvation and thirst,rather than accept water containing l.0 mg. of actidione per liter. The compound is highly toxic to .rats with the minimum .lethal dose by oral administration being approximately l.0 mg./Kg body weight. Paperboard treated with the compound resisted gnawing attacks by specially trained and motivated rats for periods of two hundred hours, although similar .untreated boards were pierced within thirty-to sixty minutes.
A 13-week repeated dose study of three 3-monochloropropane-1,2-diol fatty acid esters in F344 rats.
Onami, Saeko; Cho, Young-Man; Toyoda, Takeshi; Mizuta, Yasuko; Yoshida, Midori; Nishikawa, Akiyoshi; Ogawa, Kumiko
2014-04-01
3-monochloropropane-1,2-diol (3-MCPD), a rat renal and testicular carcinogen, has been reported to occur in various foods and food ingredients as free or esterified forms. Since reports about toxicity of 3-MCPD esters are limited, we conducted a 13-week rat subchronic toxicity study of 3-MCPD esters (palmitate diester: CDP, palmitate monoester: CMP, oleate diester: CDO). We administered a carcinogenic dose (3.6 × 10(-4) mol/kg B.W./day) of 3-MCPD or these esters at equimolar concentrations and two 1/4 lower doses by gavage with olive oil as a vehicle five times a week for 13 weeks to F344 male and female rats. As a result, five out of ten 3-MCPD-treated females died from acute renal tubular necrosis, but none of the ester-treated rats. Decreased HGB was observed in all high-dose 3-MCPD fatty acid ester-treated rats, except CDO-treated males. The absolute and relative kidney weights were significantly increased in the ester-treated rats at medium and high doses. Relative liver weights were significantly increased in the esters-treated rat at high dose, except for CMP females. Significant increase in apoptotic epithelial cells in the initial segment of the epididymis of high-dose ester-treated males was also observed. The results suggested that although acute renal toxicity was lower than 3-MCPD, these three 3-MCPD fatty acid esters have the potential to exert subchronic toxicity to the rat kidneys and epididymis, to a similar degree as 3-MCPD under the present conditions. NOAELs (no-observed-adverse-effect levels) of CDP, CMP and CDO were suggested to be 14, 8 and 15 mg/kg B.W./day, respectively.
Toxicity associated with ingestion of a polyacrylic acid hydrogel dog pad.
Dorman, David C; Foster, Melanie L; Olesnevich, Brooke; Bolon, Brad; Castel, Aude; Sokolsky-Papkov, Marina; Mariani, Christopher L
2018-06-01
Superabsorbent sodium polyacrylate polymeric hydrogels that retain large amounts of liquids are used in disposable diapers, sanitary napkins, and other applications. These polymers are generally considered "nontoxic" with acute oral median lethal doses (LD 50 ) >5 g/kg. Despite this favorable toxicity profile, we identified a novel toxic syndrome in dogs and rats following the ingestion of a commercial dog pad composed primarily of a polyacrylic acid hydrogel. Inappropriate mentation, cerebellar ataxia, vomiting, and intention tremors were observed within 24 h after the ingestion of up to 15.7 g/kg of the hydrogel by an adult, castrated male Australian Shepherd mix. These observations prompted an experimental study in rats to further characterize the toxicity of the hydrogel. Adult, female Sprague Dawley rats ( n = 9) were assessed before and after hydrogel ingestion (2.6-19.2 g/kg over 4 h) using a functional observation battery and spontaneous motor activity. Clinical signs consistent with neurotoxicity emerged in rats as early as 2 h after the end of hydrogel exposure, including decreased activity in an open field, hunched posture, gait changes, reduced reaction to handling, decreased muscle tone, and abnormal surface righting. Hydrogel-exposed rats also had reduced motor activity when compared with pre-exposure baseline data. Rats that ingested the hydrogel did not develop nervous system lesions. These findings support the conclusion that some pet pad hydrogel products can induce acute neurotoxicity in animals under high-dose exposure conditions.
The acute toxicity oftoluene, a model volatile organic compound (VOC), depends on the concentration (C) and duration (t) ofexposure, and guidelines for acute exposures have traditionally used ext relationships to extrapolate protective and/or effective concentrations across durat...
Extended acute toxicity study of (188) Re-liposome in rats.
Chi-Mou, Liu; Chia-Che, Tsai; Chia-Yu, Yu; Wan-Chi, Lee; Chung-Li, Ho; Tsui-Jung, Chang; Chih-Hsien, Chang; Te-Wei, Lee
2013-09-01
Liposomes can selectively target cancer sites and carry payloads, thereby improving diagnostic and therapeutic effectiveness as well as reducing toxicity. To evaluate therapeutic strategies, it is essential to use animal models reflecting important safety aspects before clinical application. As our previous study found that a high dosage (185 of MBq) of (188) Re-N,N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine-labeled pegylated liposomes ((188) Re-liposome) induced a decrease in white blood cell (WBC) count in Sprague-Dawley rats 7 days postinjection, the objective of the present study was to investigate extended acute radiotoxicity of (188) Re-liposome. Rats were administered via intravenous (i.v.) injection with (188) Re-liposome (185, 55.5 and 18.5 MBq), normal saline as a blank control or non-radioactive liposome as a vehicle control. Mortality, clinical signs, food consumption, body weights, urinary, biochemical and hematological analyzes were examined. In addition, gross necropsy and histopathological examinations were also performed at the end of the follow-up period. None of the rats died and no clinical sign was observed during the 28-day study period. Only male rats receiving (188) Re-liposome at a high dosage (185 MBq) displayed a slight weight loss compared with the control rats. In both male and female rats, the WBC counts of both high-dose and medium-dose (55.5 MBq) groups reduced significantly 7 days postinjection, but recovered to the normal range on Study Day 29. There was no significant difference in urinary analyzes, biochemical parameters and histopathological assessments between the (188) Re-liposome-treated and control groups. The information generated from the present study on extended acute toxicity of (188) Re-liposome will serve as a safety reference for radiopharmaceuticals in early-phase clinical trials. Copyright © 2012 John Wiley & Sons, Ltd.
Meena, Harsahay; Singh, Kshetra Pal; Negi, Prem Sing; Ahmed, Zakwan
2013-05-01
Oral administration of laboratory cultured mycelia powder of C. sinensis did not show any sign of toxicity as no significant change was observed in organ weight and serological parameters in rats. However, there was a significant increase in food intake, body weight gain and hematological parameters like WBC, RBC, Hb and lymphocytes in treated groups. Histopathology of vital organs also supported the non toxic effect of C. sinensis. The results conclude that laboratory cultured mycelia powder of C. sinensis is safe and non toxic up to 2 g/kg body weight dose.
Dote, Emi; Dote, Tomotaro; Shimizu, Hiroyasu; Shimbo, Yukari; Fujihara, Michiko; Kono, Koichi
2007-01-01
Cadmium nitrate Cd(NO(3))(2) (CdN) is commonly used in Ni-Cd battery factories. The possibility of accidental exposure to CdN is great. CdN is very soluble in water compared to other Cd compounds. Therefore, acute toxicity would be expected to be quick due to rapid absorption after exposure. However, the mechanisms of CdN toxicity have not been fully elucidated. We investigated the acute lethal toxicity and harmful systemic effects of acute exposure to large doses of CdN. The lethal dose and dose-response study of the liver and kidney were determined after intravenous administration of CdN in rats. The LD(50) of CdN was determined to be 5.5 mg/kg. Doses of 2.1, 4.2, 6.3 mg/kg were selected for the dose-response study. Liver injury was induced at doses greater than 4.2 mg/kg. Severe hepatic injury occurred in the 6.3 mg/kg group, which would have been caused by acute exposure to the high concentration of Cd that exceeded the critical concentration in hepatic tissue. A remarkable decrease in urine volume in the 6.3 mg/kg group indicated acute renal failure. A decrease in creatinine clearance suggested acute glomerular dysfunction at doses greater than 4.2 mg/kg. Increases in urinary N-acetyl-beta-D-glucosaminidase/creatinine, beta(2)-microglobulin and glucose in the 6.3 mg/kg group indicated proximal tubular injury. Secretion of K ion was also severely affected by proximal tubular injury and severe decreases in urine volume, and an increase in serum K ion was identified at doses greater than 4.2 mg/kg. Thus severe hyperkalemia might be associated with the cardiac-derived lethal toxicity of CdN.
Dubey, Nitin; Khan, Adil Mehraj; Raina, Rajinder
2013-09-01
The current study investigated the effects of deltamethrin, fluoride (F(-)) and their combination on the hepatic oxidative stress and consequent alterations in blood biochemical markers of hepatic damage in rats. Significant hepatic oxidative stress and hepatic damage were observed in the toxicant exposed groups. These changes were higher in the deltamethrin-F(-) co-exposure treatment group, depicting a positive interaction between the two chemicals.
Acute and subacute toxicity of the Carapa guianensis Aublet (Meliaceae) seed oil.
Costa-Silva, J H; Lima, C R; Silva, E J R; Araújo, A V; Fraga, M C C A; Ribeiro E Ribeiro, A; Arruda, A C; Lafayette, S S L; Wanderley, A G
2008-03-28
Carapa guianensis (Meliaceae), known as Andiroba in Brazil, has been used by Amazon Rainforest indigenous communities for treatment of coughs, convulsions, skin diseases, arthritis, rheumatism, ear infections, to heal wounds and bruises and as an insect repellent. Carapa guianensis seed oil (SO) was evaluated for its acute and subacute toxicity (30 days) by the oral route in Wistar rats. In the acute toxicity test, SO (0.625-5.0g/kg, n=5/sex) did not produce any hazardous symptoms or deaths. The subacute treatment with SO (0.375, 0.75 and 1.5g/kg, n=10/group) failed to change body weight gain, food and water consumption. Hematological analysis showed no significant differences in any of the parameters examined. However, in the biochemical parameters, there was an increase in the alanine aminotransferase (ALT) serum level (29%) in the group SO 1.5g/kg. In addition, absolute and relative liver weights were increased at the doses of 0.75g/kg (23.4 and 19.1%) and 1.5g/kg (18.7 and 33.1%). In conclusion, acute and subacute administration of Carapa guianensis seed oil did not produce toxic effects in male Wistar rats. However, the increase in the ALT serum level and in both absolute and relative liver weights may indicate a possible hepatic toxicity.
Liver Necrosis and Lipid Peroxidation in the Rat as the Result of Paraquat and Diquat Administration
Burk, Raymond F.; Lawrence, Richard A.; Lane, James M.
1980-01-01
Paraquat and diquat facilitate formation of superoxide anion in biological systems, and lipid peroxidation has been postulated to be their mechanism of toxicity. Paraquat has been shown to be more toxic to selenium-deficient mice than to controls, presumably as the result of decreased activity of the selenoenzyme glutathione peroxidase. The present study was designed to measure lipid peroxidation and to assess toxicity in control and selenium-deficient rats given paraquat and diquat. Lipid peroxidation was measured by determining ethane production rates of intact animals; toxicity was assessed by survival and by histological and serum enzyme evidence of liver and kidney necrosis. Paraquat and diquat were both much more toxic to selenium-deficient rats than to control rats. Diquat (19.5 μmol/kg) caused rapid and massive liver and kidney necrosis and very high ethane production rates in selenium-deficient rats. The effect of paraquat (78 μmol/kg) was similar to that of diquat but was not as severe. Acutely lethal doses of paraquat (390 μmol/kg) and diquat (230 μmol/kg) in control rats caused very little ethane production and no evidence of liver necrosis. These findings suggest that paraquat and diquat exert their acute toxicity largely through lipid peroxidation in selenium-deficient rats. Selenium deficiency had no effect on superoxide dismutase activity in erythrocytes or in 105,000 g supernate of liver or kidney. Glutathione peroxidase, which represents the only well-characterized biochemical function of selenium in animals, was dissociated from the protective effect of selenium against diquat-induced lipid peroxidation and toxicity by a time-course study in which selenium-deficient rats were injected with 50 μg of selenium and later given diquat (19.5 μmol/kg). Within 10 h, the selenium injection provided significant protection against diquat-induced lipid peroxidation and mortality even though this treatment resulted in no rise in glutathione peroxidase activity of liver, kidney, lung, or plasma at 10 h. This suggests that a selenium-dependent factor in addition to glutathione peroxidase exists that protects against lipid peroxidation. Images PMID:7364936
Acute Oral Toxicity (LD(50)) of CHF1 in Rats.
1982-04-01
had moderate hydronephrosis . Another animal in group 6 and one in group 4 had gray streaks in the cortical parenchyma which were probably incidental...considered to be a post mortem change. *Number of rats affected/number of rats in the group. 21 APPENDIX A-2 (cont.) Unilateral hydronephrosis was observed in
To investigate the contribution of different life stages on response to toxicants, we utilized a custom designed RT-PCR array to examine the effects of acute exposure by oral gavage of the volatile organic solvent toluene (0.00, 0.65 or 1.0 glkg) in the brains of ma1e Brown Norwa...
Dermal Sensitization Potential of Triethyleneglycol Dinitrate (TEGDN) in Guinea Pigs
1989-01-01
mutagenicity assay, acute oral toxicity tests in rats and mice, acute dermal toxicity in rabbits, dermal and ocular irritation studies in rabbits, and...conditions: 85E0102 had diffuse tracheitis, mild endocarditis , mild hepatitis, and diffuse pigment granules in the small intestine; 85E0103 had mild...severe ulceration progressing to necrosis. Sensitization is manifested as indirect inflammation mediated by components of the immune system in
Absence of subchronic oral toxicity and genotoxicity of rice koji with Aspergillus terreus.
Yun, Jun-Won; Kim, Seung-Hyun; Kim, Yun-Soon; You, Ji-Ran; Cho, Eun-Young; Yoon, Jung-Hee; Kwon, Euna; Lee, Sang Ju; Kim, Seong Pil; Seo, Jae Hoon; In, Jae Pyung; Ahn, Jae Hun; Jang, Ja-June; Park, Jin-Sung; Che, Jeong-Hwan; Kang, Byeong-Cheol
2017-10-01
Koji products have been considered as an effective fermented food consumed in East Asia with many health benefits. Particularly, rice koji with Aspergillus terreus (RAT) has been reported to be able to prevent hyperlipidemia and hepatic steatosis through regulating cholesterol synthesis. Despite its biological activities, there is a lack of comprehensive information to give an assurance of its safety. Therefore, the objective of this study was to perform a series of toxicological studies (repeated dose oral toxicity and genotoxicity) according to test guidelines published by the Organization for Economic Cooperation and Development. Along with acute toxicity study using rats and beagle dogs, a 13-week toxicity study revealed no clear RAT-related toxic changes, including body weight, mortality, hematology, serum biochemistry, organ weight, and histopathology after oral administration at doses of 500, 1000, and 2000 mg/kg BW. The no-observed-adverse-effect level of RAT was considered to be more than 2000 mg/kg BW/day in rats of both genders. In addition, potential genotoxicity was evaluated using a standard battery of tests (Ames test, chromosome aberration assay, and micronucleus assay) which revealed that RAT showed no genotoxicity. Accordingly, these results suggest that RAT is a safe and non-toxic functional food for human consumption at proper dose. Copyright © 2017. Published by Elsevier Inc.
Dutok, Carlos M S; Berenguer-Rivas, Clara Azalea; Rodríguez-Leblanch, Elizabeth; Pérez-Jackson, Liliana; Chil-Nuñez, Idelsy; Escalona-Arranz, Julio César; Reyes-Tur, Bernardo; Queiroz, Margareth M C
2015-01-01
The common use of Pouteria mammosa (L.) Cronquist, "Mamey or Zapote," in food and ethnobotanic medicine shows its low or absent toxicity as fruit extracts prepared from seeds. However, it is essential to conduct security trials to scientifically support their use in drug therapy. This study evaluated the aqueous and hydroalcoholic extract (25%) Acute Oral Toxicity, obtained from the seeds of P. mammosa, in Sprague Dawley rats and dermal and eye irritability in New Zealand rabbits. The 404 and 405 acute dermal and eye irritation/corrosion guidelines were used, as well as the 423 Acute Oral Toxicity guideline, Acute Toxic Class Method of the Organization for Economic Cooperation and Development (OECD). The aqueous extract was located in the following category: not classified as toxic (CTA 5), while hydroalcoholic extract at 25% was classified as dangerous (CTA 4). Both extracts can be used without side reaction that irritates the skin which permitted classification as potentially not irritant. P. mammosa in the two extracts caused mild and reversible eye irritation, and it was classified as slightly irritating.
Ducharme, Nicole A; Reif, David M; Gustafsson, Jan-Ake; Bondesson, Maria
2015-08-01
With the high cost and slow pace of toxicity testing in mammals, the vertebrate zebrafish has become a tractable model organism for high throughput toxicity testing. We present here a meta-analysis of 600 chemicals tested for toxicity in zebrafish embryos and larvae. Nineteen aggregated and 57 individual toxicity endpoints were recorded from published studies yielding 2695 unique data points. These data points were compared to lethality and reproductive toxicology endpoints analyzed in rodents and rabbits and to exposure values for humans. We show that although many zebrafish endpoints did not correlate to rodent or rabbit acute toxicity data, zebrafish could be used to accurately predict relative acute toxicity through the rat inhalation, rabbit dermal, and rat oral exposure routes. Ranking of the chemicals based on toxicity and teratogenicity in zebrafish, as well as human exposure levels, revealed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene, and chlorpyrifos ranked in the top nine of all chemicals for these three categories, and as such should be considered high priority chemicals for testing in higher vertebrates. Copyright © 2014 Elsevier Inc. All rights reserved.
Nanosilica and Polyacrylate/Nanosilica: A Comparative Study of Acute Toxicity
Niu, Ying-Mei; Zhu, Xiao-Li; Chang, Bing; Tong, Zhao-Hui; Cao, Wen; Qiao, Pei-Huan; Zhang, Lin-Yuan; Zhao, Jing; Song, Yu-Guo
2016-01-01
We compared the acute toxicity of nanosilica and polyacrylate/nanosilica instillation in Wistar rats (n = 60). Exposure to nanosilica and polyacrylate/nanosilica showed a 30% mortality rate. When compared with saline-treated rats, animals in both exposure groups exhibited a significant reduction of PO2 (P < 0.05) at both 24 and 72 hr. after exposure. Both exposure groups exhibited a significant reduction of neutrophils in arterial blood compared to saline controls (P < 0.05) 24 hr. after exposure. The levels of blood ALT and LDH in exposed groups were found to be significantly increased (P < 0.05) 24 hr. following exposure. The exposed groups exhibited various degrees of pleural effusion and pericardial effusion. Our findings indicated respiratory exposure to polyacrylate/nanosilica and nanosilica is likely to cause multiple organ toxicity. PMID:26981538
The acute toxicity of toluene, a model volatile organic compound (VOC), depends on the concentration (C) and duration (t) of exposure, and guidelines for acute exposures have traditionally used extrelationships to extrapolate protective and/or effective concentrations across dura...
Cherkezova-Kinova, E; Lateva, E; Balutsov, M
1976-01-01
The authors examined 18 rats--6 controls and 12 experimental. After duodenostomy by means of a puncure of the duodenal wall duodenal content from healthy persons was administered in the duodenum of control rats. In the experimental group of animals duodenal content form patients with pancreatitis was administered. Duodenum, pancrea, liver and kidneys were examined histomorphologicaly. The obtained results showed that there were no substantial deviations from the norm in the histomorphological picture of the examined organs after administration of duodenal content. In the organs of the experimental group these changes could be characterized as acute necrotic pancreatitis, acute duodenitis, acute finely dotted dystrophy of liver and slightly, manifested acute renal insufficiency. the authors suggested the occurrence of some toxic substances in the duodenal content in patients with acute pancreatitis.
2010-01-01
Background Many bacteria among the Enterobacteria family are involved in infectious diseases and diarrhoea. Most of these bacteria become resistant to the most commonly used synthetic drugs in Cameroon. Natural substances seem to be an alternative to this problem. Thus the aim of this research was to investigate the in vitro antibacterial activity of the methanol and aqueous-methanol extracts of Sida rhombifolia Linn (Malvaceae) against seven pathogenic bacteria involved in diarrhoea. Acute toxicity of the most active extract was determined and major bioactive components were screened. Methods The agar disc diffusion and the agar dilution method were used for the determination of inhibition diameters and the Minimum Inhibitory Concentration (MICs) respectively. The acute toxicity study was performed according WHO protocol. Results The aqueous-methanol extract (1v:4v) was the most active with diameters of inhibition zones ranging from 8.7 - 23.6 mm, however at 200 μg/dic this activity was relatively weak compared to gentamycin. The MICs of the aqueous-methanol extract (1v:4v) varied from 49.40 to 78.30 μg/ml. Salmonella dysenteriae was the most sensitive (49.40 μg/ml). For the acute toxicity study, no deaths of rats were recorded. However, significant increase of some biochemical parameters such as aspartate amino-transferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and creatinine (CRT) were found. The phytochemical analysis of the aqueous methanol extract indicated the presence of tannins, polyphenols, alkaloids, glycosides, flavonoids and saponins Conclusion The results showed that the aqueous-methanol extract of S. rhombifolia exhibited moderate antibacterial activity. Some toxic effects were found when rats received more than 8 g/kg bw of extract. Antibacterial; Enterobacteria; Acute toxicity; Phytochemical analysis PMID:20663208
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Alamsyah, R. I.; Widiyani, T.; Artanti, A. N.
2018-03-01
Bay leaf (Eugenia polyantha) is widely used as an alternative therapy for diabetic and hypercholesterol. However, the administration of the extract has a low oral bioavailability, therefore it is prepared by Self Nanoemulsifying Drug Delivery Systems (SNEDDS) ethyl acetate extract of bay leaf. Therefore, acute and subchronic toxicity test is required. The toxicity test performed was an experimental study, including acute and subchronic toxicity tests. Animal experiments were used using Wistar strain rats. Acute toxicity test using 5 groups (n=5) consisted of 1 control group and 4 groups of SNEDDS dose with 48 mg/kgBW 240 mg/kg, 1200 mg/kg, and 6000 mg/kg, while for subchronic toxicity test with 1 group control and 3 groups of doses of SNEDDS with dose group variation 91.75 mg/kgBW, 183.5 mg/kg, and 367 mg/kg. Duration of observation at acute toxicity test for 14 days while for subcronic toxicity test for 28 days with continuous SNEDDS dosage. The results of the acute toxicity test showed toxic symptoms and obtained median lethal dose (LD50) values from SNEDDS from ethyl acetate extract of bay leaf 1409.30 mg/kgBW belonging to slightly toxic category. Subchronic toxicity studies show that the test drug has minor damage in liver and kidneys and moderate damage in pancreas.
Saratale, Rijuta Ganesh; Lee, Hee-Seok; Koo, Yong Eui; Saratale, Ganesh Dattatraya; Kim, Young Jun; Imm, Jee Young; Park, Yooheon
2018-04-01
The absorption kinetics of food ingredients such as nanoemulsified vitamin E and green tea microstructures were evaluated by the intestinal in situ single perfusion technique. Absorption rate, sub-acute oral toxicity and organ morphology in a rat model were examined. The intestinal in situ single perfusion technique and HPLC analysis were applied to investigate the absorption rate of selected materials by examining time-dependent changes in the serum levels of catechin and dl-α-tocopherol. The acute toxicity test and histopathological evaluation were applied to analyze the safety of microsized green tea and nanosized vitamin E in a rat model. Total serum dl-α-tocopherol levels significantly increased with nanosized vitamin E administration (P<0.05). Rats treated to nanosized vitamin E until 90min after administration showed significantly increased absorption rate of serum dl-α-tocopherol levels at each time point (10min interval) (P<0.001). Rats administered 2000mg/kg of nanosized vitamin E and microsized green tea did not show signs of acute toxicity or death after 14days of observation. In addition, macroscopic analysis showed that there were no changes in representative organ sections of rats following the oral administration of food-related nanoscale materials. We successfully demonstrated that using nanosized vitamin E increased absorption rate to a greater extent than normal food-related material, and these results occurs via safety analyses on food-related nanoscale materials for human consumption. These results could be useful for the design and development of novel nanoemulsified vitamin E and microsized green tea formulations that can overcome the problem of their bioavailability and improve their efficacy while still maintaining their essential therapeutic efficacies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Huaguo; Xu, Yongfu; Wang, Jianzhong; Zhao, Wei; Ruan, Huihui
2015-01-01
Baicalin belongs to glucuronic acid glycosides and after hydrolysisbaicalein and glucuronic acid come into being. It has such effects as clearing heat and removing toxicity, anti-inflammation, choleresis, bringing high blood pressure down, diuresis, anti-allergic reaction and so on. In this study, we investigated whether baicalin ameliorates isoproterenol-induced acute myocardial infarction and its mechanism. Rat model of acute myocardial infarction was induced by isoproterenol. Casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH), cardiac troponin T (cTnT) and infarct size measurement were used to measure the protective effect of baicalin on isoproterenol-induced acute myocardial infarction. iNOS protein expression in rat was analyzed using western blot analysis. Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), malondialdehyde (MDA) and superoxide dismutase (SOD) and caspase-3 activation levels were explored using commercial ELISA kits. In the acute myocardial infarction experiment, baicalin effectively ameliorates the level of CK, CK-MB, LDH and cTnT, reduced infarct size in acute myocardial infarction rat model. Meanwhile, treatment with baicalin effectively decreased the iNOS protein expression, inflammatory factors and oxidative stresses in a rat model of acute myocardial infarction. However, baicalin emerged that anti-apoptosis activity and suppressed the activation of caspase-3 in a rat model of acute myocardial infarction. The data suggest that the protective effect of baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat. PMID:26617721
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Mufidah; Artanti, A. N.; Harini, M.
2018-03-01
The present study was aimed to study the acute and subchronic toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with Palm Kernel Oil as carrier. In acute toxicity test, five groups of rat (n=5/groups) were orally treated with Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with doses at 48, 240, 1200 and 6000 mg/kg/day respectively, then the median lethal dose LD50, advers effect and mortality were recorded up to 14 days. Meanwhile, in subchronic toxicity study, 4 groups of rats (n=6/group) received by orally treatment of SNEDDS from chloroform bay leaf extract with doses at 91.75; 183.5; 367 mg/kg/day respectively for 28 days, and biochemical, hematological and histopatological change in tissue such as liver, kidney, and pancreatic were determined. The result show that LD50 is 1045.44 mg/kg. Although histopathological examination of most of the organs exhibited no structural changes, some moderate damage was observed in high‑ dose group animals (367 mg/kg/day). The high dose of SNEDDS extract has shown mild signs of toxicity on organ function test.
EFFECTS OF ACUTE PYRETHROID EXPOSURE ON THERMOREGULATION IN RATS.
Pyrethroid insecticides produce acute neurotoxicity in mammals. According to the FQPA mandate, the USEPA is required to consider the risk of cumulative toxicity posed to humans through exposure to pyrethroid mixtures. Thermoregulatory response (TR) is being used to determine if t...
Universal LD50 predictions using deep learning
NICEATM Predictive Models for Acute Oral Systemic Toxicity LD50 entry Risa R. Sayre (sayre.risa@epa.gov) & Christopher M. Grulke Our approach uses an ensemble of multilayer perceptron regressions to predict rat acute oral LD50 values from chemical features. Features were genera...
Glial Reactivity in Resistance to Methamphetamine-Induced Neurotoxicity
Friend, Danielle M.; Keefe, Kristen A.
2013-01-01
Neurotoxic regimens of methamphetamine (METH) result in reactive microglia and astrocytes in striatum. Prior data indicate that rats with partial dopamine (DA) loss resulting from prior exposure to METH are resistant to further decreases in striatal DA when re-exposed to METH 30 days later. Such resistant animals also do not show an activated microglia phenotype, suggesting a relation between microglial activation and METH-induced neurotoxicity. To date, the astrocyte response in such resistance has not been examined. Thus, this study examined glial-fibrillary acidic protein (GFAP) and CD11b protein expression in striata of animals administered saline or a neurotoxic regimen of METH on postnatal days 60 and/or 90 (Saline:Saline, Saline:METH, METH:Saline, METH:METH). Consistent with previous work, animals experiencing acute toxicity (Saline:METH) showed both activated microglia and astocytes, whereas those resistant to the acute toxicity (METH:METH) did not show activated microglia. Interestingly, GFAP expression remained elevated in rats exposed to METH at PND60 (METH:Saline), and was not elevated further in resistant rats treated for the second time with METH (METH:METH). These data suggest that astrocytes remain reactive up to 30 days post-METH exposure. Additionally, these data indicate that astrocyte reactivity does not reflect acute, METH-induced DA terminal toxicity, whereas microglial reactivity does. PMID:23414433
Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif
2016-02-13
Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.
Fluoroacetate-mediated toxicity of fluorinated ethanes.
Keller, D A; Roe, D C; Lieder, P H
1996-04-01
A series of 1-(di)halo-2-fluoroethanes reported in the literature to be nontoxic or of low toxicity were found to be highly toxic by the inhalation route. Experiments were performed that showed the compounds, 1,2-difluoroethane, 1-chloro-2-fluoroethane, 1-chloro-1,2-difluoroethane, and 1-bromo-2-fluoroethane to be highly toxic to rats upon inhalation for 4 hr. All four compounds had 4-hr approximate lethal concentrations of < or = 100 ppm in rats. In contrast, 1,1-difluoroethane (commonly referred to as HFC-152a) has very low acute toxicity with a 4-hr LC50 of > 400,000 ppm in rats. Rats exposed to the selected toxic fluoroethanes showed clinical signs of fluoroacetate toxicity (lethargy, hunched posture, convulsions). 1,2-Difluoroethane, 1-chloro-2-fluoroethane, 1-chloro-1,2-difluoroethane, and 1-bromo-2-fluoroethane were shown to increase concentrations of citrate in serum and heart tissue, a hallmark of fluoroacetate intoxication. 19F NMR analysis confirmed that fluoroacetate was present in the urine of rats exposed to each toxic compound. Fluorocitrate, a condensation product of fluoroacetate and oxaloacetate, was identified in the kidney of rats exposed to 1,2-difluoroethane. There was a concentration-related elevation of serum and heart citrate in rats exposed to 0-1000 ppm 1,2-fluoroethane. Serum citrate was increased up to 5-fold and heart citrate was increased up to 11-fold over control citrate levels. Metabolism of 1,2-difluoroethane by cytochrome P450 (most likely CYP2E1) is suspected because pretreatment of rats or mice with SKF-525F, disulfiram, or dimethyl sulfoxide prevented or delayed the toxicity observed in rats not pretreated. Experimental evidence indicates that the metabolism of the toxic fluoroethanes is initiated at the carbon-hydrogen bond, with metabolism to fluoroacetate via an aldehyde or an acyl fluoride. The results of these studies show that 1-(di)halo-2-fluoroethanes are highly toxic to rats and should be considered a hazard to humans unless demonstrated otherwise.
SENSITIZATION AND TOLERANCE WITH EPISODIC (WEEKLY) NICOTINE ON MOTOR ACTIVITY IN RATS.
These studies grew out of an unexpected finding from investigations of the neurobehavioral toxicity of PCBs. This paper shows that episodic, or recurring intermittent acute exposures to nicotine produce dramatic and long-lasting changes in the motor activity of laboratory rats. ...
Segal, L; Penman, M G; Piriou, Y
2018-01-01
The potential systemic toxicity of Oligopin®, a French Maritime Pine Bark extract (FMPBE) rich in procyanidolic oligomers, was evaluated in an acute oral limit test and a 90-day repeated dose oral toxicity study with Sprague Dawley rats. The potential mutagenicity was assessed in a bacterial reverse mutation assay and in vitro mammalian chromosome aberration assay with human lymphocytes. The results indicate that Oligopin® was nongenotoxic in both bacterial and human cell assays, was not acutely toxic via oral administration at up to 2000 mg/kg and was well tolerated following 90 days of oral administration to SD rats, with a no observed adverse effect level of 1000 mg/kg/day. The lack of significant adverse systemic effects in the 90 day study is concordant with findings from several human clinical trials. The acute toxicity and mutagenicity data are consistent with data reported by AFSSA in a summary of FMPBE safety, in which a NOAEL of 100 mg/kg/day was established. In contrast, the NOAEL derived from the 90-day study with Oligopin® was 1000 mg/kg/day, suggesting that it is less systemically toxic than other FMPBE previously evaluated in subchronic studies, and comparable to proanthocyanidins extracted from grape seeds, which are widely used as nutritional supplement ingredients.
Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model
Jackson, George R.; Maione, Anna G.; Klausner, Mitchell
2018-01-01
Abstract Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1–2 and EPA Acute Inhalation Toxicity Category I–II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity. PMID:29904643
Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model.
Jackson, George R; Maione, Anna G; Klausner, Mitchell; Hayden, Patrick J
2018-06-01
Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal ( in vitro ) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.
AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)
Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...
Guimarães, Luciane Mourão; Farias, Davi Felipe; Muchagata, Relinda Campos Carvalho; de Magalhães, Mariana Quezado; Campello, Cláudio Cabral; Rocha, Thales Lima; Vasconcelos, Ilka Maria; Carvalho, Ana Fontenele Urano; Mulinari, Fernanda; Grossi-de-Sa, Maria Fátima
2010-01-01
The Cry1Ia12 entomotoxin from a Brazilian Bacillus thuringiensis strain is currently being expressed in cotton cultivars to confer resistance to insect-pests. The present study aimed to assess the effects of a diet containing Cry1Ia12 protein on growing rats. A test diet containing egg white and Cry1Ia12 (0.1% of total protein) as a protein source was offered to rats for ten days. In addition, an acute toxicity bioassay was performed in rats with a single oral dose of the entomotoxin (12 mg/animal). No adverse effects were observed in the animals receiving the test diet when compared to those receiving a control diet (egg white). The analysed parameters included relative dry weight of internal organs, duodenum histology, blood biochemistry, and nutritional parameters. The results of the acute toxicity test showed no mortality or behaviour alteration. Thus, Cry1Ia12 toxin at the tested concentration does not cause deleterious effects on growing rats when incorporated in the diet for 10 days. PMID:20862341
Moser, Virginia C
2011-01-01
Age-related differences in the acute neurotoxicity of cholinesterase (ChE)-inhibiting pesticides have been well-studied for a few organophosphates, but not for many others. In this study, we directly compared dose-responses using brain and red blood cell (RBC) ChE measurements, along with motor activity, for mevinphos, monocrotophos, dicrotophos, and phosphamidon. Long-Evans hooded male rats were tested as adults and at postnatal day (PND) 17; PND11 pups were also tested with dicrotophos only. All chemicals were administered via oral gavage and tests were conducted at times intended to span peak behavioral and ChE effects. All OPs tested produced a rapid onset and recovery from the behavioral effects. There were age-related differences in the inhibition of brain, but not necessarily RBC, ChE. Mevinphos was clearly more toxic, up to 4-fold, to the young rat. On the other hand, monocrotophos, dicrotophos, and phosphamidon were somewhat more toxic to the young rat, but the magnitude of the differences was < 2-fold lower. Motor activity was consistently decreased in adults for all chemicals tested; however, there was more variability with the pups and clear age-related differences were only observed for mevinphos. These data show that three of these four OPs were only moderately more toxic in young rats, and further support findings that age-related differences in pesticide toxicity are chemical-specific. Published by Elsevier Inc.
20180411 - Universal LD50 predictions using deep learning (ICCVAM)
NICEATM Predictive Models for Acute Oral Systemic Toxicity LD50 entry Risa R. Sayre (sayre.risa@epa.gov) & Christopher M. Grulke Our approach uses an ensemble of multilayer perceptron regressions to predict rat acute oral LD50 values from chemical features. Features were gene...
Acute Oral Toxicity of DIGL-RP Solid Propellant in Sprague-Dawley Rats
1989-11-30
protein droplet and cast formation, glomeruli and cortical tubules Liver--diffuse vacuolation Stomach--multifocal, acute, necrotizing gastritis ...The choice of tissues examined histologically was biased by gross evaluation. Indications of renal protein loss were noted in five animals (casts and
Kaiser, A; Classen, H G; Eberspächer, J; Lingens, F
1981-01-01
Seven strains of soil bacteria with the ability to metabolize herbicides, alkaloids or antibiotics were tested in rats for acute toxicity. 1. Upon oral administration of 9.0 x 10(8) to 6.6 x 10(10) cells daily during 7 d no adverse reactions were observed. 2. Exposure by air did not lead to specific pulmonary changes. 3. Intracutaneous injection of 7.5 x 10(6) to 1.4 x 10(8) cells did not lead to adverse skin reactions. 4. Intraperitoneal injections up to 10(8) cells per animal did not kill rats although bacteria entered blood. At higher concentrations some mortality occurred partly due to unspecific stress reactions. 5. Animal data and observations on 20 humans being exposed to these strains for 2 months up to 15 years support the view that the bacteria tested are essentially harmless for health.
Inhalation toxicity of lithium combustion aerosols in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenspan, B.J.; Allen, M.D.; Rebar, A.H.
1986-01-01
Studies of the acute inhalation toxicity of lithium combustion aerosols were undertaken to aid in evaluating the health hazards associated with the proposed use of lithium metal in fusion reactors. Male and female F344/Lov rats, 9-12 wk of age, were exposed once for 4 h to concentrations of 2600, 2300, 1400, or 620 mg/m/sup 3/ of aerosol (MMAD = 0.69 ..mu..m, sigma/sub g/ = 1.45) that was approximately 80% lithium carbonate and 20% lithium hydroxide to determine the acute toxic effects. Fourteen-day LC50 values (with 95% confidence limits) of 1700 (1300-2000) mg/m/sup 3/ for the male rats and 2000 (1700-2400)more » mg/m/sup 3/ for the female rate were calculated. Clinical signs of anorexia, dehydration, respiratory difficulty, and perioral and perinasal encrustation were observed. Body weights were decreased the first day after exposure in relation to the exposure concentration. In animals observed for an additional 2 wk, body weights, organ weights, and clinical signs began to return to pre-exposure values. Histopathologic examination of the respiratory tracts from the animals revealed ulcerative or necrotic laryngitis, focal to segmental ulcerative rhinitis often accompanied by areas of squamous metaplasia, and, in some cases, a suppurative bronchopneumonia or aspiration pneumonia, probably secondary to the laryngeal lesions. The results of these studies indicate the moderate acute toxicity of lithium carbonate aerosols and will aid in the risk analysis of accidental releases of lithium combustion aerosols.« less
Li, I-Chen; Chen, Wan-Ping; Chen, Yen-Po; Lee, Li-Ya; Tsai, Yueh-Ting; Chen, Chin-Chu
2018-01-23
This study aimed to establish an in vitro model to confirm the efficacy of erinacine A-enriched Hericium erinaceus (EAHE) mycelia and investigate its potential adverse effects in a preclinical experimental setting, including an assessment on the oral administration of EAHE mycelia in acute and prenatal developmental toxicity tests. At a single dose of 5000 mg/kg body weight, EAHE mycelia elicited no death or treatment-related signs of toxicity in ten Sprague-Dawley rats of both sexes during the 14 days of the experimental period. After considering the recommended dose range of EAHE mycelia from the acute toxicity test as well as the therapeutic doses, EAHE mycelia was administered to 66 pregnant rats in the low, medium, and high-dose groups by gavage at 875, 1750, and 2625 mg/kg body weight, respectively. All dams were subjected to a Caesarean section on the 20th day of pregnancy, and the fetuses were examined for any morphological abnormalities. Results indicated that weight of uterus, fetal body weight, number of corpora lutea, implantation sites, pre-implantation loss, and post-implantation loss of the treatment groups and the control group exhibited no statistical difference. In addition, no significant differences were observed in the fetal external, organ, and skeletal examinations. Taken together, it can be concluded that EAHE mycelia is considered safe and practically nontoxic for consumption within the appropriate doses and investigation period in this study.
Ibrahim, Faten M; Attia, Hanan Naeim; Maklad, Yousreya Aly Aly; Ahmed, Kawkab A; Ramadan, Mohamed F
2017-12-01
Cold-pressed oils (CPO) are commercially available in the market and characterized by their health-promoting properties. Clove oil (CLO), coriander seed oil (COO) and black cumin oil (BCO) were evaluated for their bioactive lipids. Pharmacological screening was performed to evaluate acute toxicity, anti-inflammatory and ulcerogenic effects as well as histopathological changes in tissues of albino rats fed with CPO. Fatty acids, tocols and total phenolics were analyzed. The acute toxicity test for each CPO was estimated during 14 d. Carrageenan-induced rat paw oedema was used for assessment of anti-inflammatory activity of CPO. Animals were fasted overnight, and via oral gavage given indomethacin (10 mg/kg) or CPO (400 mg/kg) to investigate ulcerogenecity. Histopathological changes in liver, kidney, heart, spleen and stomach were screened. Amounts of α-, β-, γ- and δ-tocopherols in CLO were 1495, 58, 4177 and 177 mg/kg oil, respectively. In COO, α, β, γ and δ-tocopherols were 10.0, 18.2, 5.1 and 34.8%, respectively. In BCO, β-tocotrienol was the main constituent. CLO, COO and BCO contained 4.6, 4.2 and 3.6 mg GAE/g, respectively. Acute toxicity test determined that 400 mg/kg of CPO to be used. In the carrageenan model of inflammation, pretreatment of rats with indomethacin (10 mg/kg) or CLO (400 mg/kg) induced a significant (p < 0.05) reduction by 31.3 and 27.4%, respectively, in rat paw oedema as compared with the carrageenan-treated group. Indomethacin induced a significant ulcerogenic effect with an ulcer index of 19. Oral treatment of CPO showed no ulcerogenic effect, wherein no histopathological changes were observed. CPO, particularly CLO, could minimize acute inflammation.
Lyoussi, Badiaa; Cherkaoui Tangi, Khadija; Morel, Nicole; Haddad, Mohamed; Quetin-Leclercq, Joelle
2018-01-01
The present investigation was carried out to evaluate the safety of an aqueous extract of the seeds of Calycotome villosa (Poiret) Link (subsp. intermedia) by determining its cytotoxicity and potential toxicity after acute and sub-chronic administration in rodents. Cytotoxic activity was tested in cancer and non-cancer cell lines HeLa, Mel-5, HL-60 and 3T3. Acute toxicity tests were carried out in mice by a single oral administration of Calycotome seed-extract (0 - 12 g/kg) as well as intraperitoneal doses of 0 - 5 g/kg. Sub-chronic studies were conducted in Wistar rats by administration of oral daily doses for up to 90 days. Changes in body and vital organ weights, mortality, haematology, clinical biochemistry and histologic morphology were evaluated. The lyophilized aqueous extract of C. villosa exhibited a low cytotoxicity in all cell lines tested with an IC 50 > 100 µg/ml. In the acute study in mice, intra-peritoneal administration caused dose-dependent adverse effects and mortality with an LD 50 of 4.06 ± 0.01 g/kg. In the chronic tests, neither mortality nor visible signs of lethality was seen in rats. Even AST and ALT were not affected while a significant decrease in serum glucose levels, at 300 and 600 mg/kg was detected. Histopathological examination of the kidney and liver did not show any alteration or inflammation at the end of treatment. In conclusion, the aqueous extract of C. villosa seed appeared to be non-toxic and did not produce mortality or clinically significant changes in the haematological and biochemical parameters in rats.
Kassa, Jiri; Kuca, Kamil; Cabal, Jiri; Paar, Martin
2006-10-01
The potency of newly developed asymmetric bispyridinium oximes (K027, K048) in reactivating tabun-inhibited acetylcholinesterase (AChE) and in eliminating tabun-induced acute toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined the percent of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats and showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime, the most efficacious known reactivators of tabun-inhibited AChE. These were also found to be sufficiently efficacious in the elimination of acute lethal toxic effects in tabun-poisoned rats. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and in counteracting acute lethal effects of tabun. In addition, our results confirm that the efficacy of oximes in reactivating tabun-inhibited AChE in blood, diaphragm, and brain correlates with the potency of oximes in protecting rats poisoned with supralethal doses of tabun.
Kalinina, E Iu; Iagmurov, O D
2014-01-01
The methods of light microscopy, immunohistochemistry, and electron microscopy were employed to study the morphofunctional changes in epithelium of bronchial and respiratory segments of the rat lungs used as models of acute fatal poisoning with household gas. It was shown that this toxic effect induces the pathological process involving all the elements of the epithelial layer in the bronchial and respiratory segments of the lungs of experimental animals. At the ultrastructural level, mitochondria and endoplasmic reticulum structures are affected, with the death of epithelial cells leading to the damage of the aerohematic barrier. The toxic effect of the gaseous mixture on the membranes causes the destruction of various elements of the epithelial layer. The results of this study help to understand the mechanisms of death in the case of acute fatal poisoning with household gas.
Toxicological analysis and anti-inflammatory effects of essential oil from Piper vicosanum leaves.
Hoff Brait, Débora Regina; Mattos Vaz, Márcia Soares; da Silva Arrigo, Jucicléia; Borges de Carvalho, Luciana Noia; Souza de Araújo, Flávio Henrique; Vani, Juliana Miron; da Silva Mota, Jonas; Cardoso, Claudia Andrea Lima; Oliveira, Rodrigo Juliano; Negrão, Fábio Juliano; Kassuya, Cândida Aparecida Leite; Arena, Arielle Cristina
2015-12-01
This study assessed the anti-inflammatory effects of the essential oil from Piper vicosanum leaves (OPV) and evaluated the toxicological potential of this oil through acute toxicity, genotoxicity and mutagenicity tests. The acute toxicity of OPV was evaluated following oral administration to female rats at a single dose of 2 g/kg b.w. To evaluate the genotoxic and mutagenic potential, male mice were divided into five groups: I: negative control; II: positive control; III: 500 mg/kg of OPV; IV: 1000 mg/kg of OPV; V: 2000 mg/kg of OPV. The anti-inflammatory activity of OPV was evaluated in carrageenan-induced pleurisy and paw edema models in rats. No signs of acute toxicity were observed, indicating that the LD50 of this oil is greater than 2000 mg/kg. In the comet assay, OPV did not increase the frequency or rate of DNA damage in groups treated with any of the doses assessed compared to that in the negative control group. In the micronucleus test, the animals treated did not exhibit any cytotoxic or genotoxic changes in peripheral blood erythrocytes. OPV (100 and 300 mg/kg) significantly reduced edema formation and inhibited leukocyte migration analyzed in the carrageenan-induced edema and pleurisy models. These results show that OPV has anti-inflammatory potential without causing acute toxicity or genotoxicity. Copyright © 2015 Elsevier Inc. All rights reserved.
A DOSIMETRIC ANALYSIS OF THE ACUTE BEHAVIORAL EFFECTS OF INHALED TOLUENE IN RATS
Knowledge of the appropriate metric of dose for a toxic chemical facilitates quantitative extrapolation of toxicity observed in the laboratory to the risk of adverse effects in the human population. Here we utilize a physiologically-based toxicokinetic (PBTK) model for toluene, a...
DOT National Transportation Integrated Search
1986-05-01
Experimental animal subjects are used most commonly to assess the toxicity of : thermal decomposition products (smoke) from burning materials. Nascent smoke is : obviously quite hot; therefore, the design of smoke toxicity assay systems must : provid...
Development of an acceptable factor to estimate chronic end points from acute toxicity data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venman, B.C.; Flaga, C.
1985-12-01
Acceptable daily intake (ADI) values are routinely developed for threshold toxicants from NOAELs determined from human or animal chronic or subchronic data. These NOAELs are then divided by appropriate uncertainty factors ranging from 10 to 1000 depending on the quality of the data. However, for the vast majority of chemicals used industrially, adequate toxicity data needed to use this process are not available. Thus, a procedure to estimate a chronic toxicity endpoint from acute toxicity data, such as an oral rat LD50, becomes necessary. An acute-to-chronic application factor of 0.0001 was developed, which when multiplied by an oral LD50 formore » an individual chemical, yields a surrogate chronic NOAEL. This figure can then be used to estimate an acceptable daily exposure for humans. The process used to estimate this application factor is detailed.« less
Effects of acute chlorpyrifos exposure on in vivo acetylcholine accumulation in rat striatum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karanth, Subramanya; Liu, Jing; Mirajkar, Nikita
2006-10-01
This study examined the acute effects of chlorpyrifos (CPF) on cholinesterase inhibition and acetylcholine levels in the striatum of freely moving rats using in vivo microdialysis. Adult, male Sprague-Dawley rats were treated with vehicle (peanut oil, 2 ml/kg) or CPF (84, 156 or 279 mg/kg, sc) and functional signs of toxicity, body weight and motor activity recorded. Microdialysis was conducted at 1, 4 and 7 days after CPF exposure for measurement of acetylcholine levels in striatum. Rats were then sacrificed and the contralateral striatum and diaphragm were collected for biochemical measurements. Few overt signs of cholinergic toxicity were noted inmore » any rats. Body weight gain was significantly affected in the high-dose (279 mg/kg) group only, while motor activity (nocturnal rearing) was significantly reduced in all CPF-treated groups at one day (84 mg/kg) or from 1-4 days (156 and 279 mg/kg) after dosing. Cholinesterase activities in both diaphragm and striatum were markedly inhibited (50-92%) in a time-dependent manner, but there were relatively minimal dose-related changes. In contrast, time- and dose-dependent changes in striatal acetylcholine levels were noted, with significantly higher levels noted in the high-dose group compared to other groups. Maximal increases in striatal acetylcholine levels were observed at 4-7 days after dosing (84 mg/kg, 7-9-fold; 156 mg/kg, 10-13-fold; 279 mg/kg, 35-57-fold). Substantially higher acetylcholine levels were noted when an exogenous cholinesterase inhibitor was included in the perfusion buffer, but CPF treatment-related differences were substantially lower in magnitude under those conditions. The results suggest that marked differences in acetylcholine accumulation can occur with dosages of CPF eliciting relatively similar degrees of cholinesterase inhibition. Furthermore, the minimal expression of classic signs of cholinergic toxicity in the presence of extensive brain acetylcholine accumulation suggests that some compensatory process(es) downstream from synaptic neurotransmitter accumulation limits the expression of toxicity following acute CPF exposure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonsart, Julien; Menet, Marie-Claude; Decleves, Xavier
The use of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has been associated with unexplained deaths. Male humans and rodents are more sensitive to acute toxicity than are females, including a potentially lethal hyperthermia. MDMA is highly metabolized to five main metabolites, by the enzymes CYP1A2 and CYP2D. The major metabolite in rats, 3,4-methylenedioxyamphetamine (MDA), also causes hyperthermia. We postulated that the reported sex difference in rats is due to a sexual dimorphism(s). We therefore determined (1) the LD50 of MDMA and MDA, (2) their hyperthermic effects, (3) the activities of liver CYP1A2 and CYP2D, (4) the liver microsomal metabolism ofmore » MDMA and MDA, (5) and the plasma concentrations of MDMA and its metabolites 3 h after giving male and female Sprague-Dawley (SD) rats MDMA (5 mg.kg{sup -1} sc). The LD50 of MDMA was 2.4-times lower in males than in females. MDMA induced greater hyperthermia (0.9 deg. C) in males. The plasma MDA concentration was 1.3-fold higher in males, as were CYP1A2 activity (twice) and N-demethylation to MDA (3.3-fold), but the plasma MDMA concentration (1.4-fold) and CYP2D activity (1.3-fold) were higher in females. These results suggest that male SD rats are more sensitive to MDMA acute toxicity than are females, probably because their CYP1A2 is more active, leading to higher N-demethylation and plasma MDA concentration. This metabolic pathway could be responsible for the lethality of MDMA, as the LD50 of MDA is the same in both sexes. These data strongly suggest that the toxicity of amphetamine-related drugs largely depends on metabolic differences.« less
Hassani, Shokoufeh; Maqbool, Faheem; Salek-Maghsoudi, Armin; Rahmani, Soheila; Shadboorestan, Amir; Nili-Ahmadabadi, Amir; Amini, Mohsen; Norouzi, Parviz; Abdollahi, Mohammad
2018-01-01
In the present survey, the plasma level of diazinon after acute exposure was measured by HPLC method at a time-course manner. In addition, the impact of diazinon on the expression of the key genes responsible for hepatocellular antioxidative defense, including PON1, GPx and CAT were investigated. The increase in oxidative damages in treated rats was determined by measuring LPO, protein carbonyl content and total antioxidant power in plasma. After administration of 85 mg/kg diazinon in ten groups of male Wistar rats at different time points between 0-24 hours, the activity of AChE enzyme was inhibited to about 77.94 %. Significant increases in carbonyl groups and LPO after 0.75 and 1 hours were also observed while the plasma antioxidant power was significantly decreased. Despite the dramatic reduction of GP X and PON1 gene expression, CAT gene was significantly upregulated in mRNA level by 1.1 fold after 4 hours and 1.5-fold after 24 hours due to diazinon exposure, compared to control group. Furthermore, no significant changes in diazinon plasma levels were found after 4 hours in the treated rats. The limits of detection and quantification were 137.42 and 416.52 ng/mL, respectively. The average percentage recoveries from plasma were between 90.62 % and 95.72 %. In conclusion, acute exposure to diazinon increased oxidative stress markers in a time-dependent manner and the changes were consistent with effects on hepatic antioxidant gene expression pattern. The effect of diazinon even as a non-lethal dose was induced on the gene expression of antioxidant enzymes. The change in antioxidant defense system occurs prior to diazinon plasma peak time. These results provide biochemical and molecular evidence supporting potential acute toxicity of diazinon and is beneficial in the evaluation of acute toxicity of other organophosphorus pesticides as well.
Association of particulate air pollution and acute mortality: involvement of ultrafine particles?
NASA Technical Reports Server (NTRS)
Oberdorster, G.; Gelein, R. M.; Ferin, J.; Weiss, B.; Clarkson, T. W. (Principal Investigator)
1995-01-01
Recent epidemiological studies show an association between particulate air pollution and acute mortality and morbidity down to ambient particle concentrations below 100 micrograms/m3. Whether this association also implies a causality between acute health effects and particle exposure at these low levels is unclear at this time; no mechanism is known that would explain such dramatic effects of low ambient particle concentrations. Based on results of our past and most recent inhalation studies with ultrafine particles in rats, we propose that such particles, that is, particles below approximately 50 nm in diameter, may contribute to the observed increased mortality and morbidity In the past we demonstrated that inhalation of highly insoluble particles of low intrinsic toxicity, such as TiO2, results in significantly increased pulmonary inflammatory responses when their size is in the ultrafine particle range, approximately 20 nm in diameter. However, these effects were not of an acute nature and occurred only after prolonged inhalation exposure of the aggregated ultrafine particles at concentrations in the milligrams per cubic meter range. In contrast, in the course of our most recent studies with thermodegradation products of polytetrafluoroethylene (PTFE) we found that freshly generated PTFE fumes containing singlet ultrafine particles (median diameter 26 nm) were highly toxic to rats at inhaled concentrations of 0.7-1.0 x 10(6) particles/cm3, resulting in acute hemorrhagic pulmonary inflammation and death after 10-30 min of exposure. We also found that work performance of the rats in a running wheel was severely affected by PTFE fume exposure. These results confirm reports from other laboratories of the highly toxic nature of PTFE fumes, which cannot be attributed to gas-phase components of these fumes such as HF, carbonylfluoride, or perfluoroisobutylene, or to reactive radicals. The calculated mass concentration of the inhaled ultrafine PTFE particles in our studies was less than 60 micrograms/m3, a very low value to cause mortality in healthy rats. Aging of the fumes with concomitant aggregation of the ultrafine particles significantly decreases their toxicity. Since ultrafine particles are always present in the urban atmosphere, we suggest that they play a role in causing acute lung injury in sensitive parts of the population.
Chloroacetonitrile (CAN) is detected in drinking-water supplies as a by-product of the chlorination process. Gastroesophageal tissues are potential target sites of acute and chronic toxicity by haloacetonitriles (HAN). To examine the mechanism of CAN toxicity, we studied its effe...
Ozolua, Raymond I; Anaka, Ogochukwu N; Okpo, Stephen O; Idogun, Sylvester E
2009-07-03
The aqueous seed extract of Persea americana Mill (Lauraceae) is used by herbalists in Nigeria for the management of hypertension. As part of our on-going scientific evaluation of the extract, we designed the present study to assess its acute and sub-acute toxicity profiles in rats. Experiments were conducted to determine the oral median lethal dose (LD(50)) and other gross toxicological manifestations on acute basis. In the sub-acute experiments, the animals were administered 2.5 g/kg (p.o) per day of the extract for 28 consecutive days. Animal weight and fluid intake were recorded during the 28 days period. Terminally, kidneys, hearts, blood/sera were obtained for weight, haematological and biochemical markers of toxicity. Results show that the LD(50) could not be determined after a maximum dose of 10 g/kg. Sub-acute treatment with the extract neither affected whole body weight nor organ-to-body weight ratios but significantly increased the fluid intake (P < 0.0001). Haematological parameters and the levels of ALT, AST, albumin and creatinine were not significantly altered. However, the concentration of total proteins was significantly increased in the treated group. In conclusion, the aqueous seed extract of P. americana is safe on sub-acute basis but extremely high doses may not be advisable.
Toxicity Profile of a Nutraceutical Formulation Derived from Green Mussel Perna viridis
Joseph, Deepu; Chakkalakal, Selsa J.
2014-01-01
The short-term (acute) and long-term (subchronic) toxicity profile, mean lethal dose 50 (LD50), and no-observed-adverse-effect level (NOAEL) of a nutraceutical formulation developed from green mussel Perna viridis, which showed in vitro and in vivo anti-inflammatory properties, were evaluated in the present study. The formulation was administered to the male and female Wistar rats at graded doses (0.5, 1.0, and 2.5 g/kg body weight) for two weeks of acute toxicity study and 0.5, 1.0, and 2.0 g/kg body weight for 90 days in subchronic toxicity study. The LD50, variations in clinical signs, changes in body weight, body weight, food/water consumption, organ weight (liver, kidney, spleen, and brain), hematology, serum chemistry, and histopathological changes were evaluated. The LD50 of the formulation was 5,000 mg/kg BW. No test article related mortalities as well as change in body weight, and food and water consumption were observed. No toxicity related significant changes were noted in renal/hepatic function, hematological indices, and serum biochemical parameters between the control and treated groups. Histopathological alterations were not observed in the vital organs of rats. The subchronic NOAEL for the formulation in rats is greater than 2000 mg/kg. This study demonstrated that the green mussel formulation is safe to consume without any adverse effects in the body. PMID:24995298
Final report on the safety assessment of ethoxyethanol and ethoxyethanol acetate.
Johnson, Wilbur
2002-01-01
Ethoxyethanol is an ether alcohol described as a solvent and viscosity-decreasing agent for use in cosmetics. Ethoxyethanol Acetate is the ester of Ethoxyethanol and acetic acid described as a solvent for use in cosmetics. Although these ingredients have been used in the past, neither ingredient is in current use. Ethoxyethanol is produced by reacting ethylene oxide with ethyl alcohol. Ethoxyethanol Acetate is produced via an esterification of Ethoxyethanol and acetic acid, acetic acid anhydride, or acetic chloride. Ethoxyethanol is metabolized to ethoxyacetaldehyde, which is further metabolized to ethoxyacetic acid, which is also a metabolite of Ethoxyethanol Acetate. Low to moderate acute inhalation toxicity is seen in animals studies. Acute oral toxicity studies in several species reported kidney damage, including extreme tubular degeneration. Kidney damage was also seen in acute dermal toxicity studies in rats and rabbits. Minor liver and kidney damage was also seen in short-term studies of rats injected subcutaneously with Ethoxyethanol, but was absent in dogs dosed intravenously. Mixed toxicity results were also seen in subchronic tests in mice and rats. Ethoxyethanol and Ethoxyethanol Acetate were mild to moderate eye irritants in rabbits; mild skin irritants in rabbits, and nonsensitizing in guinea pigs. Most genotoxicity tests were negative, but chromosome aberrations and sister-chromatid exchanges were among the positive results seen. Numerous reproductive and developmental toxicity studies, across several species, involving various routes of administration, indicate that Ethoxyethanol and Ethoxyethanol Acetate are reproductive toxicants and teratogens. Mild anemia was reported in individuals exposed occupationally to Ethoxyethanol, which resolved when the chemical was not used. Reproductive effects have been noted in males exposed occupationally to Ethoxyethanol. Although there are insufficient data to determine the potential carcinogenic effects of Ethoxyethanol or Ethoxyethanol Acetate, there is evidence that these chemicals are absorbed across human skin and that they are reproductive and developmental toxicants via dermal exposure. Therefore, these ingredients are unsafe for use in cosmetic formulations.
Acute and sub-chronic toxicity of Cajanus cajan leaf extracts.
Tang, Rong; Tian, Ru-Hua; Cai, Jia-Zhong; Wu, Jun-Hui; Shen, Xiao-Ling; Hu, Ying-Jie
2017-12-01
The leaves of Cajanus cajan (L.) Millsp. (Fabaceae) have diverse bioactivities, but little safety data are reported. This study examines the toxicological profiles of C. cajan leaf extracts. The leaves were extracted by water or 90% ethanol to obtain water or ethanol extract (WEC or EEC). EEC was suspended in water and successively fractionated into dichloroform and n-butanol extracts (DEC and BEC). Marker compounds of the extracts were monitored by high-performance liquid chromatography (HPLC). Kunming mice were administered with a single maximum acceptable oral dose (15.0 g/kg for WEC, EEC and BEC and 11.3 g/kg for DEC) to determine death rate or maximal tolerated doses (MTDs). In sub-chronic toxicity investigation, Sprague-Dawley rats were orally given WEC or EEC at 1.5, 3.0 or 6.0 g/kg doses for four weeks and observed for two weeks after dosing to determine toxicological symptoms, histopathology, biochemistry and haematology. Flavonoids and stilbenes in the extracts were assayed. In acute toxicity test, no mortality and noted alterations in weight and behavioural abnormality were observed, and the maximum oral doses were estimated as MTDs. In sub-chronic toxicity study, no mortality and significant variances in haematological and biochemical parameters or organ histopathology were observed, but increased kidney weight in 3.0 g/kg WEC- or 3.0 and 6.0 g/kg EEC-treated female rats, and reduced testes and epididymis weight in EEC-treated male rats were recorded. These changes returned to the level of control after recovery period. Acute and sub-chronic toxicity of Cajanus cajan leaf extracts was not observed.
There are few studies evaluating direct functional and biochemical consequences of exposure. In the present study of the acute toxicity of seven N-methyl carbamate pesticides, we evaluated the dose-response profiles of cholinesterase (ChE) inhibition in brain and erythrocytes (R...
The effects of exposure to volatile organic compounds (VOCs), which are of concern to the EPA, are poorly understood, in part because of insufficient characterization of how human exposure duration impacts VOC effects. Two inhalation studies with multiple endpoints, one acute an...
Lots of information is available surrounding the acute toxicity of anticholinesterase pesticides, but these have been very few detailed studies on the chronic effects of these pesticides. Humans are exposed on a chronic basis and some humans believe that have been affected advers...
Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.).
Pareek, Hemant; Sharma, Sameer; Khajja, Balvant S; Jain, Kusum; Jain, G C
2009-11-29
Diabetes is a metabolic disorder affecting carbohydrate, fat and protein metabolism. Tridax procumbens Linn. (Family-Asteraceae; common name-Dhaman grass) is common herb found in India. Traditionally, the tribal inhabitants of Udaipur district in Rajasthan (India) uses the leaf powder (along with other herb) orally to treat diabetes. There is a need to evaluate extracts of this plant in order to provide scientific proof for it's application in traditional medicine system. Extraction of whole plant of T. procumbens using 50%methanol. The extract was tested for acute and sub-chronic anti-hyperglycemic activity in alloxan induced diabetic rats and for acute toxicity test among normal rats. Observations on body weight as well as on the oral glucose tolerance levels were also recorded. Oral administration of acute and sub chronic doses (250 and 500 mg/kg b.wt.) of T. procumbens extract showed a significant (p < 0.05) reduction in fasting blood glucose levels in diabetic rats, however the decline in blood sugar levels in normal rats was not observed. In acute study the maximum percent blood glucose reduction (68.26% at 250 mg/kg and 71.03% at 500 mg/kg body weight) in diabetic rats was observed at 6 h. The anti-hyperglycemic effects were not dependent of dose and the OGTT and Body weight supported the antihyperglycemic action of the drug. The results of anti-diabetic effect of T. procumbens were compared with the reference standard drug Glibenclamide (10 mg/kg b.wt.). These test results support traditional medicinal use of, T. procumbens for the treatment of diabetes mellitus with corrections in body weight and oral glucose tolerance and no visible signs or symptoms of toxicity in normal rats indicating a high margin of safety. These results warrant follow-up through bioassay-directed isolation of the active principles.
The acute toxicity of inhaled beryllium metal in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haley, P.J.; Finch, G.L.; Hoover, M.D.
1990-01-01
The authors exposed rats once by nose only for 50 min to a mean concentration of 800 [mu]g/m[sup 3] of beryllium metal to characterize the acute toxic effects within the lung. Histological changes within the lung and enzyme changes within bronchoalveolar lavage (BAL) fluid were evaluated at 3, 7, 10, 14, 31, 59, 115, and 171 days postexposure (dpe). Beryllium metal-exposed rats developed acute, necrotizing, hemorrhagic, exudative pneumonitis and intraalveolar fibrosis that peaked at 14 dpe. By 31 dpe, inflammatory lesions were replaced by minimal interstitial and intraalveolar fibrosis. Necrotizing inflammation was observed again at 59 dpe which progressed tomore » chronic-active inflammation by 115 dpe. Low numbers of diffusely distributed lymphocytes were also present but they were not associated with granulomas as is observed in beryllium-induced disease in man. Lymphocytes were not elevated in BAL samples collected from beryllium-exposed rats at any time after exposure. Lactate dehydrogenase (LDH), [beta]-glucuronidase, and protein levels were elevated in BAL fluid from 3 through 14 dpe but returned to near normal levels by 31 dpe. LDH increased once again at 59 dpe and remained elevated at 171 dpe. [beta]-Glucuronidase and protein levels were slightly, but not significantly, elevated from 31 through 171 dpe.« less
[Pathological changes in rats with acute Dysosma versipellis poisoning].
Xu, Xiang; Xu, Mao-sheng; Zhu, Jian-hua; Huang, Guang-zhao
2013-10-01
To observe the pathological changes of major organs in rats with acute Dysosma versipellis poisoning and investigate the toxic mechanism and the injuries of target tissues and organs. Forty Sprague-Dawley (SD) rats were randomly divided into three experimental groups, which were given the gavage with 0.5, 1.0 and 2.0 LDo doses of Dysosma versipellis decoction, and one control group, which was given the gavage with 1.0 LD0 dose of normal saline. The rats were sacrificed 14 days after Dysosma versipellis poisoning and samples including brain, heart, liver, lung, and kidney were taken. After pathological process, the pathological changes of the major organs and tissues were observed by light microscope and electron microscope. The experimental data were statistical analyzed by chi2 test. The observations of light microscopy: loose cytoplasm of neurons with loss of most Nissl bodies; swelling of myocardial cells with disappearance of intercalated disk and striations; hepatocellular edema with ballooning degeneration; and swelling epithelial cells of renal proximal convoluted tubule with red light coloring protein-like substances in the tube. The observations of electron microscopy: the structures of cell membrane and nuclear membrane of neurons were destroyed; cytoplasm of neurons, obvious edema; and most organelles, destroyed and disappeared. The mortalities of rats after acute poisoning of the four groups increased with doses (P < 0.05). Acute Dysosma versipellis poisoning can cause multi-organ pathological changes. There is a positive correlation between the toxic effect and the dosage. The target tissues and organs are brain (neurons), heart, liver and kidney.
Acute and Subacute Oral Toxicity of Periodate in Rats
2014-11-17
presence of decreased TSH, a pattern associated with uremia. Sodium periodate exposed rats exhibited both activation of the innate immune system and...associated with kidney disease are characterized by activation of the innate immune system coupled with immune deficiency. Sodium periodate exposed rats...exhibited both activation of the innate immune system and lymphocyte depletion; however, the pattern of effects was more indicative of a stress leukogram
Safety and toxicological evaluation of a novel anti-obesity formulation LI85008F in animals.
Krishnaraju, A V; Sundararaju, D; Srinivas, P; Rao, C V; Sengupta, K; Trimurtulu, G
2010-02-01
LI85008F is a novel synergistic composition of Moringa oleifera, Murraya koenigi, and Curcuma longa. These herbs are well recognized and widely used in ayurvedic system of medicine for treating a variety of diseases and are also have been used for culinary purposes for thousands of years. LI85008F inhibits preadipocyte differentiation and potentiates lipid breakdown in mature adipocytes. In diet-induced obese rats, LI85008F significantly reduced weight gain and improved serum adiponectin levels. These findings motivated the authors to determine the broad-spectrum safety of LI85008F. Acute oral toxicity, acute dermal toxicity, primary skin irritation, primary eye irritation, and dose-dependent 28-day sub-acute toxicity studies were conducted. The acute oral LD50 of LI85008F was greater than 5000 mg/kg in female SD rats and no changes in body weight or adverse effects were observed following necropsy. Acute dermal LD50 of LI85008F was greater than 2000 mg/kg. LI85008F was classified as non-irritating to skin in a primary dermal irritation study conducted using New Zealand Albino rabbits. LI85008F caused minimal irritation to eyes in a primary eye irritation test conducted on New Zealand Albino rabbits. A dose-dependent 28-day sub-acute toxicity study demonstrated no significant changes in selected organ weights. Evaluations on hematology, clinical chemistry, and histopathology did not show any significant adverse changes. The NOAEL of LI85008F was found to be greater than 2500 mg/kg body weight. These results demonstrate the broad spectrum safety of LI85008F in animal models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheshchevik, V.T.; Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno; Lapshina, E.A.
In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, pmore » < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage. Highlights: ► After 30-day chronic CCl{sub 4} intoxication mitochondria displayed considerable changes. ► The functional parameters of mitochondria were similar to the control values. ► Melatonin + succinate + flavonoids prevented mitochondrial ultrastructure damage. ► The above complex enhanced regenerative processes in the liver.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jing; Parsons, Loren; Pope, Carey, E-mail: carey.pope@okstate.edu
2013-11-01
Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellularmore » levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were lesser affected. • The CB1 antagonist AM251 had no effect on chlorpyrifos but reduced parathion toxicity.« less
Acute Oral Toxicity of Nitroguanidine in Male and Female Rats
1988-03-01
results place nitroguanidlne in the practically nontoxic category based on the toxicity classification system of Hodge and Sterner. 20 DISTRIBUTION...nose and mouth. These results place nitroguanidine in the practically nontoxic category based on the toxicity classification system of Hodge and...O. Lollini, DVM, VC, Diplomate, American College of Veterinary Pathologists DATA MANAGERS: Carolyn M. Lewis, MS, Yvonne C. Le Tellier , BS REPORT
Occurrence of toxicity among protease, amylase, and color mutants of a nontoxic soy sauce koji mold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalayanamitr, A.; Bhumiratana, A.; Flegel, T.W.
A soy sauce koji mold, Aspergillus flavus var. columnaris Raper and Fennel (ATCC 44310), was treated with UV irradiation to obtain mutant strains possessing high protease activities, high amylase activities, and light-colored conidia. Selected mutant strains were tested for toxicity, and some were found acutely toxic to weanling rats, although all were negative for aflatoxin production.
Sub-Acute Toxicity Study of Graphene Oxide in the Sprague-Dawley Rat.
Li, Yingbo; Wang, Yan; Tu, Liu; Chen, Di; Luo, Zhi; Liu, Dengyuan; Miao, Zhuang; Feng, Gang; Qing, Li; Wang, Shali
2016-11-17
Graphene oxide (GO) is an oxidized derivative of graphene used in biotechnology and medicine. The safety of GO is uncertain, so we evaluated its toxicity in male rats. Rat tail veins were injected with 2.5, 5, or 10 mg/kg GO for seven days and behavioral patterns, pathology, and tissue morphology were assessed. Data show that behaviors were not altered according to an open field test and a functional observational battery test, but histopathological analysis indicated that GO caused inflammation of the lung, liver, and spleen. GO also reduced cholesterol, high density lipoprotein (HDL), and low density lipoprotein (LDL). No other organs were modified. Thus, high concentrations of GO are toxic for the lung, liver, and spleen, but the mechanism by which this occurs requires more study.
Differential expression of myocardial heat shock proteins in rats acutely exposed to fluoride.
Panneerselvam, Lakshmikanthan; Raghunath, Azhwar; Perumal, Ekambaram
2017-09-01
Acute fluoride (F - ) toxicity is known to cause severe cardiac complications and leads to sudden heart failure. Previously, we reported that increased myocardial oxidative damage, apoptosis, altered cytoskeleton and AMPK signaling proteins associated with energy deprivation in acute F - induced cardiac dysfunction. The present study was aimed to decipher the status of myocardial heat shock proteins (Hsps-Hsp27, Hsp32, Hsp40, Hsp60, Hsp70, Hsp90) and heat shock transcription factor 1 (Hsf1) in acute F - -intoxicated rats. In order to study the expression of myocardial Hsps, male Wistar rats were treated with single oral doses of 45 and 90 mg/kg F - for 24 h. The expression levels of myocardial Hsps were determined using RT-PCR, western blotting, and immunohistochemical studies. Acute F - -intoxicated rats showed elevated levels of both the transcripts and protein expression of Hsf1, Hsp27, Hsp32, Hsp60, and Hsp70 when compared to control. In addition, the expression levels of Hsp40 and Hsp90 were significantly declined in a dose-dependent fashion in F - -treated animals. Our result suggests that differential expression of Hsps in the rat myocardium could serve as a balance between pro-survival and death signal during acute F - -induced heart failure.
de Lima, Rachel; Guex, Camille Gaube; da Silva, Andreia Regina Haas; Lhamas, Cibele Lima; Dos Santos Moreira, Karen Luise; Casoti, Rosana; Dornelles, Rafaela Castro; Marques da Rocha, Maria Izabel Ugalde; da Veiga, Marcelo Leite; de Freitas Bauermann, Liliane; Manfron, Melânia Palermo
2018-05-14
Verbena litoralis Kunth is a native species of South America, popularly known as gervãozinho-do-campo ou erva-de-pai-caetano. It is used in gastrointestinal disorders, as detoxifying the organism, antifebrile properties and amidaglitis. To identify the chemical constituents of the hydroethanolic extract obtained from the aerial parts of V. litoralis and to evaluate the acute and sub-acute toxicity in male and female rats. The single dose (2000 mg/kg) of the extract was administered orally to male and female rats. In the subacute study the extract was given at doses of 100, 200 and 400mg/kg during 28 days orally. Biochemical, hematological and histological analyzes were performed, oxidative stress markers were tested and chemical constituents were identified through UHPLC-ESI-HRMS RESULTS: Six classes of metabolites were identified: iridoids glycosides, flavonoids, phenylpropanoids-derived, phenylethanoid-derived, cinnamic acid-derived and triterpenes. In the acute treatment, the extract was classified as safe (category 5), according to the OECD guide. Our results demonstrated that subacute administration of the crude extract of V. litoralis at 400mg/kg resulted in an increase in AST in males, whereas ALT enzyme showed a small increase in males that received 200mg/kg and 400mg/kg of the extract. The extract of the aerial parts of Verbena litoralis did not present significant toxicity when administered a single dose. However, when different doses were administered for 28 days, were observed changes in hematological, biochemical and histological parameters in rats. Copyright © 2018. Published by Elsevier B.V.
Alpha-lipoic acid treatment of acetaminophen-induced rat liver damage.
Mahmoud, Y I; Mahmoud, A A; Nassar, G
2015-01-01
Acetaminophen (paracetamol) is a well-tolerated analgesic and antipyretic drug when used at therapeutic doses. Overdoses, however, cause oxidative stress, which leads to acute liver failure. Alpha lipoic acid is an antioxidant that has proven effective for ameliorating many pathological conditions caused by oxidative stress. We evaluated the effect of alpha lipoic acid on the histological and histochemical alterations of liver caused by an acute overdose of acetaminophen in rats. Livers of acetaminophen-intoxicated rats were congested and showed centrilobular necrosis, vacuolar degeneration and inflammatory cell infiltration. Necrotic hepatocytes lost most of their carbohydrates, lipids and structural proteins. Liver sections from rats pre-treated with lipoic acid showed fewer pathological changes; the hepatocytes appeared moderately vacuolated with moderate staining of carbohydrates and proteins. Nevertheless, alpha lipoic acid at the dose we used did not protect the liver fully from acetaminophen-induced acute toxicity.
Schauss, Alexander G; Glavits, R; Endres, John; Jensen, Gitte S; Clewell, Amy
2012-01-01
A safety evaluation was performed for EpiCor, a product produced by a proprietary fermentation process using Saccharomyces cerevisiae. Studies included the following assays: bacterial reverse mutation, mouse lymphoma cell mutagenicity, mitogenicity assay in human peripheral lymphocytes, and a cytochrome P450 ([CYP] CYP1A2 and CYP3A4) induction assessment as well as 14-day acute, 90-day subchronic, and 1-year chronic oral toxicity studies in rats. No evidence of genotoxicity or mitogenicity was seen in any of the in vitro or in vivo studies. The CYP assessment showed no interactions or inductions. No toxic clinical symptoms or histopathological lesions were observed in the acute, subchronic, or chronic oral toxicity studies in the rat. Results of the studies performed indicate that EpiCor does not possess genotoxic activity and has a low order of toxicity that is well tolerated when administered orally. The no observable adverse effect level (NOAEL) was 1500 mg/kg body weight (bw)/d for the 90-day study and 800 mg/kg bw/d for the 1 year study, for the highest doses tested.
Acute and Short-Term Inhalation Toxicity Study of FT Fuel
2011-02-01
Nasopharyngeal duct goblet cell hypertrophy/hyperplasia is evident in both sexes of rats exposed to the two highest doses of jet fuel. 47 Distribution A...findings in lung, nose and liver and, in male rats, kidneys. Inflammatory foci were evident in the lungs of both sexes of rat exposed to the two...highest doses of jet fuel. Olfactory epithelial degeneration was evident in both sexes of rats exposed to the two highest doses of jet fuel. An
Zhao, Kai; Ren, Fangfang; Han, Fangting; Liu, Qiwen; Wu, Guogan; Xu, Yan; Zhang, Jian; Wu, Xiao; Wang, Jinbin; Li, Peng; Shi, Wei; Zhu, Hong; Lv, Jianjun; Zhao, Xiao; Tang, Xueming
2016-01-01
In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1) studying horizontal gene transfer (HGT) in Sprague Dawley rats fed transgenic rice for 90 d; (2) examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3) studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt) rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.
Pfeifer, A; Neumann, H G
1986-09-01
trans-4-Acetylaminostilbene (trans-AAS) is acutely toxic in rats and lesions are produced specifically in the glandular stomach. Toxicity is slightly increased by pretreating the animals with phenobarbital (PB) and is completely prevented by pretreatment with methylcholanthrene (MC). The prostaglandin inhibitors, indomethacin and acetyl salicylic acid, do not reduce toxicity. The high efficiency of MC suggested that toxicity is caused by reactive metabolites. trans-[3H]-AAS was administered orally to untreated and to PB- or MC-pretreated female Wistar rats and target doses in different tissues were measured by means of covalent binding to proteins, RNA and DNA. Macromolecular binding in the target tissue of poisoned animals was significantly lower than in liver and kidney and comparable to other non-target tissues. Pretreatment with MC lowered macromolecular binding in all extrahepatic tissues but not in liver. These findings are not in line with tissue specific metabolic activation. The only unique property of the target tissue, glandular stomach, that we observed was a particular affinity for the systemically available parent compound. In the early phase of poisoning, tissue concentrations were exceedingly high and the stomach function was impaired.
Velusami, Chandrasekaran Chinampudur; Boddapati, Srinivasa Rao; Hongasandra Srinivasa, Srikanth; Richard, Edwin Jothie; Balasubramanian, Murali
2013-01-01
Curcuma longa Linn. (Zingiberaceae) commonly known as turmeric has long been used for centuries as a spice and household remedy. The present study was carried out to assess the possible mutagenic potential and acute oral toxicity of polysaccharide extract of turmeric rhizome (NR-INF-02) using standard tests. The standard battery of in vitro genotoxicity tests, bacterial reverse mutation test (BRMT), chromosome aberration (CA), and micronucleus (MN) tests were employed to assess the possible mutagenic activity of NR-INF-02 (Turmacin). The results showed no mutagenic effect with NR-INF-02 up to a dose of 5000 µg/mL in BRMT. The results on CA and MN tests revealed the non clastogenic activity of NR-INF-02 in a dose range of 250.36 to 2500 µg/mL with and without metabolic activation (S9). In acute oral toxicity study, NR-INF-02 was found to be safe up to 5 g/kg body weight in Wistar rats. Overall, results indicated that polysaccharide extract of C. longa was found to be genotoxically safe and also exhibited maximum tolerable dose of more than 5 g/kg rat body weight. PMID:24455673
Subchronic (13-week) oral toxicity study of dihomo-gamma-linolenic acid (DGLA) oil in rats.
Kawashima, Hiroshi; Toyoda-Ono, Yoshiko; Suwa, Yoshihide; Kiso, Yoshinobu
2009-06-01
Dihomo-gamma-linolenic acid (DGLA) is one of the essential fatty acids, and has anti-inflammatory and anti-allergic effects. To assess the toxicity of a novel DGLA oil produced by the fungus Mortierella alpina, we examined it in the Ames test and in acute and subchronic oral toxicity tests in rats. In the Ames test, no mutagenicity was found up to 5000 microg/plate. The acute toxicity test revealed no toxicity related to DGLA oil at 10 g/kg. In the subchronic toxicity test, DGLA oil (500, 1000, and 2000 mg/kg) was orally administered. Water and soybean oil (2000 mg/kg) were used for the no-oil control and soybean oil control groups, respectively. There was no death in either sex. Because of administration of large amounts of oil, food consumption was low in the soybean oil control and the three test groups, which appeared to mildly decrease urinary excretion of Na, K, and Cl, as well as total serum protein, albumin, and blood urea nitrogen levels. There were no toxicological changes in body weight, food consumption, ophthalmological examination, urinalysis, hematological examination, blood biochemical examination, necropsy, organ weight, or histopathological examination. These findings show that the no-observed-adverse-effect level of the DGLA oil was 2000 mg/kg.
Physiological and lavage fluid cytological and biochemical endpoints of toxicity in the rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehnert, B.E.
1992-01-01
Exposure of the respiratory tract to toxic materials can result in a variety of physiologic disturbances that can serve as endpoints of toxicity. In addition to a brief review of commonly assessed physiologic endpoints, attention is given in the first component of this report to the use of both nose breathing and mouth'' breathing rats in toxicity studies that involve measurements of ventilatory functional changes in response to test atmospheres. Additionally, the usefulness of maximum oxygen consumption, or VO[sub 2max], as a physiologic endpoint of toxicity that uses exercising rats after exposure to test atmospheres is described, along with anmore » introduction to post-exposure exercise as an important behavioral activity that can markedly impact on the severity of acute lung injury caused by pneumoedematogenic materials. The second component of this report focuses on bronchoalveolar lavage and cytological and biochemical endpoints that can be assessed in investigations of the toxicities of test materials. As will be shown herein, some of the biochemical endpoints of toxicity, especially, can sensitively detect subtle injury to the lower respiratory tract that may escape detection by changes in some other conventional endpoints of toxicity, including lung gravimetric increases and histopathological alterations.« less
Physiological and lavage fluid cytological and biochemical endpoints of toxicity in the rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehnert, B.E.
1992-12-31
Exposure of the respiratory tract to toxic materials can result in a variety of physiologic disturbances that can serve as endpoints of toxicity. In addition to a brief review of commonly assessed physiologic endpoints, attention is given in the first component of this report to the use of both nose breathing and ``mouth`` breathing rats in toxicity studies that involve measurements of ventilatory functional changes in response to test atmospheres. Additionally, the usefulness of maximum oxygen consumption, or VO{sub 2max}, as a physiologic endpoint of toxicity that uses exercising rats after exposure to test atmospheres is described, along with anmore » introduction to post-exposure exercise as an important behavioral activity that can markedly impact on the severity of acute lung injury caused by pneumoedematogenic materials. The second component of this report focuses on bronchoalveolar lavage and cytological and biochemical endpoints that can be assessed in investigations of the toxicities of test materials. As will be shown herein, some of the biochemical endpoints of toxicity, especially, can sensitively detect subtle injury to the lower respiratory tract that may escape detection by changes in some other conventional endpoints of toxicity, including lung gravimetric increases and histopathological alterations.« less
Acute and subchronic toxicity of 20 kHz and 60 kHz magnetic fields in rats
Oshima, Atsushi; Shibuya, Kazumoto; Mitani, Takashi; Negishi, Tadashi
2015-01-01
Abstract Despite increasing use of intermediate frequency (IF) magnetic fields (MFs) in occupational and domestic settings, scientific evidence necessary for health risk assessments of IF MF is insufficient. Male and female Crl:CD(SD) rats (12 per sex per group) were exposed to 20 kHz, 0.20 mT(root mean square, rms) or 60 kHz, 0.10 mT(rms) sinusoidal MFs for 22 h day−1 for 14 days (acute) or 13 weeks (subchronic). Experiments were duplicated for each frequency to ensure outcome reproducibility, and examinations were blinded for quality assurance. All rats survived without significant clinical signs until the end of experiments. Some changes in body weight between the MF‐exposed and control groups were observed over the course of exposure, although the directions of the changes were inconsistent and not statistically significant after subchronic exposure. There were significant differences between MF‐exposed and control groups in some organ weights and parameters in hematology and clinical chemistry, but these were minor in magnitude and not repeated in duplicate experiments. Histopathological findings reflecting toxicity were sporadic. Frequencies of other findings were similar to historic data in this rat strain, and findings had no specific relationship to changes in organ weight or parameters of hematology and clinical chemistry in each animal. The changes observed throughout this study were considered biologically isolated and were attributable to chance associations rather than to MF exposure. The results, in particular the histopathological evidence, indicate an absence of toxicity in IF MF‐exposed rats and do not support the hypothesis that IF MF exposure produces significant toxicity. Copyright © 2015. The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd. PMID:25982482
de Souza, Juliane C; Piccinelli, Ana Cláudia; Aquino, Diana F S; de Souza, Vanessa V; Schmitz, Wanderlei O; Traesel, Giseli K; Cardoso, Claudia A L; Kassuya, Candida A L; Arena, Arielle C
2017-01-01
This study evaluates the anti-inflammatory, antihyperalgesic, and antidepressive potential of the hydroalcoholic extract of Campomanesia adamantium fruit barks (CAE) on rodents and determines the safety of this plant. The acute toxicity of CAE was evaluated by oral administration to female rats as single doses of 0, 500, 1000, or 2000 mg/kg body weight. General behavior and toxic symptoms were observed for 14 days. In the subacute toxicity test, male and female rats received 125 or 250 mg/kg body weight of CAE for 28 days. The oral anti-inflammatory activity of CAE was evaluated in carrageenan-induced pleurisy in male mice. The effect of treatment with CAE (100 mg/kg) for 15 days was evaluated in mechanical hyperalgesia (electronic von Frey), depressive behavior (forced swimming test), and cold hypersensitivity in spared nerve injury (SNI) model in rats. No clinical signs of toxicity were observed in animals from the experimental groups during acute and subacute exposure to CAE. At pleurisy test, the oral administration of CAE significantly inhibited leukocyte migration and protein leakage at all doses tested when compared to control. Oral administration of CAE for 3-15 days significantly inhibited SNI-induced mechanical hyperalgesia and increased immobility in the forced swim test. Finally, on the 15th day, oral treatment with CAE prevented the increase in sensitivity to a cold stimulus induced by SNI. The present study shows that C. adamantium extract has anti-inflammatory, antihyperalgesic, and antidepressive properties in rodents without causing toxicity.
Formaldehyde is cytotoxic and carcinogenic to the rat nasal respiratory epithelium inducing tumors after 12 months. Glutaraldehyde is also cytotoxic but is not carcinogenic to nasal epithelium even after 24 months. Both aldehydes induce similar acute and subchronic histopathology...
Sehgal, Inder; Winters, Wallace D; Scott, Michael; David, Andrew; Gillis, Glenn; Stoufflet, Thaya; Nair, Anand; Kousoulas, Konstantine
2013-01-01
Aloe vera, a common ingredient in cosmetics, is increasingly being consumed as a beverage supplement. Although consumer interest in aloe likely stems from its association with several health benefits, a concern has also been raised by a National Toxicology Program Report that a nondecolorized whole leaf aloe vera extract taken internally by rats was associated with intestinal mucosal hyperplasia and ultimately malignancy. We tested a decolorized whole leaf (DCWL) aloe vera, treated with activated charcoal to remove the latex portion of the plant, for genotoxicity in bacteria, acute/subacute toxicity in B6C3F1 mice, and subchronic toxicity in F344 rats. We found this DCWL aloe vera juice to be nongenotoxic in histidine reversion and DNA repair assays. Following acute administration, mice exhibited no adverse signs at 3- or 14-day evaluation periods. When fed to male and female F344 rats over 13 weeks, DCWL aloe led to no toxicity as assessed by behavior, stools, weight gain, feed consumption, organ weights, and hematologic or clinical chemistry profiles. These rats had intestinal mucosal morphologies-examined grossly and microscopically-that were similar to controls. Our studies show that oral administration of this DCWL aloe juice has a different toxicology profile than that of the untreated aloe juice at exposures up to 13 weeks.
Winters, Wallace D.; Scott, Michael; David, Andrew; Gillis, Glenn; Stoufflet, Thaya; Nair, Anand; Kousoulas, Konstantine
2013-01-01
Aloe vera, a common ingredient in cosmetics, is increasingly being consumed as a beverage supplement. Although consumer interest in aloe likely stems from its association with several health benefits, a concern has also been raised by a National Toxicology Program Report that a nondecolorized whole leaf aloe vera extract taken internally by rats was associated with intestinal mucosal hyperplasia and ultimately malignancy. We tested a decolorized whole leaf (DCWL) aloe vera, treated with activated charcoal to remove the latex portion of the plant, for genotoxicity in bacteria, acute/subacute toxicity in B6C3F1 mice, and subchronic toxicity in F344 rats. We found this DCWL aloe vera juice to be nongenotoxic in histidine reversion and DNA repair assays. Following acute administration, mice exhibited no adverse signs at 3- or 14-day evaluation periods. When fed to male and female F344 rats over 13 weeks, DCWL aloe led to no toxicity as assessed by behavior, stools, weight gain, feed consumption, organ weights, and hematologic or clinical chemistry profiles. These rats had intestinal mucosal morphologies—examined grossly and microscopically—that were similar to controls. Our studies show that oral administration of this DCWL aloe juice has a different toxicology profile than that of the untreated aloe juice at exposures up to 13 weeks. PMID:23554812
Acute pulmonary toxicity following inhalation exposure to aerosolized VX in anesthetized rats.
Peng, Xinqi; Perkins, Michael W; Simons, Jannitt; Witriol, Alicia M; Rodriguez, Ashley M; Benjamin, Brittany M; Devorak, Jennifer; Sciuto, Alfred M
2014-06-01
This study evaluated acute toxicity and pulmonary injury in rats at 3, 6 and 24 h after an inhalation exposure to aerosolized O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX). Anesthetized male Sprague-Dawley rats (250-300 g) were incubated with a glass endotracheal tube and exposed to saline or VX (171, 343 and 514 mg×min/m³ or 0.2, 0.5 and 0.8 LCt₅₀, respectively) for 10 min. VX was delivered by a small animal ventilator at a volume of 2.5 ml × 70 breaths/minute. All VX-exposed animals experienced a significant loss in percentage body weight at 3, 6, and 24 h post-exposure. In comparison to controls, animals exposed to 514 mg×min/m³ of VX had significant increases in bronchoalveolar lavage (BAL) protein concentrations at 6 and 24 h post-exposure. Blood acetylcholinesterase (AChE) activity was inhibited dose dependently at each of the times points for all VX-exposed groups. AChE activity in lung homogenates was significantly inhibited in all VX-exposed groups at each time point. All VX-exposed animals assessed at 20 min and 3, 6 and 24 h post-exposure showed increases in lung resistance, which was prominent at 20 min and 3 h post-exposure. Histopathologic evaluation of lung tissue of the 514 mg×min/m³ VX-exposed animals at 3, 6 and 24 h indicated morphological changes, including perivascular inflammation, alveolar exudate and histiocytosis, alveolar septal inflammation and edema, alveolar epithelial necrosis, and bronchiolar inflammatory infiltrates, in comparison to controls. These results suggest that aerosolization of the highly toxic, persistent chemical warfare nerve agent VX results in acute pulmonary toxicity and lung injury in rats.
Assam, Assam J P; Dzoyem, J P; Pieme, C A; Penlap, V B
2010-07-27
Many bacteria among the Enterobacteria family are involved in infectious diseases and diarrhoea. Most of these bacteria become resistant to the most commonly used synthetic drugs in Cameroon. Natural substances seem to be an alternative to this problem. Thus the aim of this research was to investigate the in vitro antibacterial activity of the methanol and aqueous-methanol extracts of Sida rhombifolia Linn (Malvaceae) against seven pathogenic bacteria involved in diarrhoea. Acute toxicity of the most active extract was determined and major bioactive components were screened. The agar disc diffusion and the agar dilution method were used for the determination of inhibition diameters and the Minimum Inhibitory Concentration (MICs) respectively. The acute toxicity study was performed according WHO protocol. The aqueous-methanol extract (1v:4v) was the most active with diameters of inhibition zones ranging from 8.7 - 23.6 mm, however at 200 microg/dic this activity was relatively weak compared to gentamycin. The MICs of the aqueous-methanol extract (1v:4v) varied from 49.40 to 78.30 microg/ml. Salmonella dysenteriae was the most sensitive (49.40 microg/ml). For the acute toxicity study, no deaths of rats were recorded. However, significant increase of some biochemical parameters such as aspartate amino-transferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and creatinine (CRT) were found. The phytochemical analysis of the aqueous methanol extract indicated the presence of tannins, polyphenols, alkaloids, glycosides, flavonoids and saponins The results showed that the aqueous-methanol extract of S. rhombifolia exhibited moderate antibacterial activity. Some toxic effects were found when rats received more than 8 g/kg bw of extract.
Watson, Rebecca E; Hafez, Ahmed M; Kremsky, Jonathan N; Bizzigotti, George O
2007-01-01
This paper reports the toxicity and environmental impact of neutralents produced from the hydrolysis of binary chemical agent precursor chemicals DF (methylphosphonic difluoride) and QL (2-[bis(1-methylethyl)amino]ethyl ethyl methylphosphonite). Following a literature review of the neutralent mixtures and constituents, basic toxicity tests were conducted to fill data gaps, including acute oral and dermal median lethal dose assays, the Ames mutagenicity test, and ecotoxicity tests. For methylphosphonic acid (MPA), a major constituent of DF neutralent, the acute oral LD(50) in the Sprague-Dawley rat was measured at 1888 mg/kg, and the Ames test using typical tester strains of Salmonella typhimurium and Escherichia coli was negative. The 48-h LC(50) values for pH-adjusted DF neutralent with Daphnia magna and Cyprinodon variegatus were > 2500 mg/L and 1593 mg/L, respectively. The acute oral LD(50) values in the rat for QL neutralent constituents methylphosphinic acid (MP) and 2-diisopropylaminoethanol (KB) were both determined to be 940 mg/kg, and the Ames test was negative for both. Good Laboratory Practice (GLP)-compliant ecotoxicity tests for MP and KB gave 48-h D. magna EC(50) values of 6.8 mg/L and 83 mg/L, respectively. GLP-compliant 96-h C. variegatus assays on MP and KB gave LC(50) values of 73 and 252 mg/L, respectively, and NOEC values of 22 and 108 mg/L. QL neutralent LD(50) values for acute oral and dermal toxicity tests were both > 5000 mg/kg, and the 48-h LD(50) values for D. magna and C. variegatus were 249 and 2500 mg/L, respectively. Using these data, the overall toxicity of the neutralents was assessed.
Bahde, Ralf; Kapoor, Sorabh; Gupta, Sanjeev
2014-01-01
The rising prevalence of hepatic injury due to toxins, metabolites, viruses, etc., necessitates development of further mechanisms for protecting the liver and for treating acute or chronic liver diseases. To examine whether inhibition of inflammation directed by cyclo-oxygenase pathways, we performed animal studies with naproxen, which inhibits prostaglandin-endoperoxide synthases 1 and 2 and is in extensive clinical use. We administered carbon tetrachloride to induce acute liver injury and ligated the common bile duct to induce chronic liver injury in adult rats. These experimental manipulations produced abnormalities in liver tests, tissue necrosis, compensatory hepatocyte or biliary proliferation, and onset of fibrosis, particularly after bile duct ligation. After carbon tetrachloride-induced acute injury, naproxen decreased liver test abnormalities, tissue necrosis and compensatory hepatocellular proliferation. After bile duct ligation-induced chronic injury, naproxen decreased liver test abnormalities, tissue injury and compensatory biliary hyperplasia. Moreover, after bile duct ligation, naproxen-treated rats showed more periductular oval liver cells, which have been classified as hepatic progenitor cells. In naproxen-treated rats, we found greater expression in hepatic stellate cells and mononuclear cells of cytoprotective factors, such as vascular endothelial growth factor. The ability of naproxen to induce expression of vascular endothelial growth factor was verified in cell culture studies with CFSC-8B clone of rat hepatic stellate cells. Whereas assays for carbon tetrachloride toxicity using cultured primary hepatocytes established that naproxen was not directly cytoprotective, we found conditioned medium containing vascular endothelial growth factor from naproxen-treated CFSC-8B cells protected hepatocytes from carbon tetrachloride toxicity. Therefore, naproxen was capable of ameliorating toxic liver injury, which involved naproxen-induced release of physiological cytoprotective factors in nonparenchymal liver cells. Such drug-induced release of endogenous cytoprotectants will advance therapeutic development for hepatic injury. PMID:24220607
Canut, Lourdes; Zapatero, Jorge; López, Sílvia; Torrent, Anna; Ruhí, Ramon; Vicente, Laura
2012-04-01
The toxicity of a rooster comb extract (IB0004) that contains mainly sodium hyaluronate was assessed in acute and subchronic studies and in a bacterial reverse mutation assay. In a single dose acute study, male and female rats were administered 2000 mg/kg body weight (bw) of the product and observed for 14 days. No mortality was recorded, thus it was considered that the minimum lethal dose for rats by oral route was greater than 2000 mg/kg bw. A 90-day subchronic study (5, 55 and 600 mg/kg bw/day, oral gavage) with 50 male and 50 female Wistar-Hannover rats produced no significant adverse effects on food consumption, body weight, mortality, clinical biochemistry, hematology, gross pathology, and histopathology. Although some differences were observed between the treated and control animals in body weight gain (%) and some hematological parameters, these changes were generally minor in nature and, are considered to be of no toxicological significance. The no-observable-adverse-effects level was established at 600 mg/kg bw/day. There was no evidence of mutagenic activity in Salmonella typhimurium TA98, TA100, TA1535 and TA1537 or in Escherichia coli WP2 uvra pkM101. In conclusion, the results from these safety studies support the safety of rooster comb extract IB0004 in food. Copyright © 2011 Elsevier Inc. All rights reserved.
Ahmad, Feroz; Tabassum, Nahida
2013-01-01
To carry out a preliminary phytochemical, acute oral toxicity and antihepatotoxic study of the roots of Paeonia officinalis (P. officinalis) L. Preliminary phytochemical investigation was done as per standard procedures. Acute oral toxicity study was conducted as per OECD 425 guidelines. The antihepatotoxic activity of aqueous extract of root of P. officinalis was evaluated against carbon tetrachloride (CCl4) induced hepatic damage in rats. Aqueous extract of P. officinalis at the dose levels of 100 and 200 mg/kg body weight was administered daily for 14 d in experimental animals. Liver injury was induced chemically, by CCl4 administration (1 mL/kg i.p.). The hepatoprotective activity was assessed using various biochemical parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum alkaline phosphatase (SALP), total bilirubin and total protein (TP) along with histopathological studies. Phytochemical screening revealed that the roots of P. officinalis contain alkaloids, tannins, saponins, glycosides, carbohydrates, flavonoids, terpenes, steroids and proteins. The aqueous extract did not cause any mortality up to 2 000 mg/kg. In rats that had received the root extract at the dose of 100 and 200 mg/kg, the substantially elevated AST, ALT, SALP, total bilirubin levels were significantly lowered, respectively, in a dose dependent manner, along with CCl4 while TP levels were elevated in these groups. Histopathology revealed regeneration of the livers in extract treated groups while Silymarin treated rats were almost normal. The aqueous extract of P. officinalis is safe and possesses antihepatotoxic potential.
Central nervous system damage due to acute paraquat poisoning: an experimental study with rat model.
Wu, Bailin; Song, Bo; Yang, Haiqing; Huang, Boyuan; Chi, Bo; Guo, Yansu; Liu, Huaijun
2013-03-01
Paraquat (PQ) is a common herbicide and PQ poisoning is a major medical problem in Asia. However, few studies have focused on the acute neurotoxic changes caused by PQ. Here we report the acute neurotoxicological findings of rats treated with lethal dose of PQ. In substantia nigra (SN) and striatum we found obvious microglia (labeled by Iba-1) activation within one week. In SN and hippocampus, we detected increased oxidative stress in the neurons based on NeuN/8-OHdG immunofluorescence double labeling and laser cofocal microscopy. Moreover, we provided ultrastructural evidences of astrocyte edema and neurons apoptosis in rat brain by electron microscopy. Further studies will be needed with non-lethal dose of PQ to confirm these results and demonstrate the direct CNS toxicity of PQ. Copyright © 2012 Elsevier Inc. All rights reserved.
Rao, Pooja; Singh, Poonam; Yadav, Shiv Kumar; Gujar, Niranjan L; Bhattacharya, Rahul
2013-09-01
Cyanogens include complex nitrile-containing compounds that can generate free cyanide of toxicological significance. Acute toxicity, time-dependent cyanide generation and cytochrome oxidase (CYTOX) inhibition in soft tissues, and urinary thiocyanate levels were measured after acute cyanogen intoxication in rats. Order of cyanogens in terms of LD₅₀ was: malononitrile (MCN)>propionitrile (PCN)≈sodium nitroprusside (SNP)>acrylonitrile (ACN)>succinonitrile (SCN)>acetonitrile (ATCN) for oral, and SNP>MCN>ACN>PCN>SCN>ATCN for intraperitoneal and subcutaneous routes. MCN was most toxic by oral (LD₅₀=66.4 mg/kg) and SNP by intraperitoneal (LD₅₀=16.7 mg/kg) and subcutaneous (LD₅₀=11.9 mg/kg) routes. Minimum survival time (25 min) was recorded after 4.0 LD₅₀ ATCN. Order of cyanogens (0.75 LD₅₀; oral) on the basis of maximum blood cyanide and time of peak cyanide generation were: ATCN>SNP>SCN>PCN>MCN>ACN, and MCN (30 min)
Wiesenfeld, Paddy L; Garthoff, Larry H; Sobotka, Thomas J; Suagee, Jessica K; Barton, Curtis N
2007-01-01
The oral toxicity of a single administration by gavage (10, 20 or 30 mg kg(-1) body weight) of colchicine (COL) was determined in young, mature male and female Sprague-Dawley rats. The effect of COL was evaluated in the presence or absence of additional treatment variables that included vehicle and lipopolysaccharide (LPS) pre-exposure. The vehicle for COL was either Half and Half cream (H & H) or saline, and each group included pretreatment with either saline or a low, minimally toxic dose (83 microg kg(-1) body weight) of LPS. Colchicine toxicity in both male and female age-matched rats was characterized by progressively more severe dose-related clinical signs of toxicity. These included mortality, decreased body weight and feed intake during the first several days after dosing, with recovery thereafter in surviving animals. There were differences in the severity of the toxic response to COL between male and female rats. The most notable sex-related difference was in COL lethality. Female rats were two times more susceptible to the lethal effects of COL than male rats. Saline or H & H delivery vehicles did not result in any apparent qualitative or quantitative differences in COL toxicity. LPS pretreatment significantly potentiated COL lethality in both males and females, although the potentiation in males was greater than in females. LPS pretreatment modestly increased the COL induced anorexic effect in surviving males, but not in surviving female animals. LPS did not appear to modulate either the body weights or clinical signs of COL induced toxicity in surviving males or females. (c) 2007 John Wiley & Sons, Ltd.
Kassa, Jiri; Sepsova, Vendula; Matouskova, Lenka; Horova, Anna; Musilek, Kamil
2015-03-01
The ability of two novel bispyridinium oximes K727 and K733 and currently available oximes (HI-6, obidoxime) to reactivate sarin-inhibited acetylcholinesterase and to reduce acute toxicity of sarin was evaluated. To investigate the reactivating efficacy of the oximes, the rats were administered intramuscularly with atropine and oximes in equitoxic doses corresponding to 5% of their LD50 values at 1 min after the intramuscular administration of sarin at a dose of 24 µg/kg (LD50). The activity of acetylcholinesterase was measured at 60 min after sarin poisoning. The LD50 value of sarin in non-treated and treated mice was assessed using probit-logarithmical analysis of death occurring within 24 h after intramuscular administration of sarin at five different doses. In vivo determined percentage of reactivation of sarin-inhibited rat blood, diaphragm and brain acetylcholinesterase showed that the potency of both novel oximes K727 and K733 to reactivate sarin-inhibited acetylcholinesterase roughly corresponds to the reactivating efficacy of obidoxime. On the other hand, the oxime HI-6 was found to be the most efficient reactivator of sarin-inhibited acetylcholinesterase. While the oxime HI-6 was able to reduce the acute toxicity of sarin >3 times, both novel oximes and obidoxime decreased the acute toxicity of sarin <2 times. Based on the results, we can conclude that the reactivating and therapeutic efficacy of both novel oximes K727 and K733 is significantly lower compared to the oxime HI-6 and, therefore, they are not suitable for the replacement of the oxime HI-6 for the antidotal treatment of acute sarin poisoning.
Safety assessment of Morus nigra L. leaves: Acute and subacute oral toxicity studies in Wistar rats.
Figueredo, Kassia Caroline; Guex, Camille Gaube; Reginato, Fernanda Ziegler; Haas da Silva, Andreia Regina; Cassanego, Gabriela Buzatti; Lhamas, Cibele Lima; Boligon, Aline Augusti; Lopes, Gilberti Helena Hübscher; de Freitas Bauermann, Liliane
2018-05-14
Morus nigra L. is a plant native to Asia, and well adapted to the Brazilian climate. It is popularly known as "amoreira preta", and is part of the National List of Plants of Interest to the Brazilian Unified Health System. It is used in folk medicine mainly to soften the effects of menopause, as anti-inflammatory, antidiabetic and antihypertensive. However, information on safe doses and use is still precarious. To identify the chemical composition of the ethanolic extract of Morus nigra L. leaves (EEMN), as well as perform a toxicological study in male and female rats. The chemical composition of the extract was performed by HPLC/DAD. In the acute study, the dose administered was 2000 mg/kg, and signs of toxicity and mortality was observed. In the sub-acute study, the extract was administered at doses of 500, 750 and 1000mg/kg for 28 days. Behavioral changes, object recognition test, renal and hepatic tissue assessments, biochemical and hematological parameters were determined. The extract was administered orally to male and female rats in both studies. Quercetin and caffeic acid showed as major compounds in the extract. In the acute treatment, the extract was classified as safe (category 5), according to the protocol. In the subacute study, there was a decrease in AST in males (750 and 1000mg/kg) and females (1000mg/kg), reduction of total cholesterol in females (750 and 1000mg/kg), and increase in renal and hepatic change the LPO levels. The present investigation showed that EEMN did not present significant toxic effects when administered orally. Moreover, presented a potentially protective action of organs and possesses hypocholesterolemic activity, thus, it is shown as a promising natural source to be used in pharmacology. Copyright © 2018. Published by Elsevier B.V.
Aflatoxins--experimental studies.
Tulpule, P G
1981-01-01
The susceptibility of animals to both chronic and acute aflatoxicosis is variable between species and depends upon not only the dose of the toxin and the duration of exposure but also upon the age, sex, and nutritional status of the animal. In general, acute toxicity is manifested by necrosis and cirrhosis, and chronic toxicity by carcinoma of the liver. Current research using both in vivo and in vitro studies has shown that the differences in response to aflatoxin in different animals can be attributed to their differential metabolism. The rates of metabolism and intermediate products formed are important factors in determining the type of toxic action of aflatoxin B1. According to these criteria, monkey and man are more susceptible to acute aflatoxicosis and relatively resistant to carcinogenic effects. On the other hand, animals, such as sheep and rat, are more susceptible to carcinogenic effects.
Cassia grandis fruit extract reduces the blood glucose level in alloxan-induced diabetic rats.
Prada, Ariadna Lafourcade; Amado, Jesús Rafael Rodríguez; Keita, Hady; Zapata, Edgar Puente; Carvalho, Helison; Lima, Emersom Silva; de Sousa, Tatiane Pereira; Carvalho, José Carlos Tavares
2018-04-16
Cassia grandis Lf fruits are ethnobotanically used for digestive disorders, anemia, and for reducing blood glucose. However, there are no studies about the antidiabetic activity nor the oral toxicity of the plant fruit-extracts. This paper aims to evaluate the hypoglycemic effect of C. grandis fruits extract in vivo, and assess the acute oral toxicity, and sub-acute oral toxicity. The antioxidant activity and the α-glycosidase inhibitor effect were also evaluated. The extract was obtained by maceration of the fruit pulp with 70% hydroalcoholic solution (1:2, m:v). The extractive solution was concentrated in a vacuum rotary evaporator, up to a drug: solvent ratio of 2:1 (g/ml). Soluble solids, relative density, refractive index, pH, total phenolics, and flavonoids were determined. A preliminary phytochemical screening was made, followed by the quantitation of volatiles by GC/MS. The acute and sub-acute oral toxicity was evaluated in Sprague Dawley rats, by using biochemical and hematological parameters. The radical scavenging activity (DPPH, ABTS) and α-glycosidase inhibitory effect were tested. The hypoglycemic effect was assessed in alloxan-induced diabetic rats. The extract of C. grandis contains alkaloids, coumarins, flavonoids, free amino acids, amines, phenols, tannins, reduced sugars, resins, saponins, steroids, and triterpenes, plus 38 volatile compounds, being linalool the most abundant (1,66%). The extract exhibited an LD 50 > 2000 mg/kg, and after a continuous administration (1000 mg/kg, 28-days), the hematological and biochemical parameters were normal. The extract showed hypoglycemic effect, being the dose 200 mg/kg no statistically different from glibenclamide at 25 mg/kg. Good antioxidant activity and a potent α-glycosidase inhibitory effect were also observed. C. grandis extract is an excellent hypoglycemic and non-toxic plant product. The hypoglycemic mechanism could be associated with the antioxidant effect and with the α-glycosidase inhibition. Up to the best of our knowledge, this is the first report on the hypoglycemic effect in vivo of C. grandis fruits extract. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Comparative acute toxicity of shale and petroleum derived distillates.
Clark, C R; Ferguson, P W; Katchen, M A; Dennis, M W; Craig, D K
1989-12-01
In anticipation of the commercialization of its shale oil retorting and upgrading process, Unocal Corp. conducted a testing program aimed at better defining potential health impacts of a shale industry. Acute toxicity studies using rats and rabbits compared the effects of naphtha, Jet-A, JP-4, diesel and "residual" distillate fractions of both petroleum derived crude oils and hydrotreated shale oil. No differences in the acute oral (greater than 5 g/kg LD50) and dermal (greater than 2 g/kg LD50) toxicities were noted between the shale and petroleum derived distillates and none of the samples were more than mildly irritating to the eyes. Shale and petroleum products caused similar degrees of mild to moderate skin irritation. None of the materials produced sensitization reactions. The LC50 after acute inhalation exposure to Jet-A, shale naphtha, (greater than 5 mg/L) and JP-4 distillate fractions of petroleum and shale oils was greater than 5 mg/L. The LC50 of petroleum naphtha (greater than 4.8 mg/L) and raw shale oil (greater than 3.95 mg/L) also indicated low toxicity. Results demonstrate that shale oil products are of low acute toxicity, mild to moderately irritating and similar to their petroleum counterparts. The results further demonstrate that hydrotreatment reduces the irritancy of raw shale oil.
Fahprathanchai, Prannapus; Saenphet, Kanokporn; Peerapornpisal, Yuwadee; Aritajat, Salika
2006-01-01
This study aimed to evaluate the toxicity of Cladophora glomerata and Microspora floccosa ethanolic extracts in rats. Acute toxicity was tested with a single oral administration of the extract at a dose of 25 g/kg bd wt. Mortality, behavior, amount of food intake, body weight, and any abnormalities of the visceral organs, were observed. The results showed that the extract caused neither mortality, nor abnormalities. Subchronic toxicity was tested by administering the extract at doses of 0.5 g/kg and 1.0 g/kg for 60 days. Differences in body weight, hematology and blood biochemistry (alanine aminotransferase, ALT; aspartate aminotransferase, AST; blood urea nitrogen, BUN and creatinine, Cre) were not detected among the control and treatment groups. Although the packed cell volume of the male rats treated with 1.0 g/kg extract was significantly lower than the controls (p< or =0.05), the level was in the standard range for rat hematocrit.
Dutta, Sangita; Bhattacharyya, Debasish
2013-11-25
Various parts of the plant pineapple (Ananas comosus) are used in traditional medicine worldwide for treatment of a number of diseases and disorders. In folk medicine, pineapple leaf extract was used as an antimicrobial, vermicide, purgative, emmenagoogue, abortifacient, anti-oedema and anti-inflammatory agent. Compared to the fruit and stem extracts of pineapple, information about its leaf extract is limited. The potential of pineapple crown leaf extract as an ethno-medicine has been evaluated in terms of its enzymatic activities related to wound healing, antimicrobial property and toxicity. Major protein components of the extract were revealed by 2-D gel electrophoresis followed by MS/MS analysis. Zymography, DQ-gelatin assay were performed to demonstrate proteolytic, fibrinolytic, gelatinase and collagenase activities. DNase and RNase activities were revealed from agarose gel electrophoresis. Antimicrobial activity was evaluated spectrophotometrically from growth inhibition. Sprague-Dawley rat model was used to measure acute and sub-acute toxicity of the extract by analyzing blood markers. The extract contains several proteins that were clustered under native condition. Proteomic studies indicated presence of fruit bromelain as major protein constituent of the extract. It showed nonspecific protease activity, gelatinolytic, collagenase, fibrinolytic, acid and alkaline phosphatase, peroxidase, DNase and RNase activities along with considerable anti-microbial property. The leaf extract did not induce any toxicity in rats after oral administration of acute and sub-acute doses. Pineapple leaf extract is nontoxic, contains enzymes related to damage tissue repairing, wound healing and possibly prevents secondary infections from microbial organisms. © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manthei, J.H.; Heitkamp, D.H.; Buettner, L.C.
1992-07-01
The acute percutaneous (bare skin) LD50 was determined for EA 2192 in the rabbit. Also established were the effective doses (ED50s) for the major toxic signs observed. Dermal, Department of Transportation (DOT), tests with rabbits indicated that VX/HTH decontaminated waste is a Class B poison after being aged only 24 hr following initiation of the decontamination procedure. The same reaction, when allowed to age through about 2 half-lives (28-30 days), was no longer a Class B poison and was nonhazardous by Code of Maryland Regulations (COMAR) toxicity criteria. The DOT tests with OXONE decontaminated/neutralized VX showed this solution to bemore » less than a Class B poison by all three routes of administration (rat oral, rat inhalation, and rabbit dermal) after only 24-hr aging and a nonhazardous material by COMAR toxicity criteria.... vx, Rat, Half-life, ED50, EA 2192, Rabbit, COMAR, Decontaminated/Neutralized, HTH, OXONE, LD50.« less
Hoffmann, Sebastian; Kinsner-Ovaskainen, Agnieszka; Prieto, Pilar; Mangelsdorf, Inge; Bieler, Christian; Cole, Thomas
2010-12-01
The ACuteTox project has aimed to optimise and prevalidate an in vitro testing strategy for predicting human acute toxicity. Ninety-seven reference substances were selected and an in vivo acute toxicity database was compiled. Comprehensive statistical analyses of the in vivo LD50 data to evaluate variability and reliability, interspecies correlation, predictive capacities with regard to EU and GHS toxicity categories, and deduction of performance criteria for in vitro methods is presented. For the majority of substances variability among rodent data followed a log normal distribution where good reproducibility was found. Rat and mouse interspecies comparison of LD50 studies by ordinary regression showed high correlation, with coefficients of determination, ranging between 0.8 and 0.9. Substance specific differences were only significant for warfarin and cycloheximide. No correlation of compound LD50 range with presumed study quality rank (by assigning Klimisch reliability scores) was found. Modelling based on LD50 variability showed that with at least 90% probability ∼54% of the substances would fall into only one GHS category and ∼44% would fall within two adjacent categories. These results could form the basis for deriving a predictive capacity that should be expected from alternative approaches to the conventional in vivo acute oral toxicity test. Copyright © 2010 Elsevier Inc. All rights reserved.
Wong, Jing-Yang; Raman, Jegadeesh; Kuppusamy, Umah Rani; Sabaratnam, Vikineswary
2013-01-01
Hericium erinaceus is a famous tonic in oriental medicine. The gastroprotective effects of aqueous extract of H. erinaceus against ethanol-induced ulcers in Sprague Dawley rats were investigated. The possible involvements of lipid peroxidation, superoxide dismutase, and catalase were also investigated. Acute toxicity study was performed. The effects of aqueous extract of H. erinaceus on the ulcer areas, ulcer inhibition, gastric wall mucus, gross and histological gastric lesions, antioxidant levels, and malondialdehyde (MDA) contents were evaluated in ethanol-induced ulcer in vivo. In acute toxicity study, a high dose of 5 g/kg did not manifest any toxicological signs in rats. The extract promoted ulcer protection as ascertained by a significant reduction of the ulcer area. Furthermore, it exhibited a significant protection activity against gastric mucosal injury by preventing the depletion of antioxidant enzymes. The level of MDA was also limited in rat stomach tissues when compared with the ulcer control group. Immunohistochemistry showed upregulation of HSP70 protein and downregulation of BAX protein in rats pretreated with the extract. The aqueous extract of H. erinaceus protected gastric mucosa in our in vivo model. It is speculated that the bioactive compounds present in the extract may play a major role in gastroprotective activity. PMID:24302966
To compare the toxicity of seven N-methyl carbamates, time course profiles for brain and red blood cell (RBC) cholinesterase (ChE) inhibition were established for each. Adult, male, Long Evans rats (n=4-5 dose group) were dosed orally with either carbaryl (30 mg/kg in corn oil); ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvano, Jacqueline, E-mail: Jacqueline.Calvano@bm
Conventional circulating biomarkers of cardiac and skeletal muscle (SKM) toxicity lack specificity and/or have a short half-life. MicroRNAs (miRNAs) are currently being assessed as biomarkers of tissue injury based on their long half-life in blood and selective expression in certain tissues. To assess the utility of miRNAs as biomarkers of cardiac and SKM injury, male Sprague–Dawley rats received a single dose of isoproterenol (ISO); metaproterenol (MET); allylamine (AAM); mitoxantrone (MIT); acetaminophen (APAP) or vehicle. Blood and tissues were collected from rats in each group at 4, 24 and 48 h. ISO, MET, and AAM induced cardiac and SKM lesions andmore » APAP induced liver specific lesions. There was no evidence of tissue injury with MIT by histopathology. Serum levels of candidate miRNAs were compared to conventional serum biomarkers of SKM/cardiac toxicity. Increases in heart specific miR-208 only occurred in rats with cardiac lesions alone and were increased for a longer duration than cardiac troponin and FABP3 (cardiac biomarkers). ISO, MET and AAM induced increases in MyL3 and skeletal muscle troponin (sTnl) (SKM biomarkers). MIT induced large increases in sTnl indicative of SKM toxicity, but sTnl levels were also increased in APAP-treated rats that lacked SKM toxicity. Serum levels of miR-133a/b (enriched in cardiac and SKM) increased following ISO, MET, AAM and MIT treatments but were absent in APAP-treated rats. Our results suggest that miR-133a/b are sensitive and specific markers of SKM and cardiac toxicity and that miR-208 used in combination with miR-133a/b can be used to differentiate cardiac from SKM toxicity. - Highlights: • MiR-208 is specifically expressed in rat hearts. • MiR-133a/b are enriched in rat cardiac/skeletal muscle. • MiR-133a/b are sensitive and specific markers of muscle/cardiac toxicity. • MiR-208 can be used to differentiate cardiac toxicity from skeletal muscle toxicity.« less
Peng, Donghai; Zhou, Chenfei; Chen, Shouwen; Ruan, Lifang; Yu, Ziniu; Sun, Ming
2008-01-01
The aim of the present study is to evaluate the toxicology safety to mammals of a genetically modified (GM) Bacillus thuringiensis with an additional N-acyl homoserine lactones gene (aiiA), which possesses insecticidal activity together with restraint of bacterial pathogenicity and is intended for use as a multifunctional biopesticide. Safety assessments included an acute oral toxicity test and 28-d animal feeding study in Wistar rats, primary eye and dermal irritation in Zealand White rabbits, and delayed contact hypersensitivity in guinea pigs. Tests were conducted using spray-dried powder preparation. This GM product showed toxicity neither in oral acute toxicity test nor in 28-d animal feeding test at a dose of 5,000 mg/kg body weight. During the animal feeding test, there were no significant differences in growth, food and water consumption, hematology, blood biochemical indices, organ weights, and histopathology finding between rats in controls and tested groups. Tested animals in primary eye and dermal irritation and delayed contact hypersensitivity test were also devoid of any toxicity compared to controls. All the above results demonstrated that the GM based multifunctional B. thuringiensis has low toxicity and low eye and dermal irritation and would not cause hypersensitivity to laboratory mammals and therefore could be regarded as safe for use as a pesticide.
Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens (Linn.)
2009-01-01
Background Diabetes is a metabolic disorder affecting carbohydrate, fat and protein metabolism. Tridax procumbens Linn. (Family-Asteraceae; common name-Dhaman grass) is common herb found in India. Traditionally, the tribal inhabitants of Udaipur district in Rajasthan (India) uses the leaf powder (along with other herb) orally to treat diabetes. There is a need to evaluate extracts of this plant in order to provide scientific proof for it's application in traditional medicine system. Methods Extraction of whole plant of T. procumbens using 50%methanol. The extract was tested for acute and sub-chronic anti-hyperglycemic activity in alloxan induced diabetic rats and for acute toxicity test among normal rats. Observations on body weight as well as on the oral glucose tolerance levels were also recorded. Results Oral administration of acute and sub chronic doses (250 and 500 mg/kg b.wt.) of T. procumbens extract showed a significant (p < 0.05) reduction in fasting blood glucose levels in diabetic rats, however the decline in blood sugar levels in normal rats was not observed. In acute study the maximum percent blood glucose reduction (68.26% at 250 mg/kg and 71.03% at 500 mg/kg body weight) in diabetic rats was observed at 6 h. The anti-hyperglycemic effects were not dependent of dose and the OGTT and Body weight supported the antihyperglycemic action of the drug. The results of anti-diabetic effect of T. procumbens were compared with the reference standard drug Glibenclamide (10 mg/kg b.wt.). Conclusion These test results support traditional medicinal use of, T. procumbens for the treatment of diabetes mellitus with corrections in body weight and oral glucose tolerance and no visible signs or symptoms of toxicity in normal rats indicating a high margin of safety. These results warrant follow-up through bioassay-directed isolation of the active principles. PMID:19943967
Preliminary toxicity study of dichloromethane extract of Kielmeyera coriacea stems in mice and rats.
Obici, Simoni; Otobone, Fernanda Jacques; da Silva Sela, Vânia Ramos; Ishida, Kelly; da Silva, José Carlos; Nakamura, Celso Vataru; Garcia Cortez, Diógenes Aparício; Audi, Elisabeth Aparecida
2008-01-04
Kielmeyera coriacea Mart. (Clusiaceae), known as "Pau Santo" or "Saco de Boi" in the central Brazilian plateau region, is used to treat several tropical diseases. The present study evaluated the toxic effects of dichloromethane (DcM) extract of Kielmeyera coriacea stems, administered to rodents. In the acute toxicity tests, mice receiving doses of this extract by the oral and intraperitoneal routes, showed reversible effects, with LD50 values of 1503.0 and 538.8 mg/kg, respectively. In the repeated-dose oral (90 days) toxicity tests, male and female Wistar rats were treated by gavage with different doses of DcM extract (5, 25 or 125 mg/kg). In biochemical and haematological evaluations, the results varied widely in respect to dose and sex, with no linear profile, and did not show clinical correlations. In the histopathological examinations, the groups exhibited some changes, but there were no significant differences between the groups compared to the controls. In conclusion, these investigations appeared to indicate the safety of acute and repeated oral administration of the DcM extract of Kielmeyera coriacea stems, which can therefore be continuously used with safety.
Fedorova, Elena V.; Buryakina, Anna V.; Zakharov, Alexey V.; Filimonov, Dmitry A.; Lagunin, Alexey A.; Poroikov, Vladimir V.
2014-01-01
Based on the data about structure and antidiabetic activity of twenty seven vanadium and zinc coordination complexes collected from literature we developed QSAR models using the GUSAR program. These QSAR models were applied to 10 novel vanadium coordination complexes designed in silico in order to predict their hypoglycemic action. The five most promising substances with predicted potent hypoglycemic action were selected for chemical synthesis and pharmacological evaluation. The selected coordination vanadium complexes were synthesized and tested in vitro and in vivo for their hypoglycemic activities and acute rat toxicity. Estimation of acute rat toxicity of these five vanadium complexes was performed using a freely available web-resource (http://way2drug.com/GUSAR/acutoxpredict.html). It has shown that the selected compounds belong to the class of moderate toxic pharmaceutical agents, according to the scale of Hodge and Sterner. Comparison with the predicted data has demonstrated a reasonable correspondence between the experimental and predicted values of hypoglycemic activity and toxicity. Bis{tert-butyl[amino(imino)methyl]carbamato}oxovanadium (IV) and sodium(2,2′-Bipyridyl)oxo-diperoxovanadate(V) octahydrate were identified as the most potent hypoglycemic agents among the synthesized compounds. PMID:25057899
Barcellona, Carolina Serra; Cabrera, Wilfredo Marcelino; Honoré, Stella Maris; Mercado, María Inés; Sánchez, Sara Serafina; Genta, Susana Beatriz
2012-11-21
Leaves of Smallanthus sonchifolius (Poepp. & Endl.) H. Robinson (yacon) have been used since pre-Columbian times in the Andean region to prepare medicinal herbal tea with beneficial health properties. However, there are still disagreements about the safe use. This work was carried out to evaluate the toxicity profile of both, 10% decoction of yacon leaves and their major active lactone, enhydrin. In vitro cytotoxicity assays were performed with Hep-G2, COS1, CHO-K1 and Vero cell lines using a test of metabolic competence based upon assessment of mitochondrial performance. In vivo toxicity study was performed in adult Wistar rats. In the acute oral toxicity each group of rats was orally given a single dose of 10% decoction or enhydrin. General condition, behavior and mortality were recorded for up to 14 days post treatment. In subchronic toxicity studies, both products were given orally for 90 days to rats. Body weight and food intakes were observed weekly. Hematological, clinical chemistry parameters and organ weight were determined in all animals at the end of the experimental period. Cell viability decreased in a concentration dependent fashion when cells were incubated with 2-200 μg of 10% decoction and 0.015-7.5 μg of enhydrin. In acute study in rats, there were no deaths or signs of toxicity observed after oral administration of single doses of 10% decoction or enhydrin at any dose level up to the highest dose tested (14.0 g/kg and 0.32 g/kg, respectively). In subchronic studies in rats, both products administered orally for 90 days at daily doses of 0.07, 0.14 and 0.28 g 10% decoction/kg and 0.4, 0.8 and 8.0 mg enhydrin/kg, did not caused haematological, biochemical and histological alterations. The results presented in this paper lead us to the conclusion that the use of 10% decoction and enhydrin is safe in rat at doses in which it is demonstrated the hypoglycaemic effect. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
[Study on ultra-structural pathological changes of rats poisoned by tetramine].
Zhi, Chuan-hong; Liu, Liang; Liu, Yan
2005-05-01
To observe ultra-structural pathological changes of materiality viscera of rats poisoned by different dose of tetramine and to study the toxic mechanism. Acute and subacute tetramine toxicity models were made by oral administration with different dose of tetramine. Brain, heart, liver, spleen and kidney were extracted and observed by electromicroscopic examination. The injuries of brain cells, cardiocytes and liver cells were induced by different dose of tetramine. These were not obviously different of the injuries of the kindy cells and spleen cells of rats poisoned by different dose of tetramine. Ultra-structural pathological changes were abserved including mitochondria slight swelling and neurolemma's array turbulence in the brain cells, mitochondria swelling or abolish and rupture of muscle fiber in the heart cells, mitochondria swelling and the glycogen decreased in the liver cells. The toxic target organs of tetramine are the heart, brain and liver.
Rajeh, Nisreen A; Al-Dhaheri, Najlaa M
2017-02-01
To explore renal toxicity caused by sub-acute exposure of acrylamide and to study the protective effect of 5-Aminosalicylic acid (5-ASA) and Vitamin E (vit-E)on Acrylamide (ACR) induced renal toxicity. Methods: This study was conducted at King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, between August and November 2015. A total of 49 adult Wistar rats (250 ± 20g) aged 60 days were kept in a controlled environment and used in the present study. The rats were divided into 7 groups (control, ACR alone, ACR+5-ASA, ACR+vit-E, ACR+ASA+vit-E, vit-E alone, and ASA alone). After 5 days of ACR oral gavage treatment, the rats were observed for 24 hours then killed. Histopathology for the kidney and lactate dehydrogenase assay were carried out. Results: Acrylamide produced significant pathological changes in the kidney with acute tubular necrosis in the distal tubules that could be reversed by concomitant injection of rat with 5-ASA. Together with vitamin E, 5-ASA, showed maximum renal protection. No statistically significant difference was observed in either body weights or lactate dehydrogenase activity of ACR treated rats. Conclusion: Acrylamide exposure leads to adverse clinical pathologies of renal tubules, which were reversed by a concomitant treatment with 5-ASA and vitamin-E.
Sriwiriyajan, Somchai; Tedasen, Aman; Lailerd, Narissara; Boonyaphiphat, Pleumjit; Nitiruangjarat, Anupong; Deng, Yan; Graidist, Potchanapond
2016-01-01
Piper nigrum (P. nigrum) is commonly used in traditional medicine. This current study aimed to investigate the anticancer and cancer preventive activity of a piperine-free P. nigrum extract (PFPE) against breast cancer cells and N-nitrosomethylurea (NMU)-induced mammary tumorigenesis in rats. The cytotoxic effects and the mechanism of action were investigated in breast cancer cells using the MTT assay and Western blot analysis, respectively. An acute toxicity study was conducted according to the Organization for Economic Co-operation and Development guideline. Female Sprague-Dawley rats with NMU-induced mammary tumors were used in preventive and anticancer studies. The results showed that PFPE inhibited the growth of luminal-like breast cancer cells more so than the basal-like ones by induction of apoptosis. In addition, PFPE exhibited greater selectivity against breast cancer cells than colorectal cancer, lung cancer, and neuroblastoma cells. In an acute toxicity study, a single oral administration of PFPE at a dose of 5,000 mg/kg body weight resulted in no mortality and morbidity during a 14-day observation period. For the cancer preventive study, the incidence of tumor-bearing rats was 10% to 20% in rats treated with PFPE. For the anticancer activity study, the growth rate of tumors in the presence of PFPE-treated groups was much slower when compared with the control and vehicle groups. The extract itself caused no changes to the biochemical and hematologic parameters when compared with the control and vehicle groups. In conclusion, PFPE had a low toxicity and a potent antitumor effect on mammary tumorigenesis in rats. ©2015 American Association for Cancer Research.
Ignasiak, Katarzyna; Maxwell, Anthony
2017-08-29
Infectivity trials and toxicity testing in rodents are important prerequisites to the use of compounds in man. However, trials in rats and mice are expensive and there are ethical considerations. Galleria mellonella (greater wax moth) larvae are a potential alternative. We have assessed the use of these insects in infectivity trials and toxicity testing. Using four bacterial species (two Gram-negative and two Gram-positive) we have assessed the efficacy of four antibiotics against infections in Galleria and compared the antibiotic susceptibility with that in humans. In general, we find a good correlation. Similarly, we have assessed 11 compounds (initially tested blind) for their toxicity in Galleria and compared this with toxicity trials in mice and rats. Again we found a good correlation between toxicity in Galleria and that in rodents. We have found, in our hands, that G. mellonella larvae can be used in infectivity trials and toxicity testing, and that these assays represent an inexpensive and readily executable alternative to testing in rodents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, Peter, E-mail: peterk.hoffmann@novartis.com; Beckman, David; McLean, Lee Anne
Juvenile rat toxicity studies with the direct renin inhibitor aliskiren were initiated to support treatment in the pediatric population. In Study 1, aliskiren was administered orally to juvenile rats at doses of 0, 30, 100 or 300 mg/kg/day with repeated dosing from postpartum day (PPD) 8 to PPD 35/36. In-life, clinical pathology, anatomic pathology, and toxicokinetics evaluations were performed. In Study 2, single oral doses of aliskiren (0, 100 or 300 mg/kg) were given to 14-, 21-, 24-, 28-, 31- or 36-day-old rats; in-life data and toxicokinetics were evaluated. Study 3 was a single dose (3 mg/kg i.v.) pharmacokinetic studymore » in juvenile rats on PPD 8, 14, 21 and 28. In Study 4, naïve rats were used to investigate ontogenic changes of the multidrug-resistant protein 1 (MDR1) and the organic anion transporting polypeptide (OATP) mRNA in several organs. Oral administration of aliskiren at 100 and 300 mg/kg caused unexpected mortality and severe morbidity in 8-day-old rats. Aliskiren plasma and tissue concentrations were increased in rats aged 21 days and younger. Expression of MDR1 and OATP mRNA in the intestine, liver and brain was significantly lower in very young rats. In conclusion, severe toxicity and increased exposure in very young rats after oral administration of aliskiren are considered to be the result of immature drug transporter systems. Immaturity of MDR1 in enterocytes appears to be the most important mechanism responsible for the high exposure. - Highlights: • Aliskiren was orally administered to juvenile rats. • Unexpected severe toxicity and acute mortality occurred in rats aged 8 days. • Toxicity was associated with increased aliskiren plasma and tissue exposure. • Developmental changes of exposure correlated with ontogeny of transporters. • Immaturity of MDR1 in enterocytes causes increased exposure in very young rats.« less
Effect of fibrin glue occlusion of the hepatobiliary tract on thioacetamide-induced liver failure.
Schmandra, T C; Bauer, H; Petrowsky, H; Herrmann, G; Encke, A; Hanisch, E
2001-07-01
Expression and activation of hepatocyte growth factor (HGF) is stimulated by a complex system of interacting proteins, with thrombin playing an initial role in this process. The impact of temporary occlusion of the hepatobiliary tract with fibrin glue (major component thrombin) on the HGF system in acute and chronic liver damage in a rat model was investigated. Chronic liver damage was induced in 40 rats by daily intraperitoneal application of thioacetamide (100 mg/kg) for 14 days. After 7 days half of them received an injection of 0.2 mL fibrin glue into the hepatobiliary system. Daily intraperitoneal administration of thioacetamide continued for 7 consecutive days. The rats were then sacrificed for blood and tissue analysis. Acute liver failure was induced in 12 rats by intraperitoneal administration of a lethal dose of thioacetamide (500 mg/kg per day for 3 days) after an injection with 0.2 mL fibrin glue into their hepatobiliary tract. Survival rates and histological outcome were investigated and compared with control animals. Fibrin glue occluded rats showed significantly lower liver enzyme activities and serum levels of bilirubin, creatinine and urea nitrogen. Immunohistochemistry revealed a significant increase in c-met-, HGFalpha- and especially HGFbeta-positive cells. Rats subjected to a lethal dose of thioacetamide survived when fibrin glue was applied 24 hours prior to the toxic challenge. These animals showed normal liver structure and no clinical abnormalities. Fibrin glue occlusion of the hepatobiliary tract induces therapeutic and prophylactic effects on chronic and acute liver failure by stimulating the HGF system. Therefore, fibrin glue occlusion might be useful in treating toxic liver failure.
2013-05-03
public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Toxic load models are mathematical...equal). The Department of Defense (DOD) (2005) publication “Potential Military Chemical/Biological Agents and Compounds” currently uses the toxic load
"Ecstasy" toxicity to adolescent rats following an acute low binge dose.
Teixeira-Gomes, Armanda; Costa, Vera Marisa; Feio-Azevedo, Rita; Duarte, José Alberto; Duarte-Araújo, Margarida; Fernandes, Eduarda; Bastos, Maria de Lourdes; Carvalho, Félix; Capela, João Paulo
2016-06-28
3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a worldwide drug of abuse commonly used by adolescents. Most reports focus on MDMA's neurotoxicity and use high doses in adult animals, meanwhile studies in adolescents are scarce. We aimed to assess in rats the acute MDMA toxicity to the brain and peripheral organs using a binge dose scheme that tries to simulate human adolescent abuse. Adolescent rats (postnatal day 40) received three 5 mg/kg doses of MDMA (estimated equivalent to two/three pills in a 50 kg adolescent), intraperitoneally, every 2 h, while controls received saline. After 24 h animal sacrifice took place and collection of brain areas (cerebellum, hippocampus, frontal cortex and striatum) and peripheral organs (liver, heart and kidneys) occurred. Significant hyperthermia was observed after the second and third MDMA doses, with mean increases of 1 °C as it occurs in the human scenario. MDMA promoted ATP levels fall in the frontal cortex. No brain oxidative stress-related changes were observed after MDMA. MDMA-treated rat organs revealed significant histological tissue alterations including vascular congestion, but no signs of apoptosis or necrosis were found, which was corroborated by the lack of changes in plasma biomarkers and tissue caspases. In peripheral organs, MDMA did not affect significantly protein carbonylation, glutathione, or ATP levels, but liver presented a higher vulnerability as MDMA promoted an increase in quinoprotein levels. Adolescent rats exposed to a moderate MDMA dose, presented hyperthermia and acute tissue damage to peripheral organs without signs of brain oxidative stress.
Prodanchuk, Mykola G; Tsatsakis, Aristidis M; Prodanchuk, Georgiy M; Tsakalof, Andreas K
2013-11-01
Investigation of hydroxylamine sulfate toxicity mechanism in vivo and estimation of α-tocopherol acetate and methylene blue efficiency in poisoning treatments. In vivo experiments were conducted on 102 Wistar Han rats. The experiments investigated the hematotoxic and oxidative stress effects of hydroxylamine sulfate in acute and subacute toxicity treatment of animals. Electron Spin Resonance was used for quantitative determination of blood and liver tissue parameters alterations after intoxication. The osmotic fragility of erythrocytes, lipid peroxidation intensity and level of SH-groups in liver of rats were determined by established biochemical assays. Hydroxylamine sulfate cause an acute hematotoxicity and oxidative stress in vivo as demonstrated by the appearance of free oxidized iron in blood, reduced glutathione content and increased lipid peroxidation in liver. The experimental studies showed the formation of Hb-NO, MetHb in erythrocytes and as well of stable complex of reduced iron (Fe(2+)) with hydroxylamine sulfate. Methylene blue treatment does not reduce the Hb-NO or MetHb levels in intoxicated animals while administration of α-tocopherol acetate reduces substantially lipid peroxidation. Oxidative stress is a key mechanism of acute hematotoxicity caused by hydroxylamine sulfate. Methylene blue is not suitable antidote in case of hydroxylamine intoxication. Copyright © 2013 Elsevier Ltd. All rights reserved.
Anti-inflammatory activity and sub-acute toxicity of artemetin.
Sertié, J A; Basile, A C; Panizza, S; Matida, A K; Zelnik, R
1990-02-01
The 5-hydroxy-3,6,7,3',4'-pentamethoxyflavone (artemetin) from Cordia verbenacea DC (Boraginaceae) showed marked anti-inflammatory activity using various experimental models in rats. Artemetin significantly inhibited carrageenin-induced paw edema following oral doses from 30.4 to 153.9 mg.kg-1. The doses of 102.6 and 153.9 mg.kg-1 showed an inhibitory effect similar to that of 50.0 mg.kg-1 of calcium phenylbutazone. The ED50 value of artemetin in rats was estimated to be 67.07 mg.kg-1. Repeated administration of artemetin at doses of 67.07 mg.kg-1 for a 6-day period reduced granuloma formation with a response comparable to that of 20.0 mg.kg-1 of calcium phenylbutazone. This same dose of artemetin also reduced the vascular permeability to intracutaneous histamine. Sub-acute toxicological experiments indicated a very low toxicity.
Acute and repeated dose inhalation toxicity of para-nitrophenol sodium salt in rats.
Smith, L W; Hall, G T; Kennedy, G L
1988-01-01
Para-Nitrophenol Sodium Salt (PNSP) has relatively low acute inhalation toxicity; the 4-hr Approximate Lethal Concentration in rats is greater than 4.7 mg/l. One subacute study was conducted at 0, 0.34 and 2.47 mg PNSP/l for ten 6-hr exposures. Darker urine, proteinuria and elevated creatinine and SGOT were seen after exposure and were still evident after 14 days recovery. Methemoglobinemia also was seen and was reversible at 0.34 mg/l after 14 days. In addition, exposure to 2.47 mg/l caused elevated erythrocytes, hemoglobin and hematocrit. A second subacute study at 0.03 and 0.13 mg PNSP/l showed reversible methemoglobinemia only at 0.13 mg/l. The repeated dose no-observable effect level was 0.03 mg/l. No compound-related pathologic changes were noted in any of the studies.
[Functional-behavioral profile of new cyclic GABA analogs in acute toxicity tests].
Bugaeva, L I; Spasov, A A; Verovskiĭ, V E
2004-01-01
The properties of karphedone and phepyrone--new phenyl derivatives of pyrrolidone possessing nootropic activity--were studied in the course of the acute toxicity tests on rats. The drug effects were evaluated in terms of their integral influence on the state and behavior of test animals. The real therapeutic range and the profit/risk ratio of karphedone were comparable with those of the reference drug pyracetam and exceeded by a factor of 1.3 the corresponding values for phepyrone (irrespective of the LD50 values). The results give grounds for the further preclinical investigation of karphedone.
QSAR Modeling of Rat Acute Toxicity by Oral Exposure
Zhu, Hao; Martin, Todd M.; Ye, Lin; Sedykh, Alexander; Young, Douglas M.; Tropsha, Alexander
2009-01-01
Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. In this study, a comprehensive dataset of 7,385 compounds with their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire dataset was selected that included all 3,472 compounds used in the TOPKAT’s training set. The remaining 3,913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R2 of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD50 for every compound using all 5 models. The consensus models afforded higher prediction accuracy for the external validation dataset with the higher coverage as compared to individual constituent models. The validated consensus LD50 models developed in this study can be used as reliable computational predictors of in vivo acute toxicity. PMID:19845371
Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure.
Zhu, Hao; Martin, Todd M; Ye, Lin; Sedykh, Alexander; Young, Douglas M; Tropsha, Alexander
2009-12-01
Few quantitative structure-activity relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most conservative lethal dose (LD(50)) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT's training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R(2) of linear regression between actual and predicted LD(50) values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R(2) ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD(50) for every compound using all five models. The consensus models afforded higher prediction accuracy for the external validation data set with the higher coverage as compared to individual constituent models. The validated consensus LD(50) models developed in this study can be used as reliable computational predictors of in vivo acute toxicity.
Arteaga, M E; Mancebo, A; Molier, T; Gómez, D; González, C; Bada, A M; González, B; Rojas, N M; Rodríguez, G
2014-02-01
Bacillus thuringiensis (Bt) is the best known and most widely used of all pesticidal microbes. The aim of this study was to assess the toxicity of a new formulation of Bacillus thuringiensis var israelensis SH-14 in rats through acute dermal toxicity, dermal and eye irritation experiments. The acute dermal toxicity and dermal and eye irritation studies were performed using rabbits according to the United States Environmental Protection Agency guidelines 885.3100, 870.2500 and 870.2500, respectively. The skin sensitization study was carried out in accordance to the EPA OPPTS 870.2600 using guinea pigs. There was no mortality and no evidence of treatment-related toxicity in acute dermal toxicity test. No dermal responses, including erythema/eschar or edema, were found in rabbits treated with the new formulation of Bti SH-14. Minimum response was observed after eye application of test substance. No skin sensitization reactions were observed after the challenge with the new formulation of Bti SH-14 in the Bti SH-14-treated guinea pigs. In summary, the present study demonstrated that the new formulation of Bti SH-14 is not acutely toxic via dermal route, has low eye irritation and would not cause dermal irritation or hypersensitivity to tested animals. Copyright © 2013 Elsevier Inc. All rights reserved.
Belhekar, S. N.; Chaudhari, P. D.; Saryawanshi, J. S.; Mali, K. K.; Pandhare, R. B.
2013-01-01
Present study was carried to find out the antihyperglycemic and antihyperlipidemic activity of ethanol and aqueous extract of Thespesia populnea fruit pulp on alloxan-induced diabetic rats. Diabetes was induced in rats by administration of alloxan (150 mg/kg, i.p.). After the successful induction of experimental diabetes, the rats were divided into five groups each comprising a minimum of six rats. Phytochemical analysis and acute toxicity study of extracts was also done. The effects of extracts and metformin on fasting blood glucose and plasma lipid were examined for 28 days. Statistical analysis was carried out by using analysis of variance followed by Dunnet's multiple comparison test and paired t-test were done as the test of significance using GraphPad Prism. P≤0.05 was considered as the minimal level of statistical significance. Therapeutic dose of extract was found to be 200 mg/kg on the basis of acute toxicity study. Aqueous and alcoholic extract showed a significant reduction in blood glucose levels as well as a lipid profile of diabetic rats at the end of 28th day of treatment. However, in groups treated with plant extract the reduction in the blood glucose and improvement in lipid profile was slightly less than that achieved with the standard group (metformin). From this study, it can be concluded that ethanol and aqueous extract of Thespesia populnea exhibited significant antihyperglycemic and antihyperlipidemic effects on alloxan-induced diabetic rats. PMID:24019572
1989-10-01
UNCLASSIFIED UNCLASSIFIED 48 SUMMARY OF OP AND CARBAMATE INTERACTIONS IN THE ACUTE INHIBITION OF CHOLINESTERASE ACTIVITY IN RAT BRAIN NEURAL CELL AGGREGATE...for the past three years, we have been study- ing the toxicity of a number of organophosphates and carbamates on neural cell aggregate cultures. The...the temporary acute exposure to high concentrations of the chemical. In the occupational setting, accidental discharge may occur, resulting in acute
Kim, Joo-Wan; Choi, Jae-Suk; Ha, Yu-Mi; Choi, In Soon; Kim, Ki-Young; Cho, Hyung-rae; Rha, Chae-hun; Ku, Sae-Kwang
2013-11-01
The object of this study was to obtain acute oral toxicity information of Polycalcium, a mixed composition of Polycan and Calcium lactate-gluconate 1:9 (g/g), in Sprague-Dawely (SD) rats. In order to investigate the toxicity and identify target organs, Polycalcium were once orally administered to female and male SD rats at dose levels of 2000, 1000, 500 and 0 (control) mg/kg body weights. The mortality, changes on body weight and clinical signs were monitored during 14 days after treatment with gross observation, changes on the organ weights and histopathology of principle organs and treatment sites based on the recommendation of KFDA Guidelines [2009-116, 2009]. As the results of single oral treatment of Polycalcium, no treatment related mortalities were observed within 14 days after end of treatment up to 2000 mg/kg, the limited dosage of rodents in the both genders. In addition, no Polycalcium treatment related changes on the body and organ weights, clinical signs, necropsy and histopathological findings were detected. The results obtained in this study suggest that the Polycalcium is non-toxic in rats. The LD50 and approximate LD in rats after single oral dose of Polycalcium were considered over 2000 mg/kg in both female and male, respectively.
Ahmad, Feroz; Tabassum, Nahida
2013-01-01
Objective To carry out a preliminary phytochemical, acute oral toxicity and antihepatotoxic study of the roots of Paeonia officinalis (P. officinalis) L. Methods Preliminary phytochemical investigation was done as per standard procedures. Acute oral toxicity study was conducted as per OECD 425 guidelines. The antihepatotoxic activity of aqueous extract of root of P. officinalis was evaluated against carbon tetrachloride (CCl4) induced hepatic damage in rats. Aqueous extract of P. officinalis at the dose levels of 100 and 200 mg/kg body weight was administered daily for 14 d in experimental animals. Liver injury was induced chemically, by CCl4 administration (1 mL/kg i.p.). The hepatoprotective activity was assessed using various biochemical parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum alkaline phosphatase (SALP), total bilirubin and total protein (TP) along with histopathological studies. Result Phytochemical screening revealed that the roots of P. officinalis contain alkaloids, tannins, saponins, glycosides, carbohydrates, flavonoids, terpenes, steroids and proteins. The aqueous extract did not cause any mortality up to 2 000 mg/kg. In rats that had received the root extract at the dose of 100 and 200 mg/kg, the substantially elevated AST, ALT, SALP, total bilirubin levels were significantly lowered, respectively, in a dose dependent manner, along with CCl4 while TP levels were elevated in these groups. Histopathology revealed regeneration of the livers in extract treated groups while Silymarin treated rats were almost normal. Conclusions The aqueous extract of P. officinalis is safe and possesses antihepatotoxic potential. PMID:23570019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunderman, F.W. Jr.
1975-08-15
The toxicology and metabolism of nickel compounds (NiCl/sub 2/, Ni/sub 3/S/sub 2/, NiS, and Ni powder) were investigated in rats and hamsters. The new knowledge has included: demonstration that hyperglucagonemia is primarily responsible for the acute hyperglycemic effect of parenteral Ni(II) in rats; demonstration that parenteral injection of Ni(II) in rats produces acute nephropathy with proteinuria and amino aciduria, and with ultrastructural lesions of renal glomeruli and tubules; confirmation of the inhibitory effect of manganese upon the carcinogenicity of Ni/sub 3/S/sub 2/ after intramuscular injection in rats, and elucidation of the effects of manganese upon the rates of excretion ofmore » nickel, and upon the acute histological reactions produced by Ni/sub 3/S/sub 2/; discovery that the antidotal efficacy of triethylenetetramine (TETA) in acute Ni(II) poisoning in rats is substantially greater than that of other chelating agents, including ..cap alpha..-lipoic acid, diethyldithiocarbamate, d-penicillamine, and glycylglycyl-L-histidine-N-methylamide; observation that the acute renal toxicity of Ni(II) is suppressed by administration of TETA, but that the hyperglycemic and hyperglucagonemic responses to Ni(II) are not prevented by TETA; confirmation that marked erythrocytosis is induced in rats by a single intrarenal injection of Ni/sub 3/S/sub 2/, and elucidation of the time-response and dose-response relationships for the Ni-induced erythrocytosis. (auth)« less
To compare the toxicity of 5 N-methyl carbamates, the time course and dose response profiles for ChE inhibition were established for each. For the time course comparison, adult male Long Evans rats (n=5 dose group) were dosed orally with either carbaryl (CB; 30 mg/kg in corn oi...
Evaluation of processed borax as antidote for aconite poisoning.
Sarkar, Prasanta Kumar; Prajapati, Pradeep K; Shukla, Vinay J; Ravishankar, Basavaiah
2017-06-09
Aconite root is very poisonous; causes cardiac arrhythmias, ventricular fibrillation and ventricular tachycardia. There is no specific antidote for aconite poisoning. In Ayurveda, dehydrated borax is mentioned for management of aconite poisoning. The investigation evaluated antidotal effect of processed borax against acute and sub-acute toxicity, cardiac toxicity and neuro-muscular toxicity caused by raw aconite. For acute protection Study, single dose of toxicant (35mg/kg) and test drug (22.5mg/kg and 112.5mg/kg) was administered orally, and then 24h survival of animals was observed. The schedule was continued for 30 days in sub-acute protection Study with daily doses of toxicant (6.25mg/kg), test drug (22.5mg/kg and 112.5mg/kg) and vehicle. Hematological and biochemical tests of blood and serum, histopathology of vital organs were carried out. The cardiac activity Study was continued for 30 days with daily doses of toxicant (6.25mg/kg), test drug (22.5mg/kg), processed borax solution (22.5mg/kg) and vehicle; ECG was taken after 1h of drug administration on 1 TB , 15th and on 30th day. For neuro-muscular activity Study, the leech dorsal muscle response to 2.5µg of acetylcholine followed by response of toxicant at 25µg and 50µg doses and then response of test drug at 25µg dose were recorded. Protection index indicates that treated borax gave protection to 50% rats exposed to the lethal dose of toxicant in acute protection Study. Most of the changes in hematological, biochemical parameters and histopathological Study induced by the toxicant in sub-acute protection Study were reversed significantly by the test drug treatment. The ventricular premature beat and ventricular tachyarrhythmia caused by the toxicant were reversed by the test drug indicate reversal of toxicant induced cardio-toxicity. The acetylcholine induced contractions in leech muscle were inhibited by toxicant and it was reversed by test drug treatment. The processed borax solution is found as an effective protective agent to acute and sub-acute aconite poisoning, and aconite induced cardiac and neuro-muscular toxicity. Processed borax at therapeutic dose (22.5mg/kg) has shown better antidotal activity profile than five times more than therapeutic dose (112.5mg/kg). Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Goñi-Allo, Beatriz; Ramos, Mar'a; Herv'as, Isabel; Lasheras, Berta; Aguirre, Norberto
2006-03-01
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA) produces long-term toxicity to serotonin (5-HT) neurones in rats, which is exacerbated when combined with the mitochondrial inhibitor malonate. Moreover, MDMA, which does not produce dopamine depletion in the rat, potentiates malonate-induced striatal dopamine toxicity. Because the malonate/MDMA combination acutely causes a synergistic increase of 5-HT and dopamine release, in this study we sought to determine whether pharmacological blockade of MDMA- and/or malonate-induced dopamine release prevents neurotoxicity. Fluoxetine, given 30 min prior to the malonate/MDMA combination, afforded complete protection against 5-HT depletion and reversed MDMA-induced exacerbation of dopamine toxicity found in the malonate/MDMA treated rats. Protection afforded by fluoxetine was not related to changes in MDMA-induced hyperthermia. Similarly, potentiation of malonate-induced dopamine toxicity caused by MDMA was not observed in p-chlorophenylalanine-5-HT depleted rats. Finally, the dopamine transporter inhibitor GBR 12909 completely prevented dopamine neurotoxicity caused by the malonate/MDMA combination and reversed the exacerbating toxic effects of malonate on MDMA-induced 5-HT depletion without significantly altering the hyperthermic response. Overall, these results suggest that the synergic release of dopamine caused by the malonate/MDMA combination plays an important role in the long-term toxic effects. A possible mechanism of neurotoxicity and protection is proposed.
Acute Inhalation Toxicity and Blood Absorption of 2,4-Dinitroanisole (DNAN) in Rats
2015-03-17
stainless steel cylinders with conical nose pieces. Rats were positioned in the exposure cylinder such that their noses were at the conical end of the...performed using a 16 gauge x 2-inch stainless steel gavage needle. A 16 milligram per milliliter (mg/mL) suspension of DNAN in corn oil was used for oral...considered to be the most appropriate mode. Rats will be individually restrained during exposure in perforated, stainless steel cylinders with conical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozano, Omar, E-mail: omar.lozanogarcia@fundp.ac.be; Research Centre for the Physics of Matter and Radiation; Laloy, Julie
2012-10-15
Background: Silicon carbide (SiC) presents noteworthy properties as a material such as high hardness, thermal stability, and photoluminescent properties as a nanocrystal. However, there are very few studies in regard to the toxicological potential of SiC NPs. Objectives: To study the toxicity and biodistribution of silicon carbide (SiC) nanoparticles in an in vivo rat model after acute (24 h) and subacute (28 days) oral administrations. The acute doses were 0.5, 5, 50, 300 and 600 mg·kg{sup −1}, while the subacute doses were 0.5 and 50 mg·kg{sup −1}. Results: SiC biodistribution and elemental composition of feces and organs (liver, kidneys, andmore » spleen) have been studied by Particle-Induced X-ray Emission (PIXE). SiC and other elements in feces excretion increased by the end of the subacute assessment. SiC did not accumulate in organs but some elemental composition modifications were observed after the acute assessment. Histopathological sections from organs (stomach, intestines, liver, and kidneys) indicate the absence of damage at all applied doses, in both assessments. A decrease in the concentration of urea in blood was found in the 50 mg·kg{sup −1} group from the subacute assessment. No alterations in the urine parameters (sodium, potassium, osmolarity) were found. Conclusion: This is the first study that assesses the toxicity, biodistribution, and composition changes in feces and organs of SiC nanoparticles in an in vivo rat model. SiC was excreted mostly in feces and low traces were retrieved in urine, indicating that SiC can cross the intestinal barrier. No sign of toxicity was however found after oral administration. -- Highlights: ► SiC nanoparticles were orally administered to rats in acute and subacute doses. ► SiC was found in low traces in urine. It is mostly excreted in feces within 5 days. ► SiC excretion rate, feces and organ elemental composition change with time. ► No morphological alteration were found on GI tract, liver, kidneys, or spleen. ► Urea increased in blood in the subacute assessment. No change in urine properties.« less
1983-03-01
ABSTRACT (Continue on reverse side If necessary and identify by block number) Perfluoro -n-decanoic acid ( PFDA ) causes toxic sequelae in vivo very similar to...acid analogs. All polyfluorinated acids tested (either perfluorinated or w-hydro-analogs) with chain length 9 or greater caused impairment of clone...of 5 to 7. The acute and subchronic toxicity of ammonium perfluoro -n-octanoate ( PFOA ) has been described in detail in both rats and rhesus monkeys
Sazonovas, A; Japertas, P; Didziapetris, R
2010-01-01
This study presents a new type of acute toxicity (LD(50)) prediction that enables automated assessment of the reliability of predictions (which is synonymous with the assessment of the Model Applicability Domain as defined by the Organization for Economic Cooperation and Development). Analysis involved nearly 75,000 compounds from six animal systems (acute rat toxicity after oral and intraperitoneal administration; acute mouse toxicity after oral, intraperitoneal, intravenous, and subcutaneous administration). Fragmental Partial Least Squares (PLS) with 100 bootstraps yielded baseline predictions that were automatically corrected for non-linear effects in local chemical spaces--a combination called Global, Adjusted Locally According to Similarity (GALAS) modelling methodology. Each prediction obtained in this manner is provided with a reliability index value that depends on both compound's similarity to the training set (that accounts for similar trends in LD(50) variations within multiple bootstraps) and consistency of experimental results with regard to the baseline model in the local chemical environment. The actual performance of the Reliability Index (RI) was proven by its good (and uniform) correlations with Root Mean Square Error (RMSE) in all validation sets, thus providing quantitative assessment of the Model Applicability Domain. The obtained models can be used for compound screening in the early stages of drug development and prioritization for experimental in vitro testing or later in vivo animal acute toxicity studies.
Aggarwal, Madan L; Chacko, Karampendethu M; Kuruvilla, Binu T
2016-01-01
Curcumin, the active component present in Curcuma longa of the family Zingiberaceae, has a number of pharmacological effects, including potential anti‑inflammatory activity. One of the major limitations of curcumin/turmeric extract is its poor absorption through the gastrointestinal tract. Several approaches have been adopted to increase the bioavailability of curcumin, including loading curcumin into liposomes or nanoparticles, complexation with phospholipids, addition of essential oils and synthesizing structural analogues of curcumin. In the present study, the toxicity and safety of one such bioavailable turmeric formulation, curcuminoid‑essential oil complex (CEC), the toxicity profile of which has not been reported, were examined using in vivo and in vitro models, as per the guidelines of the Organisation for Economic Co-operation and Development. Investigations of acute toxicity study were performed in rats and mice, and the results revealed no signs and symptoms or toxicity or mortality in any of the animals at the maximum recommended dose level of 5,000 mg/kg body weight. The repeated administration of CEC for 90 days in Wistar rats at a dose of 1,000 mg/kg body weight did not induce any observable toxic effects, compared with corresponding control animals. Mutagenicity/genotoxicity investigations were also performed using a bacterial reverse mutation assay (Ames test), a mammalian bone marrow chromosome aberration test and a mammalian erythrocyte micronucleus test in mice. CEC was found to be non‑mutagenic in all three mutagenic investigations. Consequently, the present study indicated that CEC elicited no toxic effects in animals or in vitro. Therefore, following investigations of acute toxicity, repeated dose toxicity and mutagenicity, CEC was deemed a safe, non‑toxic pharmacological formulation.
Safety of a Novel Botanical Extract Formula for Ameliorating Allergic rhinitis. Part II.
Amit, A; Joshua, A J; Bagchi, M; Bagchi, D
2005-01-01
Abstract Each year more than 50 million Americans suffer from allergic rhinitis, which is a state of hypersensitivity or hyperimmunity. Basically, allergic rhinitis is symptomatically recognized as the inflammation and irritation of the nasal mucosal membranes; sneezing; stuffy/runny nose; nasal congestion; and itchy; watery, and swollen eyes; and defined as a state of hypersensitivity/ hyperimmunity caused by exposure to a particular allergen (antigen) that results in increased reactivity upon subsequent exposure. A novel polyherbal formulation (Aller-7/NR-A2) was developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants, including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale, and Piper longum. Earlier studies in our laboratories have demonstrated potent antihistaminic, anti-inflammatory, antispasmodic, antioxidant, and mast-cell stabilization activities of Aller-7 in addition to its efficacy in a clinical setting. A series of preliminary toxicological evaluations were also conducted in the past, which demonstrated its safety. In this study, we have conducted further safety studies on Aller-7, including acute oral, acute dermal, acute dermal irritation, eye irritation, and 90-day repeated dose toxicity studies. Acute oral toxicity of Aller-7 was found to be greater than 5,000 mg/kg body weight in both male and female rats and no mortality or toxicity was observed at this dose, while the acute dermal toxicity was found to be greater than 2,000 mg/kg body weight. In the acute dermal irritation study, the skin irritancy index was found to be 0.0, which classifies Aller-7 as a nonirritant to rabbit skin. In the acute eye irritation study, Aller-7 was found to have minimal irritancy to eyes of rabbits. In the repeated-dose 90-day oral toxicity study, Aller-7 was administered at dose levels of 100, 300, and 1,000 mg/kg rat body weight for 90 consecutive days by oral gavage. Aller-7 did not induce any significant change in the hematological parameters. No ocular abnormalities were observed. Some minor histopathological changes were observed, but did not reveal any significant treatment-related histopathological changes. The above findings revealed that the no observed adverse effect level (NOAEL) of Aller-7 is greater than 1,000 mg/kg body weight. Taken together, these studies demonstrate the broad spectrum safety of Aller-7.
Hudson, R.H.; Haegele, M.A.; Tucker, R.K.
1979-01-01
Acute oral (po) and 24-hr percutaneous (perc) LD50 values for 21 common pesticides (19 anticholinesterases, of which 18 were organophosphates, and one was a carbamate; one was an organochlorine central nervous system stimulant; and one was an organonitrogen pneumotoxicant) were determined in mallards (Anas platyrhynchos). Three of the pesticides tested were more toxic percutaneously than orally. An index to the percutaneous hazard of a pesticide, the dermal toxicity index (DTI = po LD50/perc LD50 ? 100), was also calculated for each pesticide. These toxicity values in mallards were compared with toxicity data for rats from the literature. Significant positive correlations were found between log po and log percutaneous LD50 values in mallards (r = 0.65, p 0.10). Variations in percutaneous methodologies are discussed with reference to interspecies variation in toxicity values. It is recommended that a mammalian DTI value approaching 30 be used as a guideline for the initiation of percutaneous toxicity studies in birds, when the po LD50 and/or projected percutaneous LD50 are less than expected field exposure levels.
Ibrahim, Ahmad H; Khan, Md Shamsuddin Sultan; Al-Rawi, Sawsan S; Ahamed, Mohamed B Khadeer; Majid, Aman Shah Bin Abdul; Al-Suede, Fouad Saleih R; Ji, Dan; Majid, Amin Malik Shah Abdul
2016-11-01
Fermented Virgin Coconut Oil (FVCO) is widely used in the Southeast Asia as food and traditional medicine. The objective of the present study is the evaluation of chronic safety of the commercialized FVCO of Malaysia and other Southeast Asian countries. A single dose of 5000 mg/kg of FVCO was administered orally in rats (each group, n = 5) for the acute toxicity study and 175, 550 and 2000 mg/kg for sub-chronic and chronic studies (each group, n = 10), respectively. The behavior, mortality, and body weight of the rats were assessed to determine the toxic effects of FVCO. The haematology, biochemistry and histopathology of the treated rats were evaluated. The treated rats were safe with the dose of 5000 mg/kg in acute, sub-chronic and chronic indication. Abnormal clinical signs and morphology (gross necroscopy), changes of organ weight, anomalous haematology and biochemistry indexes were not found in comparison with the control (p > 0.05). In general, food and water intake were higher in the treated rats related to control. It was concluded that the presence of the antioxidant active compounds of FVCO might be the reason of safety. The structure activity relationship (SAR) provides a comprehensive mechanism to determine the safety that is the presence of the electron donating phenolic groups, carbonyl groups, and carboxylic acid in the ortho and meta position of the aromatic rings. The SAR showed the antioxidant properties of myristic acid and lauric acid determined by GC-MS analysis. This result suggests the safety of FVCO for chronic use, nutritional activity that FVCO formulation complies the requirements of regulatory agencies. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluation of anti-inflammatory potential of leaf extracts of Skimmia anquetilia
Kumar, Vijender; Bhat, Zulfiqar Ali; Kumar, Dinesh; Khan, NA; Chashoo, IA
2012-01-01
Objective To evaluate anti-inflammatory potential of leaf extract of Skimmia anquetilia by in-vitro and in-vivo anti-inflammatory models. Methods Acute toxicity study was carried out to determine the toxicity level of different extract using acute toxic class method as described in Organization of Economic Co-operation and Development Guidelines No.423. Carrageenan (1% w/w) was administered and inflammation was induced in rat paw. The leaf extracts of Skimmia anquetilia were evaluated for anti-inflammatory activity by in-vitro human red blood cell (HRBC) membrane stabilization method and in-vivo carrangeenan-induced rat paw edema method. Results The in-vitro membrane stabilizing test showed petroleum ether (PE), chloroform (CE), ethyl acetate (EE), methanol (ME) and aqueous extracts (AE) showed 49.44%, 59.39%, 60.15%, 68.40% and 52.18 % protection, respectively as compared to control groups. The in-vivo results of CE, EE and ME showed 58.20%, 60.17% and 67.53% inhibition of inflammation after 6h administration of test drugs in albino rats. The potency of the leaf extracts of Skimmia anquetilia were compared with standard diclofenac (10 mg/kg) which showed 74.18% protection in in-vitro HRBC membrane stabilization test and 71.64% inhibition in in-vivo carrangeenan-induced rat paw edema model. The ME showed a dose dependent significant (P< 0.01) anti-inflammatory activity in human red blood cell membrane stabilization test and reduction of edema in carrageenan induced rat paw edema. Conclusions The present investigation has confirmed the anti-inflammatory activity of Skimmia anquetilia due to presence of bioactive phytoconstitutes for the first time and provide the pharmacological evidence in favor of traditional claim of Skimmia anquetilia as an anti- inflammatory agent. PMID:23569983
Protective effect of Sida cordata leaf extract against CCl(4) induced acute liver toxicity in rats.
Mistry, Sunil; Dutt, K R; Jena, J
2013-04-13
To investigate the hepatoprotective potential of Sida cordata (Malvaceae) (S. cordata) in experimental rats to validate its traditional claim. Wister albino rats were divided into 6 groups: Group I served as control; Group II served as hepatotoxic (CCl(4) treated) group; Group III, IV and V served as (100, 200 and 400 mg/kg b.w.) S. cordata leaf extract (SCLE) treated groups; Group VI served as positive control (Silymarin) treated group. Liver marker enzymes serum glutamate oxyloacetic transaminase, serum glutamic pyruvic transaminase, pancreatic enzymatic antioxidants superoxide dismutase (SOD), lipid peroxidation, catalase (CAT), reduced glutathione (GSH) were measured and compared along with histopathological studies. Obtained results show that the treatment with SCLE significantly (P<0.05-<0.001) and dose-dependently reduced CCl4 induced elevated serum level of hepatic enzymes. Furthermore, SCLE significantly (up to P<0.001) reduced the lipid peroxidation in the liver tissue and restored activities of defence antioxidant enzymes GSH, SOD and CAT towards normal levels, which was confirmed by the histopathological studies. The results of this study strongly indicate the protective effect of SCLE against CCl(4) induced acute liver toxicity in rats and thereby scientifically support its traditional use. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Abdel-Bar, Hend Mohamed; Osman, Rihab; Abdel-Reheem, Amal Youssef; Mortada, Nahed; Awad, Gehanne A S
2016-02-08
This work describes the development of a modified nanocomposite thermosensitive hydrogel for controlled cisplatin release and improved cytotoxicity with decreased side effects. The system was characterized in terms of physical properties, morphological architecture and in vitro cisplatin release. Cytotoxicity was tested against human colorectal carcinoma HCT-116. In vivo studies were conducted to evaluate the acute toxicity in terms of rats' survival rate and body weight loss. Nephro and hepatotoxicities were evaluated followed by histopathological alterations of various tissue organs. Nanocomposite thermosensitive hydrogel containing nanosized carrier conferred density and stiffness allowing a zero order drug release for 14 days. Enhanced cytotoxicity with 2-fold decrease in cisplatin IC50 was accomplished. A linear in vivo-in vitro correlation was proved for the system degradation. Higher animal survival rate and lower tissue toxicities proved the decreased toxicity of cisplatin nanocomposite compared to its solution.
Dietary modulation of parathion-induced neurotoxicity in adult and juvenile rats.
Liu, Jing; Karanth, Subramanya; Pope, Carey
2005-06-01
Previous studies indicated that dietary glucose (15% in drinking water) could markedly exacerbate the toxicity of parathion in adult rats. The present study evaluated the effect of consumption of the commonly used sweetener, high fructose corn syrup (HFCS), on parathion toxicity in adult and juvenile rats. Animals were given free access to either water or 15% HFCS in drinking water for a total of 10 days and challenged with parathion (6 or 18 mg/kg, s.c., for juveniles or adults, respectively) on the 4th day. Signs of cholinergic toxicity, body weight and chow/fluid intake were recorded daily. Acetylcholinesterase (AChE) activity and immunoreactivity (AChE-IR) in frontal cortex and diaphragm were measured at 2, 4, and 7 days after parathion. As HFCS was associated with significant reduction in chow intake, adult rats were also pair-fed to evaluate the effect of similar reduced chow intake alone on parathion toxicity. The results indicated that the cholinergic toxicity of parathion was significantly increased by HFCS feeding in both age groups. The excess sugar consumption, however, did not significantly affect parathion-induced AChE inhibition in either tissue or either age group. Enzyme immunoreactivity in frontal cortex was generally not affected in either age group while diaphragm AChE-IR was significantly reduced by parathion and HFCS alone in adult animals at 2 and 4 days timepoints, and more so by the combination of sugar feeding and parathion exposure in both age groups. Food restriction alone did not exacerbate parathion toxicity. While the mechanism(s) remains unclear, we conclude that voluntary consumption of the common sweetener HFCS can markedly amplify parathion acute toxicity in both juvenile and adult rats.
2014-06-01
to the Black Smoke formulation demonstrates the beginning of lesion recovery/ healing . Toxicant-induced nasal lesions in laboratory animals generally...material inside an empty inhalation chamber with solid rubber stoppers placed in the faceplate to contain the smoke atmosphere. This inhalation...level of activity, gait and posture, reactivity to handling or sensory stimuli, altered strength, and stereotypes or bizarre behavior (e.g., self
Lohiya, Nirmal K; Manivannan, Boomi; Garg, Shipra
2006-10-01
Pre-clinical acute and sub-chronic toxicity studies of the methanol sub-fraction (MSF) of the seeds of Carica papaya, a putative male contraceptive, have been investigated in rats to evaluate safety of the test substance. A single oral dose of MSF at 2000 mg/kg body weight was studied over 14 days for acute toxicity, and daily oral doses of 50, 100, 250 and 500 mg/kg body weight were studied for 28- and 90-day periods for sub-chronic toxicity. Body weight, food and water intake and phenotypical toxicological symptoms were recorded daily. Sperm analysis, hematology, serum clinical biochemistry, libido and pathological examination of vital organs were recorded at the termination of the experimental periods. We observed no overt general toxicity in exposed animals. Food and water intake showed daily fluctuations within control limits. Sperm density showed a significant decrease in all 28- and 90-day repeated dose treated animals whereas total sperm motility inhibition was observed at 250 and 500 mg/kg dose levels at the 28-day time interval but in all dose groups at the 90-day interval. The preliminary results suggest the test substance may be a safe approach to male anti-fertility.
Chronic toxicity and oncogenicity of decamethylcyclopentasiloxane in the Fischer 344 Rat.
Jean, Paul A; Plotzke, Kathleen P; Scialli, Anthony R
2016-02-01
Decamethylcyclopentasiloxane (D5) is a cyclic polydimethylsiloxane used in the synthesis of silicon-based materials and as a component in consumer products. Male and female Fischer 344 rats were exposed to D5 vapor (0, 10, 40, 160 ppm; whole-body inhalation) for 6 h/d, 5 d/wk, for up to 104 weeks. Microscopic examination of tissues revealed test article effects at 160 ppm in the upper respiratory tract (hyaline inclusions in males and females at 6, 12, and 24 months) and an increased incidence of uterine endometrial adenocarcinoma at 24-months. The hyaline inclusions were considered a non-adverse tissue response for lack of any other respiratory tract non-neoplastic or neoplastic changes. Uterine endometrial adenocarcinoma was not anticipated. Toxicity testing (mutagenicity/genotoxicity, acute, sub-acute and sub-chronic descriptive toxicity) performed prior to the conduct of the chronic bioassay provided no indication that the uterus was a potential target organ. The target organ and tumor type specificity (adenocarcinoma is a common spontaneous tumor in the aged Fischer 344 rat) suggests the effect is associated with estrous cycle alteration. A robust assessment of potential mode(s) of action responsible for the uterine tumors and relevance to humans is addressed in a companion manuscript (Klaunig et al., 2015). Copyright © 2015 Elsevier Inc. All rights reserved.
Lash, Lawrence H.; Putt, David A.; Huang, Paul; Hueni, Sarah E.; Parker, Jean C.
2007-01-01
The relative importance of metabolism of trichloroethylene (Tri) and perchloroethylene (Perc) by the cytochrome P450 (P450) and glutathione (GSH) conjugation pathways in their acute renal and hepatic toxicity was studied in isolated cells and microsomes from rat kidney and liver after various treatments to modulate P450 activity/expression or GSH status. Inhibitors of P450 stimulated GSH conjugation of Tri and, to a lesser extent, Perc, in both kidney cells and hepatocytes. Perc was a more potent, acute cytotoxic agent in isolated kidney cells than Tri but Perc-induced toxicity was less responsive than Tri-induced toxicity to modulation of P450 status. These observations are consistent with P450-dependent bioactivation being more important for Tri than for Perc. Incubation of isolated rat hepatocytes with Tri produced no acute cytotoxicity in isolated hepatocytes while Perc produced comparable cytotoxicity as in kidney cells. Modulation of P450 status in hepatocytes produced larger changes in Tri- and Perc-induced cytotoxicity than in kidney cells, with non-selective P450 inhibitors increasing toxicity. Induction of CYP2E1 with pyridine also markedly increased sensitivity of hepatocytes to Tri but had little effect on Perc-induced cytotoxicity. Increases in cellular GSH concentrations increased Tri- and Perc-induced cytotoxicity in kidney cells but not in hepatocytes, consistent with the role of GSH conjugation in Tri- and Perc-induced nephrotoxicity. In contrast, depletion of cellular GSH concentrations moderately decreased Tri- and Perc-induced cytotoxicity in kidney cells but increased cytotoxicity in hepatocytes, again pointing to the importance of different bioactivation pathways and modes of action in kidney and liver. PMID:17433522
Anadón, Arturo; Martínez, Maria A; Ares, Irma; Ramos, Eva; Señoráns, Francisco J; Reglero, Guillermo; Torres, Carlos
2010-02-10
Shark liver oil has been used for over 50 years as both a therapeutic and preventive agent. The active ingredients in shark liver oil have been found to be a group of ether-linked glycerols known as alkoxyglycerols. Despite its popularity, there is little published toxicology data on alkoxyglycerols. The toxicity of a supercritical fluid extract of shark liver oil (AKG-1 extract) has been evaluated in acute and repeated dose (28 days) oral toxicity studies in rats at doses of 200 and 100 times the maximum recommended dose by supplement manufacturers in humans, respectively. The AKG-1 extract administered in a single oral gavage dose of 2000 mg kg(-1) of body weight resulted in no adverse events or mortality. The AKG-1 extract administered as a daily dose of 1000 mg kg(-1) of body weight for 28 days by gavage resulted in no adverse effects or mortality. For both studies, no abnormal clinical signs, behavioral changes, body weight changes, or change in food and water consumption occurred. There were no changes in hematological and serum chemistry values, organ weights, or gross or histological characteristics. It is concluded that the AKG-1 extract is well tolerated in rats at an acute dose of 2000 mg kg(-1) and at a subchronic (28 days) dose of 1000 mg kg(-1).
Neuromuscular Functions on Experimental Acute Methanol Intoxication.
Moral, Ali Reşat; Çankayalı, İlkin; Sergin, Demet; Boyacılar, Özden
2015-10-01
The incidence of accidental or suicidal ingestion of methyl alcohol is high and methyl alcohol intoxication has high mortality. Methyl alcohol intoxication causes severe neurological sequelae and appears to be a significant problem. Methyl alcohol causes acute metabolic acidosis, optic neuropathy leading to permanent blindness, respiratory failure, circulatory failure and death. It is metabolised in the liver, and its metabolite formic acid has direct toxic effects, causing oxidative stress, mitochondrial damage and increased lipid peroxidation associated with the mechanism of neurotoxicity. Methanol is known to cause acute toxicity of the central nervous system; however, the effects on peripheral neuromuscular transmission are unknown. In our study, we aimed to investigate the electrophysiological effects of experimentally induced acute methanol intoxication on neuromuscular transmission in the early period (first 24 h). After approval by the Animal Experiment Ethics Committee of Ege University, the study was carried out on 10 Wistar rats, each weighing about 200 g. During electrophysiological recordings and orogastric tube insertion, the rats were anaesthetised using intra-peritoneal (IP) injection of ketamine 100 mg kg(-1) and IP injection of xylazine 10 mg kg(-1). The rats were given 3 g kg(-1) methyl alcohol by the orogastric tube. Electrophysiological measurements from the gastrocnemius muscle were compared with baseline. Latency measurements before and 24 h after methanol injection were 0.81±0.11 ms and 0.76±0.12 ms, respectively. CMAP amplitude measurements before and 24 h after methanol injection were 9.85±0.98 mV and 9.99±0.40 mV, respectively. CMAP duration measurements before and 24 h after methanol injection were 9.86±0.03 ms and 9.86±0.045 ms, respectively. It was concluded that experimental methanol intoxication in the acute phase (first 24 h) did not affect neuromuscular function.
The role of monamine oxidase inhibition in the acute toxicity of chlordimeform.
DOT National Transportation Integrated Search
1977-08-01
This paper presents data from experiments on male rats performed to determine whether drugs which interfere with central amine mechanisms would decrease the lethality of the acaricide chlordimeform (and thus be of potential value as antidotes for acc...
Padol, Amol R.; Jayakumar, K.; Shridhar, N. B.; Narayana Swamy, H. D.; Narayana Swamy, M.; Mohan, K.
2011-01-01
Acute dermal toxicity study was conducted in rats. The parameters studied were body weight, serum biochemistry and gross pathology. The animals were also observed for clinical signs and mortality after the application of test film. The dermal irritation potential of silk protein film was examined using Draize test. In the initial test, three test patches were applied sequentially for 3 min, 1 and 4 hours, respectively, and skin reaction was graded. The irritant or negative response was confirmed using two additional animals, each with one patch, for an exposure period of 4 hours. The responses were scored at 1, 24, 48 and 72 hours after the patch removal. Skin sensitization study was conducted according to Buehler test in guinea pigs, in which on day 0, 7 and 14, the animals were exposed to test material for 6 hours (Induction phase) and on day 28, the animals were exposed for a period of 24 hours (Challenge phase). The skin was observed and recorded at 24 and 48 hours after the patch removal. In acute dermal toxicity study, the rats dermally treated with silk film did not show any abnormal clinical signs and the body weight, biochemical parameters and gross pathological observations were not significantly different from the control group. In acute dermal irritation study, the treated rabbits showed no signs of erythema, edema and eschar, and the scoring was given as “0” for all time points of observations according to Draize scoring system. In skin sensitization study, there were no skin reactions 24 and 48 hours after the removal of challenge patch, which was scored “0” based on Magnusson/Kligman grading scale. PMID:21430915
Lee, Mu-Jin; Jung, Ho-Kyung; Kim, Min-Suk; Jang, Ji-Hun; Sim, Mi-Ok; Kim, Tea-Mook; Park, Ho; Ahn, Byung-Kwan; Cho, Hyun-Woo; Cho, Jung-Hee
2016-01-01
Dendrobium moniliforme (L.) Sw., an herb of the Orchidaceae family, has long been used in traditional medicine to strengthen bones, nourish the stomach, and promote the production of bodily fluid. Recently, polysaccharides isolated from Dendrobium have been used in functional foods and nutraceutical products. A traditional method to process Dendrobium is to soak fresh stems in an ethanol solution, which is the most important factor to ensure high yields of aqueous-extractable polysaccharides. The present study was carried out to investigate the potential acute toxicity of D. moniliforme aqueous extract (DMAE), by a single oral dose in Sprague-Dawley rats. The test article was orally administered once by gavage to male and female rats at doses of 0, 2,500, and 5,000 mg/kg body weight (n=5 male and female rats for each dose). Throughout the study period, no treatment-related deaths were observed and no adverse effects were noted in clinical signs, body weight, food consumption, serum biochemistry, organ weight, or gross findings at any dose tested. The results show that a single oral administration of DMAE did not induce any toxic effects at a dose below 5,000 mg/kg in rats, and the minimal lethal dose was considered to be over 5,000 mg/kg body weight for both sexes. With respect to cytotoxicity, the cell viability of human embryonic kidney (HEK293) cells was less than 50% when the cells were treated with 10 mg/mL aqueous extract for 24 h. PMID:27729930
Past, present and emerging toxicity issues for jet fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattie, David R., E-mail: david.mattie@wpafb.af.mil; Sterner, Teresa R.
2011-07-15
The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8more » and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels.« less
Past, present and emerging toxicity issues for jet fuel.
Mattie, David R; Sterner, Teresa R
2011-07-15
The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels. Copyright © 2011 Elsevier Inc. All rights reserved.
Oral administration of quercetin is unable to protect against isoproterenol cardiotoxicity.
Ríha, Michal; Vopršalová, Marie; Pilařová, Veronika; Semecký, Vladimír; Holečková, Magdalena; Vávrová, Jaroslava; Palicka, Vladimir; Filipský, Tomáš; Hrdina, Radomír; Nováková, Lucie; Mladěnka, Přemysl
2014-09-01
Catecholamines are endogenous amines that participate in the maintenance of cardiovascular system homeostasis. However, excessive release or exogenous administration of catecholamines is cardiotoxic. The synthetic catecholamine, isoprenaline (isoproterenol, ISO), with non-selective β-agonistic activity has been used as a viable model of acute myocardial toxicity for many years. Since the pathophysiology of ISO-cardiotoxicity is complex, the aim of this study was to elucidate the effect of oral quercetin pretreatment on myocardial ISO toxicity. Wistar-Han rats were randomly divided into four groups: solvent or quercetin administered orally by gavage in a dose of 10 mg kg(-1) daily for 7 days were followed by s.c. water for injection or ISO in a dose of 100 mg kg(-1). Haemodynamic, ECG and biochemical parameters were measured; effects on blood vessels and myocardial histology were assessed, and accompanying pharmacokinetic analysis was performed. Quercetin was unable to protect the cardiovascular system against acute ISO cardiotoxicity (stroke volume decrease, cardiac troponin T release, QRS-T junction elevation and histological impairment). The sole positive effect of quercetin on catecholamine-induced cardiotoxicity was the normalization of increased left ventricular end-diastolic pressure caused by ISO. Quercetin did not reverse the increased responsiveness of rat aorta to vasoconstriction in ISO-treated animals, but it decreased the same parameter in the control animals. Accompanying pharmacokinetic analysis showed absorption of quercetin and its metabolite 3-hydroxyphenylacetic acid formed by bacterial microflora. In conclusion, a daily oral dose of 10 mg kg(-1) of quercetin for 7 days did not ameliorate acute ISO-cardiovascular toxicity in rats despite minor positive cardiovascular effects.
Pre-clinical toxicity and immunogenicity evaluation of a MUC1-MBP/BCG anti-tumor vaccine.
Hu, Boqi; Wang, Juan; Guo, Yingying; Chen, Tanxiu; Ni, Weihua; Yuan, Hongyan; Zhang, Nannan; Xie, Fei; Tai, Guixiang
2016-04-01
Mucin 1 (MUC1), as an oncogene, plays a key role in the progression and tumorigenesis of many human adenocarcinomas and is an attractive target in tumor immunotherapy. Our previous study showed that the MUC1-MBP/BCG anti-tumor vaccine induced a MUC1-specific Th1-dominant immune response, simulated MUC1-specific cytotoxic T lymphocyte killing activity, and could significantly inhibit MUC1-expression B16 cells' growth in mice. To help move the vaccine into a Phase I clinical trial, in the current study, a pre-clinical toxicity and immunogenicity evaluation of the vaccine was conducted. The evaluation was comprised of a single-dose acute toxicity study in mice, repeat-dose chronic toxicity and immunogenicity studies in rats, and pilot toxicity and immunogenicity studies in cynomolgus monkeys. The results showed that treatment with the MUC1-MBP/BCG anti-tumor vaccine did not cause any organ toxicity, except for arthritis or local nodules induced by BCG in several rats. Furthermore, the vaccine significantly increased the levels of IFN-γ in rats, indicating that Th1 cells were activated. In addition, the results showed that the MUC1-MBP/BCG anti-tumor vaccine induced a MUC1-specific IgG antibody response both in rats and cynomolgus monkeys. Collectively, these data are beneficial to move the MUC1-MBP/BCG anti-tumor vaccine into a Phase I clinical trial. Copyright © 2016 Elsevier B.V. All rights reserved.
Diet composition modifies the toxicity of repeated soman exposure in rats.
Langston, Jeffrey L; Myers, Todd M
2011-12-01
It was previously demonstrated that diet potently modulates the toxic effects of an acute lethal dose of the nerve agent soman. The current investigation was undertaken to examine the influence of diet on the cumulative toxicity of repeated soman administration. Rats were fed one of four distinct diets (standard, choline-enriched, glucose-enriched, or ketogenic) for four weeks prior to and throughout a repeated soman dosing and recovery regimen. Each diet group included animals exposed to an equivalent volume of saline that served as negative controls. In exposure Week 1, animals received three consecutive daily doses of 0.4 LD(50) soman. In exposure Week 2, animals received four consecutive daily doses of 0.5 LD(50) soman. In exposure Week 3, animals received five consecutive daily doses of 0.5 LD(50) soman. Week 4 constituted a post-exposure recovery evaluation. Throughout the experiment, behavioral function was assessed by a discriminated avoidance test that required intact sensory and motor function. Survival and body weight changes were recorded daily. Differences in toxicity as a function of diet composition became apparent during the first week. Specifically, rats fed the glucose-enriched diet showed pronounced intoxication during Week 1, resulting in imperfect survival, weight loss, and deteriorated avoidance performance relative to all other groups. All rats fed the glucose-enriched diet died by the end of exposure Week 2. In contrast, only 10% of animals fed the standard diet died by the end of Week 2. Also in Week 2, weight loss and disrupted avoidance performance were apparent for all groups except for those fed the ketogenic diet. This differential effect of diet composition became even more striking in Week 3 when survival in the standard and choline diet groups approximated 50%, whereas survival equaled 90% in the ketogenic diet group. Avoidance performance and weight loss measures corroborated the differential toxicity observed across diet groups. Upon cessation of soman exposure during the final week, recovery of weight and avoidance performance in survivors was comparable across diet groups. These results systematically replicate previous findings demonstrating that diet composition exacerbates or attenuates toxicity in rodents exposed acutely to organophosphorus compounds. Published by Elsevier B.V.
Unexpected gender difference in sensitivity to the acute toxicity of dioxin in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohjanvirta, Raimo, E-mail: raimo.pohjanvirta@helsinki.fi; Miettinen, Hanna, E-mail: hanna.miettinen@crl.com; Sankari, Satu, E-mail: satu.sankari@helsinki.fi
The acute toxicity of the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) varies widely among species and strains. Previous studies in rats have established that females are approximately 2-fold more sensitive to TCDD lethality than males. However, there is a surprising gap in the literature regarding possible gender-related sensitivity differences in mice. In the present study, by using three substrains of TCDD-sensitive C57BL/6 mice and transgenic mice on this background, we demonstrated that: 1) in contrast to the situation in rats, female mice are the more resistant gender; 2) the magnitude of the divergence between male and female mice depends on themore » substrain, but can amount to over 10-fold; 3) AH receptor protein expression levels or mutations in the primary structure of this receptor are not involved in the resistance of female mice of a C57BL/6 substrain, despite their acute LD{sub 50} for TCDD being over 5000 μg/kg; 4) transgenic mice that globally express the rat wildtype AH receptor follow the mouse type of gender difference; 5) in gonadectomized mice, ovarian estrogens appear to enhance TCDD resistance, whereas testicular androgens seem to augment TCDD susceptibility; and 6) the gender difference correlates best with the severity of liver damage, which is also reflected in hepatic histopathology and the expression of pro-inflammatory cytokines, especially IL-6. Hence, the two closely related rodent species most often employed in toxicological risk characterization studies, rat and mouse, represent opposite examples of the influence of gender on dioxin sensitivity, further complicating the risk assessment of halogenated aromatic hydrocarbons. -- Highlights: ► In contrast to rats, male mice are more sensitive to TCDD toxicity than female mice. ► The resistance of female C57BL/6Kuo mice matches or exceeds that of male DBA/2 mice. ► The resistance of female C57BL/6Kuo mice is not based on AHR structure or abundance. ► Both androgens and estrogens appear to influence TCDD sensitivity. ► TCDD sensitivity correlates best with the severity of lesions in the liver.« less
Salama, Abeer; Hegazy, Rehab; Hassan, Azza
2016-01-01
Chromium (Cr) is used in many industries and it is widely distributed in the environment. Exposure to Cr dust has been reported among workers at these industries. Beside its hazardous effects on the lungs, brain injury could be induced, as the absorption of substances through the nasal membrane has been found to provide them a direct delivery to the brain. We investigated the distribution and the effects of Cr in both brain and lung following the intranasal instillation of potassium dichromate (inPDC) in rats. Simultaneously, we used the common intraperitoneal (ipPDC) rat model of acute Cr-toxicity for comparison. Thirty male Wistar rats were randomly allocated into five groups (n = 6); each received a single dose of saline, ipPDC (15 mg/kg), or inPDC in three dose levels: 0.5, 1, or 2 mg/kg. Locomotor activity was assessed before and 24 h after PDC administration, then, the lungs and brain were collected for biochemical, histopathological, and immunohistochemical investigations. Treatment of rats with ipPDC resulted in a recognition of 36% and 31% of the injected dose of Cr in the brain and lung tissues, respectively. In inPDC-treated rats, targeting the brain by Cr was increased in a dose-dependent manner to reach 46% of the instilled dose in the group treated with the highest dose. Moreover, only this high dose of inPDC resulted in a delivery of a significant concentration of Cr, which represented 42% of the instilled dose, to the lungs. The uppermost alteration in the rats locomotor activity as well as in the brain and lung histopathological features and contents of oxidative stress biomarkers, interleukin-1β (IL-1β), phosphorylated protein kinase B (PKB), and cyclooxygenase 2 (COX-2) were observed in the rats treated with inPDC (2 mg/kg). The findings revealed that these toxic manifestations were directly proportional to the delivered concentration of Cr to the tissue. In conclusion, the study showed that a comparably higher concentrations of Cr and more elevated levels of oxidative stress and inflammatory markers were observed in brain and lung tissues of rats subjected to inPDC in a dose that is just 0.13 that of ipPDC dose commonly used in Cr-induced toxicity studies. Therefore, the study suggests a high risk of brain-targeting injury among individuals environmentally or occupationally exposed to Cr dust, even in low doses, and an additional risk of lung injury with higher Cr concentrations. Moreover, the study introduces inPDC (2 mg/kg)-instillation as a new experimental animal model suitable to study the acute brain and lung toxicities induced by intranasal exposure to Cr compounds.
Salama, Abeer; Hassan, Azza
2016-01-01
Chromium (Cr) is used in many industries and it is widely distributed in the environment. Exposure to Cr dust has been reported among workers at these industries. Beside its hazardous effects on the lungs, brain injury could be induced, as the absorption of substances through the nasal membrane has been found to provide them a direct delivery to the brain. We investigated the distribution and the effects of Cr in both brain and lung following the intranasal instillation of potassium dichromate (inPDC) in rats. Simultaneously, we used the common intraperitoneal (ipPDC) rat model of acute Cr-toxicity for comparison. Thirty male Wistar rats were randomly allocated into five groups (n = 6); each received a single dose of saline, ipPDC (15 mg/kg), or inPDC in three dose levels: 0.5, 1, or 2 mg/kg. Locomotor activity was assessed before and 24 h after PDC administration, then, the lungs and brain were collected for biochemical, histopathological, and immunohistochemical investigations. Treatment of rats with ipPDC resulted in a recognition of 36% and 31% of the injected dose of Cr in the brain and lung tissues, respectively. In inPDC-treated rats, targeting the brain by Cr was increased in a dose-dependent manner to reach 46% of the instilled dose in the group treated with the highest dose. Moreover, only this high dose of inPDC resulted in a delivery of a significant concentration of Cr, which represented 42% of the instilled dose, to the lungs. The uppermost alteration in the rats locomotor activity as well as in the brain and lung histopathological features and contents of oxidative stress biomarkers, interleukin-1β (IL-1β), phosphorylated protein kinase B (PKB), and cyclooxygenase 2 (COX-2) were observed in the rats treated with inPDC (2 mg/kg). The findings revealed that these toxic manifestations were directly proportional to the delivered concentration of Cr to the tissue. In conclusion, the study showed that a comparably higher concentrations of Cr and more elevated levels of oxidative stress and inflammatory markers were observed in brain and lung tissues of rats subjected to inPDC in a dose that is just 0.13 that of ipPDC dose commonly used in Cr-induced toxicity studies. Therefore, the study suggests a high risk of brain-targeting injury among individuals environmentally or occupationally exposed to Cr dust, even in low doses, and an additional risk of lung injury with higher Cr concentrations. Moreover, the study introduces inPDC (2 mg/kg)-instillation as a new experimental animal model suitable to study the acute brain and lung toxicities induced by intranasal exposure to Cr compounds. PMID:27997619
Mizuno, Masashi; Ito, Yasuhiko; Morgan, B. Paul
2012-01-01
In the natural world, there are many creatures with venoms that have interesting and varied activities. Although the sea anemone, a member of the phylum Coelenterata, has venom that it uses to capture and immobilise small fishes and shrimp and for protection from predators, most sea anemones are harmless to man. However, a few species are highly toxic; some have venoms containing neurotoxins, recently suggested as potential immune-modulators for therapeutic application in immune diseases. Phyllodiscus semoni is a highly toxic sea anemone; the venom has multiple effects, including lethality, hemolysis and renal injuries. We previously reported that venom extracted from Phyllodiscus semoni induced acute glomerular endothelial injuries in rats resembling hemolytic uremic syndrome (HUS), accompanied with complement dysregulation in glomeruli and suggested that the model might be useful for analyses of pathology and development of therapeutic approaches in HUS. In this mini-review, we describe in detail the venom-induced acute renal injuries in rat and summarize how the venom of Phyllodiscus semoni could have potential as a tool for analyses of complement activation and therapeutic interventions in HUS. PMID:22851928
Responses of Siberian ferrets to secondary zinc phosphide poisoning
Hill, E.F.; Carpenter, J.W.
1982-01-01
The hazard of operational-type applications of zinc phosphide (Zn3P2) on a species closely related to the black-footed ferret (Mustela nigripes), was evaluated by feeding 16 Siberian ferrets (M. eversmanni) rats that had been killed by consumption of 2% zinc phosphide treated bait or by an oral dose of 40, 80, or 160 mg of Zn3P2. All ferrets accepted rats and a single emesis by each of 3 ferrets was the only evidence of acute intoxication. All ferrets learned to avoid eating gastrointestinal tracts of the rats. Subacute zinc phosphide toxicity in the ferrets was indicated by significant decreases (18-48%) in hemoglobin, increases of 35-91 % in serum iron, and elevated levels of serum globulin, cholesterol, and triglycerides. Hemoglobin/iron, urea nitrogen/creatinine, and albumin/globulin ratios also were altered by the treatments. This study demonstrated that Siberian ferrets, or other species with a sensitive emetic reflex, are afforded a degree of protection from acute zinc phosphide poisoning due to its emetic action. The importance of toxicity associated with possible respiratory, liver, and kidney damage indicated by altered blood chemistries is not known.
Pereira, Gonçalo C; Pereira, Susana P; Pereira, Claudia V; Lumini, José A; Magalhães, José; Ascensão, António; Santos, Maria S; Moreno, António J; Oliveira, Paulo J
2012-01-01
Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations.
Pereira, Gonçalo C.; Pereira, Susana P.; Pereira, Claudia V.; Lumini, José A.; Magalhães, José; Ascensão, António; Santos, Maria S.; Moreno, António J.; Oliveira, Paulo J.
2012-01-01
Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations. PMID:22745682
This study was designed to provide understanding of the toxicity of naturally occurring asbestos (NOA) including Libby amphibole (LA), Sumas Mountain chrysotile (SM), EI Dorado Hills tremolite (ED) and Ontario actinolite/ferroactinolite cleavage fragments (ON). Ratrespirable fra...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... discussed in this unit. Acute studies revealed low oral and dermal toxicity (OPPTS Harmonized Test... range finding study administered the test substance to female rats on gestation days 6-19. All females.../40tab_02.tpl . To access the harmonized test guidelines referenced in this document electronically...
Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metric...
1984-10-01
Research Institute Aberden Proving Ground MD 21070 of Chemical Defense Aberdeen Proving Ground Edgcwood Arsenal MD 21010 US Army Research Office Commander...Aberdeen Proving Ground , MD 21010-5012 PROJECT: 35162772A875 Medical Defense Against Chemical Agents WU 304 Toxicity Testing of Phosphinate Compounds APC...Institute of Chemical Defense, Aberdeen Proving Ground , MD 21010 on 23 June 1982. The test chemical was stored at refrigeration temperature (as
NASA Astrophysics Data System (ADS)
Hao, Shaojun; Sun, Youshu; Guo, Junyi; Chen, Weiliang; Wang, Hongyu; Sun, Jianhua; Guan, Zhijiang; Zhang, Zhengchen; Wang, Fang
2018-04-01
To observe the effect of Shuang Wuzhen Tong Capsule on acute toxicity of mice caused by swelling and auricular dimethylbenzene. 40 rats, weighing 18 ˜ 22G, half male and half female. Shuang Wuzhen Tong Capsule maximum concentration maximum volume to mice for 1 days by gavage for 1 times, for 7 consecutive days, to observe the situation of animal death, the maximum tolerance; the other 50 mice, were divided into 5 groups, were fed with Shuang Wuzhen Tong capsule suspension, Jingfukang granule suspension and the same volume 0.5%CMC. No death in 7 days. After death animal autopsy, heart, liver, spleen, lung, kidney, brain, stomach, intestine and no important organ obvious bleeding, hyperemia and edema, exudation, ulcer, perforation, pleural, peritoneal, pericardial cavity without effusion. Shuang Wuzhen Tong Capsule group and Jingfukang granule group could obviously reduce the xylene induced swelling of mouse ear, ear swelling degree decreased significantly (P<0.01). Shuang Wuzhen Tong Capsule has no obvious acute toxicity, anti-inflammatory effects.
Jafarpour, Dornoush; Shekarforoush, Seyed Shahram; Ghaisari, Hamid Reza; Nazifi, Saeed; Sajedianfard, Javad; Eskandari, Mohammad Hadi
2017-06-05
Cadmium is a heavy metal that causes oxidative stress and has toxic effects in humans. The aim of this study was to investigate the influence of two probiotics along with a prebiotic in preventing the toxic effects of cadmium in rats. Twenty-four male Wistar rats were randomly divided into four groups namely control, cadmium only, cadmium along with Lactobacillus plantarum (1 × 109 CFU/day) and inulin (5% of feedstuff) and cadmium along with Bacillus coagulans (1 × 109 spore/day) and inulin (5% of feedstuff). Cadmium treated groups received 200 μg/rat/day CdCl2 administered by gavage. During the 42-day experimental period, they were weighed weekly. For evaluation of changes in oxidative stress, the levels of some biochemicals and enzymes of serum including SOD, GPX, MDA, AST, ALT, total bilirubin, BUN and creatinine, and also SOD level of livers were measured at day 21 and 42 of treatment. The cadmium content of kidney and liver was determined by using atomic absorption mass spectrophotometry. Data were analyzed using analysis of variance (ANOVA) followed by Duncan's post hoc test. Treatment of cadmium induced rats with synbiotic diets significantly improved the liver enzymes and biochemical parameters that decreased AST, ALT, total bilirubin, BUN and metal accumulation in the liver and kidney and increased body weight, serum and liver SOD values in comparison with the cadmium-treated group. No significant differences were observed with MDA and GP X values between all groups (p > 0.05). This study showed that synbiotic diets containing probiotics (L. plantarum and B. coagulans) in combination with the prebiotic (inulin) can reduce the level of cadmium in the liver and kidney, preventing their damage and recover antioxidant enzymes in acute cadmium poisoning in rat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuan; Fujigaki, Yoshihide, E-mail: yf0516@hama-med.ac.j; Sakakima, Masanori
Animals recovered from acute renal failure are resistant to subsequent insult. We investigated whether rats recovered from mild proximal tubule (PT) injury without renal dysfunction (subclinical renal damage) acquire the same resistance. Rats 14 days after recovering from subclinical renal damage, which was induced by 0.2 mg/kg of uranyl acetate (UA) (sub-toxic dose), were rechallenged with 4 mg/kg of UA (nephrotoxic dose). Fate of PT cells and renal function were examined in response to nephrotoxic dose of UA. All divided cells after sub-toxic dose of UA insult were labeled with bromodeoxyuridine (BrdU) for 14 days then the number of PTmore » cells with or without BrdU-labeling was counted following nephrotoxic dose of UA insult. Rats recovered from subclinical renal damage gained resistance to nephrotoxic dose of UA with reduced renal dysfunction, less severity of peak damage (necrotic and TUNEL+ apoptotic cells) and accelerated PT cell proliferation, but with earlier peak of PT damage. The decrease in number of PT cells in the early phase of rechallenge injury with nephrotoxic UA was more in rats pretreated with sub-toxic dose of UA than vehicle pretreated rats. The exaggerated loss of PT cells was mainly caused by the exaggerated loss of BrdU+ divided cells. In contrast, accelerated cell proliferation in rats recovered from sub-toxic dose of UA was observed mainly in BrdU- non-divided cells. The findings suggest that rats recovered from subclinical renal damage showed partial acquired resistance to nephrotoxic insult. Accelerated recovery with increased proliferative activity of non-divided PT cells after subclinical renal damage may mainly contribute to acquired resistance.« less
Protective Role of Spirulina platensis against Acute Deltamethrin-Induced Toxicity in Rats
Abdel-Daim, Mohamed M.; Abuzead, Said M. M.; Halawa, Safaa M.
2013-01-01
Deltamethrin is a broad-spectrum synthetic pyrethroid insecticide and acaricide widely used for agricultural and veterinary purposes. However, its human and animal exposure leads to hepatonephrotoxicity. Therefore, the present study was undertaken to examine the hepatonephroprotective and antioxidant potential of Spirulina platensis against deltamethrin toxicity in male Wistar albino rats. Deltamethrin treated animals revealed a significant increase in serum biochemical parameters as well as hepatic and renal lipid peroxidation but caused an inhibition in antioxidant biomarkers. Spirulina normalized the elevated serum levels of AST, ALT, APL, uric acid, urea and creatinine. Furthermore, it reduced deltamethrin-induced lipid peroxidation and oxidative stress in a dose dependent manner. Therefore, it could be concluded that spirulina administration able to minimize the toxic effects of deltamethrin by its free radical-scavenging and potent antioxidant activity. PMID:24039839
Sirc-cvs cytotoxicity test: an alternative for predicting rodent acute systemic toxicity.
Kitagaki, Masato; Wakuri, Shinobu; Hirota, Morihiko; Tanaka, Noriho; Itagaki, Hiroshi
2006-10-01
An in vitro crystal violet staining method using the rabbit cornea-derived cell line (SIRC-CVS) has been developed as an alternative to predict acute systemic toxicity in rodents. Seventy-nine chemicals, the in vitro cytotoxicity of which was already reported by the Multicenter Evaluation of In vitro Toxicity (MEIC) and ICCVAM/ECVAM, were selected as test compounds. The cells were incubated with the chemicals for 72 hrs and the IC(50) and IC(35) values (microg/mL) were obtained. The results were compared to the in vivo (rat or mouse) "most toxic" oral, intraperitoneal, subcutaneous and intravenous LD(50) values (mg/kg) taken from the RTECS database for each of the chemicals by using Pearson's correlation statistics. The following parameters were calculated: accuracy, sensitivity, specificity, prevalence, positive predictability, and negative predictability. Good linear correlations (Pearson's coefficient; r>0.6) were observed between either the IC(50) or the IC(35) values and all the LD(50) values. Among them, a statistically significant high correlation (r=0.8102, p<0.001) required for acute systemic toxicity prediction was obtained between the IC(50) values and the oral LD(50) values. By using the cut-off concentrations of 2,000 mg/kg (LD(50)) and 4,225 microg/mL (IC(50)), no false negatives were observed, and the accuracy was 84.8%. From this, it is concluded that this method could be used to predict the acute systemic toxicity potential of chemicals in rodents.
Acute toxicity and genotoxicity study of fermented traditional herb formula Guibi-tang.
Park, Hwayong; Hwang, Youn-Hwan; Yang, Hye Jin; Kim, Hyun-Kyu; Song, Kyung Seuk; Ma, Jin Yeul
2014-10-28
Guibi-tang (Guipi-tang in Chinese and Kihi-to in Japanese) is a multi-herb traditional medicine commonly prescribed to treat psychoneurosis in East Asia. Although this medicine has been widely used, there is little available information on the safety and toxicity of Guibi-tang, especially on the fermented one. Guibi-tang, composed of 12 herbs, was fermented with bacteria and lyophilized. Single dose acute toxicity in rats was observed for 14 days after administration. Genetic toxicity of fermented Guibi-tang was evaluated on bacterial reverse mutation in Salmonella and Escherichia spp., chromosome aberrations in Chinese hamster ovary cells, and micronucleus formation in mice. Ingredients in FGBT were identified and quantified by high performance liquid chromatography-mass spectrometry. In acute oral toxicity study, behavior, clinical signs and body weight changes were normal observing in all experimental animals. No revertant colonies were found in any bacterial cultures examined. Morphological or numerical anomalies and significant increased number of aberrant metaphases were not observed. Micronucleus assay showed no significant increases in the frequency of inducing micronuclei in any dose examined. Decursinol, decursin, glycyrrhizin, and 6-gingerol in fermented Guibi-tang were identified and quantitated. As a whole, no acute and genotoxic effects were found in all the assays and parameters analyzed. Fermented Guibi-tang was recognized as safe and non-toxic, and therefore can be used for applications of traditional medicine in modern complementary and alternative therapeutics and health care. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Tayeby, Faezeh; Salman, Abbas Abdul Ameer; Kamran, Sareh; Khaing, Si Lay; Salehen, Nur'ain Binti; Mohan, Gokula Mohan A/L Duchiyanda
2017-01-01
The newly synthesized, 3,4,5-Trihydroxy-N 0-[(2-methyl-1H-indol-3-yl)-methylidene] benzohydrazide (TIBH), is an indole and gallic acid derivative. The aim of this research investigation was to evaluate the acute toxicity and the ulcer prevention potential of TIBH in HCl/Ethanol-induced gastric ulcer rat model. Six groups of rats were orally received 5ml/kg of vehicle (1 % Carboxy methyl cellulose) for the normal and ulcer control groups each, Omeprazole (20mg/kg) for positive control, 50 mg/kg, 100 mg/kg and 200 mg/kg of TIBH for experimental groups, respectively. After one hour, instead of rats in the normal group which received 5ml/kg of 1% CMC, other groups received 5ml/kg of HCl/Ethanol. All rats were sacrificed after one additional hour. Gastric juice, gastric mucosa, morphologies of gastric ulcers and protein expressions of both control and treatment groups were evaluated. TIBH showed a ulcer prevention potential by increase of the mucus secretion, decrease of the gastric acidity, up-regulation of HSP70 protein, down-regulation of Bax protein, decrease of the lipid peroxidation and the increase of the Superoxide dismutase (SOD) activity in gastric tissue homogenate. Acute toxicity assay exposed valuable information on the safety of this compound. TIBH had a dose dependent ulcer prevention potential against HCl/Ethanol-triggered gastric ulcer.
Tayeby, Faezeh; Salman, Abbas Abdul Ameer; Kamran, Sareh; Khaing, Si Lay; Salehen, Nur'ain Binti; Mohan, Gokula Mohan A/L Duchiyanda
2017-01-01
The newly synthesized, 3,4,5-Trihydroxy-N 0-[(2-methyl-1H-indol-3-yl)-methylidene] benzohydrazide (TIBH), is an indole and gallic acid derivative. The aim of this research investigation was to evaluate the acute toxicity and the ulcer prevention potential of TIBH in HCl/Ethanol-induced gastric ulcer rat model. Six groups of rats were orally received 5ml/kg of vehicle (1 % Carboxy methyl cellulose) for the normal and ulcer control groups each, Omeprazole (20mg/kg) for positive control, 50 mg/kg, 100 mg/kg and 200 mg/kg of TIBH for experimental groups, respectively. After one hour, instead of rats in the normal group which received 5ml/kg of 1% CMC, other groups received 5ml/kg of HCl/Ethanol. All rats were sacrificed after one additional hour. Gastric juice, gastric mucosa, morphologies of gastric ulcers and protein expressions of both control and treatment groups were evaluated. TIBH showed a ulcer prevention potential by increase of the mucus secretion, decrease of the gastric acidity, up-regulation of HSP70 protein, down-regulation of Bax protein, decrease of the lipid peroxidation and the increase of the Superoxide dismutase (SOD) activity in gastric tissue homogenate. Acute toxicity assay exposed valuable information on the safety of this compound. TIBH had a dose dependent ulcer prevention potential against HCl/Ethanol-triggered gastric ulcer. PMID:29200945
ACUTE EFFECTS OF AMITRAZ ON THE ACOUSTIC STARTLE RESPONSE AND MOTOR ACTIVITY
To characterize further the behavioral toxicity of amitraz, comparisons were made between the effects of amitraz on motor activity, the acoustic startle response, body temperature, and body weight in male Long-Evans rats. cute dosage-effect and time-course determinations of motor...
Generation of GHS Scores from TEST and online sources
Alternatives assessment frameworks such as DfE (Design for the Environment) evaluate chemical alternatives in terms of human health effects, ecotoxicity, and fate. T.E.S.T. (Toxicity Estimation Software Tool) can be utilized to evaluate human health in terms of acute oral rat tox...
78 FR 18504 - Emamectin Benzoate; Pesticide Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... vegetable crop group 9. Interregional Research Project Number 4 (IR-4) requested this tolerance under the... and/or quantitative sensitivity of rat pups was seen in the reproductive toxicity and in the.... Quantitative acute dietary exposure and risk assessments are performed for a food-use pesticide, if a...
EFFECT OF MARINE TOXINS ON THERMOREGULATION IN MICE.
Marine algal toxins are extremely toxic and can represent a major health problem to humans and animals. Temperature regulation is one of many processes to be affected by exposure to these toxins. Mice and rats become markedly hypothermic when subjected to acute exposure to the ma...
Salicytamide: a New Anti-inflammatory Designed Drug Candidate.
Guedes, Karen Marinho Maciel; Borges, Rosivaldo Santos; Fontes-Júnior, Enéas Andrade; Silva, Andressa Santa Brigida; Fernandes, Luanna Melo Pereira; Cartágenes, Sabrina Carvalho; Pinto, Ana Carla Godinho; Silva, Mallone Lopes; Queiroz, Luana Melo Diogo; Vieira, José Luís Fernandes; Sousa, Pergentino José Cunha; Maia, Cristiane Socorro Ferraz
2018-04-13
Salicytamide is a new drug developed through molecular modelling and rational drug design by the molecular association of paracetamol and salicylic acid. This study was conducted to assess the acute oral toxicity, antinociceptive, and antioedematogenic properties of salicytamide. Acute toxicity was based on the OECD 423 guidelines. Antinociceptive properties were investigated using the writhing, hot plate and formalin tests in Swiss mice. Antioedematogenic properties were evaluated using the carrageenan-induced paw oedema model and croton oil-induced dermatitis in Wistar rats. Salicytamide did not promote behavioural changes or animal deaths during acute oral toxicity evaluation. Furthermore, salicytamide exhibited peripheral antinociceptive activity as evidenced by the reduction in writhing behaviour (ED50 = 4.95 mg/kg) and licking time in the formalin test's inflammatory phase. Also, salicytamide elicited central antinociceptive activity on both hot plate test and formalin test's neurogenic phase. Additionally, salicytamide was effective in reducing carrageenan or croton oil-induced oedema formation. Overall, we have shown that salicytamide, proposed here as a new NSAID candidate, did not induce oral acute toxicity and elicited both peripheral antinociceptive effects (about 10-25 times more potent than its precursors in the writhing test) and antioedematogenic properties. Salicytamide also presented central antinociceptive activity, which seems to be mediated through opioid-independent mechanisms. These findings reveal salicytamide as a promising antinociceptive/antioedematogenic drug candidate.
Africa, Algernon; London, Leslie
2009-01-01
BACKGROUND South African pesticide market sales data, for two years, 1994 and 1999, were audited to identify change in total and per hectare mass sold and acute toxicity indicator (ATI) (kg sold/rat oral LD50) in the grape, pome, stone fruit, potato and wheat sectors. RESULTS Total pesticide sales (62%), amount per hectare (42%) and number of active ingredients (23%) increased in 1999 compared to 1994 with the grape fruit sector, the most significant contributor over the two years. Total (14%) and per hectare ATI (19%) decreased in 1999, but not substantially with the potato sector the most significant contributor. CONCLUSIONS Toxic pesticides were still used in 1999 which highlights a need to develop alternative agricultural and non-chemical pest control methods that reduce usage of pesticides. PMID:19185919
Limited inflammatory response in rats after acute exposure to a silicon carbide nanoaerosol
NASA Astrophysics Data System (ADS)
Laloy, J.; Lozano, O.; Alpan, L.; Masereel, B.; Toussaint, O.; Dogné, J. M.; Lucas, S.
2015-08-01
Inhalation represents the major route of human exposure to manufactured nanomaterials (NMs). Assessments are needed about the potential risks of NMs from inhalation on different tissues and organs, especially the respiratory tract. The aim of this limited study is to determine the potential acute pulmonary toxicity in rats exposed to a dry nanoaerosol of silicon carbide (SiC) nanoparticles (NPs) in a whole-body exposure (WBE) model. The SiC nanoaerosol is composed of a bimodal size distribution of 92.8 and 480 nm. The exposure concentration was 4.91 mg/L, close to the highest recommended concentration of 5 mg/L by the Organisation for Economic Co-operation and Development. Rats were exposed for 6 h to a stable and reproducible SiC nanoaerosol under real-time measurement conditions. A control group was exposed to the filtered air used to create the nanoaerosol. Animals were sacrificed immediately, 24 or 72 h after exposure. The bronchoalveolar lavage fluid from rat lungs was recovered. Macrophages filled with SiC NPs were observed in the rat lungs. The greatest load of SiC and macrophages filled with SiC were observed on the rat lungs sacrificed 24 h after acute exposure. A limited acute inflammatory response was found up to 24 h after exposure characterized by a lactate dehydrogenase and total protein increase or presence of inflammatory cells in pulmonary lavage. For this study a WBE model has been developed, it allows the simultaneous exposure of six rats to a nanoaerosol and six rats to clean-filtered air. The nanoaerosol was generated using a rotating brush system (RBG-1000) and analyzed with an electrical low pressure impactor in real time.
Xu, Huan-Hua; Hao, Fei-Ran; Wang, Mei-Xi; Ren, Si-Jia; Li, Ming; Tan, Hong-Ling; Wang, Yu-Guang; Tang, Xiang-Lin; Xiao, Cheng-Rong; Liang, Qian-De
2017-01-01
The purpose of this work was to study the influences of Realgar-Indigo naturalis (RIF) and its principal element realgar on 4 main cytochrome P450 enzymes activities in rats. A simple and efficient cocktail method was developed to detect the four probe drugs simultaneously. In this study, Wistar rats were administered intragastric RIF and realgar for 14 days; mixed probe drugs were injected into rats by caudal vein. Through analyzing the pharmacokinetic parameter of mixed probe drugs in rats, we can calculate the CYPs activities. The results showed that RIF could inhibit CYP1A2 enzyme activity and induce CYP2C11 enzyme activity significantly. Interestingly, in realgar high dosage group, CYP3A1/2 enzyme activity was inhibited significantly, and different dosage of realgar manifested a good dose-dependent manner. The RIF results indicated that drug coadministrated with RIF may need to be paid attention in relation to drug-drug interactions (DDIs). Realgar, a toxic traditional Chinese medicine (TCM), does have curative effect on acute promyelocytic leukemia (APL). Its toxicity studies should be focused on. We found that, in realgar high dosage group, CYP3A1/2 enzymes activity was inhibited. This phenomenon may explain its potential toxicity mechanism. PMID:28421119
Xu, Huan-Hua; Hao, Fei-Ran; Wang, Mei-Xi; Ren, Si-Jia; Li, Ming; Tan, Hong-Ling; Wang, Yu-Guang; Tang, Xiang-Lin; Xiao, Cheng-Rong; Liang, Qian-De; Gao, Yue; Ma, Zeng-Chun
2017-01-01
The purpose of this work was to study the influences of Realgar- Indigo naturalis (RIF) and its principal element realgar on 4 main cytochrome P450 enzymes activities in rats. A simple and efficient cocktail method was developed to detect the four probe drugs simultaneously. In this study, Wistar rats were administered intragastric RIF and realgar for 14 days; mixed probe drugs were injected into rats by caudal vein. Through analyzing the pharmacokinetic parameter of mixed probe drugs in rats, we can calculate the CYPs activities. The results showed that RIF could inhibit CYP1A2 enzyme activity and induce CYP2C11 enzyme activity significantly. Interestingly, in realgar high dosage group, CYP3A1/2 enzyme activity was inhibited significantly, and different dosage of realgar manifested a good dose-dependent manner. The RIF results indicated that drug coadministrated with RIF may need to be paid attention in relation to drug-drug interactions (DDIs). Realgar, a toxic traditional Chinese medicine (TCM), does have curative effect on acute promyelocytic leukemia (APL). Its toxicity studies should be focused on. We found that, in realgar high dosage group, CYP3A1/2 enzymes activity was inhibited. This phenomenon may explain its potential toxicity mechanism.
¹H NMR-based metabolic profiling of naproxen-induced toxicity in rats.
Jung, Jeeyoun; Park, Minhwa; Park, Hye Jin; Shim, Sun Bo; Cho, Yang Ha; Kim, Jinho; Lee, Ho-Sub; Ryu, Do Hyun; Choi, Donwoong; Hwang, Geum-Sook
2011-01-15
The dose-dependent perturbations in urinary metabolite concentrations caused by naproxen toxicity were investigated using ¹H NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic evaluation of naproxen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) of ¹H NMR from rat urine revealed a dose-dependent metabolic shift between the vehicle-treated control rats and rats treated with low-dose (10 mg/kg body weight), moderate-dose (50 mg/kg), and high-dose (100 mg/kg) naproxen, coinciding with their gastric damage scores after naproxen administration. The resultant metabolic profiles demonstrate that the naproxen-induced gastric damage exhibited energy metabolism perturbations that elevated their urinary levels of citrate, cis-aconitate, creatine, and creatine phosphate. In addition, naproxen administration decreased choline level and increased betaine level, indicating that it depleted the main protective constituent of the gastric mucosa. Moreover, naproxen stimulated the decomposition of tryptophan into kynurenate, which inhibits fibroblast growth factor-1 and delays ulcer healing. These findings demonstrate that ¹H NMR-based urinary metabolic profiling can facilitate noninvasive and rapid diagnosis of drug side effects and is suitable for elucidating possible biological pathways perturbed by drug toxicity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Acute Inhalation Toxicity and Blood Absorption of 3-Nitro-1,2,4-Triazol-5-One (NTO) in Rats
2013-09-16
strength, and stereotypes or bizarre behavior (e.g., self mutilation, walking backwards). In addition, rats exposed via the inhalation route of...species due to an historical and extensive database. V.3.3. Laboratory animals V.3.3.1 . Genus and Species: Rattus norvegicus V.3.3.2. Strain/Stock...or sensory stimuli, altered strength , and stereotypes or bizarre behavior (e.g., self mutilation, walking backwards). Observation and body weight
Toxicologic evaluation of DHA-rich algal oil: Genotoxicity, acute and subchronic toxicity in rats.
Schmitt, D; Tran, N; Peach, J; Bauter, M; Marone, P
2012-10-01
DHA-rich algal oil ONC-T18, tested in a battery of in vitro and in vivo genotoxicity tests, did not show mutagenic or genotoxic potential. The acute oral LD50 in rats has been estimated to be greater than 5000 mg/kg of body weight. In a 90-day subchronic dietary study, administration of DHA-rich algal oil at concentrations of 0, 10,000, 25,000, and 50,000 ppm in the diet for 13 weeks did not produce any significant toxicologic manifestations. The algal oil test article was well tolerated as evidenced by the absence of major treatment-related changes in the general condition and appearance of the rats, neurobehavioral endpoints, growth, feed and water intake, ophthalmoscopic examinations, routine hematology and clinical chemistry parameters, urinalysis, or necropsy findings. The no observed adverse effect level (NOAEL) was the highest level fed of 50,000 ppm which is equivalent to 3,305 and 3,679 mg/kg bw/day, for male and female rats, respectively. The studies were conducted as part of an investigation to examine the safety of DHA-rich algal oil. The results confirm that it possesses a toxicity profile similar to other currently marketed algal oils and support the safety of DHA-rich algal oil for its proposed use in food. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lam, Chiu-Wing; James, John T.; Dodd, Darol; Stuart, Bruce; Rothenberg, Simon; Kershaw, Mary Ann; Thilagar, A.
1993-01-01
DMES, a volatile liquid, is used by NASA to waterproof the Orbiter thermal protective system. During waterproofing operations at the Oribter Processing Facility at KSC, workers could be exposed to DMES vapor. To assess the toxicity of DMES, acute and subchronic (2-week and 13-week) inhalation studies were conducted with rats. Studies were also conducted to assess the potential of DMES. Inhalation exposure concentrations ranged from 40 ppm to 4000 ppm. No mortality was observed during the studies. Exposures to 2100 ppm produced narcosis and ataxia. Post-exposure recovery from these CNS effects was rapid (less than 1 hr). These effects were concentration-dependent and relatively independent of exposure length. Exposure to 3000 ppm for 2 weeks (5 h/d, 5 d/wk) produced testicular toxicity. The 13-week study yielded similar results. Results from the genotoxicity assays (in vivo/in vitro unscheduled DNA synthesis in rat primary heptaocytes, chromosomal aberrations in rat bone marrow cells; reverse gene mutation in Salmonella typhimurium; and forward mutation in Chinese hamster culture cells) were negative. These studies indicated that DMES is mildly to moderately toxic but not a multagen.
Boye, Alex; Boampong, Victor Addai; Takyi, Nutifafa; Martey, Orleans
2016-06-05
The seeds of Parkia clappertoniana Keay (Family: Fabaceae) are extensively used in food in the form of a local condiment called 'Dawadawa' in Ghana and consumed by all class of people including sensitive groups such as pregnant women and children. Also, crudely pounded preparations of P. clappertoniana seeds are used as labor inducing agent in farm animals by local farmers across northern Ghana where nomadism is the livelihood of most indigenes. Ecologically, P. clappertoniana is extensively distributed across the savannah ecological zone of many African countries where just like Ghana it enjoys ethnobotanical usage. Although, many studies have investigated some aspects of the pharmacological activity of P. clappertoniana, none of these studies focused on the reproductive system, particularly its effects on reproductive performance and toxicity. To contribute, this study assessed the effect of aqueous seed extract of P. clappertoniana (PCE) on reproductive performance and toxicity in Sprague-Dawley rats and ICR mice. After preparation of PCE, it was then tested on rodents at different gestational and developmental windows (1-7, 8-14, and 15-term gestational days) to assess the following: mating behavior, implantation rate, maternal and developmental toxicities. Generally, animals were randomly grouped into five and treated as follows: normal saline group (5ml/kg po), cytotec (misoprostol) group (200mg/kg po), folic acid group (5mg/kg po), and PCE groups (100, 200, and 500mg/kg po), however, these groupings were varied to suit the specific requirements of some parameters. For acute toxicity, animals were orally administered PCE (3 and 5g/kg for mice and rats respectively). PCE-treated rats showed improved mating behavior compared to control rats. PCE improved implantation rate compared to misoprostol-treated rats. On the average, PCE-treated rats delivered termed live pubs at 21 days compared to that of folic acid-treated rats at 23 days. Also, PCE-treated rats showed no observable maternal and developmental toxicities compared to folic acid and control rats. PCE (3-5g/kg po) was orally tolerated in rodents. Oral administration of Parkia clappertoniana seed extract improves reproductive performance in rodents with no observable maternal and developmental toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liu, Man; Gao, Bo-Yan; Qin, Fang; Wu, Ping-Ping; Shi, Hai-Ming; Luo, Wei; Ma, Ai-Niu; Jiang, Yuan-Rong; Xu, Xue-Bing; Yu, Liang-Li Lucy
2012-10-01
The acute oral toxicity of 1-palmitoyl-3-chloropropanediol (3-MCPD 1-monopalmitate) and 1,2-bis-palmitoyl-3-chloropropanediol (3-MCPD dipalmitate) in Swiss mice were examined, along with their cytotoxicity in NRK-52E rat kidney cells. LD50 (median lethal dose) value of 3-MCPD 1-monopalmitate was determined 2676.81 mg/kg body weight (BW). The results showed that 3-MCPD 1-monopalmitate dose-dependently decreased the mean body weight, and caused significant increase of serum urea nitrogen and creatinine in dead mice compared to the control and survived mice. Major histopathological changes in mice fed 3-MCPD 1-monopalmitate were renal tubular necrosis, protein casts and spermatids decrease in the seminiferous tubules. According to the limit test for 3-MCPD dipalmitate, LD50 value of 3-MCPD dipalmitate was presumed to be greater than 5000 mg/kg BW. Obvious changes were not observed on mean body weight, absolute and relative organ weight or serum urea nitrogen and creatinine levels in mice fed 3-MCPD dipalmitate. However, renal tubular necrosis, protein casts and spermatids decrease were also observed in the dead mice. In addition, MTT and LDH assay results only showed the cytotoxicity of 3-MCPD 1-monopalmitate in NRK-52E rat kidney cells in a dose-dependent manner. Together, the results indicated a greater toxicity of 3-MCPD 1-monopalmitate compared to 3-MCPD dipalmitate. Copyright © 2012 Elsevier Ltd. All rights reserved.
Metabolism, Mass Spectral Analysis and Mode of Action of Trichothecene Mycotoxins
1988-10-12
tissue, as well as depletion and mild necrosis of thymic lymphoid tissue. Two rats showed mild, acute necrosis of proximal renal tubular epithelium...toxicity in pigs. Res. in Vet. Sci. 31:131. Weaver GA, Hurt.z HJ, Mirocha CU, Bates FY, Behrens JC, Robison TS, and Swanson SP (1980) The failure of purified...by Professor Abraham Joffe. The problem was called alimentary toxic aleukia which affected (according to the chronicles ) thousands of people eating
Dixon, R L; Lee, I P; Sherins, R J
1976-01-01
Results of a U.S.S.R.--U.S. cooperative laboratory effort to improve and validate experimental techniques used to assess subtle reproductive effects in male laboratory animals are reported. The present studies attempted to evaluate the reproductive toxicity of cadmium as cadmium chloride and boron as borax (Na2B4O7) and to investigate the mechanism of toxicity in the rat following acute and subchronic oral exposure. In vitro cell separation techniques, in vivo serial mating tests, and plasma assays for hormones were utilized. Effects on the seminal vesicle and prostate were evaluated with chemical and enzyme assays. Clinical chemistry was monitored routinely. Acute oral doses, expressed as boron were 45, 150, and 450 mg/kg while doses for cadmium equivalent were 6.25, 12.5, and 25 mg/kg. Rats were also allowed free access to drinking water containing either boron (0.3, 1.0, and 6.0 mg/l.) or cadmium (0.001, and 0.l mg/l.) for 90 days. Randomly selected animals were studied following 30, 60, and 90 days of treatment. These initial studies, utilizing a variety of methods to assess the reproductive toxicity of environmental substances in male animals, suggest that cadmium and boron at the concentrations and dose regimens tested are without significant reproductive toxicity. PMID:1269508
Co-administration of pentoxifylline and thiopental causes death by acute pulmonary oedema in rats
Pereda, J; Gómez-Cambronero, L; Alberola, A; Fabregat, G; Cerdá, M; Escobar, J; Sabater, L; García-de-la-Asuneión, J; Viña, J; Sastre, J
2006-01-01
Background and purpose: Pentoxifylline exhibits rheological properties that improve microvascular flow and it is widely used in vascular perfusion disorders. It also exhibits marked anti-inflammatory properties by inhibiting tumour necrosis factor α production. Thiopental is one of the most widely used drugs for rapid induction of anaesthesia. During experimental studies on the treatment of acute pancreatitis, we observed that when pentoxifylline was administered after anaesthesia with thiopental, most of the rats exhibited dyspnea, signs of pulmonary oedema and died. The aim of the work described here was to investigate the cause of the unexpected toxic effect of the combined treatment with thiopental and pentoxifylline. Experimental approach: Pulmonary vascular permeability and arterial blood gases were measured, and a histological analysis was performed. The possible role of haemodynamic changes in the formation of pulmonary oedema was also assessed. Key results: Co-administration of pentoxifylline and thiopental increased pulmonary vascular permeability and markedly decreased arterial pO2, with one third of rats suffering from hypoxemia. This combined treatment caused death by acute pulmonary oedema in 27% of normal rats and aggravated the respiratory insufficiency associated with acute pancreatitis in which the mortality rate increased to 60%. This pulmonary oedema was not mediated by cardiac failure or by pulmonary hypertension. Conclusions and Implications: Co-administration of pharmacological doses of pentoxifylline and thiopental caused pulmonary oedema and death in rats. Consequently, pentoxifylline should not be administered when anaesthesia is induced with thiopental to avoid any possible risk of acute pulmonary oedema and death in humans. PMID:16953192
Disposition of [14C]N,N-dimethyl-p-toluidine in F344 rats and B6C3F1 mice.
Dix, Kelly J; Ghanbari, Katayoon; Hedtke-Weber, Briana M
2007-05-15
N,N-Dimethyl-p-toluidine (DMPT) is used as a polymerization accelerator, in industrial glues, and as an intermediate in dye and pesticide synthesis. There is potential for human exposure to DMPT. The disposition of oral and intravenous (i.v.) doses of [14C]DMPT in F344 rats and B6C3F1 mice was investigated. A single i.v. (2.5 mg/kg) or oral (2.5, 25, or 250 mg/kg) dose of [14C]DMPT (1-25 microCi) was administered in an aqueous vehicle to male rats and mice. The 25-mg/kg oral dose was administered to females to investigate possible gender differences in disposition. However, no striking gender differences were observed. Since toxicity studies conducted elsewhere used a corn oil vehicle, the 250-mg/kg oral dose also was administered in corn oil to male rats; disposition was not dependent on vehicle. Excreta (through 24 h) and tissues collected at sacrifice were analyzed for total radioactivity. Dose-dependent differences in toxicity and disposition were observed. Toxicity at the 250-mg/kg oral dose to male mice was consistent with acute renal failure. At the same dose, male rats exhibited clinical signs of toxicity through 12 h but were clinically normal by 24 h. At lower oral doses, [14C]DMPT-derived radioactivity was well absorbed and rapidly excreted, primarily in urine.
Generation of Alternative Assessment Scores using TEST and online data sources
Alternatives assessment frameworks such as DfE (Design for the Environment) evaluate chemical alternatives in terms of human health effects, ecotoxicity, and fate. T.E.S.T. (Toxicity Estimation Software Tool) can be utilized to evaluate human health in terms of acute oral rat tox...
Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...
Previous modelling of the median lethal dose (oral rat LD50) has indicated that local class-based models yield better correlations than global models. We evaluated the hypothesis that dividing the dataset by pesticidal mechanisms would improve prediction accuracy. A linear discri...
Ecological risk assessment frequently relies on cross-species extrapolation to predict acute toxicity from chemical exposures. A major concern for environmental risk characterization is the degree of uncertainty in assessing xenobiotic biotansformation processes. Although inheren...
Cardiovascular effects of oral toluene exposure in the rat monitored by radiotelemetry
Toluene is a hazardous air pollutant that can be toxic to the nervous and cardiovascular systems. The cardiotoxicity data for toluene come from acute studies in anesthetized animals and from clinical observations made on toluene abusers and there is little known on the response o...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGill, Mitchell R.; Williams, C. David; Xie, Yuchao
2012-11-01
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites amore » reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Highlights: ► Acetaminophen overdose causes severe liver injury only in mice but not in rats. ► APAP causes hepatic GSH depletion and protein adduct formation in rats and mice. ► Less protein adducts were measured in rat liver mitochondria compared to mouse. ► No oxidant stress, peroxynitrite formation or JNK activation was present in rats. ► The limited mitochondrial adducts in rats are insufficient to trigger cell necrosis.« less
In vitro and in vivo safety evaluation of Acer tegmentosum.
Hwang, Youn-Hwan; Park, Hwayong; Ma, Jin Yeul
2013-06-21
Acer tegmentosum, which contains salidroside and tyrosol, has been used for the treatment of hepatic disorders in eastern Asia. However, little is known about its safety. To determine the safety of Acer tegmentosum, we evaluated its acute oral toxicity and genotoxicity profiles. Salidroside and tyrosol present in Acer tegmentosum were quantified using high-performance liquid chromatography. Acute oral toxicity testing of Acer tegmentosum was performed in rats. Genotoxicity of Acer tegmentosum was assessed by bacterial reverse mutation, chromosomal aberration, and bone marrow micronucleus tests. All the tests were conducted in accordance with the good laboratory practices. The amounts of salidroside and tyrosol in Acer tegmentosum were found to be 85.01±1.21mg/g and 3.12±0.04mg/g, respectively. In the bacterial reverse mutation test, Acer tegmentosum increased the number of revertant Salmonella typhimurium TA98 colonies, regardless of metabolic activation by S9 mixture. In contrast, Acer tegmentosum application did not significantly increase the number of chromosomal aberrations in Chinese hamster ovary (CHO)-K1 cells and micronucleated polychromatic erythrocytes in mice. In the acute oral toxicity test, the median lethal dose (LD50) of Acer tegmentosum was found to be >2000mg/kg in rats. Take together, Acer tegmentosum exhibits mutagenicity, which was evident from the bacterial reverse mutation test. Further studies are needed to identify the components responsible for such an effect and the underlying mechanisms. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Acute Toxicity Evaluation of Nitroaromatic Compounds
1991-03-01
eye of any animal during the observation period. Extreme fluorescein staining was evident in all of the test animals. Pannus (corneal vasculation) was...treated eyes at this time point showed signs of pannus . 39 0 TABLE 13 ACUTE ORAL - RANGE FINDING - RATS 1,3,5-TRINITROBENZENE Dose Dose Wt (g) Wt (g) Wt...the cornea at the 24h, 48h, 72h and 96h observation points. Additional Observations: Pannus (corneal vascularization) was noted at the 96h observation
Nudmamud-Thanoi, Sutisa; Thanoi, Samur
2012-08-01
Pseudoephedrine, an over-the-counter drug, is commonly used for the treatments of asthma, nasal congestion, and obesity. Furthermore, it can be used as a psychostimulant drug if taken in large doses; however, there have been no reports on its effects on reproduction. The aim of this study was therefore to investigate the effects of pseudoephedrine administration on sperm morphology, sperm concentration and apoptotic activity in the rat testis. Rats were administered intraperitoneally (IP) with pseudoephedrine at 120 mg/kg for the acute group and 80 mg/kg, IP, once daily for 15 days for the chronic group, while a control group was treated with vehicle. The percentages of normal sperm morphology were significantly decreased in both acute and chronic groups when compared with controls while the total sperm count was significantly decreased in the acute group. Apoptotic activities were increased significantly in both pseudoephedrine-treated groups. The results indicate that pseudoephedrine can induce sperm abnormalities, decrease sperm numbers and increase apoptotic activity in the testis of rats if taken at high doses. The results of this study suggest that the users of pseudoephedrine in medical treatments need to be aware of its potential toxicity involving spermatogenesis.
Rajashekhara, N; Ashok, B K; Sharma, Parmeshwar P; Ravishankar, B
2014-01-01
Disorders like hyperacidity and gastric ulcers are found very frequently now days because of a faulty lifestyle. Starches (Satwa) obtained from the rhizomes of two plants namely, Curcuma angustifolia Roxb. (Fam. Zingiberaceae) and Maranta arundinacea Linn. (Fam. Marantaceae) are used in folklore practice, as Tugaksheeree, for the treatment of the above-mentioned complaints. To assess the acute toxicity potential of the C. angustifolia and M. arundinacea along with their assessment for adaptogenic activity, by noting their effect on forced swimming-induced hypothermia and gastric ulceration in rats. For acute toxicity study, the effect of test drugs C. angustifolia and M. arundinacea rhizome starch were studied after a single administration of up to three dose levels, with 4400 mg/kg as the maximum dose. The animals were observed for 72 hours periodically and mortality was recorded up to seven days. The adaptogenic and anti-ulcer activities were assessed by determining and comparing the changes in rectal temperature, ponderal changes, ulcer index and histopathological parameters in the test drug group with that of stress control group. Both the drugs did not produce any toxic symptoms or mortality even up to the maximum dose level of 4400 mg/kg. Both the test drugs significantly reversed the stress-induced gastric ulceration in comparison to stress-control rats. Starch from rhizome of C. angustifolia reversed forced swimming-induced hypothermia apparently, but not to a significant extent. However, the reversal of hypothermia found statistically significant in the rhizome starch of the M. arundinacea treated group. M. arundinacea had better anti-stress activity in comparision to C. angustifolia.
Involvement of the Fas and Fas ligand in testicular germ cell apoptosis by zearalenone in rat
Jee, Youngheun; Noh, Eun-Mi; Cho, Eun-Sang
2010-01-01
Zearalenone (ZEA), a nonsteroidal estrogenic mycotoxin, is known to cause testicular toxicity in animals. In the present study, the effects of ZEA on spermatogenesis and possible mechanisms involved in germ cell injury were examined in rats. Ten-week-old Sprague-Dawley rats were treated with 5 mg/kg i.p. of ZEA and euthanized 3, 6, 12, 24 or 48 h after treatment. Histopathologically, spermatogonia and spermatocytes were found to be affected selectively. They were TUNEL-positive and found to be primarily in spermatogenic stages I-VI tubules from 6 h after dosing, increasing gradually until 12 h and then gradually decreasing. Western blot analysis revealed an increase in Fas and Fas ligand (Fas-L) protein levels in the ZEA-treated rats. However, the estrogen receptor (ER)α expression was not changed during the study. Collectively, our data suggest that acute exposure of ZEA induces apoptosis in germ cells of male rats and that this toxicity of ZEA is partially mediated through modulation of Fas and Fas-L systems, though ERα may not play a significant role. PMID:20458151
Hernández-Vázquez, Eduardo; Ocampo-Montalban, Hugo; Cerón-Romero, Litzia; Cruz, Miguel; Gómez-Zamudio, Jaime; Hiriart-Valencia, Guadalupe; Villalobos-Molina, Rafael; Flores-Flores, Angelica; Estrada-Soto, Samuel
2017-05-15
Diabetes is a major health problem and a predisposition factor for further degenerative complications and, therefore, novel therapies are urgently needed. Currently, cannabinoid receptor 1 (CB 1 receptor) antagonists have been considered as promissory entities for metabolic disorders treatment. Accordingly, the purpose of this work was the evaluation of the sub-acute antidiabetic, anti-hyperglycemic, antidyslipidemic and toxicological profile of ENV-2, a potent hypoglycemic and antioxidant CB 1 receptor antagonist. In this study, ENV-2 showed a pronounced anti-hyperglycemic effect even at a dose of 5mg/kg (P<0.05) in a glucose tolerance test on normoglycemic rats. Moreover, after administration of ENV-2 (16mg/kg) to diabetic rats, a prominent antidiabetic activity was observed (P<0.05), which was higher than glibenclamide. Sub-acute treatment (10 days) of ENV-2 resulted in a significant reduction of plasma glucose (P<0.05). Also, the levels of peripheral lipids were improved; blood triacylglycerols (TG) and cholesterol (CHOL) were diminished (P<0.05). In addition, it was found that ENV-2 reduced IL-1β and IL-18 mRNA expression in adipose tissue (P<0.05). Due to the satisfactory outcomes, we were interested in evaluating the toxicity of ENV-2 in both acute and sub-chronic approaches. Regarding the acute administration, the compound resulted to be non-toxic and was grouped in category 5 according to OECD. It was also found that sub-chronic administration did not increase the size of the studied organs, while no structural damage was observed in heart, lung, liver and kidney tissues. Finally, neither AST nor ALT damage hepatic markers were augmented. Copyright © 2017 Elsevier B.V. All rights reserved.
Studies on toxicity, anti-stress and hepato-protective properties of Kombucha tea.
Pauline, T; Dipti, P; Anju, B; Kavimani, S; Sharma, S K; Kain, A K; Sarada, S K; Sairam, M; Ilavazhagan, G; Devendra, K; Selvamurthy, W
2001-09-01
The objective of the study was to evaluate toxicity, anti-stress activity and hepato-protective properties of Kombucha tea. Kombucha tea was fed orally for 15 days using three different doses i.e. normal dose, five and ten times the dose. Rats were then sacrificed and various biochemical, and histological parameters were estimated. Anti-stress activity was evaluated either by 1) by exposing animals to cold and hypoxia and estimating the levels of malondialdehyde and reduced glutathione in plasma/blood or 2) by subjecting the animals to restraint stress and recording faecal output. Hepato-toxicity was induced by challenging the animals to an acute dose of paracetamol (1 gm/kg) orally and determining the plasma levels of SGPT, SGOT and MDA. The effect of oral administration of different doses of K-tea to albino rats was examined and the results indicate that K-tea has no significant toxicity as revealed by various biochemical and histopathological parameters. K-tea has been found to prevent lipid peroxidation and fall in reduced glutathione level when rats were exposed to cold and hypoxia in simulated chamber. Further, K-tea has also been found to decrease the Wrap-restraint faecal pellet output in rats. K-tea has also been found to decrease paracetamol induced hepatotoxicity significantly. The study shows that K-tea has anti-stress and hepato-protective activities.
Acute Ozone-Induced Pulmonary and Systemic Metabolic ...
Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1ppm), 4h/day for 1 or 2 days. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to air-exposed SHAM. Corticosterone levels tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (p=0.15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX>DMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not obser
A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats.
Jia, X; Li, N; Chen, J
2005-03-11
The subchronic toxicity of Nano-Se was compared with selenite and high-selenium protein in rats. Groups of Sprague-Dawley rats (12 males and 12 females per group) were fed diets containing Nano-Se, selenite and high-selenium protein at concentrations of 0, 2, 3, 4 and 5 ppm Se, respectively, for 13 weeks. Clinical observations were made and body weight and food consumption were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry determination. Histopathological examination was performed on selected tissues. At the two higher doses (4 and 5 ppm Se), significant abnormal changes were found in body weight, hematology, clinical chemistry, relative organ weights and histopathology parameters. However, the toxicity was more pronounced in the selenite and high-selenium protein groups than the Nano-Se group. At the dose of 3 ppm Se, significant growth inhibition and degeneration of liver cells were found in the selenite and high-selenium protein groups. No changes attributable to administration of Nano-Se at the dose of 3 ppm Se were found. Taken together, the no-observed-adverse-effect level (NOAEL) of Nano-Se in male and female rats was considered to be 3 ppm Se, equivalent to 0.22 mg/kg bw/day for males and 0.33 mg/kg bw/day for females. On the other hand, the NOAELs of selenite and high-selenium protein in males and females were considered to be 2 ppm Se, equivalent to 0.14 mg/kg bw/day for males and 0.20 mg/kg bw/day for females. In addition, studies have shown that Nano-Se has a similar bioavailability in rat, and much less acute toxicity in mice compared with selenite. In conclusion, Nano-Se is less toxic than selenite and high-selenium protein in the 13-week rat study.
Li, Xiaowei; Zhang, Fusheng; Wang, Dongqin; Li, Zhenyu; Qin, Xuemei; Du, Guanhua
2014-02-01
Carbon tetrachloride (CCl4) is commonly used as a model toxicant to induce chronic and acute liver injuries. In this study, metabolite profiling and gene expression analysis of liver tissues were performed by nuclear magnetic resonance and quantitative real-time polymerase chain reaction to understand the responses of acute liver injury system in rats to CCl4. Acute liver injury was successfully induced by CCl4 as revealed by histopathological results and significant increase in alanine aminotransferase and serum aspartate aminotransferase. We found that CCl4 caused a significant increase in lactate, succinate, citrate, dimethylgycine, choline and taurine. CCl4 also caused a decrease in some of the amino acids such as leucine/isoleucine, glutamine/glutathione and betaine. Gene function analysis revealed that 10 relevant enzyme genes exhibited changes in expressions in the acute liver injury model. In conclusion, the metabolic pathways, including tricarboxylic acid cycle, antioxidant defense systems, fatty acid β-oxidation, glycolysis and choline and mevalonate metabolisms were impaired in CCl4-treated rat livers. These findings provided an overview of the biochemical consequences of CCl4 exposure and comprehensive insights into the metabolic aspects of CCl4-induced hepatotoxicity in rats. These findings may also provide reference of the mechanisms of acute liver injury that could be used to study the changes in functional genes and metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.
Relative toxicity testing of spacecraft materials. 2: Aircraft materials
NASA Technical Reports Server (NTRS)
Lawrence, W. H.
1980-01-01
The relative toxicity of thermodegradation (pyrolysis/combustion) products of aircraft materials was studied. Two approaches were taken to assess the biological activity of the pyrolysis/combustion products of these materials: (1) determine the acute lethality to rats from inhalation of these pyrolysates and (2) examine the tendency for sublethal exposure to the pyrolysates to disrupt behavioral (shock avoidance) performance of exposed rats. The ralative importance of lethality vs. behavioral effects in selection of a material may be dictated by whether or not individuals potentially exposed to such products, would have an opportunity to escape if they were behaviorally capable of doing so. If so, the second parameter would assume greater importance, but if not the first parameter may be of much greater importance in selecting materials.
Gouda, Ahmed S; El-Nabarawy, Nagla A; Ibrahim, Samah F
2018-01-01
Moringa oleifera extract (Lam) has many antioxidant and protective properties. Objective: to investigate the antioxidant activities of Lam in counteracting the high oxidative stress caused by acute sub-lethal aluminium phosphide (AlP) intoxication in rat heart. These activities will be detected by histopathological examination and some oxidative stress biomarkers. a single sub-lethal dose of Alp (2 mg/kg body weight) was administered orally, and Lam was given orally at a dose (100 mg/kg body weight) one hour after receiving AlP to rats. aluminium phosphide caused significant cardiac histopathological changes with a significant increase in malondialdehyde (MDA); lipid peroxidation marker; and a significant depletion of antioxidant enzymes (catalase and glutathione reductase). However, treatment with Lam protected efficiently the cardiac tissue of intoxicated rats by increasing antioxidants levels with slight decreasing in MDA production compared to untreated group. This study suggested that Moringa oleifera extract could possibly restore the altered cardiac histopathology and some antioxidant power in AlP intoxicated rats, and it could even be used as adjuvant therapy against AlP-induced cardiotoxicity.
Melicherčík, Pavel; Čeřovský, Václav; Nešuta, Ondřej; Jahoda, David; Landor, Ivan; Ballay, Rastislav; Fulín, Petr
2018-01-01
Joint replacement infections and osteomyelitis are among the most serious complications in orthopaedics and traumatology. The risk factors for these infections are often bacterial resistance to antimicrobials. One of the few solutions available to control bacterial resistance involves antimicrobials, which have a different mechanism of action from traditional antibiotics. Antimicrobial peptides (AMP) appear to be highly promising candidates in the treatment of resistant infections. We have identified several AMP in the venom of various wild bees and designed analogues that show potent antimicrobial activity and low toxicity against eukaryotic cells. The aim of the present study was to test the efficacy of one of those synthetic peptide analogues for the treatment of acute osteomyelitis invoked in laboratory rats. Femoral cavities of 20 laboratory Wistar rats were infected with Staphylococcus aureus. After 1 week, eight rats received an injectable calcium phosphate carrier alone, another eight rats were treated with a calcium phosphate mixed with AMP, and four rats were left without any further treatment. After another week, all rats were euthanized and radiographs were made of both the operated and healthy limbs. The animals with the carrier alone exhibited more severe acute osteomyelitis on radiographs in comparison to the recipients of the calcium phosphate carrier loaded AMP and untreated infected individuals. Based on the results of the above mentioned experiment, it was concluded that when injected directly into the site of femoral acute osteomyelitis, the calcium phosphate carrier mixed with AMP reduced osteomyelitis signs visible on radiographs.
[Studies on subacute toxicity of Wansheng Huafeng Dan in rats].
Peng, Fang; Yang, Hong; Wu, Qin; Liu, Jie; Shi, Jingzhen
2012-04-01
To compare sub-acute toxic effects of cinnabar and Wansheng Huafeng Dan with mercury chloride and methyl-mercury. Healthy SD rats were orally administered with Wansheng Huafeng Dan (0.42 g x kg(-1)), cinnabar (0.15 g x kg(-1)), HgS (0.15 g x kg(-1)), HgCl2 (0.02 g x kg(-1)), MeHg (0.001 g x kg(-1)) and saline for 21 days under observed and their weights were monitored. After the final administration, they were decapitated and their blood, liver, kidney and brain tissues were collected for calculating hepatic and renal indexes and detecting the contents of serum glutamic pyruvic transaminase, urea nitrogen and creatinine and the mercury accumulation in liver, kidney and brain tissues. Besides, relative expressions of liver metallothionein-1 (MT-1) and cytochrome P450 gene subtypes (Cyp1a1, Cyp2b1, Cyp2e1, Cyp3a2, Cyp4a10) mRNA. HgCl2 caused obvious weight lose in rats. Mercury contents in liver and kidney were markedly increased by HgCl2 and MeHg, and MeHg markedly increased mercury contents of brain either, but these advent effects were not notable in Wansheng Huafeng Dan and cinnabar groups. However, blood biochemistry and histopathology did not show significant changes in all groups. The expression of rat hepatic MT-1 mRNA was remarkably induced by both HgCl2 and MeHg. The expression of hepatic Cyp3a2 was increased by Wansheng Huafeng Dan and cinnabar, while the expression of Cyp2e1 was inhibited by HgCl2 and MeHg. The administration of Wansheng Huafeng Dan with equivalent dose for three weeks shows a much low sub-acute toxicity than HgCl2 and MeHg in rats.
Pharmacological Basis for Traditional Use of the Lippia thymoides
Silva, Fabrício Souza; Menezes, Pedro Modesto Nascimento; de Sá, Pedro Guilherme Souza; Oliveira, André Luís de Santana; Souza, Eric Alencar Araújo; Bamberg, Vinicius Martins; de Oliveira, Henrique Ribeiro; de Oliveira, Sheilla Andrade; Araújo, Roni Evêncio e; Uetanabaro, Ana Paula Trovatti; Silva, Tânia Regina dos Santos; Almeida, Jackson Roberto Guedes da Silva; Lucchese, Angélica Maria
2015-01-01
The aim of this study was to evaluate crude extracts and fractions from leaves and stems of Lippia thymoides and to validate their use in folk medicine. In vitro antioxidant and antimicrobial activities and in vivo wound healing in rats, baker yeast-induced fever in young rats, and acute oral toxicity in mice assays were realized. The crude extracts and their dichloromethane and ethyl acetate fractions had potent radical-scavenging activity against the DPPH but were not effective in the β-carotene bleaching method. The dichloromethane fraction from the leaves extract showed the broadest spectrum of activity against S. aureus, B. cereus, and C. parapsilosis. The animals treated with crude extracts showed no difference in wound healing when compared with the negative control group. The crude extract from leaves (1200 mg/kg) has equal efficacy in reducing temperature in rats with hyperpyrexia compared to dipyrone (240 mg/kg) and is better than paracetamol (150 mg/kg). In acute toxicity test, crude extract of leaves from Lippia thymoides exhibited no mortality and behavioral changes and no adverse effects in male and female mice. This work validates the popular use of Lippia thymoides for treating the wound and fever, providing a source for biologically active substances. PMID:25892998
Tabach, Ricardo; Rodrigues, Eliana; Carlini, E A
2009-01-01
Associations of plants have been widely used, for centuries, in Ayurveda and in Chinese medicine and have been increasingly acknowledged in Western medicine. The objective of this study is to assess the level of toxicity of an association of three plants: Crataegus oxyacantha, Passiflora incarnata, and Valeriana officinalis (CPV extract). This association was administered to rats, mice, and dogs, both acute and chronically for 180 days. The tests used in the acute experiments were: observational pharmacological screening, LD(50), motor coordination and motor activity. Chronic tests carried out were: weight gain/loss and behavioral parameters in rats and in mice; estrus cycle, effects on fertility, and teratogenic studies in rats and of mutagenic features in mice, in addition to the Ames test. The following parameters were assessed in dogs: weight gain/loss, general physical conditions, water/food consumption and anatomopathological examination of the organs subsequent to the 180 days of treatment. All of the results were negative, showing that CPV administered in high doses and over a long period of time presents no toxicity, suggestive of the fact that this is an association devoid of risk for human beings. Copyright 2008 John Wiley & Sons, Ltd.
[Comparative toxicity of triacetin and diethylene glycol diacetate].
Nosko, M
1977-01-01
The approximative lethal dose of triacetin and diethylene glycole acetate is determined after the method of Deihmann and Leblanc. Experiments are conducted on white rats to establish the acute and subacute oral, dermal and inhalatory toxicity of the two substances. Changes in weight, liver and kidneys weight coefficient, hematopoiesis and hepatic function (biochemical and pathomorphological), as well as the stimulating effect on mucosa and skin are studied. The results of the study show a weak stimulating action on mucosa and skin, and insignificant cumulation. Emphasis is laid on the functional character of changes in the values of some enzymes -- alkaline phosphatase, cytochrome oxidase, cholinesterase -- and of the pathomorphologically established parenchymatous dystrophy. Presumably, it is a matter of changes more strongly manifested in imported triacetin. The conclusion is reached that imported triacetin may be substituted for lokally produced diethylene glycoldiacetate which proves to be with a lower acute and subacute toxicity.
Acute toxicity and genotoxicity of fermented traditional medicine oyaksungi-san.
Park, Hwayong; Hwang, Youn-Hwan; Ma, Jin Yeul
2017-06-01
The traditional medicine oyaksungi-san (OY) has been prescribed in East Asia for hundreds of years for the treatment of stroke, paralysis, and ataxia. OY also has therapeutic effects on arthralgia, myalgia, and rheumatoid arthritis, and recent studies have shown its protective effects against apoptosis of hippocampal cells and its anti-inflammatory effects on the peripheral blood cells of patient with cerebral infarction. Many studies have explored the use of traditional medicine and herb materials in the development of safe, novel, and effective pharmaceuticals with fewer side effects. These efforts commonly adopt a bioconversion tool for fermentation with beneficial microbes. However, only pharmaceuticals with high levels of safety and low levels of toxicity can be used in healthcare system. OY water extract was fermented with Lactobacillus and assayed for acute toxicity and genotoxicity. Single dose acute toxicity, bacterial reverse mutation, chromosome aberrations, and micronucleus were observed and assayed in rats, histidine/tryptophan auxotrophic bacteria, Chinese hamster ovary fibroblast cells, and mice bone marrow cells, respectively. All the experimental animals showed no abnormal behavior, clinical signs, body weight increases, or mortality. In the bacterial cultures, no revertant colonies were observed. Morphological and numerical chromosomal aberrations were not found in all metaphases examined. Frequency of induced micronuclei was not significantly increased in all doses applied. As a whole, no acute toxicity or genotoxicity were observed in all the assays examined. Therefore, fermented OY is considered to be a safe material that can be used for development of complementary and alternative medicine using bioconversion.
Zanjani, Saman Yahyavi; Eskandari, Mohammad Reza; Kamali, Koorosh; Mohseni, Mehran
2017-01-01
Lead is a toxic metal present in different concentrations in a wide variety of food products. Exposure to lead, even to low levels, causes acute and chronic toxicities. Lead can cross the blood-brain barrier and accumulate in the nervous system. Probiotics are live microorganisms that, when used in adequate amounts, confer a health benefit on the host. Although a recent study demonstrated that the studied bacteria have a protective effect against acute lead toxicity, no research has been found that shows the long-term impact of these bacteria in vivo. The current study surveyed the protective effects of two species of probiotics, Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12, that are most widely used in many functional foods against oral lead exposure (4 weeks) in rat brains. The results revealed that, at the end of the second week of chronic exposure to lead and probiotic bacteria, the lowest level of lead belonged to the Lactobacillus group. At the end of the fourth week, the lowest amount of lead was related to the group receiving both types of probiotics. With the physiological benefits of probiotic consumption, the bacterial solution in this study did not show high efficacy in reducing brain lead concentrations.
Acute Ozone-Induced Pulmonary and Systemic Metabolic ...
Acute ozone exposure increases circulating stress hormones and induces peripheral metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for ozone-induced systemic metabolic effects and lung injury. Male Wistar-Kyoto rats (12 week-old) underwent total bilateral adrenalectomy (ADREX), adrenal demedullation (DEMED) or sham surgery (SHEM). After 4 day recovery, rats were exposed to air or ozone (1ppm), 4h/day for 1 or 2 days. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to air-exposed SHAM. Corticosterone levels tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids and branched-chain amino acids tended to increase after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX>DMED). Ozone-mediated decrease in circulating WBC in SHAM was not
Areche, Carlos; Theoduloz, Cristina; Yáñez, Tania; Souza-Brito, Alba R M; Barbastefano, Víctor; de Paula, Débora; Ferreira, Anderson L; Schmeda-Hirschmann, Guillermo; Rodríguez, Jaime A
2008-02-01
The gastroprotective mechanism of the natural diterpene ferruginol was assessed in mice and rats. The involvement of gastric prostaglandins (PGE(2)), reduced glutathione, nitric oxide or capsaicin receptors was evaluated in mice either treated or untreated with indometacin, N-ethylmaleimide (NEM), N-nitro-L-arginine methyl ester (L-NAME) or ruthenium red, respectively, and then orally treated with ferruginol or vehicle. Gastric lesions were induced by oral administration of ethanol. The effects of ferruginol on the parameters of gastric secretion were assessed in pylorus-ligated rats. Gastric PGE(2) content was determined in rats treated with ferruginol and/or indometacin. The reduction of gastric glutathione (GSH) content was determined in rats treated with ethanol after oral administration of ferruginol, lansoprazole or vehicle. Finally, the acute oral toxicity was assessed in mice. Indometacin reversed the gastroprotective effect of ferruginol (25 mg kg(-1)) but not NEM, ruthenium red or L-NAME. The diterpene (25 mg kg(-1)) increased the gastric juice volume and its pH value, and reduced the titrable acidity but was devoid of effect on the gastric mucus content. Ferruginol (25, 50 mg kg(-1)) increased gastric PGE(2) content in a dose-dependent manner and prevented the reduction in GSH observed due to ethanol-induced gastric lesions in rats. Single oral doses up to 3 g kg(-1) ferruginol did not elicit mortality or acute toxic effects in mice. Our results showed that ferruginol acted as a gastroprotective agent stimulating the gastric PGE(2) synthesis, reducing the gastric acid output and improving the antioxidant capacity of the gastric mucosa by maintaining the GSH levels.
Dietary protein and pesticide toxicity in male weanling rats*
Boyd, Eldon M.
1969-01-01
The studies reviewed in this paper were undertaken at the request of the World Health Organization to obtain information on pesticides that would be least toxic for use in countries where the diet is deficient in protein. To investigate the problem, the acute oral LD50 and the associated clinicopathological syndrome of toxicity were measured in weanling male albino rats fed for 28 days from the time of weaning on diets containing different amounts and different types of proteins. Initial results suggested that the type of dietary protein was of minor importance provided it was present in adequate amounts. Using casein as a source of dietary protein, it was found that the toxicity of 5 pesticides was not appreciably increased when the amount of dietary casein was reduced to one-third of normal requirements. When dietary casein was reduced to 13% of the requirements for normal growth, the toxicity of all 13 pesticides under study was increased. The greatest increases were associated with carbaryl, parathion and, particularly, captan. When dietary casein was increased to 3 times the normal amount, the toxicity of some pesticides such as DDT was augmented while that of others such as carbaryl was unaltered. PMID:4898389
NASA Astrophysics Data System (ADS)
Yang, Jun; Fan, Lixue; Wang, Feijian; Luo, Yuan; Sui, Xin; Li, Wanhua; Zhang, Xiaohong; Wang, Yongan
2016-05-01
The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration.The toxic nerve agent (NA) soman is the most toxic artificially synthesized compound that can rapidly penetrate into the brain and irreversibly inhibit acetylcholinesterase (AChE) activity, leading to immediate death. However, there are currently few brain-targeted nanodrugs that can treat acute chemical brain poisoning owing to the limited drug-releasing speed. The present study investigated the effectiveness of a nanodrug against NA toxicity that has high blood-brain barrier penetration and is capable of rapid drug release. Transferrin-modified mesoporous silica nanoparticles (TF-MSNs) were conjugated with the known AChE reactivator HI-6. This nanodrug rapidly penetrated the blood-brain barrier in zebrafish and mice and restored cerebral AChE activity via the released HI-6, preventing the brain damage caused by soman poisoning and increasing the survival rate in mice. Furthermore, there was no toxicity associated with the MSNs in mice or rats. These results demonstrate that TF-MSNs loaded with HI-6 represent the most effective antidote against NA poisoning by soman reported to date, and suggest that MSNs are a safe alternative to conventional drugs and an optimal nanocarrier for treating brain poisoning, which requires acute pulse cerebral administration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06658a
Ma, Jane Y C; Rengasamy, Apavoo; Frazer, Dave; Barger, Mark W; Hubbs, Ann F; Battelli, Lori; Tomblyn, Seith; Stone, Samuel; Castranova, Vince
2003-01-01
Asphalt fumes are complex mixtures of various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). PAHs require bioactivation by the cytochrome P-450 monooxygenase system to exert toxic/carcinogenic effects. The present study was carried out to characterize the acute pulmonary inflammatory responses and the alterations of pulmonary xenobiotic pathways in rats exposed to asphalt fumes by inhalation. Rats were exposed at various doses and time periods to air or to asphalt fumes generated at paving temperatures. To assess the acute damage and inflammatory responses, differential cell counts, acellular lactate dehydrogenase (LDH) activity, and protein content of bronchoalveolar lavage fluid were determined. Alveolar macrophage (AM) function was assessed by monitoring generation of chemiluminescence and production of tumor necrosis factor-alpha and interleukin-1. Alteration of pulmonary xenobiotic pathways was determined by monitoring the protein levels and activities of P-450 isozymes (CYP1A1 and CYP2B1), glutathioneS-transferase (GST), and NADPH:quinone oxidoreductase (QR). The results show that acute asphalt fume exposure did not cause neutrophil infiltration, alter LDH activity or protein content, or affect AM function, suggesting that short-term asphalt fume exposure did not induce acute lung damage or inflammation. However, acute asphalt fume exposure significantly increased the activity and protein level of CYP1A1 whereas it markedly reduced the activity and protein level of CYP2B1 in the lung. The induction of CYP1A1 was localized in nonciliated bronchiolar epithelial (Clara) cells, alveolar septa, and endothelial cells by immunofluorescence microscopy. Cytosolic QR activity was significantly elevated after asphalt fume exposure, whereas GST activity was not affected by the exposure. This induction of CYP1A1 and QR with the concomitant down-regulation of CYP2B1 after asphalt fume exposure could alter PAH metabolism and may lead to potential toxic effects in the lung. PMID:12842776
Particulate matter (PM) associated metals contribute to the adverse cardiopulmonary effects following exposure to air pollution. Here, we investigated how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity d...
Ultrastructural changes in lung tissue after acute lead intoxication in the rat.
Kaczynska, Katarzyna; Walski, Michał; Szereda-Przestaszewska, Małgorzata
2011-01-01
Pulmonary toxicity of lead was studied in rats after an intraperitoneal administration of lead acetate at a dose of 25 mg/kg. Three consecutive days of treatment increased lead content in the whole blood to 2.1 µg/dl and in lung homogenate it attained 9.62 µg/g w.w. versus control values of 0.17 µg/dl and 0.78 µg/g w.w., respectively. At the ultrastructural level, the effects of lead toxicity were observed in lung capillaries, interstitium, epithelial cells and alveolar lining layer. Accumulation of aggregated platelets, leucocytic elements and monocytes was found within capillaries. Interstitium comprised a substantial number of collagen, elastin filaments and lipofibroblasts. Lamellar bodies of type II pneumocytes contained phospolipid lamellae, which stratified into an irregular arrangement. Pulmonary alveoli were filled with macrophages. The extracellular lining layer of lung alveoli was partially destroyed. This study provided evidence that acute lead intoxication affects the whole lung parenchyma and by impairing production of the surfactant might disturb the regular respiratory function.
Price, Charlotte; Stallard, Nigel; Creton, Stuart; Indans, Ian; Guest, Robert; Griffiths, David; Edwards, Philippa
2010-01-01
Acute inhalation toxicity of chemicals has conventionally been assessed by the median lethal concentration (LC50) test (organisation for economic co-operation and development (OECD) TG 403). Two new methods, the recently adopted acute toxic class method (ATC; OECD TG 436) and a proposed fixed concentration procedure (FCP), have recently been considered, but statistical evaluations of these methods did not investigate the influence of differential sensitivity between male and female rats on the outcomes. This paper presents an analysis of data from the assessment of acute inhalation toxicity for 56 substances. Statistically significant differences between the LC50 for males and females were found for 16 substances, with greater than 10-fold differences in the LC50 for two substances. The paper also reports a statistical evaluation of the three test methods in the presence of unanticipated gender differences. With TG 403, a gender difference leads to a slightly greater chance of under-classification. This is also the case for the ATC method, but more pronounced than for TG 403, with misclassification of nearly all substances from Globally Harmonised System (GHS) class 3 into class 4. As the FCP uses females only, if females are more sensitive, the classification is unchanged. If males are more sensitive, the procedure may lead to under-classification. Additional research on modification of the FCP is thus proposed. PMID:20488841
Lara-Díaz, Víctor Javier; Gaytán-Ramos, Angel A; Dávalos-Balderas, Alfredo José; Santos-Guzmán, Jesús; Mata-Cárdenas, Benito David; Vargas-Villarreal, Javier; Barbosa-Quintana, Alvaro; Sanson, Misu; López-Reyes, Alberto Gabriel; Moreno-Cuevas, Jorge E
2009-02-01
We investigated the microbiological and toxicological effects of three Perla black bean extracts on the growth and culture of selected pathogenic microorganisms, the toxicity over Vero cell lines and an in vivo rat model. Three different solvents were used to obtain Perla black bean extracts. All three Perla black bean extracts were tested for antibacterial and antiparasitic activity and further analysed for intrinsic cytotoxicity (IC(50)). Methanol Perla black bean extract was used for acute toxicity test in rats, with the up-and-down doping method. All Perla black bean extracts inhibited bacterial growth. Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella oxytoca, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis and Listeria monocytogenes showed inhibition, while Escherichia coli and Enterobacter aerogenes did not. Acidified water and acetic acid Perla black bean extract were tested in parasites. The best IC(50) was observed for Giardia lamblia, while higher concentrations were active against Entamoeba histolytica and Trichomonas vaginalis. The Vero cells toxicity levels (IC(50)) for methanol, acidified water and acetic acid Perla black bean extract were [mean +/- S.D. (95% CI)]: 275 +/- 6.2 (267.9-282.0), 390 +/- 4.6 (384.8-395.2) and 209 +/- 3.39 (205.6-212.4) microg/ml, respectively. In vivo acute toxicity assays did not show changes in absolute organ weights, gross and histological examinations of selected tissues or functional tests. The acetic acid and methanol Perla black bean extract proved to exhibit strong antibacterial activity and the acidified water Perla black bean extract exerted parasiticidal effects against Giardia lamblia, Entamoeba hystolitica and Trichomonas vaginalis. The three Perla black bean extracts assayed over Vero cells showed very low toxicity and the methanol Perla black bean extract in vivo did not cause toxicity.
Yildirim, Serkan; Celikezen, Fatih Caglar; Oto, Gökhan; Sengul, Emin; Bulduk, Mehmet; Tasdemir, M; Ali Cinar, D
2018-04-01
This study was carried out to determine the protective effects of lithium borate (LTB) on blood parameters and histopathological findings in experimentally induced acute cadmium (Cd) toxicity in rats. Twenty-eight male Wistar albino rats were used, weighing 200-220 g, and they were randomly divided into four groups, including one control and the following three experimental groups: a Cd group (0.025 mmol/kg), a LTB group (15 mg/kg/day orally for 5 days), and a LTB + Cd group (15 mg/kg/day orally for 5 days and Cd 0.025 mmol/kg by intraperitoneal injection on the fifth day). All the rats in the study were anesthetized with ketamine at the end of the sixth day, blood was taken from their hearts, and then the rats were decapitated. The values in the control and LTB group were usually close to each other. White blood cell (WBC), neutrophil %, and C-reactive protein (CRP) levels increased in the Cd and LTB + Cd groups while lymphocyte and monocyte levels decreased in a statistically significant manner, in comparison to the other groups. It was determined that the levels of red blood cells (RBCs), hematocrit (Htc), and hemoglobin (Hb) did not change in the groups. The levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the Cd and LTB + Cd groups significantly increased, in comparison to the other groups, while the glucose, alkaline phosphatase (ALP), albumin (ALB), and total protein (TP) levels decreased. According to histopathological findings in the control and LTB groups, the liver and kidney tissues were found to have normal histological structures. In the Cd group, severe necrotic hemorrhagic hepatitis, mild steatosis, and mononuclear cell infiltration were detected in the liver. In the LTB + Cd group, degeneration and mild mononuclear cell infiltration were found in the liver. Regarding the kidney tissue in the Cd group, severe intertubular hyperemia in both kidney cortex and medulla, as well as degeneration and necrosis in the tubulus epithelium, was observed. In the LTB + Cd group, mild interstitial hyperemia and mononuclear cell infiltration was detected. Resultantly, it can be said that LTB at this dose has non-toxic effects and some beneficial effects for liver and kidney damage caused by acute Cd toxicity.
Ribnicky, David M; Poulev, Alexander; O'Neal, Joseph; Wnorowski, Gary; Malek, Dolores E; Jäger, Ralf; Raskin, Ilya
2004-04-01
TARRALIN is an ethanolic extract of Artemisia dracunculus (Russian tarragon), a common medicinal and culinary herb with centuries of use. Artemisia dracunculus is a close relative of the French or cooking tarragon and contains components common to many herbs that are routinely consumed without reported adverse effects. Since safety information of Artemisia dracunculus and its extract is limited to historical use, TARRALIN was examined in a series of toxicological studies. Complete Ames analysis did not reveal any mutagenic activity either with or without metabolic activation. TARRALIN was tested in an acute limit test at 5000 mg/kg with no signs of toxicity noted. In a 14 day repeated dose oral toxicity study, rats appeared to well tolerate 1000 mg/kg/day. Subsequently, TARRALIN was tested in an oral subchronic 90-day toxicity study (rat) at doses of 10, 100 and 1000 mg/kg/day. No noteworthy signs of toxicity were noted in feeding or body weight, functional observational battery or motor activity. Gross necropsy and clinical chemistry did not reveal any effects on organ mass or blood chemistry and microscopic examinations found no lesions associated with treatment. Therefore, TARRALIN appears to be safe and non-toxic in these studies and a no-observed adverse effect level in rats is established at 1000 mg/kg/day.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timchalk, Chuck; Kousba, Ahmed A.; Poet, Torka S.
2007-08-01
Juvenile rats are more susceptible than adults to the acute toxicity of organophosphorus insecticides like chlorpyrifos (CPF). Age- and dose-dependent differences in metabolism may be responsible. Of importance is CYP450 activation and detoxification of CPF to chlorpyrifos-oxon (CPF-oxon) and trichloropyridinol (TCP), as well as B-esterase (cholinesterase; ChE) and A-esterase (PON-1) detoxification of CPF-oxon to TCP. In the current study, a modified physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model incorporating age-dependent changes in CYP450, PON-1, and tissue ChE levels for rats was developed. In this model, age was used as a dependent function to estimate body weight which was then used to allometricallymore » scale both metabolism and tissue ChE levels. Model simulations suggest that preweanling rats are particularly sensitive to CPF toxicity, with levels of CPF-oxon in blood and brain disproportionately increasing, relative to the response in adult rats. This age-dependent non-linear increase in CPF-oxon concentration may potentially result from the depletion of non-target B-esterases, and a lower PON-1 metabolic capacity in younger animals. These results indicate that the PBPK/PD model behaves consistently with the general understanding of CPF toxicity, pharmacokinetics and tissue ChE inhibition in neonatal and adult rats. Hence, this model represents an important starting point for developing a computational model to assess the neurotoxic potential of environmentally relevant organophosphate exposures in infants and children.« less
Oboh, Ganiyu
2016-01-01
Limited studies have assessed the toxic effect of sub-acute and sub-chronic exposure of leachate (mixture of metals) in mammalian kidney. The sub-acute and sub-chronic exposure of mature male Wistar-strain albino rats (200–220 g) were given by oral administration with leachate from Elewi Odo municipal battery recycling industry (EOMABRIL) for period of 7 and 60 days respectively, at different concentrations (20%, 40%, 60%, 80% and 100%). This was to evaluate its toxic effects on male renal functions using biomarkers of oxidative stress and nephro-cellular damage. Control groups were treated equally, but given distilled water instead of the leachate. All the groups were fed with the same standard food and had free access to drinking water. Following the exposure, results showed that the treatment induced systemic toxicity at the doses tested by causing a significant (p<0.05) alteration in enzymatic antioxidants-catalase (CAT) and superoxide dismutase (SOD) in the kidneys which resulted into elevated levels of malonaldehyde (MDA). Reduced glutathione (GSH) levels were found to be significantly (p<0.05) depleted relative to the control group. Considerable renal cortical congestion and numerous tubules with protein casts were observed in the lumen of EOMABRIL-treated rats. These findings conclude that possible mechanism by which EOMABRIL at the investigated concentrations elicits nephrotoxicity could be linked to the individual, additive, synergistic or antagonistic interactions of this mixture of metals with the renal bio-molecules, alteration of kidney detoxifying enzymes and necrosis of nephritic tubular epithelial cells. PMID:28652841
Akintunde, Jacob K; Oboh, Ganiyu
2016-03-01
Limited studies have assessed the toxic effect of sub-acute and sub-chronic exposure of leachate (mixture of metals) in mammalian kidney. The sub-acute and sub-chronic exposure of mature male Wistar-strain albino rats (200-220 g) were given by oral administration with leachate from Elewi Odo municipal battery recycling industry (EOMABRIL) for period of 7 and 60 days respectively, at different concentrations (20%, 40%, 60%, 80% and 100%). This was to evaluate its toxic effects on male renal functions using biomarkers of oxidative stress and nephro-cellular damage. Control groups were treated equally, but given distilled water instead of the leachate. All the groups were fed with the same standard food and had free access to drinking water. Following the exposure, results showed that the treatment induced systemic toxicity at the doses tested by causing a significant ( p <0.05) alteration in enzymatic antioxidants-catalase (CAT) and superoxide dismutase (SOD) in the kidneys which resulted into elevated levels of malonaldehyde (MDA). Reduced glutathione (GSH) levels were found to be significantly ( p <0.05) depleted relative to the control group. Considerable renal cortical congestion and numerous tubules with protein casts were observed in the lumen of EOMABRIL-treated rats. These findings conclude that possible mechanism by which EOMABRIL at the investigated concentrations elicits nephrotoxicity could be linked to the individual, additive, synergistic or antagonistic interactions of this mixture of metals with the renal bio-molecules, alteration of kidney detoxifying enzymes and necrosis of nephritic tubular epithelial cells.
Lakhera, Abhijeet; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen
2015-06-01
Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components.
Lakhera, Abhijeet; Bansal, Divya; Dubey, Nazneen
2015-01-01
Drug induced nephrotoxicity is one of the most common causes of renal failure. Gentamicin belongs to aminoglycosides, which elicit nephrotoxic potential. Natural antioxidants from plants demonstrate a number of biotherapeutic activities. Coriander is an important medicinal plant known for its hepatoprotective, diuretic, carminative, digestive and antihelminthic potential. This study was designed to investigate whether the extract of Coriandrum sativum ameliorates the nephrotoxicity induced by gentamicin in rats. Dried coriander powder was coarsely grinded and subjected to defatting by petroleum ether and further with ethyl acetate. The extract was filtered and subjected to phytochemical and phytoanalytical studies. Acute toxicity in Wistar rats was determined by the OECD Guideline (423). Animals were divided into four groups. The first group served as positive control, while the second group was toxic control (gentamicin treated). The third and fourth group were treated with the extract (200 and 400 mg/kg gentamicin). After 8 days, the animals were sacrificed and biochemical and histopathological studies were carried out. Phytochemical screening of the extract demonstrated Coriandrum sativum to be rich in flavonoids, polyphenolics and alkaloids. Results of acute toxicity suggested the use of 200 mg/kg and 400 mg/kg for Coriandrum sativum in the study. Coriandrum sativum extract at the dose of 400 mg/kg significantly (p<0.01) decreased creatinine levels in the animals, along with a decrease in serum urea and blood urea nitrogen. Treatment with Coriandrum sativum extract ameliorated renal histological lesions. It is concluded that Coriandrum sativum is a potential source of nephroprotective phytochemical activity, with flavonoids and polyphenols as the major components. PMID:27486367
Phytochemical Screening and Acute Oral Toxicity Study of Java Tea Leaf Extracts
Safinar Ismail, Intan; Azam, Amalina Ahmad; Abas, Faridah; Shaari, Khozirah; Sulaiman, Mohd Roslan
2015-01-01
The term Java tea refers to the decoction of Orthosiphon stamineus (OS) Benth (Lamiaceae) leaves, which are widely consumed by the people in Europe and South East Asian countries. The OS leaves are known for their use in traditional medicinal systems as a prophylactic and curative agent for urinary stone, diabetes, and hypertension and also as a diuretic agent. The present study was aimed at evaluating its possible toxicity. Herein, the major phytochemical constituents of microwave dried OS leaf, which is the common drying process for tea sachets in the market, were also identified. The acute oral toxicity test of aqueous, 50% aqueous ethanolic, and ethanolic extracts of OS was performed at a dose of 5000 mg/Kg body weight of Sprague-Dawley rats. During the 14-day study, the animals were observed for any mortality, behavioral, motor-neuronal abnormalities, body weight, and feed-water consumption pattern. The hematological and serum biochemical parameters to assess the kidney and liver functions were carried out, along with the histological analysis of these organs. It was found that all microwave dried OS leaf extracts did not cause any toxic effects or mortality at the administered dose. No abnormality was noticed in all selected parameters in rats of both sexes as compared with their respective control groups. Thus, the possible oral lethal dose for microwave dried Java tea leaves is more than 5000 mg/Kg body weight. PMID:26819955
Tolooei, Mohsen; Mirzaei, Ali
2015-03-26
Previous findings have suggested that antioxidants may reduce the levels of free radicals, which induce oxidative damage and play a key role in various diseases. Thus, we evaluated the protective activity of a Pistacia atlantica extract on erythrocyte membrane rigidity, oxidative stress, and hepatotoxicity induced by carbon tetrachloride (CCl4) in rats. Fresh leaves of P.atlantica were collected from the mountains in Yasuj, Iran. Acute oral toxicity (LD50) was evaluated in Wistar rats (200-230 g). Animals were randomly divided into 4 groups, out of which the negative and plant control groups received distilled water and P. atlantica extracts (500 mg/kg), respectively. The toxic rat group received CCl4, while the treatment group received CCl4+P. atlantica extract. Blood plasma was utilized for the estimation of enzyme markers and lipid peroxidation, whereas hemolysate was applied for the determination of superoxide dismutase (SOD) and catalase activities. The levels of cholesterol and phospholipids in erythrocyte membranes were also determined. Rats were killed under anesthesia by cervical dislocation; liver was isolated from each rat and tissues homogenization was prepared for biochemical parameters such as malondialdehyde (MDA) and reduced glutathione (GSH) levels. LD50 values were determined for doses>3000 mg/kg (p.o.). The activities of glutamic pyruvate transaminase (GPT), glutamic oxaloacetate transaminase (GOT), alkaline phosphatase (ALP) and GSH in the protected group were significantly (p<0.001) reduced compared with those of toxic rats. In addition, we observed a decrease in the cholesterol level and an increase in red blood cell membrane phospholipids, SOD, and catalase activities (p<0.001) in the protected group, as compared with toxic rats. Administration of Pistacia atlantica extract normalized liver tissue MDA level (p<0.01) when compared to CCl4 treated group. The P. atlantica extract was able to normalize the levels of biochemical markers, including liver enzyme markers, first-line defense enzymes, and lipid peroxidation markers.
Li, Nan; Mruk, Dolores D; Mok, Ka-Wai; Li, Michelle W M; Wong, Chris K C; Lee, Will M; Han, Daishu; Silvestrini, Bruno; Cheng, C Yan
2016-04-01
Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated ratsversusempty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction-permeability barrier based on a functionalin vivoassay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to support round spermatids to enter spermiogenesis.-Li, N., Mruk, D. D., Mok, K.-W., Li, M. W. M., Wong, C. K. C., Lee, W. M., Han, D., Silvestrini, B., Cheng, C. Y. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. © FASEB.
Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz
2017-04-01
Neurodegeneration induced by methylphenidate (MPH), as a central stimulant with unknown long-term consequences, in adult rats' brain and the possible mechanisms involved were studied. Rats were acutely treated with MPH in the presence and absence of some receptor antagonists such as ketamine, topiramate, yohimbine, and haloperidol. Motor activity and anxiety level in rats were monitored. Antioxidant and inflammatory parameters were also measured in isolated hippocampus and cerebral cortex. MPH-treated groups (10 and 20 mg/kg) demonstrated anxiety-like behavior and increased motor activity. MPH significantly increased lipid peroxidation, GSSG content, IL-1β and TNF-α levels in isolated tissues, and also significantly reduced GSH content, superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities in hippocampus and cerebral cortex. Pretreatment of animals by receptor antagonists caused inhibition of MPH-induced motor activity disturbances and anxiety-like behavior. Pretreatment of animals by ketamine, topiramate, and yohimbine inhibited the MPH-induced oxidative stress and inflammation; it significantly decreased lipid peroxidation, GSSG level, IL-1β and TNF-α levels and increased GSH content, SOD, GPx, and GR activities in hippocampus and cerebral cortex of acutely MPH-treated rats. Pretreatment with haloperidol did not cause any change in MPH-induced oxidative stress and inflammation. In conclusion, acute administration of high doses of MPH can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in hippocampus and cerebral cortex of adult rats and these changes might probably be mediated by glutamate (NMDA or AMPA) and/or α 2 -adrenergic receptors. © 2016 Société Française de Pharmacologie et de Thérapeutique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharkey, Leslie C., E-mail: shark009@umn.edu; Radin, M. Judith, E-mail: radin.1@osu.edu; Heller, Lois, E-mail: lheller@d.umn.edu
Life threatening complications from chemotherapy occur frequently in cancer survivors, however little is known about genetic risk factors. We treated male normotensive rats (WKY) and strains with hypertension (SHR) and hypertension with cardiomyopathy (SHHF) with 8 weekly doses of doxorubicin (DOX) followed by 12 weeks of observation to test the hypothesis that genetic cardiovascular disease would worsen delayed cardiotoxicity. Compared with WKY, SHR demonstrated weight loss, decreased systolic blood pressure, increased kidney weights, greater cardiac and renal histopathologic lesions and greater mortality. SHHF showed growth restriction, increased kidney weights and renal histopathology but no effect on systolic blood pressure ormore » mortality. SHHF had less severe cardiac lesions than SHR. We evaluated cardiac soluble epoxide hydrolase (sEH) content and arachidonic acid metabolites after acute DOX exposure as potential mediators of genetic risk. Before DOX, SHHF and SHR had significantly greater cardiac sEH and decreased epoxyeicosatrienoic acid (EET) (4 of 4 isomers in SHHF and 2 of 4 isomers in SHR) than WKY. After DOX, sEH was unchanged in all strains, but SHHF and SHR rats increased EETs to a level similar to WKY. Leukotriene D4 increased after treatment in SHR. Genetic predisposition to heart failure superimposed on genetic hypertension failed to generate greater toxicity compared with hypertension alone. The relative resistance of DOX-treated SHHF males to the cardiotoxic effects of DOX in the delayed phase despite progression of genetic disease was unexpected and a key finding. Strain differences in arachidonic acid metabolism may contribute to variation in response to DOX toxicity. - Highlights: • Late doxorubicin toxicity evaluated in normal, hypertensive, and cardiomyopathic rats. • Hypertension enhances the delayed toxicity of doxorubicin. • Genetic predisposition to cardiomyopathy did not further enhance toxicity. • Epoxyeicosatrienoic acids increased in response to doxorubicin in SHR and SHHF. • Altered leukotriene metabolism may contribute greater toxicity in SHR vs. SHHF rats.« less
Intranasal melatonin nanoniosomes: pharmacokinetic, pharmacodynamics and toxicity studies.
Priprem, Aroonsri; Johns, Jeffrey R; Limsitthichaikoon, Sucharat; Limphirat, Wanwisa; Mahakunakorn, Pramote; Johns, Nutjaree Prateepawanit
2017-06-01
Intranasal melatonin encapsulated in nanosized niosomes was preclinically evaluated. A formula of melatonin niosomes (MN) was selected through physicochemical and cytotoxic data for pharmacokinetic, pharmacodynamics and toxicity studies in male Wistar rats. Intranasal MN was bioequivalent to intravenous injection of melatonin, providing therapeutic level doses. Acute and subchronic toxicity screening showed no abnormal signs, symptoms or hematological effects in any animals. Transient nasal irritations with no inflammation were observed with intranasal MN, leading it to be categorized as relatively harmless. The intranasal MN could deliver melatonin to the brain to induce sleep and provide delayed systemic circulation, relative to intravenous injection and also distribute to peripheral tissue.
[Acute toxicity of bemithyl and bromithyl].
Bugaeva, L I; Spasov, A A; Verovskiĭ, V E; Iezhitsa, I N
2000-01-01
The experiments on rats showed for bemithyl LD50 = 581.48 (350.17-965.57) mg/kg and for bromithyl LD50 = 1750.30 (1463.07-2093.92) mg/kg (males) and 1584.29 (1280.46-1960.22) mg/kg (females). The therapeutic ratios are 4-6 for both drugs, while the toxicity index is 10-15 for bemithyl and 20 <196> 22 for bromithyl. It was established that ergotropic effects prevail in the toxicity of bemithyl administered in the 20-80 mg/kg dose range, while trophotropic effects are dominating at doses above 100 mg/kg. Bromithyl exhibits a dose-dependent trophotropic effect in the entire dose range.
Shcherbakova, V M
2016-01-01
The objective of the present work was to study the morphometric characteristics of the main structural components of renal nephrons in the white rats with the experimentally induced acute and chronic alcohol intoxication. We undertook the morphometric examination of the structural elements of rat kidneys with the subsequent statistical analysis of the data obtained. The results of the study give evidence of the toxic action of ethanol on all structural components of the nephron in the case of both acute and chronic alcohol intoxication. The study revealed some specific features of the development of pathological process in the renal tissue structures at different stages of alcohol intoxication. The most pronounced morphological changes were observed in the renal proximal tubules and the least pronounced ones in the structure of the renal glomeruli. The earliest morphological changes become apparent in distal convoluted tubules of the nephron; in the case of persistent alcoholemia, they first develop in the renal corpuscles and thereafter in the distal proximal tubules. The maximum changes occur in the case of acute alcohol intoxication and between 2 weeks and 2 months of chronic intoxication; they become less conspicuous during a later period.
Acute histopathological changes produced by Penicillium aurantiogriseum nephrotoxin in the rat.
Adatia, R.; Heaton, J. M.; Macgeorge, K. M.; Mantle, P. G.
1991-01-01
Shredded wheat moulded by an isolate of Penicillium aurantiogriseum elicited progressive histopathological changes at the rat renal cortico-medullary junction during 5 days of dosing, when incorporated into diet as a 20% component. The changes of acute tubular necrosis and regeneration were seen in the P3 segment of the nephron. In rats exposed to contaminated diet for 5 days the histopathological changes regressed in severity by about one-half within a further 4 days on normal diet and by 7 days the tubular epithelium was nearly normal. A partially purified fraction of an alcohol extract, selected by preparative high-voltage electrophoresis and anion exchange and notably rich in amino-compounds, was typically nephrotoxic when given in diet over 4 days. Acute marked tubular necrosis also occurred when the same fraction was given intraperitoneally over a similar period. The acute histological changes provide a rapid bioassay for this Penicillium nephrotoxicity and facilitate the search for the toxic metabolite(s). The cumulative expression of necrosis and repair over only a few days in tubular epithelium suggests that chronic exposure will elicit a more complex pathology which might serve as an experimental model for the idiopathic Balkan endemic nephropathy. Images Fig. 1 p51-a Fig. 2 PMID:1888665
Anti-Inflammatory Activity of Polysaccharide Fraction of Curcuma longa (NR-INF-02).
Illuri, Ramanaiah; Bethapudi, Bharathi; Anandhakumar, Senthilkumar; Murugan, Sasikumar; Joseph, Joshua Allan; Mundkinajeddu, Deepak; Agarwal, Amit; Velusami, Chandrasekaran Chinampudur
2015-04-07
The aim of the study was to investigate the safety and anti-inflammatory effects of polysaccharide fraction (F1) of Curcuma longa (NR-INF-02) in classical rodent models of inflammation. F1 was evaluated for its acute oral toxicity and found to be safe upto 5000 mg/kg body weight in rats. The anti-inflammatory activity of F1 was evaluated in acute (carrageenan - induced paw edema; xylene - induced ear edema) and chronic (cotton pellet - induced granuloma) models of inflammation. The results of the study demonstrated that F1 significantly (p ≤ 0.05) inhibited carrageenan-induced paw edema at 1 h and 3 h at doses of 11.25, 22.5 and 45 mg/kg body weight in rats. Also, F1 at doses of 15.75, 31.5 and 63 mg/kg significantly inhibited the xylene induced ear edema in mice. In a chronic model, F1 at 11.25, 22.5 and 45 mg/kg doses produced significant reduction of wet and dry weights of cotton pellets in rats. Overall results indicated that F1 of NR-INF-02 significantly attenuated acute and chronic inflammation in rodent models. This study emphasizes on the importance of Curcuma longa polysaccharide's role in acute and chronic inflammation.
Anti-Inflammatory Activity of Polysaccharide Fraction of Curcuma longa Extract (NR-INF-02).
Illuri, Ramanaiah; Bethapudi, Bharathi; Anandakumar, Senthilkumar; Murugan, Sasikumar; Joseph, Joshua A; Mundkinajeddu, Deepak; Agarwal, Amit; Chandrasekaran, C V
2015-01-01
The aim of the study was to investigate the safety and anti-inflammatory effects of polysaccharide fraction (F1) of Curcuma longa extract (NR-INF-02) in classical rodent models of inflammation. F1 was evaluated for its acute oral toxicity and found to be safe upto 5000 mg/kg body weight in rats. The anti-inflammatory activity of F1 was evaluated in acute (carrageenan - induced paw edema; xylene - induced ear edema) and chronic (cotton pellet - induced granuloma) models of inflammation. The results of the study demonstrated that F1 significantly (p ≤ 0.05) inhibited carrageenan-induced paw edema at 1 h and 3 h at doses of 11.25, 22.5 and 45 mg/kg body weight in rats. Also, F1 at doses of 15.75, 31.5 and 63 mg/kg significantly inhibited the xylene induced ear edema in mice. In a chronic model, F1 at 11.25, 22.5 and 45 mg/kg doses produced significant reduction of wet and dry weights of cotton pellets in rats. Overall results indicated that F1 of NR-INF-02 significantly attenuated acute and chronic inflammation in rodent models. This study emphasizes on the importance of Curcuma longa polysaccharide's role in acute and chronic inflammation.
Al-Salem, Huda S; Bhat, Ramesa Shafi; Al-Ayadhi, Laila; El-Ansary, Afaf
2016-04-23
It is now well documented that postnatal exposure to certain chemicals has been reported to increase the risk of autism spectrum disorder. Propionic acid (PA), as a metabolic product of gut microbiotaandas a commonly used food additive, has been reported to mediate the effects of autism. Results from animal studies may help to identify environmental neurotoxic agents and drugs that can ameliorate neurotoxicity and may thereby aid in the treatment of autism. The present study investigated the ameliorative effects of natural bee pollen against acute and sub-acute brain intoxication induced by (PA) in rats. Twenty-four young male Western Albino ratswere enrolled in the present study. They were classified into four equal groups, eachwith6 rats. The control group received only phosphate buffered saline; the oral buffered PA-treated groups (II and III) received a neurotoxic dose of 750 mg/kg body weight divided in 3 dose of 250 mg/kg body weight/day serving asthe acute group and 750 mg/kg body weight divided in 10 equal dose of 75 mg/kg body weight/day as the sub-acute group. The fourth group received 50 mg bee pollen for 30 days after PA-acute intoxication. The obtained data showed that the PA-treated groups demonstrated multiple signs of brain toxicity, as indicated by a depletion of serotonin (5HT), dopamine and nor-adrenaline, together withan increase in IFN-γ and caspase 3. Bee pollen was effective in ameliorating the neurotoxic effect of PA. All measured parameters demonstrated minimal alteration in comparison with thecontrol animal than did those of acute and sub-acute PA-treated animals. In conclusion, bee pollen demonstrates anti-inflammatory and anti-apoptotic effects while ameliorating the impaired neurochemistry of PA-intoxicated rats.
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
Epidemiologic reports by C. A. Pope III et. al. demonstrated that in the Utah Valley, closure of an open hearth steel mill over the winter of 1987 was associated with reductions in respiratory disease and related hospital admissions in valley residents. To better examine the rel...
The acute hepatotoxicity and response of hepatic cytochrome P450 to treatment with the three isomers of dichlorobenzene (DCB) have been investigated. The objectives were to estimate toxic thresholds and to further e1ucidate the role of cytochrome P450 in the metabolism and toxici...
ABSTRACT
Lipopolysaccharide (LPS) is embryolethal in CD-1 mice. LPS induces metallothionein (MT) via cytokines, including TNF-, IL-1 and IL-6, which initiate and maintain the acute phase response. Maternal hepatic MT induction in pregnant rats, by diverse toxicants, can ...
Due to extensive use, human exposure to multiple pyrethroid insecticides occurs frequently. Studies of pyrethroid neurotoxicity suggest a common mode of toxicity and that pyrethroids should be considered cumulatively to model risk. The objective of this work was to use a pyrethro...
Effects of snake venom from Saudi cobras and vipers on hormonal levels in peripheral blood.
Abdel-Galil, Khidir A; Al-Hazimi, Awdah M
2004-08-01
Knowledge about the effects of snake venoms on endocrine glands in the Kingdom of Saudi Arabia (KSA) is meager. The aim of the present study is to investigate the acute and chronic envenomation from 4 snakes out of 8 species of Saudi Cobras and Vipers on the tissues of endocrine glands and peripheral hormonal levels in male rats. The peripheral blood levels of 4 hormones mainly testosterone, cortisol, insulin and thyroxin were investigated in male Wistar rats following acute and chronic treatment of the rats with poisonous snake venoms at the Department of Physiology, Faculty of Medicine, King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia between September 2000 to May 2001. Using radio immunoassay for hormonal analysis, a rise in testosterone levels in peripheral blood was obtained following acute treatment, which is due to the effect of the venoms on vascular permeability and increased blood flow. In contrast, the chronic treatment with venoms resulted in a delayed effect on vascular permeability and testicular degeneration resulting in a decreased blood flow and a significant drop in testosterone concentration. Cortisol levels were no different from the controls during acute treatment but it demonstrates gradual rise following chronic treatment to withstand the stress imposed on the animals. Similar results were obtained for insulin, which showed normal values with acute treatment but decreased levels of chronic treatment suggesting insulin insufficiently. Likewise, the thyroxin levels were decreased with chronic treatment suggesting a toxic effect of the poison on the rich blood supply of the thyroid follicles with a subsequent decrease in blood flow to the tissues and therefore, decreased thyroid hormone levels. The effects of venom toxicity on testosterone levels were either normal or stimulatory with acute treatment or inhibitory with chronic treatment depending on the vascular blood flow and testicular degeneration. Cortisol levels were normal at acute treatment but showed a gradual rise reflecting the stress imposed on the animals. The rise in cortisol levels was visualized to potentiate the cardiovascular and metabolic changes. The effects on insulin and thyroxin were similar to those of testosterone level showing normal or stimulatory effect with acute treatment followed by decreased levels of hormones with chronic treatment.
Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J
2015-01-01
Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.
Anti-inflammatory effect of combined tetramethylpyrazine, resveratrol and curcumin in vivo.
Chen, Long; Liu, Tianjun; Wang, Qiangsong; Liu, Juan
2017-04-27
Resveratrol and curcumin, as natural flavones products, have good therapeutic effect in acute and chronic inflammation; on the other hand, tetramethylpyrazine (TMP) has angiogenesis and vessel protection effect as well as anti-inflammatory function. In this paper, the anti-inflammatory effect of the tetramethylpyrazine, resveratrol and curcumin (TRC) combination in acute and chronic inflammation was reported in vivo. The dose of the combined three natural products was optimized based on the acute paw swelling mouse model with a Uniform Design methodology. The therapeutic effect of TRC combination on chronic inflammation was investigated by using the collagen-induced arthritis (CIA) rat model based upon the following indexes: the volume of paw swelling, arthritis score, serum mediators and histological examination as well as immunohistochemical staining. The levels of alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum were measured and the pathological sections of liver and kidney were analysed. LD 50 was measured based on the acute oral toxicity (AOT) standard method. The best formulation was the three components combined at the same mass proportion revealed by the Uniform Design methodology. This combination could significantly reduce the paw swelling in acute paw swelling mouse model, could reduce paw swelling and alleviate the damage in joint structural of ankle, cartilages and fibrous tissue in CIA rat model. The dose relationship was clear in both cases. Immunohistochemical staining of ankle tissue revealed that TRC combination was able to inhibit the expression of NF-κB p65 and TNF-α which were closely related to the inflammatory process. Analysis of serum mediators revealed TRC combination could inhibit the production of TNF-α, IL-1β, and IL-6 in the serum. Toxic study revealed this formulation was low toxic, LD 50 was larger than 5 g/kg, both the level of ALT and AST and histopathology in the liver and kidney exhibited no distinctions between the TRC combination and the blank group, no mortality occurred at the administered doses of 5 g/kg. The results showed this formulation could provide a novel potent treatment for acute and chronic inflammation (RA) without side effect like gastric injury occurring in NSAIDs.
Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides.
Can, Alper
2014-11-04
Organophosphate insecticides are the most commonly used pesticides in the world. In this study, quantitative structure-toxicity relationship (QSTR) models were derived for estimating the acute oral toxicity of organophosphate insecticides to male rats. The 20 chemicals of the training set and the seven compounds of the external testing set were described by means of using descriptors. Descriptors for lipophilicity, polarity and molecular geometry, as well as quantum chemical descriptors for energy were calculated. Model development to predict toxicity of organophosphate insecticides in different matrices was carried out using multiple linear regression. The model was validated internally and externally. In the present study, QSTR model was used for the first time to understand the inherent relationships between the organophosphate insecticide molecules and their toxicity behavior. Such studies provide mechanistic insight about structure-toxicity relationship and help in the design of less toxic insecticides. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lizarraga, Lucina E.; Phan, Andy V.; Cholanians, Aram B.; Herndon, Joseph M.; Lau, Serrine S.; Monks, Terrence J.
2014-01-01
3,4-(±)-Methylenedioxymethamphetamine (MDMA) is a ring-substituted amphetamine derivative with potent psychostimulant properties. The neuropharmacological effects of MDMA are biphasic in nature, initially causing synaptic monoamine release, primarily of serotonin (5-HT), inducing thermogenesis and hyperactivity (5-HT syndrome). The long-term effects of MDMA manifest as a prolonged depletion in 5-HT, and structural damage to 5-HT nerve terminals. MDMA toxicity is in part mediated by an ability to inhibit the presynaptic 5-HT reuptake transporter (SERT). Using a SERT-knockout (SERT-KO) rat model, we determined the impact of SERT deficiency on thermoregulation, locomotor activity, and neurotoxicity in SERT-KO or Wistar-based wild-type (WT) rats exposed to MDMA. WT and SERT-KO animals exhibited the highest thermogenic responses to MDMA (four times 10 mg/kg, sc at 12 h intervals) during the diurnal (first and third) doses according to peak body temperature and area under the curve (∑°C × h) analysis. Although no differences in peak body temperature were observed between MDMA-treated WT and SERT-KO animals, ∑°C × h following the first MDMA dose was reduced in SERT-KO rats. Exposure to a single dose of MDMA stimulated horizontal velocity in both WT and SERT-KO rats, however, this effect was delayed and attenuated in the KO animals. Finally, SERT-KO rats were insensitive to MDMA-induced long-term (7 days) depletions in 5-HT and its metabolite, 5-hydroxyindole acetic acid, in both cortex and striatum. In conclusion, SERT deficiency modulated MDMA-mediated thermogenesis, hyperactivity and neurotoxicity in KO rats. The data confirm that the SERT is essential for the manifestation of the acute and long-term toxicities of MDMA. PMID:24595820
Evaluation of the anti-diabetic properties of Mucuna pruriens seed extract.
Majekodunmi, Stephen O; Oyagbemi, Ademola A; Umukoro, Solomon; Odeku, Oluwatoyin A
2011-08-01
To explore the antidiabetic properties of Mucuna pruriens(M. pruriens). Diabetes was induced in Wistar rats by single intravenous injection of 120 mg/kg of alloxan monohydrate and different doses of the extract were administered to diabetic rats. The blood glucose level was determined using a glucometer and results were compared with normal and untreated diabetic rats. The acute toxicity was also determined in albino mice. Results showed that the administration of 5, 10, 20, 30, 40, 50, and 100 mg/kg of the crude ethanolic extract of M. pruriens seeds to alloxan-induced diabetic rats (plasma glucose > 450 mg/dL) resulted in 18.6%, 24.9%, 30.8%, 41.4%, 49.7%, 53.1% and 55.4% reduction, respectively in blood glucose level of the diabetic rats after 8h of treatment while the administration of glibenclamide (5 mg/kg/day) resulted in 59.7% reduction. Chronic administration of the extract resulted in a significant dose dependent reduction in the blood glucose level (P<0.001). It also showed that the antidiabetic activity of M. pruriens seeds resides in the methanolic and ethanolic fractions of the extract. Acute toxicity studies indicated that the extract was relatively safe at low doses, although some adverse reactions were observed at higher doses (8-32 mg/kg body weight), no death was recorded. Furthermore, oral administration of M. pruriens seed extract also significantly reduced the weight loss associated with diabetes. The study clearly supports the traditional use of M. pruriens for the treatment of diabetes and indicates that the plant could be a good source of potent antidiabetic drug. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Singleton, W G; Collins, A M; Bienemann, A S; Killick-Cole, C L; Haynes, H R; Asby, D J; Butts, C P; Wyatt, M J; Barua, N U; Gill, S S
2017-01-01
The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood-brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED). The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls. Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd) ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of panobinostat-loaded nano-micelles was associated with significantly improved survival when compared to controls (n=8 per group; log-rank test, P <0.001). One hundred percent of treated animals survived the 60-day experimental period and had tumour response on post-mortem histological examination. CED of nano-micellar panobinostat represents a potential novel therapeutic option for malignant glioma and warrants translation into the clinic.
Ahmad, Areeba; Fatima, Ravish; Maheshwari, Veena; Ahmad, Riaz
2011-01-01
We investigated the effects of N'-nitrosodimethylamine (NDMA) induced toxicity on red blood cell rheology in male rats and identified bands in proteomic profiles of brain which can be used as novel markers. Polyacrylamide gel electrophoresis (PAGE) profiles exhibited constitutive as well as induced expression of the polypeptides. Remarkably, the molecular weight range of the polypeptides (8–150 kDa) corresponded to that of the family of heat shock proteins. Our results revealed significant changes in blood parameters and showed the presence of acanthocytes, tear drop cells, spicules and cobot rings in the treated categories. Lactate dehydrogenase and esterase zymograms displayed a shift to anaerobic metabolism generating hypoxia-like conditions. This study strongly suggests that NDMA treatment causes acute toxicity leading to cell membrane destruction and alters protein profiles in rats. It is therefore recommended that caution should be exercised in using NDMA to avoid risks, and if at all necessary strategies should be designed to combat such conditions. PMID:22058653
NASA Astrophysics Data System (ADS)
Das, Gautom K.; Anderson, Donald S.; Wallis, Chris D.; Carratt, Sarah A.; Kennedy, Ian M.; van Winkle, Laura S.
2016-06-01
Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00897f
In vitro cytotoxicity testing of 30 reference chemicals to predict acute human and animal toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barile, F.A.; Arjun, S.; Borges, L.
1991-03-11
This study was conducted in cooperation with the Scandinavian Society of Cell Toxicology, as part of the Multicenter Evaluation for In Vitro Cytotoxicity (MEIC), and was designed to develop an in vitro model for predicting acute human and animal toxicity. The technique relies on the ability of cultured transformed rat lung epithelial cells (L2) to incorporate radiolabled amino acids into newly synthesized proteins in the absence or presence of increasing doses of the test chemical, during a 24-hr incubation. IC50 values were extrapolated from the dose-response curves after linear regression analysis. Human toxic blood concentrations estimated from rodent LD50 valuesmore » suggest that our experimental IC50's are in close correlation with the former. Validation of the data by the MEIC committee shows that our IC50 values predicted human lethal dosage as efficient as rodent LD50's. It is anticipated that this and related procedures may supplement or replace currently used animal protocols for predicting human toxicity.« less
Pastorelli, Roberta; Carpi, Donatella; Campagna, Roberta; Airoldi, Luisa; Pohjanvirta, Raimo; Viluksela, Matti; Hakansson, Helen; Boutros, Paul C; Moffat, Ivy D; Okey, Allan B; Fanelli, Roberto
2006-05-01
One characteristic feature of acute 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity is dramatic interspecies and interstrain variability in sensitivity. This complicates dioxin risk assessment for humans. However, this variability also provides a means of characterizing mechanisms of dioxin toxicity. Long-Evans (Turku/AB) rats are orders of magnitude more susceptible to TCDD lethality than Han/Wistar (Kuopio) rats, and this difference constitutes a very useful model for identifying mechanisms of dioxin toxicity. We adopted a proteomic approach to identify the differential effects of TCDD exposure on liver protein expression in Han/Wistar rats as compared with Long-Evans rats. This allows determination of which, if any, protein markers are indicative of differences in dioxin susceptibility and/or responsible for conferring resistance. Differential protein expression in total liver protein was assessed using two-dimensional gel electrophoresis, computerized gel image analysis, in-gel digestion, and mass spectrometry. We observed significant changes in the abundance of several proteins, which fall into three general classes: (i) TCDD-independent and exclusively strain-specific (e.g. isoforms of the protein-disulfide isomerase A3, regucalcin, and agmatine ureohydrolase); (ii) strain-independent and only dependent on TCDD exposure (e.g. aldehyde dehydrogenase 3A1 and rat selenium-binding protein 2); (iii) dependent on both TCDD exposure and strain (e.g. oxidative stress-related proteins, apoptosis-inducing factor, and MAWD-binding protein). By integrating transcriptomic (microarray) data and genomic data (computational search of regulatory elements), we found that protein expression levels were mainly controlled at the level of transcription. These results reveal, for the first time, a subset of hepatic proteins that are differentially regulated in response to TCDD in a strain-specific manner. Some of these differential responses may play a role in establishing the major differences in TCDD response between these two strains of rats. As such, our work is expected to lead to new insights into the mechanism of TCDD toxicity and resistance.
2012-01-01
Background Sida acuta Burn f. and Sida cordifolia L. (Malvaceae) are traditionally used in Burkina Faso to treat several ailments, mainly pains, including abdominal infections and associated diseases. Despite the extensive use of these plants in traditional health care, literature provides little information regarding their toxicity and the pharmacology. This work was therefore designed to investigate the toxicological effects of aqueous acetone extracts of Sida acuta Burn f. and Sida cordifolia L. Furthermore, their analgesic capacity was assessed, in order to assess the efficiency of the traditional use of these two medicinal plants from Burkina Faso. Method For acute toxicity test, mice were injected different doses of each extract by intraperitoneal route and the LD50 values were determined. For the subchronic toxicity evaluation, Wistar albinos rats were treated by gavage during 28 days at different doses of aqueous acetone extracts and then haematological and biochemical parameters were determined. The analgesic effect was evaluated in mice by the acetic-acid writhing test and by the formalin test. Results For the acute toxicity test, the LD50 values of 3.2 g/kg and 3.4 g/kg respectively for S. acuta Burn f. and S. cordifolia L. were obtained. Concerning the haematological and biochemical parameters, data varied widely (increase or decrease) according to dose of extracts and weight of rats and did not show clinical correlations. The extracts have produced significant analgesic effects by the acetic acid writhing test and by the hot plate method (p <0.05) and a dose-dependent inhibition was observed. Conclusion The overall results of this study may justify the traditional uses of S. acuta and S. cordifolia . PMID:22883637
Konaté, Kiessoun; Bassolé, Imaël Henri Nestor; Hilou, Adama; Aworet-Samseny, Raïssa R R; Souza, Alain; Barro, Nicolas; Dicko, Mamoudou H; Datté, Jacques Y; M'Batchi, Bertrand
2012-08-11
Sida acuta Burn f. and Sida cordifolia L. (Malvaceae) are traditionally used in Burkina Faso to treat several ailments, mainly pains, including abdominal infections and associated diseases. Despite the extensive use of these plants in traditional health care, literature provides little information regarding their toxicity and the pharmacology. This work was therefore designed to investigate the toxicological effects of aqueous acetone extracts of Sida acuta Burn f. and Sida cordifolia L. Furthermore, their analgesic capacity was assessed, in order to assess the efficiency of the traditional use of these two medicinal plants from Burkina Faso. For acute toxicity test, mice were injected different doses of each extract by intraperitoneal route and the LD50 values were determined. For the subchronic toxicity evaluation, Wistar albinos rats were treated by gavage during 28 days at different doses of aqueous acetone extracts and then haematological and biochemical parameters were determined. The analgesic effect was evaluated in mice by the acetic-acid writhing test and by the formalin test. For the acute toxicity test, the LD50 values of 3.2 g/kg and 3.4 g/kg respectively for S. acuta Burn f. and S. cordifolia L. were obtained. Concerning the haematological and biochemical parameters, data varied widely (increase or decrease) according to dose of extracts and weight of rats and did not show clinical correlations. The extracts have produced significant analgesic effects by the acetic acid writhing test and by the hot plate method (p <0.05) and a dose-dependent inhibition was observed. The overall results of this study may justify the traditional uses of S. acuta and S. cordifolia .
Li, Nan; Mruk, Dolores D.; Mok, Ka-Wai; Li, Michelle W. M.; Wong, Chris K. C.; Lee, Will M.; Han, Daishu; Silvestrini, Bruno; Cheng, C. Yan
2016-01-01
Earlier studies have shown that rats treated with an acute dose of 1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide (adjudin, a male contraceptive under development) causes permanent infertility due to irreversible blood-testis barrier (BTB) disruption even though the population of undifferentiated spermatogonia remains similar to normal rat testes, because spermatogonia fail to differentiate into spermatocytes to enter meiosis. Since other studies have illustrated the significance of connexin 43 (Cx43)-based gap junction in maintaining the homeostasis of BTB in the rat testis and the phenotypes of Sertoli cell-conditional Cx43 knockout mice share many of the similarities of the adjudin-treated rats, we sought to examine if overexpression of Cx43 in these adjudin-treated rats would reseal the disrupted BTB and reinitiate spermatogenesis. A full-length Cx43 cloned into mammalian expression vector pCI-neo was used to transfect testes of adjudin-treated rats versus empty vector. It was found that overexpression of Cx43 indeed resealed the Sertoli cell tight junction–permeability barrier based on a functional in vivo assay in tubules displaying signs of meiosis as noted by the presence of round spermatids. Thus, these findings suggest that overexpression of Cx43 reinitiated spermatogenesis at least through the steps of meiosis to generate round spermatids in testes of rats treated with an acute dose of adjudin that led to aspermatogenesis. It was also noted that the round spermatids underwent eventual degeneration with the formation of multinucleated cells following Cx43 overexpression due to the failure of spermiogenesis because no elongating/elongated spermatids were detected in any of the tubules examined. The mechanism by which overexpression of Cx43 reboots meiosis and rescues BTB function was also examined. In summary, overexpression of Cx43 in the testis with aspermatogenesis reboots meiosis and reseals toxicant-induced BTB disruption, even though it fails to support round spermatids to enter spermiogenesis.—Li, N., Mruk, D. D., Mok, K.-W., Li, M. W. M., Wong, C. K. C., Lee, W. M., Han, D., Silvestrini, B., Cheng, C. Y. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. PMID:26678449
Generation of GHS Scores from TEST and online sources ...
Alternatives assessment frameworks such as DfE (Design for the Environment) evaluate chemical alternatives in terms of human health effects, ecotoxicity, and fate. T.E.S.T. (Toxicity Estimation Software Tool) can be utilized to evaluate human health in terms of acute oral rat toxicity, developmental toxicity, endocrine activity, and mutagenicity. It can be used to evaluate ecotoxicity (in terms of acute fathead minnow toxicity) and fate (in terms of bioconcentration factor). It also be used to estimate a variety of key physicochemical properties such as melting point, boiling point, vapor pressure, water solubility, and bioconcentration factor. A web-based version of T.E.S.T. is currently being developed to allow predictions to be made from other web tools. Online data sources such as from NCCT’s Chemistry Dashboard, REACH dossiers, or from ChemHat.org can also be utilized to obtain GHS (Global Harmonization System) scores for comparing alternatives. The purpose of this talk is to show how GHS (Global Harmonization Score) data can be obtained from literature sources and from T.E.S.T. (Toxicity Estimation Software Tool). This data will be used to compare chemical alternatives in the alternatives assessment dashboard (a 2018 CSS product).
Golbabapour, Shahram; Gwaram, Nura Suleiman; Hassandarvish, Pouya; Hajrezaie, Maryam; Kamalidehghan, Behnam; Abdulla, Mahmood Ameen; Ali, Hapipah Mohd; Hadi, A Hamid A; Majid, Nazia Abdul
2013-01-01
The study was carried out to assess the gastroprotective effect of the zinc (II) complex against ethanol-induced acute hemorrhagic lesions in rats. The animals received their respective pre-treatments dissolved in tween 20 (5% v/v), orally. Ethanol (95% v/v) was orally administrated to induce superficial hemorrhagic mucosal lesions. Omeprazole (5.790×10(-5) M/kg) was used as a reference medicine. The pre-treatment with the zinc (II) complex (2.181×10(-5) and 4.362×10(-5) M/kg) protected the gastric mucosa similar to the reference control. They significantly increased the activity levels of nitric oxide, catalase, superoxide dismutase, glutathione and prostaglandin E2, and decreased the level of malondialdehyde. The histology assessments confirmed the protection through remarkable reduction of mucosal lesions and increased the production of gastric mucosa. Immunohistochemistry and western blot analysis indicated that the complex might induced Hsp70 up-regulation and Bax down-regulation. The complex moderately increased the gastroprotectiveness in fine fettle. The acute toxicity approved the non-toxic characteristic of the complex (<87.241×10(-5) M/kg). The gastroprotective effect of the zinc (II) complex was mainly through its antioxidant activity, enzymatic stimulation of prostaglandins E2, and up-regulation of Hsp70. The gastric wall mucus was also a remarkable protective mechanism.
Rao, V Ashutosh; Zhang, Jun; Klein, Sarah R; Espandiari, Parvaneh; Knapton, Alan; Dickey, Jennifer S; Herman, Eugene; Shacter, Emily B
2011-11-01
The iron chelator Dp44mT is a potent topoisomerase IIα inhibitor with novel anticancer activity. Doxorubicin (Dox), the current front-line therapy for breast cancer, induces a dose-limiting cardiotoxicity, in part through an iron-mediated pathway. We tested the hypothesis that Dp44mT can improve clinical outcomes of treatment with Dox by alleviating cardiotoxicity. The general cardiac and renal toxicities induced by Dox were investigated in the presence and absence of Dp44mT. The iron chelating cardioprotectant Dexrazoxane (Drz), which is approved for this indication, was used as a positive control. In vitro studies were carried out with H9c2 rat cardiomyocytes and in vivo studies were performed using spontaneously hypertensive rats. Testing of the GI(50) profile of Dp44mT in the NCI-60 panel confirmed activity against breast cancer cells. An acute, toxic dose of Dox caused the predicted cellular and cardiac toxicities, such as cell death and DNA damage in vitro and elevated cardiac troponin T levels, tissue damage, and apoptosis in vivo. Dp44mT alone caused insignificant changes in hematological and biochemical indices in rats, indicating that Dp44mT is not significantly cardiotoxic as a single agent. In contrast to Drz, Dp44mT failed to mitigate Dox-induced cardiotoxicity in vivo. We conclude that although Dp44mT is a potent iron chelator, it is unlikely to be an appropriate cardioprotectant against Dox-induced toxicity. However, it should continue to be evaluated as a potential anticancer agent as it has a novel mechanism for inhibiting the growth of a broad range of malignant cell types while exhibiting very low intrinsic toxicity to healthy tissues.
Chaudhari, Swapnil Y; Nariya, Mukesh B; Galib, R; Prajapati, Pradeep K
2016-03-01
Tamra Bhasma (TB) is one among herbo-metallic preparations extensively used in routine ayurvedic practice. In the present era, Bhasma preparations used in ayurvedic system of medicines are always under stern observations for containing heavy metals which may raise the question of safety aspect. In the present study, TB prepared with and without Amritikarana was subjected to toxicity study to ascertain the role of Amritikarana on safety profile of TB in rats. Both the samples of TB were administered to rats for 28 consecutive days at the doses of 5.5, 27.5, and 55 mg/kg. The effects of both drugs were assessed on ponderal changes, hematological, serum biochemical, and histopathology of various organs. Results showed that both the samples of TB did not produce any sign and symptoms of toxicity at therapeutic dose level (5.5 mg/kg) and therapeutic equivalent dose (TED) × 5 (27.5 mg/kg) while at higher dose of TED × 10 (55 mg/kg) TB has mild toxicity in liver, kidney, heart, and thymus on repeated administration for 28 days in rats. The sample without Amritikarana has more magnitude of toxicity than the sample with Amritikarana. From the present study, it is concluded that TB with Amritikarana was found to be relatively safer than TB without Amritikarana at different dose levels in rats and hence suggest for safely use in humans at therapeutic dose level. It proves the role of Amritikarana in the preparation of TB. Copyright © 2016 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonsart, Julien, E-mail: julien.fonsart@lrb.aphp.f; CNRS, UMR 7157, Paris F-75006; INSERM, U705, Paris F-75006
The use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has increased in recent years; it can lead to life-threatening hyperthermia and serotonin syndrome. Human and rodent males appear to be more sensitive to acute toxicity than are females. MDMA is metabolized to five main metabolites by the enzymes CYP1A2, CYP2D and COMT. Little is presently known about sex-dependent differences in the pharmacokinetics of MDMA and its metabolites. We therefore analyzed MDMA disposition in male and female rats by measuring the plasma and urine concentrations of MDMA and its metabolites using a validated LC-MS method. MDA AUC{sub last} and C{sub max} were 1.6- tomore » 1.7-fold higher in males than in females given MDMA (5 mg/kg sc), while HMMA C{sub max} and AUC{sub last} were 3.2- and 3.5-fold higher, respectively. MDMA renal clearance was 1.26-fold higher in males, and that of MDA was 2.2-fold higher. MDMA AUC{sub last} and t{sub 1/2} were 50% higher in females given MDMA (1 mg/kg iv). MDA C{sub max} and AUC{sub last} were 75-82% higher in males, with a 2.8-fold higher metabolic index. Finally, the AUC{sub last} of MDA was 0.73-fold lower in males given 1 mg/kg iv MDA. The volumes of distribution of MDMA and MDA at steady-state were similar in the two sexes. These data strongly suggest that differences in the N-demethylation of MDMA to MDA are major influences on the MDMA and MDA pharmacokinetics in male and female rats. Hence, males are exposed to significantly more toxic MDA, which could explain previously reported sexual dysmorphism in the acute effects and toxicity of MDMA in rats.« less
Saha, Partha Pratim; Bhowmik, Tanmoy; Dasgupta, Anjan Kumar; Gomes, Antony
2014-08-01
Nanoscience and Nanotechnology have found their way in the fields of pharmacology and medicine. The conjugation of drug to nanoparticles combines the properties of both. In this study, gold nanoparticle (GNP) was conjugated with NKCT1, a cytotoxic protein toxin from Indian cobra venom for evaluation of anti-arthritic activity and toxicity in experimental animal models. GNP conjugated NKCT1 (GNP-NKCT1) synthesized by NaBH4 reduction method was stable at room temperature (25 +/- 2 degrees C), pH 7.2. Hydrodynamic size of GNP-NKCT1 was 68-122 nm. Arthritis was developed by Freund's complete adjuvant induction in male albino rats and treatment was done with NKCT1/GNP-NKCT1/standard drug. The paw/ankle swelling, urinary markers, serum markers and cytokines were changed significantly in arthritic control rats which were restored after GNP-NKCT1 treatment. Acute toxicity study revealed that GNP conjugation increased the minimum lethal dose value of NKCT1 and partially reduced the NKCT1 induced increase of the serum biochemical tissue injury markers. Histopathological study showed partial restoration of toxic effect in kidney tissue after GNP conjugation. Normal lymphocyte count in culture was in the order of GNP-NKCT1 > NKCT1 > Indomethacine treatment. The present study confirmed that GNP conjugation increased the antiarthritic activity and decreased toxicity profile of NKCT1.
Sonobe, Takashi; Chenuel, Bruno; Cooper, Timothy K.; Haouzi, Philippe
2015-01-01
Background Acute hydrogen sulfide (H2S) poisoning produces a coma, the outcome of which ranges from full recovery to severe neurological deficits. The aim of our study was to 1- describe the immediate and long-term neurological effects following H2S-induced coma in un-anesthetized rats, and 2- determine the potential benefit of methylene blue (MB), a compound we previously found to counteract acute sulfide cardiac toxicity. Methods NaHS was administered IP in un-sedated rats to produce a coma (n = 34). One minute into coma, the rats received MB (4 mg/kg IV) or saline. The surviving rats were followed clinically and assigned to Morris water maze (MWM) and open field testing then sacrificed at day 7. Results Sixty percent of the non-treated comatose rats died by pulseless electrical activity. Nine percent recovered with neurological deficits requiring euthanasia, their brain examination revealed major neuronal necrosis of the superficial and middle layers of the cerebral cortex and the posterior thalamus, with variable necrosis of the caudate putamen, but no lesions of the hippocampus or the cerebellum, in contrast to the typical distribution of post-ischemic lesions. The remaining animals displayed, on average, a significantly less effective search strategy than the control rats (n = 21) during MWM testing. Meanwhile, 75% of rats that received MB survived and could perform the MWM test (P<0.05 vs non-treated animals). The treated animals displayed a significantly higher occurrence of spatial search than the non-treated animals. However, a similar proportion of cortical necrosis was observed in both groups, with a milder clinical presentation following MB. Conclusion In conclusion, in rats surviving H2S induced coma, spatial search patterns were used less frequently than in control animals. A small percentage of rats presented necrotic neuronal lesions, which distribution differed from post-ischemic lesions. MB dramatically improved the immediate survival and spatial search strategy in the surviving rats. PMID:26115032
Sonobe, Takashi; Chenuel, Bruno; Cooper, Timothy K; Haouzi, Philippe
2015-01-01
Acute hydrogen sulfide (H2S) poisoning produces a coma, the outcome of which ranges from full recovery to severe neurological deficits. The aim of our study was to 1--describe the immediate and long-term neurological effects following H2S-induced coma in un-anesthetized rats, and 2--determine the potential benefit of methylene blue (MB), a compound we previously found to counteract acute sulfide cardiac toxicity. NaHS was administered IP in un-sedated rats to produce a coma (n = 34). One minute into coma, the rats received MB (4 mg/kg i.v.) or saline. The surviving rats were followed clinically and assigned to Morris water maze (MWM) and open field testing then sacrificed at day 7. Sixty percent of the non-treated comatose rats died by pulseless electrical activity. Nine percent recovered with neurological deficits requiring euthanasia, their brain examination revealed major neuronal necrosis of the superficial and middle layers of the cerebral cortex and the posterior thalamus, with variable necrosis of the caudate putamen, but no lesions of the hippocampus or the cerebellum, in contrast to the typical distribution of post-ischemic lesions. The remaining animals displayed, on average, a significantly less effective search strategy than the control rats (n = 21) during MWM testing. Meanwhile, 75% of rats that received MB survived and could perform the MWM test (P<0.05 vs non-treated animals). The treated animals displayed a significantly higher occurrence of spatial search than the non-treated animals. However, a similar proportion of cortical necrosis was observed in both groups, with a milder clinical presentation following MB. In conclusion, in rats surviving H2S induced coma, spatial search patterns were used less frequently than in control animals. A small percentage of rats presented necrotic neuronal lesions, which distribution differed from post-ischemic lesions. MB dramatically improved the immediate survival and spatial search strategy in the surviving rats.
Hepatoprotective Effect and Chemical Assessment of a Selected Egyptian Chickpea Cultivar
Mekky, Reham H.; Fayed, Mostafa R.; El-Gindi, Mohamed R.; Abdel-Monem, Azza R.; Contreras, María del Mar; Segura-Carretero, Antonio; Abdel-Sattar, Essam
2016-01-01
Chickpea (Cicer arietinum) is a legume of the family Fabaceae, subfamily Faboideae. In Egypt, chickpea seeds are usually consumed at raw green and tender stage, or in the form of mature dry seeds. In our previous study, ‘Giza 1’ seeds exhibited stronger antioxidant activity and higher total phenol content than those from other Egyptian cultivars. In order to assess the biological potential of ‘Giza 1’ seeds in vivo, the extraction procedure was reproduced here. The extract was standardized using liquid chromatography coupled to diode array detector and tandem mass spectrometry (MS/MS) to evaluate their hepatoprotective effect on carbon tetrachloride (CCl4)-induced hepatotoxicity in rats and acute toxicity. Administration of the extract to rats in doses up to 2 g/Kg) did not cause any mortalities or observable signs of toxicity. Further, the plant extract showed a strong hepatoprotective activity based on assessing serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and levels of albumen, globulin, total protein, total cholesterol, high density lipoprotein, triglycerides, and low density lipoprotein. The antioxidative activity was evaluated by assessing hepatic catalase and superoxide dismutase activity as well as reduced glutathione, and malondialdehyde levels. Additionally, anti-inflammatory activity was observed as the extract significantly lowered the hepatic tumor necrosis factor α content. Histopathological examination of liver tissues indicated that the extract-treated animals showed almost normal hepatic architecture with fewer pathological changes. In conclusion, the current results suggest that the chickpea extract possesses an excellent safety profile with very low acute toxicity. Also, it exhibits a significant hepatoprotective effect against CCl4-induced liver injury in rats. This can be attributed, at least partly, to the antioxidant and anti-inflammatory activity of the isoflavones and phenolic acids content of the extract. PMID:27733831
Hepatoprotective Effect and Chemical Assessment of a Selected Egyptian Chickpea Cultivar.
Mekky, Reham H; Fayed, Mostafa R; El-Gindi, Mohamed R; Abdel-Monem, Azza R; Contreras, María Del Mar; Segura-Carretero, Antonio; Abdel-Sattar, Essam
2016-01-01
Chickpea ( Cicer arietinum ) is a legume of the family Fabaceae, subfamily Faboideae. In Egypt, chickpea seeds are usually consumed at raw green and tender stage, or in the form of mature dry seeds. In our previous study, 'Giza 1' seeds exhibited stronger antioxidant activity and higher total phenol content than those from other Egyptian cultivars. In order to assess the biological potential of 'Giza 1' seeds in vivo , the extraction procedure was reproduced here. The extract was standardized using liquid chromatography coupled to diode array detector and tandem mass spectrometry (MS/MS) to evaluate their hepatoprotective effect on carbon tetrachloride (CCl 4 )-induced hepatotoxicity in rats and acute toxicity. Administration of the extract to rats in doses up to 2 g/Kg) did not cause any mortalities or observable signs of toxicity. Further, the plant extract showed a strong hepatoprotective activity based on assessing serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and levels of albumen, globulin, total protein, total cholesterol, high density lipoprotein, triglycerides, and low density lipoprotein. The antioxidative activity was evaluated by assessing hepatic catalase and superoxide dismutase activity as well as reduced glutathione, and malondialdehyde levels. Additionally, anti-inflammatory activity was observed as the extract significantly lowered the hepatic tumor necrosis factor α content. Histopathological examination of liver tissues indicated that the extract-treated animals showed almost normal hepatic architecture with fewer pathological changes. In conclusion, the current results suggest that the chickpea extract possesses an excellent safety profile with very low acute toxicity. Also, it exhibits a significant hepatoprotective effect against CCl 4 -induced liver injury in rats. This can be attributed, at least partly, to the antioxidant and anti-inflammatory activity of the isoflavones and phenolic acids content of the extract.
Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash
2014-03-25
Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Das, Gautom K; Anderson, Donald S; Wallis, Chris D; Carratt, Sarah A; Kennedy, Ian M; Van Winkle, Laura S
2016-06-02
Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m(-3) of ∼30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu(3+)) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.
Omidi, Arash; Riahinia, Narges; Montazer Torbati, Mohammad Bagher; Behdani, Mohammad-Ali
2014-01-01
Objectives: Acetaminophen (APAP) toxicity is known to be common and potentially fatal. This study aims to investigate the protective effects of hydroalcoholic extract, remaining from Crocus sativus petals (CSP) against APAP-induced hepatotoxicity by measuring the blood parameters and studying the histopathology of liver in male rats. Materials and Methods: Wister rats (24) were randomly assigned into four groups including: I) healthy, receiving normal saline; II) Intoxicated, receiving only APAP (600 mg/kg); III) pre-treated with low dose of CSP (10 mg /kg) and receiving APAP (600 mg/kg); IV) pre-treated with high dose of CSP (20 mg/kg) and receiving APAP (600 mg/kg). Results: The APAP treatment resulted in higher levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and bilirubin, along with lower total protein and albumin concentration than the control group. The administration of CSP with a dose of 20 mg/kg was found to result in lower levels of AST, ALT and bilirubin, with a significant higher concentration of total protein and albumin. The histopathological results regarding liver pathology, revealed sever conditions including cell swelling, severe inflammation and necrosis in APAP-exposed rats, which was quiet contrasting compared to the control group. The pre-treated rats with low doses of CSP showed hydropic degeneration with mild necrosis in centrilobular areas of the liver, while the same subjects with high doses of CSP appeared to have only mild hepatocyte degeneration. Conclusions: Doses of 20 mg/kg of CSP ameliorates APAP–induced acute liver injury in rats. It was concluded that the antioxidant property of CSP resulted in reducing the oxidative stress complications of toxic levels of APAP in intoxicated rats. PMID:25386395
NASA Astrophysics Data System (ADS)
Oberdörster, G.; Ferin, J.; Finkelstein, J.; Soderholm, S.
Exposure to thermal degradation products arising from fire or smoke could be a major concern for manned space missions. Severe acute lung damage has been reported in people after accidental exposure to fumes from plastic materials, and animal studies revealed the extremely high toxicity of freshly generated fumes whereas a decrease in toxicity of aged fumes has been found. This and the fact that toxicity of the freshly generated fumes can be prevented with filters raises the question whether the toxicity may be due to the particulate rather than the gas phase components of the thermodegradation products. Indeed, results from recent studies implicate ultrafine particles (particle diameter in the nm range) as potential severe pulmonary toxicants. We have conducted a number of in vivo (inhalation and instillation studies in rats) and in vitro studies to test the hypothesis that ultrafine particles possess an increased potential to injure the lung compared to larger-sized particles. We used as surrogate particles ultrafine TiO 2 particles (12 and 20 nm diameter). Results in exposed rats showed that the ultrafine TiO 2 particles not only induce a greater acute inflammatory reaction in the lung than larger-sized TiO 2 particles, but can also lead to persistent chronic effects, as indicated by an adverse effect on alveolar macrophage mediated clearance function of particles. Release of mediators from alveolar macrophages during phagocytosis of the ultrafine particles and an increased access of the ultrafine particles to the pulmonary interstitium are likely factors contributing to their pulmonary toxicity. In vitro studies with lung cells (alveolar macrophages) showed, in addition, that ultrafine TiO 2 particles have a greater potential to induce cytokines than larger-sized particles. We conclude from our present studies that ultrafine particles have a significant potential to injure the lung and that their occurrence in thermal degradation events can play a major role in the highly acute toxicity of fumes. Future studies will include adsorption of typical gas phase components (HCl, HF) on surrogate particles to differentiate between gas and particle phase effects and to perform mechanistic studies aimed at introducing therapeutic/preventive measures. These studies will be complemented by a comparison with actual thermal degradation products.
Peng, Donghai; Chen, Shouwen; Ruan, Lifang; Li, Lin; Yu, Ziniu; Sun, Ming
2007-07-01
The aim of this study was to evaluate the toxicology safety of a genetically modified (GM) Bacillus thuringiensis with vegetative insecticidal protein (VIP) gene. Acute and subacute toxicity studies by using its powder preparation were conducted in Wistar rats. The result of the acute study showed the no-observable-adverse-effect level (NOAEL) of this GM B. thuringiensis powder preparation was greater than 5000 mg/kg body weight (BW). In the subacute study, the data analysis of body weight gain, food and water consumptions, clinical observations, haematology, serum biochemistry, organ weight ratios and histopathological findings did not show significant differences between control and treated groups. These results proved the NOAEL of this GM B. thuringiensis powder preparation in subacute test was greater than 5000 mg/kg BW. Since both the acute and subacute oral toxicity were not detected at the highest dose recommended by OECD guidelines, this GM B. thuringiensis could be generally regarded as safe for use in bio-pesticide industry.
Joshi, Deepmala; Srivastav, Sunil Kumar; Belemkar, Sateesh; Dixit, Vaibhav A
2017-07-01
Mercury toxicity is an emerging problem in the world as its concentration is rising continuously due to increased industrial, medicinal and domestic uses. Exposure to mercury represents a serious challenge to humans and other living biomes. The aim of the present study was to assess the protective effect of natural products as Zingiber officinale extract and its active compound (6-gingerol) against mercuric chloride-induced hepatorenal toxicity and oxidative stress in male rats. Male Sprague-Dawley rats (150±10g, n=6 per group) were administered HgCl 2 (12μmol/kg, ip; once only) the treatment of Zingiber officinale Rosc. extract (ZO: 125mg/kg, po) and 6-gingerol (GG: 50mg/kg, po) for three days after 24h of HgCl 2 administration. Acute HgCl 2 administration altered various biochemical parameters, including transaminases, alkaline phosphatase, lactate dehydrogenase, bilirubin, gamma-glutamyl transferase, triglycerides and cholesterol, urea, creatinine, uric acid and blood urea nitrogen contents with a concomitant decline in protein and albumin concentration in serum. In addition, a significant rise in lipid peroxidation level with concomitant decrease in reduced glutathione content and the antioxidant enzymes activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase after acute HgCl 2 exposure. Results of the present investigation clearly showed that both treatments as Zingiber officinale extract and 6-gingerol provide protection against acute mercuric chloride-intoxication by preventing oxidative degradation of a biological membrane from metal mediated free radical attacks. Biochemical data were well supported by histopathological findings. In conclusion, natural products may be an ideal choice against oxidative damage induced by mercury poisoning. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
The objectives of this study were to evaluate the influence of both route and pattern of exposure on the pharmacokinetics and target organ toxicity of a common VOC, carbon tetrachloride (CCl4). ale Sprague-Dawley rats, 325-275 g, inhaled 100 or 1,000 ppm CCl4 for 2 hr through a o...
Acute and sub-chronic toxicity study of diaveridine in Wistar rats.
Wang, Xu; Su, Shijia; Ihsan, Awais; Huang, Qin; Chen, Dongmei; Cheng, Guyue; Liu, Zhenli; Wang, Yulian; Yuan, Zonghui
2015-10-01
Diaveridine, a developed dihydrofolate reductase inhibitor, has been widely used as anticoccidial drug and antibacterial synergist. However, few studies have been performed to investigate its toxicity. To provide detailed toxicity with a wide spectrum of doses for diaveridine, acute and sub-chronic toxicity studies were conducted. Calculated LD50 was 2330 mg/kg b.w. in females and 3100 mg/kg b.w. in males, and chromodacryorrhea was noted in some females before their death. In the sub-chronic study, diaveridine was fed to Wistar rats during 90 days at dietary levels of 0, 23, 230, 1150 and 2000 mg/kg, which were about 0, 2.0-2.3, 21.0-23.5, 115.2-126.9 and 212.4-217.9 mg/kg b.w., respectively. Significant decrease in body weights in both genders at 1150 and 2000 mg/kg groups and significant increases in relative weights of brain in both genders, liver in females, kidneys and testis in males, alkaline phosphatase and potassium in both genders at 2000 mg/kg diet were noted. Significant decrease in absolute weights of several organs, hemoglobin and red blood cell count in both genders, albumin and total protein in females were observed at 2000 mg/kg diet. Fibroblasts in the kidneys, cell swelling of the glomerular zone in the adrenals and inflammation in the liver were found at 2000 mg/kg group. The no-observed-adverse-effect level of diaveridine was 230 mg/kg diet (21.0-23.5 mg/kg b.w./day). Copyright © 2015 Elsevier Inc. All rights reserved.
Yazgan, Ü C; Elbey, B; Kuş, S; Baykal, B; Keskin, I; Yılmaz, A; Şahin, A
2017-05-01
Methanol toxicity is one of the major public health problems because it can cause severe morbidity and mortality. Methanol intoxication causes changes in the balance between the production of free radicals and antioxidant capacity. We aimed to investigate the effects of caffeic acid phenethyl ester (CAPE) on the total oxidant status, total antioxidant status (TAS), and oxidative stress index (OSI) parameters of the liver and the serum in a rat model of acute methanol intoxication. Rats were treated with intraperitoneal (i.p.) Methotrexate (MTX) for 7 days. On the 8th day, i.p. Methanol was administered in the methanol, ethanol and CAPE groups. Four hours after methanol treatment, ethanol was injected i.p. in the ethanol group; CAPE (i.p.) in the CAPE group; serum physiologic i.p. in other groups. After 8 hours, rats were killed and the serum and the liver samples were obtained for biochemical analyses. The OSI value was significantly higher in the methanol group compared to the ethanol and CAPE groups. Serum TAS levels of the methanol group were significantly different compared to the control group, but not compared to the MTX group. The amelioration of oxidative stress was greater in the CAPE group compared to the ethanol group but was not statistically significant. This study demonstrates that CAPE treatment ameliorates oxidative stress in the serum and liver in a rat model of acute methanol intoxication.
Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao
2014-01-01
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities. PMID:24950175
Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao
2014-01-01
In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities.
Effect of age increase on metabolism and toxicity of ethanol in female rats.
Kim, Young C; Kim, Sung Y; Sohn, Young R
2003-12-12
Age-dependent change in the effects of acute ethanol administration on female rat liver was investigated. Female Sprague-Dawley rats, each aged 4, 12, or 50 weeks, received ethanol (2 g/kg) via a catheter inserted into a jugular vein. Ethanol elimination rate (EER), most rapid in the 4 weeks old rats, was decreased as the age advanced. Hepatic alcohol dehydrogenase activity was not altered by age, but microsomal p-nitrophenol hydroxylase activity was significantly greater in the 4 weeks old rats. Relative liver weight decreased with age increase in proportion to reduction of EER. Hepatic triglyceride and malondialdehyde concentrations increased spontaneously in the 50 weeks old nai;ve rats. Ethanol administration (3 g/kg, ip) elevated malondialdehyde and triglyceride contents only in the 4 and the 12 weeks old rats. Hepatic glutathione concentration was increasingly reduced by ethanol with age increase. Ethanol decreased cysteine concentration in the 4 weeks old rats, but elevated it significantly in the older rats. Inhibition of gamma-glutamylcysteine synthetase activity by ethanol was greater with age increase, which appeared to be responsible for the increase in hepatic cysteine. The results indicate that age does not affect the ethanol metabolizing capacity of female rat liver, but the overall ethanol metabolism is decreased in accordance with the reduction of relative liver size. Accordingly induction of acute alcoholic fatty liver is less significant in the old rats. However, progressively greater depletion of glutathione by ethanol in older rats suggests that susceptibility of liver to oxidative damage would be increased as animals grow old.
Extrapolation of toxic indices among test objects
Tichý, Miloň; Rucki, Marián; Roth, Zdeněk; Hanzlíková, Iveta; Vlková, Alena; Tumová, Jana; Uzlová, Rút
2010-01-01
Oligochaeta Tubifex tubifex, fish fathead minnow (Pimephales promelas), hepatocytes isolated from rat liver and ciliated protozoan are absolutely different organisms and yet their acute toxicity indices correlate. Correlation equations for special effects were developed for a large heterogeneous series of compounds (QSAR, quantitative structure-activity relationships). Knowing those correlation equations and their statistic evaluation, one can extrapolate the toxic indices. The reason is that a common physicochemical property governs the biological effect, namely the partition coefficient between two unmissible phases, simulated generally by n-octanol and water. This may mean that the transport of chemicals towards a target is responsible for the magnitude of the effect, rather than reactivity, as one would assume suppose. PMID:21331180
Lagnika, Latifou; Amoussa, Abdou Madjid O; Adjileye, Rafatou A A; Laleye, Anatole; Sanni, Ambaliou
2016-01-27
Acmella uliginosa (Asteraceae) is a flowering plant whose leaves are consumed as a vegetable in Benin. They are also traditionally used as an antibiotic in the treatment of infectious diseases. To evaluate the therapeutic potential and toxicity effect of this leafy-vegetable, the antibacterial, antifungal, antioxidant activities and, toxicity and phytochemical constituents were investigated. Dichloromethane, methanol and aqueous extracts of Acmella uliginosa were evaluated for their antimicrobial activity against six bacterial and six fungi strains. Antibacterial and antifungal activities were investigated by microdilution method and agar diffusion method respectively. Antioxidant activity was assessed using the 2,2-diphenyl-1-picryl-hydrazyl assay and phytochemical screening was carried out using standard procedures. Finally, oral acute toxicity at a dose of 2000 mg/kg was done according to the Organization for Economic Co-operation and Development guideline n° 423. The antibacterial activity was broad spectrum, inhibiting both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration ranged from 0.625 to 5 mg/ml. The antifungal evaluation show that all the extracts inhibited mycelial growth and sporulation of fungi with percentages of inhibition ranging from 9.39 to 75.67% and 22.04 to 99.77%, respectively. In DPPH radical scavenging assay, the effect on reducing free radicals increased in a dose dependent manner. The percentage of inhibition of DPPH ranged from 0.94 to 73.07%. Phytochemical screening revealed the presence of coumarin, flavonoid, naphtoquinone, anthracene derivative, saponin, lignan, triterpene and tannin. The dichloromethane and methanol extracts showed the best biological activities; they were also shown as the best extraction solvents of phytochemicals. In the acute toxicity evaluation, all animals were physically active and no deaths of rats were observed during the test. However, the aqueous extract promoted biochemical, hematological and histopathological alterations of treated rats at 2000 mg/kg body weight. A. uliginosa extracts contains antimicrobial, antioxidant agents and was not lethal for rats when ingested. However, according to the results obtained for biochemical, hematological, and histopathological analysis, caution is required regarding its consumption.
Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J
2015-01-01
Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315
Wang, Haifeng; Bai, Jiao; Chen, Gang; Li, Wen; Xiang, Rongwu; Su, Guangyue; Pei, Yuehu
2013-03-27
Zhusha Anshen Wan (ZSASW), a traditional Chinese medicine (TCM) prescription, composed of cinnabar (cinnabaris), Coptidis Rhizoma (Coptis chinensis French.), Angelicae Sinensis Radix (Angelica sinensis (oliv.) Diels), uncooked Rehmanniae Radix (Rehmannia glutinosa Libosch.), honey fried Glycyrrhizae Radix Et Rhizoma (Glycyrrhiza uralensis Fisch.), has been widely used for sedative therapy. Cinnabar, the chief component of ZSASW, has been proved to possess the toxicities. In this study, a metabonomics approach based on high-resolution (1)H nuclear magnetic resonance spectroscopy was applied to investigate the protective effects of ZSASW on the toxic effects induced by cinnabar alone. Male Wistar rats were divided into three groups: control group, ZSASW group and cinnabar group. Partial least squares-discriminant analysis (PLS-DA) was performed to identify different metabolic profiles of urine and serum from rats. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. The significant difference in metabolic profiling of urine and serum of the rats was observed between cinnabar treated group, control group, and the changes of endogenous metabolites related to the toxicities were identified. The results were also certified by the liver and kidney histopathology examinations and biochemical analysis of blood. Our results suggested that the four combined herbal medicines of ZSASW had the effects of protecting from the toxicity induced by cinnabar alone. This work showed that the NMR-based metabonomics approach might be a promising approach to study detoxification of Chinese medicines and reasonable combination of TCM prescriptions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Khalid, Qandeel; Ahmad, Mahmood; Minhas, Muhammad Usman
2017-11-01
This study was aimed to enhance aqueous solubility of dexibuprofen through designing β-cyclodextrin (βCD) hydrogel nanoparticles and to evaluate toxicological potential through acute toxicity studies in rats. Dexibuprofen is a non-steroidal analgesic and anti-inflammatory drug that is one of safest over the counter medications. However, its clinical effectiveness is hampered due to poor aqueous solubility. βCD hydrogel nanoparticles were prepared and characterized by percent yield, drug loading, solubilization efficiency, FTIR, XRD, DSC, FESEM and in-vitro dissolution studies. Acute oral toxicity study was conducted to assess safety of oral administration of prepared βCD hydrogel nanoparticles. βCD hydrogel nanoparticles dramatically enhanced the drug loading and solubilization efficiency of dexibuprofen in aqueous media. FTIR, TGA and DSC studies confirmed the formation of new and a stable nano-polymeric network and interactions of dexibuprofen with these nanoparticles. Resulting nanoparticles were highly porous with 287 nm in size. XRD analysis revealed pronounced reduction in crystalline nature of dexibuprofen within nanoparticles. Release of dexibuprofen in βCD hydrogel nanoparticles was significantly higher compared with dexibuprofen tablet at pH 1.2 and 6.8. In acute toxicity studies, no significant changes in behavioral, physiological, biochemical or histopathologic parameters of animals were observed. The efficient preparation, high solubility, excellent physicochemical characteristics, improved dissolution and non-toxic βCD hydrogel nanoparticles may be a promising approach for oral delivery of lipophilic drugs.
2012-01-01
Background The decoction of the aerial parts of Rhynchosia recinosa (A.Rich.) Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae), Maytenus senegalensis (Lam.) Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.)Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants. Methods A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholerae (clinical isolate), and Klebsiella pneumoniae (clinical isolate) using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants. Results The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole. Both the individual plant extracts and the mixed extracts of 5 plants exhibited weak to moderate antibacterial activity against four G-ve bacteria. Despite Ozoroa insignis being toxic to mice at doses above 1000 mg/kg body wt, the other plant extracts and the combined extract of the 5 plants were tolerated by mice up to 5000 mg/kg body wt. The brine shrimp test results showed the same pattern of toxicity with Ozoroa insignis being the most toxic (LC50 = 10.63 μg/ml). Phytochemical tests showed that the combined extract of the five plants contained tannins, saponins, steroids, cardiac glycosides, flavonoids and terpenoids. Flavonoids, tannins and terpenoids are known to have antioxidant activity. Conclusion The combined extract of the five plants exhibited a dose-dependent protective activity in the rat ethanol-HCl gastric ulcer model. The extracts also exhibited weak antibacterial activity against four Gram negative bacteria and low acute toxicity in mice and brine shrimps. Although the results support claims by traditional healers who use a decoction of the five plants for treatment of peptic ulcers, more models of gastric ulceration and proper animal toxicity studies are needed to validate possible clinical use of the polyherbal extract. It is also evident that the doses of the crude extracts showing protection of the gastric mucosa are too large for realistic translation to direct clinical application, but further studies using bioassay guided fractionation are important to either identify more practical fractions or active compound/s. PMID:23031266
Fei, Chenzhong; She, Rufeng; Li, Guiyu; Zhang, Lifang; Fan, Wushun; Xia, Suhan; Xue, Feiqun
2018-05-30
Tenvermectin (TVM) is a novel 16-membered macrocyclic lactone antibiotics, which contains component TVM A and TVM B. However there is not any report on safety and clinical efficacy of TVM for developing as a potential drug. In order to understand the part of safety and clinical efficacy of TVM, we conducted the acute toxicity test, the standard bacterial reverse mutation (Ames) test and the clinical deworming test. In the acute toxicity studies, TVM, TVM A and ivermectin (IVM) were administrated once by oral gavage to mice and rats. Results showed that the oral LD 50 values of TVM, TVM A and IVM in mice were 74.41, 106.95 and 53.06 mg/kg respectively. The oral LD 50 values of TVM and TVM A in rats were determined to be 164.22 and 749.34 mg/kg respectively. TVM and IVM are moderately toxic substances, meanwhile the TVM A belongs to low toxic compounds, implying that the acute toxicity is highly related to the length of side chain of TVM at position C25. In the Ames test, results showed that TVM did not induce mutagenicity in Salmonella typhimurium TA97a, TA98, TA100, TA102 and TA1535 with and without metabolic activation system, speculating that the mutagenicity is probably not related to the side chain at position C25 of 16-membered macrocyclic lactone antibiotics. In the efficacy trail of TVM against swine nematodes, growing pigs natural infection of Ascaris suum and Trichuris suis were treated with a single subcutaneous injection 0.3 mg/kg b.w.. Results showed that TVM and IVM had excellent effect in expelling Ascaris suum, and TVM had potential efficacy against Trichuris suis, however IVM had no effect on Trichuris suis. This study suggests that the side chain of TVM at position C25 may have important biological functions, which is one of the key sites of the studies on structure-activity relationship of 16-membered macrocyclic lactone compounds. TVM is a new compound exhibited some advantages worthy of developing. Copyright © 2018 Elsevier B.V. All rights reserved.
Warheit, D B; Brown, S C; Donner, E M
2015-10-01
Data generated using standardized testing protocols for toxicity studies generally provide reproducible and reliable results for establishing safe levels and formulating risk assessments. The findings of three OECD guideline-type oral toxicity studies of different duration in rats are summarized in this publication; each study evaluated different titanium dioxide (TiO2) particles of varying sizes and surface coatings. Moreover, each study finding demonstrated an absence of any TiO2 -related hazards. To briefly summarize the findings: 1) In a subchronic 90-day study (OECD TG 408), groups of young adult male and female rats were dosed with rutile-type, surface-coated pigment-grade TiO2 test particles (d50 = 145 nm - 21% nanoparticles by particle number criteria) by oral gavage for 90 days. The no-adverse-effect level (NOAEL) for both male and female rats in this study was 1000 mg/kg bw/day, the highest dose tested. The NOAEL was determined based on a lack of TiO2 particle-related adverse effects on any in-life, clinical pathology, or anatomic/microscopic pathology parameters; 2) In a 28-day repeated-dose oral toxicity study (OECD TG 407), groups of young adult male rats were administered daily doses of two rutile-type, uncoated, pigment-grade TiO2 test particles (d50 = 173 nm by number) by daily oral gavage at a dose of 24,000 mg/kg bw/day. There were no adverse effects measured during or following the end of the exposure period; and the NOAEL was determined to be 24,000 mg/kg bw/day; 3) In an acute oral toxicity study (OECD TG 425), female rats were administered a single oral exposure of surface-treated rutile/anatase nanoscale TiO2 particles (d50 = 73 nm by number) with doses up to 5000 mg/kg and evaluated over a 14-day post-exposure period. Under the conditions of this study, the oral LD50 for the test substance was >5000 mg/kg bw. In summary, the results from these three toxicity studies - each with different TiO2 particulate-types, demonstrated an absence of adverse toxicological effects. Apart from reporting the findings of these three studies, this publication also focuses on additional critical issues associated with particle and nanotoxicology studies. First, describing the detailed methodology requirements and rigor upon which the standardized OECD 408 guideline subchronic oral toxicity studies are conducted. Moreover, an attempt is made to reconcile the complex issue of particle size distribution as it relates to measurements of nanoscale and pigment-grade TiO2 particles. Clearly this has been a confusing issue and often misrepresented in the media and the scientific literature. It is clear that the particle-size distribution for pigment-grade TiO2, contains a small ("tail") component of nanoscale particles (i.e., 21% by particle number and <1% by weight in the test material used in the 90-day study). However, this robust particle characterization finding should not be confused with mislabeling the test materials as exclusively in the nanoscale range. Moreover, based upon the findings presented herein, there appears to be no significant oral toxicity impact contributed by the nanoscale component of the TiO2 Test Material sample in the 90-day study. Finally, it seems reasonable to conclude that the study findings should be considered for read-across purposes to food-grade TiO2 particles (e.g., E171), as the physicochemical characteristics are quite similar. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mantle, Peter G.; Nicholls, Andrew W.; Shockcor, John P.
2011-01-01
Overt response to a single 6.25 mg dose of ochratoxin A (OTA) by oral gavage to 15 months male rats was progressive loss of weight during the following four days. Lost weight was restored within one month and animals had a normal life-span without OTA-related terminal disease. Decline in plasma OTA concentration only commenced four days after dosing, while urinary excretion of OTA and ochratoxin alpha was ongoing. During a temporary period of acute polyuria, a linear relationship between urine output and creatinine concentration persisted. Elimination of other common urinary solutes relative to creatinine was generally maintained during the polyuria phase, except that phosphate excretion increased temporarily. 1H NMR metabolomic analysis of urine revealed a progressive cyclic shift in the group principal components data cluster from before dosing, throughout the acute insult phase, and returning almost completely to normality when tested six months later. Renal insult by OTA was detected by 1H NMR within a day of dosing, as the most sensitive early indicator. Notable biomarkers were trimethylamine N-oxide and an aromatic urinary profile dominated by phenylacetylglycine. Tolerance of such a large acute insult by OTA, assessed by rat natural lifetime outcomes, adds a new dimension to toxicology of this xenobiotic. PMID:22069722
Giordani, Morenna Alana; Collicchio, Thiago Carvalho Mamede; Ascêncio, Sergio Donizeti; Martins, Domingos Tabajara de Oliveira; Balogun, Sikiru Olaitan; Bieski, Isanete Geraldini Costa; da Silva, Leilane Aparecida; Colodel, Edson Moleta; de Souza, Roberto Lopes; de Souza, Damiana Luiza Pereira; de França, Suélem Aparecida; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda
2015-03-13
Cedrela odorata L. (Meliaceae) is a native plant of the Amazon region and its inner stem bark is used in the treatment of diabetes in the form of maceration in Brazilian popular medicine. Until now, there is no scientific study on this activity. The present study was aimed at evaluating the anti-hyperglycemic activity, anti-diabetic, toxicity, antioxidant and potential mechanism of action of hydroethanolic extract of the inner stem bark of Cedrela odorata. The inner stem bark extract of Cedrela odorata was prepared by maceration in 70% ethanol for 7 days to obtain hydroethanolic extract of Cedrela odorata (HeECo). The preliminary phytochemical analysis was performed according to procedures described in the literature. Selected secondary metabolites detected were quantified by high performance liquid chromatography (HPLC). Acute toxicity of HeECo was investigated in male and female mice with oral administration of graded doses of HeECo from 10 to 5000 mg/kg. Subchronic oral toxicity study was done by oral administration of HeECo (500 mg/kg) and vehicle for 30 days to both sexes of Wistar rats. Clinical observations and toxicological related parameters were determined. Blood was collected for biochemical and hematological analyses, while histological examinations were performed on selected organs. Anti-hiperglycemic and antidiabetic effects were evaluated in streptozotocin-induced diabetic rats. In acute evaluation, the animals received pretreatment with 250 and 500 mg/kg of HeECo, before carbohydrate overload. For subchronic effect, the antidiabetic activity of HeECo was evaluated using the same doses for 21 days. At the end of the treatments, the levels of triacylglycerols, malondialdehyde, total antioxidant status, superoxide dismutase and glutathione peroxidase activities were evaluated in the plasma. The extract showed low acute toxicity. HeECo exhibited inhibitory activity against α-glucosidase and caused a lowering in the peak levels of blood glucose in animals that received glucose overload by 36.7% and 24.1% in the area under the glucose curve (AUC). When the overload was sucrose, HeECo reduced the blood glucose level by 44.4% without affecting AUC. Treatment with HeECo of the blood glucose of the diabetic animals for 21 days did not lead to improvement in weight gain and regularization of the blood glucose level, but reduced the triacylglycerol and malondialdehyde levels by 36.6% and 48.1%, respectively. The activity of the antioxidant enzymes, superoxide dismutase and glutathione peroxidase were significantly increased when compared to diabetic control rats. HPLC analysis showed the presence of polyphenols, such as gallic acid, (-)- gallocatechin and (+)- catechin, the latter is present in higher quantity. Collectively, these data showed that HeECo could blunt the postprandial glycemic surge in rats; possibly through inhibition of alpha-glucosidase and positive modulation of antioxidant enzymes. Our findings confirmed the anti-hiperglycemic activity of HeECo in STZ- diabetic rats. Cedrela odorata is effective in diminishing glucose levels in vitro and in vivo and in ameliorating oxidative damage that occurs in diabetes and/or due to hyperglycemia in rats. According to our results, the efficacy of Cedrela odorata preparation could be due to the presence of active principles with different mode of actions at the molecular level, including α-glycosidases and glucose transporter inhibitors and antioxidant property. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats
Miller, Desinia B.; Snow, Samantha J.; Schladweiler, Mette C.; Richards, Judy E.; Ghio, Andrew J.; Ledbetter, Allen D.; Kodavanti, Urmila P.
2016-01-01
Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent bilateral adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1 ppm), 4 h/day for 1 or 2 days and responses assessed immediately postexposure. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to SHAM. Corticosterone tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (P = .15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX > DEMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not observed in DEMED and ADREX rats. We demonstrate that ozone-induced peripheral metabolic effects and lung injury/inflammation are mediated through adrenal-derived stress hormones likely via the activation of stress response pathway. PMID:26732886
[Antioxidant and anti-inflammatory activities of Moroccan Erica arborea L].
Amezouar, F; Badri, W; Hsaine, M; Bourhim, N; Fougrach, H
2013-12-01
The present study was carried out to evaluate the antioxidant and anti-inflammatory capacity, and acute toxicity of Moroccan Erica arborea leaves. Antioxidant capacity was assessed by diphenyle-picryl-hydrazyl (DPPH), phosphomolybdate (PPM) and ferric reducing antioxidant power (FRAP) tests and anti-inflammatory capacity was evaluated by hind paw oedema model using carrageenan-induced inflammation in rat. The acute toxicity was evaluated using mice. Acute toxicity of ethanolic extract of E. arborea showed no sign of toxicity at dose of 5 g/kg B.W. Our extracts have important antioxidant properties. The efficient concentration of the ethanolic extract (10.22 μg/ml) required for decreasing initial DPPH concentration by 50% was comparable to that of standard solution butyl-hydroxy-toluene (BHT) (8.87 μg/ml). The administration of ethanolic extract at doses of 200 and 400mg/kg B.W. was able to prevent plantar oedema and exhibited a significant inhibition against carrageenan-induced inflammation when compared to the control group (NaCl 0.9%) but comparable to those of diclofenac (reference drug). Our results show that the leaves of E. arborea may contain some bioactive compounds which are responsible for the antioxidant and anti-inflammatory activities observed here. Our finding may indicate the possibility of using the extracts of this plant to prevent the antioxidant and inflammatory processes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Large Dataset of Acute Oral Toxicity Data Created for Testing ...
Acute toxicity data is a common requirement for substance registration in the US. Currently only data derived from animal tests are accepted by regulatory agencies, and the standard in vivo tests use lethality as the endpoint. Non-animal alternatives such as in silico models are being developed due to animal welfare and resource considerations. We compiled a large dataset of oral rat LD50 values to assess the predictive performance currently available in silico models. Our dataset combines LD50 values from five different sources: literature data provided by The Dow Chemical Company, REACH data from eChemportal, HSDB (Hazardous Substances Data Bank), RTECS data from Leadscope, and the training set underpinning TEST (Toxicity Estimation Software Tool). Combined these data sources yield 33848 chemical-LD50 pairs (data points), with 23475 unique data points covering 16439 compounds. The entire dataset was loaded into a chemical properties database. All of the compounds were registered in DSSTox and 59.5% have publically available structures. Compounds without a structure in DSSTox are currently having their structures registered. The structural data will be used to evaluate the predictive performance and applicable chemical domains of three QSAR models (TIMES, PROTOX, and TEST). Future work will combine the dataset with information from ToxCast assays, and using random forest modeling, assess whether ToxCast assays are useful in predicting acute oral toxicity. Pre
Tolooei, Mohsen; Mirzaei, Ali
2015-01-01
Background: Previous findings have suggested that antioxidants may reduce the levels of free radicals, which induce oxidative damage and play a key role in various diseases. Thus, we evaluated the protective activity of a Pistacia atlantica extract on erythrocyte membrane rigidity, oxidative stress, and hepatotoxicity induced by carbon tetrachloride (CCl4) in rats. Materials and Methods: Fresh leaves of P. atlantica were collected from the mountains in Yasuj, Iran. Acute oral toxicity (LD50) was evaluated in Wistar rats (200–230 g). Animals were randomly divided into 4 groups, out of which the negative and plant control groups received distilled water and P. atlantica extracts (500 mg/kg), respectively. The toxic rat group received CCl4, while the treatment group received CCl4 + P. atlantica extract. Blood plasma was utilized for the estimation of enzyme markers and lipid peroxidation, whereas hemolysate was applied for the determination of superoxide dismutase (SOD) and catalase activities. The levels of cholesterol and phospholipids in erythrocyte membranes were also determined. Rats were killed under anesthesia by cervical dislocation; liver was isolated from each rat and tissues homogenization was prepared for biochemical parameters such as malondialdehyde (MDA) and reduced glutathione (GSH) levels. Results: LD50 values were determined for doses >3000 mg/kg (p.o.). The activities of glutamic pyruvate transaminase (GPT), glutamic oxaloacetate transaminase (GOT), alkaline phosphatase (ALP) and GSH in the protected group were significantly (p < 0.001) reduced compared with those of toxic rats. In addition, we observed a decrease in the cholesterol level and an increase in red blood cell membrane phospholipids, SOD, and catalase activities (p < 0.001) in the protected group, as compared with toxic rats. Administration of Pistacia atlantica extract normalized liver tissue MDA level (p < 0. 01) when compared to CCl4 treated group. Conclusion: The P. atlantica extract was able to normalize the levels of biochemical markers, including liver enzyme markers, first-line defense enzymes, and lipid peroxidation markers. PMID:26153201
Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.
Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C
2013-03-01
Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues.
Sex differences in the neurochemical and functional effects of MDMA in Sprague-Dawley rats.
Walker, Q David; Williams, Christina N; Jotwani, Rakesh P; Waller, Samuel T; Francis, Reynold; Kuhn, Cynthia M
2007-01-01
3,4-Methylenedioxymethamphetamine (MDMA; "Ecstasy") use has been associated with acute toxicities and persistent depletion of the neurotransmitter serotonin (5-HT). This study investigates whether sex differences in the acute and long-term effects of MDMA exist. Male and female rats received saline or 15 mg/kg MDMA, ip, bid for 4 days. Temperature was monitored on days 1 and 4. Locomotor activity was measured in a second cohort of animals on days 1 and 4 and after recovery on day 14. The effects of MDMA on performance in a plus maze task and brain levels of serotonin (5-HT) and the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in a third cohort of animals 2 weeks after the last MDMA treatment. Locomotor activity and temperature increased after MDMA administration on day 1. The drug-induced increases in temperature but not locomotion attenuated with repeated MDMA administration. Male and female MDMA-treated rats spent less time in the open arms of the elevated plus maze and had less 5-HT and 5-HIAA in all brain regions 2 weeks after the end of treatment. Temperature effects of MDMA and persistent effects on plus maze and brain serotonin content were similar in males and females. In contrast, females exhibited markedly greater locomotor stimulation after acute MDMA and also showed sensitization to an acute challenge 2 weeks later. MDMA elicits substantially greater locomotor activation in female rats than in males, but persistent effects on anxiety and serotonin content were similar in males and females.
Fandohan, P; Gnonlonfin, B; Laleye, A; Gbenou, J D; Darboux, R; Moudachirou, M
2008-07-01
Oils of Cymbopogon citratus, Ocimum gratissimum and Ocimum basilicum are widely used for their medicinal properties, and as food flavours and perfumes. Recently in a study in West Africa, these oils have been recommended to combat Fusarium verticillioides and subsequent fumonisin contamination in stored maize, but their toxicological profile was not investigated. The current study was undertaken to provide data on acute and subacute toxicity as well as on gastric tolerance of these oils in rat. For this purpose, the oils were given by gavage to Wistar rats for 14 consecutive days. The animals were observed daily for their general behaviour and survival, and their visceral organs such as stomach and liver were taken after sacrifice for histological analyses. A dose-dependent effect of the tested oils was observed during the study. Applied at doses generally higher than 1500 mg/kg body weight, the oils caused significant functional damages to stomach and liver of rat. Unlike the other oils, administration of O. gratissimum oil did not result in adverse effects in rat liver at the tested doses. The no observed adverse effect level (NOAEL) of the tested oils has been established. The three tested oils can be considered as safe to human when applied on stored maize at recommended concentrations.
Anti-giardia activity and acute toxicity of a methanol extract of Senna racemosa bark.
Caamal-Fuentes, Edgar E; Graniel-Sabido, Manlio; Mena-Rejón, Gonzalo J; Moo-Puc, Rosa E
2016-12-04
Senna racemosa (Mill.) H.S. Irwin & Barneby (syn. Cassia racemosa Mill.) is a plant used in traditional Mayamedicinal practices to treat diarrhea. A methanol extract of S. racemosa bark has been shown to have in vitro activity against Giardia intestinalis. No studies of its efficacy and toxicity in in vivo models have been done. The present study objective was to analyze the activity of this methanol extract of S. racemosa bark against Giardia intestinalis trophozoites in experimentally infected mice, and evaluate its toxicological effects in rats. S. racemosa was collected in Merida, Yucatan, Mexico (21°58'N, 89°36'W) in June 2005. The bark methanol extract was obtained and high performance liquid chromatography (HPLC-DAD) was used to generate a constituent profile. In vivo anti-giardia activity was assayed with an experimental model of G. intestinalis infection in neonatal CD-1 mice. Nine doses ranging from 0.25-15mg extract/kg body weight were tested to determine the dose required to kill 50% of the trophozoites (ED 50 ). An acute toxicity assay was run in which one of four single doses (200, 1000, 2000 and3000mg/kg body weight) was orally administered to adult Wistar rats. Animal weight, death rates, toxic effects and behavioral parameters were observed over a 14-d period. They were then euthanized and a necropsy performed. The S. racemosa bark extract inhibited growth of G. intestinalis (ED 50 =1.14mg/Kg) in neonatal CD-1 mice. No toxic or lethal effects were observed even at the highest dosage (3000mg/Kg), and neither were signs of toxicity observed in internal organs. The active compounds chrysophanol and physcion were present in the extract at a 1.76 ratio. The results strongly support traditional use of S. racemosa bark for treatment of diarrhea caused by Giardia intestinalis infection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Effects of Nano-zinc on Biochemical Parameters in Cadmium-Exposed Rats.
Hejazy, Marzie; Koohi, Mohammad Kazem
2017-12-01
Cadmium (Cd) is a toxic environmental and occupational pollutant with reported toxic effects on the kidneys, liver, lungs, bones, and the immunity system. Based on its physicochemical similarity to cadmium, zinc (Zn) shows protective effects against cadmium toxicity and cadmium accumulation in the body. Nano-zinc and nano-zinc oxide (ZnO), recently used in foods and pharmaceutical products, can release a great amount of Zn 2+ in their environment. This research was carried out to investigate the more potent properties of the metal zinc among sub-acute cadmium intoxicated rats. Seventy-five male Wistar rats were caged in 15 groups. Cadmium chloride (CdCl 2 ) was used in drinking water to induce cadmium toxicity. Different sizes (15, 20, and 30 nm) and doses of nano-zinc particles (3, 10, 100 mg/kg body weight [bw]) were administered solely and simultaneously with CdCl 2 (2-5 mg/kg bw) for 28 days. The experimental animals were decapitated, and the biochemical biomarkers (enzymatic and non-enzymatic) were determined in their serum after oral exposure to nano-zinc and cadmium. Statistical analysis was carried out with a one-way ANOVA and t test. P < 0.05 was considered as statistically significant. The haematocrit (HCT) significantly increased and blood coagulation time significantly reduced in the nano-zinc-treated rats. AST, ALT, triglyceride, total cholesterol, LDL, and free fatty acids increased significantly in the cadmium- and nano-zinc-treated rats compared with the controls. However, albumin, total protein, and HDLc significantly decreased in the cadmium- and nano-zinc-treated rats compared with the controls (P < 0.05). It seems that in the oral administration of nano-zinc, the smaller sizes with low doses and the larger sizes with high doses are more toxic than metallic zinc. In a few cases, an inverse dose-dependent relationship was seen as well. This research showed that in spite of larger sizes of zinc, smaller sizes of nano-zinc particles are not suitable for protection against cadmium intoxication.
Aksu, E H; Özkaraca, M; Kandemir, F M; Ömür, A D; Eldutar, E; Küçükler, S; Çomaklı, S
2016-12-01
Paracetamol (PRC) is a nonsteroidal anti-inflammatory drug used widely as a painkiller for various diseases and as the symptomatic flu cure in several countries worldwide. PRC toxicity may occur under conditions of the overdose usage. Chrysin (CR) is a flavonoid that is naturally present in several plants, honey and propolis. The aim of this study was to investigate the effects of CR (at the doses of 25 mg kg -1 and 50 mg kg -1 ) pre-treatment over seven consecutive days against PRC-induced reproductive toxicity in male rats. Our results showed that PRC toxicity decreased the sperm motility, and increased dead sperm rate, abnormal sperm cell rate, apoptosis and MDA levels in testicular tissues. Pre-treatment with CR at the dose of 25 and 50 mg kg -1 for 7 days mitigated side effects of acute PRC toxicity in male reproductive system proportionally in a dose-dependent manner. This possible protection mechanism might be dependent on the antioxidant activity of CR. In conclusion, pre-treatment with CR at the dose of 25 and 50 mg kg -1 for 7 days can be the beneficial against PRC-induced reproductive toxicity proportionally in a dose-dependent manner. © 2016 Blackwell Verlag GmbH.
Oliveira, Vitor Antunes; Favero, Gaia; Stacchiotti, Alessandra; Giugno, Lorena; Buffoli, Barbara; de Oliveira, Claudia Sirlene; Lavazza, Antonio; Albanese, Massimo; Rodella, Luigi Fabrizio; Pereira, Maria Ester; Rezzani, Rita
2017-05-01
This work investigated the effects of mercury chloride (HgCl 2 ) acute exposure on virgin, pregnant and lactating rats by determination of renal and hepatic morphological and ultrastructural parameters and the expression of oxidative stress and stress tolerance markers, due to kidney and liver are the organs that more accumulate inorganic mercury. Adult Wistar rats virgin (90 days old), pregnant (18 th gestation day) and lactating (7 th lactation day) were injected once with HgCl 2 (5 mg/kg) or saline (controls). We observed that HgCl 2 exposure of virgin rats caused significant inflammatory infiltration and severe morphological variations, like glomeruli atrophy, dilatation of Bowman's capsule, tubular degeneration and hepatocytes alteration. Moreover, virgin rats presented mitochondrial modification, important oxidative stress and increase in stress tolerance proteins at both kidney and liver level, compared with virgin controls. In detail, virgin rats exposed to HgCl 2 presented significantly elevated level of inducible nitric oxide synthase, heat shock protein 27 and glucose regulated proteins 75 expressions at both renal tubular and hepatocytes level, respect untreated virgin rats. Interestingly, pregnant and lactating rats exposed to HgCl 2 presented weak renal and liver morphological alterations, showing weak inflammatory infiltration and no significant difference in structural mitochondrial transmembrane protein, oxidative stress markers and stress tolerance proteins expressions respect controls (virgin, pregnant and lactating rats). Although, both control and HgCl 2 -exposed pregnant and lactating rats showed renal glomeruli greater in diameter respect virgin rats. In conclusion, we believe that virgin rats are more sensitive to HgCl 2 toxicity respect pregnant and lactating rats. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1500-1512, 2017. © 2016 Wiley Periodicals, Inc.
2010-11-01
minced finely with scissors, and transferred to a pre-cooled hand-held glass dounce homogenizer. The pestle was passed through the dounce until the...Nakajima, Sarin experiences in Japan : acute toxicity and long-term effects. Journal of the Neurological Sciences, 2006. 249(1): p. 76-85. 9. Shih, T.-M
Wright, Linnzi K. M.; Liu, Jing; Nallapaneni, Anuradha; Pope, Carey N.
2010-01-01
The comparative effects of atropine and the indirect cannabinomimetics URB597 (a fatty acid amide hydrolase inhibitor) and URB602 (a monoacylglycerol lipase inhibitor) on functional and neurobehavioral endpoints following acute diisopropylfluorophosphate intoxication were studied. Male Sprague-Dawley rats were treated with vehicle or DFP (2.5 mg/kg, sc), immediately post-treated with either vehicle, atropine (16 mg/kg), URB597 (3 mg/kg), URB602 (10 mg/kg) or a combination of URB597 and URB602, and functional signs of toxicity as well as nocturnal motor activity were measured daily for seven consecutive days. Performance in the elevated plus maze (for anxiety-like behavior) and the forced swimming test (for depression-like behavior) was measured at days 6-8 and 27-29 after dosing. Twenty-four hours after dosing, DFP markedly reduced cholinesterase activity in selected brain regions and peripheral tissues (diaphragm and plasma). Substantial recovery of cholinesterase activity was noted at both 8 and 29 days after dosing but significant inhibition was still noted in some brain regions at the latest time-point. DFP elicited body weight reductions and typical signs of cholinergic toxicity, and reduced nocturnal ambulation and rearing. Atropine and the cannabinomimetics (alone and in combination) partially attenuated DFP-induced functional signs of toxicity. None of the post-treatments reversed the DFP-induced reduction in ambulation or rearing, however. No significant treatment-related effects on elevated plus maze performance were noted. DFP-treated rats exhibited decreased swimming and increased immobility in the forced swimming test at both time-points. None of the post-treatments had any effect on DFP-induced changes in immobility or swimming at day 8. At day 29, atropine and the combination of URB597/URB602 significantly blocked DFP-induced changes in immobility, while URB597 and the combination reversed DFP-induced changes in swimming. The results suggest that early blockade of muscarinic receptors and enhancement of eCB signaling can attenuate both acute and delayed effects elicited by DFP. PMID:20034559
Kim, Ok Hwan; Cho, Kil-Sang; Seomun, Young; Kim, Jong-Tak; Chung, Kwang-Hoe
2017-04-01
Recombinant batroxobin is a thrombin-like enzyme of Bothrops atrox moojeni venom. To evaluate its toxicological effect, it was highly expressed in Pichia pastorisand successfully purified to homogeneity from culture broth supernatant following Good Manufacturing Practice (GMP). The maximum tolerated dose of the recombinant batroxobin was examined in Sprague-Dawley (SD) rat and Beagle dogs following Good Laboratory Practice (GLP) regulations. The approximate lethal dose of recombinant batroxobin was 10 National Institute of Health (NIH) u/kg in male and female rats. Slight test substance-related effects were clearly in male and female dogs at more than 10 NIH u/kg. The maximum tolerated dose (MTD) was considered to be greater than 30 NIH u/kg in dogs. To investigate the repeated dose toxicity of batroxobin, the test item was intravenously administered to groups of SD rat and Beagle dog every day for 4 weeks. We observed that all animals survived the duration of the study without any effects on their mortality. There were no effects in both rats and dogs regarding their clinical signs, body weight, food consumption, ophthalmological examination, urinalysis, hematology, clinical chemistry, organ weightand gross post mortem examinations. The no adverse effect level (NOAEL) of recombinant batroxobin for both males and females is considered to be greater than 2.5 NIH u/kgin rats and 1 NIH u/kg in dogs, respectively. No toxic effects were noted in target organs. In conclusion, these results show a favorable preclinical profile and may contribute clinical development of recombinant batroxobin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shahid, Faaiza; Farooqui, Zeba; Abidi, Subuhi; Parwez, Iqbal; Khan, Farah
2017-10-01
Cisplatin (CP) is a widely used chemotherapeutic agent that elicits severe gastrointestinal toxicity. Nigella sativa, a member of family Ranunculaceae, is one of the most revered medicinal plant known for its numerous health benefits. Thymoquinone (TQ), a major bioactive component derived from the volatile oil of Nigella sativa seeds, has been shown to improve gastrointestinal functions in animal models of acute gastric/intestinal injury. In view of this, the aim of the present study was to investigate the protective effect of TQ on CP induced toxicity in rat intestine and to elucidate the mechanism underlying these effects. Rats were divided into four groups viz. control, CP, TQ and CP+TQ. Animals in CP+TQ and TQ groups were orally administered TQ (1.5mg/kg bwt) with and without a single intraperitoneal dose of CP (6mg/kg bwt) respectively. The effect of TQ was determined on CP induced alterations in the activities of brush border membrane (BBM), carbohydrate metabolism, and antioxidant defense enzymes in rat intestine. TQ administration significantly mitigated CP induced decline in the specific activities of BBM marker enzymes, both in the mucosal homogenates and in the BBM vesicles (BBMV) prepared from intestinal mucosa. Furthermore, TQ administration restored the redox and metabolic status of intestinal mucosal tissue in CP treated rats. The biochemical results were supported by histopathological findings that showed extensive damage to intestine in CP treated rats and markedly preserved intestinal histoarchitecture in CP and TQ co-treated group. The biochemical and histological data suggest a protective effect of TQ against CP-induced gastrointestinal damage. Thus, TQ may have a potential for clinical application to counteract the accompanying gastrointestinal toxicity in CP chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Ramachandran, Subramaniam; Rajasekaran, Aiyalu; Manisenthilkumar, KT
2012-01-01
Objective To investigate the hypoglycemic, hypolipidemic and antioxidant activities of aqueous extract of Terminalia paniculata bark (AETPB) in streptozotocin (STZ)-induced diabetic rats. Methods Acute toxicity was studied in rats after the oral administration of AETPB to determine the dose to assess hypoglycemic activity. In rats, diabetes was induced by injection of STZ (60 mg/kg, i.p.) and diabetes was confirmed 72 h after induction, and then allowed for 14 days to stabilize blood glucose level. In diabetic rats, AETPB was orally given for 28 days and its effect on blood glucose and body weight was determined on a weekly basis. At the end of the experimental day, fasting blood sample was collected to estimate the haemoglobin (Hb), glycosylated haemoglobin (HbA1c), serum creatinine, urea, serum glutamate-pyruvate transaminase (SGPT), serum glutamate-oxaloacetate transaminase (SGOT) and insulin levels. The liver and kidney were collected to determine antioxidants levels in diabetic rats. Results Oral administration of AETPB did not exhibit toxicity and death at a dose of 2 000 mg/kg. AETPB treated diabetic rats significantly (P<0.001, P<0.01 and P<0.05) reduced elevated blood glucose, HbA1c, creatinine, urea, SGPT and SGOT levels when compared with diabetic control rats. The body weight, Hb, insulin and total protein levels were significantly (P<0.001, P<0.01 and P<0.05) increased in diabetic rats treated with AETPB compared to diabetic control rats. In diabetic rats, AETPB treatment significantly reversed abnormal status of antioxidants and lipid profile levels towards near normal levels compared to diabetic control rats. Conclusions Present study results confirm that AETPB possesses significant hypoglycemic, hypolipidemic and antioxidant activities in diabetic condition. PMID:23569911
Pretreatment with intravenous lipid emulsion reduces mortality from cocaine toxicity in a rat model.
Carreiro, Stephanie; Blum, Jared; Hack, Jason B
2014-07-01
We compare the effects of intravenous lipid emulsion and normal saline solution pretreatment on mortality and hemodynamic changes in a rat model of cocaine toxicity. We hypothesize that intravenous lipid emulsion will decrease mortality and hemodynamic changes caused by cocaine administration compared with saline solution. Twenty male Sprague-Dawley rats were sedated and randomized to receive intravenous lipid emulsion or normal saline solution, followed by a 10 mg/kg bolus of intravenous cocaine. Continuous monitoring included intra-arterial blood pressure, pulse rate and ECG tracing. Endpoints included a sustained undetectable mean arterial pressure (MAP) or return to baseline MAP for 5 minutes. The log-rank test was used to compare mortality. A mixed-effect repeated-measures ANOVA was used to estimate the effects of group (intravenous lipid emulsion versus saline solution), time, and survival on change in MAP, pulse rate, or pulse pressure. In the normal saline solution group, 7 of 10 animals died compared with 2 of 10 in the intravenous lipid emulsion group. The survival rate of 80% (95% confidence interval 55% to 100%) for the intravenous lipid emulsion rats and 30% (95% confidence interval 0.2% to 58%) for the normal saline solution group was statistically significant (P=.045). Intravenous lipid emulsion pretreatment decreased cocaine-induced cardiovascular collapse and blunted hypotensive effects compared with normal saline solution in this rat model of acute lethal cocaine intoxication. Intravenous lipid emulsion should be investigated further as a potential adjunct in the treatment of severe cocaine toxicity. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Oliveira, G H; Palermo-Neto, J
1995-01-01
A gas-liquid chromatographic method with an electron-capture detector was applied for 2,4-dichlorophenoxyacetic acid (2,4-D) determination in the serum and brain tissue of rats acutely intoxicated with the dimethylamine salt of 2,4-D. After extraction with ethyl ether, 2,4-D derivatization was performed using 2-chloroethanol and BCI3. The average recovery values found for serum and brain tissue were 98.5 +/- 4.8 and 93.3 +/- 7.5, respectively. The sensitivity limit of the method was 250 ng/mL for serum and 300 ng/g for brain tissue. The toxic effects of 2,4-D in rats were observed within one-half hour after its oral administration. Results suggest that the toxic mechanism of 2,4-D is related to an action on the central nervous system.
Repeated dose 28-days oral toxicity study of Carica papaya L. leaf extract in Sprague Dawley rats.
Afzan, Adlin; Abdullah, Noor Rain; Halim, Siti Zaleha; Rashid, Badrul Amini; Semail, Raja Hazlini Raja; Abdullah, Noordini; Jantan, Ibrahim; Muhammad, Hussin; Ismail, Zakiah
2012-04-10
Carica papaya L. leaves have been used in ethnomedicine for the treatment of fevers and cancers. Despite its benefits, very few studies on their potential toxicity have been described. The aim of the present study was to characterize the chemical composition of the leaf extract from 'Sekaki' C. papaya cultivar by UPLC-TripleTOF-ESI-MS and to investigate the sub-acute oral toxicity in Sprague Dawley rats at doses of 0.01, 0.14 and 2 g/kg by examining the general behavior, clinical signs, hematological parameters, serum biochemistry and histopathology changes. A total of twelve compounds consisting of one piperidine alkaloid, two organic acids, six malic acid derivatives, and four flavonol glycosides were characterized or tentatively identified in the C. papaya leaf extract. In the sub-acute study, the C. papaya extract did not cause mortality nor were treatment-related changes in body weight, food intake, water level, and hematological parameters observed between treatment and control groups. Some biochemical parameters such as the total protein, HDL-cholesterol, AST, ALT and ALP were elevated in a non-dose dependent manner. Histopathological examination of all organs including liver did not reveal morphological alteration. Other parameters showed non-significant differences between treatment and control groups. The present results suggest that C. papaya leaf extract at a dose up to fourteen times the levels employed in practical use in traditional medicine in Malaysia could be considered safe as a medicinal agent.
2014-01-01
Background Recently, enormous research has been focused on natural bioactive compounds possessing potential antioxidant and anticancer properties using cell lines and animal models. Acacia nilotica (L.) is widely distributed in Asia, Africa, Australia and Kenya. The plant is traditionally used to treat mouth, ear and bone cancer. However, reports on Acacia nilotica (L.) Wild. Ex. Delile subsp. indica (Benth.) Brenan regarding its toxicity profile is limited. Hence in this study, we investigated the antioxidant capacity and acute toxicity of ethyl gallate, a phenolic antioxidant present in the A. nilotica (L.) leaf extract. Methods The antioxidant activity of ethyl gallate against Fenton’s system (Fe3+/H2O2/ascorbic acid) generated oxidative damage to pBR322 DNA and BSA was investigated. We also studied the interaction of ethyl gallate to CT-DNA by wave scan and FTIR analysis. The amount of ethyl gallate present in the A. nilotica (L.) leaf extract was calculated using HPLC and represented in gram equivalence of ethyl gallate. The acute toxicity profile of ethyl gallate in the A. nilotica (L.) leaf extract was analyzed in albino Wistar rats. Measurement of liver and kidney function markers, total proteins and glucose were determined in the serum. Statistical analysis was done using statistical package for social sciences (SPSS) tool version 16.0. Results Ethyl gallate was found to be effective at 100 μg/mL concentration by inhibiting the free radical mediated damage to BSA and pBR322 DNA. We also found that the interaction of ethyl gallate and A. nilotica (L.) leaf extract to CT-DNA occurs through intercalation. One gram of A. nilotica (L.) leaf extract was found to be equivalent to 20 mg of ethyl gallate through HPLC analysis. Based on the acute toxicity results, A. nilotica (L.) leaf extract and ethyl gallate as well was found to be non-toxic and safe. Conclusions Results revealed no mortality or abnormal biochemical changes in vivo and the protective effect of A. nilotica (L.) leaf extract and ethyl gallate on DNA and protein against oxidative stress in vitro. Hence, A. nilotica (L.) leaf extract or ethyl gallate could be used as potential antioxidants with safe therapeutic application in cancer chemotherapy. PMID:25043389
Rozman, K
1989-01-01
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been an important issue in occupational and environmental health for nearly two decades. During this period scientists have studied its possible impacts on exposed human populations. At the same time enormous efforts were made to elucidate the mechanism of TCDD action in various biological models. This paper provides a critical view of the advances made towards understanding the mechanism of TCDD action. Major topics discussed include the Ah-receptor hypothesis, TCDD as a thyroid hormone agonist, TCDD and vitamin A deficiency, TCDD's effect on receptor regulation, and its effect on intermediary metabolism including related hormonal responses. Although the exact mechanism of TCDD action is not yet known, more information is available on the toxicity of this compound than perhaps on that of any other substance. This wealth of information allows important conclusions regarding the assessment of acute, as well as of chronic, toxicities of TCDD for humans. There is no documented case of human death as a result of exposure to TCDD. It appears that humans are acutely less sensitive to TCDD than some animal species. The cause of TCDD-induced lethality in rats is a progressive lethal hypoglycemia due to inhibition of gluconeogenesis. Regulation of this metabolic pathway is quite different amongst species, although primates share great similarities. The assumption that the cause of TCDD-induced death in primates, in analogy to rats, is inhibition of gluconeogenesis would suggest that the acute toxicity of TCDD in humans would be in the range seen in rhesus monkeys (70-300 micrograms/kg). These values are about midway between the most (guinea pig) and least (hamster) sensitive species. TCDD is not a genotoxic agent and not an initiator, but promoter of tumor formation. There is considerable evidence that promotion of cancer, like any other chronic end point of toxicity, is a threshold-type biological process. Therefore, a linear extrapolation of the dose-response is an unnecessarily conservative approach in the safety assessment of TCDD. This paper, based on several studies with different end points of toxicity, supports the notion that 10 pg/kg/day of TCDD represent a safe lifetime exposure level for humans with regard to promotion of cancer, porphyria and chloracne.
Golbabapour, Shahram; Gwaram, Nura Suleiman; Hassandarvish, Pouya; Hajrezaie, Maryam; Kamalidehghan, Behnam; Abdulla, Mahmood Ameen; Ali, Hapipah Mohd; Hadi, A. Hamid A; Majid, Nazia Abdul
2013-01-01
Background The study was carried out to assess the gastroprotective effect of the zinc (II) complex against ethanol-induced acute hemorrhagic lesions in rats. Methodology/Principal Finding The animals received their respective pre-treatments dissolved in tween 20 (5% v/v), orally. Ethanol (95% v/v) was orally administrated to induce superficial hemorrhagic mucosal lesions. Omeprazole (5.790×10−5 M/kg) was used as a reference medicine. The pre-treatment with the zinc (II) complex (2.181×10−5 and 4.362×10−5 M/kg) protected the gastric mucosa similar to the reference control. They significantly increased the activity levels of nitric oxide, catalase, superoxide dismutase, glutathione and prostaglandin E2, and decreased the level of malondialdehyde. The histology assessments confirmed the protection through remarkable reduction of mucosal lesions and increased the production of gastric mucosa. Immunohistochemistry and western blot analysis indicated that the complex might induced Hsp70 up-regulation and Bax down-regulation. The complex moderately increased the gastroprotectiveness in fine fettle. The acute toxicity approved the non-toxic characteristic of the complex (<87.241×10−5 M/kg). Conclusion/Significance The gastroprotective effect of the zinc (II) complex was mainly through its antioxidant activity, enzymatic stimulation of prostaglandins E2, and up-regulation of Hsp70. The gastric wall mucus was also a remarkable protective mechanism. PMID:24058648
Yamada, Takako; Iida, Tetsuo; Takamine, Satoshi; Hayashi, Noriko; Okuma, Kazuhiro
2015-01-01
The safety of rare sugar syrup obtained from high-fructose corn syrup under slightly alkaline conditions was studied. Mutagenicity of rare sugar syrup was assessed by a reverse mutation assay using Salmonella typhimurium and Escherichia coli, and an in vitro chromosomal aberration assay using Chinese hamster lung cell line (CHL/IU). No mutagenicity of rare sugar syrup was detected under these experimental conditions. Oral administration of single dose (15,000 mg/kg) of rare sugar syrup to rats caused no abnormalities, suggesting no adverse effect of rare sugar syrup. In humans, the acute non-effect level of rare sugar syrup for causing diarrhea was estimated as 0.9 g/kg body weight as dry solid base in both males and females.
Buha, Aleksandra; Bulat, Zorica; Dukić-Ćosić, Danijela; Matović, Vesna
2012-09-01
Cadmium (Cd) has been recognised as one of the most important environmental and industrial pollutants, and up-to-date investigations have shown that one of the mechanisms of its toxicity is associated with the induction of oxidative stress. The aim of this study was to determine the connection between acute oral and intraperitoneal exposure to Cd and parameters indicative of oxidative stress in the plasma of rats, as well as to examine the potential protective effect of magnesium (Mg) in conditions of acute oral and intraperitoneal Cd poisoning. The experiment was performed on male albino Wistar rats (n=40) randomly divided into control group, Cdor group that received 30 mg kg-1 b.w. Cd by oral gavage, Cd+Mgor group that orally received 50 mg kg-1 b.w. Mg one hour before oral Cd, Cdip group that received 1.5 mg kg-1 b.w. Cd intraperitoneally, and Cd+Mgip group that intraperitoneally received 3 mg kg-1 b.w. Mg 10 min before intraperitoneal Cd. The animals were sacrificed 24 h after treatment and the following parameters were measured: superoxide dismutase activity, superoxide anion, total oxidative status, advanced oxidation protein products, and malondialdehyde. All parameters of oxidative stress in rat plasma were negatively affected by Cd treatment with more pronounced negative effects after intraperitoneal treatment, with the exception of superoxide dismutase (SOD) activity. Although both oral and intraperitoneal Mg pretreatment had protective effects, more pronounced beneficial effects were observed after oral administration, since it managed to completely prevent Cd-induced changes in the investigated parameters. The observed results support the use of Mg as potential protective agent against toxic effects caused by Cd.
Li, Jianshuang; Wang, Sen; Wang, Maoqing; Shi, Wenxiu; Du, Xiaoyan; Sun, Changhao
2013-11-25
3-Monochloropropane-1,2-diol(3-MCPD) fatty acid esters can release free 3-MCPD in a certain condition. Free 3-MCPD is a well-known food contaminant and is toxicological well characterized, however, in contrast to free 3-MCPD, the toxicological characterization of 3-MCPD fatty acid esters is puzzling. In this study, toxicological and metabonomics studies of 3-chloropropane-1,2-dipalmitate(3-MCPD dipalmitate) were carried out based on an acute oral toxicity test, a 90-day feeding test and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) analysis. The LD50 value of 3-MCPD dipalmitate was determined to be 1780 mg/kg body weight (bw) for Wistar rats. The results of the 90-day feeding test in male Wistar rats showed that 3-MCPD dipalmitate caused a significant increase in blood urea nitrogen and creatinine in the high-dose group (267 mg/kg bw/day) compared to control rats. Renal tubular epithelium cell degeneration and renal tubular hyaline cast accumulation were the major histopathological changes in rats administered 3-MCPD dipalmitate. Urine samples obtained after the 90-day feeding test and analyzed by UPLC-MS showed that the differences in metabolic profiles between control and treated rats were clearly distinguished by partial least squares-discriminant analysis (PLS-DA) of the chromatographic data. Five metabolite biomarkers which had earlier and significant variations had been identified, they were first considered to be the early, sensitive biomarkers in evaluating the effect of 3-MCPD dipalmitate exposure, and the possible mechanism of these biomarkers variation was elucidated. The combination of histopathological examination, clinical chemistry and metabolomics analyses in rats resulted in a systematic and comprehensive assessment of the long-term toxicity of 3-MCPD dipalmitate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Anti-inflammatory effects of aqueous extract of Mangifera indica in Wistar rats.
Oluwole, Oluwafemi Gabriel; Esume, Celestine
2015-05-01
Recent studies in standard laboratories have indicated that a typical mango stem bark aqueous extract (Magnifera indica Linn) possess anti-malaria and anti-fever properties. Recent information also exists in the literature, suggesting its potency as a very effective anti-inflammatory plant extract. This study will therefore contribute immensely to the systemic search for a useful, less toxic and natural bioactive medicinal compound. This study investigated the anti-inflammatory effects of the aqueous extract of Mangifera indica (MI) in a carrageenin-induced rat paw oedema model of acute inflammation. Rats (n=5) were treated orally with MI (50, 100 and 200 mg/kg), acetylsalicylic acid (100 mg/kg) or distilled water (3 mL). Thirty minutes later, acute inflammation was induced with a sub-plantar injection of 0.1 mL of 1% carrageenin solution into the right hind paw of the rats. The paw oedema sizes were measured with the aid of a Vernier calliper over a period of 3 hours. The aqueous extract of MI (50-200 mg/kg, p.o.) produced a dose-dependent and significant inhibition of the acute inflammation induced by the carrageenin in rats when compared with controls. The percentage inhibition of oedema formation produced by MI (200 mg/kg, p.o.) was similar to that elicited by acetylsalicylic acid (100 mg/kg, p.o.). The results of this preliminary investigation suggest that MI contains active compounds with an anti-inflammatory activity. However, more detailed studies using additional models are necessary to further characterise the effects of MI in inflammatory disorders.
Cottalasso, Damiano; Domenicotti, Cinzia; Traverso, Nicola; Pronzato, Maria; Nanni, Giorgio
2002-09-16
Our previous investigations demonstrated that 1,2-dichloroethane (DCE) and chronic ethanol treatment separately are able to impair glycoprotein metabolism and secretion, and reduce dolichol concentration in liver membranes. The purpose of this study was to investigate whether chronic ethanol consumption can induce potentiation of rat liver damage due to DCE haloalkane used in several chemical processes and in agriculture. Rats were given 36% of their total energy as ethanol in the Lieber-DeCarli liquid diet for 8 weeks (CH group). The pair-fed control group received an isocaloric amount of dextrine-maltose (PF group). "In vitro" experiments: the DCE (6.5 mM) treatment of isolated hepatocytes from CH rats enhanced glycoprotein retention and further reduced glycoprotein secretion and 14C-glucosamine incorporation compared to the hepatocytes from CH or from PF and DCE treated rats. "In vivo" experiments: a marked decrease of dolichol concentration in microsomes (in which dolichyl phosphate is rate-limiting for the initial glycosylation of protein) and in Golgi membranes (in which total dolichol is very important for membrane permeability, fluidity and vesicle fusion) was observed in CH rats acutely treated with 628 mg/kg bw of DCE (CH+DCE) compared with CH or PF+DCE treated rats. These data suggest that chronic ethanol consumption increases DCE liver toxicity by affecting protein glycosylation processes and impairing glycolipoprotein secretion, with a concomitant retention at the level of the Golgi apparatus.
The brain is a target organ after acute exposure to depleted uranium.
Lestaevel, P; Houpert, P; Bussy, C; Dhieux, B; Gourmelon, P; Paquet, F
2005-09-01
The health effects of depleted uranium (DU) are mainly caused by its chemical toxicity. Although the kidneys are the main target organs for uranium toxicity, uranium can also reach the brain. In this paper, the central effects of acute exposure to DU were studied in relation to health parameters and the sleep-wake cycle of adult rats. Animals were injected intraperitoneally with 144+/-10 microg DU kg-1 as nitrate. Three days after injection, the amounts of uranium in the kidneys represented 2.6 microg of DU g-1 of tissue, considered as a sub-nephrotoxic dosage. The central effect of uranium could be seen through a decrease in food intake as early as the first day after exposure and shorter paradoxical sleep 3 days after acute DU exposure (-18% of controls). With a lower dosage of DU (70+/-8 microg DU kg-1), no significant effect was observed on the sleep-wake cycle. The present study intends to illustrate the fact that the brain is a target organ, as are the kidneys, after acute exposure to a moderate dosage of DU. The mechanisms by which uranium causes these early neurophysiological perturbations shall be discussed.
Oral toxicity evaluation of kefir-isolated Lactobacillus kefiranofaciens M1 in Sprague-Dawley rats.
Owaga, E E; Chen, M J; Chen, W Y; Chen, C W; Hsieh, R H
2014-08-01
Lactobacilli kefiranofaciens M1 has shown novel immunomodulation and anti-allergy probiotic attributes in cell and animal models. An acute oral toxicity assessment of L. kefiranofaciens M1 was evaluated in Sprague-Dawley rats. The rats were randomly assigned to four groups (12 rats/sex/group): the low dose group was orally gavaged with L. kefiranofaciens M1 at 3.0×10(8)cfu/kg bw while the medium dose and high dose groups received 9.0×10(9)cfu/kg bw and 1.8×10(10)cfu/kg bw, respectively, for 28days. The control group received phosphate buffer saline. The body weights were measured weekly while blood samples were collected for haematology and serum biochemistry tests. Histopathology of the organs (heart, liver, kidney, adrenal glands, spleen, ovary, testis), and urinalysis were conducted on study termination. The body weight gain of the L. kefiranofaciens M1 and control groups were comparable during the administration period. Overall, L. kefiranofaciens M1 did not induce adverse effects on haematology, serum biochemistry, and urinalysis parameters. Gross and microscopic histopathology of the organs revealed no toxicity effect of L. kefiranofaciens M1. In conclusion, 1.8×10(10)cfu/kg bw of L. kefiranofaciens M1 was considered as the no-observed-adverse-effect-level (NOAEL), which was the highest dose tested in the present study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Milk thistle seed extract protects rat C6 astroglial cells from acute cocaine toxicity.
Badisa, Ramesh B; Fitch-Pye, Cheryl A; Agharahimi, Maryam; Palm, Donald E; Latinwo, Lekan M; Goodman, Carl B
2014-11-01
Cocaine is a powerful addictive drug, widely abused in most Western countries. It easily reaches various domains within and outside of the central nervous system (CNS), and triggers varying levels of cellular toxicity. No pharmacological treatment is available to alleviate cocaine-induced toxicity in the cells without side-effects. Here, we discerned the role of milk thistle (MT) seed extract against cocaine toxicity. First, we investigated acute cytotoxicity induced by treatment with 2, 3 and 4 mM cocaine for 1 h in astroglial, liver and kidney cells in vitro, and then in living shrimp larvae in vivo. We showed that astroglial cells are more sensitive to cocaine than liver, kidney cells or larvae. Cocaine exposure disrupted the general architecture of astroglial cells, induced vacuolation, decreased cell viability, and depleted the glutathione (GSH) level. These changes may represent the underlying pathology of cocaine in the astrocytes. By contrast, MT pretreatment (200 µg/ml) for 30 min sustained the cell morphological features and increased both cell viability and the GSH level. Besides its protective effects, the MT extract was revealed to be non-toxic to astroglial cells, and displayed high free-radical scavenging activity. The results from this study suggest that enhanced GSH level underlies cell protection, and indicate that compounds that promote GSH synthesis in the cells may be beneficial against cocaine toxicity.
Sub acute toxicity assessment of glipizide engineered polymeric nanoparticles.
Lekshmi, U M Dhana; Kishore, Narra; Reddy, P Neelakanta
2011-08-01
To our knowledge, no such polymeric nanoparticle formulation toxicity study has been reported for oral use. The oral route of drug administration is generally preferred because of its versatility, safety and relative patient comfort. Hence, there is an outstanding need of research for polymeric nanoparticles to find whether they are stable for prolonged shelf life, and yet have no toxicity when administered orally. The main objective of this study is to assess the safety of Glipizide (GZ) loaded polymeric nanoparticle systematically and to observe the toxic effects of nanoparticles on the functions of various tissues and organs in rats. The rats were randomly divided into 7 groups (6 in each group); viz. one normal control group (received saline), two groups (1:2 and 1:5 ratio of GZ-Chitosan nanoparticle), two groups (1:2 and 1:5 ratio of GZ-Poly(methyl methacrylate) nanoparticle) and two groups (1:2 and 1:5 ratio of GZ-Ethyl Cellulose nanoparticle). After 30 days of nanoparticle administration, the blood haematology and biochemistry were investigated, along with the histopathological examination. The rats did not show any significant changes in all the parameters studied and the results clearly evidenced its safety. All formulations showed in vitro haemolytic activity less than 5%. Conclusion drawn from the present study is that the polymeric nanoparticles may be a suitable device for safe oral administration. A rigorous safety of these nanoparticles would enable their use in the field of diabetic therapy.
Toxicological studies of stem bark extract from Schefflera barteri Harms (Araliaceae).
Atsafack, Serge Secco; Kuiate, Jules-Roger; Mouokeu, Raymond Simplice; Koanga Mogtomo, Martin Luther; Tchinda, Alembert Tiabou; De Dieu, Tamokou Jean; Magnifouet Nana, Huguette; Ebelle Etame, Rébecca Madeleine; Biyiti, Lucie; Ngono Ngane, Rosalie Annie
2015-03-07
The use of herbal medicines as complements or alternatives to orthodox medicines has been on the increase. There has been the erroneous belief that these medicines are free from adverse effects. Schefflera barteri is popularly used in the West region of Cameroon for the treatment of various diseases such as diarrhea, spasm, pneumonia and animals bite. Considering the ethnopharmacological relevance of this plant, this study was designed to investigate the possible toxic effects of the stem bark extract of S. barteri. The extract was prepared by maceration of stem bark dry powder in methylene chloride/methanol mixture. Phytochemical analysis was performed by chemical reaction method. Oral acute toxicity study was carried out by administering single geometric increasing doses (2 to 16 g/kg body weight) of plant extract to Swiss albino mice. For sub-acute toxicity study, repeated doses (100, 200, 400 and 800 mg/kg bw) of plant extract were given to Wistar albino rats for 28 consecutive days by oral route. At the end of the treatment period, hematological and biochemical parameters were assessed, as well as histopathological studies. Phytochemical analysis of stem bark extract of S. barteri revealed the presence of anthocyanins, anthraquinons and saponins. Acute toxicity results showed that the LD50 was greater than 16000 mg/kg. Sub-acute treatment significantly (P < 0.05) increased the level of serum transaminase, proteins and HDL cholesterol. On the other hand, the extract significantly (P < 0.05) reduced the level of leucocytes as well as neutrophils, basophils and monocytes in female. No significant variation of serum creatinine, LDL cholesterol, serum triglycerides as well as liver, spleen, testicles and ovaries proteins was noted. Histopathological analysis of organs showed vascular congestion, inflammation of peri-portal and vacuolization of hepatocytes at the level of the liver. Leucocytes infiltration of peri-portal veins were noticed on lungs and liver cells as well as inflammatory peri-bronchial and basal membranes seminar tube merely joined on lungs and testis respectively. The results suggest that acute administration of the stem bark extract of S. barteri is associated with signs of toxicity, administration over a long duration provokes hepatotoxicity, testes and lungs toxicities.
2014-01-01
Background A decoction of Crassocephallum vitellinum (Benth.) S. Moore (Asteraceae) is used in Kagera Region to treat peptic ulcers. This study seeks to evaluate an aqueous ethanol extract of aerial parts of the plant for safety and efficacy. Methods An 80% ethanolic extract of C. vitellinum at doses of 100, 200, 400 and 800 mg/kg body wt was evaluated for ability to protect Sprague Dawley rats from acidified ethanol gastric ulceration in comparison with 40 mg/kg body wt pantoprazole. The extract and its dichloromethane, ethyl acetate, and aqueous fractions were also evaluated for acute toxicity in mice, brine shrimp toxicity, and antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholera (clinical isolate), and Streptococcus faecalis (clinical isolate). The groups of phytochemicals present in the extract were also determined. Results The ethanolic extract of C. vitellinum dose-dependently protected rat gastric mucosa against ethanol/HCl insult to a maximum of 88.3% at 800 mg/kg body wt, affording the same level of protection as by 40 mg/kg body wt pantoprazole. The extract also exhibited weak antibacterial activity against S. typhi and E. coli, while its ethyl acetate, dichloromethane and aqueous fractions showed weak activity against K. pneumonia, S.typhi, E. coli and V. cholera. The extract was non-toxic to mice up to 5000 mg/kg body wt, and the total extract (LC50 = 37.49 μg/ml) and the aqueous (LC50 = 87.92 μg/ml), ethyl acetate (LC50 = 119.45 μg/ml) and dichloromethane fractions (88.79 μg/ml) showed low toxicity against brine shrimps. Phytochemical screening showed that the extract contains tannins, saponins, flavonoids, and terpenoids. Conclusion The results support the claims by traditional healers that a decoction of C.vitellinum has antiulcer activity. The mechanism of cytoprotection is yet to be determined but the phenolic compounds present in the extract may contribute to its protective actions. However, the dose conferring gastro-protection in the rat is too big to be translated to clinical application; thus bioassay guided fractionation to identify active compound/s or fractions is needed, and use of more peptic ulcer models to determine the mechanism for the protective action. PMID:24552147
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandic, Marjana; Sepcic, Kristina; Turk, Tom
2011-08-15
APS12-2 is one in a series of synthetic analogs of the polymeric alkylpyridinium salts isolated from the marine sponge Reniera sarai. As it is a potential candidate for treating non small cell lung cancer (NSCLC), we have studied its possible toxic and lethal effects in vivo. The median lethal dose (LD{sub 50}) of APS12-2 in mice was determined to be 11.5 mg/kg. Electrocardiograms, arterial blood pressure and respiratory activity were recorded under general anesthesia in untreated, pharmacologically vagotomized and artificially ventilated rats injected with APS12-2. In one group, the in vivo effects of APS12-2 were studied on nerve-evoked muscle contraction.more » Administration of APS12-2 at a dose of 8 mg/kg caused a progressive reduction of arterial blood pressure to a mid-circulatory value, accompanied by bradycardia, myocardial ischemia, ventricular extrasystoles, and second degree atrio-ventricular block. Similar electrocardiogram and arterial blood pressure changes caused by APS12-2 (8 mg/kg) were observed in animals pretreated with atropine and in artificially ventilated animals, indicating that hypoxia and cholinergic effects do not play a crucial role in the toxicity of APS12-2. Application of APS12-2 at sublethal doses (4 and 5.5 mg/kg) caused a decrease of arterial blood pressure, followed by an increase slightly above control values. We found that APS12-2 causes lysis of rat erythrocytes in vitro, therefore it is reasonable to expect the same effect in vivo. Indeed, hyperkalemia was observed in the blood of experimental animals. Hyperkalemia probably plays an important role in APS12-2 cardiotoxicity since no evident changes in histopathology of the heart were found. However, acute lesions were observed in the pulmonary vessels of rats after application of 8 mg/kg APS12-2. Predominant effects were dilation of interalveolar blood vessels and lysis of aggregated erythrocytes within their lumina. - Highlights: > LD{sub 50} estimated in mice (11.5 mg/kg) revealed that toxicity of APS12-2 is low. > APS12-2 causes dose dependent hemolysis of rat erythrocytes in vivo and in vitro. > Cardiac arrest by APS12-2 is caused by the high blood potassium concentration. > APS12-2 causes mild acute pulmonary edema.« less
Toxicological Evaluation of Lactase Derived from Recombinant Pichia pastoris
Liu, Yifei; Chen, Delong; Luo, Yunbo; Huang, Kunlun; Zhang, Wei; Xu, Wentao
2014-01-01
A recombinant lactase was expressed in Pichia pastoris, resulting in enzymatic activity of 3600 U/mL in a 5 L fermenter. The lactase product was subjected to a series of toxicological tests to determine its safety for use as an enzyme preparation in the dairy industry. This recombinant lactase had the highest activity of all recombinant strains reported thus far. Acute oral toxicity, mutagenicity, genotoxic, and subchronic toxicity tests performed in rats and mice showed no death in any groups. The lethal dose 50% (LD50) based on the acute oral toxicity study is greater than 30 mL/kg body weight, which is in accordance with the 1500 L milk consumption of a 50 kg human daily. The lactase showed no mutagenic activity in the Ames test or a mouse sperm abnormality test at levels of up to 5 mg/plate and 1250 mg/kg body weight, respectively. It also showed no genetic toxicology in a bone marrow cell micronucleus test at levels of up to 1250 mg/kg body weight. A 90-day subchronic repeated toxicity study via the diet with lactase levels up to 1646 mg/kg (1000-fold greater than the mean human exposure) did not show any treatment-related significant toxicological effects on body weight, food consumption, organ weights, hematological and clinical chemistry, or histopathology compared to the control groups. This toxicological evaluation system is comprehensive and can be used in the safety evaluation of other enzyme preparations. The lactase showed no acute, mutagenic, genetic, or subchronic toxicity under our evaluation system. PMID:25184300
Hematological parameters on the effect of the jellyfish venom Cassiopea andromeda in animal models.
Nabipour, Iraj; Mohebbi, Gholamhossein; Vatanpour, Hossein; Vazirizadeh, Amir
2017-04-01
For the first time, we previously recorded an enormous population of the Cassiopea andromeda jellyfish that had increased dramatically from Bushehr coasts of Iran. The sub-acute toxicity of the jellyfish venom in rat organs was correspondingly carried out. The data presented in this paper relate to the in vivo and in vitro hematological effects of this venomous species of jellyfish venom.
Essel, Leslie B.; Duduyemi, Babatunde M.
2017-01-01
We investigated the antioxidant and anti-inflammatory effects of a 70% v/v ethanol extract of the stem bark of Antrocaryon micraster on murine models of carrageenan-induced pleurisy and paw oedema. Rat pleural fluid was analysed for volume, protein content, and leucocytes, while lung histology was assessed for damage. Lung tissue homogenates were assayed for glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and myeloperoxidase (MPO). Phytochemical analysis was carried out on the stem bark. Acute toxicity studies were conducted in rats. In the pleurisy model the extract (30–300 mg/kg) significantly reduced the volume and amount of proteins and leucocytes in the exudate and also protected against lung injury. Tissue level of GSH and SOD and CAT expression were increased while MDA level and MPO activity were reduced. The peak and total oedema responses were significantly suppressed when given both preemptively and curatively in the mice paw oedema test. Saponins, alkaloids, triterpenoids, and tannins were present in the stem bark. A. micraster extract exhibited no apparent acute toxicity. We conclude that the ethanolic stem-bark extract of A. micraster has antioxidant action and exhibits significant anti-inflammatory activity through suppression of pleurisy and paw oedema induced with carrageenan. PMID:28798953
Cikman, Oztekin; Soylemez, Omer; Ozkan, Omer Faruk; Kiraz, Hasan Ali; Sayar, Ilyas; Ademoglu, Serkan; Taysi, Seyithan; Karaayvaz, Muammer
2015-01-01
The aim of this study was to investigate the possible protective role of antioxidant treatment with syringic acid (SA) on l-arginine–induced acute pancreatitis (AP) using biochemical and histopathologic approaches. A total of 30 rats were divided into 3 groups. The control group received normal saline intraperitoneally. The AP group was induced by 3.2 g/kg body weight l-arginine intraperitoneally, administered twice with an interval of 1 hour between administrations. The AP plus SA group, after having AP induced by 3.2 g/kg body weight l-arginine, was given SA (50 mg kg−1) in 2 parts within 24 hours. The rats were killed, and pancreatic tissue was removed and used in biochemical and histopathologic examinations. Compared with the control group, the mean pancreatic tissue total oxidant status level, oxidative stress index, and lipid hydroperoxide levels were significantly increased in the AP group, being 30.97 ± 7.13 (P < 0.05), 1.76 ± 0.34 (P < 0.0001), and 19.18 ± 4.91 (P < 0.01), respectively. However, mean total antioxidant status and sulfhydryl group levels were significantly decreased in the AP group compared with the control group, being 1.765 ± 0.21 (P < 0.0001) and 0.21 ± 0.04 (P < 0.0001), respectively. SA reduces oxidative stress markers and has antioxidant effects. It also augments antioxidant capacity in l-arginine–induced acute toxicity of pancreas in rats. PMID:26011211
Cikman, Oztekin; Soylemez, Omer; Ozkan, Omer Faruk; Kiraz, Hasan Ali; Sayar, Ilyas; Ademoglu, Serkan; Taysi, Seyithan; Karaayvaz, Muammer
2015-05-01
The aim of this study was to investigate the possible protective role of antioxidant treatment with syringic acid (SA) on l-arginine-induced acute pancreatitis (AP) using biochemical and histopathologic approaches. A total of 30 rats were divided into 3 groups. The control group received normal saline intraperitoneally. The AP group was induced by 3.2 g/kg body weight l-arginine intraperitoneally, administered twice with an interval of 1 hour between administrations. The AP plus SA group, after having AP induced by 3.2 g/kg body weight l-arginine, was given SA (50 mg kg(-1)) in 2 parts within 24 hours. The rats were killed, and pancreatic tissue was removed and used in biochemical and histopathologic examinations. Compared with the control group, the mean pancreatic tissue total oxidant status level, oxidative stress index, and lipid hydroperoxide levels were significantly increased in the AP group, being 30.97 ± 7.13 (P < 0.05), 1.76 ± 0.34 (P < 0.0001), and 19.18 ± 4.91 (P < 0.01), respectively. However, mean total antioxidant status and sulfhydryl group levels were significantly decreased in the AP group compared with the control group, being 1.765 ± 0.21 (P < 0.0001) and 0.21 ± 0.04 (P < 0.0001), respectively. SA reduces oxidative stress markers and has antioxidant effects. It also augments antioxidant capacity in l-arginine-induced acute toxicity of pancreas in rats.
Final report on the safety assessment of Triethylene Glycol and PEG-4.
2006-01-01
Triethylene Glycol and PEG-4 (polyethylene glycol) are polymers of ethylene oxide alcohol. Triethylene Glycol is a specific three-unit chain, whereas PEG-4 is a polymer with an average of four units, but may contain polymers ranging from two to eight ethylene oxide units. In the same manner, other PEG compounds, e.g., PEG-6, are mixtures and likely contain some Triethylene Glycol and PEG-4. Triethylene Glycol is a fragrance ingredient and viscosity decreasing agent in cosmetic formulations, with a maximum concentration of use of 0.08% in skin-cleansing products. Following oral doses, Triethylene Glycol and its metabolites are excreted primarily in urine, with small amounts released in feces and expired air. With oral LD50 values in rodents from 15 to 22 g/kg, this compound has little acute toxicity. Rats given short term oral doses of 3% in water showed no signs of toxicity, whereas all rats given 10% died by the 12th day of exposure. At levels up to 1 g/m3, rats exposed to aerosolized Triethylene Glycol for 6 h per day for 9 days showed no signs of toxicity. Rats fed a diet containing 4% Triethylene Glycol for 2 years showed no signs of toxicity. There were no treatment-related effects on rats exposed to supersaturated Triethylene Glycol vapor for 13 months nor in rats that consumed 0.533 cc Triethylene Glycol per day in drinking water for 13 months. Triethylene Glycol was not irritating to the skin of rabbits and produced only minimal injury to the eye. In reproductive and developmental toxicity studies in rats and mice, Triethylene Glycol did not produce biologically significant embryotoxicity or teratogenicity. However, some maternal toxicity was seen in dams given 10 ml/kg/day during gestation. Triethylene Glycol was not mutagenic or genotoxic in Ames-type assays, the Chinese hamster ovary mutation assay, and the sister chromatid exchange assays. PEG-4 is a humectant and solvent in cosmetic products, with a maximum concentration of use of 20% in the "other manicuring preparations" product category. This ingredient, with an oral LD50 in rats of 32.77 g/kg, has low acute toxicity. Rats given up to 50,000 ppm PEG-4 in drinking water for 5 days showed no permanent signs of toxicity. Rats given daily oral doses up to 2 g/kg/day of PEG-4 for 33 days showed no signs of toxicity. Undiluted PEG-4 produced only minimal injury to the rabbit eye. PEG-4 was not mutagenic in Ames-type assays, did not induce chromosome aberration in an in vivo bone marrow assay, and was negative for genotoxicity in a dominant lethal assay using rats. Other PEG compounds, which have previously been reviewed by the Cosmetic Ingredient Review (CIR) Expert Panel, e.g., PEG-6, are mixtures that likely include Triethylene Glycol and PEG-4, so these data were also considered. PEG-6 and PEG-8 were not dermal irritants in several rabbit studies. PEG-2 Stearate had a potential for slight irritation in rabbits but was not a sensitizer in guinea pigs. PEG-2 Cocamine was a moderate irritant in rabbits, producing severe erythema. In one dermal study, PEG-2 Cocamine was determined to be corrosive to rabbit skin, causing eschar and necrosis. PEG-6 and PEG-8 caused little to no ocular irritation. PEG-8 was not mutagenic or genotoxic in a Chinese hamster ovary assay, a sister-chromatid exchange assay, and in an unscheduled DNA synthesis assay. In clinical studies on normal skin, PEG-6 and PEG-8 caused mild cases of immediate hypersensitivity; PEG-8 was not a sensitizer; PEG-2 Stearate was not an irritant, a sensitizer, or a photosensitizer; and PEG-6 Stearate was not an irritant or sensitizer. In damaged skin, cases of systemic toxicity and contact dermatitis in burn patients were attributed to a PEG-based topical ointment. The CIR Expert Panel acknowledged the lack of dermal sensitization data for Triethylene Glycol and dermal irritation and sensitization data for PEG-4. That PEG-6, PEG-8, and PEG-2 Stearate were not irritants or sensitizers suggested that Triethylene Glycol and PEG-4 also would not be irritants or sensitizers, and the absence of any reported reactions in the case literature and the professional experience of the Expert Panel further supported the absence of any significant sensitization potential. The need for additional data to demonstrate the safety of PEGs Cocamine was related to the Cocamine moiety and is not relevant here. The Panel reminded formulators of cosmetic products that, as with other PEG compounds, Triethylene Glycol and PEG-4 should not be used on damaged skin because of cases of systemic toxicity and contact dermatitis in burn patients have been attributed to a PEG-based topical ointment. Based on its consideration of the available information, the CIR Expert Panel concluded that Triethylene Glycol and PEG-4 are safe as cosmetic ingredients in the present practices and concentrations of use as described in this safety assessment.
Terry, Alvin V.; Callahan, Patrick M.; Beck, Wayne D.; Vandenhuerk, Leah; Sinha, Samantha; Bouchard, Kristy; Schade, Rose; Waller, Jennifer L.
2014-01-01
Organophosphate (OP)-based chemicals are used worldwide for many purposes and they have likely saved millions of people from starvation and disease. However, due to their toxicity they can also pose a significant environmental risk. While considerable research has focused on the acute symptoms and long-term consequences of overtly toxic exposures to OPs, less attention has been given to the subject of repeated exposures to levels that are not associated with acute symptoms (subthreshold exposures). There is clinical evidence indicating that this type of OP exposure can lead to prolonged deficits in cognition; however only a few studies have addressed this issue prospectively in animal models. In this study, repeated subthreshold exposures to the OP nerve agent diisopropylfluorophosphate (DFP) were evaluated in a 5-Choice Serial Reaction Time Task (5C-SRTT), an animal model of sustained attention. Adult rats were trained to stably perform the 5C-SRTT and then injected subcutaneously with vehicle or DFP 0.5 mg/kg every other day for 30 days. Behavioral testing occurred daily during the DFP-exposure period and throughout a 45 day (OP-free) washout period. Compared to vehicle-treated controls, DFP-treated rats exhibited deficits in accuracy, increases in omissions and timeout responses during the OP exposure period, while no significant effects on premature responses, perseverative responses, or response latencies were noted. While the increase in timeout responses remained detectible during washout, all other DFP-related alterations in 5C-SRTT performance abated. When the demands of the task were increased by the presentation of variable intertrial intervals, premature responses were also elevated in DFP-treated rats during the washout period. These results indicate that repeated exposures to subthreshold doses of DFP lead to reversible impairments in sustained attention as well as persistent impairments of inhibitory response control in rats. PMID:24819591
Singleton, WG; Collins, AM; Bienemann, AS; Killick-Cole, CL; Haynes, HR; Asby, DJ; Butts, CP; Wyatt, MJ; Barua, NU; Gill, SS
2017-01-01
Background The pan-histone deacetylase inhibitor panobinostat is a potential therapy for malignant glioma, but it is water insoluble and does not cross the blood–brain barrier when administered systemically. In this article, we describe the in vitro and in vivo efficacy of a novel water-soluble nano-micellar formulation of panobinostat designed for administration by convection enhanced delivery (CED). Materials and methods The in vitro efficacy of panobinostat-loaded nano-micelles against rat F98, human U87-MG and M059K glioma cells and against patient-derived glioma stem cells was measured using a cell viability assay. Nano-micelle distribution in rat brain was analyzed following acute CED using rhodamine-labeled nano-micelles, and toxicity was assayed using immunofluorescent microscopy and synaptophysin enzyme-linked immunosorbent assay. We compared the survival of the bioluminescent syngenic F98/Fischer344 rat glioblastoma model treated by acute CED of panobinostat-loaded nano-micelles with that of untreated and vehicle-only-treated controls. Results Nano-micellar panobinostat is cytotoxic to rat and human glioma cells in vitro in a dose-dependent manner following short-time exposure to drug. Fluorescent rhodamine-labelled nano-micelles distribute with a volume of infusion/volume of distribution (Vi/Vd) ratio of four and five respectively after administration by CED. Administration was not associated with any toxicity when compared to controls. CED of panobinostat-loaded nano-micelles was associated with significantly improved survival when compared to controls (n=8 per group; log-rank test, P<0.001). One hundred percent of treated animals survived the 60-day experimental period and had tumour response on post-mortem histological examination. Conclusion CED of nano-micellar panobinostat represents a potential novel therapeutic option for malignant glioma and warrants translation into the clinic. PMID:28260886
Liu, Jing; Parsons, Loren; Pope, Carey
2015-01-01
Parathion and chlorpyrifos are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). The endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) are endogenous neuromodulators that regulate presynaptic neurotransmitter release in neurons throughout the central and peripheral nervous systems. While substantial information is known about the eCBs, less is known about a number of endocannabinoid-like metabolites (eCBLs, e.g., N-palmitoylethanolamine, PEA; N-oleoylethanolamine, OEA). We report the comparative effects of parathion and chlorpyrifos on AChE and enzymes responsible for inactivation of the eCBs, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and changes in the eCBs AEA and 2AG and eCBLs PEA and OEA, in rat striatum. Adult, male rats were treated with vehicle (peanut oil, 2 ml/kg, sc), parathion (27 mg/kg) or chlorpyrifos (280 mg/kg) 6-7 days after surgical implantation of microdialysis cannulae into the right striatum, followed by microdialysis two or four days later. Additional rats were similarly treated and sacrificed for evaluation of tissue levels of eCBs and eCBLs. Dialysates and tissue extracts were analyzed by LC-MS/MS. AChE and FAAH were extensively inhibited at both time-points (85-96%), while MAGL activity was significantly but lesser affected (37-62% inhibition) by parathion and chlorpyrifos. Signs of toxicity were noted only in parathion-treated rats. In general, chlorpyrifos increased eCB levels while parathion had no or lesser effects. Early changes in extracellular AEA, 2AG and PEA levels were significantly different between parathion and chlorpyrifos exposures. Differential changes in extracellular and/or tissue levels of eCBs and eCBLs could potentially influence a number of signaling pathways and contribute to selective neurological changes following acute OP intoxications. PMID:26215119
Liu, Jing; Parsons, Loren; Pope, Carey
2015-09-01
Parathion and chlorpyrifos are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). The endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) are endogenous neuromodulators that regulate presynaptic neurotransmitter release in neurons throughout the central and peripheral nervous systems. While substantial information is known about the eCBs, less is known about a number of endocannabinoid-like metabolites (eCBLs, e.g., N-palmitoylethanolamine, PEA; N-oleoylethanolamine, OEA). We report the comparative effects of parathion and chlorpyrifos on AChE and enzymes responsible for inactivation of the eCBs, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and changes in the eCBs AEA and 2AG and eCBLs PEA and OEA, in rat striatum. Adult, male rats were treated with vehicle (peanut oil, 2 ml/kg, sc), parathion (27 mg/kg) or chlorpyrifos (280 mg/kg) 6-7 days after surgical implantation of microdialysis cannulae into the right striatum, followed by microdialysis two or four days later. Additional rats were similarly treated and sacrificed for evaluation of tissue levels of eCBs and eCBLs. Dialysates and tissue extracts were analyzed by LC-MS/MS. AChE and FAAH were extensively inhibited at both time-points (85-96%), while MAGL activity was significantly but lesser affected (37-62% inhibition) by parathion and chlorpyrifos. Signs of toxicity were noted only in parathion-treated rats. In general, chlorpyrifos increased eCB levels while parathion had no or lesser effects. Early changes in extracellular AEA, 2AG and PEA levels were significantly different between parathion and chlorpyrifos exposures. Differential changes in extracellular and/or tissue levels of eCBs and eCBLs could potentially influence a number of signaling pathways and contribute to selective neurological changes following acute OP intoxications. Copyright © 2015 Elsevier Inc. All rights reserved.
Pulmonary effects induced by ultrafine PTFE particles.
Johnston, C J; Finkelstein, J N; Mercer, P; Corson, N; Gelein, R; Oberdörster, G
2000-11-01
PTFE (polytetrafluoroethylene) fumes consisting of large numbers of ultrafine (uf) particles and low concentrations of gas-phase compounds can cause severe acute lung injury. Our studies were designed to test three hypotheses: (i) uf PTFE fume particles are causally involved in the induction of acute lung injury, (ii) uf PTFE elicit greater pulmonary effects than larger sized PTFE accumulation mode particles, and (iii) preexposure to the uf PTFE fume particles will induce tolerance. We used uf Teflon (PTFE) fumes (count median particle size approximately 16 nm) generated by heating PTFE in a tube furnace to 486 degrees C to evaluate principles of ultrafine particle toxicity. Teflon fumes at ultrafine particle concentrations of 50 microg/m(3) were extremely toxic to rats when inhaled for only 15 min. We found that when generated in argon, the ultrafine Teflon particles alone are not toxic at these exposure conditions; neither were Teflon fume gas-phase constituents when generated in air. Only the combination of both phases when generated in air caused high toxicity, suggesting either the existence of radicals on the surface or a carrier mechanism of the ultrafine particles for adsorbed gas compounds. Aging of the fresh Teflon fumes for 3.5 min led to a predicted coagulation to >100 nm particles which no longer caused toxicity in exposed animals. This result is consistent with a greater toxicity of ultrafine particles compared to accumulation mode particles, although changes in particle surface chemistry during the aging process may have contributed to the diminished toxicity. Furthermore, the pulmonary toxicity of the ultrafine Teflon fumes could be prevented by adapting the animals with short 5-min exposures on 3 days prior to a 15-min exposure. Messages encoding antioxidants and chemokines were increased substantially in nonadapted animals, yet were unaltered in adapted animals. This study shows the importance of preexposure history for the susceptibility to acute ultrafine particle effects. Copyright 2000 Academic Press.
Al-Rofaai, A; Rahman, W A; Sulaiman, S F; Yahaya, Z S
2012-11-23
This study aimed to represent the first report of the ovicidal and larvicidal activity of the methanolic leaf extract of Manihot esculenta (cassava) against eggs and larvae of susceptible and resistant strains of Trichostrongylus colubriformis. As well as, to determine the total tannin compounds, antioxidant activity and toxicity of the extract. The egg hatch test was used to evaluate ovicidal activity against unembryonated eggs, whereas larval feeding inhibition assay and MTT-formazan assay were used to evaluate larvicidal activity against first (L(1)) and infective (L(3)) larvae, respectively. The results showed no significant differences were detected between the sensitivities of susceptible and resistant strains of T. colubriformis to the extract. Eggs, L(1) and L(3) were significantly affected (P<0.001) compared with negative control, and L(1) were more sensitive than the eggs and L(3). The total tannin compounds were investigated using tannin quantification assay and determined by 254.44 TAE/mg. The antioxidant activity was evaluated using the DPPH radical scavenging assay and the median inhibition concentration (IC(50)) was determined by 2.638 mg/ml. Acute oral toxicity at dose of 5,000 mg/kg, and sub-chronic oral toxicity at 500 and 1,000 mg/kg of the extract were observed in male and female Sprague-Dawley (SD) rats. The acute oral toxicity revealed that the median lethal dose (LD(50)) of methanolic extract of cassava leaves on SD rats was greater than 5,000 mg/kg, whereas the sub-chronic oral toxicity did not show observed adverse effects at 500 and 1,000 mg/kg per day for 28 days. In conclusion, the methanolic extract of cassava leaves has direct ovicidal and larvicidal activity against T. colubriformis strains with a safety margin for animals, and it may be potentially utilized as a source of natural antioxidants. Copyright © 2012 Elsevier B.V. All rights reserved.
Páleníček, Tomáš; Lhotková, Eva; Žídková, Monika; Balíková, Marie; Kuchař, Martin; Himl, Michal; Mikšátková, Petra; Čegan, Martin; Valeš, Karel; Tylš, Filip; Horsley, Rachel R
2016-08-01
MDAI (5,6-Methylenedioxy-2-aminoindane) has a reputation as a non-neurotoxic ecstasy replacement amongst recreational users, however the drug has been implicated in some severe and lethal intoxications. Due to this, and the fact that the drug is almost unexplored scientifically we investigated a broad range of effects of acute MDAI administration: pharmacokinetics (in sera, brain, liver and lung); behaviour (open field; prepulse inhibition, PPI); acute effects on thermoregulation (in group-/individually-housed rats); and systemic toxicity (median lethal dose, LD50) in Wistar rats. Pharmacokinetics of MDAI was rapid, maximum median concentration in serum and brain was attained 30min and almost returned to zero 6h after subcutaneous (sc.) administration of 10mg/kg MDAI; brain/serum ratio was ~4. MDAI particularly accumulated in lung tissue. In the open field, MDAI (5, 10, 20 and 40mg/kg sc.) increased exploratory activity, induced signs of behavioural serotonin syndrome and reduced locomotor habituation, although by 60min some effects had diminished. All doses of MDAI significantly disrupted PPI and the effect was present during the onset of its action as well as 60min after treatment. Unexpectedly, 40mg/kg MDAI killed 90% of animals in the first behavioural test, hence LD50 tests were conducted which yielded 28.33mg/kg sc. and 35mg/kg intravenous but was not established up to 40mg/kg after gastric administration. Disseminated intravascular coagulopathy (DIC) with brain oedema was concluded as a direct cause of death in sc. treated animals. Finally, MDAI (10, 20mg/kg sc.) caused hyperthermia and perspiration in group-housed rats. In conclusion, the drug had fast pharmacokinetics and accumulated in lipohilic tissues. Behavioural findings were consistent with mild, transient stimulation with anxiolysis and disruption of sensorimotor processing. Together with hyperthermia, the drug had a similar profile to related entactogens, especially 3,4-metyhlenedioxymethamphetamine (MDMA, ecstasy) and paramethoxymethamphetamine (PMMA). Surprisingly subcutaneous MDAI appears to be more lethal than previously thought and its serotonergic toxicity is likely exacerbated by group housing conditions. MDAI therefore poses greater risks to physical and mental health than recognised hitherto. Copyright © 2016 Elsevier Inc. All rights reserved.
Garro, María Filomena; Salinas Ibáñez, Angel Gabriel; Vega, Alba Edith; Arismendi Sosa, Andrea Celeste; Pelzer, Lilian; Saad, José Roberto; Maria, Alejandra Olivia
2015-12-24
Lithraea molleoides (Vell.) Engl. (Anacardiaceae) is a medicinal plant traditionally used in South America to treat various ailments, including diseases of the digestive system. To evaluate the in vivo antiulcer and antimicrobial activities against Helicobacter pylori of L. molleoides and its isolated compounds. Methanolic extract 250 and 500 mg/kg, (LmE 250 and LmE 500, respectively) and infusions, 10 g and 20 g en 100mL (LmI 10 and LmI 20, respectively) of L. molleoides was evaluated for antiulcer activity against 0.6N HCl, 0.2N NaOH, 200mg/kg acetilsalicilic acid and absolute ethanol-induced gastric ulcers in rats. The degree of erosion in the glandular part of the stomach was assessed from a scoring system. Acute toxicity in mice was also evaluated. The antiulcer effect of the isolated compounds (catechol, mannitol, rutin, gallic acid, ferulic acid and caffeic acid, 100mg/kg) was evaluated against absolute ethanol-induced gastric ulcers in rats. The anti-Helicobacter pylori activity of L. molleoides and isolated compounds was performed using broth dilution methods. The LmE 250, LmE 500, LmI 10 and LmI 20 produced significant inhibition on the ulcer index in 0.6N HCl, 0.2N NaOH, 200mg/kg acetilsalicilic acid and absolute ethanol- induced gastric ulcers in rats. The isolated compounds, catechol, mannitol, rutin, ferulic acid and caffeic acid were active in absolute ethanol- induced gastric ulcers in rats. L. molleoides and different compounds showed antimicrobial activity in all strains tested. The lowest MIC value (0. 5 μg/mL) was obtained with catechol in six of eleven strains assayed. No signs of toxicity were observed with doses up to 2g/kg in an acute toxicity assay. These findings indicate that L. molleoides displays potential antiulcerogenic and antimicrobial activities and the identification of active principles could support the use of this plant for the treatment of digestive affections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Andrographis paniculata Leaf Extract Prevents Thioacetamide-Induced Liver Cirrhosis in Rats
Bardi, Daleya Abdulaziz; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen
2014-01-01
This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson’s Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells. PMID:25280007
Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.
Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen
2014-01-01
This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells.
Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.
2010-01-01
Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not responsible for the age-related difference in cholinesterase sensitivity between age groups. Pre-incubation of neonatal and adult tissues with selective inhibitors of AChE and butyrylcholinesterase (BChE) indicated that a majority (82–90%) of ChE activity in the heart of both neonates and adults was BChE. The rapid onset (by 4 hours after dosing) of changes in muscarinic receptor binding in adult heart may be a reflection of the more potent direct binding to muscarinic receptors by chlorpyrifos oxon previously reported in adult tissues. The results suggest that ChE activity (primarily BChE) in neonatal heart may be inherently more sensitive to inhibition by some anticholinesterases and that toxicologically significant binding to muscarinic receptors may be possible with acute chlorpyrifos intoxication, potentially contributing to age-related differences in sensitivity. PMID:17644233
Dos Santos, Anaí L; Novaes, Antônio da Silva; Polidoro, Allan Dos S; de Barros, Márcio Eduardo; Mota, Jonas S; Lima, Daiane B M; Krause, Laiza C; Cardoso, Cláudia A L; Jacques, Rosângela A; Caramão, Elina B
2018-02-26
Piper amalago has a distribution from Mexico to Brazil; their aerial parts have been used in folk medicine to treat diuretic and kidney diseases. The purpose of this study was to obtain a deeper understanding of the chemical composition of essential oils (EOs) extracted from both the leaves and stems of P. amalago, compare them, and evaluate their antilithiasic activity and acute toxicity. Extraction was performed by hydrodistillation, whereas chemical characterisation by two-dimensional gas chromatography coupled with rapid-scanning quadrupole mass spectrometry (GC×GC/qMS). The antilithiasic activity was evaluated by the effect of the EOs on calcium oxalate crystallisation in vitro. The turbidity index and the number of crystals formed were determined and used as an estimative of the activity. In the acute toxicity assay, the effects of a single oral dose of the EOs in Wistar rats were determined. General behaviour, adverse effects, and mortality were determined. A total of 322 compounds were identified in the EOs. The sesquiterpenes displayed the highest contribution in leaves EOs among which included bicyclogermacrene and δ-cadinene. Sesquiterpenes and oxygenated sesquiterpenes displayed the highest contribution in EOs from stems, among which included bicyclogermacrene and α-cadinol. The EOs demonstrated an excellent action on the crystals growth inhibition, and the oral dose tested did not induce significant changes in the parameters for acute toxicity. The oils have a high chemical complexity, and there are differences between their compositions, which could explain the observed differences in antilithiasic activity. The findings support the use of this plant in folk medicine to treat kidney diseases. Copyright © 2018 John Wiley & Sons, Ltd.
Alterations in morphology and hepatorenal indices in rats subacutely exposed to bitumen extract.
Otuechere, Chiagoziem A; Adesanya, Oluseyi; Otsupius, Precious; Seyitan, Nathaniel
2016-10-01
Bitumen is a complex mixture of dense and extremely viscous organic liquids produced by distillation of crude oil during petroleum refining. Nigeria has a large deposit of natural bitumen, yet to be fully exploited. Discharges of petroleum hydrocarbons and other petroleum-derived products have caused environmental pollution and adverse human health effects in several oil-rich communities. In this study, bitumen obtained from a seepage source in Agbabu, the town of first discovery, was used in sub-acute toxicity studies in a rat experimental model, in order to assess potential health risks posed to local populace sequel to full exploitation of bitumen. Dosages were chosen to accommodate low to high cases of environmental exposures. Male Wistar rats were administered, per os, dosages of bitumen extract at 5, 3, 2, and 1 mg/kg body weight. Following euthanasia 28 days later, histological findings revealed severe portal congestion and cellular infiltration in the liver, while in the kidney there were protein casts in the tubular lumen. The relative liver and kidney weights in the 5 mg/kg groups were 34% and 40% higher than in the controls, with a concomitant decrease in food and water consumption. Furthermore, plasma clinical analyses revealed marked elevation in aspartate aminotransferase and triglycerides levels in bitumen extract-intoxicated rats. The results indicate the potential hepatorenal toxicity in adult rats following repeated exposure to bitumen extract.
Onami, Saeko; Cho, Young-Man; Toyoda, Takeshi; Horibata, Katsuyoshi; Ishii, Yuji; Umemura, Takashi; Honma, Masamitsu; Nohmi, Takehiko; Nishikawa, Akiyoshi; Ogawa, Kumiko
2014-07-01
3-Monochloropropane-1,2-diol (3-MCPD) is regarded as a rat renal and testicular carcinogen and has been classified as a possible human carcinogen (group 2B) by International Agency for Research on Cancer. This is potentially of great importance given that esters of this compound have recently found to be generated in many foods and food ingredients as a result of food processing. There have been a few reports about their toxicity, although we have recently found that the toxicity profile of 3-MCPD esters was similar to that of 3-MCPD in a rat 13-week repeated dose study, except for the acute renal toxicity seen in 3-MCPD-treated females. In the present study, to examine in vivo genotoxicity we administered equimolar doses of 3-MCPD or 3-MCPD fatty acid esters (palmitate diester, palmitate monoester and oleate diester) to 6-week-old male F344 gpt delta rats carrying a reporter transgene for 4 weeks by intragastric administration. In vivo micronucleus, Pig-a mutation and gpt assays were performed, as well as investigations of major toxicological parameters including histopathological features. As one result, the relative kidney weights of the 3-MCPD and all three ester groups were significantly increased compared with the vehicle control group. However, the frequency of micronucleated reticulocytes and Pig-a mutant red blood cells did not differ among groups. Moreover, no changes were observed in mutant frequencies of gpt and red/gam (Spi(-)) genes in the kidney and the testis of 3-MCPD and 3-MCPD-fatty-acid-esters-treated rats. In histopathological analyses, no treatment related changes were observed, except for decrease of eosinophilic bodies in the kidneys of all treated groups. These results suggest that 3-MCPD and its fatty acid esters are not in vivo genotoxins, although they may exert renal toxicity. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Long-term ingestion of cassava (tapioca) does not produce diabetes or pancreatitis in the rat model.
Mathangi, D C; Deepa, R; Mohan, V; Govindarajan, M; Namasivayam, A
2000-06-01
Cassava (tapioca, manihot) is consumed as a staple food in some developing countries. The intake of cassava has been linked to several diseases including fibrocalculous pancreatic diabetes (tropical calcific pancreatitis). There are few long-term studies on the effect of cassava ingestion on the pancreas in animal models. This article reports on the long-term (up to 1 yr) effects of cassava in the rat model. We found that cassava did not produce diabetes in the rat even after a year of cassava feeding. There were transient changes in serum insulin and lipase levels, but the significance of these findings are not clear. There was no histopathological evidence of either acute or chronic pancreatitis, but there were changes of toxic hepatitis in the liver. In conclusion, chronic cassava ingestion up to a year does not lead to either diabetes or chronic pancreatitis in the rat model.
NASA Technical Reports Server (NTRS)
Dodd, D. E.; Stuart, B. O.; Rothenberg, S. J.; Kershaw, M.; Mann, P. C.; James, J. T.; Lam, C. W.
1994-01-01
Dimethylethoxysilane (DMES), a volatile liquid, is used by NASA to waterproof the heat-protective silica tiles and blankets on the Space Shuttle. Acute, 2-wk, and 13-wk inhalation exposures to DMES vapor were conducted in male and female Fischer 344 rats. In the acute study, rats were exposed to 4000, 2000, 1000, 500, or 0 (control) ppm DMES for 4 h and observed for 14 days. There were no deaths. Narcosis and ataxia were observed in rats of the two highest concentrations only. These signs disappeared within 1 h following exposure. There were no DMES-related gross or microscopic tissue lesions in rats of all exposure groups. In the 2-wk study, rats were exposed for 6 h/day, 5 days/wk to 3000, 1000, 300, 100, or 0 ppm DMES. During exposure, narcosis was observed in rats of the 3000 and 1000 ppm groups. There was a mild decrease in body weight gain in rats of the 3000 ppm group. A decrease in platelet count, an increase in bile acids, and reduced weights of the thymus, testis, and liver were observed in rats of the 3000 ppm group. Microscopically, hypospermatogenesis and spermatid giant cells were observed in the seminiferous tubules of the testes of rats exposed to 3000 ppm DMES. In the 13-wk study, rats were exposed 6 h/day, 5 days/wk to 2000, 600, 160, 40, or 0 ppm DMES. During exposure, rats of the 2000 ppm group exhibited mild narcosis and loss of startle reflex. Recovery from these central nervous system signs was rapid. Body weights were mildly decreased for rats of the 2000 ppm group. There were no exposure-related effects in hematology, serum chemistry, or urinalysis. Female rats of the 2000 ppm group had delayed estrous cycles (6 days compared to 5 days in control rats). Noteworthy organ weight changes in rats of the 2000 ppm group included decreases in thymus, liver, and testicular weights; however, pathologic lesions were observed in the testes only. Sperm motility, epididymal sperm count, and testicular spermatid count were dramatically reduced. Microscopic lesions included degeneration of the seminiferous tubular cells, pyknosis or absence of germ cells, and hypospermia in the epididymis. Rats of the 600 ppm group had a slight decrease in thymic weight and a transient decrease in body weight. Results of the acute, 2-wk, and 13-wk inhalation studies indicate DMES concentrations of 1000 ppm and higher produce narcosis that rapidly disappears following exposure. Repeated exposure of rats to DMES at either 3000 ppm for 2 wk or 2000 ppm for 13 wk caused testicular atrophy and hypospermia in male rats. Female rats exposed to 2000 ppm for 13 wk had delayed estrous cycles. Toxicological effects in rats of the 600 ppm group were minimal and equivocal. The 160 ppm concentration was a no-observable-effect level (NOEL) for 13 wk of exposure to DMES.
Kwon, Do Young; Kim, Hyun-Mi; Kim, Eunji; Lim, Yeon-Mi; Kim, Pilje; Choi, Kyunghee; Kwon, Jung-Taek
2016-02-01
Didecyldimethylammonium chloride (DDAC), an antimicrobial agent, has been reported to induce pulmonary toxicity in animal studies. DDAC is frequently used in spray-form household products in combination with ethylene glycol (EG). The purpose of this study was to evaluate the toxic interaction between DDAC and EG in the lung. DDAC at a sub-toxic dose (100 μg/kg body weight) was mixed with a non-toxic dose of EG (100 or 200 μg/kg body weight), and was administrated to rats via intratracheal instillation. Lactate dehydrogenase activity and total protein content in the bronchoalveolar lavage fluid (BALF) were not changed by singly treated DDAC or EG, but significantly enhanced at 1 d after treatment with the mixture, with the effect dependent on the dose of EG. Total cell count in BALF was largely increased and polymorphonuclear leukocytes were predominantly recruited to the lung in rats administrated with the mixture. Inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6 also appeared to be increased by the mixture of DDAC and EG (200 μg/kg body weight) at 1 d post-exposure, which might be associated with the increase in inflammatory cells in lung. BALF protein content and inflammatory cell recruitment in the lung still remained elevated at 7 d after the administration of DDAC with the higher dose of EG. These results suggest that the combination of DDAC and EG can synergistically induce pulmonary cytotoxicity and inflammation, and EG appears to amplify the harmful effects of DDAC on the lung. Therefore pulmonary exposure to these two chemicals commonly found in commercial products can be a potential hazard to human health.
Saleh, Dalia O; Mansour, Dina F
2016-10-15
Cyclophosphamide (CP), the commonly used chemotherapeutic agent in cancer treatment, is proven to cause ovarian toxicity and infertility in women. In the present study, we investigated the protective effect of genistein (GEN), a phytoestrogen found in the soy protein, against CP-induced ovarian toxicity in rats. Forty female adult rats were allocated into five groups. A normal control group received the vehicle; another group was injected with a single acute intraperitoneal dose of CP (200mg/kg). Three other groups were pretreated with GEN (0.5, 1 or 2mg/kg; s.c.) for 14 days. Sera and ovaries were obtained 48h after CP treatment. Serum levels of anti-müllerian hormone (AMH) and oestradiol (E2) were detected as well as the ovarian level of reduced glutathione (GSH), activity of superoxide dismutase (SOD), level of malondialdehyde (MDA) and interleukin 1β (IL-1β) were evaluated. Histopathological examination and immunohistochemical detection of inducible nitric oxide synthetase (iNOS) were conducted. Results of the present study revealed that CP-induced severe ovarian toxicity via decreasing serum levels of AMH and E2 and elevating oxidative stress and inflammation in ovarian tissues. Histologically, CP caused increase in primordial follicles with less graafian follicles and corpora lutea in ovarian tissues as well as severe induction of iNOS. GEN inhibited the severe decrease in serum AMH and E2 with alleviation of oxidative stress and inflammation significantly compared to CP-treated group. GEN improved ovarian histology and immunostaining of ovarian iNOS disrupted by CP. Finally, it can be concluded that GEN exerted protective effects against CP-induced ovarian toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.
Bucher, J R; Gupta, B N; Adkins, B; Thompson, M; Jameson, C W; Thigpen, J E; Schwetz, B A
1987-01-01
Male and female F344/N rats and B6C3F1 mice were exposed to lethal and sublethal concentrations of methyl isocyanate by inhalation. Mortality, clinical signs, body and organ weights, and changes in clinical pathology and hematology were monitored immediately after 2-hr exposures and during the ensuing 3 months. Additional studies investigated the possible involvement of cyanide in the toxicity of methyl isocyanate. During exposures, signs of restlessness, lacrimation, and a reddish discharge from the nose and mouth were evident in rats and mice. Following exposures, rats and mice were dyspneic and weak. Deaths of rats and mice exposed to lethal concentrations (20 to 30 ppm) began within 15-18 hr, with males more prone to early death than females. A second wave of deaths occurred after 8 to 10 days, affecting primarily female rats and mice exposed to 20 to 30 ppm of methyl isocyanate, and male and female rats exposed to 10 ppm. Most deaths occurred during the first month following the exposures and were preceded by periods of severe respiratory distress. Body weights decreased in proportion to dose early, but then weight gain resumed in survivors at control rates. The only organ with a consistent, dose-related weight change was the lung, which was heavier throughout the studies in animals exposed to high concentrations of methyl isocyanate. No significant clinical pathology, or hematologic changes were observed in exposed rats. Blood and brain cholinesterase were not inhibited. Studies attempting to measure cyanide in the blood of methyl isocyanate-exposed rats, and attempting to affect lethality with a cyanide antidote (sodium nitrite and sodium thiosulfate) gave negative results.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3622444
Determinants of Toxicity of Environmental Asbestos Fibers ...
Recent EPA-led studies have addressed the comparative toxicity and pathological mechanisms of environmental asbestos samples from Libby, Montana and other communities in the United States. Longer amosite fibers induce a 4-10 fold greater induction of pro-inflammatory mediators COX-2 and HO-1 than Libby fibers in human airway epithelial cells, as well as a number of other genes involved in cellular stress and toxicity. Similarly, equal mass doses of longer amosite fibers administered intratracheally to F344 rats cause greater pathological effects than Libby fibers, from 1 day to 2 years post-exposure. However, both intratracheal and inhalation studies show comparable effects of Libby fibers and shorter UICC amosite fibers. Dosimetry modeling and potency analysis studies are using these data to predict effects in humans. Libby fibers induce an acute phase response and systemic increases in selected markers of inflammation, and induce components of the NALP-3 inflammasome in the lung, while surface complexed iron inhibits these responses. Libby fibers alter genes involved in inflammation, immune regulation, and cell-cycle control, and also induce autoimmune responses in a rat model. Comparative toxicity studies showed that chrysotile fibers from Sumas Mountain, Washington caused greater lung interstitial fibrosis than Libby fibers, which were significantly more potent than tremolite fibers from El Dorado, California and actinolite “cleavage fragments” from
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hietbrink, B.E.; Yam, K.M.
1964-10-31
A study was conducted to determine the effect of dibenzyline, dihydroergotamine, and adrenal demedullation on the mercaptoethylamine-induced increase in the blood glucose level of adult female rats. The results of these studies showed that the administration of dibenzyline or dihydroergotamine 10 min before 200 mg/kg of MEA inhibited the marked increase in blood glucose levels usually observed following this dose of MEA and substantially reduced the duration of action of this sulfur-containing compound. Adrenal demedullation almost completely prevented the increase in blood glucose levels caused by 200 mg/ kg of MEA. MEA caused a marked hypoglycemia in the demedullated animalsmore » during the latter part of the 5-hr observation period. Results of experiments on the influence of chronic administration of MEA on the blood glucose level of the rat indicated that repeated doses of MEA do not appear to cause drug tolerance. Studies on the influence of MEA on the acetylcholinesterase activity of the brain and serum of rats indicated that the gross toxic symptoms observed following the administration of MEA were not due to cholinesterase inhibition. The results of preliminary studies on the influence of sodium pentobarbital on the acute toxicity of MEA indicated that 25 mg/kg of pentobarbital prevented the lethal effect of doses of MEA as great as 325 mg/kg. (auth)« less
Characterisation and toxicological assessment of Neutral Methacrylate Copolymer for GRAS evaluation.
Eisele, Johanna; Haynes, Geoff; Kreuzer, Knut; Rosamilia, Tiana
2013-12-01
Neutral Methacrylate Copolymer is a fully polymerised copolymer used in the pharmaceutical industry to permit pH-independent delayed release of active ingredients from oral dosage forms. This function has potential use with food supplements and this article describes available information on the safety of the substance. Oral administration of radiolabelled copolymer to rats resulted in the detection of chemically unchanged copolymer in the faeces, with negligible absorption. Safety studies revealed no adverse toxicity following repeated administration at doses of up to 2000 mg/kg bw/d in a sub-chronic study in rats or 250 mg/kg bw/d in a sub-chronic study in dogs. No reproductive toxicity occurred at up to 2000 mg/kg bw/d in rats or rabbits. The substance shows no evidence of genotoxicity, has low acute toxicity and no irritation or sensitisation potential. An ADI value of 20 mg/kg bw was concluded from two alternative approaches. Daily exposure from use in dietary supplements is estimated as up to 10.0 mg/kg bw in adults and 13.3 mg/kg bw in children. There would therefore appear to be no safety concerns under the intended conditions of use. The information provided is intended to support an evaluation that the substance may be "generally recognized as safe" (GRAS). Copyright © 2013 Elsevier Inc. All rights reserved.
Safety and toxicological evaluation of Meratrim®: an herbal formulation for weight management.
Saiyed, Zainulabedin M; Sengupta, Krishanu; Krishnaraju, Alluri V; Trimurtulu, Golakoti; Lau, Francis C; Lugo, James P
2015-04-01
Meratrim is a unique dietary ingredient consisting of extracts from Sphaeranthus indicus flower heads and Garcinia mangostana fruit rind. Clinical studies have demonstrated that Meratrim is effective and well-tolerated in weight management. Herein we assessed the broad spectrum safety of Meratrim in a battery of in vitro and animal toxicological studies including a sub-chronic repeated-dose 13-week oral toxicity study to determine the no-observable-adverse-effect-level (NOAEL). The LD50 levels of Meratrim in Sprague-Dawley (SD) rats, as determined by the acute oral and dermal toxicity studies, were >5000 and >2000 mg/kg body weight, respectively. The primary skin and eye irritation tests classified Meratrim as non-irritating to the skin and mildly irritating to the eye. Genotoxicity studies showed that Meratrim is non-mutagenic. In the repeated-dose 13-week oral toxicity study, SD rats were orally gavaged with Meratrim at 0, 250, 500 or 1000 mg/kg/day. No morbidity, mortality, or significant adverse events were observed either during the course of the study or on the 13th week. The NOAEL of Meratrim was concluded to be 1000 mg/kg of body weight/day in male and female SD rats. These results, combined with the tolerability of Meratrim in the human clinical trials, demonstrate the broad spectrum safety of Meratrim. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Two-week aerosol inhalation study on polyethylene glycol (PEG) 3350 in F-344 rats.
Klonne, D R; Dodd, D E; Losco, P E; Troup, C M; Tyler, T R
1989-03-01
PEGs in the 3000 to 4000 MW range are used in many pharmaceutical and cosmetic applications; they produce little ocular or dermal irritation and have extremely low acute and subchronic toxicity by oral and dermal routes of administration. However, little information exists on the potential of aerosols of these materials to produce adverse health effects. F-344 rats were exposed to aerosols of PEG 3350 (20% w:w in water) at 0, 109, 567, or 1008 (highest attainable) mg/m3 for 6 hr/d, 5 d/wk for 2 wk. No exposure-related toxicity was found with regard to clinical signs, ophthalmology, serum chemistry, urinalysis, or gross pathology. Exposure-related effects included: a 50% increase in the neutrophil count (males only) at 1008 mg/m3; decreased body weight gain (16%) for both the 567 and 1008 mg/m3 groups (males only); absolute lung weights of both sexes were increased 10 and 18% for the 567 and 1008 mg/m3 groups, respectively. A slight increase in the number of macrophages in the alveoli was the only change observed histologically in all PEG 3350-exposed groups. Therefore, inhalation of aerosols of PEG 3350 at concentrations up to 1008 mg/m3 produced relatively little toxicity in rats, the lung was the target organ, and the no-observable-effect-level was between 109 to 567 mg/m3.
Kujur, R. S.; Singh, Vishakha; Ram, Mahendra; Yadava, Harlokesh Narayan; Singh, K. K.; Kumari, Suruchi; Roy, B. K.
2010-01-01
Background: Stevia rebaudiana regulates blood sugar, prevents hypertension and tooth decay. Other studies have shown that it has antibacterial as well as antiviral property. Methods: Preliminary phytochemical screening of aqueous, ether and methanolic extracts of S. rebaudiana was done. Acute and sub-acute toxicity were conducted on twenty four Albino rats, divided into one control (Group I) and three treatment groups viz. aqueous extract (Group II), ether extract (Group III) and methanolic extract (Group IV). For the study of antidiabetic effect of S. rebaudiana rats were divided into seven groups (n=6). Diabetes was induced by a single dose of 5% alloxan monohydrate (125 mg/kg, i.p.) after 24 hour fasting.Blood samples were analysed on day 0, 1, 5, 7, 14 and 28. Results: Phytochemical tests showed presence of different kinds of phyto-constituents in aqueous, ether and methanol extract of Stevia rebaudiana leaves. Daily single dose (2.0 g/kg) administration of aqueous extract (A.E.) , ether extract (E.E.) and methanol extract (M.E.) for 28 days of S. rebaudiana could not show any significant change in ALT and AST levels in rats. Blood sugar level was found to be decreased on day 28 in groups of rats treated with A.E., E.E. and M.E. of S. rebaudiana. Conclusion: The extracts of Stevioside rebaudiana could decrease the blood glucose level in diabetic rats in time dependent manner. PMID:21808578
NASA Astrophysics Data System (ADS)
Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Tomonaga, Taisuke; Oyabu, Takako; Myojo, Toshihiko; Kawai, Kazuaki; Yatera, Kazuhiro; Shimada, Manabu; Kubo, Masaru; Yamamoto, Kazuhiro; Kitajima, Shinichi; Kuroda, Etsushi; Kawaguchi, Kenji; Sasaki, Takeshi
2015-11-01
We performed inhalation and intratracheal instillation studies of cerium dioxide (CeO2) nanoparticles in order to investigate their pulmonary toxicity, and observed pulmonary inflammation not only in the acute and but also in the chronic phases. In the intratracheal instillation study, F344 rats were exposed to 0.2 mg or 1 mg of CeO2 nanoparticles. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the instillation. In the inhalation study, rats were exposed to the maximum concentration of inhaled CeO2 nanoparticles (2, 10 mg/m3, respectively) for 4 weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were examined from 3 days to 3 months after the end of the exposure. The intratracheal instillation of CeO2 nanoparticles caused a persistent increase in the total and neutrophil number in BALF and in the concentration of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in BALF during the observation time. The inhalation of CeO2 nanoparticles also induced a persistent influx of neutrophils and expression of CINC-1, CINC-2, and HO-1 in BALF. Pathological features revealed that inflammatory cells, including macrophages and neutrophils, invaded the alveolar space in both studies. Taken together, the CeO2 nanoparticles induced not only acute but also chronic inflammation in the lung, suggesting that CeO2 nanoparticles have a pulmonary toxicity that can lead to irreversible lesions.
Carrard, V C; Pires, A S; Mendez, M; Mattos, F; Moreira, J C F; Sant'Ana Filho, M
2009-06-01
The aim of this study was to evaluate the effects of acute alcohol consumption and vitamin E co-treatment upon oxidative stress parameters in rats tongue. Thirty-eight, Wistar rats were separated into five groups (alcohol, alcohol/vitamin E, control, Tween, vitamin E). Alcohol and alcohol vitamin E groups had the standard diet, and 40% alcohol on drinking water. Other groups were fed with the same standard diet and water ad libitum. Vitamin E was given by gavage to vitamin E and alcohol/vitamin E rats twice a week. Alcohol and control groups were subjected to saline gavage and Tween group to 5% Tween 80 solution, the vitamin E vehicle. At day 14, the animals were anesthetized and specimens were obtained from tongue. Lipid peroxidation (TBARS), protein oxidative damage, catalase (CAT) and superoxide dismutase (SOD) activities were quantified. Alcohol group decreased TBARS in relation to control group and alcohol vitamin-treated animals decreased TBARS when compared to Tween and vitamin E groups. SOD activity was lower and CAT activity was higher in animals treated with both alcohol and vitamin E. These results suggest that short-term alcohol consumption decreases lipid peroxidation levels. Alternatively, alcohol/vitamin E group increased CAT, showing the toxicity of this association.
Khan, Mohammad Imtiyaj; Denny Joseph, K M; Muralidhara; Ramesh, H P; Giridhar, P; Ravishankar, G A
2011-12-01
Rivina humilis L. (Phytolaccaceae) accumulates vacuolar pigments betalains. These pigments are synthesized by plants of 11 families in the order caryophyllales. Red beet is the only industrial source of these hydrophilic and low acidic pigments. Betalains rich R. humilis berry juice (RBJ) could be used as alternative source of these pigments. However, there is no information on safety of these berries. In this research work, RBJ was fed to adult (single-dose: 1, 2 and 5 g RBJ/kg bw) and growing (repeated-dosing: 2.5 and 5 g RBJ/kg bw for 35 days; dietary feeding: 0.5%, 1% and 2% RBJ in diet, w/w for 90 days) male rats to assess acute, subacute and subchronic toxic responses. In all the three studies, RBJ was well tolerated plus the feed intake, body and organ weights of RBJ administered groups were comparable to that of untreated control rats. Data on hematology, histology of vital organs, biochemical measurements in serum and liver of RBJ treated rats were comparable to that of control in repeated-dosing and subchronic dietary study. These results suggest that intake of RBJ does not affect growth and normal biochemical homeostasis. Hence, RBJ is safe to consume without any adverse effects in the body. Copyright © 2011 Elsevier Ltd. All rights reserved.
Acute and Two-Week Inhalation Toxicity Studies in Rats for Polyalphaolefin (PAO) Fluid
2017-04-01
toxicological evaluation. The PAO fluid was stored in a well ventilated area at room temperature . The material was used undiluted (neat...decreased weight gain. Those effects diminished after a day, and the animals’ food and water consumption appeared to return to normal two days after...weight gain during the 24-hour period following exposure. Those effects appeared to diminish by the next day, when food and water consumption returned
Contribution of Va24Vb11 natural killer T cells in Wilsonian hepatitis.
Kinebuchi, M; Matsuura, A; Ohya, K; Abo, W; Kitazawa, J
2005-01-01
Wilson disease (WD) is an autosomal recessive disorder of copper transport, resulting in copper accumulation and toxicity to the liver and brain. There is no evidence that the WD patient's immune system attacks copper accumulated hepatocytes. Here we describe that the frequency and absolute number of Valpha24+Vbeta11+ natural killer T (NKT) cells were significantly increased in 3 cases of WD, whereas those of CD3+CD161+ NKT cells were within the normal range. Patients no. 1 and 2 had a presymptomatic form of WD. Their tissue specimens showed pathological changes of mild degeneration of hepatocytes with a few infiltrating mononuclear cells and a low degree of fatty change. Patient no. 3 displayed fulminant hepatitis with Coombs-negative haemolytic anaemia. The tissue specimens of patient no. 3 showed macronodular cirrhosis with thick fibrosis, inflammatory infiltrates and spotty necrosis. Human Valpha24+Vbeta11+ NKT cells are almost equal to CD1d-restricted NKT cells. Therefore we investigated CD1d-restricted NKT cells in the LEC rat as an animal model of WD. In LEC rats before hepatitis onset, the number and phenotype of liver NKT cells were normal. At about 4 months of age all LEC rats developed acute hepatitis accompanied by acute jaundice, and CD161high NKT cells developed in their livers. CD161highalphabetaTCRbright NKT cells developed in some of them. Their hepatitis was severe. CD161highalphabetaTCRbright NKT cells expressed an invariant rat Valpha14-Jalpha281 chain, which is CD1d-restricted. Furthermore, liver lymphocytes in the acute jaundiced LEC rats with CD161highalphabetaTCRbright NKT cells had significant and CD1d-specific cytotoxic activity.
Ateba, Sylvin Benjamin; Simo, Rudy Valdès; Mbanya, Jean Claude; Krenn, Liselotte; Njamen, Dieudonné
2014-03-01
Despite widespread use of Eriosema laurentii De Wild (Leguminosae) in West and Central Africa as herbal medicine and food additive the toxicity of this plant is unknown. Therefore, we performed the safety evaluation of a methanol extract (AEL). In acute toxicity, single oral administration of 2000mg/kg AEL caused neither toxicological symptoms nor mortality and the LD50 was estimated >5000mg/kg. In the subchronic oral toxicity, AEL induced no phenotypical signs of toxicity during and after treatment. Only a delayed decrease of relative spleen weight in males at the highest dose of 400mg/kg occurred. High density lipoprotein (HDL) increased significantly in females at 200 and 400mg/kg. Non-persistent increases in alanine aminotransferase activity within normal ranges were noted at 200mg/kg in males and at all doses in females. In males, AEL induced a decrease of white blood cell count at 400mg/kg, whereas lymphocytes increased at 200 and 400mg/kg and granulocytes at 400mg/kg. In females, no differences in haematological parameters occurred. Neither differences in bilirubin, creatinine and total protein levels were observed nor histological alterations in organs. The results indicate a broad safety margin for AEL. Copyright © 2013 Elsevier Ltd. All rights reserved.
In vivo assessment of toxicity and pharmacokinetics of methylglyoxal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Manju; Talukdar, Dipa; Ghosh, Swapna
2006-04-01
Previous in vivo studies from several laboratories had shown remarkable curative effect of methylglyoxal on cancer-bearing animals. In contrast, most of the recent in vitro studies have assigned a toxic role for methylglyoxal. The present study was initiated with the objective to resolve whether methylglyoxal is truly toxic in vivo and to reassess its therapeutic potential. Four species of animals, both rodent and non-rodent, were treated with different doses of methylglyoxal through oral, subcutaneous and intravenous routes. Acute (treatment for only 1 day) toxicity tests had been done with mouse and rat. These animals received 2, 1 and 0.3 gmore » of methylglyoxal/kg of body weight in a day through oral, subcutaneous and intravenous routes respectively. Chronic (treatment for around a month) toxicity test had been done with mouse, rat, rabbit and dog. Mouse, rat and dog received 1, 0.3 and 0.1 g of methylglyoxal/kg of body weight in a day through oral, subcutaneous and intravenous routes respectively. Rabbit received 0.55, 0.3 and 0.1 g of methylglyoxal/kg of body weight in a day through oral, subcutaneous and intravenous routes respectively. It had been observed that methylglyoxal had no deleterious effect on the physical and behavioral pattern of the treated animals. Fertility and teratogenecity studies were done with rats that were subjected to chronic toxicity tests. It had been observed that these animals produced healthy litters indicating no damage of the reproductive systems as well as no deleterious effect on the offspring. Studies on several biochemical and hematological parameters of methylglyoxal-treated rats and dogs and histological studies of several organs of methylglyoxal-treated mouse were performed. These studies indicated that methylglyoxal had no apparent deleterious effect on some vital organs of these animals. A detailed pharmacokinetic study was done with mouse after oral administration of methylglyoxal. The effect of methylglyoxal alone and in combination with creatine and ascorbic acid on cancer-bearing animals had been investigated by measuring the increase in life span and tumor cell growth inhibition. The results indicated that anticancer effect of methylglyoxal was significantly augmented by ascorbic acid and further augmented by ascorbic acid and creatine. Nearly 80% of the animals treated with methylglyoxal plus ascorbic acid plus creatine were completely cured and devoid of any malignant cells within the peritoneal cavity.« less
Reynolds, R C; Chappel, C I
1998-02-01
Sucrose acetate isobutyrate (SAIB), a mixture of esters of sucrose with a composition approximating the name sucrose diacetate hexaisobutyrate, has been used for over 30 yr in many countries as a 'weighting' or 'density-adjusting' agent in non-alcoholic carbonated and non-carbonated beverages. As part of the demonstration of safety of SAIB as a direct food additive in human diets, a program of toxicity testing was started in the late 1950s that culminated in extensive studies of SAIB in rodents, monkeys and humans over the last decade. This review summarizes the toxicity data, accrued up until 1988, that precede the safety studies published elsewhere in this issue. SAIB has been shown to have very low acute and chronic toxicities in rats, monkeys, and, except for effects on the liver, in dogs at feeding levels of up to 10% in the diet. Slight effects seen in rats and monkeys at levels of 10% in the diet are unlikely to be directly caused by exposure to SAIB. In dogs, however, SAIB causes decreases in bromosulfophthalein (BSP) and indocyanine green (ICG) elimination from the serum immediately following a single dose, indicative of interference with biliary excretion. On repeated feeding in dogs, SAIB caused increases in serum alkaline phosphatase levels, but enzymes indicative of toxic effects on the liver were unaffected. On prolonged feeding to dogs, SAIB caused changes in liver morphology revealed by electron microscopy. All of these effects were reversed when SAIB was withdrawn from the diet. The no-effect level for these effects in dogs was near 5 mg/kg body weight, but these effects were not seen in rats fed up to 4 g/kg body weight/day, monkeys fed up to 10 g/kg body weight/day, or humans fed up to 20 mg/kg body weight/day. The toxicity and pharmacological studies in dogs, rats and monkeys suggest that the effect of SAIB on biliary excretion and liver morphology in dogs is essentially pharmacological rather than toxicological in nature and that the difference between the effects in dogs at levels as low as 5 mg/kg body weight/day, and the lack of effects in rats or monkeys at levels up to 10 g/kg/day is not merely a quantitative difference between species, but an absolute qualitative difference.
Strupp, Christian
2011-01-01
The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral toxic properties.
Acute Effects of Ecstasy on Memory Are more Extensive than Chronic Effects.
Shariati, Mohamad Bakhtiar Hesam; Sohrabi, Maryam; Shahidi, Siamak; Nikkhah, Ali; Mirzaei, Fatemeh; Medizadeh, Mehdi; Asl, Sara Soleimani
2014-01-01
Exposure to 3, 4- methylenedioxymethamphetamine (MDMA) could lead to serotonergic system toxicity in the brain. This system is responsible for learning and memory functions. Studies show that MDMA causes memory impairment dose-dependently and acutely. The present study was designed to evaluate the chronic and acute effects of MDMD on spatial memory and acquisition of passive avoidance. Adult male Wistar rats (200-250 g) were given single or multiple injections of MDMA (10 mg/kg, IP). Using passive avoidance and Morris Water Maze (MWM) tasks, learning and spatial memory functions were assessed. The data were analyzed by SPSS 16 software and one- way analysis of variance (ANOVA) test. Our results showed that there were significant differences in latency to enter the dark compartment (STL) between sham and MDMA- treated groups. Acute group significantly showed more STL in comparison with chronic group. Furthermore, MDMA groups spent more time in dark compartment (TDS) than the sham group. Administration of single dose of MDMA significantly caused an increase in TDS compared with the chronic group. In the MWM, MDMA treatment significantly increased the traveled distance and escaped latency compared to the sham group. Like to passive avoidance task, percentage of time spent in the target quadrant in MDMA- treated animals impaired in MWM compared with sham group. These data suggest that MDMA treatment impairs learning and memory functions that are more extensive in acute- treated rats.
Bao, Xuhui; Chandramohan, Vidyalakshmi; Reynolds, Randall P; Norton, John N; Wetsel, William C; Rodriguiz, Ramona M; Aryal, Dipendra K; McLendon, Roger E; Levin, Edward D; Petry, Neil A; Zalutsky, Michael R; Burnett, Bruce K; Kuan, Chien-Tsun; Pastan, Ira H; Bigner, Darell D
2016-04-01
D2C7-(scdsFv)-PE38KDEL (D2C7-IT) is a novel immunotoxin that reacts with wild-type epidermal growth factor receptor (EGFRwt) and mutant EGFRvIII proteins overexpressed in glioblastomas. This study assessed the toxicity of intracerebral administration of D2C7-IT to support an initial Food and Drug Administration Investigational New Drug application. After the optimization of the formulation and administration, two cohorts (an acute and chronic cohort necropsied on study days 5 and 34) of Sprague-Dawley (SD) rats (four groups of 5 males and 5 females) were infused with the D2C7-IT formulation at total doses of 0, 0.05, 0.1, 0.4 μg (the acute cohort) and 0, 0.05, 0.1, 0.35 μg (the chronic cohort) for approximately 72 h by intracerebral convection-enhanced delivery using osmotic pumps. Mortality was observed in the 0.40 μg (5/10 rats) and 0.35 μg (4/10 rats) high-dose groups of each cohort. Body weight loss and abnormal behavior were only revealed in the rats treated with high doses of D2C7-IT. No dose-related effects were observed in clinical laboratory tests in either cohort. A gross pathologic examination of systemic tissues from the high-dose and control groups in both cohorts exhibited no dose-related or drug-related pathologic findings. Brain histopathology revealed the frequent occurrence of dose-related encephalomalacia, edema, and demyelination in the high-dose groups of both cohorts. In this study, the maximum tolerated dose of D2C7-IT was determined to be between 0.10 and 0.35 μg, and the no-observed-adverse-effect-level was 0.05 μg in SD rats. Both parameters were utilized to design the Phase I/II D2C7-IT clinical trial.
Kuca, Kamil; Karasova, Jana Zdarova; Soukup, Ondrej; Kassa, Jiri; Novotna, Eva; Sepsova, Vendula; Horova, Anna; Pejchal, Jaroslav; Hrabinova, Martina; Vodakova, Eva; Jun, Daniel; Nepovimova, Eugenie; Valis, Martin; Musilek, Kamil
2018-01-01
Background Intoxication by nerve agents could be prevented by using small acetylcholinesterase inhibitors (eg, pyridostigmine) for potentially exposed personnel. However, the serious side effects of currently used drugs led to research of novel potent molecules for prophylaxis of organophosphorus intoxication. Methods The molecular design, molecular docking, chemical synthesis, in vitro methods (enzyme inhibition, cytotoxicity, and nicotinic receptors modulation), and in vivo methods (acute toxicity and prophylactic effect) were used to study bispyridinium, bisquinolinium, bisisoquinolinium, and pyridinium-quinolinium/isoquinolinium molecules presented in this study. Results The studied molecules showed non-competitive inhibitory ability towards human acetylcholinesterase in vitro that was further confirmed by molecular modelling studies. Several compounds were selected for further studies. First, their cytotoxicity, nicotinic receptors modulation, and acute toxicity (lethal dose for 50% of laboratory animals [LD50]; mice and rats) were tested to evaluate their safety with promising results. Furthermore, their blood levels were measured to select the appropriate time for prophylactic administration. Finally, the protective ratio of selected compounds against soman-induced toxicity was determined when selected compounds were found similarly potent or only slightly better to standard pyridostigmine. Conclusion The presented small bisquaternary molecules did not show overall benefit in prophylaxis of soman-induced in vivo toxicity. PMID:29563775
Porto, Luiz Carlos Santos; da Silva, Juliana; Ferraz, Alexandre de Barros Falcão; Corrêa, Dione Silva; dos Santos, Marcela Silva; Porto, Caroline Dalla Lana; Picada, Jaqueline Nascimento
2013-09-01
The infusion of pecan shells has been used to prevent and control hypercholesterolemia, diabetes and toxicological diseases. The aim of the present study was to evaluate toxicity and mutagenic effects of pecan shells aqueous extract (PSAE). Wistar rats were treated with a single dose of 300 or 2000 mg/kg of PSAE in the acute toxicity test. For the subacute test, the animals received 10 or 100 mg/kg of PSAE for 28 days. The mutagenicity was evaluated using Salmonella/microsome assay in TA1535, TA1537, TA98, TA100 and TA102 S. typhimurium strains in the presence and absence of metabolic activation (S9 mix) and micronucleus test in bone marrow. HPLC analyses indicated the presence of tannins, flavonoids, gallic and ellagic acids. Except for triglycerides, all treated groups presented normal hematological and biochemical parameters. Lower levels of triglycerides and weight loss were observed in the 100 mg/kg group. Mutagenic activities were not detected in S. typhimurium strains and by the micronucleus test. Based on these results, PSAE was not able to induce chromosomal or point mutations, under the conditions tested. The 100mg/kg dose showed significant antihyperlipidemic action, with no severe toxic effects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lock, E A; Ellis, M K; Gaskin, P; Robinson, M; Auton, T R; Provan, W M; Smith, L L; Prisbylla, M P; Mutter, L C; Lee, D L
1998-08-01
NTBC is a triketone with herbicidal activity that has been shown to have a novel mode of action by inhibiting the enzyme 4-hydroxyphenylpyruvate dioxygenase in plants. Early studies on the toxicity of this compound found that rats treated with NTBC developed corneal lesions. Investigations aimed at understanding the mechanistic basis for the ocular toxicity discovered that the rats developed tyrosinaemia and excreted large amounts of 4-hydroxyphenylpyruvate and 4-hydroxyphenyllactate, owing to inhibition of the hepatic enzyme 4-hydroxyphenylpyruvate dioxygenase. The corneal lesions resemble those seen when rats are fed a diet supplemented with tyrosine, leading us to conclude that the ocular toxicity seen with NTBC is a consequence of a marked and sustained tyrosinaemia. Studies in collaboration with Professor Sven Lindstedt showed that NTBC was a potent inhibitor of purified human liver 4-hydroxyphenylpyruvate dioxygenase. This interaction lead to the concept of using NTBC to treat patients with tyrosinaemia type 1, to block or reduce the formation of toxic metabolites such as succinylacetoacetate in the liver. Zeneca Agrochemicals and Zeneca Pharmaceuticals made NTBC available for clinical use and, with the approval of the Swedish Medical Products Agency, a seriously ill child with an acute form of tyrosinaemia type 1 was successfully treated in February 1991. Subsequently, other children with this inborn error of metabolism in Sweden and other countries have been treated with NTBC. The drug is now available to those in need via Swedish Orphan AB.
Antiulcerogenic activity of Carica papaya seed in rats.
Pinto, Lorraine Aparecida; Cordeiro, Kátia Wolff; Carrasco, Viviane; Carollo, Carlos Alexandre; Cardoso, Cláudia Andréa Lima; Argadoña, Eliana Janet Sanjinez; Freitas, Karine de Cássia
2015-03-01
The purpose of the present study was to evaluate the gastroprotective and healing effects of the methanolic extract of the seed of the papaya Carica papaya L. (MECP) in rats. Models of acute gastric ulcer induction by ethanol and indomethacin and of chronic ulcer by acetic acid were used. The gastric juice and mucus parameters were evaluated using the pylorus ligation model, and the involvement of sulfhydryl compounds (GSH) and nitric oxide in the gastroprotective effect was analyzed using the ethanol model. The toxicity was assessed through toxicity tests. No signs of toxicity were observed when the rats received a single dose of 2000 mg/kg of extract. The MECP in doses of 125, 250, and 500 mg/kg significantly reduced the gastric lesion with 56, 76, and 82 % inhibition, respectively, and a dose of 30 mg/kg lansoprazole showed 79 % inhibition in the ethanol model. MECP (125, 250, 500 mg/kg) and cimetidine (200 mg/kg) reduced the gastric lesion in the indomethacin model, with 62, 67, 81, and 85 % inhibition, respectively. The MECP (500 mg/kg) and cimetidine (200 mg/kg) treatments showed a reduction in ulcerative symptoms induced by acetic acid by 84 and 73 %, respectively. The antiulcerogenic activity seems to involve GSH because the inhibition dropped from 72 to 13 % in the presence of a GSH inhibitor. Moreover, the MECP showed systemic action, increasing the mucus production and decreasing gastric acidity. Treatments with MECP induce gastroprotection without signs of toxicity. This effect seems to involve sulfhydryl compounds, increased mucus, and reduced gastric acidity.
Proanthocyanidin-rich date seed extract protects against chemically induced hepatorenal toxicity.
Ahmed, Atallah F; Al-Qahtani, Jawaher H; Al-Yousef, Hanan M; Al-Said, Mansour S; Ashour, AbdelKader E; Al-Sohaibani, Mohammed; Rafatullah, Syed
2015-03-01
A hydroacetone extract was prepared from seeds of Phoenix dactylifera L. var. Khalas, which is an industrial by-product of date processing. The proanthocyanidin nature of the extract (coded as DTX) was characterized by phytochemical and nuclear magnetic resonance (NMR) analyses. The total phenol/proanthocyanidin content and antioxidant activity of DTX were estimated by Folin-Ciocalteu, vanillin-sulfuric acid, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. The hepatorenal protective activity of DTX was evaluated using CCl4-induced toxicity model in rats, in comparison with silymarin (SYL). Results of the histopathological examination and measurements of various hepatorenal serum indices and tissue biochemical markers demonstrated that DTX displayed marked protective potential against CCl4-induced liver and kidney injury at 100 mg/kg/rat. Relative to the control CCl4-intoxicated group, pretreatment with DTX significantly (P<.001) suppressed the elevated serum levels of alanine aminotransferase and aspartate aminotransferase (ALT and AST), alkaline phosphatase (ALP), γ-glutamyl transferase (GGT), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), bilirubin, creatinine, and calcium, whereas it significantly (P<.001) increased the diminished serum levels of high-density lipoprotein cholesterol (HDL-C) and total protein (TP). Moreover, DTX significantly decreased malondialdehyde (MDA) formation and increased TP synthesis in hepatorenal tissues compared with the intoxicated control. The improvement in biochemical parameters by DTX was observed in a dose-dependent manner and confirmed by restoration of normal histological features. The acute toxicity test of DTX in rats revealed safety of the extract. This study reveals that DTX enhances the recovery from xenobiotics-induced toxicity initiated by free radicals.
Acute and Subchronic Toxicity of Inhaled Toluene in Male ...
The effects of exposure to volatile organic compounds (VOCs), which are of concern to the EPA, are poorly understood, in part because of insufficient characterization of how human exposure duration impacts VOC effects. Two inhalation studies with multiple endpoints, one acute and one subchronic, were conducted to seek effects of the VOC, toluene, in rats and to compare the effects between acute and subchronic exposures. Adult male Long-Evans rats were exposed to toluene vapor (n = 6 per group) at a concentration of 0 or l 019 ± 14 ppm for 6 h in the acute study and at 0 ± 0, 10 ± 1.4, 97 ± 7, or 995 ± 43 ppm for 6 h/d, 5 d/week for 13 weeksin the subchronic study. For the acute study, brains were dissected on ice within 30 min of the end of exposure, while for the subchronic study, brains were dissected 18 h after the last exposure. Frontal cortex, hippocampus, cerebellum, and striatum were assayed for a variety of oxidative stress (OS) parameters including total aconitase (TA), protein carbonyls, glutathione peroxidase (GPX), glutathione reductase (GRD), glutathione transferase (GST), y-glutamylcysteine synthetase (GCS), superoxide dismutase (SOD), total antioxidants (TAS), NADPH quinone oxidoreductase- 1 (NQO1 ), and NADH ubiquinone reductase (UBIQ-RD) activities using commercially available kits. Following acute exposure, UBIQ-RD, GCS and GRD were increased significantly only in the cerebellum, while TAS was increased in frontal cortex. On the other
Aluminum Citrate Prevents Renal Injury from Calcium Oxalate Crystal Deposition
Besenhofer, Lauren M.; Cain, Marie C.; Dunning, Cody
2012-01-01
Calcium oxalate monohydrate crystals are responsible for the kidney injury associated with exposure to ethylene glycol or severe hyperoxaluria. Current treatment strategies target the formation of calcium oxalate but not its interaction with kidney tissue. Because aluminum citrate blocks calcium oxalate binding and toxicity in human kidney cells, it may provide a different therapeutic approach to calcium oxalate-induced injury. Here, we tested the effects of aluminum citrate and sodium citrate in a Wistar rat model of acute high-dose ethylene glycol exposure. Aluminum citrate, but not sodium citrate, attenuated increases in urea nitrogen, creatinine, and the ratio of kidney to body weight in ethylene glycol–treated rats. Compared with ethylene glycol alone, the addition of aluminum citrate significantly increased the urinary excretion of both crystalline calcium and crystalline oxalate and decreased the deposition of crystals in renal tissue. In vitro, aluminum citrate interacted directly with oxalate crystals to inhibit their uptake by proximal tubule cells. These results suggest that treating with aluminum citrate attenuates renal injury in rats with severe ethylene glycol toxicity, apparently by inhibiting calcium oxalate’s interaction with, and retention by, the kidney epithelium. PMID:23138489
Efficacy of vitamin C against liver and kidney damage induced by paraquat toxicity.
Awadalla, Eatemad A
2012-07-01
Paraquat has been demonstrated to be a highly toxic compound for humans and animals and many cases of acute poisoning and death have been reported over the past few decades. The current experiment aimed to examine if vitamin C (ascorbic acid) alleviates the morphological changes induced by paraquat (PQ) administration in the liver and kidney of male albino rats. Male adult rats received paraquat (PQ) (1.5 mg/kg body weight) daily for three weeks. Vitamin C (VC) at a dose of 20 mg/kg body weight was given concomitantly with PQ to rats. Animals were divided into three groups in this experiment (control, PQ and PQ+VC). The morphopathological manifestations were investigated in tissues from liver and kidney. As expected, PQ administration induced marked changes in the morphological structure of the liver and kidney in PQ demonstrated animals. Importantly, vitamin C administration restored PQ-induced changes in the studied organs. Vitamin C administration attenuated the morphological damages induced by PQ in the liver and kidney of experimental animals. Our results suggest an antitoxic effect of vitamin C against paraquat. Copyright © 2010 Elsevier GmbH. All rights reserved.
Comparative study of toxicity of 4-nitrophenol and 2,4-dinitrophenol in newborn and young rats.
Koizumi, M; Yamamoto, Y; Ito, Y; Takano, M; Enami, T; Kamata, E; Hasegawa, R
2001-12-01
The toxicities of 4-nitrophenol and 2,4-dinitrophenol in newborn and young rats was examined and the susceptibility of newborn rats was analyzed in terms of presumed unequivocally toxic and no observed adverse effect levels (NOAELs). In the 18-day repeated dose newborn rat study, 4-nitrophenol was orally given from Day 4 to Day 21 after birth but did not induce any toxicity up to 160 mg/kg in the main study, although it induced death in one of six males at 160 mg/kg, and three of six males and one of six females at 230 mg/kg in a prior dose-finding study. In the 28-day repeated dose oral toxicity study starting at 6 weeks of age, 4-nitrophenol caused the death of most males and females at 1,000 mg/kg but was not toxic at 400 mg/kg except for male rat-specific renal toxicity. As unequivocally toxic levels were considered to be 230 mg/kg/day in newborn rats and 600 to 800 mg/kg/day in young rats, and NOAELs were 110 mg/kg/day in newborn rats and 400 mg/kg/day in young rats, the susceptibility of the newborn to 4-nitrophenol appears to be 2.5 to 4 times higher than that of young animals. In the newborn rat study of 2,4-dinitrophenol, animals died at 30 mg/kg in the dose-finding study and significant lowering of body and organ weights was observed at 20 mg/kg in the main study. In the 28-day young rat study, clear toxic signs followed by death occurred at 80 mg/kg but there was no definitive toxicity at 20 mg/kg. As unequivocally toxic levels and NOAELs were considered to be 30 and 10 mg/kg/day in newborn rats and 80 and 20 mg/kg/day in young rats, respectively, the toxicity of 2,4-dinitrophenol in newborns again seems to be 2 to 3 times stronger than in young rats. Abnormalities of external development and reflex ontogeny in the newborn were not observed with either chemical. Based on these results, it can be concluded that the toxic response in newborn rats is at most 4 times higher than that in young rats, at least in the cases of 4-nitrophenol and 2,4-dinitrophenol.
Hepatic and renal oxidative stress in acute toxicity of N-nitrosodiethylamine in rats.
Bansal, A K; Trivedi, R; Soni, G L; Bhatnagar, D
2000-09-01
Nitrosoamines such as N-nitrosodiethylamine (NDEA) produce oxidative stress due to generation of reactive oxygen species and may alter antioxidant defence system in the tissues. NDEA was administered ip as a single dose to rats in LD50 or in lower amounts and the animals were sacrificed after 0-48 hr of treatment. The results showed that lipid peroxidation in liver increased, however no significant increase in kidney LPO was observed after NDEA administration. Superoxide dismutase (SOD) and glutathione reductase (GSH-R) activity increased in liver, however, catalase (CAT) activity in liver was inhibited in NDEA treated rats. Kidney showed an increase in SOD activity after an initial decrease along with increase in GSH-R activity in NDEA treated rats. However, kidney CAT activity was not significantly altered in NDEA intoxicated rats. Serum transaminases, serum alkaline phosphatase blood urea nitrogen, serum creatinine and scrum proteins were elevated in NDEA treated rats. The results indicate NDEA-induced oxidative stress and alteration in antioxidant enzymes in liver and kidney to neutralise oxidative stress.
Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Kodavanti, Urmila P.; Ward, William O.; Peltier, Richard E.; Zelikoff, Judith; Chen, Lung-chi
2015-01-01
First responders (FR) present at Ground Zero in the first 72 h after the World Trade Center (WTC) collapsed have progressively exhibited significant respiratory injuries. The few toxicology studies performed to date evaluated effects from just fine (<2.5 µm) WTC dusts; none examined health effects/toxicities from atmospheres bearing larger particle sizes, despite the fact the majority (496%) of dusts were >10µm and most FR likely entrained dusts by mouth breathing. Using a system that generated/delivered supercoarse (10–53 µm) WTC dusts to F344 rats (in a manner that mimicked FR exposures), this study sought to examine potential toxicities in the lungs. In this exploratory study, rats were exposed for 2 h to 100 mg WTC dust/m3 (while under isoflurane [ISO] anesthesia) or an air/ISO mixture; this dose conservatively modeled likely exposures by mouth-breathing FR facing ≈750–1000 mg WTC dust/m3. Lungs were harvested 2 h post-exposure and total RNA extracted for subsequent global gene expression analysis. Among the > 1000 genes affected by WTC dust (under ISO) or ISO alone, 166 were unique to the dust exposure. In many instances, genes maximally-induced by the WTC dust exposure (relative to in naïve rats) were unchanged/inhibited by ISO only; similarly, several genes maximally inhibited in WTC dust rats were largely induced/unchanged in rats that received ISO only. These outcomes reflect likely contrasting effects of ISO and the WTC dust on lung gene expression. Overall, the data show that lungs of rats exposed to WTC dust (under ISO) – after accounting for any impact from ISO alone – displayed increased expression of genes related to lung inflammation, oxidative stress, and cell cycle control, while several involved in anti-oxidant function were inhibited. These changes suggested acute inflammogenic effects and oxidative stress in the lungs of WTC dust-exposed rats. This study, thus, concludes that a single very high exposure to WTC dusts could potentially have adversely affected the respiratory system – in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/ biochemical changes in situ. PMID:24911330
Analysis of the acute response of Galleria mellonella larvae to potassium nitrate.
Maguire, Ronan; Kunc, Martin; Hyrsl, Pavel; Kavanagh, Kevin
2017-05-01
Potassium nitrate (E252) is widely used as a food preservative and has applications in the treatment of high blood pressure however high doses are carcinogenic. Larvae of Galleria mellonella were administered potassium nitrate to establish whether the acute effects in larvae correlated with those evident in mammals. Intra-haemocoel injection of potassium nitrate resulted in a significant increase in the density of circulating haemocytes and a small change in the relative proportions of haemocytes but haemocytes showed a reduced fungicidal ability. Potassium nitrate administration resulted in increased superoxide dismutase activity and in the abundance of a range of proteins associated with mitochondrial function (e.g. mitochondrial aldehyde dehydrogenase, putative mitochondrial Mn superoxide dismutase), metabolism (e.g. triosephosphate isomerase, glyceraldehyde 3 phosphate dehydrogenase) and nitrate metabolism (e.g. aliphatic nitrilase, glutathione S-transferase). A strong correlation exists between the toxicity of a range of food preservatives when tested in G. mellonella larvae and rats. In this work a correlation between the effect of potassium nitrate in larvae and mammals is shown and opens the way to the utilization of insects for studying the in vivo acute and chronic toxicity of xenobiotics. Copyright © 2017 Elsevier Inc. All rights reserved.
Van Cott, Andrew; Hastings, Charles E; Landsiedel, Robert; Kolle, Susanne; Stinchcombe, Stefan
2018-02-01
In vivo acute systemic testing is a regulatory requirement for agrochemical formulations. GHS specifies an alternative computational approach (GHS additivity formula) for calculating the acute toxicity of mixtures. We collected acute systemic toxicity data from formulations that contained one of several acutely-toxic active ingredients. The resulting acute data set includes 210 formulations tested for oral toxicity, 128 formulations tested for inhalation toxicity and 31 formulations tested for dermal toxicity. The GHS additivity formula was applied to each of these formulations and compared with the experimental in vivo result. In the acute oral assay, the GHS additivity formula misclassified 110 formulations using the GHS classification criteria (48% accuracy) and 119 formulations using the USEPA classification criteria (43% accuracy). With acute inhalation, the GHS additivity formula misclassified 50 formulations using the GHS classification criteria (61% accuracy) and 34 formulations using the USEPA classification criteria (73% accuracy). For acute dermal toxicity, the GHS additivity formula misclassified 16 formulations using the GHS classification criteria (48% accuracy) and 20 formulations using the USEPA classification criteria (36% accuracy). This data indicates the acute systemic toxicity of many formulations is not the sum of the ingredients' toxicity (additivity); but rather, ingredients in a formulation can interact to result in lower or higher toxicity than predicted by the GHS additivity formula. Copyright © 2018 Elsevier Inc. All rights reserved.
Haloactamides versus halomethanes formation and toxicity in chloraminated drinking water.
Yang, Fan; Zhang, Jing; Chu, Wenhai; Yin, Daqiang; Templeton, Michael R
2014-06-15
In this study we quantified the concentrations of nine haloacetamides (HAcAms) and nine halomethanes (HMs) in the final waters of five drinking water treatment plants (DWTPs) that use either chlorination or chloramination for disinfection and evaluated the toxicity of dichloroacetamide (DCAcAm) and dichloromethane (DCM) in normal rat kidney (NRK) cells using four in vitro toxicity assays. All the DWTPs final waters contained primarily di-HAcAms, followed by tri- and mono-HAcAms, and DCAcAm was the most abundant species of the 9 HAcAms, regardless of chlorination or chloramination being applied. In the final waters of DWTPs using chlorination, tri-HMs (trihalomethanes, THMs) accounted for the majority of HMs, whereas chloramination resulted in more di-HMs (especially DCM) than THMs. All four in vitro toxicity assays indicated that the NRK cell chronic cytotoxicity and acute genotoxicity of DCAcAm were substantially higher than that of DCM. In view of observed occurrence concentrations and quantified toxicity levels, the findings of this study suggest that DCAcAm represents a higher toxicity risk than DCM in chloraminated drinking waters. Copyright © 2014 Elsevier B.V. All rights reserved.
Acute Human Lethal Toxicity of Agricultural Pesticides: A Prospective Cohort Study
Senarathna, Lalith; Mohamed, Fahim; Gawarammana, Indika; Bowe, Steven J.; Manuweera, Gamini; Buckley, Nicholas A.
2010-01-01
Background Agricultural pesticide poisoning is a major public health problem in the developing world, killing at least 250,000–370,000 people each year. Targeted pesticide restrictions in Sri Lanka over the last 20 years have reduced pesticide deaths by 50% without decreasing agricultural output. However, regulatory decisions have thus far not been based on the human toxicity of formulated agricultural pesticides but on the surrogate of rat toxicity using pure unformulated pesticides. We aimed to determine the relative human toxicity of formulated agricultural pesticides to improve the effectiveness of regulatory policy. Methods and Findings We examined the case fatality of different agricultural pesticides in a prospective cohort of patients presenting with pesticide self-poisoning to two clinical trial centers from April 2002 to November 2008. Identification of the pesticide ingested was based on history or positive identification of the container. A single pesticide was ingested by 9,302 patients. A specific pesticide was identified in 7,461 patients; 1,841 ingested an unknown pesticide. In a subset of 808 patients, the history of ingestion was confirmed by laboratory analysis in 95% of patients. There was a large variation in case fatality between pesticides—from 0% to 42%. This marked variation in lethality was observed for compounds within the same chemical and/or WHO toxicity classification of pesticides and for those used for similar agricultural indications. Conclusion The human data provided toxicity rankings for some pesticides that contrasted strongly with the WHO toxicity classification based on rat toxicity. Basing regulation on human toxicity will make pesticide poisoning less hazardous, preventing hundreds of thousands of deaths globally without compromising agricultural needs. Ongoing monitoring of patterns of use and clinical toxicity for new pesticides is needed to identify highly toxic pesticides in a timely manner. Please see later in the article for the Editors' Summary PMID:21048990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Aschner, Michael
Prophylactic agents acutely administered in response to anticholinesterases intoxication can prevent toxic symptoms, including fasciculations, seizures, convulsions and death. However, anticholinesterases also have long-term unknown pathophysiological effects, making rational prophylaxis/treatment problematic. Increasing evidence suggests that in addition to excessive cholinergic stimulation, organophosphate compounds such as diisopropylphosphorofluoridate (DFP) induce activation of glutamatergic neurons, generation of reactive oxygen (ROS) and nitrogen species (RNS), leading to neurodegeneration. The present study investigated multiple affectors of DFP exposure critical to cerebral oxidative damage and whether antioxidants and NMDA receptor antagonist memantine provide neuroprotection by preventing DFP-induced biochemical and morphometric changes in rat brain. Rats treatedmore » acutely with DFP (1.25 mg/kg, s.c.) developed onset of toxicity signs within 7-15 min that progressed to maximal severity of seizures and fasciculations within 60 min. At this time point, DFP caused significant (p < 0.01) increases in biomarkers of ROS (F{sub 2}-isoprostanes, F{sub 2}-IsoPs; and F{sub 4}-neuroprostanes, F{sub 4}-NeuroPs), RNS (citrulline), and declines in high-energy phosphates (HEP) in rat cerebrum. At the same time, quantitative morphometric analysis of pyramidal neurons of the hippocampal CA1 region revealed significant (p < 0.01) reductions in dendritic lengths and spine density. When rats were pretreated with the antioxidants N-tert-butyl-{alpha}-phenylnitrone (PBN, 200 mg/kg, i.p.), or vitamin E (100 mg/kg, i.p./day for 3 days), or memantine (18 mg/kg, i.p.), significant attenuations in DFP-induced increases in F{sub 2}-IsoPs, F{sub 4}-NeuroPs, citrulline, and depletion of HEP were noted. Furthermore, attenuation in oxidative damage following antioxidants or memantine pretreatment was accompanied by rescue from dendritic degeneration of pyramidal neurons in the CA1 hippocampal area. These findings closely associated DFP-induced lipid peroxidation with dendritic degeneration of pyramidal neurons in the CA1 hippocampal area and point to possible interventions to limit oxidative injury and dendritic degeneration induced by anticholinesterase neurotoxicity.« less
Qinna, N; Taha, H; Matalka, K Z; Badwan, A A
2009-01-01
We present herein a new herbal combination called Etana that is composed of five herbal extracts including Panax quinquelotius (Ginseng), Eurycoma longifolia (Tongkat Ali), Epimedium grandiflorum (Horny goat weed), Centella asiatica (Gotu Kola) and flower pollen extracts. Most of the above-mentioned extracts have a long historical and traditional use for erectile dysfunction (ED). On the basis of the mechanism of action of each of the above, a combination is introduced to overcome several physiological or induced factors of ED. This study was conducted to show an enhancement of erectile function in male rats. The animals were observed for 3 h after each administration for penile erection, genital grooming and copulation mounting, and the penile erection index (PEI) was calculated. The maximum response was observed at the concentration of 7.5 mg kg(-1) of Etana. At a 7.5 mg kg(-1) single dose, the percentage of responding rats was 53+/-7 with a PEI of 337+/-72 compared with 17+/-6 with a PEI of 30+/-10 for control animals. This PEI was significantly (P<0.001) higher than each single component and than the sum of any two herbal components of Etana. When compared with sildenafil citrate, Etana induced more pronounced PEI than 0.36 mg kg(-1), but similar to 0.71 mg kg(-1) of sildenafil. Furthermore, full acute and sub-acute toxicity studies showed no toxic effects of Etana. In conclusion, this study describes a new and safe combination of herbal components that enhance erectile function in male rats. Clinical studies are warranted for evaluating Etana's significance in ED.
Mishra, Vibhuti; Srivastava, Nalini
2015-04-01
Organophosphates (OPs) pesticides are among the most toxic synthetic chemicals purposefully added in the environment. The common use of OP insecticides in public health and agriculture results in an environmental pollution and a number of acute and chronic poisoning events. Present study was aimed to evaluate the potential of monocrotophos and quinalphos to effect the redox status and glutathione (GSH) homeostasis in rat tissues and find out whether antioxidant vitamins have some protection on the pesticide-induced alterations. The results showed that these pesticides alone or in combination, caused decrease in the levels of GSH and the corresponding increase in the levels of GSSG, decreasing the GSH/GSSG ratio. The results also showed that NADPH/NADP(+) and NADH/NAD(+) ratios were decreased in the liver and brain of rats on exposure with mococrotophos, quinalphos, and their mixture. These pesticides, alone or in combination, caused alterations in the activities of GSH reductase and glucose-6-phosphate dehydrogenase in the rat tissues. However, the expression of the GSH recycling enzymes did not show significant alterations as compared to control. From the results, it can be concluded that these pesticides generate oxidative stress but their effects were not synergistic when given together and prior feeding of antioxidant vitamins tend to reduce the toxicities of these pesticides. Copyright © 2013 Wiley Periodicals, Inc.
Kameni Poumeni, Mireille; Bilanda, Danielle Claude; Dzeufiet Djomeni, Paul Désiré; Mengue Ngadena, Yolande Sandrine; Mballa, Marguerite Francine; Ngoungoure, Madeleine Chantal; Ouafo, Agnès Carolle; Dimo, Théophile; Kamtchouing, Pierre
2017-03-24
Background Nymphaea lotus Linn (N. lotus) is a medicinal plant widely used in Cameroon popular medicine, to treat neuropsychiatric conditions, male sexual disorders or as food supplement. However, scientific data on the pharmacotoxic profile of this plant are not available. The safety of N. lotus was assessed in acute, neuro- and subchronic toxicity studies by following the OECD guidelines. Effectively, no data have been published until now in regard to its safety on the nervous system. Methods Aqueous extract of N. lotus at doses of 200, 400 and 600 mg/kg body weight (BW) was evaluated for nitrites contents and orally administered to rats daily for 28 days (5 male, 5 female per group). The control group received distilled water (10 mL/kg) and a satellite group was used to observe reversal effects. Neurotoxicity of the plant was determined using open field test for motor coordination, ataxia and gait analysis. Clinical signs and state of livelihood were recorded during the 24 h, then for 28 days of treatments. At the end of 28-day period, animals were anesthetized and decapitated. The whole brain was homogenized for neurobiochemical analysis. Blood samples were collected with or without anticoagulant for hematological examinations and serum analysis. Specimens of liver, kidney, testis, ovaries, and brain were fixed in 10 % formalin and processed for histopathological examinations. Results Our findings indicate dose-dependent elevation of nitrites contents in the flowers aqueous extract of N. lotus. Acute toxicity study revealed no signs of toxicity neither at the dose 2,000 mg/kg nor at 5,000 mg/kg. Thus the LD50 value of aqueous extract of N. lotus flowers is superior to 5,000 mg/kg. The repeated administration of N. lotus during 28 days, induced no signs of neurobehavioral changes in male, but female rats exhibited dose-dependent response in the open field test, suggesting sex and dose-relative psychotropic effects of N. lotus. The evaluation of neurobiochemistry revealed consistent rise of brain cholesterol by 44.05 %; 158.10 % and 147.62 % respectively in male rats treated with the doses of 200, 400 and 600 mg/kg. In female rats, these levels were significantly increased (p<0.001) only at the dose of 600 mg/kg compared to control. This trend persisted after 14 days withdrawal. Brain potassium and calcium concentrations were increased in all rats compared to their respective control receiving distilled water, suggesting transmembrane current stabilizing properties of brain cells by our extract. Further, serum biochemical analysis demonstrated that 28-day administration of N. lotus flowers increased depending on the dose and sex, the levels of serum urea, proteins, creatinine and bilirubin and reduced γ-glutamyltransferase (GGT) and alkaline phosphatase (ALP) activities. These results suggest liver alterations that are endowed by lower liver relative weight and histology damages observed in female rats treated with the dose of 600 mg/kg of our extract. We also observed a rise in the low-density lipoprotein (LDL) fraction and AI of male rats undergoing N. lotus treatment. In female rats, the latter remains unaltered, confirming the dose- and sex-dependent response of our extract. The levels of white blood cells (WBC) and granulocytes were higher in male irrespective to their control, revealing stimulatory properties of the male hematopoietic system. Such variations (sex- and dose-dependent) are without biological relevance for the majority of the biochemical parameters evaluated, indicating a wide margin of safety for the traditional use of N. lotus. The alkaloids, nitrites and phytosterols contained in N. lotus flowers extract may probably account for its neuroprotective, anti-oxidant, and immunoboosting properties. Conclusions N. lotus do not possesses neurotoxicity but is able to induce behavioral changes in rats. Therefore, the application of this plant as either drug or supplementary food should be carefully considered.
Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity
Fujita, Katsuhide; Fukuda, Makiko; Endoh, Shigehisa; Maru, Junko; Kato, Haruhisa; Nakamura, Ayako; Shinohara, Naohide; Uchino, Kanako; Honda, Kazumasa
2015-01-01
Abstract To elucidate the effect of size on the pulmonary toxicity of single-wall carbon nanotubes (SWCNTs), we prepared two types of dispersed SWCNTs, namely relatively thin bundles with short linear shapes (CNT-1) and thick bundles with long linear shapes (CNT-2), and conducted rat intratracheal instillation tests and in vitro cell-based assays using NR8383 rat alveolar macrophages. Total protein levels, MIP-1α expression, cell counts in BALF, and histopathological examinations revealed that CNT-1 caused pulmonary inflammation and slower recovery and that CNT-2 elicited acute lung inflammation shortly after their instillation. Comprehensive gene expression analysis confirmed that CNT-1-induced genes were strongly associated with inflammatory responses, cell proliferation, and immune system processes at 7 or 30 d post-instillation. Numerous genes were significantly upregulated or downregulated by CNT-2 at 1 d post-instillation. In vitro assays demonstrated that CNT-1 and CNT-2 SWCNTs were phagocytized by NR8383 cells. CNT-2 treatment induced cell growth inhibition, reactive oxygen species production, MIP-1α expression, and several genes involved in response to stimulus, whereas CNT-1 treatment did not exert a significant impact in these regards. These results suggest that SWCNTs formed as relatively thin bundles with short linear shapes elicited delayed pulmonary inflammation with slower recovery. In contrast, SWCNTs with a relatively thick bundle and long linear shapes sensitively induced cellular responses in alveolar macrophages and elicited acute lung inflammation shortly after inhalation. We conclude that the pulmonary toxicity of SWCNTs is closely associated with the size of the bundles. These physical parameters are useful for risk assessment and management of SWCNTs. PMID:25865113
Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.
Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya
2015-12-01
Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.
Chen, Jue; Wang, Qi; Liu, Mengjun; Zhang, Liwei
2017-09-15
Deep eutectic solvent (DES), the benign green solvent with uniquely physical properties, has been widely applied in various fields. Our previous study indicated that DES could improve the stability and extraction efficiency of salvianolic acid B (SAB). In this work, with SAB as a model drug, the feasibility of DES as a drug carrier for oral preparation was investigated by evaluating the influence of DES on the pharmacokinetics of SAB and the toxicity of DES. Acute oral toxicity test illustrated that choline chloride-glycerol (ChCl-GL, molar ratio 1:2) was non-toxic with the median lethal dose of 7733mg/kg. To comparison the difference of pharmacokinetics between SAB dissolved in ChCl-GL (1:2) and in water, a rapid and sensitive ultra-performance liquid chromatography coupled with mass spectrum was established to determine SAB and its metabolites in rat plasma. The method validation was also tested for the specificity, linearity (r 2 >0.9980 over two orders of magnitude), precision (intra-day relative standard deviation (RSD)<2.73% and inter-day RSD<7.72%), extraction recovery (70.96-80.78%) and stability under three different situations. Compared to water, the pharmacokinetic parameters clarified that ChCl-GL (1:2) could promote the absorption of SAB, the peak concentration (C max ) of 0.308±0.020mg/L was slightly higher than 0.277±0.024mg/L (SAB dissolved in water), and the peak time (T max ) was significantly decreased from 30min (SAB dissolved in water) to 20min. There was no significant difference on the metabolites between SAB dissolved in ChCl-GL (1:2) and in water. This is the first report on the pharmacokinetic study of DES as a candidate of drug carrier, and the results provide a meaningful basis for the application of DES in pharmaceutical preparation. Copyright © 2017 Elsevier B.V. All rights reserved.
El-Nahas, Amira E; Allam, Ahmed N; Abdelmonsif, Doaa A; El-Kamel, Amal H
2017-11-01
The objectives of this study were to formulate, characterize silymarin-loaded Eudragit nanoparticles (SNPs) and evaluate their hepatoprotective and cytotoxic effects after oral administration. SNPs were prepared by nanoprecipitation technique and were evaluated for particle size, entrapment efficiency, TEM, solid-state characterization, and in vitro drug release. The hepatoprotective activity was evaluated after oral administration of selected SNPs in carbon tetrachloride-intoxicated rats. Potential in vivo acute cytotoxicity study was also assessed. The selected SNPs contained 50 mg silymarin and 50 mg Eudragit polymers (1:1 w/w Eudragit RS 100 & Eudragit LS 100). Morphology of the selected SNPs (particle size of 84.70 nm and entrapment efficiency of 83.45% with 100% drug release after 12 h) revealed spherical and uniformly distributed nanoparticles. DSC and FT-IR studies suggested the presence of silymarin in an amorphous state and absence of chemical interaction. The hepatoprotective evaluation of the selected SNPs in CCl 4 -intoxicated rats revealed significant improvement in the activities of different biochemical parameters (P ≤ 0.01) compared to the marketed product. The histopathological studies suggested that the selected SNPs produced better hepatoprotective effect in CCl 4 -intoxicated rats compared with the commercially marketed product. Toxicity study revealed no evident toxic effect for blank or silymarin-loaded nanoparticles at the dose level of 50 mg/kg body weight. The obtained results suggested that the selected SNPs were safe and potentially offered enhancement in the pharmacological hepatoprotective properties of silymarin.
Subacute Cardiovascular Toxicity of the Marine Phycotoxin Azaspiracid-1 in Rats
Vilariño, Natalia; Carrera, Cristina; Louzao, M. Carmen; Cantalapiedra, Antonio G.; Santamarina, Germán; Cifuentes, J. Manuel; Vieira, Andrés C.; Botana, Luis M.
2016-01-01
Azaspiracids (AZAs) are marine toxins produced by Azadinium spinosum that get accumulated in filter feeding shellfish through the food-web. The first intoxication was described in The Netherlands in 1990, and since then several episodes have been reported worldwide. Azaspiracid-1, AZA-2, and AZA-3 presence in shellfish is regulated by food safety authorities of several countries to protect human health. Azaspiracids have been related to widespread organ damage, tumorogenic properties and acute heart rhythm alterations in vivo but the mechanism of action remains unknown. Azaspiracid toxicity kinetics in vivo and in vitro suggests accumulative effects. We studied subacute cardiotoxicity in vivo after repeated exposure to AZA-1 by evaluation of the ECG, arterial blood pressure, plasmatic heart damage biomarkers, and myocardium structure and ultrastructure. Our results showed that four administrations of AZA-1 along 15 days caused functional signs of heart failure and structural heart alterations in rats at doses ranging from 1 to 55 µg/kg. Azaspiracid-1 altered arterial blood pressure, tissue inhibitors of metalloproteinase-1 plasma levels, heart collagen deposition, and ultrastructure of the myocardium. Overall, these data indicate that repeated exposure to low amounts of AZA-1 causes cardiotoxicity, at doses that do not induce signs of other organic system toxicity. Remarkably, human exposure to AZAs considering current regulatory limits of these toxins may be dangerously close to clearly cardiotoxic doses in rats. These findings should be considered when human risk is estimated particularly in high cardiovascular risk subpopulations. PMID:26865666
Toxic effects of Tripterygium wilfordii Hook F on the reproductive system of adolescent male rats.
Jing, Xiaoping; Cheng, Weiwei; Guo, Sheng; Zou, Ya; Zhang, Ting; He, Li
2017-11-01
Tripterygium wilfordii Hook F. (TWHF) is a compound extracted from Lei Gong Teng (Thunder God Vine) that has been used to treat a variety of immune-related diseases in clinical practice, particularly in pediatrics. Nevertheless, clinical data indicated that glycosides from Tripterygium wilfordii Hook F (GTW) are toxic to the male reproductive system, but the mechanism is unknown. Here, the administration of a high dose of GTW for 4 weeks and a low dose for 12 weeks can reduce the body weights and testes weights in adolescent male rats. This effect is accompanied by a significantly reduction in the serum testosterone levels. Notably, short-term use of high-dose GTW or long-term use of low-dose GTW leads to testicular damage in adolescent male rats. Furthermore, the expression of the steroidogenic acute regulatory protein (StAR), P450 side chain cleavage enzyme (P450scc), cytochrome P450 17-hydroxylase (P450c17), 3β-hydroxysteroid dehydrogenase (3β-HSD), and 17β-hydroxysteroid dehydrogenase (17β-HSD) mRNAs and proteins in the testes was down-regulated by a short-term treatment with high-dose GTW and a long-term treatment with low-dose GTW. Therefore, GTW exhibit male reproductive toxicity in a concentration-and time-dependent manner by inhibiting the expression of the key enzymes and total cholesterol level involved in testosterone synthesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Bioaccumulation and Subchronic Toxicity of 14 nm Gold Nanoparticles in Rats.
Rambanapasi, Clinton; Zeevaart, Jan Rijn; Buntting, Hylton; Bester, Cornelius; Kotze, Deon; Hayeshi, Rose; Grobler, Anne
2016-06-10
Colloidal suspensions of 14 nm gold nanoparticles (AuNPs) were repeatedly administered intravenously at three dose levels (0.9, 9 and 90 µg) to male Sprague Dawley rats weekly for 7 weeks, followed by a 14-day washout period. After sacrificing, the amount of gold was quantified in the liver, lungs, spleen, skeleton and carcass using neutron activation analysis (NAA). During the study, pre- and post (24 h) administration blood samples were collected from both the test and control groups, the latter which received an equal injection volume of normal saline. General health indicators were monitored together with markers of kidney and liver damage for acute and subchronic toxicity assessment. Histopathological assessments were done on the heart, kidneys, liver, lungs and spleen to assess any morphological changes as a result of the exposure to AuNPs. The mass measurements of all the groups showed a steady increase with no signs of overt toxicity. The liver had the highest amount of gold (µg) per gram of tissue after 56 days followed by the spleen, lungs, skeleton and carcass. Markers of kidney and liver damage showed similar trends between the pre and post samples within each group and across groups. The histopathological examination also showed no hepatotoxicity and nephrotoxicity. There was accumulation of Au in tissues after repeated dosing, albeit with no observable overt toxicity, kidney or liver damage.
Madkour, Fedekar F.; Abdel-Daim, M. M.
2013-01-01
Paracetamol has a reasonable safety profile when taken in therapeutic doses. However, it could induce hepatotoxicity and even more severe fatal acute hepatic damage when taken in an overdose. The green alga, Dunaliella salina was investigated for hepatoprotective and antioxidant activity against paracetamol-induced liver damage in rats. Male albino Wistar rats overdosed with paracetamol showed liver damage and oxidative stress as indicated by significantly (P<0.05) increased serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide. At the same time, there were decreased activities of serum superoxide dismutase and total antioxidant capacity compared with the control group. Treatment with D. salina methanol extract at doses of 500 and 1000 mg/kg body weight or silymarin could significantly (P<0.05) decrease the liver damage marker enzymes, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide levels and increase the activities of superoxide dismutase and total antioxidant capacity in serum when compared with paracetamol intoxicated group. Liver histopathology also showed that D. salina reduced the centrilobular necrosis, congestion and inflammatory cell infiltration evoked by paracetamol overdose. These results suggest that D. salina exhibits a potent hepatoprotective effect on paracetamol-induced liver damage in rats, which may be due to both the increase of antioxidant enzymes activity and inhibition of lipid peroxidation. PMID:24591738
Barlow, A D; Xie, J; Moore, C E; Campbell, S C; Shaw, J A M; Nicholson, M L; Herbert, T P
2012-05-01
Rapamycin (sirolimus) is one of the primary immunosuppressants for islet transplantation. Yet there is evidence that the long-term treatment of islet-transplant patients with rapamycin may be responsible for subsequent loss of islet graft function and viability. Therefore, the primary objective of this study was to elucidate the molecular mechanism of rapamycin toxicity in beta cells. Experiments were performed on isolated rat and human islets of Langerhans and MIN6 cells. The effects of rapamycin and the roles of mammalian target of rapamycin complex 2 (mTORC2)/protein kinase B (PKB) on beta cell signalling, function and viability were investigated using cell viability assays, insulin ELISA assays, kinase assays, western blotting, pharmacological inhibitors, small interfering (si)RNA and through the overproduction of a constitutively active mutant of PKB. Rapamycin treatment of MIN6 cells and islets of Langerhans resulted in a loss of cell function and viability. Although rapamycin acutely inhibited mTOR complex 1 (mTORC1), the toxic effects of rapamycin were more closely correlated to the dissociation and inactivation of mTORC2 and the inhibition of PKB. Indeed, the overproduction of constitutively active PKB protected islets from rapamycin toxicity whereas the inhibition of PKB led to a loss of cell viability. Moreover, the selective inactivation of mTORC2 using siRNA directed towards rapamycin-insensitive companion of target of rapamycin (RICTOR), mimicked the toxic effects of chronic rapamycin treatment. This report provides evidence that rapamycin toxicity is mediated by the inactivation of mTORC2 and the inhibition of PKB and thus reveals the molecular basis of rapamycin toxicity and the essential role of mTORC2 in maintaining beta cell function and survival.
Pastuzyn, Elissa D; Chapman, David E; Wilcox, Karen S; Keefe, Kristen A
2012-01-01
Methamphetamine (METH) causes partial depletion of central monoamine systems and cognitive dysfunction in rats and humans. We have previously shown and now further show that the positive correlation between expression of the immediate-early gene Arc (activity-regulated, cytoskeleton-associated) in the dorsomedial (DM) striatum and learning on a response reversal task is lost in rats with METH-induced striatal dopamine loss, despite normal behavioral performance and unaltered N-methyl--aspartate (NMDA) receptor-mediated excitatory post-synaptic currents, suggesting intact excitatory transmission. This discrepancy suggests that METH-pretreated rats may no longer be using the dorsal striatum to solve the reversal task. To test this hypothesis, male Sprague–Dawley rats were pretreated with a neurotoxic regimen of METH or saline. Guide cannulae were surgically implanted bilaterally into the DM striatum. Three weeks after METH treatment, rats were trained on a motor response version of a T-maze task, and then underwent reversal training. Before reversal training, the NMDA receptor antagonist -2-amino-5-phosphonopentanoic acid (AP5) or an Arc antisense oligonucleotide was infused into the DM striatum. Acute disruption of DM striatal function by infusion of AP5 impaired reversal learning in saline-, but not METH-, pretreated rats. Likewise, acute disruption of Arc, which is implicated in consolidation of long-term memory, disrupted retention of reversal learning 24 h later in saline-, but not METH-, pretreated rats. These results highlight the critical importance of Arc in the striatum in consolidation of basal ganglia-mediated learning and suggest that long-term toxicity induced by METH alters the cognitive strategies/neural circuits used to solve tasks normally mediated by dorsal striatal function. PMID:22071872
Pastuzyn, Elissa D; Chapman, David E; Wilcox, Karen S; Keefe, Kristen A
2012-03-01
Methamphetamine (METH) causes partial depletion of central monoamine systems and cognitive dysfunction in rats and humans. We have previously shown and now further show that the positive correlation between expression of the immediate-early gene Arc (activity-regulated, cytoskeleton-associated) in the dorsomedial (DM) striatum and learning on a response reversal task is lost in rats with METH-induced striatal dopamine loss, despite normal behavioral performance and unaltered N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic currents, suggesting intact excitatory transmission. This discrepancy suggests that METH-pretreated rats may no longer be using the dorsal striatum to solve the reversal task. To test this hypothesis, male Sprague-Dawley rats were pretreated with a neurotoxic regimen of METH or saline. Guide cannulae were surgically implanted bilaterally into the DM striatum. Three weeks after METH treatment, rats were trained on a motor response version of a T-maze task, and then underwent reversal training. Before reversal training, the NMDA receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) or an Arc antisense oligonucleotide was infused into the DM striatum. Acute disruption of DM striatal function by infusion of AP5 impaired reversal learning in saline-, but not METH-, pretreated rats. Likewise, acute disruption of Arc, which is implicated in consolidation of long-term memory, disrupted retention of reversal learning 24 h later in saline-, but not METH-, pretreated rats. These results highlight the critical importance of Arc in the striatum in consolidation of basal ganglia-mediated learning and suggest that long-term toxicity induced by METH alters the cognitive strategies/neural circuits used to solve tasks normally mediated by dorsal striatal function.
Phytochemical, sub-acute toxicity, and antibacterial evaluation of Cordia sebestena leaf extracts.
Osho, Adeleke; Otuechere, Chiagoziem A; Adeosun, Charles B; Oluwagbemi, Tolu; Atolani, Olubunmi
2016-03-01
In Nigeria, Cordia sebestena (Boraginaceae), an understudied medicinal plant, is used in traditional medicine for the treatment of gastrointestinal disorders. In this study, we investigated the chemical composition, antibacterial potential, and sub-acute toxicity of C. sebestena leaves. Ethyl acetate extracts were analyzed using thin layer chromatography (TLC) and Fourier transform infrared (FTIR) spectrophotometry. The antibacterial potential of the extracts was tested against five standard bacteria, namely Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clinical observations and blood parameters were used to evaluate the possible toxicity of C. sebestena. The TLC profile yielded 39 fractions, which were pooled to nine combined sub-fractions (A-I). The FTIR spectrum of sub-fraction H indicated the presence of aliphatic C-H stretching vibration at 2922 and 2850 cm-1, C=O stretch at 1734 and 1708 cm-1, and C=C stretch of aromatics and aliphatics at 1464 and (shoulder) 1618 cm-1, respectively. The fractions of the C. sebestena ethyl acetate leaf extract showed antibacterial potential across board, but fraction H had the highest antibacterial activity against B. cereus and S. aureus. The study also indicated the relatively low toxicity profile of the ethyl acetate leaf extract of C. sebestena in the liver of rats. The study showed that C. sebestena leaves have strong antibacterial potential and low toxicity, thereby underlying the scientific basis for their folkloric use in the management of microbial infections and its associated complications.
da Silva Balin, Paola; Zanatta, Flavia Carina; Jorge, Bárbara Campos; Leitão, Maicon; Kassuya, Roberto Mikio; Cardoso, Claudia Andrea Lima; Kassuya, Cândida Aparecida Leite; Arena, Arielle Cristina
2018-05-03
Bromelia balansae is a relatively unexplored medicinal species that is used for nutritional purposes and in folk medicine to treat cough or wounds. This study assessed the anti-inflammatory activity of the ethanolic extract obtained from Bromelia balansae fruit (EEBB) as well as the toxicological potential of this extract after single and repeated exposure. Male rats (Wistar) were gavaged with 2000 mg/kg of extract from the fruit of B. balansae for the acute toxicity test and with 25, 100, or 400 mg/kg of EEBB for the subacute toxicity test. The anti-inflammatory effect of EEBB was evaluated in vivo (30, 100, or 300 mg/kg) by carrageenan (Cg) induced-oedema and pleurisy in Swiss mice. A single oral dose of EEBB did not result in toxicity, demonstrating that the LD 50 of this extract was greater than 2000 mg/kg. In the subacute toxicity test, the tested doses produced no significant changes in the haematological, biochemical or histopathological parameters of treated animals. Similarly, there were no statistically significant differences in the sperm parameters. A dose of 300 mg/kg of EEBB significantly reduced oedema formation, Cg-induced mechanical hypersensitivity and cold sensitivity, as well as leukocyte migration in the pleurisy model. These results show that EEBB has an anti-inflammatory potential without causing acute or subacute toxicity. These data may contribute to the advancement of biopharmaceutical applications for this species. Copyright © 2018 Elsevier B.V. All rights reserved.
Jaligama, Sridhar; Kale, Vijay M; Wilbanks, Mitchell S; Perkins, Edward J; Meyer, Sharon A
2013-02-01
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a widely used munitions compound, and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), its N-nitroso product of anaerobic microbial nitroreduction, are contaminants of military sites. Previous studies have shown MNX to be the most acutely toxic among the nitroreduced degradation products of RDX and to cause mild anemia at high dose. The present study compares hematotoxicity with acute oral exposure to MNX with parent RDX. Both RDX and MNX caused a modest decrease in blood hemoglobin and ~50% loss of granulocytes (NOAELs=47 mg/kg) in female Sprague-Dawley rats observed 14 days post-exposure. We explored the possibility that blood cell loss observed after 14 days was delayed in onset because of toxicity to bone marrow (BM) progenitors. RDX and MNX decreased granulocyte/macrophage-colony forming cells (GM-CFCs) at 14, but not 7, days (NOAELs=24 mg/kg). The earliest observed time at which MNX decreased GM-CFCs was 10 days post-exposure. RDX and MNX likewise decreased BM burst-forming units-erythroid (BFU-Es) at 14, but not 7, days. Granulocyte-erythrocyte-monocyte-megakaryocyte (GEMM)-CFCs were unaffected by RDX and MNX at 7 days suggesting precursor depletion did not account for GM-CFC and BFU-E loss. MNX added to the culture media was without effect on GM-CFC formation indicating no direct inhibition. Flow cytometry showed no differential loss of BM multilineage progenitors (Thy1.1(+)) or erythroid (CD71(+)) precursors with MNX suggesting myeloid and erythroid lineages were comparably affected. Collectively, these data indicate that acute exposure to both RDX and MNX caused delayed suppression of myelo- and erythropoiesis with subsequent decrease of peripheral granulocytes and erythrocytes. Copyright © 2012 Elsevier Inc. All rights reserved.
Tissue metabolic changes for effects of pirfenidone in rats of acute paraquat poisoning by GC-MS.
Ma, Jianshe; Sun, Fa; Chen, Bingbao; Tu, Xiaoting; Peng, Xiufa; Wen, Congcong; Hu, Lufeng; Wang, Xianqin
2017-12-01
We developed a metabolomic method to evaluate the effect of pirfenidone on rats with acute paraquat (PQ) poisoning, through the analysis of various tissues (lung, liver, kidney, and heart), by gas chromatography-mass spectrometry (GC-MS). Thirty-eight rats were randomly divided into a control group, an acute PQ (20 mg kg -1 ) poisoning group, a pirfenidone (20 mg kg -1 ) treatment group, and a pirfenidone (40 mg kg -1 ) treatment group. Partial least squares-discriminate analysis (PLS-DA) revealed metabolic alterations in rat tissue samples from the two pirfenidone treatment groups after acute PQ poisoning. The PLS-DA 3D score chart showed that the rats in the acute PQ poisoning group were clearly distinguished from the rats in the control group. Also, the two pirfenidone treatment groups were distinguished from the acute PQ poisoning group and control group. Additionally, the pirfenidone (40 mg kg -1 ) treatment group was separated farther than the pirfenidone (20 mg kg -1 ) treatment group from the acute PQ poisoning group. Evaluation of the pathological changes in the rat tissues revealed that treatment with pirfenidone appeared to decrease pulmonary fibrosis in the acute PQ poisoning rats. The results indicate that pirfenidone induced beneficial metabolic alterations in the tissues of rats with acute PQ poisoning. Rats with acute PQ poisoning exhibited a certain reduction in biochemical indicators after treatment with pirfenidone, indicating that pirfenidone could protect liver and kidney function. Accordingly, the developed metabolomic approach proved to be useful to elucidate the effect of pirfenidone in rats of acute PQ poisoning.
2017-04-12
ranged from 36 - 39%. Exposure chamber oxygen remained constant at 21%. The animal exposure box temperature ranged from 72 – 73°F and the...0036333, April - September 2015 Chamber Oxygen Chamber Temperature Chamber Relative (N) Exposure Box Exposure Box Relative (N) Exposure No. Date Range...Study No. S.0036333-15, April - September 2015 Chamber Oxygen Chamber Temperature Chamber Relative (N) Exposure Box Exposure Box Relative (N
Department of Transportation Inhalation Test of Neutralized GB Hydrolysate in Sprague-Dawley Rats
2009-05-01
a product solution resulting from chemically neutralizing GB with aqueous sodium hydroxide ( pH 12.8) as an acceptably treated waste that can be...transported offsite for secondary treatment. An acute inhalation toxicity test was conducted on a ph adjusted hydrolysate solution ( pH 7.8) to assess...day post-exposure period, an endpoint of the DOT study. The product solution from the neutralized ( pH 7.8) hydrolysate does not appear to pose an
A toxicological study of 1,2,4-triazole-5-one
DOE Office of Scientific and Technical Information (OSTI.GOV)
London, J.
1988-12-01
The acute oral LD/sub 50/ values for 1,2,4-triazole-5-one (TO) are greater than 5g/kg. According to classical guidelines, the material would be considered only slightly toxic or practically nontoxic in both rats and mice. The sensitization study in the guinea pig did not show TO to have potential sensitizing effects. Skin application studies on the rabbit demonstrated it was cutaneously nonirritating. This material was also nonirritating in the rabbit eye application studies. 4 refs., 1 tab.
Acute Effects of Ecstasy on Memory Are more Extensive than Chronic Effects
Shariati, Mohamad Bakhtiar Hesam; Sohrabi, Maryam; Shahidi, Siamak; Nikkhah, Ali; Mirzaei, Fatemeh; Medizadeh, Mehdi; Asl, Sara Soleimani
2014-01-01
Introduction Exposure to 3, 4- methylenedioxymethamphetamine (MDMA) could lead to serotonergic system toxicity in the brain. This system is responsible for learning and memory functions. Studies show that MDMA causes memory impairment dose-dependently and acutely. The present study was designed to evaluate the chronic and acute effects of MDMD on spatial memory and acquisition of passive avoidance. Methods Adult male Wistar rats (200-250 g) were given single or multiple injections of MDMA (10 mg/kg, IP). Using passive avoidance and Morris Water Maze (MWM) tasks, learning and spatial memory functions were assessed. The data were analyzed by SPSS 16 software and one- way analysis of variance (ANOVA) test. Results Our results showed that there were significant differences in latency to enter the dark compartment (STL) between sham and MDMA- treated groups. Acute group significantly showed more STL in comparison with chronic group. Furthermore, MDMA groups spent more time in dark compartment (TDS) than the sham group. Administration of single dose of MDMA significantly caused an increase in TDS compared with the chronic group. In the MWM, MDMA treatment significantly increased the traveled distance and escaped latency compared to the sham group. Like to passive avoidance task, percentage of time spent in the target quadrant in MDMA- treated animals impaired in MWM compared with sham group. Discussion These data suggest that MDMA treatment impairs learning and memory functions that are more extensive in acute- treated rats. PMID:25337384
Yu, Fang Fang; Lin, Xia Lu; Yang, Lei; Liu, Huan; Wang, Xi; Fang, Hua; Lammi, ZMikko J; Guo, Xiong
2017-11-01
Twelve healthy rats were divided into the T-2 toxin group receiving gavage of 1 mg/kg T-2 toxin and the control group receiving gavage of normal saline. Total relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system (thighbone, knee joints, and costal cartilage) were significantly higher than those in the heart, liver, and kidneys (P < 0.05). The relative concentrations of T-2 toxin and HT-2 toxin in the skeletal system (thighbone and costal cartilage) were also significantly higher than those in the heart, liver, and kidneys. The rats administered T-2 toxin showed rapid metabolism compared with that in rats administered HT-2 toxin, and the metabolic conversion rates in the different tissues were 68.20%-90.70%. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pixberg, Caroline; Koch, Raphael; Eich, Hans Theodor, E-mail: Hans.Eich@ukmuenster.de
Purpose: In the context of oncologic therapy for children, radiation therapy is frequently indicated. This study identified the frequency of and reasons for the development of high-grade acute toxicity and possible sequelae. Materials and Methods: Irradiated children have been prospectively documented since 2001 in the Registry for the Evaluation of Side Effects After Radiation in Childhood and Adolescence (RiSK) database in Germany and since 2008 in the registry for radiation therapy toxicity (RADTOX) in Sweden. Data were collected using standardized, published forms. Toxicity classification was based on Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Results: Asmore » of June 2013, 1500 children have been recruited into the RiSK database and 485 into the RADTOX registry leading to an analysis population of 1359 patients (age range 0-18). A total of 18.9% (n=257) of all investigated patients developed high-grade acute toxicity (grades 3/4). High-grade toxicity of the bone marrow was documented for 63.8% (n=201) of those patients, oral mucositis for 7.6% (n=24), and dermatitis for 7.6% (n=24). Patients with high-grade acute toxicity received concomitant chemotherapy more frequently (56%) than patients with no or lower acute toxicity (31.5%). In multivariate analyses, concomitant chemotherapy, diagnosis of Ewing sarcoma, and total radiation dose showed a statistically noticeable effect (P≤.05) on acute toxicity, whereas age, concomitant chemotherapy, Hodgkin lymphoma, Ewing sarcoma, total radiation dose, and acute toxicity influenced the time until maximal late toxicity. Conclusions: Generally, high-grade acute toxicity after irradiation in children and adolescence occurs in a moderate proportion of patients (18.9%). As anticipated, the probability of acute toxicity appeared to depend on the prescribed dose as well as concomitant chemotherapy. The occurrence of chronic toxicity correlates with the prior acute toxicity grade. Age seems to influence the time until maximal late toxicity but not the development of acute toxicity.« less