Sample records for rats chronically treated

  1. Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.

    PubMed

    Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin

    2016-12-01

    Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.

  2. G cells and gastrin in chronic alcohol-treated rats.

    PubMed

    Todorović, Vera; Koko, Vesna; Budec, Mirela; Mićić, Mileva; Micev, Marjan; Pavlović, Mirjana; Vignjević, Sanja; Drndarević, Neda; Mitrović, Olivera

    2008-02-01

    Numerous reports have described gastric mucosal injury in rats treated with high ethanol concentrations. However, to the best of our knowledge, ultrastructural characteristics of G cells and antral gastrin levels have not been previously reported, either in rats that chronically consumed alcohol or in human alcoholics. The goal of this study was to examine the effect of ethanol consumption (8.5 g/kg) over a 4-month period, under controlled nutritional conditions, on antral and plasma levels of gastrin, ultrastructure of G cells, morphometric characteristics of G cells by stereological methods, and analysis of endocrine cells in the gastric mucosa by immunohistochemistry. The chronic alcohol consumption resulted in a nonsignificant decrease in gastrin plasma levels and unchanged antral gastrin concentrations. A slightly damaged glandular portion of the gastric mucosa and dilatation of small blood vessels detected by histological analysis, suggests that ethanol has a toxic effect on the mucosal surface. Chronic alcohol treatment significantly decreased the number of antral G cells per unit area, and increased their cellular, nuclear, and cytoplasmatic profile areas. In addition, the volume density and diameter of G-cell granules, predominantly the pale and lucent types, were increased, indicating inhibition of gastrin release. Ethanol treatment also decreased the number of gastric somatostatin-, serotonin-, and histamine-immunoreactive cells, except the somatostatin cells in the pyloric mucosa, as well as both G: D: enterochromaffin cells (EC) cell ratios in the antrum and D: ECL cell ratios in the fundus. These results indicate that the change of morphometric parameters in G cells may be related to cellular dysfunction. Our findings also suggest that regulation of G-cell secretion was not mediated by locally produced somatostatin in ethanol-consuming rats, but may involve gastric luminal content and/or neurotransmitters of gastric nerve fibers.

  3. Chronic administration of sildenafil improves erectile function in a rat model of chronic renal failure

    PubMed Central

    Gurbuz, Nilgun; Kol, Arif; Ipekci, Tumay; Ates, Erhan; Baykal, Asli; Usta, Mustafa F

    2015-01-01

    The relationship between erectile dysfunction (ED) and chronic renal failure (CRF) has been reported in several studies. This study aimed to investigate whether the chronic use of sildenafil could enhance the erectile capacity in CRF-induced rats. In addition, we assessed the effect of that treatment on certain molecules, which have been suggested to play crucial roles in erectile physiology and CRF-related ED as well. Three groups of animals were utilized: (1) age-matched control rats, (2) CRF-induced rats, (3) CRF-induced rats treated with chronic administration of sildenafil (5 mg kg−1 p.o. for 6 weeks [treatment started after 6 weeks of CRF induction]). At 3 months, all animals underwent cavernosal nerve stimulation (CNS) to assess erectile function. Penile tissue advanced glycation end products (AGE's)/5-hydroxymethyl-2-furaldehyde, malondialdehyde (MDA), cGMP (ELISA), inducible nitric oxide synthase (iNOS) and neuronal NOS (nNOS) (Western blot) analyses were performed in all rat groups. CRF-induced rats had a significant decrease in erectile function when compared to control rats (P < 0.05). The increase in both intracavernosal pressure (ICP) and area under the curve of CRF-induced rats treated with sildenafil (Group 3) was greater than CRF-induced rats (Group 2). Additionally, sildenafil treatment decreased AGE, MDA and iNOS levels, while it preserved nNOS and cGMP contents in CRF-induced penile tissue. Decreased AGE, MDA, iNOS and increased nNOS, cGMP levels at the sildenafil-treated group increased both ICP and Total ICP to CNS, which led to improve erectile function in CRF-induced rats. The results of the present study revealed the therapeutic effect of chronic sildenafil administration on erectile function in CRF-induced rats. PMID:25652632

  4. Metabolomics study on model rats of chronic obstructive pulmonary disease treated with Bu‑Fei Jian‑Pi.

    PubMed

    Li, Jiansheng; Yang, Liping; Li, Ya; Tian, Yange; Li, Suyun; Jiang, Suli; Wang, Ying; Li, Xinmin

    2015-02-01

    The therapeutic effect of Traditional Chinese Medicine (TCM) on chronic obstructive pulmonary disease (COPD) has been know for numerous years; however, the mechanism of action of the beneficial effects of TCM remains to be elucidated. The present study aimed to investigate the molecular mechanisms of COPD through metabolomic analysis as well as explore the targets and intervention mechanisms of TCM therapy using the common TCM granules Bu‑Fei Jian‑Pi. COPD rat models were established using smoke inhalations and recurrent bacterial infections. Rats were then divided into three groups as follows: A1, control healthy rats; B1, COPD model; and D1, Bu‑Fei Jian‑Pi‑treated COPD rats. Following administration of the medicine, the metabolomic profile of the lung tissue of rats in each group was assessed using high‑performance liquid chromatography/quadrupole‑time‑of‑flight mass spectrometry. The results demonstrated that there was a significanlty different spectrum of metabolites in the lung tissue of the model group compared to that of the control group as well as the Bu‑Fei Jian‑Pi‑treated COPD group; in addition, following treatment with Bu‑Fei Jian‑Pi, the metabolites of COPD rats were comparable with those of the control. Notable changes were observed in 31 metabolites between the Bu‑Fei Jian‑Pi‑treated group and the model group; however, there were 13 comparable metabolites between the Bu‑Fei Jian‑Pi and control groups as well as the model and control groups. Eleven metabolites showed a negative fold change in the Bu‑Fei Jian‑Pi‑treated groups compared to concentrations in the model group; however, minimal changes were observed in phenylpyruvic acid and α‑D‑fucose expression. In conclusion, the results of the present study demonstrated that Bu‑Fei Jian‑Pi granules had beneficial effects on measured outcomes in a rat model of stable COPD, indicated by a significantly different spectrum of metabolites. This therefore

  5. Nebivolol prevents vascular oxidative stress and hypertension in rats chronically treated with ethanol.

    PubMed

    do Vale, Gabriel T; Simplicio, Janaina A; Gonzaga, Natália A; Yokota, Rodrigo; Ribeiro, Amanda A; Casarini, Dulce E; de Martinis, Bruno S; Tirapelli, Carlos R

    2018-04-30

    Chronic ethanol consumption is associated with hypertension and atherosclerosis. Vascular oxidative stress is described as an important mechanism whereby ethanol predisposes to atherosclerosis. We hypothesized that nebivolol would prevent ethanol-induced hypertension and vascular oxidative stress. Male Wistar rats were treated with ethanol 20% (vol./vol.) or nebivolol (10 mg/kg/day, p. o., gavage), a selective β 1 -adrenergic receptor antagonist. Ethanol-induced increase in blood pressure and in the circulating levels of adrenaline and noradrenaline was prevented by nebivolol. Similarly, nebivolol prevented ethanol-induced increase in plasma levels of renin, angiotensin I and II. Chronic ethanol consumption increased the aortic levels of superoxide anion (O 2 - ), thiobarbituric acid reactive species (TBARS) as well as the expression of Nox1 and nitrotyrosine immunostaining in the rat aorta. Treatment with nebivolol prevented these responses. The decrease in aortic levels of nitrate/nitrite (NOx) induced by ethanol was prevented by the treatment with nebivolol. Finally, nebivolol attenuated ethanol-induced increase in phenylephrine- and noradrenaline-induced contraction of endothelium-intact and endothelium-denuded aortic rings. The novelty of our study is that nebivolol prevented ethanol-induced hypertension and vascular oxidative stress. Additionally, we showed that the sympathetic nervous system (SNS) and the renin-angiotensin system (RAS) are important endogenous mediators of the cardiovascular effects of ethanol. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Reboxetine Improves Auditory Attention and Increases Norepinephrine Levels in the Auditory Cortex of Chronically Stressed Rats

    PubMed Central

    Pérez-Valenzuela, Catherine; Gárate-Pérez, Macarena F.; Sotomayor-Zárate, Ramón; Delano, Paul H.; Dagnino-Subiabre, Alexies

    2016-01-01

    Chronic stress impairs auditory attention in rats and monoamines regulate neurotransmission in the primary auditory cortex (A1), a brain area that modulates auditory attention. In this context, we hypothesized that norepinephrine (NE) levels in A1 correlate with the auditory attention performance of chronically stressed rats. The first objective of this research was to evaluate whether chronic stress affects monoamines levels in A1. Male Sprague–Dawley rats were subjected to chronic stress (restraint stress) and monoamines levels were measured by high performance liquid chromatographer (HPLC)-electrochemical detection. Chronically stressed rats had lower levels of NE in A1 than did controls, while chronic stress did not affect serotonin (5-HT) and dopamine (DA) levels. The second aim was to determine the effects of reboxetine (a selective inhibitor of NE reuptake) on auditory attention and NE levels in A1. Rats were trained to discriminate between two tones of different frequencies in a two-alternative choice task (2-ACT), a behavioral paradigm to study auditory attention in rats. Trained animals that reached a performance of ≥80% correct trials in the 2-ACT were randomly assigned to control and stress experimental groups. To analyze the effects of chronic stress on the auditory task, trained rats of both groups were subjected to 50 2-ACT trials 1 day before and 1 day after of the chronic stress period. A difference score (DS) was determined by subtracting the number of correct trials after the chronic stress protocol from those before. An unexpected result was that vehicle-treated control rats and vehicle-treated chronically stressed rats had similar performances in the attentional task, suggesting that repeated injections with vehicle were stressful for control animals and deteriorated their auditory attention. In this regard, both auditory attention and NE levels in A1 were higher in chronically stressed rats treated with reboxetine than in vehicle-treated

  7. Effects of chronic lead intoxication on rat serotoninergic system and anxiety behavior.

    PubMed

    Sansar, Wafa; Bouyatas, My Mustapha; Ahboucha, Samir; Gamrani, Halima

    2012-01-01

    Chronic lead exposure has been shown to produce behavioral disturbances in human and animal models. These disturbances are associated with alterations in monoaminergic neurotransmission in the central nervous system (CNS), some of which have been attributed to serotonin (5-HT). This study was undertaken to investigate the chronic effects of lead exposure on the serotoninergic system in the dorsal raphe nucleus (DRN) and the consequences of its toxicity on rat behavior. Adult male Wistar rats were chronically exposed for 3 months to 0.5% lead acetate in drinking water. The serotoninergic system was evaluated using immunohistochemistry and the anxiety behavior was assessed by the light/dark box test. The results show that chronic lead exposure induces a significant increase of blood and brain lead levels in treated rats compared with controls. The density of the immunoreactive serotoninergic cell bodies was significantly higher in treated rats in all parts of the DRN. Assessment of animal behavior using the light/dark box test showed that lead-treated rats spent significantly more time in the light chamber compared with controls (P=0.001). These findings suggest that lead exposure may possibly induce increased anxiety as a consequence of changes in neuronal 5-HT content in the DRN. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Chronic stress sensitizes rats to pancreatitis induced by cerulein: Role of TNF-α

    PubMed Central

    Binker, Marcelo G; Binker-Cosen, Andres A; Richards, Daniel; Gaisano, Herbert Y; de Cosen, Rodica H; Cosen-Binker, Laura I

    2010-01-01

    AIM: To investigate chronic stress as a susceptibility factor for developing pancreatitis, as well as tumor necrosis factor-α (TNF-α) as a putative sensitizer. METHODS: Rat pancreatic acini were used to analyze the influence of TNF-α on submaximal (50 pmol/L) cholecystokinin (CCK) stimulation. Chronic restraint (4 h every day for 21 d) was used to evaluate the effects of submaximal (0.2 μg/kg per hour) cerulein stimulation on chronically stressed rats. RESULTS: In vitro exposure of pancreatic acini to TNF-α disorganized the actin cytoskeleton. This was further increased by TNF-α/CCK treatment, which additionally reduced amylase secretion, and increased trypsin and nuclear factor-κB activities in a protein-kinase-C δ and ε-dependent manner. TNF-α/CCK also enhanced caspases’ activity and lactate dehydrogenase release, induced ATP loss, and augmented the ADP/ATP ratio. In vivo, rats under chronic restraint exhibited elevated serum and pancreatic TNF-α levels. Serum, pancreatic, and lung inflammatory parameters, as well as caspases’activity in pancreatic and lung tissue, were substantially enhanced in stressed/cerulein-treated rats, which also experienced tissues’ ATP loss and greater ADP/ATP ratios. Histological examination revealed that stressed/cerulein-treated animals developed abundant pancreatic and lung edema, hemorrhage and leukocyte infiltrate, and pancreatic necrosis. Pancreatitis severity was greatly decreased by treating animals with an anti-TNF-α-antibody, which diminished all inflammatory parameters, histopathological scores, and apoptotic/necrotic markers in stressed/cerulein-treated rats. CONCLUSION: In rats, chronic stress increases susceptibility for developing pancreatitis, which involves TNF-α sensitization of pancreatic acinar cells to undergo injury by physiological cerulein stimulation. PMID:21105189

  9. Chronic stress sensitizes rats to pancreatitis induced by cerulein: role of TNF-α.

    PubMed

    Binker, Marcelo-G; Binker-Cosen, Andres-A; Richards, Daniel; Gaisano, Herbert-Y; de Cosen, Rodica-H; Cosen-Binker, Laura-I

    2010-11-28

    To investigate chronic stress as a susceptibility factor for developing pancreatitis, as well as tumor necrosis factor-α (TNF-α) as a putative sensitizer. Rat pancreatic acini were used to analyze the influence of TNF-α on submaximal (50 pmol/L) cholecystokinin (CCK) stimulation. Chronic restraint (4 h every day for 21 d) was used to evaluate the effects of submaximal (0.2 μg/kg per hour) cerulein stimulation on chronically stressed rats. In vitro exposure of pancreatic acini to TNF-α disorganized the actin cytoskeleton. This was further increased by TNF-α/CCK treatment, which additionally reduced amylase secretion, and increased trypsin and nuclear factor-κB activities in a protein-kinase-C δ and ε-dependent manner. TNF-α/CCK also enhanced caspases' activity and lactate dehydrogenase release, induced ATP loss, and augmented the ADP/ATP ratio. In vivo, rats under chronic restraint exhibited elevated serum and pancreatic TNF-α levels. Serum, pancreatic, and lung inflammatory parameters, as well as caspases'activity in pancreatic and lung tissue, were substantially enhanced in stressed/cerulein-treated rats, which also experienced tissues' ATP loss and greater ADP/ATP ratios. Histological examination revealed that stressed/cerulein-treated animals developed abundant pancreatic and lung edema, hemorrhage and leukocyte infiltrate, and pancreatic necrosis. Pancreatitis severity was greatly decreased by treating animals with an anti-TNF-α-antibody, which diminished all inflammatory parameters, histopathological scores, and apoptotic/necrotic markers in stressed/cerulein-treated rats. In rats, chronic stress increases susceptibility for developing pancreatitis, which involves TNF-α sensitization of pancreatic acinar cells to undergo injury by physiological cerulein stimulation.

  10. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    PubMed Central

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  11. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA

  12. Acute and chronic ethanol intake: effects on spatial and non-spatial memory in rats.

    PubMed

    García-Moreno, Luis M; Cimadevilla, Jose M

    2012-12-01

    Abusive alcohol consumption produces neuronal damage and biochemical alterations in the mammal brain followed by cognitive disturbances. In this work rats receiving chronic and acute alcohol intake were evaluated in a spontaneous delayed non-matching to sample/position test. Chronic alcohol-treated rats had free access to an aqueous ethanol solution as the only available liquid source from the postnatal day 21 to the end of experiment (postnatal day 90). Acute alcoholic animals received an injection of 2 g/kg ethanol solution once per week. Subjects were evaluated in two tests (object recognition and spatial recognition) based on the spontaneous delayed non-matching to sample or to position paradigm using delays of 1 min, 15 min and 60 min. Results showed that chronic and acute alcohol intake impairs the rats' performance in both tests. Moreover, chronic alcohol-treated rats were more altered than acute treated animals in both tasks. Our results support the idea that chronic and acute alcohol administration during postnatal development caused widespread brain damage resulting in behavioral disturbances and learning disabilities. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Effects of chronic lithium administration on renal acid excretion in humans and rats

    PubMed Central

    Weiner, I. David; Leader, John P.; Bedford, Jennifer J.; Verlander, Jill W.; Ellis, Gaye; Kalita, Priyakshi; Vos, Frederiek; de Jong, Sylvia; Walker, Robert J.

    2014-01-01

    Abstract Lithium therapy's most common side effects affecting the kidney are nephrogenic diabetes insipidus (NDI) and chronic kidney disease. Lithium may also induce a distal renal tubular acidosis. This study investigated the effect of chronic lithium exposure on renal acid–base homeostasis, with emphasis on ammonia and citrate excretion. We compared 11 individuals on long‐term lithium therapy with six healthy individuals. Under basal conditions, lithium‐treated individuals excreted significantly more urinary ammonia than did control subjects. Following an acute acid load, urinary ammonia excretion increased approximately twofold above basal rates in both lithium‐treated and control humans. There were no significant differences between lithium‐treated and control subjects in urinary pH or urinary citrate excretion. To elucidate possible mechanisms, rats were randomized to diets containing lithium or regular diet for 6 months. Similar to humans, basal ammonia excretion was significantly higher in lithium‐treated rats; in addition, urinary citrate excretion was also significantly greater. There were no differences in urinary pH. Expression of the critical ammonia transporter, Rhesus C Glycoprotein (Rhcg), was substantially greater in lithium‐treated rats than in control rats. We conclude that chronic lithium exposure increases renal ammonia excretion through mechanisms independent of urinary pH and likely to involve increased collecting duct ammonia secretion via the ammonia transporter, Rhcg. PMID:25501430

  14. Senna and the formation of aberrant crypt foci and tumors in rats treated with azoxymethane.

    PubMed

    Borrelli, F; Capasso, R; Aviello, G; Di Carlo, G; Izzo, A A; Mascolo, N; Capasso, F

    2005-06-01

    Chronic use of anthraquinone laxatives has been blamed for the induction of habituation and the development of colonic cancer, but there are no definitive studies which have demonstrated this. To evaluate the carcinogenic potential of anthraquinones, the effect of long-term senna pod extract (SE) treatment on either healthy rats or rats treated with an initiating tumor agent (azoxymethane--AOM) has been studied. SE (30 and 60mg/kg), administered for 110 weeks, did not induce the development of aberrant crypt foci (ACF) and tumors in healthy rats. The development of ACF and tumors in rats treated with AOM were significantly reduced by SE (30 and 60 mg/kg). These results suggest that a chronic SE use does not predispose to colon cancer. By contrast, SE might exert an anti-tumoral activity on rat colon carcinogenesis.

  15. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats I: Magnetic resonance imaging.

    PubMed

    van Vliet, Erwin A; Otte, Willem M; Wadman, Wytse J; Aronica, Eleonora; Kooij, Gijs; de Vries, Helga E; Dijkhuizen, Rick M; Gorter, Jan A

    2016-01-01

    The mammalian target of rapamycin (mTOR) pathway has received increasing attention as a potential antiepileptogenic target. Treatment with the mTOR inhibitor rapamycin after status epilepticus reduces the development of epilepsy in a rat model. To study whether rapamycin mediates this effect via restoration of blood-brain barrier (BBB) dysfunction, contrast-enhanced magnetic resonance imaging (CE-MRI) was used to determine BBB permeability throughout epileptogenesis. Imaging was repeatedly performed until 6 weeks after kainic acid-induced status epilepticus in rapamycin (6 mg/kg for 6 weeks starting 4 h after SE) and vehicle-treated rats, using gadobutrol as contrast agent. Seizures were detected using video monitoring in the week following the last imaging session. Gadobutrol leakage was widespread and extensive in both rapamycin and vehicle-treated epileptic rats during the acute phase, with the piriform cortex and amygdala as the most affected regions. Gadobutrol leakage was higher in rapamycin-treated rats 4 and 8 days after status epilepticus compared to vehicle-treated rats. However, during the chronic epileptic phase, gadobutrol leakage was lower in rapamycin-treated epileptic rats along with a decreased seizure frequency. This was confirmed by local fluorescein staining in the brains of the same rats. Total brain volume was reduced by this rapamycin treatment regimen. The initial slow recovery of BBB function in rapamycin-treated epileptic rats indicates that rapamycin does not reduce seizure activity by a gradual recovery of BBB integrity. The reduced BBB leakage during the chronic phase, however, could contribute to the decreased seizure frequency in post-status epilepticus rats treated with rapamycin. Furthermore, the data show that CE-MRI (using step-down infusion with gadobutrol) can be used as biomarker for monitoring the effect of drug therapy in rats. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  16. Chronic administration of fluoxetine or clozapine induces oxidative stress in rat liver: a histopathological study.

    PubMed

    Zlatković, Jelena; Todorović, Nevena; Tomanović, Nada; Bošković, Maja; Djordjević, Snežana; Lazarević-Pašti, Tamara; Bernardi, Rick E; Djurdjević, Aleksandra; Filipović, Dragana

    2014-08-01

    Chronic exposure to stress contributes to the etiology of mood disorders, and the liver as a target organ of antidepressant and antipsychotic drug metabolism is vulnerable to drug-induced toxicity. We investigated the effects of chronic administration of fluoxetine (15mg/kg/day) or clozapine (20mg/kg/day) on liver injury via the measurement of liver enzymes, oxidative stress and histopathology in rats exposed to chronic social isolation (21days), an animal model of depression, and controls. The activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the liver content of carbonyl groups, malonyldialdehyde (MDA), reduced glutathione (GSH), cytosolic glutathione S-transferase (GST) and nitric oxide (NO) metabolites were determined. We also characterized nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and CuZn-superoxide dismutase (CuZnSOD) protein expression as well as histopathological changes. Increased serum ALT activity in chronically-isolated and control animals treated with both drugs was found while increased AST activity was observed only in fluoxetine-treated rats (chronically-isolated and controls). Increased carbonyl content, MDA, GST activity and decreased GSH levels in drug-treated controls/chronically-isolated animals suggest a link between drugs and hepatic oxidative stress. Increased NO levels associated with NF-κB activation and the concomitant increased COX-2 expression together with compromised CuZnSOD expression in clozapine-treated chronically-isolated rats likely reinforce oxidative stress, observed by increased lipid peroxidation and GSH depletion. In contrast, fluoxetine reduced NO levels in chronically-isolated rats. Isolation induced oxidative stress but histological changes were similar to those observed in vehicle-treated controls. Chronic administration of fluoxetine in both chronically-isolated and control animals resulted in more or less normal hepatic architecture, while clozapine in both groups

  17. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats.

    PubMed

    Mattioli, Theresa-Alexandra M; Milne, Brian; Cahill, Catherine M

    2010-04-16

    The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone

  18. Working Memory in Bisphenol-A Treated Middle-Aged Ovariectomized Rats

    PubMed Central

    Neese, Steven L.; Bandara, Suren B.; Schantz, Susan L.

    2014-01-01

    Over 90% of the U.S. population has detectable bisphenol-A (BPA) in their urine according to recent biomonitoring data. BPA is best known for its estrogenic properties, and most rodent research on the nervous system effects of BPA has focused on determining if chronic exposures during pre- and perinatal development have organizational effects on brain development and behavior. Estrogens also have important impacts on brain and behavior during adulthood, particularly in females during aging, but the impact of BPA on the adult brain is less studied. We have published a series of studies documenting that chronic exposure to various estrogens including 17β-estradiol, ERβ selective SERMs and soy phytoestrogens impairs performance of middle-aged female rats on an operant working memory task. The purpose of this study was to determine if chronic oral exposure to BPA would alter working memory on this same task. Ovariectomized (OVX) middle-aged Long Evans rats were tested on an operant delayed spatial alternation (DSA) task. Rats were treated for 8–10 weeks with either a 0 (vehicle control), 5 or 50 μg/kg bw/day oral bolus of BPA. A subset of the vehicle control rats were implanted with a Silastic implant containing 17β-estradiol (low physiological range) to serve as a positive control. All rats were tested for 25 sessions on the DSA task. BPA treatment did not influence performance accuracy on the DSA task, whereas 17β-estradiol significantly impaired performance, as previously reported. The results of this study suggest that chronic oral exposure to BPA does not alter working memory processes of middle-aged OVX rats assessed by this operant DSA task. PMID:23339879

  19. Early histological and functional effects of chronic copper exposure in rat liver.

    PubMed

    Cisternas, Felipe A; Tapia, Gladys; Arredondo, Miguel; Cartier-Ugarte, Denise; Romanque, Pamela; Sierralta, Walter D; Vial, María T; Videla, Luis A; Araya, Magdalena

    2005-10-01

    Cu is an essential trace element capable of producing toxic effects in animals and man when ingested acutely or chronically in excess. Although chronic Cu exposure is increasingly recognized as a public health issue, its early effects remain largely unknown. We approached the significance of a moderate chronic Cu load in young rats to correlate early hepatic histopathological changes with functional alterations of liver cells. For this purpose, supplementation with 1,200 ppm of Cu in rat food for 16 weeks was chosen. In these conditions, Cu load elicited a significant decrease in growth curves. There were mild light microscopy alterations in Cu-treated rats, although increasing intracellular Cu storage was correlated with longer Cu exposure both by histological and biochemical measurements. Ultrastructural alterations included lysosomal inclusions as well as mitochondrial and nuclear changes. Liver perfusion studies revealed higher rates of basal O(2) consumption and colloidal carbon-induced O(2) uptake in Cu-treated rats, with enhanced carbon-induced O(2)/carbon uptake ratios and NF-kappaB DNA binding activity. These changes were time-dependent and returned to control values after 12 or 16 weeks. It is concluded that subchronic Cu loading in young rats induces early hepatic morphological changes, with enhancement in Küpffer cell-dependent respiratory burst activity and NF-kappaB DNA binding, cellular responses that may prevent or alleviate the hepatotoxicity of the metal.

  20. Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat.

    PubMed

    Yarmohmmadi, Fatemeh; Rahimi, Nastaran; Faghir-Ghanesefat, Hedyeh; Javadian, Nina; Abdollahi, Alireza; Pasalar, Parvin; Jazayeri, Farahnaz; Ejtemaeemehr, Shahram; Dehpour, Ahmad Reza

    2017-02-05

    The detrimental cardio-toxic effect of doxorubicin, an effective chemotherapeutic agent, limited its clinical use. It has been claimed that doxorubicin cardio-toxicity occurs through calcium ions (Ca 2+ ) overload and reactive oxygen species production. Agmatine, an endogenous imidazoline receptor agonist, induce uptake of cytosolic Ca 2+ and cause an increase in activity of calcium pumps, including Ca 2+ -ATPase. Also it shows self-scavenging effect against reactive oxygen species production. Therefore, present study was designed to investigate the effects of agmatine against chronic cardio-toxicity of doxorubicin in rats. Male wistar rats were intraperitoneally injected with doxorubicin and agmatine four times a week for a month. Agmatine significantly alleviate the adverse effect of doxorubicin on left ventricular papillary muscle stimulation threshold and contractibility. Chronic co-administration of agmatine with doxorubicin blocked electrocardiographic changes induced by doxorubicin. In addition, agmatine improved body weight and decreased the mortality rate of animals by doxorubicin. Moreover, reversing the doxorubicin induced myocardial lesions was observed in animals treated by agmatine. A significant rise in the total antioxidant capacity of rat plasma was achieved in agmatine-treated animals in comparison to doxorubicin. To conclude, agmatine may improve therapeutic outcomes of doxorubicin since it exerts protective effects against doxorubicin-induced chronic cardiotoxicity in rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Antidepressant-like effect of magnolol on BDNF up-regulation and serotonergic system activity in unpredictable chronic mild stress treated rats.

    PubMed

    Li, Lu-Fan; Lu, Jie; Li, Xiu-Min; Xu, Chang-Liang; Deng, Ji-Min; Qu, Rong; Ma, Shi-Ping

    2012-08-01

    Magnolol is the main constituent identified in the barks of Magnolia officinalis, which has been used for the treatment of mental disorders including depression in China. In this study, we investigated the antidepressant-like effect of magnolol, and its possible mechanisms in rats subjected to unpredictable chronic mild stress (UCMS). High performance liquid chromatography with electrochemical detection (HPLC-ECD) and immunohistochemical staining analysis were applied to explore the mechanisms underlying the antidepressant-like effect of magnolol. Magnolol (20, 40 mg/kg) significantly reversed UCMS-induced reduction in sucrose consumption and deficiency in locomotor activity. In addition, it was observed that administration of magnolol (20, 40 mg/kg) restored brain-derived neurotrophic factor (BDNF) expression, and normalized the serotonergic system changes in the UCMS-treated rats. These results confirmed the antidepressant-like effect of magnolol, which might be based primarily on its ability to increase the BDNF expression and enhance the activity of the serotonergic system in rat brains. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Working memory in bisphenol-A treated middle-aged ovariectomized rats.

    PubMed

    Neese, Steven L; Bandara, Suren B; Schantz, Susan L

    2013-01-01

    Over 90% of the U.S. population has detectable bisphenol-A (BPA) in their urine according to recent biomonitoring data. BPA is best known for its estrogenic properties, and most rodent research on the nervous system effects of BPA has focused on determining if chronic exposures during pre- and perinatal development have organizational effects on brain development and behavior. Estrogens also have important impacts on brain and behavior during adulthood, particularly in females during aging, but the impact of BPA on the adult brain is less studied. We have published a series of studies documenting that chronic exposure to various estrogens including 17β-estradiol, ERβ selective SERMs and soy phytoestrogens impairs performance of middle-aged female rats on an operant working memory task. The purpose of this study was to determine if chronic oral exposure to BPA would alter working memory on this same task. Ovariectomized (OVX) middle-aged Long Evans rats were tested on an operant delayed spatial alternation (DSA) task. Rats were treated for 8-10 weeks with either a 0 (vehicle control), 5 or 50 μg/kg bw/day oral bolus of BPA. A subset of the vehicle control rats was implanted with a Silastic implant containing 17β-estradiol (low physiological range) to serve as a positive control. All rats were tested for 25 sessions on the DSA task. BPA treatment did not influence performance accuracy on the DSA task, whereas 17β-estradiol significantly impaired performance, as previously reported. The results of this study suggest that chronic oral exposure to BPA does not alter working memory processes of middle-aged OVX rats assessed by this operant DSA task. Copyright © 2013. Published by Elsevier Inc.

  3. Impaired expression and function of group II metabotropic glutamate receptors in pilocarpine-treated chronically epileptic rats

    PubMed Central

    Garrido-Sanabria, Emilio R.; Otalora, Luis F. Pacheco; Arshadmansab, Massoud F.; Herrera, Berenice; Francisco, Sebastian; Ermolinsky, Boris

    2008-01-01

    Group II metabotropic (mGlu II) receptor subtypes mGlu2 and mGlu3 are important modulators of synaptic plasticity and glutamate release in the brain. Accordingly, several pharmacological ligands have been designed to target these receptors for the treatment of neurological disorders characterized by anomalous glutamate regulation including epilepsy. In this study, we examine whether the expression level and function of mGlu2 and mGlu3 are altered in experimental epilepsy by using immunohistochemistry, Western blot analysis, RT-PCR and extracellular recordings. A down-regulation of mGlu2/3 protein expression at the mossy fiber pathway was associated with a significant reduction in mGlu2/3 protein expression in the hippocampus and cortex of chronically epileptic rats. Moreover, a reduction in mGlu2 and mGlu3 transcripts levels was noticed as early as 24h after pilocarpine-induced status epilepticus (SE) and persisted during subsequent “latent” and chronic periods. In addition, a significant impairment of mGlu II-mediated depression of field excitatory postsynaptic potentials at mossy fiber-CA3 synapses was detected in chronically epileptic rats. Application of mGlu II agonists (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) induced a significant reduction of the fEPSP amplitude in control rats, but not in chronic epileptic rats. These data indicate a long-lasting impairment of mGlu2/3 expression that may contribute to abnormal presynaptic plasticity, exaggerate glutamate release and hyperexcitability in temporal lobe epilepsy. PMID:18804094

  4. Infections and reduced functioning kidney mass induce chronic rejection in rat kidney allografts.

    PubMed

    Heemann, U W; Azuma, H; Tullius, S G; Schmid, C; Philipp, T; Tilney, N L

    1996-07-01

    The etiology of chronic rejection of kidney allografts is unknown, although hyperfiltration, acute rejection, viral infection and initial graft ischemia have been implicated. To test whether endothelial activation may be the link between these factors and chronic rejection, the endotoxin (lipopolysaccharide-LPS), a potent activator of endothelial cells, was evaluated in an established chronic rejection model. Bilaterally nephrectomized Lewis recipients of orthotopically transplanted Fisher 344 kidneys were treated briefly with low dose cyclosporine (1.5 mg/kg/day x 10). Recipients were given a non-lethal dose of LPS (2 mg) i.p. at 8 weeks and compared to allografted controls treated with vehicle. Urine protein was measured every 4 weeks. Rats in the treated group were sacrificed at 12 and 16 weeks, control animals at 12, 16 and 24 weeks (20/group) and examined histologically. In the chronically rejecting control allografts, progressive interstitial and glomerular sclerosis and vascular intimal proliferation had become apparent by 12 weeks. Infiltration of glomeruli, particularly by macrophages (M phi), and the coincident presence of cytokines were prominent, peaking at 16 weeks. LPS treatment accelerated and intensified these changes; proteinuria was more pronounced (16 weeks: 79 mg/24 h vs. 49 mg/24 h, p < 0.05). Numbers of infiltrating M phi peaked at 12 weeks in LPS treated hosts (69 c/FV vs. 27 c/FV in untreated controls, p < 0.01), accompanied by an increased upregulation of MHC class II and cytokine expression, particularly TNF alpha and PDGF around arteries and areas of infiltration. BY 16 weeks, 35 +/- 3% of glomeruli in LPS treated recipients had become sclerotic vs. 15 +/- 6% (p < 0.05) in controls, again associated with increased expression of cytokines (PDGF, TNF alpha, TGF beta), adhesion molecules (ICAM-1) and extracellular matrix proteins. Overall, the extent of chronic rejection of grafts in LPS treated rats at 16 weeks was similar to that

  5. Antihypertensive mechanisms of chronic captopril or N-acetylcysteine treatment in L-NAME hypertensive rats.

    PubMed

    Zicha, Josef; Dobesová, Zdenka; Kunes, Jaroslav

    2006-12-01

    Hypertension due to chronic inhibition of NO synthase (NOS) by Nomega-nitro-L-arginine methyl ester (L-NAME) administration is characterized by both impaired NO-dependent vasodilation and enhanced sympathetic vasoconstriction. The aim of our study was to evaluate changes in the participation of major vasoactive systems in L-NAME-treated rats which were subjected to simultaneous antihypertensive (captopril) or antioxidant (N-acetylcysteine, NAC) treatment. Three-month-old Wistar males treated with L-NAME (60 mg/kg/day) for 5 weeks were compared to rats in which L-NAME treatment was combined with simultaneous chronic administration of captopril or NAC. Basal blood pressure (BP) and its acute responses to consecutive i.v. injections of captopril (10 mg/kg), pentolinium (5 mg/kg), L-NAME (30 mg/kg), tetraethylammonium (TEA, 16 mg/kg) and nitroprusside (NP, 20 microg/kg) were determined in conscious rats at the end of the study. The development of L-NAME hypertension was prevented by captopril treatment, whereas NAC treatment caused only a moderate BP reduction. Captopril treatment normalized the sympathetic BP component and significantly reduced residual BP (measured at full NP-induced vasodilation). In contrast, chronic NAC treatment did not modify the sympathetic BP component or residual BP, but significantly enhanced NO-dependent vasodilation. Neither captopril nor NAC treatment influenced the compensatory increase of TEA-sensitive vasodilation mediated by endothelium-derived hyperpolarizing factor in L-NAME-treated rats. Chronic captopril treatment prevented L-NAME hypertension by lowering of sympathetic tone, whereas chronic NAC treatment attenuated L-NAME hypertension by reduction in the vasodilator deficit due to enhanced NO-dependent vasodilation.

  6. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    PubMed

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (P<0.05) and improve renal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  7. Hemodynamic alterations in chronically conscious unrestrained diabetic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbonell, L.F.; Salmon, M.G.; Garcia-Estan, J.

    1987-05-01

    Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state and whether insulin treatment can avoid them, different hemodynamic parameters, obtained by the thermodilution method, were studied in STZ-induced (65 mg/kg) diabetic male Wistar rats, as well as in age-control, weight-control, and insulin-treated diabetic ones. Plasma volume was measured by dilution of radioiodinated (/sup 125/I) human serum albumin. All rats were examined in the conscious, unrestrained state 12 wk after induction of diabetes or acidified saline (pH 4.5) injection. At 12 wk of diabetic state most important findings weremore » normotension, high blood volume, bradycardia, increase in stroke volume, cardiac output, and cardiosomatic ratio, and decrease in total peripheral resistance and cardiac contractility and relaxation (dP/dt/sub max/ and dP/dt/sub min/ of left ventricular pressure curves). The insulin-treated diabetic rats did not show any hemodynamic differences when compared with the control animals. These results suggest that important hemodynamic alterations are present in the chronic diabetic states, possibly conditioning congestive heart failure. These alterations can be prevented by insulin treatment.« less

  8. Neural hyperactivity in the amygdala induced by chronic treatment of rats with analgesics may elucidate the mechanisms underlying psychiatric comorbidities associated with medication-overuse headache.

    PubMed

    Wanasuntronwong, Aree; Jansri, Ukkrit; Srikiatkhachorn, Anan

    2017-01-03

    Patients with medication-overuse headache suffer not only from chronic headache, but often from psychiatric comorbidities, such as anxiety and depression. The mechanisms underlying these comorbidities are unclear, but the amygdala is likely to be involved in their pathogenesis. To investigate the mechanisms underlying the comorbidities we used elevated plus maze and open field tests to assess anxiety-like behavior in rats chronically treated with analgesics. We measured the electrical properties of neurons in the amygdala, and examined the cortical spreading depression (CSD)-evoked expression of Fos in the trigeminal nucleus caudalis (TNC) and amygdala of rats chronically treated with analgesics. CSD, an analog of aura, evokes Fos expression in the TNC of rodents suggesting trigeminal nociception, considered to be a model of migraine. Increased anxiety-like behavior was seen both in elevated plus maze and open field tests in a model of medication overuse produced in male rats by chronic treatment with aspirin or acetaminophen. The time spent in the open arms of the maze by aspirin- or acetaminophen-treated rats (53 ± 36.1 and 37 ± 29.5 s, respectively) was significantly shorter than that spent by saline-treated vehicle control rats (138 ± 22.6 s, P < 0.001). Chronic treatment with the analgesics increased the excitability of neurons in the central nucleus of the amygdala as indicated by their more negative threshold for action potential generation (-54.6 ± 5.01 mV for aspirin-treated, -55.2 ± 0.97 mV for acetaminophen-treated, and -31.50 ± 5.34 mV for saline-treated rats, P < 0.001). Chronic treatment with analgesics increased the CSD-evoked expression of Fos in the TNC and amygdala [18 ± 10.2 Fos-immunoreactive (IR) neurons per slide in the amygdala of rats treated with aspirin, 11 ± 5.4 IR neurons per slide in rats treated with acetaminophen, and 4 ± 3.7 IR neurons per slide in saline-treated control rats, P < 0.001]. Chronic

  9. [Establishment of a D-galactosamine/lipopolysaccharide induced acute-on-chronic liver failure model in rats].

    PubMed

    Liu, Xu-hua; Chen, Yu; Wang, Tai-ling; Lu, Jun; Zhang, Li-jie; Song, Chen-zhao; Zhang, Jing; Duan, Zhong-ping

    2007-10-01

    To establish a practical and reproducible animal model of human acute-on-chronic liver failure for further study of the pathophysiological mechanism of acute-on-chronic liver failure and for drug screening and evaluation in its treatment. Immunological hepatic fibrosis was induced by human serum albumin in Wistar rats. In rats with early-stage cirrhosis (fibrosis stage IV), D-galactosamine and lipopolysaccharide were administered. Mortality and survival time were recorded in 20 rats. Ten rats were sacrificed at 4, 8, and 12 hours. Liver function tests and plasma cytokine levels were measured after D-galactosamine/lipopolysaccharide administration and liver pathology was studied. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Most of the rats treated with human albumin developed cirrhosis and fibrosis, and 90% of them died from acute liver failure after administration of D-galactosamine/lipopolysaccharide, with a mean survival time of (16.1+/-3.7) hours. Liver histopathology showed massive or submassive necrosis of the regenerated nodules, while fibrosis septa were intact. Liver function tests were compatible with massive necrosis of hepatocytes. Plasma level of TNFalpha increased significantly, parallel with the degree of the hepatocytes apoptosis. Plasma IL-10 levels increased similarly as seen in patients with acute-on-chronic liver failure. We established an animal model of acute-on-chronic liver failure by treating rats with human serum albumin and later with D-galactosamine and lipopolysaccharide. TNFalpha-mediated liver cell apoptoses plays a very important role in the pathogenesis of acute liver failure.

  10. Chronic neonatal N-methyl-D-aspartate receptor blockade induces learning deficits and transient hypoactivity in young rats.

    PubMed

    Latysheva, Nadejda V; Rayevsky, Kirill S

    2003-08-01

    A blockade of N-methyl-D-aspartate (NMDA)-type of glutamate receptor in rodents is believed to provide a pharmacological model of schizophrenia-related psychosis. Since neurodevelopmental abnormality, at least partly, could contribute to the pathogenesis of schizophrenia, the aim of this study was to recapitulate cognitive impairments accompanying this disorder in rats by a chronic neonatal treatment with a noncompetitive NMDA antagonist MK-801. Rat pups were treated with a low dose of MK-801 (0.05 mg/kg s.c.) chronically from early postnatal period (PD 7-49) known to be critical for glutamatergic system maturation. Locomotor activity in the "open-field" test, anxiety level in the elevated plus-maze test, and learning capacity in food rewarded spatial task were examined in young animals. Chronic MK-801 treatment produced a decrease of spontaneous motor and exploratory activity in 16- to 28-day-old rats. At the same time, a hyperlocomotion in response to acute administration of MK-801 was observed as well. Spatial learning of MK-801-treated rats was found to be negatively affected. Treated rats were able to respond to stress stimuli in the adequate manner but their anxiety level was found to be lower than in controls. Behavioral disturbances appeared to be temporary, and no such abnormalities could be detected at the age of 16 weeks. Thus, even mild chronic neonatal blockade of NMDA receptors may lead to a specific pattern of cognitive abnormalities presumably resulting from impairments of sensory information processing at the cortical-basal ganglia level.

  11. Exercise aggravates cardiovascular risks and mortality in rats with disrupted nitric oxide pathway and treated with recombinant human erythropoietin.

    PubMed

    Meziri, Fayçal; Binda, Delphine; Touati, Sabeur; Pellegrin, Maxime; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-08-01

    Chronic administration of recombinant human erythropoietin (rHuEPO) can generate serious cardiovascular side effects such as arterial hypertension (HTA) in clinical and sport fields. It is hypothesized that nitric oxide (NO) can protect from noxious cardiovascular effects induced by chronic administration of rHuEPO. On this base, we studied the cardiovascular effects of chronic administration of rHuEPO in exercise-trained rats treated with an inhibitor of NO synthesis (L-NAME). Rats were treated or not with rHuEPO and/or L-NAME during 6 weeks. During the same period, rats were subjected to treadmill exercise. The blood pressure was measured weekly. Endothelial function of isolated aorta and small mesenteric arteries were studied and the morphology of the latter was investigated. L-NAME induced hypertension (197 ± 6 mmHg, at the end of the protocol). Exercise prevented the rise in blood pressure induced by L-NAME (170 ± 5 mmHg). However, exercise-trained rats treated with both rHuEPO and L-NAME developed severe hypertension (228 ± 9 mmHg). Furthermore, in these exercise-trained rats treated with rHuEPO/L-NAME, the acetylcholine-induced relaxation was markedly impaired in isolated aorta (60% of maximal relaxation) and small mesenteric arteries (53%). L-NAME hypertension induced an internal remodeling of small mesenteric arteries that was not modified by exercise, rHuEPO or both. Vascular ET-1 production was not increased in rHuEPO/L-NAME/training hypertensive rats. Furthermore, we observed that rHuEPO/L-NAME/training hypertensive rats died during the exercise or the recovery period (mortality 51%). Our findings suggest that the use of rHuEPO in sport, in order to improve physical performance, represents a high and fatal risk factor, especially with pre-existing cardiovascular risk.

  12. Effect of chronic exposure to aspartame on oxidative stress in the brain of albino rats.

    PubMed

    Iyyaswamy, Ashok; Rathinasamy, Sheeladevi

    2012-09-01

    This study was aimed at investigating the chronic effect of the artificial sweetener aspartame on oxidative stress in brain regions of Wistar strain albino rats. Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposed to investigate whether chronic aspartame (75 mg/kg) administration could release methanol and induce oxidative stress in the rat brain. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included to study the aspartame effects. Wistar strain male albino rats were administered with aspartame orally and studied along with controls and MTX-treated controls. The blood methanol level was estimated, the animal was sacrificed and the free radical changes were observed in brain discrete regions by assessing the scavenging enzymes, reduced glutathione, lipid peroxidation (LPO) and protein thiol levels. It was observed that there was a significant increase in LPO levels, superoxide dismutase (SOD) activity, GPx levels and CAT activity with a significant decrease in GSH and protein thiol. Moreover, the increases in some of these enzymes were region specific. Chronic exposure of aspartame resulted in detectable methanol in blood. Methanol per se and its metabolites may be responsible for the generation of oxidative stress in brain regions.

  13. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats.

    PubMed Central

    Christensen, S; Kusano, E; Yusufi, A N; Murayama, N; Dousa, T P

    1985-01-01

    A polyuric syndrome with nephrogenic diabetes insipidus (NDI) is a frequent consequence of prolonged administration of lithium (Li) salts. Studies in the past, mainly the acute and in vitro experiments, indicated that Li ions can inhibit hydroosmotic effect of [8-arginine]vasopressin (AVP) at the step of cAMP generation in vitro. However, the pathogenesis of the NDI due to chronic oral administration of low therapeutic doses of Li salts is not yet clarified. We conducted a comprehensive study to clarify the mechanism by which Li administered orally for several weeks induces polyuria and NDI in rats. Albino rats consuming a diet which contained Li (60 mmol/kg) for 4 wk developed marked polyuria and polydipsia; at the end of 4 wk the plasma Li was 0.7 +/- 0.09 mM (mean +/- SEM; n = 36). Li-treated rats had a significantly decreased (-33%) tissue osmolality in papilla and greatly reduced cortico-papillary gradient of urea (cortex--43%; medulla--64%; papilla--74%). Plasma urea was significantly (P less than 0.001) lower in Li-treated rats (5.4 +/- 0.2 mM) compared with controls (6.8 +/- 0.3 mM). Medullary collecting tubules (MCT) and papillary collecting ducts (PCD) microdissected from Li-treated animals had higher content of protein than MCT and PCD from the control rats. The cAMP accumulation in response to AVP added in vitro was significantly (delta = -60%) reduced. Also, the cAMP accumulation in MCT and PCD after incubation with forskolin was markedly lower in Li-treated rats. Addition of 0.5 mM 1-methyl,3-isobutyl-xanthine did not restore the cAMP accumulation in response to AVP and forskolin in MCT from Li-treated animals. In collecting tubule segments from polyuric rats with hypothalamic diabetes insipidus (Brattleboro homozygotes) the AVP-dependent cAMP accumulation was not diminished. The activity of adenylate cyclase (AdC) in MCT of Li-treated rats, both the basal and the activity stimulated by AVP, forskolin, or fluoride, was significantly (delta

  14. Chronic alcoholism-mediated metabolic disorders in albino rat testes.

    PubMed

    Shayakhmetova, Ganna M; Bondarenko, Larysa B; Matvienko, Anatoliy V; Kovalenko, Valentina M

    2014-09-01

    There is good evidence for impairment of spermatogenesis and reductions in sperm counts and testosterone levels in chronic alcoholics. The mechanisms for these effects have not yet been studied in detail. The consequences of chronic alcohol consumption on the structure and/or metabolism of testis cell macromolecules require to be intensively investigated. The present work reports the effects of chronic alcoholism on contents of free amino acids, levels of cytochrome P450 3A2 (CYP3A2) mRNA expression and DNA fragmentation, as well as on contents of different cholesterol fractions and protein thiol groups in rat testes. Wistar albino male rats were divided into two groups: I - control (intact animals), II - chronic alcoholism (15% ethanol self-administration during 150 days). Following 150 days of alcohol consumption, testicular free amino acid content was found to be significantly changed as compared with control. The most profound changes were registered for contents of lysine (-53%) and methionine (+133%). The intensity of DNA fragmentation in alcohol-treated rat testes was considerably increased, on the contrary CYP3A2 mRNA expression in testis cells was inhibited, testicular contents of total and etherified cholesterol increased by 25% and 45% respectively, and protein SH-groups decreased by 13%. Multidirectional changes of the activities of testicular dehydrogenases were detected. We thus obtained complex assessment of chronic alcoholism effects in male gonads, affecting especially amino acid, protein, ATP and NADPH metabolism. Our results demonstrated profound changes in testes on the level of proteome and genome. We suggest that the revealed metabolic disorders can have negative implication on cellular regulation of spermatogenesis under long-term ethanol exposure.

  15. Damage of hippocampal neurons in rats with chronic alcoholism.

    PubMed

    Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling

    2014-09-01

    Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons in rats with chronic alcoholism appeared to have a fuzzy nuclear membrane, mitochondrial edema, and ruptured mitochondrial crista. These findings suggest that chronic alcoholism can cause learning and memory decline in rats, which may be associated with the hydrogen sulfide/cystathionine-beta-synthase system, mitochondrial damage and reduced expression of F-actin.

  16. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats.

    PubMed

    Zhang, Ning; Liang, Hanyu; Farese, Robert V; Li, Ji; Musi, Nicolas; Hussey, Sophie E

    2015-01-01

    To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo.

  17. An analysis of the effects of acute and chronic fluoxetine on extracellular norepinephrine in the rat hippocampus during stress.

    PubMed

    Page, M E; Abercrombie, E D

    1997-06-01

    The locus coeruleus (LC) noradrenergic system is activated by a range of arousing and stressful stimuli. The serotonergic inputs to this structure have been shown to attenuate LC activation under some conditions. The present study examined the effect of fluoxetine, a selective serotonin reuptake inhibitor (SSRI) known to be a clinically effective antidepressant, on basal and stress-induced norepinephrine (NE) release. Basal and stress-induced NE efflux in the rat hippocampus were assessed using in vivo microdialysis techniques. The effect of a 30 minute tailpinch stressor on extracellular concentration of NE was compared in rats treated with fluoxetine either once prior to tailpinch or twice daily for 14 days and, respectively, in unhandled controls and vehicle-treated control animals. A single fluoxetine injection prior to tailpinch did not significantly alter the tailpinch-induced increase of extracellular NE as compared to naive controls. However, there was an enhanced NE response to tailpinch in chronic fluoxetine versus chronic vehicle-treated control rats. Thus, acute blockade of 5-HT uptake by fluoxetine does not affect NE release in response to tailpinch stress. Chronic fluoxetine administration, however, results in a potentiated evoked response of the LC-NE system. One action of chronic fluoxetine, which may relate to therapeutic efficacy, is an increase in responsivity of LC neurons.

  18. Effect of antisecretory agents and vagotomy on healing of chronic cysteamine-induced duodenal ulcers in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulsen, S.S.; Raaberg, L.; Therkelsen, K.

    1986-07-01

    Penetrated cysteamine-induced duodenal ulcers in rats have a very prolonged course of healing. In this study, it was investigated how much the healing of these ulcers is accelerated by some treatments. The treatments included omeprazole, cimetidine, and truncal vagotomy. In addition, the effect of omeprazole and cimetidine on gastric acid secretion was investigated in chronic gastric fistula rats. After 25 days of treatment, significantly more rats in the treated groups had healed ulcers than in the control group. There was little further improvement up to 100 days of treatment, and the difference between treated and untreated groups decreased. The morphologymore » of healing ulcers in treated and untreated rats was also compared. In controls, there was a simultaneous regeneration of mucosa and the submucosal Brunner's glands from the edges of the ulcer, the slow proliferation rate of the latter probably being decisive for the prolonged healing. In the treated rats, the mucosa first regenerated with formation of crypts and low villi and subsequently, the Brunner's glands were formed by proliferation from the bottom of the crypts.« less

  19. Sub-chronic exposure to paraoxon neither induces nor exacerbates diabetes mellitus in Wistar rat.

    PubMed

    Nurulain, Syed M; Petroianu, Georg; Shafiullah, Mohamed; Kalász, Huba; Oz, Murat; Saeed, Tariq; Adem, Abdu; Adeghate, Ernest

    2013-10-01

    There is an increasing belief that organophosphorus compounds (OPCs) impair glucose homeostasis and cause hyperglycemia and diabetes mellitus. The present study was undertaken to investigate the putative diabetogenic effect of sub-lethal and sub-chronic exposure to paraoxon (POX), an extremely hazardous OPC used in pesticides. The effect of paraoxon on streptozotocin-induced diabetic rats was also examined. Each rat was injected with 100 nmol of POX 5 days per week for 6 weeks. Blood glucose levels and red blood cell acetylcholinesterase activity were measured weekly. Biochemical analysis and morphological studies were performed at the end of the experiment. The results revealed that POX neither induces nor exacerbates diabetes mellitus in experimental rats. Liver and kidney/body weight ratios revealed statistically insignificant differences when compared with controls. Biochemical analysis of urine samples showed a small but not significant increase in protein level in all groups. Urine bilirubin was significantly higher in the diabetes + POX group when compared with the control group. The number of blood cells in urine was significantly higher in the POX-treated group compared with the control group. Hyperglycemia was noted in the diabetes and diabetes + POX groups, but neither in the saline control nor in POX-treated normal rats. Electron microscopy of POX-treated pancreas did not show any morphological changes in beta cells. These results suggest that POX does not cause diabetes mellitus at sub-lethal sub-chronic exposure. Copyright © 2012 John Wiley & Sons, Ltd.

  20. [Behavioural studies during the gestational-lactation period in morphine treated rats].

    PubMed

    Sobor, Melinda; Timár, Júlia; Riba, Pál; Király, Kornél P; Al-Khrasani, Mahmoud; Gyarmati, Zsuzsanna; Fürst, Zsuzsanna

    2013-12-01

    Opioids impair the maternal behaviour of experimental animals. The effect of morphine on maternal behaviour in rat dams treated chronically with morphine during the whole pregnancy and lactation has not been yet analysed systematically. The aim of our work was to investigate the behavioural effects of moderate dose morphine administered constantly in the whole perinatal period in rats. Nulliparous female rats were treated with 10 mg/kg morphine s.c. once daily, from the day of mating. Maternal behaviour was observed, the effects of acute morphine treatment on the maternal behaviour and whether this effect could be antagonised by naloxone were also investigated. Physical and other behavioural (anxiety-like signals in elevated plus maze, changes in locomotor activity) withdrawal signs precipitated by naloxone were registered. After weaning sensitivity to the rewarding effect of morphine was measured by conditioned place preference and to the aversive effect of naloxone by conditioned place aversion tests. Antinociceptive test on tail-flick apparatus was performed to investigate the changes in morphine antinociceptive effects due to chronic morphine treatment. Maternal behaviour was significantly impaired in morphine-treated dams. This effect of morphine lasted c.a. 2-3 hours a day, it showed dose-dependency and was enhanced in MO-treated group (sensitisation). Only weak physical and no other behavioural (anxiety-like behaviour or hypolocomotion) withdrawal signs were precipitated by naloxone. The positive reinforcing effect of morphine and aversive effect of naloxone were markedly increased on conditioned place paradigm. Significant antinociceptive tolerance was not seen. Although human drug abuse can be hardly modelling under experimental circumstances, our constant, relatively moderate dose morphine treatment administered once daily during the whole pregnancy and lactation resulted in several subtle behavioural changes in dams. In perinatally opioid

  1. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats II: Potential mechanisms.

    PubMed

    van Vliet, Erwin A; Otte, Willem M; Wadman, Wytse J; Aronica, Eleonora; Kooij, Gijs; de Vries, Helga E; Dijkhuizen, Rick M; Gorter, Jan A

    2016-01-01

    Blood-brain barrier (BBB) leakage may play a pro-epileptogenic role after status epilepticus. In the accompanying contrast-enhanced magnetic resonance imaging (CE-MRI) study we showed that the mammalian target of rapamycin (mTOR) inhibitor rapamycin reduced BBB leakage and seizure activity during the chronic epileptic phase. Given rapamycin's role in growth and immune response, the potential therapeutic effects of rapamycin after status epilepticus with emphasis on brain inflammation and brain vasculature were investigated. Seven weeks after kainic acid-induced status epilepticus, rats were perfusion fixed and (immuno)histochemistry was performed using several glial and vascular markers. In addition, an in vitro model for the human BBB was used to determine the effects of rapamycin on transendothelial electrical resistance as a measure for BBB integrity. (Immuno)histochemistry showed that local blood vessel density, activated microglia, and astrogliosis were reduced in rapamycin-treated rats compared to vehicle-treated rats. In vitro studies showed that rapamycin could attenuate TNFα-induced endothelial barrier breakdown. These data suggest that rapamycin improves BBB function during the chronic epileptic phase by a reduction of local brain inflammation and blood vessel density that can contribute to a milder form of epilepsy. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  2. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats

    PubMed Central

    Zhang, Ning; Liang, Hanyu; Farese, Robert V.; Li, Ji

    2015-01-01

    Aims To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. Materials and Methods For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Results Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Conclusions Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo. PMID:26196892

  3. How does early maternal separation and chronic stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal raphe nucleus?

    PubMed

    Pollano, Antonella; Trujillo, Verónica; Suárez, Marta M

    2018-01-01

    Vulnerability to emotional disorders like depression derives from interactions between early and late environments, including stressful conditions. The serotonin (5HT) system is strongly affected by stress and chronic unpredictable stress can alter the 5HT system. We evaluated the distribution of active serotonergic neurons in the dorsal raphe nucleus (DR) through immunohistochemistry in maternally separated and chronically stressed rats treated with an antidepressant, tianeptine, whose mechanism of action is still under review. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50-74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle. We found an interaction between the effects of MS and chronic unpredictable stress on Fos-5HT immunoreactive cells at mid-caudal level of the DR. MS-chronically stressed rats showed an increase of Fos-5HT immunoreactive cells compared with AFR-chronically stressed rats. The ventrolateral (DRL/VLPAG) and dorsal (DRD) subdivisions of the DR were significantly more active than the ventral part (DRV). At the rostral level of the DR, tianeptine decreased the number of Fos-5HT cells in DR in the AFR groups, both unstressed and stressed. Overall, our results support the idea of a match in phenotype exhibited when the early and the adult environment correspond.

  4. Chronic corticosterone treatment enhances extinction-induced depression in aged rats.

    PubMed

    Huston, Joseph P; Komorowski, Mara; de Souza Silva, Maria A; Lamounier-Zepter, Valéria; Nikolaus, Susanne; Mattern, Claudia; Müller, Christian P; Topic, Bianca

    2016-11-01

    Withdrawal and avoidance behavior are common symptoms of depression and can appear as a consequence of absence of reward, i.e. extinction-induced depression (EID). This is particularly relevant for the aged organism subjected to pronounced loss of former rewards. Avoidance of the former site of reward and increased withdrawal into a distant compartment accompany extinction of food-rewarded behavior in rodent models. During extinction, behavioral markers for re-learning dissociate from indicators of extinction-induced depression. Here we examined the effect of a chronic treatment with corticosterone (CORT), a well-known inducer of depression-related behavior, on EID in adult and aged rats. Adult (3-4months) and aged (18months) male rats were treated with CORT via drinking water for 3weeks prior to extinction of a cued food-reward task. CORT treatment increased the distance from the site of reward and decreased goal tracking behavior during extinction, especially in the aged rats. Plasma hormone levels measured before and after restraint stress showed a decline in basal ACTH- and CORT-levels after chronic CORT treatment in aged animals. The treatment significantly impaired the HPA-axis activation after acute stress in both, adult and aged animals, alike. Altogether, these findings show an enhancement of EID after chronic CORT treatment in the aged organism, which may be mediated by an impaired HPA-axis sensitivity. These findings may have special relevance for the investigation of human geriatric depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Amphetamine and pseudoephedrine cross-tolerance measured by c-Fos protein expression in brains of chronically treated rats.

    PubMed

    Ruksee, Nootchanart; Tongjaroenbuangam, Walaiporn; Casalotti, Stefano O; Govitrapong, Piyarat

    2008-10-06

    Pseudoephedrine is a drug commonly prescribed as a nasal decongestant and bronchodilator and is also freely available in cold remedies and medications. The structural and pharmacological similarity of pseudoephedrine to amphetamine has led to evaluation of its psychomotor stimulant properties within the central nervous system. Previous investigations have shown that the acute responses to pseudoephedrine were similar to those of amphetamine and other psychostimulants. This study examined the effect of chronic administration of pseudoephedrine in rat nucleus accumbens and striatum and identified three further similarities to amphetamine. (i) Chronic exposure to pseudoephedrine reduced the c-Fos response to acute pseudoephedrine treatment suggesting that pseudoephedrine induced tolerance in the animals. (ii) In animals chronically treated with amphetamine or pseudoephedrine the acute c-Fos response to pseudoephedrine and amphetamine was reduced respectively as compared to naïve animals indicating cross-tolerance for the two drugs. (iii)The known involvement of the dopamine system in the response to amphetamine and pseudoephedrine was further confirmed in this study by demonstrating that pseudoephedrine similarly to amphetamine, but with lower potency, inhibited [3H]dopamine uptake in synaptosomal preparations. This work has demonstrated further similarities of the effect of pseudoephedrine to those of amphetamine in brain areas known to be associated with drug addiction. The most significant result presented here is the cross tolerance effect of amphetamine and pseudoephedrine. This suggests that both drugs induce similar mechanisms of action in the brain. Further studies are required to establish whether despite its considerable lower potency, pseudoephedrine could pose health and addiction risks in humans similar to that of known psychostimulants.

  6. Amphetamine and pseudoephedrine cross-tolerance measured by c-Fos protein expression in brains of chronically treated rats

    PubMed Central

    Ruksee, Nootchanart; Tongjaroenbuangam, Walaiporn; Casalotti, Stefano O; Govitrapong, Piyarat

    2008-01-01

    Background Pseudoephedrine is a drug commonly prescribed as a nasal decongestant and bronchodilator and is also freely available in cold remedies and medications. The structural and pharmacological similarity of pseudoephedrine to amphetamine has led to evaluation of its psychomotor stimulant properties within the central nervous system. Previous investigations have shown that the acute responses to pseudoephedrine were similar to those of amphetamine and other psychostimulants. Results This study examined the effect of chronic administration of pseudoephedrine in rat nucleus accumbens and striatum and identified three further similarities to amphetamine. (i) Chronic exposure to pseudoephedrine reduced the c-Fos response to acute pseudoephedrine treatment suggesting that pseudoephedrine induced tolerance in the animals. (ii) In animals chronically treated with amphetamine or pseudoephedrine the acute c-Fos response to pseudoephedrine and amphetamine was reduced respectively as compared to naïve animals indicating cross-tolerance for the two drugs. (iii)The known involvement of the dopamine system in the response to amphetamine and pseudoephedrine was further confirmed in this study by demonstrating that pseudoephedrine similarly to amphetamine, but with lower potency, inhibited [3H]dopamine uptake in synaptosomal preparations. Conclusion This work has demonstrated further similarities of the effect of pseudoephedrine to those of amphetamine in brain areas known to be associated with drug addiction. The most significant result presented here is the cross tolerance effect of amphetamine and psudoephedrine. This suggests that both drugs induce similar mechanisms of action in the brain. Further studies are required to establish whether despite its considerable lower potency, pseudoephedrine could pose health and addiction risks in humans similar to that of known psychostimulants. PMID:18834549

  7. Effects of chronic morphine and morphine withdrawal on gene expression in rat peripheral blood mononuclear cells.

    PubMed

    Desjardins, Stephane; Belkai, Emilie; Crete, Dominique; Cordonnier, Laurie; Scherrmann, Jean-Michel; Noble, Florence; Marie-Claire, Cynthia

    2008-12-01

    Chronic morphine treatment alters gene expression in brain structures. There are increasing evidences showing a correlation, in gene expression modulation, between blood cells and brain in psychological troubles. To test whether gene expression regulation in blood cells could be found in drug addiction, we investigated gene expression profiles in peripheral blood mononuclear (PBMC) cells of saline and morphine-treated rats. In rats chronically treated with morphine, the behavioral signs of spontaneous withdrawal were observed and a withdrawal score was determined. This score enabled to select the time points at which the animals displayed the mildest and strongest withdrawal signs (12 h and 36 h after the last injection). Oligonucleotide arrays were used to assess differential gene expression in the PBMCs and quantitative real-time RT-PCR to validate the modulation of several candidate genes 12 h and 36 h after the last injection. Among the 812 differentially expressed candidates, several genes (Adcy5, Htr2a) and pathways (Map kinases, G-proteins, integrins) have already been described as modulated in the brain of morphine-treated rats. Sixteen out of the twenty-four tested candidates were validated at 12 h, some of them showed a sustained modulation at 36 h while for most of them the modulation evolved as the withdrawal score increased. This study suggests similarities between the gene expression profile in PBMCs and brain of morphine-treated rats. Thus, the searching of correlations between the severity of the withdrawal and the PBMCs gene expression pattern by transcriptional analysis of blood cells could be promising for the study of the mechanisms of addiction.

  8. Effects of saliva from chronically reserpinized rat on Na and K transport in perfused main excretory duct of submandibular gland of normal rat.

    PubMed

    Jirakulsomchok, D; Schneyer, C A

    1987-09-01

    Reserpine (RES) (0.5 mg/kg body wt, ip) was administered to rats for 7 days. On Day 8 saliva was evoked from these animals by intraperitoneal injection of pilocarpine nitrate (10 mg/kg body wt) and saliva from submandibular and parotid glands was collected separately. These collected salivas were used to perfuse through the main ducts of the submandibular glands of normal rats. After a control period of perfusion of the main duct with bicarbonate saline solution, parotid saliva from RES rats was perfused through the duct followed by regular perfusion. There was inhibition of Na absorption (22%) and K secretion (23%). Moreover, when submandibular saliva from treated rat was perfused through the main duct prior to regular perfusion, there was a decrease in Na absorption (31%) and K secretion (28%). In contrast, perfusion of the main duct with either parotid or submandibular saliva from normal rats caused no significant changes in Na and K transport. The present experiments confirm previous studies that there is some Na-inhibitory factor(s) present in saliva of the chronically RES-treated rat.

  9. Exercise training attenuated chronic cigarette smoking-induced up-regulation of FIZZ1/RELMα in lung of rats.

    PubMed

    Ma, Wan-li; Cai, Peng-cheng; Xiong, Xian-zhi; Ye, Hong

    2013-02-01

    FIZZ/RELM is a new gene family named "found in inflammatory zone" (FIZZ) or "resistin-like molecule" (RELM). FIZZ1/RELMα is specifically expressed in lung tissue and associated with pulmonary inflammation. Chronic cigarette smoking up-regulates FIZZ1/RELMα expression in rat lung tissues, the mechanism of which is related to cigarette smoking-induced airway hyperresponsiveness. To investigate the effect of exercise training on chronic cigarette smoking-induced airway hyperresponsiveness and up-regulation of FIZZ1/RELMα, rat chronic cigarette smoking model was established. The rats were treated with regular exercise training and their airway responsiveness was measured. Hematoxylin and eosin (HE) staining, immunohistochemistry and in situ hybridization of lung tissues were performed to detect the expression of FIZZ1/RELMα. Results revealed that proper exercise training decreased airway hyperresponsiveness and pulmonary inflammation in rat chronic cigarette smoking model. Cigarette smoking increased the mRNA and protein levels of FIZZ1/RELMα, which were reversed by the proper exercise. It is concluded that proper exercise training prevents up-regulation of FIZZ1/RELMα induced by cigarette smoking, which may be involved in the mechanism of proper exercise training modulating airway hyperresponsiveness.

  10. Neurotransmitter agonists inhibit inositol phosphate formation in the brain of bupropione-treated rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P.D.; Hungund, B.; Suckow, R.

    1986-03-05

    Bupropione is a chemically unique antidepressant whose mechanism of action is not known. In this study they have evaluated the effect of chronic treatment with bupropione on the receptor-mediated release of inositol phosphates (IP) from brain slices in rats. Animals were implanted with Alzet osmotic pumps that delivered bupropione at a constant rate (40mg/kg/day) for 2 weeks. Cross-chopped slices of cerebral cortex from control and drug-treated rats were prelabelled with myo-/sup 3/H-inositol in HEPES buffer containing 11 mM LiCl. Accumulation of IP was measured in the presence and absence of the following agonists: Carbamylcholine (100..mu..m); norepinephrine (5..mu..M) and serotonin (10..mu..M).more » All agonists stimulated release of IP from slices of control animals but appeared to inhibit IP release in bupropione-treated rats. These results indicate that a phospholipase C inhibitor may appear following the activation of this enzyme by the agonist, and that the agonist-induced formation of the apparent inhibitor may be markedly enhanced after treatment with bupropione.« less

  11. Chronic lead intoxication affects glial and neural systems and induces hypoactivity in adult rat.

    PubMed

    Sansar, Wafa; Ahboucha, Samir; Gamrani, Halima

    2011-10-01

    Lead is an environmental toxin and its effects are principally manifested in the brain. Glial and neuronal changes have been described during development following chronic or acute lead intoxication, however, little is known about the effects of chronic lead intoxication in adults. In this study we evaluated immunohistochemically the glial and dopaminergic systems in adult male Wistar rats. 0.5% (v/v) lead acetate in drinking water was administrated chronically over a 3-month period. Hypertrophic immunoreactive astrocytes were observed in the frontal cortex and other brain structures of the treated animals. Analysis of the astroglial features showed increased number of astrocyte cell bodies and processes in treated rats, an increase confirmed by Western blot. Particular distribution of glial fibrillary acidic protein immunoreactivity was observed within the blood vessel walls in which dense immunoreactive glial processes emanate from astrocytes. Glial changes in the frontal cortex were concomitant with reduced tyrosine hydroxylase immunoreactive neuronal processes, which seem to occur as a consequence of significantly reduced dopaminergic neurons within the nucleus of origin in the substantia nigra. These glial and neuronal changes following lead intoxication may affect animal behavior as evidenced by reduced locomotor activity in an open field test. These findings demonstrate that chronic lead exposure induces astroglial changes, which may compromise neuronal function and consequently animal behavior. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Metabolic Effects of Chronic Sleep Restriction in Rats

    PubMed Central

    Vetrivelan, Ramalingam; Fuller, Patrick M.; Yokota, Shigefumi; Lu, Jun; Saper, Clifford B.

    2012-01-01

    Study Objectives: Chronic partial sleep loss is associated with obesity and metabolic syndrome in humans. We used rats with lesions in the ventrolateral preoptic area (VLPO), which spontaneously sleep about 30% less than intact rats, as an animal model to study the consequences of chronic partial sleep loss on energy metabolism. Participants: Adult male Sprague-Dawley rats (300-365 g). Interventions: We ablated the VLPO in rats using orexin-B-saporin and instrumented them with electrodes for sleep recordings. We monitored their food intake and body weight for the next 60 days and assessed their sleep-wake by 24-h EEG/EMG recordings on day 20 and day 50 post-surgery. On day 60, after blood samples were collected for metabolic profiling, the animals were euthanized and the brains were harvested for histological confirmation of the lesion site. Measurements and Results: VLPO-lesioned animals slept up to 40% less than sham-lesioned rats. However, they showed slower weight gain than sham-lesioned controls, despite having normal food intake. An increase in plasma ghrelin and a decrease in leptin levels were observed, whereas plasma insulin levels remained unaffected. As expected from leaner animals, plasma levels of glucose, cholesterol, triglycerides, and C-reactive protein were reduced in VLPO-lesioned animals. Conclusions: Chronic partial sleep loss did not lead to obesity or metabolic syndrome in rats. This finding raises the question whether adverse metabolic outcomes associated with chronic partial sleep loss in humans may be due to factors other than short sleep, such as circadian disruption, inactivity, or diet during the additional waking hours. Citation: Vetrivelan R; Fuller PM; Yokota S; Lu J; Saper CB. Metabolic effects of chronic sleep restriction in rats. SLEEP 2012;35(11):1511-1520. PMID:23115400

  13. [Effect of puerarin in myocardial protection in rats with acute and chronic alcoholism].

    PubMed

    Cui, Shu-qin

    2011-12-01

    To investigate the protective effect of puerarin on the myocardium of rats with acute and chronic alcoholism. In acute alcoholism experiment, normal male SD rats were randomly divided into the control group, alcoholism group and puerarin group (n=8), and high- and low-dose puerarin was administered. In chronic alcoholism experiment, increasing puerarin doses were given. Serum and myocardial levels of spartate aminotransferase (AST) and creatine phosphokinase (CPK) were determined using enzymatic methed, and superoxide dismutase (SOD), malondialdehyde (MDA), Ca(2+)-Mg(2+)-ATPase, and Na(+)-K(+)-ATPase in the myocardium were assayed with colorimetric method. HE staining was used to observe the microscopic changes of the myocardium. Compared with alcoholism group, puerarin-treated groups showed significantly lowered myocardial contents of MDA, CPK and AST and serum levels of AST and CPK (P<0.05, P<0.01) and increased myocardial SOD (P<0.05, P<0.01), Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activity (P<0.05, P<0.01), but Na(+)-K(+)-ATPase was similar between the two groups (P>0.05). HE staining of the myocardium showed cell swelling and obscure cell boundaries in alcoholism group, especially in chronic alcoholism group. The myocardial structure in puerarin group remained clear and regular. Puerarin can protect from myocardial injuries induced by acute and chronic alcoholism in rats.

  14. Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes.

    PubMed

    Ríos-Silva, Mónica; Trujillo, Xóchitl; Trujillo-Hernández, Benjamín; Sánchez-Pastor, Enrique; Urzúa, Zorayda; Mancilla, Evelyn; Huerta, Miguel

    2014-01-01

    Forskolin is a diterpene derived from the plant Coleus forskohlii. Forskolin activates adenylate cyclase, which increases intracellular cAMP levels. The antioxidant and antiinflammatory action of forskolin is due to inhibition of macrophage activation with a subsequent reduction in thromboxane B2 and superoxide levels. These characteristics have made forskolin an effective medication for heart disease, hypertension, diabetes, and asthma. Here, we evaluated the effects of chronic forskolin administration on blood glucose and oxidative stress in 19 male Wistar rats with streptozotocin-induced diabetes compared to 8 healthy male Wistar rats. Rats were treated with forskolin, delivered daily for 8 weeks. Glucose was assessed by measuring fasting blood glucose in diabetic rats and with an oral glucose tolerance test (OGTT) in healthy rats. Oxidative stress was assessed by measuring 8-hydroxydeoxyguanosine (8‑OHdG) in 24-h urine samples. In diabetic rats, without forskolin, fasting blood glucose was significantly higher at the end than at the beginning of the experiment (8 weeks). In both healthy and diabetic rats, forskolin treatment lowered the fasting glucose at the end of the experiment but no effect was found on oral glucose tolerance. The 8-OHdG levels tended to be less elevated in forskolin-treated than in untreated group. Our results showed that chronic administration of forskolin decreased fasting blood glucose levels; however, the reductions of 8-OHdG were not statistically significant.

  15. Rat pancreatic B-cells after chronic alcohol feeding. A morphometric and fine structural study.

    PubMed

    Koko, V; Todorović, V; Nikolić, J A; Glisić, R; Cakić, M; Lacković, V; Petronijević, L; Stojković, M; Varagić, J; Janić, B

    1995-04-01

    Quantitative analysis of the light microscopic and fine structure of rat islet B-cells was carried out in chronic alcoholism. Absolute pancreatic weight and volume were similar in groups C (control) and E (ethanol), but relative pancreatic weight in group E rat was decreased. The results for fasting blood glucose and insulin levels were similar in the two groups of animals. There was a significantly reduced total pancreatic islet volume in E rats. The total number of endocrine cells both per islet and per microns2 of islet was similar in the two groups of animals. The volume density and number of B-cells per islet and per microns2 of islet were not changed in ethanol-treated rats as compared with the control. On the other hand, diameter, surface area and volume of the B-cells and their nuclei were found to be statistically significantly decreased. Histological examination revealed that islet blood vessels were dilated in alcoholic rats. Over the 4-month period of ethanol intake a significant decrease in cell profile area, nuclear profile area and volume density of cytoplasmic granules and an increase in the profile area and volume density of endoplasmic reticulum occurred. The gross histological alteration seen in most B-cells of the ethanol-treated rats was irregularity of the nuclear envelope with deep invagination and with margination of heterochromatin and many empty granules or granules without clear electron dense crystals of insulin. The present results indicate some optical and structural abnormalities of B-cells in chronic alcoholism that may be related to cell dysfunction and may contribute, at least in part, to the endocrine pancreas functional disturbance.

  16. 6-Shogaol reduced chronic inflammatory response in the knees of rats treated with complete Freund's adjuvant.

    PubMed

    Levy, Arkene Sa; Simon, Oswald; Shelly, Janet; Gardener, Michael

    2006-10-01

    6-Shogaol is one of the major compounds in the ginger rhizome that may contribute to its anti-inflammatory properties. Confirmation of this contribution was sought in this study in Sprague- Dawley rats (200-250 g) treated with a single injection (0.5 ml of 1 mg/ml) of a commercial preparation of complete Freund's Adjuvant (CFA) to induce monoarthritis in the right knee over a period of 28 days. During this development of arthritis, each rat received a daily oral dose of either peanut oil (0.2 ml-control) or 6-shogaol (6.2 mg/Kg in 0.2 ml peanut oil). Within 2 days of CFA injection, the control group produced maximum edematous swelling of the knee that was sustained up to the end of the investigation period. But, in the 6-shogaol treated group, significantly lower magnitudes of unsustained swelling of the knees (from 5.1 +/- 0.2 mm to 1.0 +/- 0.2 mm, p < 0.002, n = 6) were produced during the investigation period. Unsustained swelling of the knees (from 3.2 +/- 0.6 mm to 0.8 +/- 1.1 mm, p < 0.00008, n = 6) was also produced after 3 days of treatment with indomethacin (2 mg/Kg/day) as a standard anti-inflammatory drug, but during the first 2 days of drug treatment swelling of the knees was significantly larger (11.6 +/- 2.0 mm, p < 0.0002, n = 6) than either the controls or the 6-shogaol treated group of rats. This exaggerated effect in the early stage of indomethacin treatment was inhibited by montelukast, a cysteinyl leukotriene receptor antagonist. Also, 6-shogaol and indomethacin were most effective in reducing swelling of the knees on day 28 when the controls still had maximum swelling. The effect of 6-shogaol compared to the controls was associated with significantly lower concentration of soluble vascular cell adhesion molecule-1 (VCAM-1) in the blood and infiltration of leukocytes, including lymphocytes and monocytes/macrophages, into the synovial cavity of the knee. There was also preservation of the morphological integrity of the cartilage lining the femur

  17. 6-Shogaol reduced chronic inflammatory response in the knees of rats treated with complete Freund's adjuvant

    PubMed Central

    Levy, Arkene SA; Simon, Oswald; Shelly, Janet; Gardener, Michael

    2006-01-01

    Background 6-Shogaol is one of the major compounds in the ginger rhizome that may contribute to its anti-inflammatory properties. Confirmation of this contribution was sought in this study in Sprague- Dawley rats (200–250 g) treated with a single injection (0.5 ml of 1 mg/ml) of a commercial preparation of complete Freund's Adjuvant (CFA) to induce monoarthritis in the right knee over a period of 28 days. During this development of arthritis, each rat received a daily oral dose of either peanut oil (0.2 ml-control) or 6-shogaol (6.2 mg/Kg in 0.2 ml peanut oil). Results Within 2 days of CFA injection, the control group produced maximum edematous swelling of the knee that was sustained up to the end of the investigation period. But, in the 6-shogaol treated group, significantly lower magnitudes of unsustained swelling of the knees (from 5.1 ± 0.2 mm to 1.0 ± 0.2 mm, p < 0.002, n = 6) were produced during the investigation period. Unsustained swelling of the knees (from 3.2 ± 0.6 mm to 0.8 ± 1.1 mm, p < 0.00008, n = 6) was also produced after 3 days of treatment with indomethacin (2 mg/Kg/day) as a standard anti-inflammatory drug, but during the first 2 days of drug treatment swelling of the knees was significantly larger (11.6 ± 2.0 mm, p < 0.0002, n = 6) than either the controls or the 6-shogaol treated group of rats. This exaggerated effect in the early stage of indomethacin treatment was inhibited by montelukast, a cysteinyl leukotriene receptor antagonist. Also, 6-shogaol and indomethacin were most effective in reducing swelling of the knees on day 28 when the controls still had maximum swelling. The effect of 6-shogaol compared to the controls was associated with significantly lower concentration of soluble vascular cell adhesion molecule-1 (VCAM-1) in the blood and infiltration of leukocytes, including lymphocytes and monocytes/macrophages, into the synovial cavity of the knee. There was also preservation of the morphological integrity of the cartilage

  18. Effect of chronic d-fenfluramine administration on rat hypothalamic serotonin levels and release

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1988-01-01

    D-fenfluramine, an anorectic agent in rats and man, was administered daily at doses 1.25, 2.5, 5, or 10 mg/kg/day for 10 days, and sacrificed 6 days later. Hypothalamic serotonin (5-HT) levels were unchanged in rats receiving 1.25-5 mg/kg/day of d-fenfluramine but reduced by 22 percent (p less than 0.01) at the highest drug dose (10 mg/kg/day); hypothalamic 5-hydroxyindole acetic acid (5-HIAA) levels were reduced by 15 percent (p less than 0.05) or 28 percent (p less than 0.01) in rats receiving 5 or 10 mg/kg/day of the drug, respectively. Hypothalamic slices prepared from rats which were previously treated with any of the drug doses spontaneously released endogenous 5-HT at rates that did not differ from those of vehicle-treated rats. 5-HT released with electrical field-stimulation was unaffected by prior d-fenfluramine treatment at doses of 1.25-5 mg/kg/day, and was reduced by 20 percent (p less than 0.05) from slices prepared from rats which received 10 mg/kg/day. 5-HIAA efflux was also attenuated by the highest drug dose. These data indicate that chronic administration to rats of customary anorectic doses of d-fenfluramine (i.e. 0.06-1.25 mg/kg) fail to cause long-lasting reductions in brain 5-HT release.

  19. Impact of Iodinated Contrast on Renal Function and Hemodynamics in Rats with Chronic Hyperglycemia and Chronic Kidney Disease

    PubMed Central

    Fernandes, Sheila Marques; Martins, Daniel Malisani; da Fonseca, Cassiane Dezoti; Watanabe, Mirian; Vattimo, Maria de Fátima Fernandes

    2016-01-01

    Iodinated contrast (IC) is clinically used in diagnostic and interventional procedures, but its use can result in contrast-induced acute kidney injury (CI-AKI). Chronic kidney disease (CKD) and chronic hyperglycemia (CH) are important predisposing factors to CI-AKI. The aim of this study was to investigate the impact of iodinated contrast on the renal function and hemodynamics in rats with chronic hyperglycemia and chronic kidney disease. A total of 30 rats were divided into six groups; Sham: control of chronic renal disease; Citrate: control of chronic hyperglycemia (CH); Nx5/6: rats with 5/6 nephrectomy; Chronic Hyperglycemia: rats receiving Streptozotocin 65 mg/kg; Nx5/6 + IC: rats Nx5/6 received 6 mL/kg of IC; CH + IC: Chronic hyperglycemia rats receiving 6 mL/kg of IC. Renal function (inulin clearance; urinary neutrophil gelatinase-associated lipocalin, NGAL) and hemodynamics (arterial blood pressure; renal blood flow; renal vascular resistance) were evaluated. Iodinated contrast significantly increased urinary NGAL and reduced inulin clearance, while the hemodynamics parameters showed changes in arterial blood pressure, renal blood flow, and renal vascular resistance in both CKD and CH groups. The results suggest that the iodinated contrast in risk factors models has important impact on renal function and hemodynamics. NGAL was confirmed to play a role of highlight in diagnosis of CI-AKI. PMID:27034930

  20. Quercetin Improves Neurobehavioral Performance Through Restoration of Brain Antioxidant Status and Acetylcholinesterase Activity in Manganese-Treated Rats.

    PubMed

    Adedara, Isaac A; Ego, Valerie C; Subair, Temitayo I; Oyediran, Oluwasetemi; Farombi, Ebenezer O

    2017-04-01

    The present study investigated the neuroprotective mechanism of quercetin by assessing the biochemical and behavioral characteristics in rats sub-chronically treated with manganese alone at 15 mg/kg body weight or orally co-treated with quercetin at 10 and 20 mg/kg body weight for 45 consecutive days. Locomotor behavior was monitored using video-tracking software during a 10-min trial in a novel environment whereas the brain regions namely the hypothalamus, cerebrum and cerebellum of the rats were processed for biochemical analyses. Results indicated that co-treatment with quercetin significantly (p < 0.05) prevented manganese-induced locomotor and motor deficits specifically the decrease in total distance travelled, total body rotation, maximum speed, absolute turn angle as well as the increase in time of immobility and grooming. The improvement in the neurobehavioral performance of manganese-treated rats following quercetin co-treatment was confirmed by track and occupancy plot analyses. Moreover, quercetin assuaged manganese-induced decrease in antioxidant enzymes activities and the increase in acetylcholinesterase activity, hydrogen peroxide generation and lipid peroxidation levels in the hypothalamus, cerebrum and cerebellum of the rats. Taken together, quercetin mechanisms of ameliorating manganese-induced neurotoxicity is associated with restoration of acetylcholinesterase activity, augmentation of redox status and inhibition of lipid peroxidation in brain of rats.

  1. Effect of Chronic Administration of Forskolin on Glycemia and Oxidative Stress in Rats with and without Experimental Diabetes

    PubMed Central

    Ríos-Silva, Mónica; Trujillo, Xóchitl; Trujillo-Hernández, Benjamín; Sánchez-Pastor, Enrique; Urzúa, Zorayda; Mancilla, Evelyn; Huerta, Miguel

    2014-01-01

    Forskolin is a diterpene derived from the plant Coleus forskohlii. Forskolin activates adenylate cyclase, which increases intracellular cAMP levels. The antioxidant and antiinflammatory action of forskolin is due to inhibition of macrophage activation with a subsequent reduction in thromboxane B2 and superoxide levels. These characteristics have made forskolin an effective medication for heart disease, hypertension, diabetes, and asthma. Here, we evaluated the effects of chronic forskolin administration on blood glucose and oxidative stress in 19 male Wistar rats with streptozotocin-induced diabetes compared to 8 healthy male Wistar rats. Rats were treated with forskolin, delivered daily for 8 weeks. Glucose was assessed by measuring fasting blood glucose in diabetic rats and with an oral glucose tolerance test (OGTT) in healthy rats. Oxidative stress was assessed by measuring 8-hydroxydeoxyguanosine (8‑OHdG) in 24-h urine samples. In diabetic rats, without forskolin, fasting blood glucose was significantly higher at the end than at the beginning of the experiment (8 weeks). In both healthy and diabetic rats, forskolin treatment lowered the fasting glucose at the end of the experiment but no effect was found on oral glucose tolerance. The 8-OHdG levels tended to be less elevated in forskolin-treated than in untreated group. Our results showed that chronic administration of forskolin decreased fasting blood glucose levels; however, the reductions of 8-OHdG were not statistically significant. PMID:24688307

  2. Chronic high-dose creatine has opposing effects on depression-related gene expression and behavior in intact and sex hormone-treated gonadectomized male and female rats

    PubMed Central

    Allen, Patricia J.; DeBold, Joseph F.; Rios, Maribel; Kanarek, Robin B.

    2015-01-01

    Creatine is an antioxidant, neuromodulator and key regulator of energy metabolism shown to improve depressive symptoms in humans and animals, especially in females. To better understand the pharmacological effects of creatine, we examined its influence on depression-related hippocampal gene expression and behaviors in the presence and absence of sex steroids. Sham-operated and gonadectomized male and female rats were fed chow alone or chow blended with either 2% or 4% w/w creatine monohydrate for five weeks before forced swim, open field, and wire suspension tests, or seven weeks total. Before supplementation, males were chronically implanted with an empty or a testosterone-filled (T) capsule (10-mm surface release), and females were administered progesterone (P, 250 μg), estradiol benzoate (EB, 2.5 μg), EB+P, or sesame oil vehicle weekly. Relative to non-supplemented shams, all hippocampal plasticity-related mRNAs measured, including brain-derived neurotrophic factor (BDNF), tyrosine kinase B, doublecortin, calretinin, and calbindin, were downregulated in sham males given 4% creatine, and BDNF, doublecortin, and calbindin mRNAs were downregulated in sham females given 4% creatine. In contrast, combined 4% creatine + T in castrates prevented downregulation of BDNF, doublecortin, and calretinin mRNAs. Similarly, combined 4% creatine + EB+P in ovariectomized females attenuated downregulation of BDNF and calbindin mRNA levels. Moderate antidepressant and anxiolytic-like behaviors were observed in EB+P-treated ovariectomized females fed creatine, with similar trends in T-treated castrates fed creatine. Altogether, these data show that chronic, high-dose creatine has opposing effects on neuroplasticity-related genes and depressive behavior in intact and gonadectomized male and female rats. The dose and schedule of creatine used negatively impacted hippocampal neuronal integrity in otherwise healthy brains, possibly through negative compensatory changes in energy

  3. Chronic high-dose creatine has opposing effects on depression-related gene expression and behavior in intact and sex hormone-treated gonadectomized male and female rats.

    PubMed

    Allen, Patricia J; DeBold, Joseph F; Rios, Maribel; Kanarek, Robin B

    2015-03-01

    Creatine is an antioxidant, neuromodulator and key regulator of energy metabolism shown to improve depressive symptoms in humans and animals, especially in females. To better understand the pharmacological effects of creatine, we examined its influence on depression-related hippocampal gene expression and behaviors in the presence and absence of sex steroids. Sham-operated and gonadectomized male and female rats were fed chow alone or chow blended with either 2% or 4% w/w creatine monohydrate for five weeks before forced swim, open field, and wire suspension tests, or seven weeks total. Before supplementation, males were chronically implanted with an empty or a testosterone-filled (T) capsule (10-mm surface release), and females were administered progesterone (P, 250 μg), estradiol benzoate (EB, 2.5 μg), EB+P, or sesame oil vehicle weekly. Relative to non-supplemented shams, all hippocampal plasticity-related mRNAs measured, including brain-derived neurotrophic factor (BDNF), tyrosine kinase B, doublecortin, calretinin, and calbindin, were downregulated in sham males given 4% creatine, and BDNF, doublecortin, and calbindin mRNAs were downregulated in sham females given 4% creatine. In contrast, combined 4% creatine+T in castrates prevented downregulation of BDNF, doublecortin, and calretinin mRNAs. Similarly, combined 4% creatine+EB+P in ovariectomized females attenuated downregulation of BDNF and calbindin mRNA levels. Moderate antidepressant and anxiolytic-like behaviors were observed in EB+P-treated ovariectomized females fed creatine, with similar trends in T-treated castrates fed creatine. Altogether, these data show that chronic, high-dose creatine has opposing effects on neuroplasticity-related genes and depressive behavior in intact and gonadectomized male and female rats. The dose and schedule of creatine used negatively impacted hippocampal neuronal integrity in otherwise healthy brains, possibly through negative compensatory changes in energy

  4. Effects of chronic administration of clenbuterol on contractile properties and calcium homeostasis in rat extensor digitorum longus muscle.

    PubMed

    Sirvent, Pascal; Douillard, Aymerick; Galbes, Olivier; Ramonatxo, Christelle; Py, Guillaume; Candau, Robin; Lacampagne, Alain

    2014-01-01

    Clenbuterol, a β2-agonist, induces skeletal muscle hypertrophy and a shift from slow-oxidative to fast-glycolytic muscle fiber type profile. However, the cellular mechanisms of the effects of chronic clenbuterol administration on skeletal muscle are not completely understood. As the intracellular Ca2+ concentration must be finely regulated in many cellular processes, the aim of this study was to investigate the effects of chronic clenbuterol treatment on force, fatigue, intracellular calcium (Ca2+) homeostasis and Ca2+-dependent proteolysis in fast-twitch skeletal muscles (the extensor digitorum longus, EDL, muscle), as they are more sensitive to clenbuterol-induced hypertrophy. Male Wistar rats were chronically treated with 4 mg.kg-1 clenbuterol or saline vehicle (controls) for 21 days. Confocal microscopy was used to evaluate sarcoplasmic reticulum Ca2+ load, Ca2+-transient amplitude and Ca2+ spark properties. EDL muscles from clenbuterol-treated animals displayed hypertrophy, a shift from slow to fast fiber type profile and increased absolute force, while the relative force remained unchanged and resistance to fatigue decreased compared to control muscles from rats treated with saline vehicle. Compared to control animals, clenbuterol treatment decreased Ca2+-transient amplitude, Ca2+ spark amplitude and frequency and the sarcoplasmic reticulum Ca2+ load was markedly reduced. Conversely, calpain activity was increased by clenbuterol chronic treatment. These results indicate that chronic treatment with clenbuterol impairs Ca2+ homeostasis and this could contribute to the remodeling and functional impairment of fast-twitch skeletal muscle.

  5. Chronic baclofen desensitizes GABA(B)-mediated G-protein activation and stimulates phosphorylation of kinases in mesocorticolimbic rat brain.

    PubMed

    Keegan, Bradley M T; Beveridge, Thomas J R; Pezor, Jeffrey J; Xiao, Ruoyu; Sexton, Tammy; Childers, Steven R; Howlett, Allyn C

    2015-08-01

    The GABAB receptor is a therapeutic target for CNS and neuropathic disorders; however, few preclinical studies have explored effects of chronic stimulation. This study evaluated acute and chronic baclofen treatments on GABAB-activated G-proteins and signaling protein phosphorylation as indicators of GABAB signaling capacity. Brain sections from rats acutely administered baclofen (5 mg/kg, i.p.) showed no significant differences from controls in GABAB-stimulated GTPγS binding in any brain region, but displayed significantly greater phosphorylation/activation of focal adhesion kinase (pFAK(Tyr397)) in mesocorticolimbic regions (caudate putamen, cortex, hippocampus, thalamus) and elevated phosphorylated/activated glycogen synthase kinase 3-β (pGSK3β(Tyr216)) in the prefrontal cortex, cerebral cortex, caudate putamen, nucleus accumbens, thalamus, septum, and globus pallidus. In rats administered chronic baclofen (5 mg/kg, t.i.d. for five days), GABAB-stimulated GTPγS binding was significantly diminished in the prefrontal cortex, septum, amygdala, and parabrachial nucleus compared to controls. This effect was specific to GABAB receptors: there was no effect of chronic baclofen treatment on adenosine A1-stimulated GTPγS binding in any region. Chronically-treated rats also exhibited increases in pFAK(Tyr397) and pGSK3β(Tyr216) compared to controls, and displayed wide-spread elevations in phosphorylated dopamine- and cAMP-regulated phosphoprotein-32 (pDARPP-32(Thr34)) compared to acutely-treated or control rats. We postulate that those neuroadaptive effects of GABAB stimulation mediated by G-proteins and their sequelae correlate with tolerance to several of baclofen's effects, whereas sustained signaling via kinase cascades points to cross-talk between GABAB receptors and alternative mechanisms that are resistant to desensitization. Both desensitized and sustained signaling pathways should be considered in the development of pharmacotherapies targeting the GABA

  6. Chronic molindone treatment: relative inability to elicit dopamine receptor supersensitivity in rats.

    PubMed

    Meller, E

    1982-01-01

    Chronic treatment of rats with the antipsychotic drug molindone (2.5 mg/kg) did not elicit behavioral supersensitivity to apomorphine (AP) (0.25 mg/kg) or increased striatal 3H-spiroperidol binding, whereas treatment with haloperidol (0.5-1.0 mg/kg) produced manifestations of dopaminergic supersensitivity in both paradigms. Chronic treatment with a high dose of molindone (20 mg/kg) elicited a small, but significant increase in behavioral sensitivity to AP (57%) which was, however, significantly less than that produced by 1 mg/kg haloperidol (126%, P less than 0.01). Apparent tolerance to elevation of striatal and frontal cortical 3,4-dihydroxyphenylacetic acid (DOPAC) levels was obtained with chronic molindone treatment (5 or 20 mg/kg). None of the molindone doses used (2.5-50 mg/kg) increased striatal dopamine receptor binding. Scatchard analyses revealed no change in either maximal binding capacity (Bmax) or dissociation constant (Kd). A significant (P less than 0.001) correlation of receptor binding activity and stereotypy score was obtained for haloperidol-, but not molindone-treated rats. These results with molindone in an animal model of tardive dyskinesia suggest that this drug may have a lower potential for eliciting this disorder in humans.

  7. Immunoregulation of Bone Marrow-Derived Mesenchymal Stem Cells on the Chronic Cigarette Smoking-Induced Lung Inflammation in Rats

    PubMed Central

    Li, Xiaoyan; Wang, Junyan; Cao, Jing; Ma, Lijuan; Xu, Jianying

    2015-01-01

    Impact of bone mesenchymal stem cell (BMSC) transfusion on chronic smoking-induced lung inflammation is poorly understood. In this study, a rat model of smoking-related lung injury was induced and the rats were treated with vehicle or BMSCs for two weeks. Different subsets of CD4+ T cells, cytokines, and anti-elastin in the lungs as well as the lung injury were characterized. Serum and lung inducible nitric oxide synthase (iNOS) and STAT5 phosphorylation in lymphocytes from lung tissue were also analyzed. Results indicated that transfusion of BMSCs significantly reduced the chronic smoking-induced lung injury, inflammation, and levels of lung anti-elastin in rats. The frequency of Th1 and Th17 cells and the levels of IL-2, IL-6, IFN-γ, TNF-α, IL-17, IP-10, and MCP-1 increased, but the frequency of Tregs and IL-10 decreased. Transfusion of BMSCs significantly modulated the imbalance of immune responses by mitigating chronic smoking-increased Th1 and Th17 responses, but enhancing Treg responses in the lungs of rats. Transfusion of BMSCs limited chronic smoking-related reduction in the levels of serum and lung iNOS and mitigated smoking-induced STAT5 phosphorylation in lymphocytes from lung tissue. BMSCs negatively regulated smoking-induced autoimmune responses in the lungs of rats and may be promising for the intervention of chronic smoking-related lung injury. PMID:26665150

  8. Effect of chronic administration of mestranol, tamoxifen, and toremifene on hepatic ploidy in rats.

    PubMed

    Dragan, Y P; Shimel, R J; Bahnub, N; Sattler, G; Vaughan, J R; Jordan, V C; Pitot, H C

    1998-06-01

    The nonsteroidal antiestrogen tamoxifen increases the incidence of rat liver cancer through a variety of mechanisms. To compare the effects of tamoxifen (TAM) and a structurally similar analog toremifene (TOR) on rat liver, we determined the ploidy distribution for hepatocytes isolated from rats treated for 18 months with these antiestrogens or the estrogenic compound mestranol (MS). Female Sprague-Dawley rats were subjected to a 70% partial hepatectomy and administered the solvent, trioctanoin, or diethylnitrosamine (10 mg DEN/kg). After a 2-week recovery from the surgery, the rats were administered a basal diet or one containing TAM (250 or 500 ppm), TOR (250, 500, or 750 ppm), or MS (0.2 ppm) for 18 months. Pathologic changes in the liver were examined in the 15-22 rats per treatment group at the 18-month time point. An increased incidence of hepatocellular carcinomas (HCC) was detected in the 500 ppm TAM group, but not with the other treatments that did not include DEN. Both TOR and TAM promoted formation of DEN-initiated HCCs. At sacrifice, four to five rats per group were perfused and the hepatocytes isolated and cultured. Karyotypic analysis was performed on colcemid-blocked cells after 2 days in culture. The hepatic ploidy distribution was characterized in Giemsa-stained metaphase spreads. These studies indicated that chronic treatment with TAM alone resulted in a shift from tetraploid to diploid, as was also observed for rats treated once with DEN. TOR and MS alone did not cause this change in hepatic ploidy at the doses examined. A shift toward an increased content of diploid hepatocytes occurred in all rats treated once with DEN followed by TAM, TOR, or MS. These results indicate that tamoxifen administration results in a shift toward growth of diploid hepatocytes, thus contributing to its carcinogenic action in the rat liver.

  9. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats

    PubMed Central

    Deblon, N; Bourgoin, L; Veyrat-Durebex, C; Peyrou, M; Vinciguerra, M; Caillon, A; Maeder, C; Fournier, M; Montet, X; Rohner-Jeanrenaud, F; Foti, M

    2012-01-01

    BACKGROUND AND PURPOSE mTOR inhibitors are currently used as immunosuppressants in transplanted patients and as promising anti-cancer agents. However, new-onset diabetes is a frequent complication occurring in patients treated with mTOR inhibitors such as rapamycin (Sirolimus). Here, we investigated the mechanisms associated with the diabetogenic effects of chronic Sirolimus administration in rats and in in vitro cell cultures. EXPERIMENTAL APPROACH Sirolimus was administered to rats fed either a standard or high-fat diet for 21 days. Metabolic parameters were measured in vivo and in ex vivo tissues. Insulin sensitivity was assessed by glucose tolerance tests and euglycaemic hyperinsulinaemic clamps. Rapamycin effects on glucose metabolism and insulin signalling were further evaluated in cultured myotubes. KEY RESULTS Sirolimus induced a decrease in food intake and concomitant weight loss. It also induced specific fat mass loss that was independent of changes in food intake. Despite these beneficial effects, Sirolimus-treated rats were glucose intolerant, hyperinsulinaemic and hyperglycaemic, but not hyperlipidaemic. The euglycaemic hyperinsulinaemic clamp measurements showed skeletal muscle is a major site of Sirolimus-induced insulin resistance. At the molecular level, long-term Sirolimus administration attenuated glucose uptake and metabolism in skeletal muscle by preventing full insulin-induced Akt activation and altering the expression and translocation of glucose transporters to the plasma membrane. In rats fed a high-fat diet, these metabolic defects were exacerbated, although Sirolimus-treated animals were protected from diet-induced obesity. CONCLUSIONS AND IMPLICATIONS Taken together, our data demonstrate that the diabetogenic effect of chronic rapamycin administration is due to an impaired insulin action on glucose metabolism in skeletal muscles. PMID:22014210

  10. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats.

    PubMed

    Deblon, N; Bourgoin, L; Veyrat-Durebex, C; Peyrou, M; Vinciguerra, M; Caillon, A; Maeder, C; Fournier, M; Montet, X; Rohner-Jeanrenaud, F; Foti, M

    2012-04-01

    mTOR inhibitors are currently used as immunosuppressants in transplanted patients and as promising anti-cancer agents. However, new-onset diabetes is a frequent complication occurring in patients treated with mTOR inhibitors such as rapamycin (Sirolimus). Here, we investigated the mechanisms associated with the diabetogenic effects of chronic Sirolimus administration in rats and in in vitro cell cultures. Sirolimus was administered to rats fed either a standard or high-fat diet for 21 days. Metabolic parameters were measured in vivo and in ex vivo tissues. Insulin sensitivity was assessed by glucose tolerance tests and euglycaemic hyperinsulinaemic clamps. Rapamycin effects on glucose metabolism and insulin signalling were further evaluated in cultured myotubes. Sirolimus induced a decrease in food intake and concomitant weight loss. It also induced specific fat mass loss that was independent of changes in food intake. Despite these beneficial effects, Sirolimus-treated rats were glucose intolerant, hyperinsulinaemic and hyperglycaemic, but not hyperlipidaemic. The euglycaemic hyperinsulinaemic clamp measurements showed skeletal muscle is a major site of Sirolimus-induced insulin resistance. At the molecular level, long-term Sirolimus administration attenuated glucose uptake and metabolism in skeletal muscle by preventing full insulin-induced Akt activation and altering the expression and translocation of glucose transporters to the plasma membrane. In rats fed a high-fat diet, these metabolic defects were exacerbated, although Sirolimus-treated animals were protected from diet-induced obesity. Taken together, our data demonstrate that the diabetogenic effect of chronic rapamycin administration is due to an impaired insulin action on glucose metabolism in skeletal muscles. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  11. Effect of chronic low-dose tadalafil on penile cavernous tissues in diabetic rats.

    PubMed

    Mostafa, Mohamed E; Senbel, Amira M; Mostafa, Taymour

    2013-06-01

    To assess the effect of chronic low-dose administration of tadalafil (Td) on penile cavernous tissue in induced diabetic rats. The study investigaged 48 adult male albino rats, comprising a control group, sham controls, streptozotocin-induced diabetic rats, and induced diabetic rats that received Td low-dose daily (0.09 mg/200 g weight) for 2 months. The rats were euthanized 1 day after the last dose. Cavernous tissues were subjected to histologic, immunohistochemical, morphometric studies, and measurement of intracavernosal pressure and mean arterial pressure in anesthetized rats. Diabetic rats demonstrated dilated cavernous spaces, smooth muscles with heterochromatic nuclei, degenerated mitochondria, vacuolated cytoplasm, and negative smooth muscle immunoreactivity. Nerve fibers demonstrated a thick myelin sheath and intra-axonal edema, where blood capillaries exhibited thick basement membrane. Diabetic rats on Td showed improved cavernous organization with significant morphometric increases in the area percentage of smooth muscles and elastic tissue and a significant decrease of fibrous tissue. The Td-treated group showed enhanced erectile function (intracavernosal pressure/mean arterial pressure) at 0.3, 0.5, 1, 3, and 5 Hz compared with diabetic group values at the respective frequencies (P <.05) that approached control values. Chronic low-dose administration of Td in diabetic rats is associated with substantial improvement of the structure of penile cavernous tissue, with increased smooth muscles and elastic tissue, decreased fibrous tissue, and functional enhancement of the erectile function. This raises the idea that the change in penile architecture with Td treatment improves erectile function beyond its half-life and its direct pharmacologic action on phosphodiesterase type 5. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Sustained glucagon-like peptide 1 expression from encapsulated transduced cells to treat obese diabetic rats

    PubMed Central

    Moralejo, Daniel; Yanay, Ofer; Kernan, Kelly; Bailey, Adam; Lernmark, Ake; Osborne, William

    2011-01-01

    Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyteTM encapsulation devices, implanted subcutaneously and rats monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3±10.2 pM that was significantly elevated over control values of 32.4±2.9 pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9±2.3 ng/ml that were significantly increased over control levels of 7.3±1.5 ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with β-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of β-cells and increased islet mass. These data suggest encapsulated transduced cells may offer a potential long term treatment of patients. PMID:21216666

  13. The renal effects of droxidopa are maintained in propranolol treated cirrhotic rats.

    PubMed

    Rodríguez, Sarai; Raurell, Imma; Ezkurdia, Nahia; Augustin, Salvador; Esteban, Rafael; Genescà, Joan; Martell, María

    2015-02-01

    Droxidopa improves hemodynamic and renal alterations of cirrhotic rats without changing portal pressure. We aimed to evaluate the effects of a combined treatment with droxidopa and non-selective beta-blockers or statins in order to decrease portal pressure, while maintaining droxidopa beneficial effects. Acute studies combining droxidopa with carvedilol, propranolol or atorvastatin in four-week bile-duct ligated (BDL) rats and a chronic study combining propranolol and droxidopa for 5 days in CCl4 -cirrhotic rats were performed. Hemodynamic values were registered and biochemical parameters from blood and urine samples analyzed. Bile-duct ligated rats treated with carvedilol + droxidopa showed no changes in mean arterial pressure (MAP) and portal pressure (PP) compared to vehicles. Atorvastatin + droxidopa combination also failed to reduce PP, but maintained the beneficial increase in MAP and superior mesenteric artery resistance (SMAR) and decrease in blood flow (SMABF) caused by droxidopa. In contrast, the acute administration of propranolol + droxidopa significantly reduced PP maintaining a mild increase in MAP and improving, in an additive way, the decrease in SMABF and increase in SMAR caused by droxidopa. This combination also preserved droxidopa diuretic effect. When chronically administered to CCl4 -cirrhotic rats, propranolol + droxidopa caused a decrease in PP, a significant reduction in SMABF and an increase in SMAR. The combination did not alter liver function and droxidopa diuretic and natriuretic effect, and even improved free water clearance. Droxidopa could be effective for the renal alterations of cirrhotic patients on propranolol therapy and the combination of both drugs may balance the adverse effects of each treatment. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Periarteritis nodosa in rats treated with chronic excess sodium chlorides (NaCl) after X-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Nakagawa, Y.; Ito, A.

    1987-07-01

    Five-week-old male Crj:CD (SD) rats were treated with excess sodium chloride after abdominal X-irradiation. The gastric regions of the rats were irradiated with a total dose of 20 Gy given in two equal fractions separated by 3 days. After X-irradiation, animals were fed a diet containing 10% sodium chloride. Red blood cell anemia appeared 22 weeks after the last irradiation. By gross observation, the mesenteric arteries became reddish in color, and bead- or lead pipe-like nodular thickenings were present. Microscopically these nodularly thickened mesenteric arteries showed fibrinoid necrosis with massive inflammatory infiltration including eosinophils and neutrophils. In more advanced lesions,more » elastica interna and externa and medial smooth muscle cells disappeared completely and were replaced by granulation tissue. In old lesions, arterial walls were markedly thickened with fibrous or fibromuscular tissue. These findings were quite similar to those of the human periarteritis nodosa. These arterial lesions could not be found in the rats with X-irradiation only, sodium chloride only, or in nontreated animals. This study demonstrates X-ray-induced, NaCl-promoted periarteritis nodosa-like lesions in rats.« less

  15. Periarteritis nodosa in rats treated with chronic excess sodium chloride (NaCl) after X-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, H.; Nakagawa, Y.; Ito, A.

    1987-07-01

    Five-week-old male Crj:CD (SD) rats were treated with excess sodium chloride after abdominal X-irradiation. The gastric regions of the rats were irradiated with a total dose of 20 Gy given in two equal fractions separated by 3 days. After X-irradiation, animals were fed a diet containing 10% sodium chloride. Red blood cell anemia appeared 22 weeks after the last irradiation. By gross observation, the mesenteric arteries became reddish in color, and bead- or lead pipe-like nodular thickenings were present. Microscopically, these nodularly thickened mesenteric arteries showed fibrinoid necrosis with massive inflammatory infiltration including eosinophils and neutrophils. In more advanced lesions,more » elastica interna and externa and medial smooth muscle cells disappeared completely and were replaced by granulation tissue. In old lesions, arterial walls were markedly thickened with fibrous or fibromuscular tissue. These findings were quite similar to those of the human periarteritis nodosa. These arterial lesions could not be found in the rats with X-irradiation only, sodium chloride only, or in nontreated animals. This study demonstrates X-ray-induced, NaCl-promoted periarteritis nodosa-like lesions in rats.« less

  16. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    PubMed

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  17. Effect of agmatine on long-term potentiation in morphine-treated rats.

    PubMed

    Lu, Wei; Dong, Hua-Jin; Bi, Guo-Hua; Zhao, Yong-Qi; Yang, Zheng; Su, Rui-Bin; Li, Jin

    2010-08-01

    Agmatine is an endogenous amine derived from l-arginine that potentiates morphine analgesia and inhibits naloxone precipitated abstinent symptoms in morphine dependent rats. In this study, the effects of agmatine on long-term potentiation (LTP) in the lateral perforant path (LPP)-granule cell synapse of the rat dentate gyrus (DG) on saline or morphine-treated rats were investigated. Population spikes (PS), evoked by stimulation of the LPP, was recorded from DG region. Acute agmatine (2.5-10mg/kg, s.c.) treatment facilitated hippocampal LTP. Acute morphine (30mg/kg, s.c.) treatment significantly attenuated hippocampal LTP and agmatine (10mg/kg, s.c.) restored the amplitude of PS that was attenuated by morphine. Chronic morphine treatment resulted in the enhancement of hippocampal LTP, agmatine co-administered with morphine significantly attenuated the enhancement of morphine on hippocampal LTP. Imidazoline receptor antagonist idazoxan (5mg/kg, i.p.) reversed the effect of agmatine. These results suggest that agmatine attenuated the effect of morphine on hippocampal LTP, possibly through activation of imidazoline receptor. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  18. Yohimbine reinstates extinguished 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats with prior exposure to chronic yohimbine.

    PubMed

    Ball, Kevin T; Jarsocrak, Hanna; Hyacinthe, Johanna; Lambert, Justina; Lockowitz, James; Schrock, Jordan

    2015-11-01

    Although exposure to acute stress has been shown to reinstate extinguished responding for a wide variety of drugs, no studies have investigated stress-induced reinstatement in animals with a history of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) self-administration. Thus, rats were trained to press a lever for MDMA (0.50 mg/kg/infusion) in daily sessions, and lever pressing was subsequently extinguished in the absence of MDMA and conditioned cues (light and tone). We then tested the ability of acute yohimbine (2.0 mg/kg), a pharmacological stressor, to reinstate lever-pressing under extinction conditions. Additionally, to model chronic stress, some rats were injected daily with yohimbine (5.0 mg/kg × 10 days) prior to reinstatement tests. To assess dopaminergic involvement, chronic yohimbine injections were combined with injections of SCH-23390 (0.0 or 10.0 μg/kg), a dopamine D1-like receptor antagonist. In a separate experiment, rats with a history of food self-administration were treated and tested in the same way. Results showed that acute yohimbine injections reinstated extinguished MDMA and food seeking, but only in rats with a history of chronic yohimbine exposure. Co-administration of SCH-23390 with chronic yohimbine injections prevented the potentiation of subsequent food seeking, but not MDMA seeking. These results suggest that abstinent MDMA users who also are exposed to chronic stress may be at increased risk for future relapse, and also that the effects of chronic stress on relapse may be mediated by different mechanisms depending on one's drug use history. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Yohimbine reinstates extinguished 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats with prior exposure to chronic yohimbine

    PubMed Central

    Ball, Kevin T.; Jarsocrak, Hanna; Hyacinthe, Johanna; Lambert, Justina; Lockowitz, James; Schrock, Jordan

    2015-01-01

    Although exposure to acute stress has been shown to reinstate extinguished responding for a wide variety of drugs, no studies have investigated stress-induced reinstatement in animals with a history of 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) self-administration. Thus, rats were trained to press a lever for MDMA (0.50 mg/kg/infusion) in daily sessions, and lever pressing was subsequently extinguished in the absence of MDMA and conditioned cues (light and tone). We then tested the ability of acute yohimbine (2.0 mg/kg), a pharmacological stressor, to reinstate lever-pressing under extinction conditions. Additionally, to model chronic stress, some rats were injected daily with yohimbine (5.0 mg/kg × 10 days) prior to reinstatement tests. To assess dopaminergic involvement, chronic yohimbine injections were combined with injections of SCH-23390 (0.0 or 10.0 μg/kg), a dopamine D1-like receptor antagonist. In a separate experiment, rats with a history of food self-administration were treated and tested in the same way. Results showed that acute yohimbine injections reinstated extinguished MDMA and food seeking, but only in rats with a history of chronic yohimbine exposure. Co-administration of SCH-23390 with chronic yohimbine injections prevented the potentiation of subsequent food seeking, but not MDMA seeking. These results suggest that abstinent MDMA users who also are exposed to chronic stress may be at increased risk for future relapse, and also that the effects of chronic stress on relapse may be mediated by different mechanisms depending on one’s drug use history. PMID:26241170

  20. Taurine restores the exploratory behavior following alcohol withdrawal and decreases BDNF mRNA expression in the frontal cortex of chronic alcohol-treated rats.

    PubMed

    Hansen, Alana Witt; Almeida, Felipe Borges; Bandiera, Solange; Pulcinelli, Rianne Remus; Fragoso, Ana Luiza Rodrigues; Schneider, Ricardo; Barros, Helena Maria Tannhauser; Gomez, Rosane

    2017-10-01

    Alcohol use disorder is an alarming health problem, and the withdrawal symptoms increase the risk of relapse. We have hypothesized that taurine, a multitarget substance acting as a gamma-aminobutyric acid A receptor (GABA A R) positive modulator and a partial inhibitor of N-methyl-d-aspartate (NMDA) glutamate receptors, may reduce the withdrawal symptoms or modify behaviors when combined with alcohol. Therefore, we investigated the effects of taurine on behavior in the open field test (OFT), the GABA A R α 2 subunit and BDNF mRNA expression in the frontal cortex of rats after chronic alcohol treatment or upon withdrawal. Rats received alcohol 2g/kg (alcohol and withdrawal groups) or water (control group) twice daily by oral gavage for 28days. On day 29, the withdrawal rats received water instead of alcohol, and all groups were reallocated to receive 100mg/kg taurine or vehicle intraperitoneally, once a day for 5days. On day 33, the rats were exposed to OFT; 18h later, they were euthanized, and the frontal cortex was dissected for GABA A R α 2 subunit detection and BDNF mRNA expression determination by real-time quantitative PCR. Taurine administration restored rearing behavior to the control levels in the withdrawal rats. Taurine also showed anxiolytic-like effects in control rats and did not change the behaviors in the chronic alcohol group. Chronic alcohol treatment or withdrawal did not change the GABA A R α 2 subunit or BDNF mRNA expression in the frontal cortex, but taurine decreased the α 2 subunit level in control rats and to the BDNF levels in the alcohol rat group. We conclude that taurine restored exploratory behavior after alcohol withdrawal but that this effect was not related to the GABA A R α 2 subunit or BDNF mRNA expression in the frontal cortex of the rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Chronic postnatal ornithine administration to rats provokes learning deficit in the open field task.

    PubMed

    Viegas, Carolina Maso; Busanello, Estela Natacha Brandt; Tonin, Anelise Miotti; Grings, Mateus; Moura, Alana Pimentel; Ritter, Luciana; Zanatta, Angela; Knebel, Lisiane Aurélio; Lobato, Vannessa Araujo; Pettenuzzo, Letícia Ferreira; Vargas, Carmen Regla; Leipnitz, Guilhian; Wajner, Moacir

    2012-12-01

    Hyperornithinemia is the biochemical hallmark of hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, an inherited metabolic disease clinically characterized by mental retardation whose pathogenesis is still poorly known. In the present work, we produced a chemical animal model of hyperornithinemia induced by a subcutaneous injection of saline-buffered Orn (2-5 μmol/g body weight) to rats. High brain Orn concentrations were achieved, indicating that Orn is permeable to the blood brain barrier. We then investigated the effect of early chronic postnatal administration of Orn on physical development and on the performance of adult rats in the open field, the Morris water maze and in the step down inhibitory avoidance tasks. Chronic Orn treatment had no effect on the appearance of coat, eye opening or upper incisor eruption, nor on the free-fall righting reflex and on the adult rat performance in the Morris water maze and in the inhibitory avoidance tasks, suggesting that physical development, aversive and spatial localization were not changed by Orn. However, Orn-treated rats did not habituate to the open field apparatus, implying a deficit of learning/memory. Motor activity was the same for Orn- and saline- injected animals. We also verified that Orn subcutaneous injections provoked lipid peroxidation in the brain, as determined by a significant increase of thiobarbituric acid-reactive substances levels. Our results indicate that chronic early postnatal hyperornithinemia may impair the central nervous system, causing minor disabilities which result in specific learning deficiencies.

  2. The involvement of cholinergic and noradrenergic systems in behavioral recovery following oxotremorine treatment to chronically stressed rats.

    PubMed

    Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2006-12-01

    Chronic stress in rats has been shown to impair learning and memory, and precipitate several affective disorders like depression and anxiety. The mechanisms involved in these stress-induced disorders and the possible reversal are poorly understood, thus limiting the number of drugs available for their treatment. Our earlier studies suggest cholinergic dysfunction as the underlying cause in the behavioral deficits following stress. Muscarinic cholinergic agonist, oxotremorine is demonstrated to have a beneficial effect in reversing brain injury-induced behavioral dysfunction. In this study, we have evaluated the effect of oxotremorine treatment on chronic restraint stress-induced cognitive deficits. Rats were subjected to restraint stress (6 h/day) for 21 days followed by oxotremorine treatment for 10 days. Spatial learning and memory was assessed in a partially baited eight-arm radial maze task. Stressed rats exhibited impairment in performance, with decreased percentage of correct choices and an increase in the number of reference memory errors (RMEs). Oxotremorine treatment (0.1 or 0.2 mg/kg, i.p.) to stressed rats resulted in a significant increase in the percent correct choices and a decrease in the number of RMEs compared with stress as well as the stress+vehicle-treated groups. In the retention test, oxotremorine treated rats committed less RMEs compared with the stress group. Chronic restraint stress decreased acetylcholinesterase (AChE) activity in the hippocampus, frontal cortex and septum, which was reversed by both the doses of oxotremorine. Further, oxotremorine treatment also restored the norepinephrine levels in the hippocampus and frontal cortex. Thus, this study demonstrates the potential of cholinergic muscarinic agonists and the involvement of both cholinergic and noradrenergic systems in the reversal of stress-induced learning and memory deficits.

  3. Influence of chronic ethanol consumption on toxic effects of 1,2-dichloroethane: glycolipoprotein retention and impairment of dolichol concentration in rat liver microsomes and Golgi apparatus.

    PubMed

    Cottalasso, Damiano; Domenicotti, Cinzia; Traverso, Nicola; Pronzato, Maria; Nanni, Giorgio

    2002-09-16

    Our previous investigations demonstrated that 1,2-dichloroethane (DCE) and chronic ethanol treatment separately are able to impair glycoprotein metabolism and secretion, and reduce dolichol concentration in liver membranes. The purpose of this study was to investigate whether chronic ethanol consumption can induce potentiation of rat liver damage due to DCE haloalkane used in several chemical processes and in agriculture. Rats were given 36% of their total energy as ethanol in the Lieber-DeCarli liquid diet for 8 weeks (CH group). The pair-fed control group received an isocaloric amount of dextrine-maltose (PF group). "In vitro" experiments: the DCE (6.5 mM) treatment of isolated hepatocytes from CH rats enhanced glycoprotein retention and further reduced glycoprotein secretion and 14C-glucosamine incorporation compared to the hepatocytes from CH or from PF and DCE treated rats. "In vivo" experiments: a marked decrease of dolichol concentration in microsomes (in which dolichyl phosphate is rate-limiting for the initial glycosylation of protein) and in Golgi membranes (in which total dolichol is very important for membrane permeability, fluidity and vesicle fusion) was observed in CH rats acutely treated with 628 mg/kg bw of DCE (CH+DCE) compared with CH or PF+DCE treated rats. These data suggest that chronic ethanol consumption increases DCE liver toxicity by affecting protein glycosylation processes and impairing glycolipoprotein secretion, with a concomitant retention at the level of the Golgi apparatus.

  4. Sustained glucagon-like peptide 1 expression from encapsulated transduced cells to treat obese diabetic rats.

    PubMed

    Moralejo, Daniel; Yanay, Ofer; Kernan, Kelly; Bailey, Adam; Lernmark, Ake; Osborne, William

    2011-04-01

    Obesity and type 2 diabetes (T2D) are two prevalent chronic diseases that have become a major public health concern in industrialized countries. T2D is characterized by hyperglycemia and islet beta cell dysfunction. Glucagon-like peptide 1 (GLP-1) promotes β cell proliferation and neogenesis and has a potent insulinotropic effect. Leptin receptor deficient male rats are obese and diabetic and provide a model of T2D. We hypothesized that their treatment by sustained expression of GLP-1 using encapsulated cells may prevent or delay diabetes onset. Vascular smooth muscle cells (VSMC) retrovirally transduced to secrete GLP-1 were seeded into TheraCyte(TM) encapsulation devices, implanted subcutaneously and rats were monitored for diabetes. Rats that received cell implants showed mean plasma GLP-1 level of 119.3 ± 10.2pM that was significantly elevated over control values of 32.4 ± 2.9pM (P<0.001). GLP-1 treated rats had mean insulin levels of 45.9 ± 2.3ng/ml that were significantly increased over control levels of 7.3±1.5ng/ml (P<0.001). In rats treated before diabetes onset elevations in blood glucose were delayed and rats treated after onset became normoglycemic and showed improved glucose tolerance tests. Untreated diabetic rats possess abnormal islet structures characterized by enlarged islets with α-cell infiltration and multifocal vacuolization. GLP-1 treatment induced normalization of islet structures including a mantle of α-cells and increased islet mass. These data suggest that encapsulated transduced cells may offer a potential long term treatment of patients. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Baclofen reversed thermal place preference in rats with chronic constriction injury.

    PubMed

    Salte, K; Lea, G; Franek, M; Vaculin, S

    2016-06-20

    Chronic constriction injury to the sciatic nerve was used as an animal model of neuropathic pain. Instead of frequently used reflex-based tests we used an operant thermal place preference test to evaluate signs of neuropathic pain and the effect of baclofen administration in rats with neuropathy. Chronic constriction injury was induced by four loose ligations of the sciatic nerve. Thermal place preference (45 °C vs. 22 °C and 45 °C vs. 11 °C) was measured after the ligation and after the administration of baclofen in sham and experimental rats. Rats with the chronic constriction injury spent significantly less time on the colder plate compared to sham operated animals at the combination 45 °C vs. 11 °C. After administration of baclofen (10 mg/kg s.c.), the aversion to the colder plate in rats with chronic constriction injury disappeared. At the combination 45 °C vs. 22 °C, no difference in time spent on colder and/or warmer plate was found between sham and experimental animals. These findings show the importance of cold allodynia evaluation in rats with chronic constriction injury and the effectiveness of baclofen in this neuropathic pain model.

  6. Effects of chronic forced-swim stress on behavioral properties in rats with neonatal repeated MK-801 treatment.

    PubMed

    Kawabe, Kouichi

    2017-08-01

    The two-hit hypothesis has been used to explain the onset mechanism of schizophrenia. It assumes that predisposition to schizophrenia is originally attributed to vulnerability in the brain which stems from genetic or early developmental factors, and that onset is triggered by exposure to later detrimental factors such as stress in adolescence or adulthood. Based on this hypothesis, the present study examined whether rats that had received neonatal repeated treatment with an N-methyl-d-aspartate (NMDA) receptor antagonist (MK-801), an animal model of schizophrenia, were vulnerable to chronic stress. Rats were treated with MK-801 (0.2mg/kg) or saline twice daily on postnatal days 7-20, and animals in the stress subgroups were subjected to 20days (5days/week×4weeks) of forced-swim stress in adulthood. Following this, behavioral tests (prepulse inhibition, spontaneous alternation, open-field, and forced-swim tests) were carried out. The results indicate that neonatal repeated MK-801 treatment in rats inhibits an increase in immobility in the forced-swim test after they have experienced chronic forced-swim stress. This suggests that rats that have undergone chronic neonatal repeated NMDA receptor blockade could have a reduced ability to habituate or adapt to a stressful situation, and supports the hypothesis that these rats are sensitive or vulnerable to stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Chronic fluoxetine inhibits sexual behavior in the male rat: reversal with oxytocin.

    PubMed

    Cantor, J M; Binik, Y M; Pfaus, J G

    1999-06-01

    Selective serotonin reuptake inhibitors, used widely in the treatment of depression, progressively inhibit sexual orgasm in many patients and induce a transient inhibition of sexual desire. We attempted to model the effects of these drugs in sexually experienced male rats during tests of copulation in bilevel chambers. These chambers allow the study of both appetitive and consummatory sexual responses of male rats. Males were treated daily with fluoxetine hydrochloride (0, 1, 5, or 10 mg/kg) and tested for sexual behavior with receptive females at 4-day intervals. Rats were treated with oxytocin (200 ng/kg) or saline after ejaculations had decreased. Fluoxetine decreased ejaculatory responses of male rats in a dose- and time-dependent fashion, but left the copulatory efficiency of the males intact. In contrast, conditioned level changing, a measure of appetitive sexual excitement, was inhibited following acute and chronic treatment with 10 mg/kg, although tolerance may have developed to the effect of 5 mg/kg. Subsequent administration of oxytocin restored the ejaculatory response but not the measure of sexual excitement to baseline levels. The reversal by oxytocin of the fluoxetine-induced deficit in ejaculations is consistent with the hypothesis that serotonin suppresses ejaculatory mechanisms by interrupting the action of oxytocin, which normally accompanies sexual behavior. Co-administration of oxytocin may help to alleviate the predominant sexual side effect of serotonin reuptake blockers.

  8. Sex Differences in the Physiological and Behavioral Effects of Chronic Oral Methylphenidate Treatment in Rats

    PubMed Central

    Robison, Lisa S.; Michaelos, Michalis; Gandhi, Jason; Fricke, Dennis; Miao, Erick; Lam, Chiu-Yim; Mauceri, Anthony; Vitale, Melissa; Lee, Junho; Paeng, Soyeh; Komatsu, David E.; Hadjiargyrou, Michael; Thanos, Panayotis K.

    2017-01-01

    Methylphenidate (MP) is a psychostimulant prescribed for Attention Deficit Hyperactivity Disorder. Previously, we developed a dual bottle 8-h-limited-access-drinking-paradigm for oral MP treatment of rats that mimics the pharmacokinetic profile of treated patients. This study assessed sex differences in response to this treatment. Male and female Sprague Dawley rats were assigned to one of three treatment groups at 4 weeks of age (n = 12/group): Control (water), low dose (LD) MP, and high dose (HD) MP. Rats drank 4 mg/kg MP (LD) or 30 mg/kg MP (HD) during the first hour, and 10 mg/kg (LD) or 60 mg/kg MP (HD) for the remaining 7 h each day. Throughout 3 months of treatment, rats were monitored for body weight, food intake, and fluid intake; as well as tested for open field behavior, circadian activity, novel object recognition, and social interaction. Chronic MP treated rats exhibited reduced fluid intake during distinct treatment weeks to a greater extent in males, and reduced total fluid intake in males only. HD MP treatment decreased body weight in both sexes, while HD MP increased total food intake in females only, likely to offset energy deficits resulting from MP-induced hyperactivity. LD and HD MP increased locomotor activity in the open field, particularly in females and during later treatment weeks. MP dose-dependently increased activity during the dark cycle of circadian testing in females, while in males hyperactivity was only exhibited by HD rats. HD MP increased center activity to a greater extent in males, while MP increased rearing behavior in females only. MP had no effect on social behavior or novel object recognition in either sex. This study concludes that chronic oral MP treatment at clinically-relevant dosages has significant effects on food intake, body weight, open field behavior, and wake cycle activity. Particularly marked sex differences were apparent for locomotor activity, with females being significantly more sensitive to the

  9. Resveratrol-decreased hyperalgesia mediated by the P2X7 receptor in gp120-treated rats.

    PubMed

    Wu, Bing; Ma, Yucheng; Yi, Zhihua; Liu, Shuangmei; Rao, Shenqiang; Zou, Lifang; Wang, Shouyu; Xue, Yun; Jia, Tianyu; Zhao, Shanhong; Shi, Liran; Li, Lin; Yuan, Huilong; Liang, Shangdong

    2017-01-01

    Background Chronic pain is a common symptom in human immunodeficiency virus (HIV)-1 infection/acquired immunodeficiency syndrome patients. The literature shows that the HIV envelope glycoprotein 120 (gp120) can directly cause hyperalgesia by stimulating primary sensory afferent nerves. The P2X 7 receptor in the dorsal root ganglia (DRG) is closely related to neuropathic and inflammatory pain. In this study, we aimed to explore the effect of resveratrol (RES) on gp120-induced neuropathic pain that is mediated by the P2X 7 receptor in the rat DRG. Results Mechanical hyperalgesia in rats treated with gp120 was increased compared with that in the sham group. The P2X 7 expression levels in rats treated with gp120 were higher than those in the sham group. Co-localization of the P2X 7 receptor and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells [SGCs]) in the DRG SGCs of the gp120 group exhibited more intense staining than that of the sham group. RES decreased the mechanical hyperalgesia and P2X 7 expression levels in gp120 treatment rats. Co-localization of the P2X 7 receptor and GFAP in the gp120+ RES group was significantly decreased compared to the gp120 group. RES decreased the IL-1β and TNF-α receptor (R) expression levels and ERK1/2 phosphorylation levels as well as increased IL-10 expression in the DRG of gp120-treated rats. Whole cell clamping demonstrated that RES significantly inhibited adenosine triphosphate-activated currents in HEK293 cells that were transfected with the P2X 7 plasmid. Conclusions RES relieved mechanical hyperalgesia in gp120-treated rats by inhibiting the P2X 7 receptor.

  10. 5,7-Dimethoxycoumarin prevents chronic mild stress induced depression in rats through increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

    PubMed

    Yang, Wei; Wang, Huanlin

    2018-02-01

    The current study was aimed to investigate the role of 5,7-dimethoxycoumarin in the prevention of chronic mild stress induced depression in rats. The chronic mild stress rat model was prepared using the known protocols. The results from open-field test showed that rats in the chronic mild stress group scored very low in terms of crossings and rearings than those of the normal rats. However, pre-treatment of the rats with 10 mg/kg doses of 5,7-dimethoxycoumarin prevented decline in the locomotor activity by chronic mild stress. The level of monoamine oxidase-A in the chronic mild stress rat hippocampus was markedly higher. Chronic mild stress induced increase in the monoamine oxidase-A level was inhibited by pre-treatment with 10 mg/kg doses of 5,7-dimethoxycoumarin in the rats. Chronic mild stress caused a marked increase in the level of caspase-3 mRNA and proteins in rat hippocampus tissues. The increased level of caspase-3 mRNA and protein level was inhibited by treatment of rats with 5,7-dimethoxycoumarin (10 mg/kg). 5,7-Dimethoxycoumarin administration into the rats caused a marked increase in the levels of heat shock protein-70 mRNA and protein. The levels of heat shock protein-70 were markedly lower both in normal and chronic mild stress groups of rats compared to the 5,7-dimethoxycoumarin treated groups. Thus 5,7-dimethoxycoumarin prevented the chronic mild stress induced depression in rats through an increase in the expression of heat shock protein-70 and inhibition of monoamine oxidase-A levels.

  11. Chronic inhibition of nitric-oxide synthase potentiates endothelium-dependent contractions in the rat aorta by augmenting the expression of cyclooxygenase-2.

    PubMed

    Qu, Chen; Leung, Susan W S; Vanhoutte, Paul M; Man, Ricky Y K

    2010-08-01

    Acute inhibition of nitric-oxide synthase (NOS) unmasks the release of endothelium-derived contracting factors (EDCFs). The present study investigated whether chronic inhibition of NOS modulates endothelium-dependent contractions. Eighteen-week-old male Sprague-Dawley rats were treated by daily gavage for 6 weeks with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (60 mg/kg) or vehicle (distilled water; 1 ml/kg). Chronic treatment with L-NAME increased arterial blood pressure. Isometric tension was measured in aortic rings with or without endothelium. Endothelium-dependent relaxations to acetylcholine and the calcium ionophore 5-(methylamino)-2-[(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)-ethyl]-1,7-dioxaspiro[5.5]undec-2-yl]methyl]-4-benzoxazolecarboxylic acid (A23187) were reduced in preparations from L-NAME-treated rats. The reduction in relaxation to A23187 was partially reversed by L-arginine (1 mM). In quiescent aortic rings, A23187 caused contractions in the presence of L-NAME and intact endothelium. The A23187-induced contractions were greater in rings from the L-NAME-treated rats than in those from the control group. These contractions were abolished by the cyclooxygenase (COX)-2 inhibitor N-[2-cyclohexyloxy-4-nitrophenyl]methanesulfonamide (NS-398) and the thromboxane-prostanoid (TP) receptor antagonist 3-((6R)-6-{[(4-chlorophenyl)sulfonyl]amido}-2-methyl-5,6,7,8-tetrahydronaphthalen-1-yl)propanoate (S18886), but not by the COX-1 inhibitor 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560). Chronic L-NAME treatment reduced the level of nitric oxide in the plasma but increased COX activity in the aortic rings. Western blotting and immunohistochemical staining showed that endothelial NOS expression was reduced in the aortae of the chronic L-NAME-treated group. COX-1 expression was augmented slightly, whereas COX-2 expression was up-regulated markedly. The TP receptor

  12. Chronic thalidomide administration enhances vascular responsiveness to vasopressin in portal-systemic collaterals of bile duct-ligated rats.

    PubMed

    Chang, Ching-Chih; Wang, Sun-Sang; Huang, Hui-Chun; Lee, Fa-Yauh; Lin, Han-Chieh; Lee, Jing-Yi; Chen, Yi-Chou; Lee, Shou-Dong

    2009-05-01

    Arginine vasopressin (AVP) controls gastroesophageal variceal bleeding, partly due to its vasoconstrictive effect on portal-systemic collaterals. It has been shown that chronic thalidomide treatment decreases portal pressure, attenuates hyperdynamic circulation and inhibits vascular endothelial growth factor (VEGF) and tumor necrosis factor (TNF)-alpha in partially portal vein-ligated rats. This study investigated the effects of chronic thalidomide treatment on portal-systemic collateral vascular responsiveness to AVP in common bile duct-ligated (CBDL) cirrhotic rats. In the first series, CBDL-induced cirrhotic rats received thalidomide (50 mg/kg/day orally) or distilled water (control) from the 35th to 42nd day after ligation. On the 43rd day after ligation, the body weight, mean arterial pressure, portal pressure, and heart rate were measured. An in situ collateral vascular perfusion model was used to obtain the cumulative concentration-response curves of collateral vessels to AVP (10(-10) to 3 x 10(-7) M). Plasma levels of VEGF and TNF-alpha were measured, and expressions of VEGF and TNF-alpha mRNA in the left adrenal veins were also determined. In the second series, the cumulative concentration-response curves of collateral vessels to AVP in CBDL rats with or without thalidomide (10(-5) M) preincubation in the perfusate were obtained. The thalidomide and control groups were not significantly different in terms of heart rate, mean arterial pressure and portal pressure (p > 0.05). The collateral vascular perfusion pressure change to AVP was significantly enhanced at 10(-8) M after thalidomide treatment (p = 0.041). Compared with the control group, thalidomide-treated rats had significantly lower plasma VEGF levels (p < 0.001), accompanied by an insignificant reduction in plasma TNF-alpha levels (p > 0.05). The expressions of VEGF and TNF-alpha mRNA in the left adrenal veins of thalidomide-treated CBDL rats were not significantly changed compared with those of the

  13. Beneficial effect of prolonged heme oxygenase 1 activation in a rat model of chronic heart failure.

    PubMed

    Collino, Massimo; Pini, Alessandro; Mugelli, Niccolò; Mastroianni, Rosanna; Bani, Daniele; Fantozzi, Roberto; Papucci, Laura; Fazi, Marilena; Masini, Emanuela

    2013-07-01

    We and others have previously demonstrated that heme oxygenase 1 (HO-1) induction by acute hemin administration exerts cardioprotective effects. Here, we developed a rat model of heart failure to investigate whether a long-term induction of HO-1 by chronic hemin administration exerted protective effects. Sprague Dawley rats that underwent permanent ligation of the left coronary artery were closely monitored for survival rate analysis and sacrificed on day 28 post-operation. Administration of hemin (4 mg/kg body weight) every other day for 4 weeks induced a massive increase in HO-1 expression and activity, as shown by the increased levels of the two main metabolic products of heme degradation, bilirubin and carbon monoxide (CO). These effects were associated with significant improvement in survival and reduced the extension of myocardial damage. The ischemic hearts of the hemin-treated animals displayed reduced oxidative stress and apoptosis in comparison with the non-treated rats, as shown by the decreased levels of lipid peroxidation, free-radical-induced DNA damage, caspase-3 activity and Bax expression. Besides, chronic HO-1 activation suppressed the elevated levels of myeloperoxidase (MPO) activity, interleukin 1β (IL-1β) production and tumor necrosis factor-α (TNFα) production that were evoked by the ischemic injury, and increased the plasma level of the anti-inflammatory cytokine IL-10. Interestingly, HO-1 inhibitor zinc protoporphyrin IX (ZnPP-IX; 1 mg/kg) lowered bilirubin and CO concentrations to control values, thus abolishing all the cardioprotective effects of hemin. In conclusion, the results demonstrate that chronic HO-1 activation by prolonged administration of hemin improves survival and exerts protective effects in a rat model of myocardial ischemia by exerting a potent antioxidant activity and disrupting multiple levels of the apoptotic and inflammatory cascade.

  14. Modulation of phosphoinositide turnover by chronic nicergoline in rat brain.

    PubMed

    Carfagna, N; Cavanus, S; Damiani, D; Salmoiraghi, P; Fariello, R; Post, C

    1996-05-17

    Basal and agonist-stimulated phosphoinositide (PI) turnover and inositol 1,4,5 -trisphospate (InsP3) content in rat brain were investigated after chronic nicergoline (SERMION) treatment. Oral administration of nicergoline (5 mg/kg b.i.d. for 7 weeks) enhanced the basal turnover of PI in the cerebral cortex compared to controls. This effect was paralleled by a significant rise of cortical InsP3 levels. No significant changes of noradrenaline- or carbachol-induced accumulation of [3H]-inositol-I-phophate ([3H]-InsP1) were found in cortices from nicergoline-treated rats. On the contrary, in the striatum nicergoline significantly potentiated the responsiveness of noradrenaline- and carbachol-stimulated PI turnover, leaving unchanged the basal production of [3H]-InsP1 and InsP3 levels. The results suggest that the interaction of nicergoline with PI transducing pathway might have relevance to the mechanisms of action of nicergoline.

  15. Transplantation of BDNF-Secreting Mesenchymal Stem Cells Provides Neuroprotection in Chronically Hypertensive Rat Eyes

    PubMed Central

    Harper, Matthew M.; Grozdanic, Sinisa D.; Blits, Bas; Kuehn, Markus H.; Zamzow, Daniel; Buss, Janice E.; Kardon, Randy H.; Sakaguchi, Donald S.

    2011-01-01

    Purpose. To evaluate the ability of mesenchymal stem cells (MSCs) engineered to produce and secrete brain-derived neurotrophic factor (BDNF) to protect retinal function and structure after intravitreal transplantation in a rat model of chronic ocular hypertension (COH). Methods. COH was induced by laser cauterization of trabecular meshwork and episcleral veins in rat eyes. COH eyes received an intravitreal transplant of MSCs engineered to express BDNF and green fluorescent protein (BDNF-MSCs) or just GFP (GFP-MSCs). Computerized pupillometry and electroretinography (ERG) were performed to assess optic nerve and retinal function. Quantification of optic nerve damage was performed by counting retinal ganglion cells (RGCs) and evaluating optic nerve cross-sections. Results. After transplantation into COH eyes, BDNF-MSCs preserved significantly more retina and optic nerve function than GFP-MSC–treated eyes when pupil light reflex (PLR) and ERG function were evaluated. PLR analysis showed significantly better function (P = 0.03) in BDNF-MSC–treated eyes (operated/control ratio = 63.00% ± 11.39%) than GFP-MSC–treated eyes (operated/control ratio = 31.81% ± 9.63%) at 42 days after surgery. The BDNF-MSC–transplanted eyes also displayed a greater level of RGC preservation than eyes that received the GFP-MSCs only (RGC cell counts: BDNF-MSC–treated COH eyes, 112.2 ± 19.39 cells/section; GFP-MSC–treated COH eyes, 52.21 ± 11.54 cells/section; P = 0.01). Conclusions. The authors have demonstrated that lentiviral-transduced BDNF-producing MSCs can survive in eyes with chronic hypertension and can provide retina and optic nerve functional and structural protection. Transplantation of BDNF-producing stem cells may be a viable treatment strategy for glaucoma. PMID:21498611

  16. Effects of Changtai granules, a traditional compound Chinese medicine, on chronic trinitrobenzene sulfonic acid-induced colitis in rats

    PubMed Central

    Cao, Yong-Bing; Zhang, Jun-Dong; Diao, Ya-Ying; Yan, Lan; Wang, De-Jun; Jia, Xin-Ming; Gao, Ping-Hui; Cheng, Ming-He; Xu, Zheng; Wang, Yan; Jiang, Yuan-Ying

    2005-01-01

    AIM: To study the effects of Changtai granules (CTG), a traditional compound Chinese medicine, on chronic trinitrobenzene sulfonic acid-induced colitis in rats. METHODS: Healthy adult Sprague-Dawley (SD) rats of both sexes, weighing 250-300 g, were employed in the present study. The rat colitis models were induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) enemas at a concentration of 100 mg/kg in 50% ethanol. The experimental animals were randomly divided into dexamethasone (DX) treatment, CTG treatment, and model control groups, which were intracolicly treated daily with DX (0.2 mg/kg), CTG at doses of 2.9, 5.7 and 11.4 g crude drug/kg, and the equal amount of saline respectively from 6 h following induction of the colitis in rats inflicted with TNBS to the end of study. A normal control group of rats treated without TNBS but saline enema was also included in the study. After 3 wk of treatment, the animals were assessed for colonal inflammatory and ulcerative responses with respect to mortality, frequency of diarrhea, histology and myeloperoxidase activity (MPO). RESULTS: The therapeutic effect of CTG on ulcerative colitis (UC) was better than DX. CTG effectively inhibited the activity of granulocytes, macrophages and monocytes in a dose-dependent manner. Also it reduced MPO and formation of inflammation in colonic mucosal tissue. Furthermore, administration of CTG significantly prevented body mass loss and death, and decreased frequency of diarrhea in UC rats, when compared with the model control group rats. CONCLUSION: CTG would prove to be an ideal drug for chronic UC, and is warranted to be studied further. PMID:15962370

  17. Chronic Ampakine Treatments Stimulate Dendritic Growth and Promote Learning in Middle-Aged Rats

    PubMed Central

    Lauterborn, Julie C.; Palmer, Linda C.; Jia, Yousheng; Pham, Danielle T.; Hou, Bowen; Wang, Weisheng; Trieu, Brian H.; Cox, Conor D.; Kantorovich, Svetlana

    2016-01-01

    Positive allosteric modulators of AMPA-type glutamate receptors (ampakines) have been shown to rescue synaptic plasticity and reduce neuropathology in rodent models of cognitive disorders. Here we tested whether chronic ampakine treatment offsets age-related dendritic retraction in middle-aged (MA) rats. Starting at 10 months of age, rats were housed in an enriched environment and given daily treatment with a short half-life ampakine or vehicle for 3 months. Dendritic branching and spine measures were collected from 3D reconstructions of Lucifer yellow-filled CA1 pyramidal cells. There was a substantial loss of secondary branches, relative to enriched 2.5-month-old rats, in apical and basal dendritic fields of vehicle-treated, but not ampakine-treated, 13-month-old rats. Baseline synaptic responses in CA1 were only subtly different between the two MA groups, but long-term potentiation was greater in ampakine-treated rats. Unsupervised learning of a complex environment was used to assess treatment effects on behavior. Vehicle- and drug-treated rats behaved similarly during a first 30 min session in the novel environment but differed markedly on subsequent measures of long-term memory. Markov sequence analysis uncovered a clear increase in the predictability of serial movements between behavioral sessions 2 and 3 in the ampakine, but not vehicle, group. These results show that a surprising degree of dendritic retraction occurs by middle age and that this can be mostly offset by pharmacological treatments without evidence for unwanted side effects. The functional consequences of rescue were prominent with regard to memory but also extended to self-organization of behavior. SIGNIFICANCE STATEMENT Brain aging is characterized by a progressive loss of dendritic arbors and the emergence of impairments to learning-related synaptic plasticity. The present studies show that dendritic losses are evident by middle age despite housing in an enriched environment and can be

  18. Mitochondrial dysfunction and lipid peroxidation in rat frontal cortex by chronic NMDA administration can be partially prevented by lithium treatment.

    PubMed

    Kim, Helena K; Isaacs-Trepanier, Cameron; Elmi, Nika; Rapoport, Stanley I; Andreazza, Ana C

    2016-05-01

    Chronic N-methyl-d-aspartate (NMDA) administration to rats may be a model to investigate excitotoxicity mediated by glutamatergic hyperactivity, and lithium has been reported to be neuroprotective. We hypothesized that glutamatergic hyperactivity in chronic NMDA injected rats would cause mitochondrial dysfunction and lipid peroxidation in the brain, and that chronic lithium treatment would ameliorate some of these NMDA-induced alterations. Rats treated with lithium for 6 weeks were injected i.p. 25 mg/kg NMDA on a daily basis for the last 21 days of lithium treatment. Brain was removed and frontal cortex was analyzed. Chronic NMDA decreased brain levels of mitochondrial complex I and III, and increased levels of the lipid oxidation products, 8-isoprostane and 4-hydroxynonenal, compared with non-NMDA injected rats. Lithium treatment prevented the NMDA-induced increments in 8-isoprostane and 4-hydroxynonenal. Our findings suggest that increased chronic activation of NMDA receptors can induce alterations in electron transport chain complexes I and III and in lipid peroxidation in brain. The NMDA-induced changes may contribute to glutamate-mediated excitotoxicity, which plays a role in brain diseases such as bipolar disorder. Lithium treatment prevented changes in 8-isoprostane and 4-hydroxynonenal, which may contribute to lithium's reported neuroprotective effect and efficacy in bipolar disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effects of Chronic Fluoxetine Treatment on Neurogenesis and Tryptophan Hydroxylase Expression in Adolescent and Adult Rats

    PubMed Central

    Meerhoff, Gideon F.

    2014-01-01

    The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population. PMID:24827731

  20. Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats.

    PubMed

    Klomp, Anne; Václavů, Lena; Meerhoff, Gideon F; Reneman, Liesbeth; Lucassen, Paul J

    2014-01-01

    The antidepressant drug fluoxetine (Prozac) has been increasingly prescribed to children and adolescents with depressive disorders despite a lack of thorough understanding of its therapeutic effects in the paediatric population and of its putative neurodevelopmental effects. Within the framework of PRIOMEDCHILD ERA-NET, we investigated; a) effects of chronic fluoxetine treatment on adult hippocampal neurogenesis, a structural readout relevant for antidepressant action and hippocampal development; b) effects on tryptophan hydroxylase (TPH) expression, a measure of serotonin synthesis; c) whether treatment effects during adolescence differed from treatment at an adult age, and d) whether they were subregion-specific. Stereological quantification of the number of proliferating (Ki-67+) cells and of the number of young migratory neurons (doublecortin+), revealed a significant age-by-treatment interaction effect, indicating that fluoxetine affects both proliferation and neurogenesis in adolescent-treated rats differently than it does in adult-treated rats. In terms of subregional differences, fluoxetine enhanced proliferation mainly in the dorsal parts of the hippocampus, and neurogenesis in both the suprapyramidal and infrapyramidal blades of the dentate gyrus in adolescent-treated rats, while no such differences were seen in adult-treated rats. Fluoxetine exerted similar age-by-treatment interaction effects on TPH cells mainly in the ventral portion of the dorsal raphe nucleus. We conclude that fluoxetine exerts divergent effects on structural plasticity and serotonin synthesis in adolescent versus adult-treated rats. These preliminary data indicate a differential sensitivity of the adolescent brain to this drug and thus warrant further research into their behavioural and translational aspects. Together with recent related findings, they further call for caution in prescribing these drugs to the adolescent population.

  1. Effect of losartan, an angiotensin II type 1 receptor antagonist on cardiac autonomic functions of rats during acute and chronic inhibition of nitric oxide synthesis.

    PubMed

    Chaswal, M; Das, S; Prasad, J; Katyal, A; Mishra, A K; Fahim, M

    2012-01-01

    We studied the effect of losartan on baroreflex sensitivity (BRS) and heart rate variability (HRV) of adult Wistar rats during acute and chronic inhibition of nitric oxide synthesis by N(G)-nitro-L-arginine methyl ester (L-NAME). Chronic L-NAME administration (50 mg/kg per day for 7 days, orally through gavage) increased mean arterial pressure (MAP), heart rate but significantly decreased BRS. In addition, a significant fall of standard deviation of normal RR intervals, total spectral power, high frequency spectral power and a rise of low frequency to high frequency (LF: HF) ratio was seen. Acute L-NAME administration (30 mg/kg, i.v. bolus dose) also raised MAP and impaired HRV but it was associated with augmented BRS for bradycardia reflex. Losartan treatment (10 mg/kg, i.v.) in both acute and chronic L-NAME treated rats, decreased MAP but the difference was not significant. On the other hand, losartan administration normalized depressed BRS for bradycardia reflex and significantly reduced LF to HF ratio in chronic L-NAME treated rats. But this improvement was not observed in acute L-NAME group. These results indicate importance of mechanisms other than renin-angiotensin system in the pressor response of both acute as well as chronic L-NAME. However, autonomic dysregulation especially following chronic L-NAME appears to be partly angiotensin dependent.

  2. Chronic sciatic neuropathy in rat reduces voluntary wheel running activity with concurrent chronic mechanical allodynia

    PubMed Central

    Whitehead, RA; Lam, NL; Sun, MS; Sanchez, JJ; Noor, S; Vanderwall, AG; Petersen, TR; Martin, HB

    2016-01-01

    BACKGROUND Animal models of peripheral neuropathy produced by a number of manipulations are assessed for the presence of pathological pain states such as allodynia. While stimulus-induced behavioral assays are frequently used and important to examine allodynia (i.e. sensitivity to light mechanical touch; von Frey fiber test) other measures of behavior that reflect overall function are not only complementary to stimulus-induced responsive measures, but are also critical to gain a complete understanding of the effects of the pain model on quality of life, a clinically relevant aspect of pain on general function. Voluntary wheel running activity in rodent models of inflammatory and muscle pain is emerging as a reliable index of general function that extends beyond stimulus-induced behavioral assays. Clinically, reports of increased pain intensity occur at night, a period typically characterized with reduced activity during the diurnal cycle. We therefore examined in rats whether alterations in wheel running activity were more robust during the inactive phase compared to the active phase of their diurnal cycle in a widely used rodent model of chronic peripheral neuropathic pain, the sciatic nerve chronic constriction injury (CCI) model. METHODS In adult male Sprague Dawley rats, baseline (BL) hindpaw threshold responses to light mechanical touch were assessed using the von Frey test prior to measuring BL activity levels using freely accessible running wheels (1 hr/day for 7 sequential days) to quantify distance traveled. Running wheel activity BL values are expressed as total distance traveled (m). The overall experimental design was: following BL measures, rats underwent either sham or CCI surgery followed by repeated behavioral re-assessment of hindpaw thresholds and wheel running activity levels for up to 18 days after surgery. Specifically, separate groups of rats were assessed for wheel running activity levels (1 hr total/trial) during the onset (within first 2

  3. Transcriptional responses in thyroid tissues from rats treated with a tumorigenic and a non-tumorigenic triazole conazole fungicide.

    PubMed

    Hester, Susan D; Nesnow, Stephen

    2008-03-15

    Conazoles are azole-containing fungicides that are used in agriculture and medicine. Conazoles can induce follicular cell adenomas of the thyroid in rats after chronic bioassay. The goal of this study was to identify pathways and networks of genes that were associated with thyroid tumorigenesis through transcriptional analyses. To this end, we compared transcriptional profiles from tissues of rats treated with a tumorigenic and a non-tumorigenic conazole. Triadimefon, a rat thyroid tumorigen, and myclobutanil, which was not tumorigenic in rats after a 2-year bioassay, were administered in the feed to male Wistar/Han rats for 30 or 90 days similar to the treatment conditions previously used in their chronic bioassays. Thyroid gene expression was determined using high density Affymetrix GeneChips (Rat 230_2). Gene expression was analyzed by the Gene Set Expression Analyses method which clearly separated the tumorigenic treatments (tumorigenic response group (TRG)) from the non-tumorigenic treatments (non-tumorigenic response group (NRG)). Core genes from these gene sets were mapped to canonical, metabolic, and GeneGo processes and these processes compared across group and treatment time. Extensive analyses were performed on the 30-day gene sets as they represented the major perturbations. Gene sets in the 30-day TRG group had over representation of fatty acid metabolism, oxidation, and degradation processes (including PPARgamma and CYP involvement), and of cell proliferation responses. Core genes from these gene sets were combined into networks and found to possess signaling interactions. In addition, the core genes in each gene set were compared with genes known to be associated with human thyroid cancer. Among the genes that appeared in both rat and human data sets were: Acaca, Asns, Cebpg, Crem, Ddit3, Gja1, Grn, Jun, Junb, and Vegf. These genes were major contributors in the previously developed network from triadimefon-treated rat thyroids. It is postulated that

  4. Angiotensin-converting enzyme inhibitor prevents oxidative stress, inflammation, and fibrosis in carbon tetrachloride-treated rat liver.

    PubMed

    Reza, Hasan Mahmud; Tabassum, Nabila; Sagor, Md Abu Taher; Chowdhury, Mohammed Riaz Hasan; Rahman, Mahbubur; Jain, Preeti; Alam, Md Ashraful

    2016-01-01

    Hepatic fibrosis is a common feature of chronic liver injury, and the involvement of angiotensin II in such process has been studied earlier. We hypothesized that anti-angiotensin II agents may be effective in preventing hepatic fibrosis. In this study, Long Evans female rats were used and divided into four groups such as Group-I, Control; Group-II, Control + ramipril; Group-III, CCl4; and Group-IV, CCl4 + ramipril. Group II and IV are treated with ramipril for 14 d. At the end of treatment, the livers were removed, and the level of hepatic marker enzymes (aspartate aminotransferase, Alanine aminotransferase, and alkaline phosphatase), nitric oxide, advanced protein oxidation product , catalase activity, and lipid peroxidation were determined. The degree of fibrosis was evaluated through histopathological staining with Sirius red and trichrome milligan staining. Carbon-tetrachloride (CCl4) administration in rats developed hepatic dysfunction and raised the hepatic marker enzymes activities significantly. CCl4 administration in rats also produced oxidative stress, inflammation, and fibrosis in liver. Furthermore, angiotensinogen-inhibitor ramipril normalized the hepatic enzymes activities and improved the antioxidant enzyme catalase activity. Moreover, ramipril treatment ameliorated lipid peroxidation and hepatic inflammation in CCl4-treated rats. Ramipril treatment also significantly reduced hepatic fibrosis in CCl4-administered rats. In conclusion, our investigation suggests that the antifibrotic effect of ramipril may be attributed to inhibition of angiotensin-II mediated oxidative stress and inflammation in liver CCl4-administered rats.

  5. THERMAL SENSITIVITY ACROSS AGES AND DURING CHRONIC FENTANYL ADMINISTRATION IN RATS

    PubMed Central

    Mitzelfelt, Jeremiah D.; Carter, Christy S.; Morgan, Drake

    2013-01-01

    Rationale Chronic pain is becoming a more common medical diagnosis and is especially prevalent in older individuals. As such, prescribed use of opioids is on the rise, even though the efficacy for pain management in older individuals is unclear. Objectives Thus the present preclinical study assessed the effectiveness of chronic fentanyl administration to produce antinociception in aging rats (16, 20, 24 months). Methods Animals were tested in a thermal sensitivity procedure known to involve neural circuits implicated in chronic pain in humans. Sensitivity to heat and cold thermal stimulation was assessed during 28 days of fentanyl administration (1.0 mg/kg/day), and 28 days of withdrawal. Results Fentanyl resulted in decreased thermal sensitivity to heat but not cold stimulation indicated by more time spent in the hot compartment relative to time spent in the cold or neutral compartments. Unlike previous findings using a hot-water tail withdrawal procedure, tolerance did not develop to the antinociceptive effects of fentanyl over a 28-day period of drug administration. The oldest animals were least sensitive, and the youngest animals most sensitive to the locomotor-stimulating effects of fentanyl. The effect on the antinociceptive response to fentanyl in the oldest group of rats was difficult to interpret due to profound changes in the behavior of saline-treated animals. Conclusions Overall, aging modifies the behavioral effects of opioids, a finding that may inform future studies for devising appropriate treatment strategies. PMID:23900640

  6. Chronic social stress increases nitric oxide-dependent vasorelaxation in normotensive rats

    PubMed Central

    Puzserova, Angelika; Bernatova, Iveta

    2010-01-01

    The aim of this study was to examine oxidative load and endothelium-dependent vasorelaxation in the serotonin pre-constricted femoral artery (FA) of Wistar-Kyoto (WKY) rats exposed to chronic social stress produced by crowding in the presence or absence of ascorbic acid (AsA) in working solution. Adult male rats were randomly divided into control (living space: 480 cm2/rat) or stressed (living space: 200 cm2/rat) groups for 8 weeks. Blood pressure and heart rate, determined using tail-cuff plethysmography, were not influenced by stress vs. control. Conjugated dienes (CD) and concentrations of thiobarbituric acid-reactive substances (TBARS) were measured in the left ventricle and liver (for assessment of oxidative load) and were found unchanged by chronic crowding. The nitric oxide (NO)-dependent component of endothelium-dependent relaxation was investigated in the FA using a wire myograph. In both the presence and absence of AsA, acetylcholine-induced relaxation of the FA of stressed rats significantly exceeded that of the controls, which was associated with an increase of the NO-dependent component. In conclusion, the data showed that chronic crowding did not produce oxidative stress in the organs investigated and indicate that elevation of NO production during chronic stress is an important way of adaptation, which may prevent normotensive rats from the development of stress-induced hypertension. PMID:21331175

  7. Proteomic analysis of liver in rats chronically exposed to fluoride.

    PubMed

    Pereira, Heloísa Aparecida Barbosa da Silva; Leite, Aline de Lima; Charone, Senda; Lobo, Janete Gualiume Vaz Madureira; Cestari, Tania Mary; Peres-Buzalaf, Camila; Buzalaf, Marília Afonso Rabelo

    2013-01-01

    Fluoride (F) is a potent anti-cariogenic element, but when ingestion is excessive, systemic toxicity may be observed. This can occur as acute or chronic responses, depending on both the amount of F and the time of exposure. The present study identified the profile of protein expression possibly associated with F-induced chronic hepatotoxicity. Weanling male Wistar rats (three-weeks old) were divided into three groups and treated with drinking water containing 0, 5 or 50 mg/L F for 60 days (n=6/group). At this time point, serum and livers were collected for F analysis, which was done using the ion-sensitive electrode, after hexamethyldisiloxane-facilitated diffusion. Livers were also submitted to histological and proteomic analyses (2D-PAGE followed by LC-MS/MS). Western blotting was done for confirmation of the proteomic data A dose-response was observed in serum F levels. In the livers, F levels were significantly increased in the 50 mg/L F group compared to groups treated with 0 and 5 mg/L F. Liver morphometric analysis did not reveal alterations in the cellular structures and lipid droplets were present in all groups. Proteomic quantitative intensity analysis detected 33, 44, and 29 spots differentially expressed in the comparisons between control vs. 5 mg/L F, control vs. 50 mg/L F, and 5 mg/L vs. 50 mg/L F, respectively. From these, 92 proteins were successfully identified. In addition, 18, 1, and 5 protein spots were shown to be exclusive in control, 5, and 50 mg/L F, respectively. Most of proteins were related to metabolic process and pronounced alterations were seen for the high-F level group. In F-treated rats, changes in the apolipoprotein E (ApoE) and GRP-78 expression may account for the F-induced toxicity in the liver. This can contribute to understanding the molecular mechanisms underlying hepatoxicity induced by F, by indicating key-proteins that should be better addressed in future studies.

  8. Ginger extract protects rat's kidneys against oxidative damage after chronic ethanol administration.

    PubMed

    Shirpoor, Aireza; Rezaei, Farzaneh; Fard, Amin Abdollahzade; Afshari, Ali Taghizadeh; Gharalari, Farzaneh Hosseini; Rasmi, Yousef

    2016-12-01

    Chronic alcohol ingestion is associated with pronounced detrimental effects on the renal system. In the current study, the protective effect of ginger extract on ethanol-induced damage was evaluated through determining 8-OHdG, cystatin C, glomerular filtration rate, and pathological changes such as cell proliferation and fibrosis in rats' kidneys. Male wistar rats were randomly divided into three groups and were treated as follows: (1) control, (2) ethanol and (3) ginger extract treated ethanolic (GETE) groups. After a six weeks period of treatment, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant rise in the level of 8-OHdG, cystatin C, plasma urea and creatinine. Moreover, compared to the control group, the ethanol group showed a significant decrease in the urine creatinine and creatinine clearance. In addition, significant amelioration of changes in the structure of kidneys, along with restoration of the biochemical alterations were found in the ginger extract treated ethanolic group, compared to the ethanol group. These findings indicate that ethanol induces kidneys abnormality by oxidative DNA damage and oxidative stress, and that these effects can be alleviated using ginger as an antioxidant and anti-inflammatory agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Effects of in vitro, acute and chronic treatment with fluoxetine on the sympathetic neurotransmission of rat vas deferens.

    PubMed

    Pedroso, Shaista Poppe; de Souza, Bruno Palmieri; Jurkiewicz, Aron; Juriewicz, Neide H; da Silva Junior, Edilson Dantas

    2017-03-01

    It is described that fluoxetine treatment is able to induce ejaculatory disorders. However, the exact mechanism is still not fully understood. Therefore, this study was carried out to further evaluate the anti-ejaculatory effects of fluoxetine, using different approaches (in vitro or in vivo treatments), on the sympathetic neurotransmission of the rat vas deferens. Vas deferens from male Wistar rats were used to check the in vitro effects of fluoxetine 10 -6 M, 3.10 -6 M or 10 -5 M. Animals were also acutely (20mg/kg, i.p. 4h or 24h) or chronically (10mg/kg, i.p., 30days) treated with fluoxetine or drug-free vehicle. The vas deferens from non-treated and treated animals were isolated and mounted in an isolated organ bath for the study of the contractions induced by adrenergic agonists, tyramine, 5-HT, Ca 2+ or electrical field stimulation. In vitro or acute treatment with fluoxetine decreased the contraction induced by agonists, Ca 2+ or electrical field stimulation. The chronic treatment with fluoxetine decreased the contractions induced agonists, tyramine or Ca 2+ , but did not modify the contractions induced by electrical field stimulation. We have shown that in vitro or in vivo fluoxetine treatment is able to alter the sympathetic neurotransmission of the rat vas deferens which could be related to alterations in the calcium signalling. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Establishment of a chronic activity-based anorexia rat model.

    PubMed

    Frintrop, Linda; Trinh, Stefanie; Liesbrock, Johanna; Paulukat, Lisa; Kas, Martien J; Tolba, Rene; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Beyer, Cordian; Seitz, Jochen

    2018-01-01

    Anorexia nervosa (AN) is often a chronic eating disorder characterised by body image disturbance and low body weight often associated with starvation-induced amenorrhoea and excessive exercise. Activity-based anorexia (ABA) is an animal model representing many somatic aspects of this psychiatric illness. We systematically manipulated the extent and length of starvation and animal age to find the optimal parameters to study chronic starvation. Wistar rats had 24h/day running wheel access and received 40% of their baseline food intake until a 20% or 25% weight reduction was reached (acute starvation). This body weight was then maintained for two weeks (chronic starvation). The rats of different ages of 4 or 8 weeks were used to represent early and late adolescent animals, respectively. The complete absence of a menstrual cycle was defined as the primary outcome parameter. Acute starvation caused a disruption of the oestrous cycle in 58% of the animals. During chronic starvation, a complete loss of the oestrous cycle could be found. Furthermore, 4-week-old rats exhibited higher levels of hyperactivity and amenorrhoea than 8-week-old animals. A 20% starvation level led to 90% loss of cycle, while a 25% starvation level triggered complete loss. Most current ABA models focus on acute starvation, while most patients are chronically ill. The optimal parameters to achieve complete amenorrhoea included early adolescence, chronic starvation and 25% weight loss. The new ABA model allows studying the effects of chronic AN on underlying behavioural, hormonal and brain pathobiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Differential effects of tianeptine on the dorsal hippocampal volume of rats submitted to maternal separation followed by chronic unpredictable stress in adulthood.

    PubMed

    Pollano, Antonella; Zalosnik, María I; Durando, Patricia E; Suárez, Marta M

    2016-11-01

    Early maternal separation (MS) may produce lasting effects in the dorsal hippocampus (DH) that can change its response to chronic stress in adulthood. Chronic stress affects DH morphology and function, but tianeptine (an anti-depressant) can reverse the stress-induced morphological impairments. Morphologic alterations of hippocampus can affect contextual memory. Therefore, we evaluated the effect of tianeptine in MS and chronically stressed rats on: 1) volume of the DH and its areas using stereology and 2) hippocampal-dependent memory using a fear conditioning test. Male Wistar rats were subjected to daily MS for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50 and 74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle, providing eight groups: AFR-unstressed/vehicle (n = 5 for stereology, n = 18 for fear conditioning test); AFR unstressed/tianeptine (n = 6 and n = 10); AFR-chronic stress/vehicle (n = 6 and n = 14); AFR-chronic stress/tianeptine (n = 6 and n = 10), MS-unstressed/vehicle (n = 5 and n = 19), MS-unstressed/tianeptine (n = 6 and n = 10), MS-chronic stress/vehicle (n = 6 and n = 18), and MS-chronic stress/tianeptine (n = 6 and n = 10). MS-chronic stress/tianeptine rats showed a diminished CA1 area than the corresponding MS-unstressed/tianeptine rats. The combination of stressors produced a freezing response similar to those of the control group during postconditioning. During retrieval, MS led to a diminished freezing response compared to the AFR-unstressed groups. Tianeptine had no effect on freezing behavior. Our results show that tianeptine can affect the CA1 area volume differently depending on the nature and quantity of stressors but cannot alter freezing to context.

  12. Improvement of Insulin Secretion and Pancreatic β-cell Function in Streptozotocin-induced Diabetic Rats Treated with Aloe vera Extract

    PubMed Central

    Noor, Ayesha; Gunasekaran, S.; Vijayalakshmi, M. A.

    2017-01-01

    Background: Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia. Plant extracts and their products are being used as an alternative system of medicine for the treatment of diabetes. Aloe vera has been traditionally used to treat several diseases and it exhibits antioxidant, anti-inflammatory, and wound-healing effects. Streptozotocin (STZ)-induced Wistar diabetic rats were used in this study to understand the potential protective effect of A. vera extract on the pancreatic islets. Objective: The aim of the present study was to evaluate the A. vera extract on improvement of insulin secretion and pancreatic β-cell function by morphometric analysis of pancreatic islets in STZ-induced diabetic Wistar rats. Materials and Methods: After acclimatization, male Wistar rats, maintained as per the Committee for the Purpose of Control and Supervision of Experiments on Animals guidelines, were randomly divided into four groups of six rats each. Fasting plasma glucose and insulin levels were assessed. The effect of A. vera extract in STZ-induced diabetic rats on the pancreatic islets by morphometric analysis was evaluated. Results: Oral administration of A. vera extract (300 mg/kg) daily to diabetic rats for 3 weeks showed restoration of blood glucose levels to normal levels with a concomitant increase in insulin levels upon feeding with A. vera extract in STZ-induced diabetic rats. Morphometric analysis of pancreatic sections revealed quantitative and qualitative gain in terms of number, diameter, volume, and area of the pancreatic islets of diabetic rats treated with A. vera extract when compared to the untreated diabetic rats. Conclusion: A. vera extract exerts antidiabetic effects by improving insulin secretion and pancreatic β-cell function by restoring pancreatic islet mass in STZ-induced diabetic Wistar rats. SUMMARY Fasting plasma glucose (FPG) and insulin levels were restored to normal levels in diabetic rats treated with Aloe vera extract

  13. Administration of low dose estrogen attenuates persistent inflammation, promotes angiogenesis, and improves locomotor function following chronic spinal cord injury in rats.

    PubMed

    Samantaray, Supriti; Das, Arabinda; Matzelle, Denise C; Yu, Shan P; Wei, Ling; Varma, Abhay; Ray, Swapan K; Banik, Naren L

    2016-05-01

    Spinal cord injury (SCI) causes loss of neurological function and, depending upon the severity of injury, may lead to paralysis. Currently, no FDA-approved pharmacotherapy is available for SCI. High-dose methylprednisolone is widely used, but this treatment is controversial. We have previously shown that low doses of estrogen reduces inflammation, attenuates cell death, and protects axon and myelin in SCI rats, but its effectiveness in recovery of function is not known. Therefore, the goal of this study was to investigate whether low doses of estrogen in post-SCI would reduce inflammation, protect cells and axons, and improve locomotor function during the chronic phase of injury. Injury (40 g.cm force) was induced at thoracic 10 in young adult male rats. Rats were treated with 10 or 100 μg 17β-estradiol (estrogen) for 7 days following SCI and compared with vehicle-treated injury and laminectomy (sham) controls. Histology (H&E staining), immunohistofluorescence, Doppler laser technique, and Western blotting were used to monitor tissue integrity, gliosis, blood flow, angiogenesis, the expression of angiogenic factors, axonal degeneration, and locomotor function (Basso, Beattie, and Bresnahan rating) following injury. To assess the progression of recovery, rats were sacrificed at 7, 14, or 42 days post injury. A reduction in glial reactivity, attenuation of axonal and myelin damage, protection of cells, increased expression of angiogenic factors and microvessel growth, and improved locomotor function were found following estrogen treatment compared with vehicle-treated SCI rats. These results suggest that treatment with a very low dose of estrogen has significant therapeutic implications for the improvement of locomotor function in chronic SCI. Experimental studies with low dose estrogen therapy in chronic spinal cord injury (SCI) demonstrated the potential for multi-active beneficial outcomes that could ameliorate the degenerative pathways in chronic SCI as

  14. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats

    PubMed Central

    da Silva, Fernando B. R.; Cunha, Polyane A.; Ribera, Paula C.; Barros, Mayara A.; Cartágenes, Sabrina C.; Fernandes, Luanna M. P.; Teixeira, Francisco B.; Fontes-Júnior, Enéas A.; Prediger, Rui D.; Lima, Rafael R.; Maia, Cristiane S. F.

    2018-01-01

    Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures’ morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  15. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats.

    PubMed

    da Silva, Fernando B R; Cunha, Polyane A; Ribera, Paula C; Barros, Mayara A; Cartágenes, Sabrina C; Fernandes, Luanna M P; Teixeira, Francisco B; Fontes-Júnior, Enéas A; Prediger, Rui D; Lima, Rafael R; Maia, Cristiane S F

    2018-01-01

    Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures' morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  16. Glucoregulatory responses of adult and aged rats after exposure to chronic stress.

    PubMed

    Odio, M R; Brodish, A

    1990-01-01

    Stress has been implicated as an environmental factor that may accelerate the process of biological aging. However, this proposal has remained largely anecdotal due to relatively few studies that directly tested this hypothesis. In the present experiments groups of 6-month-old and 20-month-old male F-344 rats were chronically stressed for a six-month period. After the last stress session, when the animals were 12 months of age (adult) and 26 months of age (old), control and chronically stressed rats were tested for their ability to: (a) elicit glucose and insulin responses to an acute, novel stressor; (b) remove a circulatory glucose load elicited either by acute stress exposure or by injection of d-glucose; and (c) raise insulin levels after a glucose challenge. In control rats, we observed a deficit in each of these parameters in old compared to adult rats. Exposure to chronic stress did not exacerbate deterioration of these response mechanisms in either adult or old rats. In fact, the data showed a modest improvement in glucose tolerance in chronically stressed compared to age-matched control rats. We conclude that chronic stress did not exacerbate age-dependent decline of glucoregulatory capacity. From these results and from our earlier work, we speculate that the decline during aging of the functional integrity of systems involved in the response to stress may be sustained by periodic challenges from the organism's external environment.

  17. Resveratrol Improves Cell Cycle Arrest in Chronic Prostatitis Rats, by C-kit/SCF Suppression.

    PubMed

    He, Yi; Zeng, Huizhi; Yu, Yang; Zhang, Jiashu; Zeng, Xiaona; Gong, Fengtao; Liu, Qi; Yang, Bo

    2017-08-01

    Chronic prostatitis (CP) with complex pathogenesis is difficult for treatment. c-kit has been associated with the control of cell proliferation of prostate cells. This study aims to evaluate the role of resveratrol, an activator of Sirt1, in regulating the expression of c-kit in CP and investigate the consequent effects on cell cycle. Rat model of CP was established through subcutaneous injections of diphtheria-pertussis-tetanus vaccine and subsequently treated with resveratrol. Hematoxylin and eosin staining was performed to identify the histopathological changes in prostates. Western blotting and immunohistochemical staining examined the expression level of c-kit, stem cell factor (SCF), Sirt1, and cell cycle-associated proteins. The model group exhibited severe diffuse chronic inflammation, characterized by leukocyte infiltration and papillary frond protrusion into the gland cavities, and a notable increase in prostatic epithelial height. Gland lumen diameter was also significantly smaller; the activity of c-kit/SCF in the CP rats was increased significantly compared to the control group. Meanwhile, the cell cycle proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. Dysregulation of cell cycle was involved in the pathological processes of CP, which was improved after resveratrol treatment by the downregulation of c-kit/SCF by activating Sirt1.

  18. Chronic deficit in the expression of voltage-gated potassium channel Kv3.4 subunit in the hippocampus of pilocarpine-treated epileptic rats

    PubMed Central

    Pacheco Otalora, Luis F.; Skinner, Frank; Oliveira, Mauro S.; Dotson, Bianca Farrel; Arshadmansab, Massoud F.; Pandari, Tarun; Garcia, Ileana; Robles, Leslie; Rosas, Gerardo; Mello, Carlos F.; Ermolinsky, Boris S.; Garrido-Sanabria, Emilio R.

    2010-01-01

    Voltage gated K+ channels (Kv) are a highly diverse group of channels critical in determining neuronal excitability. Deficits of Kv channel subunit expression and function have been implicated in the pathogenesis of epilepsy. In this study, we investigate whether the expression of the specific subunit Kv3.4 is affected during epileptogenesis following pilocarpine-induced status epilepticus. For this purpose, we used immunohistochemistry, Western blotting assays and comparative analysis of gene expression using TaqMan-based probes and delta-delta cycle threshold (Δ ΔCT) method of quantitative real-time polymerase chain reaction (qPCR) technique in samples obtained from age-matched control and epileptic rats. A marked down-regulation of Kv3.4 immunoreactivity was detected in the stratum lucidum and hilus of dentate gyrus in areas corresponding to the mossy fiber system of chronically epileptic rats. Correspondingly, a 20% reduction of Kv3.4 protein levels was detected in the hippocampus of chronic epileptic rats. Real-time quantitative PCR analysis of gene expression revealed that a significant 33% reduction of transcripts for Kv3.4 (gene Kcnc4) occurred after 1 month of pilocarpine-induced status epilepticus and persisted during the chronic phase of the model. These data indicate a reduced expression of Kv3.4 channels at protein and transcript levels in the epileptic hippocampus. Down-regulation of Kv3.4 in mossy fibers may contribute to enhanced presynaptic excitability leading to recurrent seizures in the pilocarpine model of temporal lobe epilepsy. PMID:20971086

  19. Chronic Ampakine Treatments Stimulate Dendritic Growth and Promote Learning in Middle-Aged Rats.

    PubMed

    Lauterborn, Julie C; Palmer, Linda C; Jia, Yousheng; Pham, Danielle T; Hou, Bowen; Wang, Weisheng; Trieu, Brian H; Cox, Conor D; Kantorovich, Svetlana; Gall, Christine M; Lynch, Gary

    2016-02-03

    Positive allosteric modulators of AMPA-type glutamate receptors (ampakines) have been shown to rescue synaptic plasticity and reduce neuropathology in rodent models of cognitive disorders. Here we tested whether chronic ampakine treatment offsets age-related dendritic retraction in middle-aged (MA) rats. Starting at 10 months of age, rats were housed in an enriched environment and given daily treatment with a short half-life ampakine or vehicle for 3 months. Dendritic branching and spine measures were collected from 3D reconstructions of Lucifer yellow-filled CA1 pyramidal cells. There was a substantial loss of secondary branches, relative to enriched 2.5-month-old rats, in apical and basal dendritic fields of vehicle-treated, but not ampakine-treated, 13-month-old rats. Baseline synaptic responses in CA1 were only subtly different between the two MA groups, but long-term potentiation was greater in ampakine-treated rats. Unsupervised learning of a complex environment was used to assess treatment effects on behavior. Vehicle- and drug-treated rats behaved similarly during a first 30 min session in the novel environment but differed markedly on subsequent measures of long-term memory. Markov sequence analysis uncovered a clear increase in the predictability of serial movements between behavioral sessions 2 and 3 in the ampakine, but not vehicle, group. These results show that a surprising degree of dendritic retraction occurs by middle age and that this can be mostly offset by pharmacological treatments without evidence for unwanted side effects. The functional consequences of rescue were prominent with regard to memory but also extended to self-organization of behavior. Brain aging is characterized by a progressive loss of dendritic arbors and the emergence of impairments to learning-related synaptic plasticity. The present studies show that dendritic losses are evident by middle age despite housing in an enriched environment and can be mostly reversed by long

  20. Chronic cyanidin-3-glucoside administration improves short-term spatial recognition memory but not passive avoidance learning and memory in streptozotocin-diabetic rats.

    PubMed

    Nasri, Sima; Roghani, Mehrdad; Baluchnejadmojarad, Tourandokht; Balvardi, Mahboubeh; Rabani, Tahereh

    2012-08-01

    This research study was conducted to evaluate the efficacy of chronic cyanidin-3-glucoside (C3G) on alleviation of learning and memory deficits in diabetic rats as a result of the observed antidiabetic and antioxidant activity of C3G. Male Wistar rats were divided into control, diabetic, C3G-treated-control and -diabetic groups. The C3G was administered i.p. at a dose of 10 mg/kg on alternate days for eight weeks. For evaluation of learning and memory, initial latency (IL) and step-through latency (STL) were determined at the end of study using passive avoidance test. Meanwhile, spatial recognition memory was assessed as alternation in the Y-maze task. Oxidative stress markers in brain tissue were also measured. It was found that the alternation score of the diabetic rats was lower than that of control (p < 0.01) and C3G-treated diabetic rats showed a higher alternation score as compared to diabetic group (p < 0.05). Diabetic rats also developed a significant impairment in retention and recall in passive avoidance test (p < 0.01) and C3G treatment of diabetic rats did not produce any significant improvement. Meanwhile, increased level of malondialdehyde (MDA) in diabetic rats was significantly reduced following C3G treatment (p < 0.05). Taken together, chronic C3G could improve short-term spatial recognition memory disturbance in the Y-maze test but not retention and recall capability in passive avoidance test in STZ-diabetic rats. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats.

    PubMed

    Stopponi, Serena; Soverchia, Laura; Ubaldi, Massimo; Cippitelli, Andrea; Serpelloni, Giovanni; Ciccocioppo, Roberto

    2014-07-01

    Cannabis derivatives are among the most widely used illicit substances among young people. The addictive potential of delta-9-tetrahydrocannabinol (THC), the major active ingredient of cannabis is well documented in scientific literature. However, the consequence of THC exposure during adolescence on occurrence of addiction for other drugs of abuse later in life is still controversial. To explore this aspect of THC pharmacology, in the present study, we treated adolescent rats from postnatal day (PND) 35 to PND-46 with increasing daily doses of THC (2.5-10mg/kg). One week after intoxication, the rats were tested for anxiety-like behavior in the elevated plus maze (EPM) test. One month later (starting from PND 75), rats were trained to operantly self-administer heroin intravenously. Finally, following extinction phase, reinstatement of lever pressing elicited by the pharmacological stressor, yohimbine (1.25mg/kg) was evaluated. Data revealed that in comparison to controls, animals treated with chronic THC during adolescence showed a higher level of anxiety-like behavior. When tested for heroin (20μg per infusion) self-administration, no significant differences were observed in both the acquisition of operant responding and heroin intake at baseline. Noteworthy, following the extinction phase, administration of yohimbine elicited a significantly higher level of heroin seeking in rats previously exposed to THC. Altogether these findings demonstrate that chronic exposure to THC during adolescence is responsible for heightened anxiety and increased vulnerability to drug relapse in adulthood. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  2. Modulation of hippocampal ACh release by chronic nicergoline treatment in freely moving young and aged rats.

    PubMed

    Carfagna, N; Di Clemente, A; Cavanus, S; Damiani, D; Gerna, M; Salmoiraghi, P; Cattaneo, B; Post, C

    1995-09-15

    The effects of nicergoline on basal and K(+)-stimulated release of ACh in the hippocampus of 3- and 19-month old rats has been studied by microdialysis. A significant decrease of basal ACh release (59%) was found in aged vehicle treated rats in comparison to young rats. High-K+ (100 mM) in the perfusate strongly increased the release of ACh by up to 6-fold over the baseline of both young and aged rats. Chronic oral administration of nicergoline to aged rats (5 mg/kg b.i.d. for 6 weeks) significantly reversed (93%) the age-related decrease of basal release of ACh, leaving the increase due to K+ depolarization unchanged. In young animals, nicergoline did not affect the basal output of ACh, but enhanced the K(+)-evoked release of ACh by 39%. Results from this study demonstrate that nicergoline treatment increases the ability of hippocampal cholinergic terminals to release ACh, and suggest that this drug can reset the cholinergic impairement associated with aging.

  3. Long-term treatment with chaethomellic acid A reduces glomerulosclerosis and arteriolosclerosis in a rat model of chronic kidney disease.

    PubMed

    Nogueira, António; Vala, Helena; Vasconcelos-Nóbrega, Carmen; Faustino-Rocha, Ana Isabel; Pires, Carlos André; Colaço, Aura; Oliveira, Paula Alexandra; Pires, Maria João

    2017-12-01

    The high prevalence of end-stage renal disease emphasizes the failure to provide therapies to effectively prevent and/or reverse renal fibrosis. Therefore, the aim of this study was to evaluate the effect of long-term treatment with chaethomellic acid A (CAA), which selectively blocks Ha-Ras farnesylation, on renal mass reduction-induced renal fibrosis. Male Wistar rats were sham-operated (SO) or subjected to 5/6 renal mass reduction (RMR). One week after surgery, rats were placed in four experimental groups: SO:SO rats without treatment (n=13); SO+CAA: SO rats treated with CAA (n=13); RMR:RMR rats without treatment (n=14); and RMR+CAA:RMR rats treated with CAA (n=13). CAA was intraperitoneally administered in a dose of 0.23μg/kg three times a week for six months. Renal fibrosis was evaluated by two-dimensional ultrasonography and histopathological analysis. The kidneys of the RMR animals treated with CAA showed a significantly decrease in the medullary echogenicity (p<0.05) compared with the RMR rats that received no treatment. Glomerulosclerosis and arteriolosclerosis scores were significantly lower (p<0.001) in the RMR+CAA group when compared with the RMR group. There were no significant differences in interstitial fibrosis, interstitial inflammation and tubular dilatation scores between the RMR+CAA and RMR groups. These data suggest that CAA can be a potential future drug to attenuate the progression of chronic kidney disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Cannabinoid receptor 2 agonist attenuates pain related behavior in rats with chronic alcohol/high fat diet induced pancreatitis.

    PubMed

    Zhang, Liping; Kline, Robert H; McNearney, Terry A; Johnson, Michael P; Westlund, Karin N

    2014-11-17

    Chronic Pancreatitis (CP) is a complex and multifactorial syndrome. Many contributing factors result in development of dysfunctional pain in a significant number of patients. Drugs developed to treat a variety of pain states fall short of providing effective analgesia for patients with chronic pancreatitis, often providing minimal to partial pain relief over time with significant side effects. Recently, availability of selective pharmacological tools has enabled great advances in our knowledge of the role of the cannabinoid receptors in pathophysiology. In particular, cannabinoid receptor 2 (CB2) has emerged as an attractive target for management of chronic pain, as demonstrated in several studies with inflammatory and neuropathic preclinical pain models. In this study, the analgesic efficacy of a novel, highly selective CB2 receptor agonist, LY3038404 HCl, is investigated in a chronic pancreatitis pain model, induced with an alcohol/high fat (AHF) diet. Rats fed the AHF diet developed visceral pain-like behaviors detectable by week 3 and reached a maximum at week 5 that persists as long as the diet is maintained. Rats with AHF induced chronic pancreatitis were treated with LY3038404 HCl (10 mg/kg, orally, twice a day for 9 days). The treated animals demonstrated significantly alleviated pain related behaviors after 3 days of dosing, including increased paw withdrawal thresholds (PWT), prolonged abdominal withdrawal latencies (ABWL), and decreased nocifensive responses to noxious 44°C hotplate stimuli. Terminal histological analysis of pancreatic tissue sections from the AHF chronic pancreatitis animals demonstrated extensive injury, including a global pancreatic gland degeneration (cellular atrophy), vacuolization (fat deposition), and fibrosis. After the LY3038404 HCl treatment, pancreatic tissue was significantly protected from severe damage and fibrosis. LY3038404 HCl affected neither open field exploratory behaviors nor dark/light box preferences as measures

  5. Chronic treatment with 13-cis-retinoic acid changes aggressive behaviours in the resident-intruder paradigm in rats.

    PubMed

    Trent, Simon; Drew, Cheney J G; Mitchell, Paul J; Bailey, Sarah J

    2009-12-01

    Retinoids, vitamin A related compounds, have an established role in the development of the nervous system and are increasingly recognized to play a role in adult brain function. The synthetic retinoid, 13-cis-retinoic acid (13-cis-RA, Roaccutane) is widely used to treat severe acne but has been linked to an increased risk of neuropsychiatric side effects, including depression. Here we report that chronic administration with 13-cis-RA (1 mg/kg i.p. daily, 7-14 days) in adult rats reduced aggression- and increased flight-related behaviours in the resident-intruder paradigm. However, in the forced swim, sucrose consumption and open field tests treatment for up to 6 weeks with 13-cis-RA did not modify behaviour in adult or juvenile animals. The behavioural change observed in the resident-intruder paradigm is directly opposite to that observed with chronic antidepressant administration. These findings indicate that when a suitably sensitive behavioural test is employed then chronic administration of 13-cis-RA in adult rats induces behavioural changes consistent with a pro-depressant action.

  6. Neurotoxic Doses of Chronic Methamphetamine Trigger Retrotransposition of the Identifier Element in Rat Dorsal Dentate Gyrus

    PubMed Central

    Moszczynska, Anna; Burghardt, Kyle J.; Yu, Dongyue

    2017-01-01

    Short interspersed elements (SINEs) are typically silenced by DNA hypermethylation in somatic cells, but can retrotranspose in proliferating cells during adult neurogenesis. Hypomethylation caused by disease pathology or genotoxic stress leads to genomic instability of SINEs. The goal of the present investigation was to determine whether neurotoxic doses of binge or chronic methamphetamine (METH) trigger retrotransposition of the identifier (ID) element, a member of the rat SINE family, in the dentate gyrus genomic DNA. Adult male Sprague-Dawley rats were treated with saline or high doses of binge or chronic METH and sacrificed at three different time points thereafter. DNA methylation analysis, immunohistochemistry and next-generation sequencing (NGS) were performed on the dorsal dentate gyrus samples. Binge METH triggered hypomethylation, while chronic METH triggered hypermethylation of the CpG-2 site. Both METH regimens were associated with increased intensities in poly(A)-binding protein 1 (PABP1, a SINE regulatory protein)-like immunohistochemical staining in the dentate gyrus. The amplification of several ID element sequences was significantly higher in the chronic METH group than in the control group a week after METH, and they mapped to genes coding for proteins regulating cell growth and proliferation, transcription, protein function as well as for a variety of transporters. The results suggest that chronic METH induces ID element retrotransposition in the dorsal dentate gyrus and may affect hippocampal neurogenesis. PMID:28272323

  7. Apple Polysaccharide inhibits microbial dysbiosis and chronic inflammation and modulates gut permeability in HFD-fed rats.

    PubMed

    Wang, Sheng; Li, Qian; Zang, Yue; Zhao, Yang; Liu, Nan; Wang, Yifei; Xu, Xiaotao; Liu, Li; Mei, Qibing

    2017-06-01

    The saying "An apple a day keeps the doctor away" has been known for over 150 years, and numerous studies have shown that apple consumption is closely associated with reduced risks of chronic diseases. It has been well accepted that dysbiosis is the reflection of various chronic diseases. Therefore, this study investigates the effects of apple polysaccharides (AP) on gut dysbiosis. High-fat diet (HFD) fed rats were treated for 14 weeks with AP. The microbiota composition, microbiota-generated short chain fatty acids (SCFAs), gut permeability and chronic inflammation were analyzed. AP treatment showed higher abundance of Bacteroidetes and Lactobacillus while lower Firmicutes and Fusobacteium. AP significantly increased total SCFAs level that contributed by acetic acid and isobutyric acid. Moreover, AP dramatically alleviated dysbiosis-associated gut permeability and chronic inflammation with decreased plasma LBP, up-regulation of Occludin, down-regulation of tumor necrosis factor a (TNF-a), monocyte chemotactic protein 1 (MCP-1), chemokine ligand 1 (CXCL-1) and interleukin 1 beta (IL-1β). The potential mechanism is due to the fact that AP reduces gut permeability, which involves the induction of autophagy in goblet cells. Therefore, AP exerts health benefits through inhibiting gut dysbiosis and chronic inflammation and modulating gut permeability in HFD-induced dysbiosis rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The effect of chronic stimulation of serotonin receptor type 7 on recognition, passive avoidance memory, hippocampal long-term potentiation, and neuronal apoptosis in the amyloid β protein treated rat.

    PubMed

    Shahidi, Siamak; Asl, Sara Soleimani; Komaki, Alireza; Hashemi-Firouzi, Nasrin

    2018-05-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory impairment, neuronal death, and synaptic loss in the hippocampus. Long-term potentiation (LTP), a type of synaptic plasticity, occurs during learning and memory. Serotonin receptor type 7 (5-HTR7) activation is suggested as a possible therapeutic target for AD. The aim of the present study was to examine the effects of chronic treatment with the 5-HTR7 agonist, AS19, on cognitive function, memory, hippocampal plasticity, amyloid beta (Aβ) plaque accumulation, and apoptosis in an adult rat model of AD. AD was induced in rats using Aβ (single 1 μg/μL intracerebroventricular (icv) injection during surgery). The following experimental groups were included: control, sham-operated, Aβ + saline (1 μL icv for 30 days), and Aβ + AS19 (1 μg/μL icv for 30 days) groups. The animals were tested for cognition and memory performance using the novel object recognition and passive avoidance tests, respectively. Next, anesthetized rats were placed in a stereotaxic apparatus for electrode implantation, and field potentials were recorded in the hippocampal dentate gyrus. Lastly, brains were removed and Aβ plaques and neuronal apoptosis were evaluated using Congo red staining and TUNEL assay, respectively. Administration of AS19 in the Aβ rats increased the discrimination index of the novel object recognition test. Furthermore, AS19 treatment decreased time spent in the dark compartment during the passive avoidance test. AS19 also enhanced both the population spike (PS) amplitude and the field excitatory postsynaptic potential (fEPSP) slope evoked potentials of the LTP components. Aβ plaques and neuronal apoptosis were decreased in the AS19-treatedrats. These results indicate that chronic treatment with a 5-HTR7 agonist can prevent Aβ-related impairments in cognition and memory performance by alleviating Aβ plaque accumulation and neuronal apoptosis, hence improving neuronal

  9. Genistein modifies liver fibrosis and improves liver function by inducing uPA expression and proteolytic activity in CCl4-treated rats.

    PubMed

    Salas, Alfonso Leija; Montezuma, Tania Díaz; Fariña, German Garrido; Reyes-Esparza, Jorge; Rodríguez-Fragoso, Lourdes

    2008-01-01

    To evaluate the effect of genistein on the fibrosis and matrix degradation caused by experimentally induced fibrosis in rats. Hepatic fibrosis was brought about by chronic administration of carbon tetrachloride to rats. To evaluate the effect of genistein on liver fibrosis and function, total collagen content and proteolytic activity in the liver were quantified. Urokinase-type plasminogen activator (uPA) expression during experimental fibrosis was localized by immunohistochemistry. Histopathological changes were evaluated using light and electron microscopy. Animals with fibrosis and treated with genistein showed an important reduction (73%) in hepatic collagen content as well as an improvement in liver function (p < 0.001). Genistein increased the capacity of the liver to degrade type I collagen and Matrigel (3.1- and 3.7-fold, respectively; p < 0.001) in animals with liver fibrosis. Genistein increased the number of uPA-immunoreactive cells. The increase in the uPA expression correlated with an increase in proteolytic activity. Histological analysis revealed a reduction in the number of fiber septa in pericentral and perisinusoidal areas. Transmission electron micrographs of livers from animals with fibrosis and treated with genistein showed a reduction in the number of hepatic stellate cells activated and a smaller number of collagen fibers. Genistein is able to improve the liver after injury and fibrosis induced by chronic administration of carbon tetrachloride. This finding suggests that genistein has antifibrogenic potential and could therefore be useful for treating chronic liver disease. (c) 2008 S. Karger AG, Basel.

  10. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats.

    PubMed

    Zhao, H; Ji, Z-H; Liu, C; Yu, X-Y

    2015-04-02

    Studies demonstrated that chronic high-dose homocysteine administration induced learning and memory impairment in animals. Atractylenolide III (Aen-III), a neuroprotective constituent of Atractylodis macrocephalae Koidz, was isolated in our previous study. In this study, we investigated potential benefits of Aen-III in preventing learning and memory impairment following chronic high-dose homocysteine administration in rats. Results showed that administration of Aen-III significantly ameliorated learning and memory impairment induced by chronic high-dose homocysteine administration in rats, decreased homocysteine-induced reactive oxygen species (ROS) formation and restored homocysteine-induced decrease of phosphorylated protein kinase C expression level. Moreover, Aen-III protected primary cultured neurons from apoptotic death induced by homocysteine treatment. This study provides the first evidence for the neuroprotective effect of Aen-III in preventing learning and impairment induced by chronic administration of homocysteine. Aen-III may have therapeutic potential in treating homocysteine-mediated cognitive impairment and neuronal injury. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder.

    PubMed

    Modi, Hiren R; Ma, Kaizong; Chang, Lisa; Chen, Mei; Rapoport, Stanley I

    2017-08-01

    Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. VCD like VPA will reduce brain AA turnover in unanaesthetized rats. A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1- 14 C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD. Published by Elsevier B.V.

  12. Ventilatory drive is enhanced in male and female rats following chronic intermittent hypoxia.

    PubMed

    Edge, D; Skelly, J R; Bradford, A; O'Halloran, K D

    2009-01-01

    Obstructive sleep apnoea is characterized by chronic intermittent hypoxia (CIH) due to recurrent apnoea. We have developed a rat model of CIH, which shows evidence of impaired respiratory muscle function. In this study, we wished to characterize the ventilatory effects of CIH in conscious male and female animals. Adult male (n=14) and female (n=8) Wistar rats were used. Animals were placed in chambers daily for 8 h with free access to food and water. The gas supply to one half of the chambers alternated between air and nitrogen every 90 s, for 8 h per day, reducing ambient oxygen concentration in the chambers to 5% at the nadir (intermittent hypoxia; n=7 male, n=4 female). Air supplying the other chambers was switched every 90 s to air from a separate source, at the same flow rates, and animals in these chambers served as controls (n=7 male, n=4 female). Ventilatory measurements were made in conscious animals (typically sleeping) after 10 days using whole-body plethysmography. Normoxic ventilation was increased in both male and female CIH-treated rats compared to controls but this did not achieve statistical significance. However, ventilatory drive was increased in CIH-treated rats of both sexes as evidenced by significant increases in mean and peak inspiratory flow. Ventilatory responses to acute hypoxia (F(I)O(2) = 0.10; 6 min) and hyperoxic hypercapnia (F(I)CO(2) = 0.05; 6 min) were unaffected by CIH treatment in male and female rats (P>0.05, ANOVA). We conclude that CIH increases respiratory drive in adult rats. We speculate that this represents a form of neural plasticity that may compensate for respiratory muscle impairment that occurs in this animal model.

  13. Lack of dopamine supersensitivity in rats after chronic administration of blonanserin: Comparison with haloperidol.

    PubMed

    Hashimoto, Takashi; Baba, Satoko; Ikeda, Hiroko; Oda, Yasunori; Hashimoto, Kenji; Shimizu, Isao

    2018-07-05

    Long-term treatment with antipsychotic drugs in patients with schizophrenia can lead to dopamine supersensitivity psychosis. It is reported that repeated administration of haloperidol caused dopamine supersensitivity in rats. Blonanserin is an atypical antipsychotic drug with high affinity for dopamine D 2 , D 3 and serotonin 2A receptors. In this study, we investigated whether chronic administration of blonanserin leads to dopamine supersensitivity. Following oral treatment with blonanserin (0.78 mg/kg) or haloperidol (1.1 mg/kg) twice daily for 28 days, the dopamine D 2 agonist quinpirole-induced hyperlocomotion test and a dopamine D 2 receptor binding assay were conducted. We found that haloperidol significantly enhanced both quinpirole-induced hyperlocomotion and striatal dopamine D 2 receptor density in rats. On the other hand, repeated administration of blonanserin had no effect on either locomotor activity or striatal dopamine D 2 receptor density. Further, our results show that mRNA levels of dopamine D 2 and D 3 receptors in several brain regions were unaffected by repeated administration of both agents. In addition, we examined the effect of the dopamine D 3 receptor antagonist PG-01037 on development of dopamine supersensitivity induced by chronic haloperidol treatment and showed that PG-01037 prevents the development of supersensitivity to quinpirole in chronic haloperidol-treated rats. Given the higher affinity of blonanserin at dopamine D 3 receptors than haloperidol, antagonism of blonanserin at dopamine D 3 receptors may play a role in lack of dopamine supersensitivity after chronic administration. The present findings suggest long-term treatment with antipsychotic dose of blonanserin may be unlikely to lead to dopamine supersensitivity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Induction of Severe Chronic Hyperplastic Candidiasis in Rat by Opportunistic Infection of C. albicans through Combination of Diabetes and Intermittent Prednisolone Administration.

    PubMed

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2017-08-01

    Chronic hyperplastic candidiasis progresses from squamous cell hyperplasia to squamous cell carcinoma (SCC); however, the oncogenic mechanism remains unclear. In the present study, we attempted to induce opportunistic Candida albicans infection and establish chronic hyperplastic candidiasis in rats by combining diabetic condition and prednisolone administration, followed by analysis of the inflammatory cells involved in the disease progression. Female Wistar Bunn/Kobori (WBN/Kob) rats were divided into 3 groups: alloxan-induced diabetic rats (A group) along with diabetic (AP group) and nondiabetic (P group) rats intermittently treated with prednisolone. Animals were euthanized at 42 weeks of age. Squamous cell hyperplasia following C. albicans infection in the forestomach was observed in almost all AP and A group rats. The lesions in the AP group were significantly more severe than those in the A group. In addition, SCC was detected in 1 AP group animal. Cluster of differentiation (CD)4-positive T cell and CD68-positive macrophage infiltration in the AP group was significantly stronger than that in the A group. These findings suggest that the combination of diabetes and intermittent prednisolone administration could induce chronic hyperplastic candidiasis without direct C. albicans inoculation and that CD4-positive T cells and CD68-positive macrophages may be highly involved in the pathogenesis of these hyperplastic lesions.

  15. Severe diffuse axon injury in chronic alcoholic rat medulla oblongata following a concussion blow.

    PubMed

    Luo, Jianming; Chen, Guang; Wei, Lai; Qian, Hong; Lai, Xiaoping; Wang, Dian; Lv, Junyao; Yu, Xiaojun

    2014-01-01

    We investigated the axonal morphological changes and expression of both tau protein and β-APP following concussion to the medulla oblongata, in a rat model of chronic alcoholism. Fifty-nine male Sprague-Dawley rats were randomly divided into EtOH, EtOH-TBI and control groups (water group, water-TBI group). To establish chronic alcoholic rats, rats were intragastrically given edible spirituous liquor twice daily. Rats also received a blow on the occipital tuberosity with an iron pendulum. Morphological changes and expression of tau and β-APP proteins in the medulla oblongata were examined. (a) Nerve fibre thickening and twisting were observed in alcoholic rats, with nerve fibre changes becoming more significant following a concussion blow, which leads to some nerve fibres fracturing. (b) Transmission electron microscopy revealed that the nerve fibre myelin became loosened and displayed lamellar separation, which became more significant following concussion. (c) The integral optical density (IOD) sum value of β-APP of the EtOH-TBI group was lower than that in the EtOH group (P < 0.05); the Tau IOD sum value of the EtOH-TBI group was higher than that in the EtOH group (P < 0.05). (a) Chronic alcoholism caused nerve fibre and neuronal morphology damage in the rat medulla oblongata, with structural damage becoming more significant following concussion. (b) Concussion changed the expression of β-APP and tau protein in chronic alcoholic rat medulla oblongata, suggesting that chronic alcoholism can lead to severe axonal injury following a concussion blow. (c) The effect of chronic alcoholism may be synergistic the concussion blow to promote animal injury and death.

  16. [CHANGING OF ISCHEMIC M. SOLEUS TETANIC CONTRACTION PARAMETERS IN RATS WITH CHRONIC ALCOHOL INTOXICATION].

    PubMed

    Melnychuk, O A; Motuziuk, O P; Shvayko, S Ye

    2015-01-01

    This article deals with the changes of isolated ischemic m. soleus tetanus parameters in rats with chronic alcohol intoxication. The experiments were carried out on 15 male Wistar rats that were divided into three groups for 5 animals in each: group I (control) and two groups in which was induced hind limbs acute muscles ischemia: group II - rats without alcoholic intoxication, group III - rats with chronic alcoholic intoxication. Strain measurement muscle mechanical activity were conducted in isometric mode under conditions of direct electrical muscular preparation stimulation. It is proved that ischemic m. soleus tetanic force in rats with chronic alcoholic intoxication in comparison with rats without alcoholic intoxication does not significant changes. But signifycantly increases the reaching tetanus peak time. It is shown that in rats without alcoholic intoxication and with chronic alcoholic intoxication in comparison with intact animals, significantly decreases the duration of ischemic m. soleus stabile force level. It is shoved significant changes of individual muscles contraction time course of ischemic m. soleus tetanus in this rats group in comparison to intact animal. It is shown that these changes influence on successive muscular contraction efficiency of frequency summation in ischemic m. soleus tetanus and their speed-power characteristics.

  17. Effect of nephrotoxic treatment with gentamicin on rats chronically exposed to uranium.

    PubMed

    Rouas, Caroline; Stefani, Johanna; Grison, Stéphane; Grandcolas, Line; Baudelin, Cédric; Dublineau, Isabelle; Pallardy, Marc; Gueguen, Yann

    2011-01-11

    Uranium is a radioactive heavy metal with a predominantly chemical toxicity, affecting especially the kidneys and more particularly the proximal tubular structure. Until now, few experimental studies have examined the effect of chronic low-dose exposure to uranium on kidney integrity: these mainly analyse standard markers such as creatinine and urea, and none has studied the effect of additional co-exposure to a nephrotoxic agent on rats chronically exposed to uranium. The aim of the present study is to examine the potential cumulative effect of treating uranium-exposed rats with a nephrotoxic drug. Neither physiological indicators (diuresis and creatinine clearance) nor standard plasma and urine markers (creatinine, urea and total protein) levels were deteriorated when uranium exposure was combined with gentamicin-induced nephrotoxicity. A histological study confirmed the preferential impact of gentamicin on the tubular structure and showed that uranium did not aggravate the histopathological renal lesions. Finally, the use of novel markers of kidney toxicity, such as KIM-1, osteopontin and kallikrein, provides new knowledge about the nephrotoxicity threshold of gentamicin, and allows us to conclude that under our experimental conditions, low dose uranium exposure did not induce signs of nephrotoxicity or enhance renal sensitivity to another nephrotoxicant. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Suppression of chronic experimental autoimmune neuritis by nasally administered recombinant rat interleukin-6

    PubMed Central

    DERETZI, G; PELIDOU, S-H; ZOU, L-P; QUIDING, C; MIX, E; LEVI, M; WAHREN, B; ZHU, J

    1999-01-01

    Experimental autoimmune neuritis (EAN) is a CD4+ T-cell-mediated demyelinating disease of the peripheral nervous system (PNS) and serves as experimental model for human immune-demyelinating neurophathies, especially the Guillain–Barré syndrome. In this study, we examined the effect of recombinant rat interleukin-6 (rrIL-6) on chronic EAN in Lewis rats induced by immunization with P2 peptide 57-81 and Freund’s complete adjuvant (FCA). Nasal administration of rat rIL-6 (1 μg/rat/day) beginning in the initial phase of EAN as a therapeutic agent, decreased the severity and the duration of clinical EAN. Low-grade inflammation and suppression of regional demyelination within the sciatic nerves were seen in rrIL-6-treated rats. Hyporesponsiveness of lymph node T cells, down-regulation of serum tumour necrosis factor-α (TNF-α) and increased levels of P2-specific immunoglobulin G1 (IgG1) antibodies document that nasal administration of rrIL-6 was effective systemically. However, because of the non-specific nature of the treatment and multiple effects of IL-6, more experience and great caution are needed, before nasal administration of IL-6 can be considered as a treatment of human autoimmune demyelinating neurophathies. PMID:10447716

  19. Hypertension accelerates the pace of chronic graft dysfunction in the rat.

    PubMed

    Szabo, A; Patschan, O; Kuttler, B; Müller, V; Philipp, T; Rettig, R; Heemann, U

    1998-01-01

    In this study we compared the effects of hypertension on chronic rejection in a rat model of renal transplantation utilizing genetically normotensive (BBOK) and spontaneously hypertensive rats (SHR). SHR received either a BBOK (BBOK-->SHR) or an SHR (SHR-->SHR) kidney; normotensive isografts served as controls. Before transplantation, SHR recipients were treated with hydralazine (50 mg/kg per day). To prevent acute rejection, an anti-CD4 antibody (3 mg/kg per day for 3 weeks) in combination with cyclosporin A (3 mg/kg per day for 1 week) was given to all groups. Six weeks after transplantation, blood pressure was measured, and the kidneys removed for histological and immunohistological analysis. SHR-->SHR developed a significantly higher blood pressure than BBOK-->SHR. Blood pressure in BBOK-->BBOK was significantly lower than in the other two groups. The degree of glomerulosclerosis was similarly increased in allografted (BBOK-->SHR) and SHR-->SHR kidneys as compared with the BBOK-->BBOK kidneys (P < 0.05). Infiltration of ED-1+ monocyte/macrophages and OX19 pan-T-cells was most pronounced in allografts (BBOK-->SHR) and was also increased in SHR-->SHR as compared with BBOK-->BBOK. Our results indicate that hypertension accelerates the morphological and immunohistological changes characteristic of grafts undergoing chronic rejection. However, our findings support the hypothesis that alloantigen-dependent factors are of greater important.

  20. Consequences of advanced aging on renal function in chronic hyperandrogenemic female rat model: implications for aging women with polycystic ovary syndrome.

    PubMed

    Patil, Chetan N; Racusen, Lorraine C; Reckelhoff, Jane F

    2017-11-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine and reproductive disorder in premenopausal women, characterized by hyperandrogenemia, metabolic syndrome, and inflammation. Women who had PCOS during their reproductive years remain hyperandrogenemic after menopause. The consequence of chronic hyperandrogenemia with advanced aging has not been studied to our knowledge. We have characterized a model of hyperandrogenemia in female rats and have aged them to 22-25 months to mimic advanced aging in hyperandrogenemic women, and tested the hypothesis that chronic exposure to hyperandrogenemia with aging has a deleterious effect on renal function. Female rats were chronically implanted with dihydrotestosterone pellets (DHT 7.5 mg/90 days) that were changed every 85 days or placebo pellets, and renal function was measured by clearance methods. Aging DHT-treated females had a threefold higher level of DHT with significantly higher body weight, mean arterial pressure, left kidney weight, proteinuria, and kidney injury molecule-1 (KIM-1), than did age-matched controls. In addition, DHT-treated-old females had a 60% reduction in glomerular filtration rate, 40% reduction in renal plasma flow, and significant reduction in urinary nitrate and nitrite excretion (UNOxV), an index of nitric oxide production. Morphological examination of kidneys showed that old DHT-treated females had significant focal segmental glomerulosclerosis, global sclerosis, and interstitial fibrosis compared to controls. Thus chronic hyperandrogenemia that persists into old age in females is associated with renal injury. These data suggest that women with chronic hyperandrogenemia such as in PCOS may be at increased risk for development of chronic kidney disease with advanced age. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Histopathological classification criteria of rat model of chronic prostatitis/chronic pelvic pain syndrome.

    PubMed

    Wang, Xianjin; Zhong, Shan; Xu, Tianyuan; Xia, Leilei; Zhang, Xiaohua; Zhu, Zhaowei; Zhang, Minguang; Shen, Zhoujun

    2015-02-01

    A variety of murine models of experimental prostatitis that mimic the phenotype of human chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) have been developed. However, there is still a lack of explicit diagnosis criteria about those animal model. Our study is to establish histopathological classification criteria, which will be conducive to evaluate the animal models. We firstly established a rat model of experimental autoimmune prostatitis that is considered a valid model for CP/CPPS. For modelling, male Sprague-Dawley rats were immunized with autologous prostate tissue homogenate supernatant emulsified with complete Freund's adjuvant by subcutaneous injection into abdominal flank and simultaneously immunized with pertussis-diphtheria-tetanus vaccine by intraperitoneal injection. Three immunizations were administered semimonthly. At the 45th day, animals were killed, and prostate tissues were examined for morphology. Histologically, the prostate tissues were characterized by lymphoproliferation, atrophy of acini, and chronic inflammatory cells infiltration in the stromal connective tissue around the acini or ducts. Finally, we built histopathological classification criteria incorporating inflammation locations (mesenchyme, glands, periglandular tissues), ranges (focal, multifocal, diffuse), and grades (grade I-IV). To verify the effectiveness and practicability of the histopathological classification criteria, we conducted the treatment study with one of the alpha blockers, tamsulosin. The histopathological classification criteria of rat model of CP/CPPS will serve for further research of the pathogenesis and treatment strategies of the disease.

  2. Effects of acupuncturing Pishu combined with Ginsenoside Rg3 on the immune function of rats with chronic fatigue.

    PubMed

    Zhang, Wenjing; Zhang, Yue; Ma, Xiande; Chen, Yiguo

    2015-01-01

    This study was designed to investigate the effects of acupuncturing Pishu combined with Ginsenoside Rg3 on the immune function of rats with chronic fatigue. Forty male SD rats were equally randomized into control group, chronic fatigue system group (CFS), Ginsenoside Rg3 (Rg3) group, acupuncture group and acupuncture combined with Ginsenoside Rg3 (A+Rg3) group. Rats with chronic fatigue were established by bounding and forced swimming in cold water once daily for 21 days except control group, then the rats in the acupuncture and A+Rg3 group were treated by manual acupuncture stimulation of bilateral "Pishu" once daily for 7 days. Ginsenoside Rg3 was administered by intravenous to the rats of the A+Rg3 and Rg3 group for 7 days in dosages of 2 mg/kg body weight, and two markers of physical fatigue were evaluated: body weight and blood lactic acid (LA). The percentages of CD3(+) lymphocytes, CD4(+) lymphocytes, and CD8(+) lymphocytes in the spleens of the rats were evaluated using flow cytometric analysis. Serum IFN-gamma (IFN-γ) and IL-4 contents were detected by ELISA. Increased body weight and reduced blood LA concentrations were found in the rat of Rg3 group and A+Rg3 group than that in CFS group. The rat of Rg3 group and A+Rg3 group also showed a significant increase in the percentage of CD4(+) lymphocytes and a significant decrease in the percentage of CD8(+) lymphocytes and correct CD4(+)/CD8(+) ratio. Compared with the CFS group, the level of IFN-γ in the Rg3, acupuncture and A+Rg3 groups was reduced and IL-4 was increased. Acupuncture and Rg3 can improve the immune system activity of CFS rats and acupuncturing Pishu combined with Rg3 was significantly superior compared with Rg3 and acupuncture, respectively.

  3. Chronic Social Stress and Ethanol Increase Expression of KLF11, a Cell Death Mediator, in Rat Brain.

    PubMed

    Duncan, Jeremy; Wang, Niping; Zhang, Xiao; Johnson, Shakevia; Harris, Sharonda; Zheng, Baoying; Zhang, Qinli; Rajkowska, Grazyna; Miguel-Hidalgo, Jose Javier; Sittman, Donald; Ou, Xiao-Ming; Stockmeier, Craig A; Wang, Jun Ming

    2015-07-01

    Major depressive disorder and alcoholism are significant health burdens that can affect executive functioning, cognitive ability, job responsibilities, and personal relationships. Studies in animal models related to depression or alcoholism reveal that the expression of Krüppel-like factor 11 (KLF11, also called TIEG2) is elevated in frontal cortex, which suggests that KLF11 may play a role in stress- or ethanol-induced psychiatric conditions. KLF11 is a transcriptional activator of monoamine oxidase A and B, but also serves other functions in cell cycle regulation and apoptotic cell death. In the present study, immunohistochemistry was used to quantify intensity of nuclear KLF11, combined with an unbiased stereological approach to assess nuclei in fronto-limbic, limbic, and other brain regions of rats exposed chronically to social defeat or ethanol. KLF11 immunoreactivity was increased significantly in the medial prefrontal cortex, frontal cortex, and hippocampus of both stressed rats and rats fed ethanol. However, expression of KLF11 protein was not significantly affected in the thalamus, hypothalamus, or amygdala in either treatment group compared to respective control rats. Triple-label immunofluorescence revealed that KLF11 protein was localized in nuclei of neurons and astrocytes. KLF11 was also co-localized with the immunoreactivity of cleaved caspase-3. In addition, Western blot analysis revealed a significant reduction in anti-apoptotic protein, Bcl-xL, but an increase of caspase-3 expression in the frontal cortex of ethanol-treated rats compared to ethanol-preferring controls. Thus, KLF11 protein is up-regulated following chronic exposure to stress or ethanol in a region-specific manner and may contribute to pro-apoptotic signaling in ethanol-treated rats. Further investigation into the KLF11 signaling cascade as a mechanism for neurotoxicity and cell death in depression and alcoholism may provide novel pharmacological targets to lessen brain damage and

  4. Effect of chronic administration of sildenafil citrate (Viagra) on the histology of the retina and optic nerve of adult male rat.

    PubMed

    Eltony, Sohair A; Abdelhameed, Sally Y

    2017-04-01

    Abnormal vision has been reported by 3% of patients treated with sildenafil citrate (Viagra). Although many men use Viagra for an extended period for treatment of erectile dysfunction, the implications of the long term-daily use of it on the retina and optic nerve are unclear. To investigate the effect of chronic daily use of sildenafil citrate in a dose equivalent to men preferred therapeutic dose on the histology of the retina and optic nerve of adult male rat. Eighteen adult male Wistar rats were equally divided into three groups. Group I: control. Group II: treated with sildenafil citrate orally (10mg/kg/day) for 8 weeks. Group III (withdrawal): treated as group II and then left for 4 weeks without treatment. Specimens from the retina and optic nerve were processed for light and electron microscopy. In sildenafil citrate treated group, the retina and optic nerve revealed vacuolations and congested blood capillaries with apoptotic endothelial and pericytic cells, and thickened basal lamina. Caspase-3 (apoptotic marker) and CD31 (endothelial marker) expression increased. Glial cells revealed morphological changes: Müller cells lost their processes, activated microglia, astrocytic clasmatodendrosis, degenerated oligodendrocytes surrounded by disintegrated myelin sheathes of the optic nerve fibers. The retina and optic nerve of the withdrawal group revealed less vacuolations and congestion, and partial recovery of the glial cells. Chronic treatment with sildenafil citrate (Viagra) caused toxic effect on the structure of the retina and optic nerve of the rat. Partial recovery was observed after drug withdrawal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of intermedin on dorsal root ganglia in the transmission of neuropathic pain in chronic constriction injury rats.

    PubMed

    Xiong, Wei; Qiu, Shu-yi; Xu, Ling-yun; Zhang, Chun-ping; Yi, Yun; Wu, Qin; Huang, Li-ping; Liu, Shuang-mei; Wu, Bing; Peng, Li-chao; Song, Miao-miao; Gao, Yun; Liang, Shang-dong

    2015-07-01

    Neuropathic pain is a common and severely disabling state that affects millions of people worldwide. The P2X3 receptor plays a crucial role in facilitating pain transmission. Intermedin (IMD), which is also known as adrenomedullin 2 (AMD2) is a newly discovered hormone that is a member of the calcitonin/calcitonin gene-related peptide family. The present research investigates the effects of IMD on pain transmission in neuropathic pain states as mediated by P2X3 receptors in dorsal root ganglia (DRG). Chronic constriction injury (CCI) rats were used as the neuropathic pain model. Adult male Sprague-Dawley rats were randomly assigned to five groups as follows: blank control group (Control), sham operation group (Sham), CCI rats treated with saline group (CCI+NS), CCI rats treated with IMD1-53 group (CCI+IMD1-53 ), and CCI rats treated with IMD inhibitor IMD14-47 group (CCI+IMD14-47 ). The mechanical withdrawal threshold (MWT) was tested by the von Frey method, and the thermal withdrawal latency (TWL) was tested via automatic thermal stimulus instruments. Changes in the expression of P2X3 receptors and IMD in CCI rat L4/L5 DRG were detected using immunohistochemistry, reverse transcription-polymerase chain reaction, and Western blotting. After treatment with intrathecal injection (i.t.), mechanical and thermal hyperalgesia in the CCI+IMD1-53 group was maintained, but MWT and TWL in the CCI+IMD14-47 groups increased. The expression levels of P2X3 receptors and IMD in L4/L5 DRG in the CCI+NS and CCI+IMD1-53 groups were significantly increased compared with those in the Control group or the Sham group. After application of IMD14-47 in CCI rats, there was a decrease in the expression levels of P2X3 receptors and IMD in L4/L5 DRG. The phosphorylation of p38 and ERK1/2 in L4/L5 DRG in the CCI+NS group and the CCI+IMD1-53 group was stronger than that in the Control group or the Sham group; however, the phosphorylation of p38 and ERK1/2 in the CCI+IMD14-47 group was much

  6. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    PubMed

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  7. Effects of combination of aliskiren and pentoxyfylline on renal function in the rat remnant kidney model of chronic renal failure.

    PubMed

    Soni, Hitesh M; Patel, Praful P; Patel, Savan; Rath, Akshyaya C; Acharya, Aviseka; Trivedi, Harshkant D; Jain, Mukul R

    2015-01-01

    The aim was to investigate the nephroprotective effect of combination of aliskiren (ASK), a direct renin inhibitor and pentoxifylline (PTX), inhibitor of tumor necrotic factor-alpha (TNF-alpha), in rat remnant kidney model of chronic kidney disease (CKD). Nephrectomized (NPX) rats were treated with ASK (10 mg/kg, p.o.), PTX (100 mg/kg, p.o.), and combination of PTX + ASK once daily for 28 days. We have performed analysis of various renal injury parameters after 4 weeks of treatment. Treatment with PTX, ASK and combination showed significant improvement in urea, creatinine and total protein in plasma when compared with vehicle treated group in NPX rats. ASK and combination of PTX + ASK elicited significant reduction in blood pressure but PTX alone did not produce blood pressure reduction. ASK treatment showed significant elevation in TNF-alpha, whereas PTX and ASK + PTX showed significant reduction in TNF-alpha in plasma. Histopathologically, the extent of the kidney injury was similar in NPX + vehicle and NPX + ASK-treated rats. PTX and ASK + PTX-treated group showed lesser extent of kidney injury. There was good correlation of mRNA expression levels of kidney injury molecule-1 and bradykinin B1 receptor data with histopathological findings in kidney samples and elevated TNF-alpha levels in plasma. We conclude that combination of PTX + ASK may be better therapeutic intervention for nephroprotection in CKD patients.

  8. Effects of berberine on a rat model of chronic stress and depression via gastrointestinal tract pathology and gastrointestinal flora profile assays.

    PubMed

    Zhu, Xiaohui; Sun, Yangdong; Zhang, Chenggang; Liu, Haifeng

    2017-05-01

    Chronic stress and depression are challenging conditions to treat, owing to their complexity and lack of clinically available and effective therapeutic agents. The aim of the present study was to investigate the mechanism by which berberine acts, by examining alterations to gastrointestinal tract histopathology and flora profile in a rat model, following the induction of stress. Research associating gastrointestinal flora and depression has increased, thus, the present study hypothesized that stress induces depression and changes in the gastrointestinal system. The chronic mild stress rat model was previously established based on a set of 10 chronic unpredictable stress methods. In the present study, the measurements of body weight, behavior, gastrointestinal tract histopathology and gastrointestinal flora profile were collected in order to elucidate understanding of chronic stress and depression in this region. In the present study, induced stress and the resulting depression was demonstrated to significantly decrease the body weight and sucrose preference of rats, as well as significantly increasing traverse time, vertical movement time, grooming time and motionless time in an open‑field test. Following modeling and subsequent treatment with low or high doses of berberine, the measurements were significantly different when compared with unstressed rats. Berberine appears to reverse the physical damage brought about by stress within the gastric mucosa and intestinal microvilli of the stomach, ileum, cecum and colon. Using enterobacterial repetitive intergenic consensus sequence‑based polymerase chain reaction analysis, several distinctive bands disappeared following modeling; however, novel distinctive bands appeared in response to the graded berberine treatment. In conclusion, the present study identified that high concentrations of berberine markedly protects rats from various symptoms of chronic stress and depression, with the potential of facilitating

  9. Dental and oropharyngeal lesions in rats with chronic acid reflux esophagitis.

    PubMed

    Shimazu, Rintaro; Yamamoto, Mihoko; Minesaki, Akimichi; Kuratomi, Yuichiro

    2018-06-01

    In this study, we evaluated pathological changes in the tooth and pharynx of GERD rats to elucidate the association between gastric acid reflux and oral and pharyngeal diseases. An experimental rat model of chronic acid reflux esophagitis was surgically created. The oral cavities were observed histologically every 2 weeks until 20 weeks after surgery. At 10 weeks after surgery, molar crown heights in GERD rats were shorter than that in control rats, and inflammatory cell infiltration by gastric acid reflux was found in the periodontal mucosa of GERD rats. Furthermore, dental erosion progressed in GERD rats at 20 weeks after surgery, and enamel erosion and dentin exposure were observed. During the same period, inflammatory cell infiltration was observed in the mucosa of the posterior part of the tongue. These findings suggest that gastric acid reflux may be one of the exacerbating factors of dental erosion, periodontitis and glossitis. We investigated oral changes in an experimental rat model of GERD and observed development of dental erosion, periodontitis and glossitis. Our findings suggested chronic gastric acid reflux may be involved in the pathogenesis of oral disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Investigation of the effect of traditional Chinese medicine on pain and inflammation in chronic nonbacterial prostatitis in rats.

    PubMed

    Liu, Y-J; Song, G-H; Liu, G T

    2016-08-01

    According to traditional Chinese medicine, the symptoms of chronic nonbacterial prostatitis/chronic pelvic pain syndrome (CNP/CPPS) may be treated using a cocktail of herbs that stimulate blood circulation ('activating blood circulation formula'). We investigated the effect of three doses of this formula on a rat model of CNP/CPPS. Male Wistar rats were injected with a saline extract of male sex accessory glands on days 0 and 30 to induce prostatitis and then treated daily by gavage between days 32 and 60. Treatment with low, medium and high doses of activating blood circulation formula resulted in an almost total rescue of paw withdrawal threshold at day 60, and treatment with the highest dose also significantly decreased prostate inflammation (assessed histopathologically). We further observed elevated serum prostaglandin E2 levels in the CNP/CPPS model which decreased upon high-dose treatment, and increased Cox-2 expression in the prostate and spinal cord dorsal horn which was rescued in both tissues in the high-dose group and in the prostate in the medium-dose group. These results shed light on a possible mechanism by which activating blood circulation therapy may alleviate pain in a rat model of CNP/CPPS by downregulating Cox-2 expression in the spinal cord, thereby raising the pain threshold. Further research will be needed to fully characterise the mechanism by which activating blood circulation therapy produces this therapeutic effect. © 2016 Blackwell Verlag GmbH.

  11. Evaluation of the protective effect of pentoxifylline on carrageenan-induced chronic non-bacterial prostatitis in rats.

    PubMed

    Hajighorbani, Mahboobeh; Ahmadi-Hamedani, Mahmood; Shahab, Elaheh; Hayati, Farzad; Kafshdoozan, Khatereh; Keramati, Keivan; Amini, Amin Hossein

    2017-06-01

    Chronic non-bacterial prostatitis (CNP) is the most common type of prostatitis and oxidative stress (OS) was shown to be highly elevated in prostatitis patients. This study aimed to investigate the protective effect of pentoxifylline (PTX) on CNP induced by carrageenan in rats. Male adult Wistar rats (n = 30) were divided into control, CNP and three treatment groups (n = 6) including CNP + cernilton and CNP + PTX groups. CNP was induced by single intraprostatic injection of 1% carrageenan (100 µl). Rats in treatment groups received orally cernilton 100 mg/kg and PTX at 50 and 100 mg/kg 1 week after CNP induction for 21 days. Prostatic index (PI), prostatic specific antigen (PSA), tumor-necrosis factor alpha (TNF-α), serum lipid peroxidation (MDA), blood urea nitrogen, creatinine and histopathological changes were compared between groups. There were significant increase of PI, serum levels of PSA, TNF-α and MDA in CNP group at 29 day. In treatment groups, significant reduction in PI, serum levels of PSA, TNF-α, MDA and creatinine was observed especially in rats treated with dose of 50 mg/kg of PTX. In CNP group, histopathological changes of the prostate such as leucocyte infiltration, large involutions and projection into the lumen and reducing the volume of the lumen were observed as well. Whereas PTX, especially at dose of 50 mg/kg, could improve the above-mentioned changes remarkably in CNP treated rats. For the first time, our findings indicated that PTX improved CNP induced by carrageenan in rats.

  12. The effects of sildenafil after chronic L-NAME administration in male rat sexual behavior.

    PubMed

    Ferraz, Marcia M D; Quintella, Suelen L; Parcial, André L N; Ferraz, Marcos R

    2016-01-01

    Ferraz MMD, Quintella SL, Parcial ALN, Ferraz MR. The effects of sildenafil citrate and L-NAME on male rat sexual behaviour. PHARMACOL BIOCHEM BEHAV. Erectile dysfunction (ED) affects up to 50% of men between 40 and 70years of age. Significant advances in the pharmacological treatment of ED occurred in recent years, most notably the introduction of the first oral selective phosphodiesterase type-5 inhibitor, sildenafil. This study investigated the effectiveness of chronic oral treatment with L-NAME in rats as an experimental model of erectile dysfunction to evaluate new pharmacological agents that affect the sexual response. The effects of chronic oral L-NAME treatment, separately or in combination with sildenafil, on the sexual behaviour of male rats were evaluated. Filtered water was used as a control. Acute administration of L-NAME did not alter the sexual response compared with control, but sildenafil administration facilitated sexual behaviour after acute and chronic administration. Chronic L-NAME treatment inhibited motivational and consummatory measures of male rat sexual behaviour. Sildenafil prevented the inhibitory effects of L-NAME. The present results confirm that chronic oral treatment with a nitric oxide synthase inhibitor may be a relevant peripheral ED model to evaluate the effects of drugs on erectile function of male rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Close pathological correlations between chronic kidney disease and reproductive organ-associated abnormalities in female cotton rats.

    PubMed

    Ichii, Osamu; Nakamura, Teppei; Irie, Takao; Kouguchi, Hirokazu; Sotozaki, Kozue; Horino, Taro; Sunden, Yuji; Elewa, Yaser Hosny Ali; Kon, Yasuhiro

    2018-03-01

    Cotton rat ( Sigmodon hispidus) is a useful experimental rodent for the study of human infectious diseases. We previously clarified that cotton rats, particularly females, developed chronic kidney disease characterized by cystic lesions, inflammation, and fibrosis. The present study investigated female-associated factors for chronic kidney disease development in cotton rats. Notably, female cotton rats developed separation of the pelvic symphysis and hypertrophy in the vaginal parts of the cervix with age, which strongly associated with pyometra. The development of pyometra closely associated with the deterioration of renal dysfunction or immunological abnormalities was indicated by blood urea nitrogen and serum creatinine or spleen weight and serum albumin/globulin ratio, respectively. These parameters for renal dysfunction and immunological abnormalities were statistically correlated. These phenotypes found in the female reproductive organs were completely inhibited by ovariectomy. Further, the female cotton rats with pyometra tended to show more severe chronic kidney disease phenotypes and immunological abnormalities than those without pyometra; these changes were inhibited in ovariectomized cotton rats. With regard to renal histopathology, cystic lesions, inflammation, and fibrosis were ameliorated by ovariectomy. Notably, the immunostaining intensity of estrogen receptor α and estrogen receptor β were weak in the healthy kidneys, but both estrogen receptors were strongly induced in the renal tubules showing cystic changes. In conclusion, the close correlations among female reproductive organ-associated abnormalities, immunological abnormalities, and renal dysfunction characterize the chronic kidney disease features of female cotton rats. Thus, the cotton rat is a unique rodent model to elucidate the pathological crosstalk between chronic kidney disease and sex-related factors. Impact statement The increasing number of elderly individuals in the overall

  14. Glycolytic and mitochondrial metabolism in pancreatic islets from MSG-treated obese rats subjected to swimming training.

    PubMed

    Leite, Nayara de Carvalho; Ferreira, Thiago Rentz; Rickli, Sarah; Borck, Patricia Cristine; Mathias, Paulo Cezar de Freitas; Emilio, Henriette Rosa de Oliveira; Grassiolli, Sabrina

    2013-01-01

    Obese rats obtained by neonatal monosodium glutamate (MSG) administration present insulin hypersecretion. The metabolic mechanism by which glucose catabolism is coupled to insulin secretion in the pancreatic β-cells from MSG-treated rats is understood. The purpose of this study was to evaluate glucose metabolism in pancreatic islets from MSG-treated rats subjected to swimming training. MSG-treated and control (CON) rats swam for 30 minutes (3 times/week) over a period of 10 weeks. Pancreatic islets were isolated and incubated with glucose in the presence of glycolytic or mitochondrial inhibitors. Swimming training attenuated fat pad accumulation, avoiding changes in the plasma levels of lipids, glucose and insulin in MSG-treated rats. Adipocyte and islet hypertrophy observed in MSG-treated rats were attenuated by exercise. Pancreatic islets from MSG-treated obese rats also showed insulin hypersecretion, greater glucose transporter 2 (GLUT2) expression, increased glycolytic flux and reduced mitochondrial complex III activity. Swimming training attenuated islet hypertrophy and normalised GLUT2 expression, contributing to a reduction in the glucose responsiveness of pancreatic islets from MSG-treated rats without altering glycolytic flux. However, physical training increased the activity of mitochondrial complex III in pancreatic islets from MSG-treated rats without a subsequent increase in glucose-induced insulin secretion. Copyright © 2013 S. Karger AG, Basel.

  15. Sub-chronic Hepatotoxicity of Anacardium occidentale (Anacardiaceae) Inner Stem Bark Extract in Rats

    PubMed Central

    Okonkwo, T. J. N.; Okorie, O.; Okonta, J. M.; Okonkwo, C. J.

    2010-01-01

    The extracts of Anacardium occidentale have been used in the management of different cardiovascular disorders in Nigeria. These have necessitated the assessment of the toxicity of this plant extract in sub-chronic administration. The inner stem bark of Anacardium occidentale was extracted with 80 % methanol and quantitatively analysed for antinutrients and some heavy metals. The phytochemical compositions and acute toxicity of the extract were determined also. Toxicity profiles of the extract on some liver function parameters were evaluated following a sub-chronic oral administration at doses of 1.44 and 2.87 g/kg. The phytochemical screening of extract revealed the presence of high amount of tannins, moderate saponins and trace of free reducing sugars. The antinutrient levels were 5.75 % (tannins), 2.50 % (oxalates), 2.00 % (saponins), 0.25 % (phytate) and 0.03 % (cyanide). The quantity of iron detected from dried crude was 8.92 mg/100 g, while lead and cadmium were non-detectable. The extract had LD50of 2.154g/kg p.o. in mice. Sub-chronic administration of the extract significantly increased the serum levels of alanine aminotransaminase and aspartate aminotransaminase, which are indicative of liver damage. The serum levels of alkaline phosphatase and total protein of the treated animals were not significantly increased. The effects of sub-chronically administered extract on hepatocytes were minimal as the serum alkaline phosphatase; total bilirubin and total protein levels in treated animals were not significant (p< 0.05). Thus, sub-chronic administrations of Anacardium occidentale inner stem bark extract did not significantly (p< 0.05) depress the function of hepatocytes in Wistar rats. PMID:21188045

  16. Effects of chronic mild stress on the development of drug dependence in rats.

    PubMed

    Papp, Mariusz; Gruca, Piotr; Lason-Tyburkiewicz, Magdalena; Litwa, Ewa; Willner, Paul

    2014-09-01

    There is high comorbidity between depression and addiction. Features of addiction relevant to depression have been studied extensively, but less is known about features of depression relevant to addiction. Here, we have studied the effects of chronic mild stress (CMS), a valid animal model of depression, on measures of physical and psychological dependence resulting from subchronic treatment of rats with three drugs of abuse that act through disparate neurobiological mechanisms: morphine, nicotine and diazepam. In animals not treated subchronically with drugs of abuse, CMS increased the withdrawal-like effects of the opiate antagonist naloxone, but not those of the nicotinic antagonist mecamylamine or the benzodiazepine antagonist flumazenil. In animals treated subchronically with drugs of abuse, CMS exacerbated, precipitated and conditioned withdrawal effects associated with all three antagonists. CMS also potentiated withdrawal-induced and cue-induced place aversions associated with all three antagonists. All of the effects of CMS were reversed by chronic treatment with the specific serotonin reuptake inhibitor citalopram. These results suggest that treatment of comorbid depression, although not a primary treatment for addiction, may facilitate other treatments for addiction, by decreasing the severity of withdrawal symptoms and the likelihood of relapse.

  17. Effects of chronic cocaine treatment during adolescence in Lewis and Fischer-344 rats: Novel location recognition impairment and changes in synaptic plasticity in adulthood.

    PubMed

    Fole, A; Martin, M; Morales, L; Del Olmo, N

    2015-09-01

    The use of Lewis (LEW) together with Fischer-344 (F344) rats has been proposed as an addiction model because of the addiction behavior differences of these two strains. We have previously suggested that these differences could be related to learning and memory processes and that they depend on the genetic background of these two strains of rats. Adolescence is a period of active synaptic remodeling, plasticity and particular vulnerability to the effects of environmental insults such as drugs of abuse. We have evaluated spatial memory using novel location recognition in LEW and F344 adult rats undergoing a chronic treatment with cocaine during adolescence or adulthood. In order to study whether synaptic plasticity mechanisms were involved in the possible changes in learning after chronic cocaine treatment, we carried out electrophysiological experiments in hippocampal slices from treated animals. Our results showed that, in LEW cocaine-treated rats, hippocampal memory was only significantly impaired when the drug was administered during adolescence whereas adult administration did not produce any detrimental effect in spatial memory measured in this protocol. Moreover, F344 rats showed clear difficulties carrying out the protocol even in standard conditions, confirming the spatial memory problems observed in previous reports and demonstrating the genetic differences in spatial learning and memory. Our experiments show that the effects in behavioral experiments are related to synaptic plasticity mechanisms. Long-term depression induced by the glutamate agonist NMDA (LTD-NMDA) is partially abolished in cocaine-treated animals in hippocampal slices from LEW rats. Hippocampal LTD-NMDA is partially inhibited in F344 animals regardless of whether saline or cocaine administration, suggesting the lack of plasticity of this strain that could be related to the inability of these animals to carry out the novel object location protocol. Copyright © 2015 Elsevier Inc. All

  18. Chronic administration of fluoxetine and pro-inflammatory cytokine change in a rat model of depression.

    PubMed

    Lu, Yanxia; Ho, Cyrus S; Liu, Xin; Chua, Anna N; Wang, Wei; McIntyre, Roger S; Ho, Roger C

    2017-01-01

    This study evaluated the chronic effects of fluoxetine, a commonly prescribed SSRI antidepressant, on the peripheral and central levels of inflammatory cytokines including IL-1β, IL-6, TNF-α and IL-17 over a 4-interval in a rat model of chronic mild stress (CMS) which resembles the human experience of depression. Twenty-four Sprague-Dawley rats were randomly assigned to CMS+vehicle (n = 9), CMS+fluoxetine (n = 9) and the control (n = 6) groups. Sucrose preference and forced swim tests were performed to assess behavioral change. Blood samples were collected on day 0, 60, 90 and 120 for measurement of cytokine levels in plasma. On day 120, the brain was harvested and central level of cytokines was tested using Luminex. Four months of fluoxetine treatment resulted in changes in the sucrose preference and immobility time measurements, commensurate with antidepressant effects. The CMS+vehicle group exhibited elevated plasma levels of IL-1β, IL-17, and TNF-α on day 60 or 120. Rats treated with fluoxetine demonstrated lower IL-1β in plasma and brain after 90 and 120-day treatment respectively (p<0.05). There was a trend of reduction of IL-6 and TNF-α concentration. This study revealed the potential therapeutic effects of fluoxetine by reducing central and peripheral levels of IL-1β in the alleviation of depressive symptoms.

  19. Altered respiratory response to substance P in capsaicin-treated rats.

    PubMed

    Towle, A C; Mueller, R A; Breese, G R; Lauder, J

    1985-01-01

    The present investigation sought to examine the importance of substance P in the altered respiratory activity after neonatal capsaicin administration. Halothane-anesthetized adult rats given capsaicin neonatally exhibit a decreased basal minute ventilation with PaCO2 equal to and PaO2 greater than vehicle injected controls. In addition, the minute ventilation-PaCO2 curve was displaced to the right. Acute bilateral cervical vagotomy severely blunted the minute ventilation response to PaCO2 and abolished the differences in ventilation between capsaicin treated and control rats. Neonatal capsaicin significantly reduced pons-medulla substance P content but not TRH, serotonin or 5-hydroxyindole acetic acid. Immunohistochemical studies revealed that substance P fibers of the trigeminal spinal nucleus were the most severely affected in the brain stem and that substance P fibers in the lung were totally absent. The intracerebroventricular administration of substance P increased minute ventilation similarly in both control and capsaicin treated rats, largely as a result of increases in tidal volume. The minute ventilation-PaCO2 curve was similar in both groups after substance P administration. Simultaneous administration of the peptidase inhibitor captopril with substance P increased the respiratory response to substance P in normal rats. Administration of captopril to capsaicin treated rats restored the ventilation-PaCO2 curve to the position observed in normal rats. The hypotensive response to intracerebroventricular captopril alone in control rats was less profound in rats given neonatal capsaicin. These results are consistent with the thesis that respiratory depression after capsaicin treatment is at least in part due to the loss of substance P primary afferent nerve terminals in the brain stem, suggesting that substance P fibers in the brain stem may participate in the normal modulation of respiratory activity.

  20. Effects of Arginase Inhibition in Hypertensive Hyperthyroid Rats.

    PubMed

    Rodríguez-Gómez, Isabel; Manuel Moreno, Juan; Jimenez, Rosario; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Wangensteen, Rosemary; Vargas, Félix

    2015-12-01

    This study analyzed the effects of chronic administration of N[omega]-hydroxy-nor-l-arginine (nor-NOHA), an inhibitor of arginase, on the hemodynamic, oxidative stress, morphologic, metabolic, and renal manifestations of hyperthyroidism in rats. Four groups of male Wistar rats were used: control, nor-NOHA-treated (10 mg/kg/day), thyroxine (T4)-treated (75 μg/rat/day), and thyroxine- plus nor-NOHA-treated rats. All treatments were maintained for 4 weeks. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, morphologic, metabolic, plasma, and renal variables were measured. Arginase I and II protein abundance and arginase activity were measured in aorta, heart, and kidney. The T4 group showed increased arginase I and II protein abundance, arginase activity, SBP, HR, plasma nitrates/nitrites (NOx), brainstem and urinary isoprostanes, proteinuria and cardiac and renal hypertrophy in comparison to control rats. In hyperthyroid rats, chronic nor-NOHA prevented the increase in SBP and HR and decreased proteinuria in association with an increase in plasma NOx and a decrease in brainstem and urinary isoprostanes. In normal rats, nor-NOHA treatment did not significantly change any hemodynamic, morphologic, or renal variables. Acute nor-NOHA administration did not affect renal or systemic hemodynamic variables in normal or T4-treated rats. Hyperthyroidism in rats is associated with the increased expression and activity of arginase in aorta, heart, and kidney. Chronic arginase inhibition with nor-NOHA suppresses the characteristic hemodynamic manifestations of hyperthyroidism in association with a reduced oxidative stress. These results indicate an important role for arginase pathway alterations in the cardiovascular and renal abnormalities of hyperthyroidism. © American Journal of Hypertension, Ltd 2015. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Renal function in juvenile rats subjected to prenatal malnutrition and chronic salt overload.

    PubMed

    Magalhães, João Carlos G; da Silveira, Alex B; Mota, Diogenes L; Paixão, Ana Durce O

    2006-05-01

    Dietary sodium may contribute to hypertension and to cardiovascular and renal disease if a primary deficiency of the kidney to excrete sodium exists. In order to investigate whether chronic 1% NaCl in the drinking water changes blood pressure and renal haemodynamics in juvenile Wistar rats subjected to prenatal malnutrition, an evaluation of plasma volume, oxidative stress in the kidney, proteinuria and renal haemodynamics was carried out. Malnutrition was induced by a multideficient diet. Mean arterial pressure, renal blood flow and glomerular filtration rate (GFR) were measured using a blood pressure transducer, a flow probe and inulin clearance, respectively. Plasma volume and oxidative stress were measured by means of the Evans Blue method and by monitoring thiobarbituric acid reactive substances (TBARS) in the kidneys, respectively. Urinary protein was measured by precipitation with 3% sulphosalicylic acid. It was observed that prenatally malnourished rats presented higher values of plasma volume (26%, P < 0.05), kidney TBARS (43%, P < 0.01) and blood pressure (10%, P < 0.01) when compared with the control group. However, they showed no change in renal haemodynamics or proteinuria. Neither prenatally malnourished nor control rats treated with sodium overload presented plasma volume or blood pressure values different from their respective control groups, but both groups presented elevated proteinuria (P < 0.01). The prenatally malnourished group treated with sodium overload presented higher values of kidney TBARS, GFR and filtration fraction (58, 87 and 72% higher, respectively, P < 0.01) than its respective control group. In summary, sodium overload did not exacerbate the hypertension in juvenile prenatally malnourished rats, but induced renal haemodynamic adjustments compatible with the development of renal disease.

  2. Osteoprotective Effect of Alfacalcidol in Female Rats with Systemic Chronic Inflammation

    USDA-ARS?s Scientific Manuscript database

    Studies have shown that alfacalcidol (a hydroxylated form of vitamin D) mitigates glucocorticoid-induced bone loss. This study was undertaken to explore the mechanism and bone microarchitecture of alfacalcidol in rats with systemic chronic inflammation. Thirty female rats (3-month-old) assigned to ...

  3. [Professor Shi Qi's experience of applying herbal paste for treating chronic musculoskeletal conditions].

    PubMed

    Li, Xiao-feng; Wang, Yong-jun; Ye, Xiu-lan; Zhou, Chong-jian

    2012-06-01

    Professor Shi Qi is a famous traditional Chinese medicine doctor specializing in orthopaedics and traumatology, who has formatted a set of systematic protocols for the diagnosis and treatment of chronic musculoskeletal conditions. When it is time for using tonics in winter, he advocates applying herbal paste for treating chronic musculoskeletal diseases. This paper introduces Professor Shi Qi's commonly used prescription for treating chronic musculoskeletal conditions and puts forward demands and understandings in concocting herbal paste, experience in herbal paste for treating chronic musculoskeletal diseases such as cervical spondylosis, lumbar disc herniation, lumbar spinal stenosis, lumbar muscle strain, ankylosing spondylitis, osteoporosis, knee osteoarthritis and avascular necrosis of femoral head, and the advantages of herbal paste for treating chronic musculoskeletal conditions as opposed to alternative treatments.

  4. Down-regulation of MAO-B activity and imidazoline receptors in rat brain following chronic treatment of morphine.

    PubMed

    Su, R B; Li, J; Li, X; Qin, B Y

    2001-07-01

    To study the regulation of monoamine oxidase-B (MAO-B) activity and imidazoline receptors (I-R) during long term treatment of morphine. MAO-B activity was detected by high performance liquid chromatography; I-R was detected by [3H]idazoxan binding test. Idazoxan and morphine inhibited whole brain homogenate MAO-B activity in a dose-dependent manner, while agmatine, an endogenous imidazoline ligand, didn't affect the activity of MAO-B, and it had no effect on the inhibition of MAO-B activity by idazoxan or morphine. MAO-B activity of rats decreased markedly in all five brain regions detected (cerebral cortex, hippocampus, thalamus, cerebellum, and striatum) after chronic administration of morphine for 16 d (P < 0.01). Acute challenge with naloxone or idazoxan did not influence MAO-B activity in morphine chronically treated rats. Although agmatine itself did not affect MAO-B activity, co-administration of agmatine with morphine could reverse the effect of morphine on MAO-B activity. Chronic administration of morphine significantly decreased the density of [3H]idazoxan binding sites and increased the binding affinity in cerebral cortex and cerebellum (P < 0.05 or P < 0.01). MAO-B activity was relevant to the abstinent syndrome of morphine dependent rats, but not related to the effect of agmatine on morphine analgesia; influence of agmatine on the pharmacological effects of morphine was based on its activation of imidazoline receptors.

  5. PEG-rHuMGDF ameliorates thrombocytopenia in carboplatin-treated rats without inducing myelofibrosis.

    PubMed

    Ide, Y; Harada, K; Imai, A; Yanagida, M

    1999-08-01

    We examined the effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) on carboplatin-induced thrombocytopenia in rats. The focus was on whether myelofibrosis is associated with the PEG-rHuMGDF treatment in this chemotherapy model. After a single injection of carboplatin, rats received subcutaneous PEG-rHuMGDF at pharmacologic doses (1,3, or 30 micrograms/kg) or a vehicle daily for 7 days. PEG-rHuMGDF at more than 3 micrograms/kg ameliorated the thrombocytopenia at day 10. Histologically, no myelofibrosis was detected in the rats treated with PEG-rHuMGDF or vehicle. Subsequently, PEG-rHuMGDF at a suprapharmacologic dose (100 micrograms/kg) was subcutaneously administered to normal and to carboplatin-treated rats daily for 7 days. Histological analysis revealed that the treatment with PEG-rHuMGDF induced myelofibrosis in the normal rats but not in the carboplatin-treated rats. Additionally, the transforming growth factor-beta 1 (TGF-beta 1) levels in the extracellular fluid and the whole extract of the bone marrow were increased to a much lesser degree in the carboplatin-treated rats compared to the normal rats. These findings suggest that PEG-rHuMGDF is effective for carboplatin-induced thrombocytopenia. Proper control of platelet counts and TGF-beta 1 levels is essential so that myelofibrosis is not induced in clinical use.

  6. Chronic Oral Capsaicin Exposure During Development Leads to Adult Rats with Reduced Taste Bud Volumes.

    PubMed

    Omelian, Jacquelyn M; Samson, Kaeli K; Sollars, Suzanne I

    2016-09-01

    Cross-sensory interaction between gustatory and trigeminal nerves occurs in the anterior tongue. Surgical manipulations have demonstrated that the strength of this relationship varies across development. Capsaicin is a neurotoxin that affects fibers of the somatosensory lingual nerve surrounding taste buds, but not fibers of the gustatory chorda tympani nerve which synapse with taste receptor cells. Since capsaicin is commonly consumed by many species, including humans, experimental use of this neurotoxin provides a naturalistic perturbation of the lingual trigeminal system. Neonatal or adults rats consumed oral capsaicin for 40 days and we examined the cross-sensory effect on the morphology of taste buds across development. Rats received moderate doses of oral capsaicin, with chronic treatments occurring either before or after taste system maturation. Tongue morphology was examined either 2 or 50 days after treatment cessation. Edema, which has been previously suggested as a cause of changes in capsaicin-related gustatory function, was also assessed. Reductions in taste bud volume occurred 50 days, but not 2 days post-treatment for rats treated as neonates. Adult rats at either time post-treatment were unaffected. Edema was not found to occur with the 5 ppm concentration of capsaicin we used. Results further elucidate the cooperative relationship between these discrete sensory systems and highlight the developmentally mediated aspect of this interaction. Chronic exposure to even moderate levels of noxious stimuli during development has the ability to impact the orosensory environment, and these changes may not be evident until long after exposure has ceased.

  7. Effect of Shenkang granules on the progression of chronic renal failure in 5/6 nephrectomized rats

    PubMed Central

    ZHANG, YU; ZHOU, NAN; WANG, HONGYING; WANG, SICEN; HE, JIANYU

    2015-01-01

    Shenkang granules (SKGs) are a Chinese herbal medicinal formula, consisting of rhubarb (Rheum palmatum L.), Salvia miltiorrhiza, milkvetch root [Astragalus membranaceus (Fisch.) Bunge] and safflower (Carthamus tinctorius L.). The aim of the present study was to investigate the effect of SKG on chronic renal failure (CRF) in 5/6 nephrectomized (5/6 Nx) rats. The rats were randomly divided into seven groups (n=10 per group) as follows: (i) 5/6 Nx (model group; 2.25 ml/kg/day normal saline); (ii) SKGL (low dose; 5/6 Nx treated with 2 g crude drug/kg/day SKG); (iii) SKGM (moderate dose; 5/6 Nx treated with 4 g crude drug/kg/day SKG); (iv) SKGH (high dose; 5/6 Nx treated with 8 g crude drug/kg/day SKG); (v) benazepril treatment group (5/6 Nx treated with 5 mg/kg/day benazepril); (vi) Shenkang injection (SKI) group (5/6 Nx with 13.3 ml/kg/day SKI); and (vii) sham-operated group (2.25 ml/kg/day normal saline). After 30 days, the levels of microalbumin, total protein, serum creatinine, blood urea nitrogen and serum lipid were found to be significantly decreased in the SKGL and SKGM rats, showing histological improvement compared with the untreated 5/6 Nx rats, as determined by hematoxylin and eosin, and Masson's trichrome staining. In addition, SKG was found to significantly improve the levels of glutathione peroxidase and reduce the damage caused by free radicals to the kidney tissues. Furthermore, SKG prevented the accumulation of extracellular matrix by decreasing the expression of collagen I and III and inhibiting the expression of matrix metalloproteinases-2 and −9 in the renal tissue, as determined by western blot analysis. SKG was also shown to decrease the concentrations of serum transforming growth factor-β1, as determined by ELISA, and kidney angiotensin II, as determined using a radioimmunoassay kit. In conclusion, SKG was demonstrated to ameliorate renal injury in a 5/6 Nx rat model of CRF. Thus, SKG may exert a good therapeutic effect on CRF. PMID:26136932

  8. Experimental pulmonary fibrosis in rats with chronic gastric acid reflux esophagitis.

    PubMed

    Shimazu, Rintaro; Aoki, Shigehisa; Kuratomi, Yuichiro

    2015-10-01

    To elucidate the association between gastric acid reflux and respiratory diseases by studying the histological changes of the lower airway in rats with chronic acid reflux esophagitis. An experimental rat model of chronic acid reflux esophagitis was surgically created. The lower airways of these rats were histologically observed for more than 50 weeks. Although there were no histological changes which induced gastric acid reflux at 10 weeks after surgery, thickening of the basal laminae and the proliferation of the collagenous fibers were observed in the alveolar epithelium at 20 weeks after surgery. At 50 weeks after surgery, the collagenous fibers obliterated the pulmonary alveoli and bronchial lumen. These findings observed in the GERD rats are similar to the pathological findings of human pulmonary fibrosis. In this study, we reported pathological changes in the lower airways of GERD rat models observed for more than 50 weeks. These results suggest that gastric acid reflux may be one of the pathogenic or exacerbating factors of pulmonary fibrosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Study of the biochemical indicators of chronic irradiation in rats.

    PubMed

    Szabo, L D; Benko, A B; Gyenge, L; Predmerszky, T

    1976-01-01

    Daily urinary excretion of pseudouridine, creatinine and creatine of chronically irradiated Wistar rats was estimated. The irradiation conditions were: 60Co gamma source, dose-rate 10 rad/day, total dose 200, 400 and 600 rad. Control groups were kept under similar conditions. Urine samples were taken three times after the end of the irradiation period. It was found that: (1) pseudouridine excretion seems more suitable for indicating radiation injury than the creatine/creatinine ratio in chronic irradiation in rats; (ii) there are significant changes in dose dependence of pseudouridine excretion in the post-irradiation period; (iii) a new method for pseudouridine estimation gives closely similar data to those of earlier investigations.

  10. Rat liver mitochondrial damage under acute or chronic carbon tetrachloride-induced intoxication: Protection by melatonin and cranberry flavonoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheshchevik, V.T.; Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno; Lapshina, E.A.

    In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, pmore » < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage

  11. Effects of Chronic Central Arginine Vasopressin (AVP) on Maternal Behavior in Chronically Stressed Rat Dams

    PubMed Central

    Coverdill, Alexander J.; McCarthy, Megan; Bridges, Robert S.; Nephew, Benjamin C.

    2012-01-01

    Exposure of mothers to chronic stressors during pregnancy or the postpartum period often leads to the development of depression, anxiety, or other related mood disorders. The adverse effects of mood disorders are often mediated through maternal behavior and recent work has identified arginine vasopressin (AVP) as a key neuropeptide hormone in the expression of maternal behavior in both rats and humans. Using an established rodent model that elicits behavioral and physiological responses similar to human mood disorders, this study tested the effectiveness of chronic AVP infusion as a novel treatment for the adverse effects of exposure to chronic social stress during lactation in rats. During early (day 3) and mid (day 10) lactation, AVP treatment significantly decreased the latency to initiate nursing and time spent retrieving pups, and increased pup grooming and total maternal care (sum of pup grooming and nursing). AVP treatment was also effective in decreasing maternal aggression and the average duration of aggressive bouts on day 3 of lactation. Central AVP may be an effective target for the development of treatments for enhancing maternal behavior in individuals exposed to chronic social stress. PMID:24349762

  12. Embryotoxicity of benzalkonium chloride in vaginally treated rats.

    PubMed

    Buttar, H S

    1985-12-01

    The effects of the spermicide benzalkonium chloride (BKC) were studied on the conceptus of rat. Single doses (0, 25, 50, 100 or 200 mg kg-1) of aqueous solutions of BKC were administered intravaginally (1 ml kg-1) on gestational day 1. The vulval metallic clips, used to prevent leakage of the solution, were removed 24 h post-treatment. Fetuses were obtained and examined for malformations on day 21 of gestation. slight to copious amounts of vaginal discharge and vaginitis were noticed in rats treated with the two largest doses of BKC. A dose-related increase in resorptions and fetal death, reduction in litter size and weight were observed in BKC-treated dams. The conceptus loss seemed to occur both before and after implantation. BKC did not cause any discernible visceral malformations, although minor sternal defects occurred in fetuses exposed to 100 and 200 mg kg-1 of the spermicide. These results suggest that single vaginal application of BKC is embryo- and fetocidal in the rat at a dose about 143 times higher than that recommended for controlling conception in women.

  13. [The expression and significance of VIP and its receptor in the cochlea of different degrees of chronic alcoholism rats].

    PubMed

    Feng, Jing; Liu, Haibing

    2015-07-01

    To determine whether chronic alcoholism alters the expression levels of Vasoactive intestinal polypeptide (VIP) and its receptor (VIPR1) in the cochlea of chronic alcoholism rats. We measured their expression levels in 30 SD rats, in which we created models of different degrees of chronic alcoholism. We investigated the presence of the mRNA of VIP in the cochlea of chronic alcoholism rats and controls by reverse transcription-polymerase chain reaction (RT-PCR) method. We investigated the presence of proteins of VIPR1 in poisoned rats and controls by western blot. We also evaluated the local distribution of VIP cells by immunohistochemistry. We found that the levels of VIP and VIPR1 were downregulated in the chronic alcoholism groups compared to the controls group. The differences in some expression levels were significant different between chronic alcoholism rats and control rats. Moreover, at different degrees of alcohol poisoning in rats, the contents of VIP and VIPR1 differed. Decreased levels of VIP and VIPR1 were detected in the deep chronic alcoholism group compared to the group with low-degree poisoning (P < 0.05). In spiral ganglion cell plasm the expression of VIP and VIPR1 had no significant difference in three groups (P > 0.05). These results suggest that VIP and VIPR1 play an important role in the auditory function in rats with chronic alcoholism. Chronic alcoholism may cause a peptide hormone secretion imbalance in the auditory system, eventually leading to hearing loss.

  14. The effects of chronic alcohol consumption and exercise on the skeleton of adult male rats

    NASA Technical Reports Server (NTRS)

    Reed, Adam H.; McCarty, Heidi L.; Evans, Glenda L.; Turner, Russell T.; Westerlind, Kim C.

    2002-01-01

    BACKGROUND: Lifestyle factors are known to affect skeletal development and integrity. Specifically, running has been reported to increase risk of fatigue fractures, whereas chronic alcohol consumption has been shown to reduce bone formation and bone mass. The combined effect of exercise and alcohol on the skeleton has yet to be explored, although alcohol consumption is common among certain physically active populations (e.g., military recruits, college athletes). It was hypothesized that chronic alcohol consumption would accentuate the inherent risk associated with endurance running exercise. METHODS: Six-month-old male Sprague Dawley rats were assigned to one of five groups: baseline, exercise-alcohol diet, exercise-normal diet, sham-alcohol diet, and sham-normal diet. Alcohol-fed rats (35% caloric intake) received a liquid diet ad libitum. Normal animals were pair-fed the identical diet with a maltose dextrin caloric substitute. Exercise was conducted on a motorized treadmill 5 days/wk for 16 weeks. Sham rats were placed on a stationary treadmill for matching time periods. Fluorochrome labels were administered 3 days before baseline and at 10 and 2 days before animals were killed. Heart, soleus, and rectus femoris muscles were wet weighed to assess the effects of training. Tibiae were collected for static and dynamic histomorphometric measurements on cancellous and cortical bone. RESULTS: Muscle weights were larger in the exercised rats versus the sham rats. Alcohol had no significant effect on skeletal muscle weight but did result in larger heart weights in both alcohol-treated groups. Cancellous and periosteal bone formation rates were significantly decreased in the alcohol-fed rats versus rats on the normal diet and were associated with a significant reduction in trabecular thickness in the tibial metaphysis. Cortical and cross-sectional areas were also significantly lower in the alcohol-fed groups compared with the non-alcohol-fed groups. Exercise had no

  15. A Rat Excised Larynx Model of Vocal Fold Scar

    ERIC Educational Resources Information Center

    Welham, Nathan V.; Montequin, Douglas W.; Tateya, Ichiro; Tateya, Tomoko; Choi, Seong Hee; Bless, Diane M.

    2009-01-01

    Purpose: To develop and evaluate a rat excised larynx model for the measurement of acoustic, aerodynamic, and vocal fold vibratory changes resulting from vocal fold scar. Method: Twenty-four 4-month-old male Sprague-Dawley rats were assigned to 1 of 4 experimental groups: chronic vocal fold scar, chronic vocal fold scar treated with 100-ng basic…

  16. Severe Cross-Modal Object Recognition Deficits in Rats Treated Sub-Chronically with NMDA Receptor Antagonists are Reversed by Systemic Nicotine: Implications for Abnormal Multisensory Integration in Schizophrenia

    PubMed Central

    Jacklin, Derek L; Goel, Amit; Clementino, Kyle J; Hall, Alexander W M; Talpos, John C; Winters, Boyer D

    2012-01-01

    Schizophrenia is a complex and debilitating disorder, characterized by positive, negative, and cognitive symptoms. Among the cognitive deficits observed in patients with schizophrenia, recent work has indicated abnormalities in multisensory integration, a process that is important for the formation of comprehensive environmental percepts and for the appropriate guidance of behavior. Very little is known about the neural bases of such multisensory integration deficits, partly because of the lack of viable behavioral tasks to assess this process in animal models. In this study, we used our recently developed rodent cross-modal object recognition (CMOR) task to investigate multisensory integration functions in rats treated sub-chronically with one of two N-methyl-D-aspartate receptor (NMDAR) antagonists, MK-801, or ketamine; such treatment is known to produce schizophrenia-like symptoms. Rats treated with the NMDAR antagonists were impaired on the standard spontaneous object recognition (SOR) task, unimodal (tactile or visual only) versions of SOR, and the CMOR task with intermediate to long retention delays between acquisition and testing phases, but they displayed a selective CMOR task deficit when mnemonic demand was minimized. This selective impairment in multisensory information processing was dose-dependently reversed by acute systemic administration of nicotine. These findings suggest that persistent NMDAR hypofunction may contribute to the multisensory integration deficits observed in patients with schizophrenia and highlight the valuable potential of the CMOR task to facilitate further systematic investigation of the neural bases of, and potential treatments for, this hitherto overlooked aspect of cognitive dysfunction in schizophrenia. PMID:22669170

  17. Systemic administration of anti-NGF increases A-type potassium currents and decreases pancreatic nociceptor excitability in a rat model of chronic pancreatitis.

    PubMed

    Zhu, Yaohui; Mehta, Kshama; Li, Cuiping; Xu, Guang-Yin; Liu, Liansheng; Colak, Tugba; Shenoy, Mohan; Pasricha, Pankaj Jay

    2012-01-01

    We have previously shown that pancreatic sensory neurons in rats with chronic pancreatitis (CP) display increased excitability associated with a decrease in transient inactivating potassium currents (I(A)), thus accounting in part for the hyperalgesia associated with this condition. Because of its well known role in somatic hyperalgesia, we hypothesized a role for the nerve growth factor (NGF) in driving these changes. CP was induced by intraductal injection of trinitrobenzene sulfonic acid (TNBS) in rats. After 3 wk, anti-NGF antibody or control serum was injected intra-peritoneally daily for 1 wk. This protocol was repeated in another set of experiments in control rats (receiving intraductal PBS instead of TNBS). Pancreatic nociceptors labeled with the dye Dil were identified, and patch-clamp recordings were made from acutely dissociated DRG neurons. Sensory neurons from anti-NGF-treated rats displayed a lower resting membrane potential, increased rheobase, decreased burst discharges in response to stimulatory current, and decreased input resistance compared with those treated with control serum. Under voltage-clamp condition, neuronal I(A) density was increased in anti-NGF-treated rats compared with rats treated with control serum. However, anti-NGF treatment had no effect on electrophysiological parameters in neurons from control rats. The expression of Kv-associated channel or ancillary genes Kv1.4, 4.1, 4.2, 4.3, and DPP6, DPP10, and KCHIPs 1-4 in pancreas-specific nociceptors was examined by laser-capture microdissection and real-time PCR quantification of mRNA levels. No significant differences were seen among those. These findings emphasize a key role for NGF in maintaining neuronal excitability in CP specifically via downregulation of I(A) by as yet unknown mechanisms.

  18. Protective effect of tadalafil on the functional and structural changes of the rat ventral prostate caused by chronic pelvic ischemia.

    PubMed

    Zarifpour, Mona; Nomiya, Masanori; Sawada, Norifumi; Andersson, Karl-Erik

    2015-02-15

    The etiology of Benign Prostatic Hyperplasia (BPH), a common among aged men, is not fully understood, however, in addition to androgens and aging, chronic ischemia has been proposed to contribute. Using an established rat model, we investigated whether chronic ischemia alters the structural and functional properties of the ventral rat prostate, and whether phosphodiesterase type 5 (PDE5) inhibitor (tadalafil) may have a protective action. Adult male Sprague-Dawley rats were divided into control, arterial endothelial injury (AI), and AI with tadalafil treatment (AI-tadalafil) groups. AI and AI-tadalafil groups underwent endothelial injury of the iliac arteries and received a 2% cholesterol diet following AI. AI-tadalafil rats were treated with tadalafil (2 mg/kg/day) orally for 8 weeks after AI. The control group received a regular diet. After 8 weeks, animals were sacrificed, and pharmacological and morphological studies on prostate tissues were performed. Iliac arteries from AI rats displayed neo-intimal formation and luminal occlusion, an effect that was not prevented by tadalafil treatment. In the AI group, there was an obvious epithelial atrophy and a statistically significant increase in collagen fibers compared with the controls. Immunohistochemically, there was an up-regulation of smooth muscle α-actin (SMA). Contractile responses of prostate strips to KCl, electrical field stimulation (EFS), and phenylephrine (PE) were significantly higher after AI than in controls. Chronic treatment with tadalafil prevented the increase in contractile responses in ischemic tissue, and decreased the collagen deposition compared with the AI group. In this rat model, chronic pelvic ischemia caused distinct functional and morphological changes in the prostate. Prostatic tissue from ischemic animals showed an increased contractile response to electrical and pharmacological stimulation, an increase in SMA, and an increased deposition of collagen. All these changes could be

  19. Hypercaloric diet modulates effects of chronic stress: a behavioral and biometric study on rats.

    PubMed

    Oliveira, Carla de; Oliveira, Cleverson Moraes de; de Macedo, Isabel Cristina; Quevedo, Alexandre S; Filho, Paulo Ricardo Marques; Silva, Fernanda Ribeiro da; Vercelino, Rafael; de Souza, Izabel C Custodio; Caumo, Wolnei; Torres, Iraci L S

    2015-01-01

    Obesity is a chronic disease that has been associated with chronic stress and hypercaloric diet (HD) consumption. Increased ingestion of food containing sugar and fat ingredients (comfort food) is proposed to "compensate" chronic stress effects. However, this eating habit may increase body fat depositions leading to obesity. This study evaluated behavioral/physiological parameters seeking to establish whether there is an association between the effects of HD intake and stress, and to test the hypothesis that the development of anxious behavior and obesity during chronic stress periods depends on the type of diet. Sixty-day-old male Wistar rats (n = 100) were divided into four groups: standard chow, hypercaloric diet, chronic stress/standard chow and chronic stress/hypercaloric diet. Chronic stress was induced by restraint stress exposure for 1 h/day, for 80 d. At the end of this period, rat behavior was evaluated using open-field and plus-maze tests. The results showed that HD alone increased weight gain and adipose deposition in subcutaneous and mesenteric areas. However, stress reduced weight gain and adipose tissue in these areas. HD also increased naso-anal length and concurrent stress prevented this. Behavioral data indicated that stress increased anxiety-like behaviors and comfort food reduced these anxiogenic effects; locomotor activity increased in rats fed with HD. Furthermore, HD decreased corticosterone levels and stress increased adrenal weight. The data indicate that when rats are given HD and experience chronic stress this association reduces the pro-obesogenic effects of HD, and decreases adrenocortical activity.

  20. Mechanisms Mediating Vibration-induced Chronic Musculoskeletal Pain Analyzed in the Rat

    PubMed Central

    Dina, Olayinka A.; Joseph, Elizabeth K.; Levine, Jon D.; Green, Paul G.

    2009-01-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and re-exposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60–80 Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a pro-inflammatory cytokine or re-exposure to vibration. Exposure of a hind limb to vibration produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for ~2 weeks. When nociceptive thresholds had returned to baseline, exposure to a pro-inflammatory cytokine or re-exposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia induced by vibration was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cε, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-α (TNFα) receptor. Finally, in TNFα-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. Perspective These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFα and the second messenger PKCε as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. PMID:19962353

  1. Mechanisms mediating vibration-induced chronic musculoskeletal pain analyzed in the rat.

    PubMed

    Dina, Olayinka A; Joseph, Elizabeth K; Levine, Jon D; Green, Paul G

    2010-04-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and reexposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60-80Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a proinflammatory cytokine or reexposure to vibration. Exposure of a hind limb to vibration-produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for approximately 2 weeks. When nociceptive thresholds had returned to baseline, exposure to a proinflammatory cytokine or reexposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cepsilon, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-alpha (TNFalpha) receptor. Finally, in TNFalpha-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFalpha and the second messenger protein kinase Cepsilon as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. Copyright 2010 American Pain Society. All rights reserved.

  2. 5-lipoxygenase activation is involved in the mechanisms of chronic hepatic injury in a rat model of chronic aluminum overload exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Shaoshan

    We previously confirmed that rats overloaded with aluminum exhibited hepatic function damage and increased susceptibility to hepatic inflammation. However, the mechanism of liver toxicity by chronic aluminum overload is poorly understood. In this study, we investigated changes in the 5-lipoxygenase (5-LO) signaling pathway and its effect on liver injury in aluminum-overloaded rats. A rat hepatic injury model of chronic aluminum injury was established via the intragastric administration of aluminum gluconate (Al{sup 3+} 200 mg/kg per day, 5 days a week for 20 weeks). The 5-LO inhibitor, caffeic acid (10 and 30 mg/kg), was intragastrically administered 1 h after aluminum administration.more » Hematoxylin and eosin staining was used to visualize pathological changes in rat liver tissue. A series of biochemical indicators were measured with biochemistry assay or ELISAs. Immunochemistry and RT-PCR methods were used to detect 5-LO protein and mRNA expression in the liver, respectively. Caffeic acid administration protected livers against histopathological injury, decreased plasma ALT, AST, and ALP levels, decreased TNF-α, IL-6, IL-1β and LTs levels, increased the reactive oxygen species content, and down-regulated the mRNA and protein expressions of 5-LO in aluminum overloaded rats. Our results indicate that 5-lipoxygenase activation is mechanistically involved in chronic hepatic injury in a rat model of chronic aluminum overload exposure and that the 5-LO signaling pathway, which associated with inflammation and oxidative stress, is a potential therapeutic target for chronic non-infection liver diseases. - Highlights: • 5-LO signaling contributes to mechanisms of hepatotoxicity of aluminum overload. • Oxidative and inflammatory reaction involve in chonic aluminum hepatotoxicity. • 5-LO inhibitor has a protective effect on aluminum-overload liver injury. • 5-LO signaling is a potential therapeutic target for non-infection liver diseases.« less

  3. Toxicological Effects of Cypermethrin on Female Albino Rats

    PubMed Central

    Sangha, G. K.; Kaur, Kamalpreet; Khera, K. S.; Singh, Balwinder

    2011-01-01

    A study was undertaken to evaluate the effects of cypermethrin on reproduction of female albino rats. The experimental rats were fed cypermethrin at 50 mg/kg b. wt. continuously for a period of 2 and 4 weeks. Feed and water intake was also noted daily for control, vehicle treated and cypermethrin-treated rats. It was observed that there was no effect on feed and water intake in treated rats as compared to the control group. Chronic exposure to cypermethrin for 4 weeks resulted in loose fecal pellets and hyperirritability in the treated rats. Treatment related mortality also occurred at the 4th wk of treatment. Significant changes in body weight and various organ weights due to cypermethrin were observed along with disruption of estrous cycle in rats. The body weight gain in treated rats was lower at both 2 and 4 weeks as compared to the control rats. The weight of liver and spleen decreased, while that of kidneys increased as compared to the control rats. Thyroid and adrenal showed increase in weight at both 2 and 4 weeks of treatments. PMID:21430912

  4. Effects of 1,8-cineole on hypertension induced by chronic exposure to nicotine in rats.

    PubMed

    Moon, Hea Kyung; Kang, Purum; Lee, Hui Su; Min, Sun Seek; Seol, Geun Hee

    2014-05-01

    The monoterpenic oxide 1,8-cineole is a major component of many essential oils. We investigated its effects on systolic blood pressure (SBP) and oxidative stress in rats chronically exposed to nicotine. Male Sprague-Dawley rats (100-120 g) were intraperitoneally injected with 0.8 mg/kg/day nicotine for 21 days, followed by 3 mg/kg nicotine the next day. Rats were subsequently injected intraperitoneally with 0.01, 0.1 and 1 mg/kg 1,8-cineole, or 10 mg/kg nifedipine. SBP was measured using a tail cuff transducer, plasma nitrite concentration was measured colorimetrically, and plasma corticosterone concentration was measured by enzyme immunoassay. We found that 0.1 mg/kg 1,8-cineole significantly reduced SBP, and that 1.0 mg/kg 1,8-cineole significantly increased plasma nitrite concentrations, compared with rats chronically exposed to nicotine alone. Rats chronically exposed to nicotine showed a significant increase in lipid peroxidation levels, an elevation significantly antagonized by treatment with 0.01 mg/kg and 0.1 mg/kg 1,8-cineole. Chronic exposure to nicotine also significantly increased plasma corticosterone levels, but this effect was not diminished by treatment with 1,8-cineole. These results indicate that 1,8-cineole may lower blood pressure, and that this antihypertensive effect may be associated with the regulation of nitric oxide and oxidative stress in rats chronically exposed to nicotine. © 2013 Royal Pharmaceutical Society.

  5. Low- and high-intensity treadmill exercise attenuates chronic morphine-induced anxiogenesis and memory impairment but not reductions in hippocampal BDNF in female rats.

    PubMed

    Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam

    2017-05-15

    Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Tumour necrosis factor-α contributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia.

    PubMed

    Chytilová, A; Borchert, G H; Mandíková-Alánová, P; Hlaváčková, M; Kopkan, L; Khan, Md A Hye; Imig, J D; Kolář, F; Neckář, J

    2015-05-01

    It has been demonstrated that tumour necrosis factor-alpha (TNF-α) via its receptor 2 (TNFR2) plays a role in the cardioprotective effects of preconditioning. It is also well known that chronic hypoxia is associated with activation of inflammatory response. With this background, we hypothesized that TNF-α signalling may contribute to the improved ischaemic tolerance of chronically hypoxic hearts. Adult male Wistar rats were kept either at room air (normoxic controls) or at continuous normobaric hypoxia (CNH; inspired O2 fraction 0.1) for 3 weeks; subgroups of animals were treated with infliximab (monoclonal antibody against TNF-α; 5 mg kg(-1), i.p., once a week). Myocardial levels of oxidative stress markers and the expression of selected signalling molecules were analysed. Infarct size (tetrazolium staining) was assessed in open-chest rats subjected to acute coronary artery occlusion/reperfusion. CNH increased myocardial TNF-α level and expression of TNFR2; this response was abolished by infliximab treatment. CNH reduced myocardial infarct size from 50.8 ± 4.3% of the area at risk in normoxic animals to 35.5 ± 2.4%. Infliximab abolished the protective effect of CNH (44.9 ± 2.0%). CNH increased the levels of oxidative stress markers (3-nitrotyrosine and malondialdehyde), the expression of nuclear factor κB and manganese superoxide dismutase, while these effects were absent in infliximab-treated animals. CNH-elevated levels of inducible nitric oxide synthase and cyclooxygenase 2 were not affected by infliximab. TNF-α plays a role in the induction of ischaemia-resistant cardiac phenotype of CNH rats, possibly via the activation of protective redox signalling. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Interaction of calcium channel blockers (CCBs) with histamine and 5-hydroxytryptamine in aorta from normal and diseased rats.

    PubMed

    Bhugra, P; Gulati, O D

    1996-04-01

    The present study attempts to investigate the interaction of calcium channel blockers (CCBs) with histamine (H) and 5-hydroxytryptamine (5-HT) in rat isolated aortic strip preparations. In preparations obtained from rats chronically treated with various CCBs the contractile responses to H were completely blocked suggesting that this may be due to inhibition of the voltage-dependent channels and inositol 1,4,5-triphosphate induced release of calcium from intracellular stores. The decreased contractions of the aortic strip preparations with 5-HT obtained from rats chronically treated with various CCBs implies a decrease in 5-HT receptor density. DOCA-saline hypertensive rats chronically treated with various CCBs showed variable responses to H and 5-HT suggesting that these changes may be due to different isoforms of L-type calcium channels. In L-thyroxine-treated preparations or those simultaneously treated with L-thyroxine and CCBs the responses to H were abolished and those to 5-HT were partially blocked with decrease in maxima which could be secondary to the primary effect on the heart and to generalised reduced senstivity of the rat aorta.

  8. Treating chronic arsenic toxicity with high selenium lentil diets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sah, Shweta; Vandenberg, Albert; Smits, Judit, E-mail: judit.smits@ucalgary.ca

    2013-10-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we comparemore » diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0 ppm As) or As (40 ppm As) water while consuming SK lentils (0.3 ppm Se) or northwestern USA lentils (< 0.01 ppm Se) diets for 14 weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14 weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. - Highlights: • We reduce chronic arsenic toxicity in rats with a whole food solution. • High selenium lentils decrease liver damage and increase blood glutathione levels. • High selenium lentil diets increase urinary and fecal arsenic excretion. • High selenium lentil diets decrease arsenic levels in kidney, the storage organ. • High selenium lentil diets reverse arsenic suppression of the B

  9. [Biochemical effects of chronic peroral administration of carbon nanotubes and activated charcoal in drinking water in rats].

    PubMed

    Khripach, L V; Rakhmanin, Iu A; Mikhajlova, R I; Knyazeva, T D; Koganova, Z I; Zhelezniak, E V; Savostikova, O N; Alekseeva, A V; Kameneckaya, D V; Ryzhova, I N; Kruglova, E V; Revazova, T L

    2014-01-01

    Chronic 6-month experiment was carried out in rats, which received drinking water with multi-walled carbon nanotubes (MWCNTs), diameter of 15-40 nm, length ≥ 2 mkm) or activated charcoal (AC, diameter of 10-100 mkm), blood samples of the animals were used for assessment of biochemical markers. Both coal compounds induced the appearance of signs of oxidative stress 2 weeks after the beginning of the experiment and alteration of serum markers of liver and renal damage, as well as changes of cortisol and protein serum concentrations later Thus, despite of known high (asbest-like) inhalation toxicity of carbon nanotubes in comparison with other carbon allotrops (fullerenes and black carbon), we have found similar effects of MWCNTs and carbon microparticles in orally treated rats.

  10. Sub-chronic indomethacin treatment and its effect on the male reproductive system of albino rats: possible protective role of black tea extract.

    PubMed

    Bagoji, Ishwar B; Hadimani, Gavishiddappa A; Yendigeri, Saeed M; Das, Kusal K

    2017-05-01

    Indomethacin is commonly used as a nonsteroidal anti-inflammatory drug (NSAID) to treat inflammation, arthritis and joint pains. Unfortunately, it has a wide range of adverse effects on the physiological system, including gonads. This study aimed to assess possible beneficial effects of black tea extract (BTE) against indomethacin-induced alteration of gonadal hormone levels in male rats. Adult male rats were divided into Group I (control), Group II (indomethacin, 5 mg/kg body weight [bwt.]; i.p., 21 days), Group III (BTE, 2.5 g tea leaf/dL of water, i.e. 2.5% of aqueous BTE, orally, 21 days) and Group IV (indomethacin+BTE, 21 days). Sperm count and motility, serum luteinising hormone (LH), follicle-stimulating hormone (FSH) and testosterone, along with histopathology of testes were studied. One-way ANOVA, followed by post-hoc t-test were conducted. Indomethacin-treated rats showed significant decrease in testicular weight, sperm count, sperm motility, serum gonadotropins and testosterone concentrations. Histopathology of the testes showed tortuous and distorted seminiferous tubules, marked thickening of the tubular basement membrane, reduced spermatogenesis process (>30%) and marked decrease in the number of interstitial cells of Leydig in indomethacin-treated rats. Interestingly, rats supplemented with BTE showed remarkable improvements in testicular weight gain, sperm count and motility, serum gonadotropins and testosterone concentrations, along with testicular histopathology. The results suggest that BTE might have potential ameliorative effects against sub-chronic indomethacin-induced alteration of gonadal hormone levels in male albino rats.

  11. Infarct size is increased in female post-MI rats treated with rapamycin.

    PubMed

    Lajoie, Claude; El-Helou, Viviane; Proulx, Cindy; Clément, Robert; Gosselin, Hugues; Calderone, Angelino

    2009-06-01

    Rapamycin represents a recognized drug-based therapeutic approach to treat cardiovascular disease. However, at least in the female heart, rapamycin may suppress the recruitment of putative signalling events conferring cardioprotection. The present study tested the hypothesis that rapamycin-sensitive signalling events contributed to the cardioprotective phenotype of the female rat heart after an ischemic insult. Rapamycin (1.5 mg/kg) was administered to adult female Sprague-Dawley rats 24 h after complete coronary artery ligation and continued for 6 days. Rapamycin abrogated p70S6K phosphorylation in the left ventricle of sham rats and the noninfarcted left ventricle (NILV) of 1-week postmyocardial-infarcted (MI) rats. Scar weight (MI 0.028 +/- 0.006, MI+rapamycin 0.064 +/- 0.004 g) and surface area (MI 0.37 +/- 0.08, MI+rapamycin 0.74 +/- 0.03 cm2) were significantly larger in rapamycin-treated post-MI rats. In the NILV of post-MI female rats, rapamycin inhibited the upregulation of eNOS. Furthermore, the increased expression of collagen and TGF-beta3 mRNAs in the NILV were attenuated in rapamycin-treated post-MI rats, whereas scar healing was unaffected. The present study has demonstrated that rapamycin-sensitive signalling events were implicated in scar formation and reactive fibrosis. Rapamycin-mediated suppression of eNOS and TGF-beta3 mRNA in post-MI female rats may have directly contributed to the larger infarct and attenuation of the reactive fibrotic response, respectively.

  12. Chronic Vortioxetine Treatment Reduces Exaggerated Expression of Conditioned Fear Memory and Restores Active Coping Behavior in Chronically Stressed Rats.

    PubMed

    Hatherall, Lauren; Sánchez, Connie; Morilak, David A

    2017-04-01

    Stress is a risk factor for depression and anxiety disorders, disrupting neuronal processes leading to exaggerated fear and compromised coping behaviors. Current antidepressants are only partially effective. Vortioxetine, a novel multimodal antidepressant, is a serotonin transporter inhibitor; 5-HT3, 5-HT7, and 5-HT1D receptor antagonist; 5-HT1B partial agonist; and 5-HT1A agonist. We have shown that chronic dietary vortioxetine administration reversed stress-induced deficits in cognitive flexibility. In the present studies, we investigated the generality of vortioxetine's effects on other stress-related behavioral changes after different types of chronic stress. In experiment 1, rats were fear-conditioned by pairing a tone with footshock, then exposed to chronic plus acute prolonged stress. In experiment 2, rats were exposed to chronic unpredictable stress. In both experiments, beginning on day 4 of chronic stress, vortioxetine was given in the diet (24 mg/kg/d). In experiment 1, effects of vortioxetine were tested on stress-induced changes in retention and extinction of cue-conditioned fear, and in experiment 2, on coping behavior on the shock probe defensive burying test after chronic stress. Chronic stress exaggerated the expression of conditioned fear memory. Vortioxetine restored fear memory to control levels and rendered extinction in stressed rats comparable with that in controls. In experiment 2, chronic unpredictable stress caused a shift from active to passive coping behavior, and vortioxetine restored active coping. Vortioxetine reduced exaggerated expression of conditioned fear and restored adaptive coping behavior following 2 different types of chronic stress, adding to the evidence of its therapeutic potential in the management of depression and anxiety disorders. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  13. Cannabidiol potentiates Δ⁹-tetrahydrocannabinol (THC) behavioural effects and alters THC pharmacokinetics during acute and chronic treatment in adolescent rats.

    PubMed

    Klein, Charlotte; Karanges, Emily; Spiro, Adena; Wong, Alexander; Spencer, Jarrah; Huynh, Thanh; Gunasekaran, Nathan; Karl, Tim; Long, Leonora E; Huang, Xu-Feng; Liu, Kelly; Arnold, Jonathon C; McGregor, Iain S

    2011-11-01

    The interactions between Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) during chronic treatment, and at equivalent doses, are not well characterised in animal models. The aim of this study is to examine whether the behavioural effects of THC, and blood and brain THC levels are affected by pre-treatment with equivalent CBD doses. Adolescent rats were treated with ascending daily THC doses over 21 days (1 then 3 then 10 mg/kg). Some rats were given equivalent CBD doses 20 min prior to each THC injection to allow examination of possible antagonistic effects of CBD. During dosing, rats were assessed for THC and CBD/THC effects on anxiety-like behaviour, social interaction and place conditioning. At the end of dosing, blood and brain levels of THC, and CB(1) and 5-HT(1A) receptor binding were assessed. CBD potentiated an inhibition of body weight gain caused by chronic THC, and mildly augmented the anxiogenic effects, locomotor suppressant effects and decreased social interaction seen with THC. A trend towards place preference was observed in adolescent rats given CBD/THC but not those given THC alone. With both acute and chronic administration, CBD pre-treatment potentiated blood and brain THC levels, and lowered levels of THC metabolites (THC-COOH and 11-OH-THC). CBD co-administration did not alter the THC-induced decreases in CB(1) receptor binding and no drug effects on 5-HT(1A) receptor binding were observed. CBD can potentiate the psychoactive and physiological effects of THC in rats, most likely by delaying the metabolism and elimination of THC through an action on the CYP450 enzymes that metabolise both drugs.

  14. Naringin protects against bone loss in steroid-treated inflammatory bowel disease in a rat model.

    PubMed

    Li, Chengli; Zhang, Jun; Lv, Fang; Ge, Xingtao; Li, Gang

    2018-07-15

    We observed the effects of naringin on bone loss in glucocorticoid-treated inflammatory bowel disease (IBD) in a rat model. The IBD model was established in Sprague-Dawley rats by administering 5.0% dextran sodium sulfate. Dexamethasone (DEX) and naringin were given at the second week. Blood, colon and bone samples were collected for biomarker assay, histological analysis or microCT analysis. Superoxide dismutase, catalase and malonaldehyde were measured in bone. A significant decrease of procollagen type 1 N-terminal propeptide (P1NP) level was observed in DEX-treated IBD groups compared with the control (p < 0.05). P1NP levels were dose-dependently increased in the presence of naringin intervention. Bone loss and decreased bone biomechanical properties were observed in DEX-treated IBD rats compared with control rats (p < 0.01). Naringin intervention protected against bone loss and decreased bone biomechanical properties. Bone formation related gene mRNA expressions were significantly decreased in DEX-treated IBD rats compared with control rats. Naringin administration reversed the down-regulation of the expressions of those genes. Naringin treatment reduced the oxidative stress in bone from DEX-treated IBD rats. Our data indicated that naringin may have great potential for the treatment of bone loss in glucocorticoid-treated IBD patients via blocking oxidative stress and promoting bone formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Oxotremorine treatment restores hippocampal neurogenesis and ameliorates depression-like behaviour in chronically stressed rats.

    PubMed

    Veena, J; Srikumar, B N; Mahati, K; Raju, T R; Shankaranarayana Rao, B S

    2011-09-01

    Chronic stress results in cognitive impairment, affects hippocampal neurogenesis and is known to precipitate affective disorders such as depression. In addition to stress, neurotransmitters such as acetylcholine (ACh) modulate adult neurogenesis. Earlier, we have shown that oxotremorine, a cholinergic muscarinic agonist, ameliorates stress-induced cognitive impairment and restores cholinergic function. In the current study, we have looked into the possible involvement of adult neurogenesis in cognitive restoration by oxotremorine. Further, we have assessed the effect of oxotremorine treatment on depression-like behaviour and hippocampal volumes in stressed animals. Chronic restraint stressed rats were treated with either vehicle or oxotremorine. For neurogenesis studies, proliferation, survival and differentiation of the progenitor cells in the hippocampus were examined using 5'-bromo-2-deoxyuridine immunohistochemistry. Depression-like behaviour was evaluated using forced swim test (FST) and sucrose consumption test (SCT). Volumes were estimated using Cavalieri's estimator. Hippocampal neurogenesis was severely decreased in stressed rats. Ten days of oxotremorine treatment to stressed animals partially restored proliferation and survival, while it completely restored the differentiation of the newly formed cells. Stressed rats showed increased immobility and decreased sucrose preference in the FST and SCT, respectively, and oxotremorine ameliorated this depression-like behaviour. In addition, oxotremorine treatment recovered the stress-induced decrease in hippocampal volume. These results indicate that the restoration of impaired neurogenesis and hippocampal volume could be associated with the behavioural recovery by oxotremorine. Our results imply the muscarinic regulation of adult neurogenesis and incite the potential utility of cholinomimetics in ameliorating cognitive dysfunction in stress-related disorders.

  16. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  17. Pancreatic polypeptide cells of rat pancreas after chronic ethanol feeding.

    PubMed

    Koko, V; Todorović, V; Drndarević, N; Glisić, R; Nedeljković, M; Nikolić, A

    2001-05-01

    Male Wistar rats, (2 months old) were randomly divided into two groups according to the diet offered (C-control and E-ethanol treated rats). Final body weight was significantly increased but pancreatic weight as a percentage of body weight was decreased in ethanol treated rats. Volume density, number of pancreatic poly peptide (PP)-cells per islet and per micron 2 of islet were significantly increased. PP-cells were abundant and occupied the whole periphery of islets in the splenic part of the pancreas. Those cells showed strong immunopositivity. At the ultrastructural level PP granules had predominantly less electron density. The mean diameter of PP granules was significantly increased and the number of granules of larger diameter was greater in the E group of rats, than in the controls.

  18. Sinus hypoplasia in the cystic fibrosis rat resolves in the absence of chronic infection.

    PubMed

    Grayson, Jessica; Tipirneni, Kiranya E; Skinner, Daniel F; Fort, Matthew; Cho, Do-Yeon; Zhang, Shaoyan; Prince, Andrew C; Lim, Dong-Jin; Mackey, Calvin; Woodworth, Bradford A

    2017-09-01

    Sinus hypoplasia is a hallmark characteristic in cystic fibrosis (CF). Chronic rhinosinusitis (CRS) is nearly universal from a young age, impaired sinus development could be secondary to loss of the cystic fibrosis transmembrane conductance regulator (CFTR) or consequences of chronic infection during maturation. The objective of this study was to assess sinus development relative to overall growth in a novel CF animal model. Sinus development was evaluated in CFTR -/- and CFTR +/+ rats at 3 stages of development: newborn; 3 weeks; and 16 weeks. Microcomputed tomography (microCT) scanning, cultures, and histology were performed. Three-dimensional sinus and skull volumes were quantified. At birth, sinus volumes were decreased in CFTR -/- rats compared with wild-type rats (mean ± SEM: 11.3 ± 0.85 mm 3 vs 14.5 ± 0.73 mm 3 ; p < 0.05), despite similar weights (8.4 ± 0.46 gm vs 8.3 ± 0.51 gm; p = 0.86). CF rat weights declined by 16 weeks (378.4 ± 10.6 gm vs 447.4 ± 15.9 gm; p < 0.05), sinus volume increased similar to wild-type rats (201.1 ± 3.77 gm vs 203.4 ± 7.13 gm; p = 0.8). The ratio of sinus volume to body weight indicates hypoplasia present at birth (1.37 ± 0.12 vs 1.78 ± 0.11; p < 0.05) and showed an increase compared with CFTR +/+ animals by 16 weeks (0.53 ± 0.02 vs 0.46 ± 0.02; p < 0.05). Rats did not develop histologic evidence of chronic infection. CF rat sinuses are smaller at birth, but develop volumes similar to wild-type rats with maturation. This suggests that loss of CFTR may confer sinus hypoplasia at birth, but normal development ensues without chronic sinus infection. © 2017 ARS-AAOA, LLC.

  19. The effect of ACE inhibition on the pulmonary vasculature in combined model of chronic hypoxia and pulmonary arterial banding in Sprague Dawley rats

    NASA Astrophysics Data System (ADS)

    Clarke, Shanelle; Baumgardt, Shelley; Molthen, Robert

    2010-03-01

    Microfocal CT was used to image the pulmonary arterial (PA) tree in rodent models of pulmonary hypertension (PH). CT images were used to measure the arterial tree diameter along the main arterial trunk at several hydrostatic intravascular pressures and calculate distensibility. High-resolution planar angiographic imaging was also used to examine distal PA microstructure. Data on pulmonary artery tree morphology improves our understanding of vascular remodeling and response to treatments. Angiotensin II (ATII) has been identified as a mediator of vasoconstriction and proliferative mitotic function. ATII has been shown to promote vascular smooth muscle cell hypertrophy and hyperplasia as well as stimulate synthesis of extracellular matrix proteins. Available ATII is targeted through angiotensin converting enzyme inhibitors (ACEIs), a method that has been used in animal models of PH to attenuate vascular remodeling and decrease pulmonary vascular resistance. In this study, we used rat models of chronic hypoxia to induce PH combined with partial left pulmonary artery occlusion (arterial banding, PLPAO) to evaluate effects of the ACEI, captopril, on pulmonary vascular hemodynamic and morphology. Male Sprague Dawley rats were placed in hypoxia (FiO2 0.1), with one group having underwent PLPAO three days prior to the chronic hypoxia. After the twenty-first day of hypoxia exposure, treatment was started with captopril (20 mg/kg/day) for an additional twenty-one days. At the endpoint, lungs were excised and isolated to examine: pulmonary vascular resistance, ACE activity, pulmonary vessel morphology and biomechanics. Hematocrit and RV/LV+septum ratio was also measured. CT planar images showed less vessel dropout in rats treated with captopril versus the non-treatment lungs. Distensibility data shows no change in rats treated with captopril in both chronic hypoxia (CH) and CH with PLPAO (CH+PLPAO) models. Hemodynamic measurements also show no change in the pulmonary vascular

  20. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats.

    PubMed

    Friques, Andreia G F; Arpini, Clarisse M; Kalil, Ieda C; Gava, Agata L; Leal, Marcos A; Porto, Marcella L; Nogueira, Breno V; Dias, Ananda T; Andrade, Tadeu U; Pereira, Thiago Melo C; Meyrelles, Silvana S; Campagnaro, Bianca P; Vasquez, Elisardo C

    2015-12-30

    The beverage obtained by fermentation of milk with kefir grains, a complex matrix containing acid bacteria and yeasts, has been shown to have beneficial effects in various diseases. However, its effects on hypertension and endothelial dysfunction are not yet clear. In this study, we evaluated the effects of kefir on endothelial cells and vascular responsiveness in spontaneously hypertensive rats (SHR). SHR were treated with kefir (0.3 mL/100 g body weight) for 7, 15, 30 and 60 days and compared with non-treated SHR and with normotensive Wistar-Kyoto rats. Vascular endothelial function was evaluated in aortic rings through the relaxation response to acetylcholine (ACh). The balance between reactive oxygen species (ROS) and nitric oxide (NO) synthase was evaluated through specific blockers in the ACh-induced responses and through flow cytometry in vascular tissue. Significant effects of kefir were observed only after treatment for 60 days. The high blood pressure and tachycardia exhibited by the SHR were attenuated by approximately 15 % in the SHR-kefir group. The impaired ACh-induced relaxation of the aortic rings observed in the SHR (37 ± 4 %, compared to the Wistar rats: 74 ± 5 %), was significantly attenuated in the SHR group chronically treated with kefir (52 ± 4 %). The difference in the area under the curve between before and after the NADPH oxidase blockade or NO synthase blockade of aortic rings from SHR were of approximately +90 and -60 %, respectively, when compared with Wistar rats. In the aortic rings from the SHR-kefir group, these values were reduced to +50 and -40 %, respectively. Flow cytometric analysis of aortic endothelial cells revealed increased ROS production and decreased NO bioavailability in the SHR, which were significantly attenuated by the treatment with kefir. Scanning electronic microscopy showed vascular endothelial surface injury in SHR, which was partially protected following administration of kefir for 60 days. In addition, the

  1. Green tea polyphenols avert chronic inflammation-induced myocardial fibrosis of female rats

    USDA-ARS?s Scientific Manuscript database

    Objective: Green tea proposes anti-inflammatory properties which may attenuate chronic inflammation-induced fibrosis of vessels. This study evaluated whether green tea polyphenols (GTP) can avert fibrosis or vascular disruption along with mechanisms in rats with chronic inflammation. Treatments: Fo...

  2. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats.

    PubMed

    Renno, Waleed M; Al-Khaledi, Ghanim; Mousa, Alyaa; Karam, Shaima M; Abul, Habib; Asfar, Sami

    2014-02-01

    Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A Chronic Autoimmune Dry Eye Rat Model with Increase in Effector Memory T Cells in Eyeball Tissue.

    PubMed

    Hou, Aihua; Bose, Tanima; Chandy, K George; Tong, Louis

    2017-06-07

    Dry eye disease is a very common condition that causes morbidity and healthcare burden and decreases the quality of life. There is a need for a suitable dry eye animal model to test novel therapeutics to treat autoimmune dry eye conditions. This protocol describes a chronic autoimmune dry eye rat model. Lewis rats were immunized with an emulsion containing lacrimal gland extract, ovalbumin, and complete Freund's adjuvant. A second immunization with the same antigens in incomplete Freund's adjuvant was administered two weeks later. These immunizations were administered subcutaneously at the base of the tail. To boost the immune response at the ocular surface and lacrimal glands, lacrimal gland extract and ovalbumin were injected into the forniceal subconjunctiva and lacrimal glands 6 weeks after the first immunization. The rats developed dry eye features, including reduced tear production, decreased tear stability, and increased corneal damage. Immune profiling by flow cytometry showed a preponderance of CD3 + effector memory T cells in the eyeball.

  4. A Chronic Autoimmune Dry Eye Rat Model with Increase in Effector Memory T Cells in Eyeball Tissue

    PubMed Central

    Hou, Aihua; Bose, Tanima; Chandy, K. George; Tong, Louis

    2017-01-01

    Dry eye disease is a very common condition that causes morbidity and healthcare burden and decreases the quality of life. There is a need for a suitable dry eye animal model to test novel therapeutics to treat autoimmune dry eye conditions. This protocol describes a chronic autoimmune dry eye rat model. Lewis rats were immunized with an emulsion containing lacrimal gland extract, ovalbumin, and complete Freund's adjuvant. A second immunization with the same antigens in incomplete Freund's adjuvant was administered two weeks later. These immunizations were administered subcutaneously at the base of the tail. To boost the immune response at the ocular surface and lacrimal glands, lacrimal gland extract and ovalbumin were injected into the forniceal subconjunctiva and lacrimal glands 6 weeks after the first immunization. The rats developed dry eye features, including reduced tear production, decreased tear stability, and increased corneal damage. Immune profiling by flow cytometry showed a preponderance of CD3+ effector memory T cells in the eyeball. PMID:28654074

  5. Effects of grape seed polyphenols on oxidative damage in liver tissue of acutely and chronically exercised rats.

    PubMed

    Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Büyükbaş, Sadık

    2013-05-01

    The objective of the present study was to investigate the effects of grape seed extract (GSE) supplementation on oxidative stress and antioxidant defense markers in liver tissue of acutely and chronically exercised rats. Rats were randomly assigned to six groups: Control (C), Control Chronic Exercise (CE), Control Acute Exercise (AE), GSE-supplemented Control (GC), GSE-supplemented Chronic Exercise(GCE) and GSE-supplemented Acute Exercise (GAE). Rats in the chronic exercise groups were subjected to a six-week treadmill running and in the acute exercise groups performed an exhaustive running. Rats in the GSE supplemented groups received GSE (100 mg.kg(-1) .day(-1) ) in drinking water for 6 weeks. Liver tissues of the rats were taken for the analysis of malondialdehyde (MDA), nitric oxide (NO) levels and total antioxidant activity (AOA) and xanthine oxidase (XO) activities. MDA levels decreased with GSE supplementation in control groups but increased in acute and chronic exercise groups compared to their non-supplemented control. NO levels increased with GSE supplementation. XO activities were higher in AE group compared to the CE group. AOA decreased with GSE supplementation. In conclusion, while acute exercise triggers oxidative stress, chronic exercise has protective role against oxidative stress. GSE has a limited antioxidant effect on exercise-induced oxidative stress in liver tissue.

  6. Symbiotic formulation in experimentally induced liver fibrosis in rats: intestinal microbiota as a key point to treat liver damage?

    PubMed

    D'Argenio, Giuseppe; Cariello, Rita; Tuccillo, Concetta; Mazzone, Giovanna; Federico, Alessandro; Funaro, Annalisa; De Magistris, Laura; Grossi, Enzo; Callegari, Maria L; Chirico, Marilena; Caporaso, Nicola; Romano, Marco; Morelli, Lorenzo; Loguercio, Carmela

    2013-05-01

    Evidence indicates that intestinal microbiota may participate in both the induction and the progression of liver damage. The aim of our research was the detection and evaluation of the effects of chronic treatment with a symbiotic formulation on CCl4 -induced rat liver fibrosis. CCl4 significantly increased gastric permeability in respect to basal values, and the treatment with symbiotic significantly decreased it. CCl4 per se induced a decrease in intestinal permeability. This effect was also seen in fibrotic rats treated with symbiotic and was still evident when normal rats were treated with symbiotic alone (P < 0.001 in all cases). Circulating levels of pro-inflammatory cytokine TNF-α were significantly increased in rats with liver fibrosis as compared with normal rats, while symbiotic treatment normalized the plasma levels of TNF-α and significantly enhanced anti-inflammatory cytokine IL 10. TNF-α, TGF-β, TLR4, TLR2, iNOS and α-SMA mRNA expression in the liver were up-regulated in rats with CCl4 -induced liver fibrosis and down-regulated by symbiotic treatment. Moreover, IL-10 and eNOS mRNA levels were increased in the CCL4 (+) symbiotic group. Symbiotic treatment of fibrotic rats normalized serum ALT, AST and improved histology and liver collagen deposition. DGGE analysis of faecal samples revealed that CCl4 administration and symbiotic treatment either alone or in combination produced modifications in faecal profiles vs controls. Our results provide evidence that in CCl4 -induced liver fibrosis, significant changes in gastro-intestinal permeability and in faecal flora occur. Treatment with a specific symbiotic formulation significantly affects these changes, leading to improvement in both liver inflammation and fibrosis. © 2013 John Wiley & Sons A/S.

  7. Chronic treatment with recombinant human erythropoietin exerts renoprotective effects beyond hematopoiesis in streptozotocin-induced diabetic rat.

    PubMed

    Toba, Hiroe; Sawai, Naoki; Morishita, Masayuki; Murata, Shoko; Yoshida, Mamiko; Nakashima, Kohei; Morita, Yosuke; Kobara, Miyuki; Nakata, Tetsuo

    2009-06-10

    Recombinant human erythropoietin (rHuEPO), which has been used clinically for the management of renal anemia, is reported to exert pleiotropic beneficial properties against acute ischemic/reperfusion injury in various tissues. To investigate the hypothesis that chronic treatment with rHuEPO might ameliorate diabetic nephropathy beyond hematopoiesis, rHuEPO (150 U/kg, subcutaneously) was administered three times per week to the streptozotocin-induced diabetic rats for 4 weeks. Streptozotocin (65 mg/kg, intravenously) significantly increased urinary protein excretion and collagen deposition in glomerular and tubulointerstitial areas in the kidney, which were attenuated by rHuEPO. rHuEPO normalized the levels of creatinine clearance, serum creatinine, and blood urea nitrogen of diabetic rats. RT-PCR analysis revealed that the expressions of mRNA for transforming growth factor-beta, osteopontin and adhesion molecules were enhanced in the diabetic rat kidney and that the overexpression of these molecules was suppressed by rHuEPO. rHuEPO exerted antioxidant properties by inhibiting renal activation and overexpression of NADPH oxidase. We found the activation of the Akt signaling pathway by the increased expression of phosphorylated Akt and GSK-3beta and a reduction of TUNEL-positive apoptotic cell death in renal tissue from rHuEPO-treated diabetic group. We also demonstrated that rHuEPO restored the endothelial nitric oxide synthase (eNOS) content in the diabetic rat kidney. On the other hand, treatment with rHuEPO did not affect blood glucose level, blood pressure, or hematocrit in diabetic rats. These results suggest that chronic treatment with rHuEPO attenuated renal injury beyond hematopoiesis and regulated apoptosis and eNOS expression, which might be due to the activation of Akt pathway.

  8. Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes

    PubMed Central

    Packard, Amy E. B.; Ghosal, Sriparna; Herman, James P.; Woods, Stephen C.; Ulrich-Lai, Yvonne M.

    2014-01-01

    The incidence of type-2 diabetes (T2D) and the burden it places on individuals, as well as society as a whole, compels research into the causes, factors and progression of this disease. Epidemiological studies suggest that chronic stress exposure may contribute to the development and progression of T2D in human patients. To address the interaction between chronic stress and the progression of T2D, we developed a dietary model of the prediabetic state in rats utilizing unlimited access to 30% sucrose solution (in addition to unlimited access to normal chow and water), which led to impaired glucose tolerance despite elevated insulin levels. We then investigated the effects of a chronic variable stress paradigm (CVS; twice daily exposure to an unpredictable stressor for 2 weeks) on metabolic outcomes in this prediabetic model. Chronic stress improved glucose tolerance in prediabetic rats following a glucose challenge. Importantly, pair-fed control groups revealed that the beneficial effect of chronic stress did not result from the decreased food intake or body weight gain that occurred during chronic stress. The present work suggests that chronic stress in rodents can ameliorate the progression of diet-induced prediabetic disease independent of chronic stress-induced decreases in food intake and body weight. PMID:25001967

  9. Effects of chronic N-acetylcysteine treatment on the actions of peroxynitrite on aortic vascular reactivity in hypertensive rats.

    PubMed

    Cabassi, A; Dumont, E C; Girouard, H; Bouchard, J F; Le Jossec, M; Lamontagne, D; Besner, J G; de Champlain, J

    2001-07-01

    Peroxynitrite (ONOO-), the product of superoxide and nitric oxide, seems to be involved in vascular alterations in hypertension. To evaluate the effects of ONOO- on endothelium-dependent and independent aortic vascular responsiveness, oxidized/reduced glutathione balance (GSSG/GSH), malondialdehyde aortic content, and the formation of 3-nitrotyrosine (3-NT), a stable marker of ONOO-, in N-acetylcysteine (NAC)-treated normotensive Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). In SHR only, NAC significantly reduced heart rate and systolic, but not diastolic, blood pressure. It also improved endothelium-dependent aortic relaxation in SHR, but not after exposure to ONOO-. Endothelium-dependent and independent aortic relaxations were markedly impaired by ONOO- in both strains of rat. NAC partially protected SHR against the ONOO- -induced reduction in endothelium-independent relaxation. Aortic GSSG/GSH ratio and malondialdehyde, which were higher in SHR than in WKY rats, showed a greater increase in SHR after exposure to ONOO-. NAC decreased GSSG/GSH and malondialdehyde in both strains of rat before and after exposure to ONOO-. The 3-NT concentration, which was similar in both strains of rat under basal conditions, was greater in SHR than in WKY rats after the addition of ONOO-, with a reduction only in NAC-treated SHR. These findings suggest an increased vulnerability of SHR aortas to the effects of ONOO- as compared with those of WKY rats. The selective improvements produced by NAC, in systolic arterial pressure, heart rate, aortic endothelial function, ONOO- -induced impairment of endothelium-independent relaxation, aortic GSSG/GSH balance, malondialdehyde content and 3-NT formation in SHR suggest that chronic administration of NAC may have a protective effect against aortic vascular dysfunction in the SHR model of hypertension.

  10. Effects of Chronic Ghrelin Treatment on Hypoxia-Induced Brain Oxidative Stress and Inflammation in a Rat Normobaric Chronic Hypoxia Model.

    PubMed

    Omrani, Hasan; Alipour, Mohammad Reza; Farajdokht, Fereshteh; Ebrahimi, Hadi; Mesgari Abbasi, Mehran; Mohaddes, Gisou

    2017-06-01

    Omrani, Hasan, Mohammad Reza Alipour, Fereshteh Farajdokht, Hadi Ebrahimi, Mehran Mesgari Abbasi, and Gisou Mohaddes. Effects of chronic ghrelin treatment on hypoxia-induced brain oxidative stress and inflammation in a rat normobaric chronic hypoxia model. High Alt Med Biol. 18:145-151, 2017. This study aimed to evaluate the probable antioxidant effects of ghrelin in the brain and serum and its effect on tumor necrosis factor-alpha (TNF-α) levels in the brain in a model of chronic systemic hypoxia in rats. Systemic hypoxia was induced by a normobaric hypoxic chamber (O 2 11%) for ten days. Adult male Wistar rats were divided into control (C), chronic ghrelin (80 μg/kg/10 days) (Ghr), chronic hypoxia (CH), and CH and ghrelin (80 μg/kg/ip/10 days) (CH + Gh) groups. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and malondialdehyde (MDA), total antioxidant capacity, and TNF-α levels were assessed in the serum and brain tissue. Our results showed that chronic ghrelin administration attenuated the CH-increased oxidative stress by decreasing MDA levels in the serum and brain tissue. Moreover, ghrelin enhanced the antioxidant defense against hypoxia-induced oxidative stress in the serum and brain tissue. Brain TNF-α levels in CH did not change significantly; however, ghrelin significantly (p < 0.001) decreased it. These results indicated that ghrelin promoted antioxidative and anti-inflammatory defense under chronic exposure to hypoxia. Therefore, ghrelin might be used as a potential therapy in normobaric hypoxia and oxidative stress induced by CH.

  11. Unexplained chronic leukopenia treated with oral iron supplements.

    PubMed

    Abuirmeileh, Ayman; Bahnassi, Anas; Abuirmeileh, Amjad

    2014-04-01

    A 67-year-old woman known to have iron deficiency anemia and persistent unexplained chronic leukopenia was cared for by our medical center for about 16 years. During this period she was examined thoroughly and diagnosed to have chronic idiopathic neutropenia (also known as chronic benign neutropenia). Her iron deficiency was attributed to nutritional factors and she was non-compliant with her oral iron supplements. The patient fully received her iron supplement medication by nursing staff for two and a half months during an unexpected prolonged hospital stay after her suffering an acute ischemic cerebrovascular accident. An astonishing outcome was that in addition to having her iron deficiency anemia treated, her long-term unexplained neutropenia was also corrected. Some patients diagnosed with chronic idiopathic neutropenia and clinically present as having unexplained chronic neutropenia might actually be suffering from a form of not yet described iron deficiency induced neutropenia.

  12. Endothelin mechanisms in altered thyroid states in the rat.

    PubMed

    Rebello, S; Thompson, E B; Gulati, A

    1993-06-11

    Endothelin (ET) and its receptor characteristics were studied in hyper- and hypo-thyroid states in the rats. Hyperthyroidism was induced by daily administration of thyroxine (0.1 mg/kg i.p.) for 8 weeks, while hypothyrodism was induced by daily administration of methimazole (10 mg/kg i.p.) for 8 weeks. The chronic administration of thyroxine to rats decreased their rate of gain of body weight, increased serum T3 and T4 concentration, blood pressure and heart rate. The chronic administration of methimazole decreased the rate of gain of body weight, serum T3 and T4 concentration, blood pressure and heart rate as compared to vehicle-treated control. Plasma ET-1 levels were found to be similar in control and methimazole-treated rats, while the levels were found to be significantly (P < 0.002) increased in thyroxine-treated rats as compared to control rats. Binding studies showed that [125I]ET-1 bound to a single, high affinity binding site in the cerebral cortex, hypothalamus and pituitary. The density (Bmax) and the affinity (Kd) of [125I]ET-1 binding in the cerebral cortex and hypothalamus were found to be similar in control, methimazole- and thyroxine-treated rats. The pituitary of thyroxine-treated rats showed a decrease in the binding (34.3% decrease in the density) of [125I]ET-1 as compared to control rats. No difference was observed in the binding of [125I]ET-1 to pituitary membranes from control and methimazole-treated rats. Competition studies showed that the IC50 and Ki values of ET-3 for [125]ET-1 binding were about 8 to 11 times higher than ET-1 in cerebral cortex, hypothalamus and pituitary.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. A rat model of chronic moderate alcohol consumption and risk of decompression sickness.

    PubMed

    Buzzacott, Peter; Mazur, Aleksandra; Wang, Qiong; Lambrechts, Kate; Theron, Michael; Guerrero, François

    2015-06-01

    This study aimed to establish if chronic, moderate, pre-dive alcohol consumption had any affect upon susceptibility to decompression sickness (DCS) in rats. A treatment group of 15 rats were given water containing 12 mL ·L ⁻¹ of ethanol for four weeks. Controls (n = 15) were given water. Both groups were compressed with air to 1,000 kPa, followed by staged decompression. An additional 30 control rats from a similar previous experiment were added, raising the control-treatment ratio to 3:1. Rats in the treatment group consumed the equivalent of an 80 kg man drinking 2 L of 5 % alcohol by volume beer per day, which is three times the recommended daily limit for men. Overall, comparing the treatment group with the combined control groups neither weight (P = 0.23) nor alcohol consumption (P = 0.69) were associated with DCS. We observed that chronic, moderate alcohol consumption prior to compression was neither prophylactic nor deleterious for DCS in young, male rats.

  14. [Effects of polydatin on learning and memory and Cdk5 kinase activity in the hippocampus of rats with chronic alcoholism].

    PubMed

    Li, Xin-juan; Zhang, Yan; Xu, Chun-yang; Li, Shuang; Du, Ai-lin; Zhang, Li-bin; Zhang, Rui-ling

    2015-03-01

    To observe the effects of polydatin on learning and memory and cyclin-dependent kinase 5 (Cdk5) kinase activity in the hippocampus of rats with chronic alcoholism. Forty rats were randomly divided into 4 groups: control group, chronic alcoholism group, low and high polydatin group. The rat chronic alcoholism model was established by ethanol 3.0 g/(kg · d) (intragastric administration). The abstinence scoring was used to evaluate the rats withdrawal symptoms; cognitive function was measured by Morris water maze experiment; Cdk5 protein expression in the hippocampus was detected by immunofluorescence; Cdk5 kinase activity in the hippocampus was detected by liquid scintillation counting method. The abstinence score, escape latency, Cdk5 kinase activity in chronic alcoholism group rats were significantly higher than those of control group (P < 0.05). The abstinence score, escape latency in high polydatin group rats were significantly lower than those of chronic alcoholism group (P < 0.05); Cdk5 kinase activity in high and low polydatin group rats was significantly lower than that of chronic alcoholism group( P < 0.05); immunofluorescence showed that the Cdk5 positive cells of chronic alcoholism group were significantly increased compared with control group (P < 0.05), and the Cdk5 positive cells of polydatin groups were significantly decreased compared with chronic alcoholism group ( P < 0.05). Polydatin-reduced the chronic alcoholism damage may interrelate with regulation of Cdk5 kinase activity.

  15. Housing in Pyramid Counteracts Neuroendocrine and Oxidative Stress Caused by Chronic Restraint in Rats

    PubMed Central

    Rao, Guruprasad; Murthy, K. Dilip; Bhat, P. Gopalakrishna

    2007-01-01

    The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC) housed in home cage and left in the laboratory; restrained rats (with three subgroups) subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC) having their restrainers kept in the laboratory; restrained pyramid rats (RP) being kept in the pyramid; and restrained square box rats (RS) in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA) and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH) levels, erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats. PMID:17342239

  16. Chronic desipramine treatment alters tyrosine hydroxylase but not norepinephrine transporter immunoreactivity in norepinephrine axons in the rat prefrontal cortex

    PubMed Central

    Erickson, Susan L.; Gandhi, Anjalika R.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Miner, LeeAnn; Blakely, Randy D.; Sesack, Susan R.

    2011-01-01

    Pharmacological blockade of norepinephrine (NE) reuptake is clinically effective in treating several mental disorders. Drugs that bind to the NE transporter (NET) alter both protein levels and activity of NET and also the catecholamine synthetic enzyme tyrosine hydroxylase (TH). We examined the rat prefrontal cortex (PFC) by electron microscopy to determine whether the density and subcellular distribution of immunolabeling for NET and colocalization of NET with TH within individual NE axons were altered by chronic treatment with the selective NE uptake inhibitor desipramine (DMI). Following DMI treatment (21 days, 15 mg/kg/day), NET-immunoreactive (-ir) axons were significantly less likely to colocalize TH. This finding is consistent with reports of reduced TH levels and activity in the locus coeruleus after chronic DMI and indicates a reduction of NE synthetic capacity in the PFC. Measures of NET expression and membrane localization, including the number of NET-ir profiles per tissue area sampled, the number of gold particles per NET-ir profile area, and the proportion of gold particles associated with the plasma membrane, were similar in DMI and vehicle treated rats. These findings were verified using two different antibodies directed against distinct epitopes of the NET protein. The results suggest that chronic DMI treatment does not reduce NET expression within individual NE axons in vivo or induce an overall translocation of NET protein away from the plasma membrane in the PFC as measured by ultrastructural immunogold labeling. Our findings encourage consideration of possible postranslational mechanisms for regulating NET activity in antidepressant-induced modulation of NE clearance. PMID:21208501

  17. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    PubMed

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  18. Effect of Gum Arabic on Oxidative Stress and Inflammation in Adenine–Induced Chronic Renal Failure in Rats

    PubMed Central

    Ali, Badreldin H.; Al-Husseni, Isehaq; Beegam, Sumyia; Al-Shukaili, Ahmed; Nemmar, Abderrahim; Schierling, Simone; Queisser, Nina; Schupp, Nicole

    2013-01-01

    Inflammation and oxidative stress are known to be involved in the pathogenesis of chronic kidney disease in humans, and in chronic renal failure (CRF) in rats. The aim of this work was to study the role of inflammation and oxidative stress in adenine-induced CRF and the effect thereon of the purported nephroprotective agent gum arabic (GA). Rats were divided into four groups and treated for 4 weeks as follows: control, adenine in feed (0.75%, w/w), GA in drinking water (15%, w/v) and adenine+GA, as before. Urine, blood and kidneys were collected from the rats at the end of the treatment for analysis of conventional renal function tests (plasma creatinine and urea concentration). In addition, the concentrations of the pro-inflammatory cytokine TNF-α and the oxidative stress markers glutathione and superoxide dismutase, renal apoptosis, superoxide formation and DNA double strand break frequency, detected by immunohistochemistry for γ-H2AX, were measured. Adenine significantly increased the concentrations of urea and creatinine in plasma, significantly decreased the creatinine clearance and induced significant increases in the concentration of the measured inflammatory mediators. Further, it caused oxidative stress and DNA damage. Treatment with GA significantly ameliorated these actions. The mechanism of the reported salutary effect of GA in adenine-induced CRF is associated with mitigation of the adenine-induced inflammation and generation of free radicals. PMID:23383316

  19. Suppression of hypothalamic-pituitary-adrenal axis by acute heroin challenge in rats during acute and chronic withdrawal from chronic heroin administration

    PubMed Central

    Zhou, Yan; Leri, Francesco; Ho, Ann; Kreek, Mary Jeanne

    2013-01-01

    It is known that heroin dependence and withdrawal are associated with changes in the hypothalamic-pituitary-adrenal (HPA) axis. The objective of these studies in rats was to systematically investigate the level of HPA activity and response to a heroin challenge at two time points during heroin withdrawal, and to characterize the expression of associated stress-related genes 30 minutes after each heroin challenge. Rats received chronic (10-day) intermittent escalating-dose heroin administration (3×2.5 mg/kg/day on day 1; 3×20 mg/kg/day by day 10). Hormonal and neurochemical assessments were performed in acute (12 hours after last heroin injection) and chronic (10 days after the last injection) withdrawal. Both plasma ACTH and corticosterone levels were elevated during acute withdrawal, and heroin challenge at 20 mg/kg (the last dose of chronic escalation) at this time point attenuated this HPA hyperactivity. During chronic withdrawal, HPA hormonal levels returned to baseline, but heroin challenge at 5 mg/kg decreased ACTH levels. In contrast, this dose of heroin challenge stimulated the HPA axis in heroin naïve rats. In the anterior pituitary, pro-opiomelanocortin (POMC) mRNA levels were increased during acute withdrawal and retuned to control levels after chronic withdrawal. In the medial hypothalamus, however, the POMC mRNA levels were decreased during acute withdrawal, and increased after chronic withdrawal. Our results suggest a long-lasting change in HPA abnormal responsivity during chronic heroin withdrawal. PMID:23771528

  20. Effects of chronic tramadol administration on testicular tissue in rats: an experimental study.

    PubMed

    Abdellatief, R B; Elgamal, D A; Mohamed, E E M

    2015-08-01

    In a prospective experimental study, the effects of chronic tramadol administration on gonadotrophic and sex hormones, histopathological and morphometrical alterations in rat testicular tissue were investigated in a laboratory setting. Tramadol was given alone to adult male albino rats. Gonadotrophic and serum sex hormone levels were measured and testicular pathological and morphometric changes were observed in treated vs. After 30 days of treatment, tramadol induced a decrease in LH, FSH and testosterone serum levels. Histologically, degenerative changes in the seminiferous tubules were observed. They showed shrinkage, separation of tubular basement membrane, disorganisation and vacuolisation of spermatogenic layers. Morphometric analysis revealed significant decrease in the mean values of the tubular diameter and epithelial height. Ultrastructural abnormalities were detected in all cells of spermatogenic lineage in addition to the appearance of apoptotic cells. Sertoli cell vacuolation, huge lipid droplets and disrupted Sertoli cell junctions were observed. Leydig cells showed euchromatic nuclei and dilated smooth endoplasmic reticulum. In view of these findings, it is concluded that tramadol induces alterations in sex hormonal levels in conjunction with disruption of the normal histological structure of rat testis. This might lead to the risk of male infertility. Therefore, tramadol should be used with caution with appropriate dose monitoring. © 2014 Blackwell Verlag GmbH.

  1. Repeated weekly exposure to MDMA, methamphetamine or their combination: long-term behavioural and neurochemical effects in rats.

    PubMed

    Clemens, Kelly J; Cornish, Jennifer L; Hunt, Glenn E; McGregor, Iain S

    2007-01-12

    In recent work we have documented lasting adverse neurochemical and behavioural effects in rats given short-term 'binge' dosing with methylenedioxymethamphetamine (MDMA, Ecstasy), methamphetamine (METH) or their combination. Here we investigated whether similar effects persist in rats given 16 weekly injections followed by a 10 week period of abstinence. Female rats received MDMA (8 mg/kg, i.p.), METH (8 mg/kg), or a MDMA/METH combination (4 mg/kg MDMA + 4 mg/kg METH), once a week for 16 weeks, with locomotor activity and body temperature measured on weeks 1, 8 and 16. The MDMA and MDMA/METH groups showed acute drug-induced hyperthermia on week 1 only. MDMA-treated rats demonstrated an acute hyperactivity while METH and MDMA/METH treated rats showed pronounced stereotypy. Seven weeks after drug-treatment concluded, a decrease in social interaction was observed in all chronically drug-treated rats. No group differences were evident on the emergence, object recognition or forced swim tests. Neurochemical analysis revealed modest noradrenaline and serotonin depletion in chronically treated rats that was not evident following a single equivalent administration. These results indicate that although chronic, intermittent exposure to MDMA, METH or their combination, may not lead to significant long-term monoamine depletion, lasting adverse behavioural effects may persist, especially those related to social behaviour.

  2. Changes in erectile organ structure and function in a rat model of chronic prostatitis/chronic pelvic pain syndrome.

    PubMed

    Wang, X-J; Xia, L-L; Xu, T-Y; Zhang, X-H; Zhu, Z-W; Zhang, M-G; Liu, Y; Xu, C; Zhong, S; Shen, Z-J

    2016-04-01

    There is a growing recognition of the association between chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and erectile dysfunction (ED); however, most of the reports are based on questionnaires which cannot distinguish between organic and functional ED. The purpose of this study was to determine the exact relationship between CP/CPPS and ED, and to investigate the changes in erectile organ structure and function in a rat model of CP/CPPS. We established a rat model of experimental autoimmune prostatitis (EAP), which is a valid model for CP/CPPS. Erectile function in EAP and normal rats was comparable after cavernous nerve electrostimulation. The serum testosterone and oestradiol levels, ultrastructure of the corpus cavernosum and expression of endothelial nitric oxide synthase and neuronal nitric oxide synthase in the two groups were similar; however, there was a decrease in smooth muscle-to-collagen ratio and alpha-smooth muscle actin expression and an increase in transforming growth factor-beta 1 expression was observed in EAP rats. Thus, organic ED may not exist in EAP rats. We speculate that ED complained by patients with CP/CPPS may be psychological, which could be caused by impairment in the quality of life; however, further studies are needed to fully understand the potential mechanisms underlying the penile fibrosis in EAP rats. © 2015 Blackwell Verlag GmbH.

  3. Effect of Shodhana Treatment on Chronic Toxicity and Recovery of Aconite

    PubMed Central

    Sarkar, P.K.; Prajapati, P.K.; Shukla, V.J.; Ravishankar, B.

    2012-01-01

    Aconite is one of the poisonous plants used therapeutically in practice of Ayurveda after proper treatment called as ‘Shodhana’. To determine the effect of Shodhana treatment on chronic toxicity and to assess the effect of recovery period after chronic toxicity of aconite. Raw aconite (RV), urine treated aconite (SM), and milk treated aconite (SD) were administered in 6.25 mg/kg dose in Charles Foster strain albino rats for 90 days for chronic toxicity. Six rats from each were kept for another 30 days without test drugs treatment to observe recovery from chronic toxicity. RV was found to be highly toxic in chronic exposure, SM had no apparent toxicity, but SD had mild toxicity in kidney. The toxicities of RV and SD were reversible, but sudden withdrawal of SM caused adverse effects, suggestive of tapering withdrawal. Shodhana treatments remove toxic effects from raw aconite. Chronic toxicity of aconite is reversible. Confirmed the arrangement of abstract PMID:22736901

  4. Immunotoxicity of clonazepam in adult albino rats.

    PubMed

    Rabei, Hanan Mostafa

    2013-01-01

    Clonazepam as an addictive drug is studied to elucidate its destructive effects on rats' immune system. The aim of the current work was to study the immunologic changes induced by sub-chronic administration of clonazepam for three weeks followed by a withdrawal period in adult male albino rats. Seventy-two Sprague Dawley rats were divided into three equal groups. The first group was used as control; the second and third groups were treated with clonazepam. Six rats from each group were sacrificed weekly. Data showed that clonazepam induced a significant suppression in the level of IFN-gamma cortisol production, total splenocytes count and lymphocytes transformation induced by PHA mitogen along the experimental period especially in the third group. However, subchronic doses of clonazepam increased the production of IL-10 in both treated groups. Moreover, significant DNA damage in the peripheral blood lymphocytes of both treated groups was observed along the duration of the study. In conclusion, the immune system responses can be adversely affected to a greater extent by sub-chronic administration of clonazepam and should be prescribed cautiously as patients may turn addict to it.

  5. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat.

    PubMed

    Vila, L; Ferrando, A; Voces, J; Cabral de Oliveira, C; Prieto, J G; Alvarez, A I

    2001-09-01

    The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.

  6. Chronic cuffing of cervical vagus nerve inhibits efferent fiber integrity in rat model

    NASA Astrophysics Data System (ADS)

    Somann, Jesse P.; Albors, Gabriel O.; Neihouser, Kaitlyn V.; Lu, Kun-Han; Liu, Zhongming; Ward, Matthew P.; Durkes, Abigail; Robinson, J. Paul; Powley, Terry L.; Irazoqui, Pedro P.

    2018-06-01

    Objective. Numerous studies of vagal nerve stimulation (VNS) have been published showing it to be a potential treatment for chronic inflammation and other related diseases and disorders. Studies in recent years have shown that electrical stimulation of the vagal efferent fibers can artificially modulate cytokine levels and reduce systematic inflammation. Most VNS research in the treatment of inflammation have been acute studies on rodent subjects. Our study tested VNS on freely moving animals by stimulating and recording from the cervical vagus with nerve cuff electrodes over an extended period of time. Approach. We used methods of electrical stimulation, retrograde tracing (using Fluorogold) and post necropsy histological analysis of nerve tissue, flow cytometry to measure plasma cytokine levels, and MRI scanning of gastric emptying. This novel combination of methods allowed examination of physiological aspects of VNS previously unexplored. Main results. Through our study of 53 rat subjects, we found that chronically cuffing the left cervical vagus nerve suppressed efferent Fluorogold transport in 43 of 44 animals (36 showed complete suppression). Measured cytokine levels and gastric emptying rates concurrently showed nominal differences between chronically cuffed rats and those tested with similar acute methods. Meanwhile, results of electrophysiological and histological tests of the cuffed nerves revealed them to be otherwise healthy, consistent with previous literature. Significance. We hypothesize that due to these unforeseen and unexplored physiological consequences of the chronically cuffed vagus nerve in a rat, that inflammatory modulation and other vagal effects by VNS may become unreliable in chronic studies. Given our findings, we submit that it would benefit the VNS community to re-examine methods used in previous literature to verify the efficacy of the rat model for chronic VNS studies.

  7. Penile histomorphometrical evaluation in hypertensive rats treated with sildenafil or enalapril alone or in combination: a comparison with normotensive and untreated hypertensive rats.

    PubMed

    Felix-Patrício, Bruno; Medeiros, Jorge L; De Souza, Diogo B; Costa, Waldemar S; Sampaio, Francisco J B

    2015-01-01

    Erectile dysfunction (ED) is frequently associated to hypertension and antihypertensive drugs; however, the penile morphological aspects on these situations are poorly known. Evaluate the penile morphology of untreated hypertensive rats and rats treated with enalapril or sildenafil alone or in combination to verify the hypothesis that morphological alterations promoted by hypertension on corpus cavernosum could be ameliorated by the use of angiotensin-converting enzyme inhibitors and/or phosphodiesterase type 5 inhibitors. Fifty male rats were assigned into five groups: normotensive rats, untreated spontaneously hypertensive rats (SHRs), and SHR treated with enalapril or sildenafil alone or in combination. Blood pressure was measured weekly. At the conclusion of the study, the rats were euthanized, and their penises were collected for histomorphometrical analysis. The cross-sectional areas of the penis, tunica albuginea, and corpus cavernosum were measured. The density of the corpus cavernosum structures was quantified. Both groups of SHR rats treated with enalapril became normotensive. Untreated SHR showed no difference in penile and cavernosal cross-sectional area compared with normotensive rats; however, those rats treated with enalapril or sildenafil alone demonstrated an increase in these parameters. Rats receiving combination therapy showed no cross-sectional area differences compared with normotensive rats. Cavernosal connective tissue density was increased, while the sinusoidal spaces were diminished in untreated SHR. All treatments were effective in maintaining connective tissue density in comparison with normotensive animals. Cavernosal smooth muscle density was similar in all groups, with the exception of the combination therapy group, which demonstrated a reduction in smooth muscle. Hypertension promoted structural alterations in the corpus cavernosum that may be related to ED. Enalapril- and sildenafil-treated animals had preservation of normal corpus

  8. Chronic mercury exposure impairs the sympathovagal control of the rat heart.

    PubMed

    Simões, M R; Azevedo, B F; Fiorim, J; Jr Freire, D D; Covre, E P; Vassallo, D V; Dos Santos, L

    2016-11-01

    Mercury is known to cause harmful neural effects affecting the cardiovascular system. Here, we evaluated the chronic effects of low-dose mercury exposure on the autonomic control of the cardiovascular system. Wistar rats were treated for 30 days with HgCl 2 (1st dose 4.6 μg/kg followed by 0.07 μg/kg per day, intramuscular) or saline. The femoral artery and vein were then cannulated for evaluation of autonomic control of the hemodynamic function, which was evaluated in awake rats. The following tests were performed: baroreflex sensitivity, Von Bezold-Jarisch reflex, heart rate variability (HRV) and pharmacological blockade with methylatropine and atenolol to test the autonomic tone of the heart. Exposure to HgCl 2 for 30 days slightly increased the mean arterial pressure and heart rate (HR). There was a significant reduction in the baroreflex gain of animals exposed to HgCl 2 . Moreover, haemodynamic responses to the activation of the Von Bezold-Jarisch reflex were also reduced. The changes in the spectral analysis of HRV suggested a shift in the sympathovagal balance toward a sympathetic predominance after mercury exposure, which was confirmed by autonomic pharmacological blockade in the HgCl 2 group. This group also exhibited reduced intrinsic HR after the double block suggesting that the pacemaker activity of the sinus node was also affected. These findings suggested that the autonomic modulation of the heart was significantly altered by chronic mercury exposure, thus reinforcing that even at low concentrations such exposure might be associated with increased cardiovascular risk. © 2016 John Wiley & Sons Australia, Ltd.

  9. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    PubMed

    Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Büchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover.

  10. [Effects of chronic partial sleep deprivation on growth and learning/memory in young rats].

    PubMed

    Jiang, Fan; Shen, Xiao-Ming; Li, Sheng-Hui; Cui, Mao-Long; Zhang, Yin; Wang, Cheng; Yu, Xiao-Gang; Yan, Chong-Huai

    2009-02-01

    The effects of sleep deprivation on the immature brain remain unknown. Based on a computer controlled chronic sleep deprivation animal model, the effects of chronic partial sleep deprivation on growth, learning and memory in young rats were explored. Twelve weaned male Spraque-Dawley rats (3-week-old) were randomly divided into sleep deprivation, test control and blank control groups. Sleep deprivation was performed using computer-controlled "disc-over-water" technique at 8-11 am daily, for 14 days. The temperature and weights were measured every 7 days. Morris water maze was used to test spatial learning and memory abilities before and 7 and 14 days after sleep deprivation. After 14 days of sleep deprivation, the rats were sacrificed for weighting their major organs. After 14 days of sleep deprivation, the rats' temperature increased significantly. During the sleep deprivation, the rate of weight gain in the sleep deprivation group was much slower than that in the test control and blank control groups. The thymus of the rats subjected to sleep deprivation was much lighter than that of the blank control group. After 7 days of sleep deprivation, the rats showed slower acquisition of reference memory, but were capable of successfully performing the task by repeated exposure to the test. Such impairment of reference memory was not seen 14 days after sleep deprivation. Chronic sleep deprivation can affect growth of immature rats, as well as their abilities to acquire spatial reference memory.

  11. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    PubMed

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus. © The Author(s) 2015.

  12. Effect of chronic aspirin ingestion on epithelial proliferation in rat fundus, antrum, and duodenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastwood, G.L.; Quimby, G.F.

    We studied the effect of chronic aspirin ingestion on gastroduodenal epithelial proliferation by feeding rats aspirin in the drinking water. A control group of rats received plain water. At the end of 4 wk, (3H)-thymidine was given intravenously to label proliferating cells, and the rats were killed 1 h later. Sections of fundus, antrum, and proximal duodenum were processed for light autoradiography. We found that chronic aspirin ingestion stimulated epithelial proliferation in fundic mucosa but had no effect in the antrum. In the duodenum, aspirin increased proliferation in the lowest four crypt-cell positions, which most likely indicates an increase inmore » stem-cell production. None of the tissues contained evidence of inflammation or ulceration. The proliferative effects of aspirin may help explain the previously observed phenomenon of mucosal adaptation in the rat after repeated exposure to aspirin. Further, if human gastroduodenal epithelium responds in a similar manner to chronic aspirin exposure, the effects on proliferation may explain in part the distribution of aspirin-associated ulcers.« less

  13. Chronic fluoxetine treatment increases NO bioavailability and calcium-sensitive potassium channels activation in rat mesenteric resistance arteries.

    PubMed

    Pereira, Camila A; Ferreira, Nathanne S; Mestriner, Fabiola L; Antunes-Rodrigues, José; Evora, Paulo R B; Resstel, Leonardo B M; Carneiro, Fernando S; Tostes, Rita C

    2015-10-15

    Fluoxetine, a selective serotonin reuptake inhibitor (SSRI), has effects beyond its antidepressant properties, altering, e.g., mechanisms involved in blood pressure and vasomotor tone control. Although many studies have addressed the acute impact of fluoxetine on the cardiovascular system, there is a paucity of information on the chronic vascular effects of this SSRI. We tested the hypothesis that chronic fluoxetine treatment enhances the vascular reactivity to vasodilator stimuli by increasing nitric oxide (NO) signaling and activation of potassium (K+) channels. Wistar rats were divided into two groups: (I) vehicle (water for 21 days) or (II) chronic fluoxetine (10 mg/kg/day in the drinking water for 21 days). Fluoxetine treatment increased endothelium-dependent and independent vasorelaxation (analyzed by mesenteric resistance arteries reactivity) as well as constitutive NO synthase (NOS) activity, phosphorylation of eNOS at Serine1177 and NO production, determined by western blot and fluorescence. On the other hand, fluoxetine treatment did not alter vascular expression of neuronal and inducible NOS or guanylyl cyclase (GC). Arteries from fluoxetine-treated rats exhibited increased relaxation to pinacidil. Increased acetylcholine vasorelaxation was abolished by a calcium-activated K+ channel (KCa) blocker, but not by an inhibitor of KATP channels. On the other hand, vascular responses to Bay 41-2272 and 8-bromo-cGMP were similar between the groups. In conclusion, chronic fluoxetine treatment increases endothelium-dependent and independent relaxation of mesenteric resistance arteries by mechanisms that involve increased eNOS activity, NO generation, and KCa channels activation. These effects may contribute to the cardiovascular effects associated with chronic fluoxetine treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia.

    PubMed

    Lumbroso, Delphine; Joseph, Vincent

    2009-08-01

    We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.

  15. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    NASA Astrophysics Data System (ADS)

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak; Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd

    2016-10-01

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes ( n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  16. Corticosteroid-treated chronic active hepatitis in remission: uncertain prognosis of chronic persistent hepatitis.

    PubMed

    Czaja, A J; Ludwig, J; Baggenstoss, A H; Wolf, A

    1981-01-01

    To assess the prognosis of patients with severe chronic hepatitis after histologic examination had shown an improvement to chronic persistent hepatitis, we followed 52 such patients regularly for 54 +/- 4 months after the cessation of corticosteroid therapy. In 24 patients, the condition deteriorated 7 +/- 1 months after therapy and required further treatment with prednisone. Histologic features of chronic active hepatitis, including bridging and multilobular necrosis, were documented in all 14 patients in whom biopsies were performed. In 20 of 24 patients, the disease responded to retreatment, but 13 again had relapses, and cirrhosis developed in two. Of 28 patients who remained asymptomatic for 48 +/- 6 months, 17 retained features of chronic persistent hepatitis, and nine had improvement to normal histologic features. Cirrhosis developed in two patients without clinical manifestations of active inflammation. Findings before and after treatment did not predict outcome. We conclude that severe chronic active hepatitis that has been treated with prednisone and converted to chronic persistent hepatitis will often and unpredictably deteriorate after treatment has been stopped. Cirrhosis develops rarely but may occur with or without clinically overt chronic active hepatitis.

  17. Establishment of a rat model of chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) induced by immunization with a novel peptide T2.

    PubMed

    Ihsan, Awais Ullah; Khan, Farhan Ullah; Nawaz, Waqas; Khan, Muhammad Zahid; Yang, Mengqi; Zhou, Xiaohui

    2017-07-01

    The exact etiological mechanism of Chronic Prostatitis/chronic pelvic pain syndrome (CP/CPPS) is still unclear however autoimmunity is the most valid theory. We developed a rat model of Chronic Prostatitis/chronic pelvic pain syndrome by using a novel peptide (T2) isolated from TRPM8. This model might be beneficial in elucidating mechanisms involved in the pathogenesis of Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS). 40 male Sprague-Dawley rats with an average weight of 180-220g were equally distributed into five groups. The normal control group was injected with normal saline (.9% NACL), the CFA group with CFA, AL(OH)3 group was given AL(OH)3 injection, T2 group using a novel peptide T2 and T2+AL(OH)3+CFA group was injected with T2+AL(OH)3+CFA. Dosing to all rat groups were injected subcutaneously. Hematoxylin and eosin staining and Immunohistochemistry were used to investigate inflammatory cell infiltration and IL-1β in the prostate tissue respectively. ELISA technique was used to measure the serum level of CRP and TNF-α. T-test was used to analyze the results. Maximum infiltration of inflammatory cells and the highest level of IL-1β in the prostate tissue was observed in T2+AL(OH)3+CFA group as revealed by histopathology and Immunohistochemistry, respectively. Furthermore, T2+AL(OH)3+CFA group attained the peak value of serum TNF-α and CRP as determined by ELISA technique. Our results demonstrated that T2 in combination with AL(OH)3 and CFA induced severe Prostatitis in rats. We believe that our present model will be highly beneficial for investigation of the pathophysiology of Chronic Prostatitis/Chronic Pelvic Pain Syndrome. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Increased brain lactate is central to the development of brain edema in rats with chronic liver disease.

    PubMed

    Bosoi, Cristina R; Zwingmann, Claudia; Marin, Helen; Parent-Robitaille, Christian; Huynh, Jimmy; Tremblay, Mélanie; Rose, Christopher F

    2014-03-01

    The pathogenesis of brain edema in patients with chronic liver disease (CLD) and minimal hepatic encephalopathy (HE) remains undefined. This study evaluated the role of brain lactate, glutamine and organic osmolytes, including myo-inositol and taurine, in the development of brain edema in a rat model of cirrhosis. Six-week bile-duct ligated (BDL) rats were injected with (13)C-glucose and de novo synthesis of lactate, and glutamine in the brain was quantified using (13)C nuclear magnetic resonance spectroscopy (NMR). Total brain lactate, glutamine, and osmolytes were measured using (1)H NMR or high performance liquid chromatography. To further define the interplay between lactate, glutamine and brain edema, BDL rats were treated with AST-120 (engineered activated carbon microspheres) and dichloroacetate (DCA: lactate synthesis inhibitor). Significant increases in de novo synthesis of lactate (1.6-fold, p<0.001) and glutamine (2.2-fold, p<0.01) were demonstrated in the brains of BDL rats vs. SHAM-operated controls. Moreover, a decrease in cerebral myo-inositol (p<0.001), with no change in taurine, was found in the presence of brain edema in BDL rats vs. controls. BDL rats treated with either AST-120 or DCA showed attenuation in brain edema and brain lactate. These two treatments did not lead to similar reductions in brain glutamine. Increased brain lactate, and not glutamine, is a primary player in the pathogenesis of brain edema in CLD. In addition, alterations in the osmoregulatory response may also be contributing factors. Our results suggest that inhibiting lactate synthesis is a new potential target for the treatment of HE. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Aqueous extract of Senecio candicans DC induce liver and kidney damage in a sub-chronic oral toxicity study in Wistar rats.

    PubMed

    Lakshmanan, Hariprasath; Raman, Jegadeesh; Pandian, Arjun; Kuppamuthu, Kumaresan; Nanjian, Raaman; Sabaratam, Vikineswary; Naidu, Murali

    2016-08-01

    Senecio candicans DC. (Asteraceae) is used as a remedy for gastric ulcer and stomach pain in the Nilgiris, district, Tamil Nadu. The present investigation was carried out to evaluate the sub-chronic toxicity of an aqueous extract of Senecio candicans (AESC) plant in Wistar albino rats. The study was conducted in consideration of the OECD 408 study design (Repeated Dose 90-Day Oral Toxicity Study in Rodents) and the extract was administered via gavage at doses of 250, 500 or 750 mg/kg body weight per day for 90-days. Hematological, biochemical parameters were determined on days 0, 30, 60 and 90 of administration. Animals were euthanized after 90 d treatment and its liver and kidney sections were taken for histological study. The results of sub-chronic study showed significant increase (P < 0.05) in serum uric acid, creatinine, aspartate transaminase (AST) and alanine transaminase (ALP) levels. Histological examination of liver showed mild mononuclear infiltration in the portal trait, enlarged nucleus around the central vein and mild loss of hepatocyte architecture in rats treated with 750 mg/kg of AESC. Histological examination of kidney showed focal interstitial fibrosis, crowding of glomeruli and mild hydropic change with hypercellular glomeruli in rats treated with 750 mg/kg of AESC. However, no remarkable histoarchitectural change in hepatocytes and glomeruli were observed in rats treated with lower concentrations (250 and 500 mg/kg b.w.) of AESC compared to control group animals. The no-observed adverse effect level (NOAEL) of AESC in the present study was 500 mg/kg b.w. Signs of toxic effects are evident from the current study. Although AESC contains low concentrations of PA, findings from this study suggest that regular consumers of herbal remedies derived from this plant may develop kidney and liver toxicity. Further studies on the isolation and characterization of PAs are necessary to determine the safe dose level of the extract for therapeutic use

  20. Systemic administration of vitamins C and E attenuates nociception induced by chronic constriction injury of the sciatic nerve in rats.

    PubMed

    Riffel, Ana Paula K; de Souza, Jéssica A; Santos, Maria do Carmo Q; Horst, Andréa; Scheid, Taína; Kolberg, Carolina; Belló-Klein, Adriane; Partata, Wania A

    2016-03-01

    Antioxidants have been tested to treat neuropathic pain, and α-Tocopherol (vitamin E--vit. E) and ascorbic acid (vitamin C--vit. C) are potent antioxidants. We assessed the effect of intraperitoneal administration of vit. C (30 mg/kg/day) and vit. E (15 mg/kg/day), given alone or in combination, on the mechanical and thermal thresholds and the sciatic functional index (SFI) in rats with chronic constriction injury (CCI) of the sciatic nerve. We also determined the lipid hydroperoxides and total antioxidant capacity (TAC) in the injured sciatic nerve. Further, we assessed the effects of oral administration of vit. C+vit. E (vit. C+E) and of a combination of vit. C+E and gabapentin (100mg/kg/day, i.p.) on the mechanical and thermal thresholds of CCI rats. The vitamins, whether administered orally or i.p., attenuated the reductions in the mechanical and thermal thresholds induced by CCI. The antinociceptive effect was greater with a combination of vit. C+E than with each vitamin given alone. The SFI was also improved in vitamin-treated CCI rats. Co-administration of vit. C+E and gabapentin induced a greater antinociceptive effect than gabapentin alone. No significant change occurred in TAC and lipid hydroperoxide levels, but TAC increased (45%) while lipid hydroperoxides decreased (38%) in the sciatic nerve from vit. C+E-treated CCI rats. Thus, treatment with a combination of vit. C+E was more effective to treat CCI-induced neuropathic pain than vitamins alone, and the antinociceptive effect was greater with co-administration of vit. C+E and gabapentin than with gabapentin alone. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Transient Hypothyroidism During Lactation Arrests Myelination in the Anterior Commissure of Rats. A Magnetic Resonance Image and Electron Microscope Study.

    PubMed

    Lucia, Federico S; Pacheco-Torres, Jesús; González-Granero, Susana; Canals, Santiago; Obregón, María-Jesús; García-Verdugo, José M; Berbel, Pere

    2018-01-01

    Thyroid hormone deficiency at early postnatal ages affects the cytoarchitecture and function of neocortical and telencephalic limbic areas, leading to impaired associative memory and in a wide spectrum of neurological and mental diseases. Neocortical areas project interhemispheric axons mostly through the corpus callosum and to a lesser extent through the anterior commissure (AC), while limbic areas mostly project through the AC and hippocampal commissures. Functional magnetic resonance data from children with late diagnosed congenital hypothyroidism and abnormal verbal memory processing, suggest altered ipsilateral and contralateral telencephalic connections. Gestational hypothyroidism affects AC development but the possible effect of transient and chronic postnatal hypothyroidism, as occurs in late diagnosed neonates with congenital hypothyroidism and in children growing up in iodine deficient areas, still remains unknown. We studied AC development using in vivo magnetic resonance imaging and electron microscopy in hypothyroid and control male rats. Four groups of methimazole (MMI) treated rats were studied. One group was MMI-treated from postnatal day (P) 0 to P21; some of these rats were also treated with L-thyroxine (T4) from P15 to P21, as a model for early transient hypothyroidism. Other rats were MMI-treated from P0 to P150 and from embryonic day (E) 10 to P170, as a chronic hypothyroidism group. The results were compared with age paired control rats. The normalized T2 signal using magnetic resonance image was higher in MMI-treated rats and correlated with the number and percentage of myelinated axons. Using electron microscopy, we observed decreased myelinated axon number and density in transient and chronic hypothyroid rats at P150, unmyelinated axon number increased slightly in chronic hypothyroid rats. In MMI-treated rats, the myelinated axon g-ratio and conduction velocity was similar to control rats, but with a decrease in conduction delays. These

  2. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure.

    PubMed

    Baba, Asuka; Tachi, Masahiro; Ejima, Yutaka; Endo, Yasuhiro; Toyama, Hiroaki; Saito, Kazutomo; Abe, Nozomu; Yamauchi, Masanori; Miura, Chieko; Kazama, Itsuro

    2017-02-01

    Chronic renal failure (CRF) is histopathologically characterized by tubulointerstitial fibrosis in addition to glomerulosclerosis. Although mast cells are known to infiltrate into the kidneys with chronic inflammation, we know little about their contribution to the pathogenesis of renal fibrosis associated with CRF. The aim of this study was to reveal the involvement of mast cells in the progression of renal fibrosis in CRF. Using a rat model with CRF resulting from 5/6 nephrectomy, we examined the histopathological features of the kidneys and the infiltration of mast cells into the renal interstitium. By treating the rats with a potent mast cell stabilizer, tranilast, we also examined the involvement of mast cells in the progression of renal fibrosis associated with CRF. The CRF rat kidneys were characterized by the wide staining of collagen III and increased number of myofibroblasts, indicating the progression of renal fibrosis. Compared to T-lymphocytes or macrophages, the number of tryptase-positive mast cells was much smaller within the fibrotic kidneys and they did not proliferate in situ. The mRNA expression of mast cell-derived fibroblast-activating factors was not increased in the renal cortex isolated from CRF rat kidneys. Treatment with tranilast did not suppress the progression of renal fibrosis, nor did it ameliorate the progression of glomerulosclerosis and the interstitial proliferation of inflammatory leukocytes. This study demonstrated for the first time that mast cells are neither increased nor activated in the fibrotic kidneys of CRF rats. Compared to T-lymphocytes or macrophages that proliferate in situ within the fibrotic kidneys, mast cells were less likely to contribute to the progression of renal fibrosis associated with CRF. © 2016 Asian Pacific Society of Nephrology.

  3. An evaluation of aversive memory and hippocampal oxidative status in streptozotocin-induced diabetic rats treated with resveratrol.

    PubMed

    Bagatini, Pamela Brambilla; Xavier, Léder Leal; Bertoldi, Karine; Moysés, Felipe; Lovatel, Gisele; Neves, Laura Tartari; Barbosa, Sílvia; Saur, Lisiani; de Senna, Priscylla Nunes; Souto, André Arigony; Siqueira, Ionara Rodrigues; Achaval, Matilde

    2017-01-01

    The present study evaluated the effects of streptozotocin (STZ)-induced diabetes on aversive memory, free radical content and enzymatic antioxidant activity in the hippocampus of adult Wistar rats submitted to oral treatment with resveratrol. Animals were divided into eight groups: non-diabetic rats treated with saline (ND SAL), non-diabetic rats treated with resveratrol at a dose 5mg/kg (ND RSV 5), non-diabetic rats treated with resveratrol at a dose 10mg/kg (ND RSV 10), non-diabetic rats treated with resveratrol at a dose 20mg/kg (ND RSV 20), diabetic rats treated with saline (D SAL), diabetic rats treated with resveratrol at a dose 5mg/kg (D RSV 5), diabetic rats treated with resveratrol at a dose 10mg/kg (D RSV 10) and diabetic rats treated with resveratrol at a dose 20mg/kg (D RSV 20). The animals received oral gavage for 35days. The contextual fear conditioning task was performed to evaluate aversive-based learning and memory. The oxidative status was evaluated in the hippocampus, by measuring the free radical content - using a 2',7'-dichlorofluorescein diacetate probe - and enzymatic antioxidant activities, such as superoxide dismutase and glutathione peroxidase. Our main behavioral results demonstrated that rats from the D RSV 10 and D RSV 20 groups showed an increase in freezing behavior when compared, respectively, to the ND RSV 10 (p<0.01) and ND RSV 20 (p<0.05). Oxidative stress parameters remained unchanged in the hippocampus of all the experimental groups. In contrast to previous experimental findings, our study was unable to detect either cognitive impairments or oxidative stress in the hippocampus of the diabetic rats. We suggest additional long-term investigations be conducted into the temporal pattern of STZ-induced diabetic disruption in memory and hippocampal oxidative status, as well as the effects of resveratrol on these parameters, in a time and dose-dependent manner. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Sex-specific respiratory effects of acute and chronic caffeine administration in newborn rats.

    PubMed

    Kouchi, Hayet; Uppari, NagaPraveena; Joseph, Vincent; Bairam, Aida

    2017-06-01

    Caffeine is widely used for the treatment of apnea of prematurity (AoP) but whether this effect varies with sex is unknown. To shed some light on this question, we present a summary of data obtained on the effects of caffeine on the respiratory chemoreflexes and apnea frequency in 1- and 12-days old male and female rats. Caffeine was either administered as a single acute injection (10mg/kg, i.p.) or for 10 consecutive days (7.5mg/kg/day between 3 and 12days of life by gavage, simulating its clinical use). Acute caffeine had little effects on breathing in 1-day old male and female rats. In 12-days old female rats caffeine reduced the response to hypercapnia (not hypoxia) compared to males. During the steady state of hypoxia females had a lower frequency of apneas than males, and acute injection of caffeine decreased the frequency of apnea, suppressing the differences between males and females. In 12-days old rats chronic administration of caffeine stimulated basal breathing and decreased the frequency of apnea similarly in males and females. In response to hypoxia, chronic caffeine administration also masked the difference in respiratory frequency between males and females observed in control rats. Female rats had lower frequency of apnea than males with or without caffeine treatment. These observations indicate that sex influences the respiratory responses to caffeine and this effect seems to depend on the modality of administration (acute vs chronic) and environmental oxygen (normoxia vs hypoxia). Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Treadmill exercise alleviates chronic mild stress-induced depression in rats.

    PubMed

    Lee, Taeck-Hyun; Kim, Kijeong; Shin, Mal-Soon; Kim, Chang-Ju; Lim, Baek-Vin

    2015-12-01

    Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2'-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression.

  6. Prefrontal cortical glutathione-dependent defense and proinflammatory mediators in chronically isolated rats: Modulation by fluoxetine or clozapine.

    PubMed

    Todorović, Nevena; Filipović, Dragana

    2017-07-04

    Chronic psychosocial stress modulates brain antioxidant systems and causes neuroinflammation that plays a role in the pathophysiology of depression. Although the antidepressant fluoxetine (FLX) represents the first-line treatment for depression and the atypical antipsychotic clozapine (CLZ) is considered as a second-line treatment for psychotic disorders, the downstream mechanisms of action of these treatments, beyond serotonergic or dopaminergic signaling, remain elusive. We examined behavioral changes, glutathione (GSH)-dependent defense and levels of proinflammatory mediators in the prefrontal cortex (PFC) of adult male Wistar rats exposed to 21days of chronic social isolation (CSIS). We also tested the ability of FLX (15mg/kg/day) or CLZ (20mg/kg/day), applied during CSIS, to prevent stress-induced changes. CSIS caused depressive- and anxiety-like behaviors, compromised GSH-dependent defense, and induced nuclear factor-kappa B (NF-κB) activation with a concomitant increase in cytosolic levels of proinflammatory mediators cyclooxigenase-2, interleukin-1beta and tumor necrosis factor-alpha in the PFC. NF-κB activation and proinflammatory response in the PFC were not found in CSIS rats treated with FLX or CLZ. In contrast, only FLX preserved GSH content in CSIS rats. CLZ not only failed to protect against CSIS-induced GSH depletion, but it diminished its levels when applied to non-stressed rats. In conclusion, prefrontal cortical GSH depletion and the proinflammatory response underlying depressive- and anxiety-like states induced by CSIS were prevented by FLX. The protective effect of CLZ, which was equally effective as FLX on the behavioral level, was limited to proinflammatory components. Hence, different mechanisms underlie the protective effects of these two drugs in CSIS rats. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Carvacrol and Pomegranate Extract in Treating Methotrexate-Induced Lung Oxidative Injury in Rats

    PubMed Central

    Şen, Hadice Selimoğlu; Şen, Velat; Bozkurt, Mehtap; Türkçü, Gül; Güzel, Abdulmenap; Sezgi, Cengizhan; Abakay, Özlem; Kaplan, Ibrahim

    2014-01-01

    Background This study was designed to evaluate the effects of carvacrol (CRV) and pomegranate extract (PE) on methotrexate (MTX)-induced lung injury in rats. Material/Methods A total of 32 male rats were subdivided into 4 groups: control (group I), MTX treated (group II), MTX+CRV treated (group III), and MTX+PE treated (group IV). A single dose of 73 mg/kg CRV was administered intraperitoneally to rats in group III on Day 1 of the investigation. To group IV, a dose of 225 mg/kg of PE was administered via orogastric gavage once daily over 7 days. A single dose of 20 mg/kg of MTX was given intraperitoneally to groups II, III, and IV on Day 2. The total duration of experiment was 8 days. Malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) were measured from rat lung tissues and cardiac blood samples. Results Serum and lung specimen analyses demonstrated that MDA, TOS, and OSI levels were significantly greater in group II relative to controls. Conversely, the TAC level was significantly reduced in group II when compared to the control group. Pre-administering either CRV or PE was associated with decreased MDA, TOS, and OSI levels and increased TAC levels compared to rats treated with MTX alone. Histopathological examination revealed that lung injury was less severe in group III and IV relative to group II. Conclusions MTX treatment results in rat lung oxidative damage that is partially counteracted by pretreatment with either CRV or PE. PMID:25326861

  8. Proteomic characterization of hippocampus of chronically socially isolated rats treated with fluoxetine: Depression-like behaviour and fluoxetine mechanism of action.

    PubMed

    Perić, Ivana; Costina, Victor; Stanisavljević, Andrijana; Findeisen, Peter; Filipović, Dragana

    2018-06-01

    Due to the severity of depressive symptoms, there remains a necessity in defining the underlying mechanisms of depression and the precise actions of antidepressants in alleviating these symptoms. Proteomics is a powerful and promising tool for discovering novel pathways of cellular responses to disease and treatment. As chronic social isolation (CSIS) is a valuable animal model for studying depression, we performed a comparative subproteomic study of rat hippocampus to explore the effect of six weeks of CSIS and the therapeutic effect of chronic fluoxetine (Flx) treatment (last three weeks of CSIS; 15 mg/kg/day). Behaviorally, Flx treatment normalized the decreased sucrose preference and increased marble burying results resulting from CSIS, indicative of a FLX-induced attenuation of both anhedonia and anxiety. An analysis of cytosolic and nonsynaptic mitochondrial subproteome patterns revealed that CSIS resulted in down-regulation of proteins involved in mitochondrial transport and energy processes, primarily tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Chronic Flx treatment resulted in an up-regulation of CSIS-altered proteins and additional expression of other transporter and energy-involved proteins. Immunohistochemical analysis revealed hippocampal subregion-specific effects of CSIS and/or Flx treatment on selective protein expressions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Comparison of the effects of chronic intra-articular administration of tenoxicam, diclofenac, and methylprednisolone in healthy rats.

    PubMed

    Orak, Mehmet Müfit; Ak, Dursun; Midi, Ahmet; Laçin, Berna; Purisa, Sevim; Bulut, Güven

    2015-01-01

    Lyophilized drug manufacturing and intra-articular (IA) applications have increased to address gastrointestinal side effects resulting from chronic treatment with non-steroidal anti-inflammatory drugs (NSAIDs) for degenerative joint disease. Accordingly, we histologically examined joint and stomach tissues from rats to determine and compare the effects of long-term treatment with an IA corticosteroid (methylprednisolone acetate), lyophilized NSAID (tenoxicam), and non-lyophilized NSAID (diclofenac) following application to the knee joint. One hundred Wistar albino rats were divided into 4 groups of 25 rats: control, methylprednisolone, tenoxicam, and diclofenac. Ten IA injections were administered at 1-week intervals. Rats were sacrificed at 48 h and 1, 2, 4, and 8 weeks after the tenth injection. Histomorphologically, knee joint samples were examined for osteoarthritic changes and stomach tissue samples for gastric changes. Unlike methylprednisolone, diclofenac and tenoxicam caused increased fibrosis and fibroblast production; furthermore, chronic methylprednisolone use had no negative effects on the synovium or cartilage. Chronic tenoxicam and diclofenac use affects joints more negatively than chronic steroid treatment.

  10. Maternal separation in early life modifies anxious behavior and Fos and glucocorticoid receptor expression in limbic neurons after chronic stress in rats: effects of tianeptine.

    PubMed

    Trujillo, Verónica; Durando, Patricia E; Suárez, Marta M

    2016-01-01

    Early-life adversity can lead to long-term consequence persisting into adulthood. Here, we assess the implications of an adverse early environment on vulnerability to stress during adulthood. We hypothesized that the interplay between early and late stress would result in a differential phenotype regarding the number of neurons immunoreactive for glucocorticoid receptor (GR-ir) and neuronal activity as assessed by Fos immunoreactivity (Fos-ir) in brain areas related to stress responses and anxiety-like behavior. We also expected that the antidepressant tianeptine could correct some of the alterations induced in our model. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h during the first 3 weeks of life. As adults, the rats were exposed to chronic stress for 24 d and they were treated daily with tianeptine (10 mg/kg intraperitoneal) or vehicle (isotonic saline). Fos-ir was increased by MS in all structures analyzed. Chronic stress reduced Fos-ir in the hippocampus, but increased it in the paraventricular nucleus. Furthermore, chronic stress increased GR-ir in hippocampus (CA1) and amygdala in control non-MS rats. By contrast, when MS and chronic stress were combined, GR-ir was decreased in these structures. Additionally, whereas tianeptine did not affect Fos-ir, it regulated GR-ir in a region-dependent manner, in hippocampus and amygdala opposing in some cases the stress or MS effects. Furthermore, tianeptine reversed the MS- or stress-induced anxious behavior. The interplay between MS and chronic stress observed indicates that MS rats have a modified phenotype, which is expressed when they are challenged by stress in later life.

  11. Disruption of estrogen homeostasis as a mechanism for uterine toxicity in Wistar Han rats treated with tetrabromobisphenol A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J. Michael, E-mail: sander10@mail.nih.gov; Coulter, Sherry J.; Knudsen, Gabriel A.

    Chronic oral treatment of tetrabromobisphenol A (TBBPA) to female Wistar Han rats resulted in increased incidence of cell proliferation at 250 mg/kg and tumor formation in the uterus at higher doses. The present study was designed to test the hypothesis that disruption of estrogen homeostasis was a major mode-of-action for the observed effects. Biological changes were assessed in serum, liver, and the proximal (nearest the cervix) and distal (nearest the ovaries) sections of the uterine horn of Wistar Han rats 24 h following administration of the last of five daily oral doses of 250 mg/kg. Expression of genes associated withmore » receptors, biosynthesis, and metabolism of estrogen was altered in the liver and uterus. TBBPA treatment also resulted in changes in expression of genes associated with cell division and growth. Changes were also observed in the concentration of thyroxine in serum and in expression of genes in the liver and uterus associated with thyroid hormone receptors. Differential expression of some genes was tissue-dependent or specific to tissue location in the uterus. The biological responses observed in the present study support the hypothesis that perturbation of estrogen homeostasis is a major mode-of-action for TBBPA-mediated cell proliferation and tumorigenesis previously observed in the uterus of TBBPA-treated Wistar Han rats. - Highlights: • Perturbation of estrogen homeostasis in TBBPA-treated female rats was investigated. • Gene expression changes were observed in the liver and uterus of these rats. • Genes associated with estrogen biosynthesis and metabolism were affected. • Genes associated with thyroid homeostasis and cell division/growth were affected. • A mechanism of uterine toxicity via endocrine disruption was indicated.« less

  12. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.

    PubMed

    Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong

    2014-07-01

    The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This

  13. Alcohol-induced chronic pancreatitis in rats after temporary occlusion of biliopancreatic ducts with Ethibloc.

    PubMed

    Pap, A; Boros, L

    1989-01-01

    Chronic obstructive pancreatitis-like histological and biochemical alterations were provoked in male Wistar rats with Ethibloc occlusion of the common bile duct and the main pancreatic ducts. After the disappearance of the glue from the ducts, a gradual and almost total recovery was demonstrated during a 2-month observation period. About 12 g/kg of alcohol (20% vol/vol) given daily by gastric intubation and ad libitum intake inhibited the recovery of pancreatic weight and enzyme contents in the occluded rats, and within a 2-month period chronic calcifying-type pancreatitis became evident with some signs of remaining obstructive pancreatitis-like lesions. Cessation of alcohol administration after 2 months resulted in a recovery of pancreatic weight and enzyme contents, although morphological regeneration was less pronounced and calcification remained visible in some rats. A 50% raw soy flour diet provoked some further changes in the proportion of enzymes without any supplementary increases of pancreatic weight and protein content. This animal model of chronic pancreatitis demonstrates that chronic obstructive and calcifying pancreatitis can appear together and earlier if the etiological factors act in combination. Suppression of pancreatic regeneration by alcohol seems to be necessary to maintain chronic pancreatitis-like lesions and to develop calcification.

  14. The evaluation of serum total sialic acid and lipid-bound sialic acid levels in chronically exposed rats to 7,12-dimethylbenz(a)anthracene and fluoride

    NASA Astrophysics Data System (ADS)

    Oto, Gokhan; Ekin, Suat; Uyar, Hasan; Ozdemir, Hulya; Yıldız, Damla; Karakuş, Yagmur

    2017-04-01

    In this study, changes in serum total sialic acid (TSA) and lipid-bound sialic acid (LSA) levels were examined in chronically exposed rats to 7,12-dimethylbenz(a)anthracene (DMBA) and fluoride. This study demonstrated that the TSA, LSA levels increased more in DMBA-treated groups compared to the fluoride treated groups. The result obtained has shown that the harmful effect of DMBA which is also causing more cell membrane damage on human and animal health should be taken into consideration.

  15. Effects of chronic exposure to triclosan on reproductive and thyroid endpoints in the adult Wistar female rat.

    PubMed

    Louis, Gwendolyn W; Hallinger, Daniel R; Braxton, M Janay; Kamel, Alaa; Stoker, Tammy E

    2017-01-01

    Triclosan (TCS), an antibacterial, has been shown to be an endocrine disruptor in the rat. Previously, subchronic TCS treatment to female rats was found to advance puberty and potentiate the effect of ethinyl estradiol (EE) on uterine growth when EE and TCS were co-administered prior to weaning. In the pubertal study, a decrease in serum thyroxine (T 4 ) concentrations with no significant change in serum thyroid-stimulating hormone (TSH) was also observed. The purpose of the present study was to further characterize the influence of TCS on the reproductive and thyroid axes of the female rat using a chronic exposure regimen. Female Wistar rats were exposed by oral gavage to vehicle control, EE (1 μg/kg), or TCS (2.35, 4.69, 9.375 or 37.5 mg/kg) for 8 months and estrous cyclicity monitored. Although a divergent pattern of reproductive senescence appeared to emerge from 5 to 11 months of age between controls and EE-treated females, no significant difference in cyclicity was noted between TCS-treated and control females. A higher % control females displayed persistent diestrus (PD) by the end of the study, whereas animals administered with positive control (EE) were predominately persistent estrus (PE). Thyroxine concentration was significantly decreased in TCS-administered 9.375 and 37.5 mg/kg groups, with no marked effects on TSH levels, thyroid tissue weight, or histology. Results demonstrate that a long-term exposure to TCS did not significantly alter estrous cyclicity or timing of reproductive senescence in females but suppressed T 4 levels at a lower dose than previously observed.

  16. Acetaminophen induces xenobiotic-metabolizing enzymes in rat: Impact of a uranium chronic exposure.

    PubMed

    Rouas, Caroline; Souidi, Maâmar; Grandcolas, Line; Grison, Stephane; Baudelin, Cedric; Gourmelon, Patrick; Pallardy, Marc; Gueguen, Yann

    2009-11-01

    The extensive use of uranium in civilian and military applications increases the risk of human chronic exposure. Uranium is a slightly radioactive heavy metal with a predominantly chemical toxicity, especially in kidney but also in liver. Few studies have previously shown some effects of uranium on xenobiotic-metabolizing enzymes (XME) that might disturb drug pharmacokinetic. The aim of this study was to determine whether a chronic (9 months) non-nephrotoxic low dose exposure to depleted uranium (DU, 1mg/rat/day) could modify the liver XME, using a single non-hepatotoxic acetaminophen (APAP) treatment (50mg/kg). Most of XME analysed were induced by APAP treatment at the gene expression level but at the protein level only CYP3A2 was significantly increased 3h after APAP treatment in DU-exposed rats whereas it remained at a basal level in unexposed rats. In conclusion, these results showed that a chronic non-nephrotoxic DU exposure specially modify CYP3A2 after a single therapeutic APAP treatment. Copyright © 2009 Elsevier B.V. All rights reserved.

  17. Effects of chronic normobaric hypoxic and hypercapnic exposure in rats: Prevention of experimental chronic mountain sickness by hypercapnia

    NASA Astrophysics Data System (ADS)

    Lincoln, B.; Bonkovsky, H. L.; Ou, Lo-Chang

    1987-09-01

    A syndrome of experimental chronic mountain sickness can be produced in the Hilltop strain of Sprague-Dawley rats by chronic hypobaric hypoxic exposure. This syndrome is characterized by polycythemia, plasma hemoglobinemia, pulmonary hypertension and right ventricular hypertrophy with eventual failure and death. It has generally been assumed that these changes are caused by chronic hypoxemia, not by hypobaric exposure per se. We have now confirmed this directly by showing that chronic normobaric hypoxic exposure (10.5% O2) produces similar hematologic and hemodynamic changes. Further, the addition of hypercapnic exposure to the hypoxic exposure blunted or prevented the effects of the hypoxic exposure probably by stimulating respiration, thus increasing the rate of oxygen delivery to the cells. Changes in the rate-controlling enzymes of hepatic heme metabolism, 5-aminolevulinate synthase and heme oxygenase, and in cytochrome(s) P-450, the major hepatic hemoprotein(s), were also measured in hypoxic and hypercapnic rats. Hypoxia decreased 5-aminolevulinate synthase and increased cytochrome(s) P-450, probably by increasing the size of a “regulatory” heme pool within hepatocytes. These changes were also prevented by the addition of hypercapnic to hypoxic exposure.

  18. Low-frequency repetitive transcranial magnetic simulation prevents chronic epileptic seizure

    PubMed Central

    Wang, Yinxu; Wang, Xiaoming; Ke, Sha; Tan, Juan; Hu, Litian; Zhang, Yaodan; Cui, Wenjuan

    2013-01-01

    Although low-frequency repetitive transcranial magnetic simulation can potentially treat epilepsy, its underlying mechanism remains unclear. This study investigated the influence of low-frequency re-petitive transcranial magnetic simulation on changes in several nonlinear dynamic electroence-phalographic parameters in rats with chronic epilepsy and explored the mechanism underlying petitive transcranial magnetic simulation-induced antiepileptic effects. An epilepsy model was es-tablished using lithium-pilocarpine intraperitoneal injection into adult Sprague-Dawley rats, which were then treated with repetitive transcranial magnetic simulation for 7 consecutive days. Nonlinear electroencephalographic parameters were obtained from the rats at 7, 14, and 28 days post-stimulation. Results showed significantly lower mean correlation-dimension and Kolmogo-rov-entropy values for stimulated rats than for non-stimulated rats. At 28 days, the complexity and point-wise correlation dimensional values were lower in stimulated rats. Low-frequency repetitive transcranial magnetic simulation has suppressive effects on electrical activity in epileptic rats, thus explaining its effectiveness in treating epilepsy. PMID:25206567

  19. Effects of chronic systemic administration of the GABA(B) receptor agonist baclofen on food intake and body weight in rats.

    PubMed

    Patel, Sunit M; Ebenezer, Ivor S

    2010-06-10

    The effects of daily administration of physiological saline of baclofen (1 and 4mg/kg, i.p.) for 27 days were investigated on food intake and body weight in non-deprived rats in Experiment 1. Baclofen (1 and 4mg/kg) significantly increased daily short-term food intake when measured at 30min (F((2,15))=11.011, P<0.01) and 90min (F((2,15))=7.3801, P<0.01) over the 27 day experimental period.. Tolerance did not develop to the short-term hyperphagic effects of baclofen. Baclofen (1mg/kg) had no significant effects on body weight gain of the rats compared with controls. By contrast, baclofen (4mg/kg) significantly (P<0.05) decreased the body weight gain of the animals. In Experiment 2, the effect of daily administration of baclofen (4mg/kg, i.p.) for 24 days was investigated on 24h food intake in rats measured after the first, eight, fifteenth and twenty second injections. The 24h food intake of the animals was not significantly different from those of control rats on any of the measurement days (F((1,14))=1.602, ns). However, the body weight gain of the rats chronically treated with baclofen (4mg/kg) was significantly reduced. (F((1,14))=14.011, P<0.01). The observations that chronic administration of baclofen (4mg/kg) stimulates short-term food intake without affecting long term (24h) feeding, but decreases body weight gain, suggest that baclofen may act through different mechanisms to influence food intake and body weight.

  20. Roflumilast promotes memory recovery and attenuates white matter injury in aged rats subjected to chronic cerebral hypoperfusion.

    PubMed

    Santiago, Amanda; Soares, Lígia Mendes; Schepers, Melissa; Milani, Humberto; Vanmierlo, Tim; Prickaerts, Jos; Weffort de Oliveira, Rúbia M

    2018-06-19

    Chronic cerebral hypoperfusion (CCH) has been associated with aging-related vascular dementia, including Alzheimer's disease. It can be induced by the four-vessel occlusion/internal carotid artery (4VO/ICA) model in aged rats, resulting in persistent memory deficits, white matter injury, and significant neuronal loss in the hippocampus and cerebral cortex. The phosphodiesterase type 4 inhibitor (PDE4-I) roflumilast has been reported to have pro-cognitive effects in several behavioral paradigms. The present study evaluated the effects of repeated roflumilast treatment in aged rats that were subjected to CCH. After surgery, roflumilast (0.003 and 0.01 mg/kg) was administered intraperitoneally once per day for 29 days. Memory performance was assessed in the aversive radial maze (AvRM) 7, 14, and 21 days after CCH. The effects of roflumilast on hippocampal neurodegeneration and white matter injury were investigated using Nissl and Kluver-Barrera staining, respectively. Western blot and RT-qPCR were used to explore microglial polarization using M1 (Iba-1 and iNOS) and M2 (Arginase-1) markers. Chronic cerebral hypoperfusion caused persistent memory deficits, hippocampal neurodegeneration, and vacuolization and fiber disarrangement in white matter. Repeated roflumilast treatment restored CCH-induced cognitive impairments in aged rats but in the absence of the rescue of hippocampal neurons. Attenuation of white matter injury was detected in the optic tract in aged CCH rats that were treated with roflumilast. In vitro, roflumilast increased Arg-1 gene expression in myelin-laden primary microglia. The present data suggest that roflumilast might be useful for the treatment of cognitive sequelae associated with CCH. Copyright © 2018. Published by Elsevier Ltd.

  1. Effects of chronic fentanyl administration on physical performance of aged rats

    PubMed Central

    Mitzelfelt, Jeremiah D.; DuPree, Jameson P.; Seo, Dong-oh; Carter, Christy S.; Morgan, Drake

    2010-01-01

    There is growing concern over the increasing use of opioids to treat chronic pain in the elderly primarily because of the potential increased sensitivity to the adverse side effects. Here, we use a preclinical model (male Brown Norway X F344 rats aged 12, 18, 24, and 30 months) to describe the outcome of chronic fentanyl administration (1.0 mg/kg/day) on various physiological and behavioral measures. Continuous fentanyl administration resulted in an initial decrease in food consumption, followed by the development of tolerance to this effect over a 4-week period and a subsequent increase in food consumption during withdrawal. This change in food consumption was associated with decreases in body weight (predominantly due to a loss of fat mass) that was maintained through early withdrawal. After one month of withdrawal, only the 12-month old animals had fully regained body weight. Fentanyl administration resulted in a decrease in grip strength and an increase in locomotor activity that did not differ across age groups. There was no effect of fentanyl administration on rotarod performance. These results demonstrate that while there is a delayed recovery of body mass with age, the observed changes in behavioral responses are uniform across ages. PMID:20951790

  2. Contribution of oxidative stress and prostanoids in endothelial dysfunction induced by chronic fluoxetine treatment.

    PubMed

    Simplicio, Janaina A; Resstel, Leonardo B; Tirapelli, Daniela P C; D'Orléans-Juste, Pedro; Tirapelli, Carlos R

    2015-10-01

    The effects of chronic fluoxetine treatment were investigated on blood pressure and on vascular reactivity in the isolated rat aorta. Male Wistar rats were treated with fluoxetine (10 mg/kg/day) for 21 days. Fluoxetine increased systolic blood pressure. Chronic, but not acute, fluoxetine treatment increased the contractile response induced by phenylephrine, serotonin (5-HT) and KCl in endothelium-intact rat aortas. L-NAME and ODQ did not alter the contraction induced by phenylephrine and 5-HT in aortic rings from fluoxetine-treated rats. Tiron, SC-560 and AH6809 reversed the increase in the contractile response to phenylephrine and 5-HT in aortas from fluoxetine-treated rats. Fluoxetine treatment increased superoxide anion generation (O2(-)) and the expression of cyclooxygenase (COX)-1 in the rat aorta. Reduced expression of nNOS, but not eNOS or iNOS was observed in animals treated with fluoxetine. Fluoxetine treatment increased prostaglandin (PG)F2α levels but did not affect thromboxane (TX)B2 levels in the rat aorta. Reduced hydrogen peroxide (H2O2) levels and increased catalase (CAT) activity were observed after treatment. The major new finding of our study is that chronic fluoxetine treatment induces endothelial dysfunction, which alters vascular responsiveness by a mechanism that involves increased oxidative stress and the generation of a COX-derived vasoconstrictor prostanoid (PGF2α). Moreover, our results evidenced a relation between the period of treatment with fluoxetine and the magnitude in the increment of blood pressure. Finally, our findings raise the possibility that fluoxetine treatment increases the risk for vascular injury, a response that could predisposes to cardiovascular diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Effects of chronic administration of caffeine and stress on feeding behavior of rats.

    PubMed

    Pettenuzzo, Leticia Ferreira; Noschang, Cristie; von Pozzer Toigo, Eduardo; Fachin, Andrelisa; Vendite, Deusa; Dalmaz, Carla

    2008-10-20

    Anorectic effects of caffeine are controversial in the literature, while stress and obesity are growing problems in our society. Since many stressed people are coffee drinkers, the objective of the present study was to evaluate the effect of stress and chronic administration of caffeine on feeding behavior and body weight in male and female rats. Wistar rats (both males and females) were divided into 3 groups: control (receiving water), caffeine 0.3 g/L and caffeine 1.0 g/L (in the drinking water). These groups were subdivided into non-stressed and stressed (repeated-restraint stress for 40 days). During the entire treatment, chow consumption was monitored and rats were weighed monthly. Afterwards, feeding behavior was evaluated during 3-min trials in food-deprived and ad libitum fed animals and also in repeated exposures, using palatable food (Froot Loops and Cheetos). Chronic administration of caffeine did not affect rat chow consumption or body weight gain, but diminished the consumption of both salty (Cheetos) and sweet (Froot Loops) palatable food. In the repeated trial tests, stress diminished savory snack consumption in the later exposures [I.S. Racotta, J. Leblanc, D. Richard The effect of caffeine on food intake in rats: involvement of corticotropin-releasing factor and the sympatho-adrenal system. Pharmacol Biochem Behav. 1994, 48:887-892; S.D. Comer, M. Haney, R.W. Foltin, M.W. Fischman Effects of caffeine withdrawal on humans living in a residential laboratory. Exp Clin Psychopharmacol. 1997, 5:399-403; A. Jessen, B. Buemann, S. Toubro, I.M. Skovgaard, A. Astrup The appetite-suppressant effect of nicotine is enhanced by caffeine. Diab Ob Metab. 2005, 7:327-333; J.M. Carney Effects of caffeine, theophylline and theobromine on scheduled controlled responding in rats. Br J Pharmacol. 1982, 75:451-454] and caffeine diminished consumption of both palatable foods (savory and sweet) during the early and later exposures. Most responses to caffeine were stronger

  4. Evaluation of Krebs cycle enzymes in the brain of rats after chronic administration of antidepressants.

    PubMed

    Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L

    2010-05-31

    Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. Bladder carcinogenesis in rats subjected to ureterosigmoidostomy and treated with L-lysine.

    PubMed

    Dornelas, Conceição Aparecida; Santos, Alessandra Marques Dos; Correia, Antonio Lucas Oliveira; Juanes, Camila de Carvalho; Coelho, João Paulo Ferreira; Cunha, Bianca Lopes; Maciel, André Vinicius Vieira; Jamacaru, Francisco Vagnaldo Fechine

    2016-01-01

    to evaluate the effect of L-lysine in the bladder and intestinal epithelia in rats submitted to vesicosigmoidostomy. we divided forty Wistar rats into four groups: group I - control group (Sham); group II - submitted to vesicosigmoidostomy and treated with L-lysine 150mg/kg; group III - submitted only to vesicosigmoidostomy; and group IV - received L-lysine 150mg/kg. After eight weeks the animals were sacrificed. in the bladders of all operated animals we observed simple, papillary and nodular hyperplasia of transitional cells, transitional cell papillomas and squamous metaplasia. As for the occurrence of aberrant crypt foci in the colons of operated animals, we did not observe statistically significant differences in any of the distal, proximal and medium fragments, or in all fragments together (p=1.0000). Although statistically there was no promotion of carcinogenesis in the epithelia of rats treated with L-lysine in the observed time, it was clear the histogenesis of bladder carcinogenesis in its initial phase in all operated rats, this being probably associated with chronic infection and tiny bladder stones. o objetivo deste trabalho é avaliar o efeito da L-lisina nos epitélios vesical e intestinal de ratas submetidas à vesicossigmoidostomia. quarenta ratas Wistar, foram divididas em quatro grupos: grupo I- grupo controle (Sham); grupo II- submetido à vesicossigmoidostomia e tratado com L-lisina 150mg/kg; grupo III- submetido apenas à vesicossigmoidostomia; e grupo IV- recebeu L-lisina 150mg/kg. Após oito semanas os animais foram sacrificados. na bexiga de todos os animais operados observou-se hiperplasia simples, papilar e nodular de células transicionais, papiloma de células transicionais e metaplasia escamosa. Quanto à ocorrência de focos de criptas aberrantes nos colos dos animais operados, não foi evidenciado diferença estatística significante em nenhum dos fragmentos distal, proximal e médio, e todos juntos (P=1,0000). apesar de

  6. Prevention of organophosphate-induced chronic epilepsy by early benzodiazepine treatment.

    PubMed

    Shrot, Shai; Ramaty, Erez; Biala, Yoav; Bar-Klein, Guy; Daninos, Moshe; Kamintsky, Lyn; Makarovsky, Igor; Statlender, Liran; Rosman, Yossi; Krivoy, Amir; Lavon, Ophir; Kassirer, Michael; Friedman, Alon; Yaari, Yoel

    2014-09-02

    Poisoning with organophosphates (OPs) may induce status epilepticus (SE), leading to severe brain damage. Our objectives were to investigate whether OP-induced SE leads to the emergence of spontaneous recurrent seizures (SRSs), the hallmark of chronic epilepsy, and if so, to assess the efficacy of benzodiazepine therapy following SE onset in preventing the epileptogenesis. We also explored early changes in hippocampal pyramidal cells excitability in this model. Adult rats were poisoned with the paraoxon (450μg/kg) and immediately treated with atropine (3mg/kg) and obidoxime (20mg/kg) to reduce acute mortality due to peripheral acetylcholinesterase inhibition. Electrical brain activity was assessed for two weeks during weeks 4-6 after poisoning using telemetric electrocorticographic intracranial recordings. All OP-poisoned animals developed SE, which could be suppressed by midazolam. Most (88%) rats which were not treated with midazolam developed SRSs, indicating that they have become chronically epileptic. Application of midazolam 1min following SE onset had a significant antiepileptogenic effect (only 11% of the rats became epileptic; p=0.001 compared to non-midazolam-treated rats). Applying midazolam 30min after SE onset did not significantly prevent chronic epilepsy. The electrophysiological properties of CA1 pyramidal cells, assessed electrophysiologically in hippocampal slices, were not altered by OP-induced SE. Thus we show for the first time that a single episode of OP-induced SE in rats leads to the acquisition of chronic epilepsy, and that this epileptogenic outcome can be largely prevented by immediate, but not delayed, administration of midazolam. Extrapolating these results to humans would suggest that midazolam should be provided together with atropine and an oxime in the immediate pharmacological treatment of OP poisoning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Beneficial effect of prolyl oligopeptidase inhibition on spatial memory in young but not in old scopolamine-treated rats.

    PubMed

    Jalkanen, Aaro J; Puttonen, Katja A; Venäläinen, Jarkko I; Sinervä, Veijo; Mannila, Anne; Ruotsalainen, Sirja; Jarho, Elina M; Wallén, Erik A A; Männistö, Pekka T

    2007-02-01

    The effects of a novel prolyl oligopeptidase (POP) inhibitor KYP-2047 on spatial memory of young (3-month-old) and old (8- to 9-month-old) scopolamine-treated rats (0.4 mg/kg intraperitoneally) was investigated in the Morris water maze. In addition, the concentrations of promnesic neuropeptide substrates of POP, substance P and neurotensin in various brain areas after acute and chronic POP inhibition were measured in young rats. In addition, inositol-1,4,5-trisphosphate (IP(3)) levels were assayed in rat cortex and hippocampus after effective 2.5-day POP inhibition. KYP-2047 (1 or 5 mg/kg 30 min. before daily testing) dose-dependently improved the escape performance (i.e. latency to find the hidden platform and swimming path length) of the young but not the old rats in the water maze. POP inhibition had no consistent effect on substance P levels in cortex, hippocampus or hypothalamus, and only a modest increase in neurotensin concentration was observed in the hypothalamus after a single dose of KYP-2047. Moreover, IP(3) concentrations remained unaffected in cortex and hippocampus after POP inhibition. In conclusion, the behavioural data support the earlier findings of the promnesic action of POP inhibitors, but the mechanism of the memory-enhancing action remains unclear.

  8. Chronic unpredictable stress regulates visceral adipocyte‐mediated glucose metabolism and inflammatory circuits in male rats

    PubMed Central

    Karagiannides, Iordanes; Golovatscka, Viktoriya; Bakirtzi, Kyriaki; Sideri, Aristea; Salas, Martha; Stavrakis, Dimitris; Polytarchou, Christos; Iliopoulos, Dimitrios; Pothoulakis, Charalabos; Bradesi, Sylvie

    2014-01-01

    Abstract Chronic psychological stress is a prominent risk factor involved in the pathogenesis of many complex diseases, including major depression, obesity, and type II diabetes. Visceral adipose tissue is a key endocrine organ involved in the regulation of insulin action and an important component in the development of insulin resistance. Here, we examined for the first time the changes on visceral adipose tissue physiology and on adipocyte‐associated insulin sensitivity and function after chronic unpredictable stress in rats. Male rats were subjected to chronic unpredictable stress for 35 days. Total body and visceral fat was measured. Cytokines and activated intracellular kinase levels were determined using high‐throughput multiplex assays. Adipocyte function was assessed via tritiated glucose uptake assay. Stressed rats showed no weight gain, and their fat/lean mass ratio increased dramatically compared to control animals. Stressed rats had significantly higher mesenteric fat content and epididymal fat pad weight and demonstrated reduced serum glucose clearing capacity following glucose challenge. Alterations in fat depot size were mainly due to changes in adipocyte numbers and not size. High‐throughput molecular screening in adipocytes isolated from stressed rats revealed activation of intracellular inflammatory, glucose metabolism, and MAPK networks compared to controls, as well as significantly reduced glucose uptake capacity in response to insulin stimulation. Our study identifies the adipocyte as a key regulator of the effects of chronic stress on insulin resistance, and glucose metabolism, with important ramifications in the pathophysiology of several stress‐related disease states. PMID:24819750

  9. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    PubMed

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  10. Chronic ethanol tolerance as a result of free-choice drinking in alcohol-preferring rats of the WHP line.

    PubMed

    Dyr, Wanda; Taracha, Ewa

    2012-01-01

    The development of tolerance to alcohol with chronic consumption is an important criterion for an animal model of alcoholism and may be an important component of the genetic predisposition to alcoholism. The aim of this study was to determine whether the selectively bred Warsaw High Preferring (WHP) line of alcohol-preferring rats would develop behavioral and metabolic tolerance during the free-choice drinking of ethanol. Chronic tolerance to ethanol-induced sedation was tested. The loss of righting reflex (LRR) paradigm was used to record sleep duration in WHP rats. Ethanol (EtOH)-naive WHP rats received a single intraperitoneal (i.p.) injection of 5.0 g ethanol/kg body weight (b.w.), and sleep duration was measured. Subsequently, rats had access to a 10% ethanol solution under a free-choice condition with water and food for 12 weeks. After 12 weeks of the free-choice intake of ethanol, the rats received another single i.p. injection of 5.0 g ethanol/kg b.w., and sleep duration was reassessed. The blood alcohol content (BAC) for each rat was determined after an i.p. injection of 5 g/kg of ethanol in naive rats and again after chronic alcohol drinking at the time of recovery of the righting reflex (RR). The results showed that the mean ethanol intake was 9.14 g/kg/24 h, and both sleep duration and BAC were decreased after chronic ethanol intake. In conclusion, WHP rats exposed to alcohol by free-choice drinking across 12 weeks exhibited increased alcohol elimination rates. Studies have demonstrated that WHP rats after chronic free-choice drinking (12 weeks) of alcohol develop metabolic tolerance. Behavioral tolerance to ethanol was demonstrated by reduced sleep duration, but this decrease in sleep duration was not significant.

  11. Mass spectrometric imaging of metabolites in kidney tissues from rats treated with furosemide.

    PubMed

    Jung, Jin Woo; Lee, Mi Suk; Choi, Hyo-Jung; Jung, Sunhee; Lee, Yu-Jung; Hwang, Geum-Sook; Kwon, Tae-Hwan

    2016-06-01

    In the kidney, metabolic processes are different among the cortex (COR), outer medulla (OM), and inner medulla (IM). Using matrix-assisted laser desorption/ionization (MALDI) and imaging mass spectrometry (IMS), we examined the change of metabolites in the COR, OM, and IM of the rat kidney after furosemide treatment compared with vehicle-treated controls. Osmotic minipumps were implanted in male Sprague-Dawley rats to deliver 12 mg·day(-1)·rat(-1) of furosemide. Vehicle-treated (n = 14) and furosemide-treated (furosemide rats, n = 15) rats in metabolic cages received a fixed amount of rat chow (15 g·220 g body wt(-1)·day(-1) for each rat) with free access to water intake for 6 days. At day 6, higher urine output (32 ± 4 vs. 9 ± 1 ml/day) and lower urine osmolality (546 ± 44 vs. 1,677 ± 104 mosmol/kgH2O) were observed in furosemide rats. Extracts of COR, OM, and IM were analyzed by ultraperformance liquid chromatography coupled with quadrupole time-of-flight (TOF) mass spectrometry, where multivariate analysis revealed significant differences between the two groups. Several metabolites, including acetylcarnitine, betaine, carnitine, choline, and glycerophosphorylcholine (GPC), were significantly changed. The changes of metabolites were further identified by MALDI-TOF/TOF and IMS. Their spatial distribution and relative quantitation in the kidneys were analyzed by IMS. Carnitine compounds were increased in COR and IM, whereas carnitine and acetylcarnitine were decreased in OM. Choline compounds were increased in COR and OM but decreased in IM from furosemide rats. Betaine and GPC were decreased in OM and IM. Taken together, MALDI-TOF/TOF and IMS successfully provide the spatial distribution and relative quantitation of metabolites in the kidney. Copyright © 2016 the American Physiological Society.

  12. Opiate self-administration as a measure of chronic nociceptive pain in arthritic rats.

    PubMed

    Colpaert, F C; Tarayre, J P; Alliaga, M; Bruins Slot, L A; Attal, N; Koek, W

    2001-03-01

    The study examined the validity of oral fentanyl self-administration (FSA) as a measure of the chronic nociceptive pain that develops in rats with adjuvant arthritis independently of acute noxious challenges. Arthritic rats self-administered more of a 0.008 mg/ml fentanyl solution (up to 3.4 g/rat per day) than non-arthritic controls (0.5 g/rat per day) and did so with a biphasic time course that reached peak during weeks 3 and 4 after inoculation with Mycobacterium butyricum. The time course paralleled both the disease process and the chronic pain. Continuous infusion of dexamethasone during weeks 3 and 4 via subcutaneous osmotic pumps at 0.0025-0.04 mg/rat per day disrupted the arthritic disease and decreased FSA to a level (i.e. by 65%) similar to that observed in non-arthritic rats. Continuous naloxone (2.5 mg/rat per day) decreased FSA (by 55%) in arthritic but not in non-arthritic animals. Continuous, subcutaneous infusion of fentanyl also decreased arthritic FSA in a manner that varied with dose at 0.04-0.16 mg/rat per day doses, but leveled off at 47% of controls with 0.31 mg/rat per day. The effects of continuous fentanyl on arthritic FSA occurred only with those doses and dose-dependent dynamics with which fentanyl also induced dependence in non-arthritic rats. The findings indicate that pain, rather than the rewarding or dependence-inducing action of fentanyl mediates FSA in arthritic rats. Paralleling patient-controlled analgesic drug intake, FSA offers a specific measure allowing the dynamic effects of neurobiological agents to be studied in this unique animal model of persistent nociceptive pain.

  13. Transcriptomics analysis and hormonal changes of male and female neonatal rats treated chronically with a low dose of acrylamide in their drinking water.

    PubMed

    Collí-Dulá, Reyna Cristina; Friedman, Marvin A; Hansen, Benjamin; Denslow, Nancy D

    2016-01-01

    Acrylamide is known to produce follicular cell tumors of the thyroid in rats. RccHan Wistar rats were exposed in utero to a carcinogenic dose of acrylamide (3 mg/Kg bw/day) from gestation day 6 to delivery and then through their drinking water to postnatal day 35. In order to identify potential mechanisms of carcinogenesis in the thyroid glands, we used a transcriptomics approach. Thyroid glands were collected from male pups at 10 PM and female pups at 10 AM or 10 PM in order to establish whether active exposure to acrylamide influenced gene expression patterns or pathways that could be related to carcinogenesis. While all animals exposed to acrylamide showed changes in expected target pathways related to carcinogenesis such as DNA repair, DNA replication, chromosome segregation, among others; animals that were sacrificed while actively drinking acrylamide-laced water during their active period at night showed increased changes in pathways related to oxidative stress, detoxification pathways, metabolism, and activation of checkpoint pathways, among others. In addition, thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were increased in acrylamide-treated rats sampled at night, but not in quiescent animals when compared to controls. The data clearly indicate that time of day for sample collection is critical to identifying molecular pathways that are altered by the exposures. These results suggest that carcinogenesis in the thyroids of acrylamide treated rats may ensue from several different mechanisms such as hormonal changes and oxidative stress and not only from direct genotoxicity, as has been assumed to date.

  14. Ventilatory effects of substance P-saporin lesions in the nucleus tractus solitarii of chronically hypoxic rats

    PubMed Central

    Fu, Zhenxing; Powell, Frank L.

    2011-01-01

    During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco2 levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO2-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po2 = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH. PMID:21593425

  15. Outcome of enamel matrix derivative treatment in the presence of chronic stress: histometric study in rats.

    PubMed

    Corrêa, Mônica G; Gomes Campos, Mirella L; Marques, Marcelo Rocha; Bovi Ambrosano, Glaucia Maria; Casati, Marcio Z; Nociti, Francisco H; Sallum, Enilson A

    2014-07-01

    Psychologic stress and clinical hypercortisolism have been related to direct effects on bone metabolism. However, there is a lack of information regarding the outcomes of regenerative approaches under the influence of chronic stress (CS). Enamel matrix derivative (EMD) has been used in periodontal regenerative procedures, resulting in improvement of clinical parameters. Thus, the aim of this histomorphometric study is to evaluate the healing of periodontal defects after treatment with EMD under the influence of CS in the rat model. Twenty Wistar rats were randomly assigned to two groups; G1: CS (restraint stress for 12 hours/day) (n = 10), and G2: not exposed to CS (n = 10). Fifteen days after initiation of CS, fenestration defects were created at the buccal aspect of the first mandibular molar of all animals from both groups. After the surgeries, the defects of each animal were randomly assigned to two subgroups: non-treated control and treated with EMD. The animals were euthanized 21 days later. G1 showed less bone density (BD) compared to G2. EMD provided an increased defect fill (DF) in G1 and higher BD and new cementum formation (NCF) in both groups. The number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly higher in G1 when compared to G2 and in EMD-treated sites of both groups. CS may produce a significant detrimental effect on BD. EMD may provide greater DF compared to non-treated control in the presence of CS and increased BD and NCF in the presence or absence of CS.

  16. Pectinase-treated Panax ginseng protects heat stress-induced testicular damage in rats.

    PubMed

    Kim, Min Kyoung; Cha, Kyu-Min; Hwang, Seock-Yeon; Park, Un-Kyu; Seo, Seok Kyo; Lee, Sang-Ho; Jeong, Min-Sik; Cho, SiHyun; Kopalli, Spandana Rajendra; Kim, Si-Kwan

    2017-06-01

    Testicular hyperthermia is well studied to cause impaired spermatogenesis. In the present study, the protective effect of enzymatically modified (pectinase-treated) Panax ginseng (GINST) against intermittent sub-chronic heat stress-induced testicular damage in rats was investigated. Male Sprague-Dawley rats were divided into four groups: normal control (NC), heat-stressed control (HC), heat-stressed plus GINST-100 mg/kg/day (HG100) and heat-stressed plus GINST-200 mg/kg/day (HG200) treatment groups. GINST (100 and 200 mg/kg/day) was mixed separately with a regular pellet diet and was administered orally for 8 weeks starting from 1 week before heat exposure. Parameters such as organ weight, blood chemistry, sperm kinetic values, expression of antioxidant enzymes, spermatogenesis molecules and sex hormone receptors levels were measured. Data revealed that kidney and epididymis weight were significantly ( P  < 0.05) decreased with heat stress and recovered by GINST treatment. Further, the altered levels of blood chemistry panels and sperm kinetic values in heat stress-induced rats were attenuated when GINST was administered ( P  < 0.05). Furthermore, the expression levels of antioxidant-related enzymes (GSTM5 and GPX4), spermatogenesis-related proteins (CREB1 and INHA) and sex hormone receptors (androgen receptor, luteinizing hormone receptor and follicle-stimulating hormone receptor) were reduced by heat stress; however, GINST treatment effectively ameliorated these changes. In conclusion, GINST was effective in reducing heat-induced damage in various male fertility factors in vivo and has considerable potential to be developed as a useful supplement in improving male fertility. © 2017 Society for Reproduction and Fertility.

  17. Effects of glutamate and {alpha}2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Mesbah; Danysz, Wojciech; Schmidt, Werner Juergen

    2009-10-15

    Systemic inhibition of complex I by rotenone in rats represents a model of Parkinson's disease (PD). The aim of this study was to elucidate whether neramexane (NMDA, nicotinic {alpha}9/{alpha}10 and 5-HT{sub 3} receptor antagonist), idazoxan ({alpha}{sub 2}-adrenoceptor antagonist) or 2-methyl-6-(phenyl-ethyl)-pyrimidine (MPEP, metabotropic glutamate receptor 5 antagonist) prevents rotenone-induced parkinsonian-like behaviours and neurochemical changes in rats. Rotenone (2.5 mg/kg i.p. daily) was administered over 60 days together with saline, neramexane (5 mg/kg i.p., b.i.d.), idazoxan (2.5 mg/kg i.p., b.i.d.) or MPEP (2.5 mg/kg i.p., b.i.d.). The same doses of neramexane, idazoxan and MPEP were administered to rats treated with vehicle insteadmore » of rotenone. Treatment-related effects on parkinsonian-like behaviours, such as hypokinesia/rigidity and locomotor activity, were evaluated. Moreover, concentrations of dopamine, serotonin and their metabolites were measured in rats from each experimental group. Over the 60-day treatment period, the rotenone + saline treated animals developed hypokinesia, expressed as an increase in the bar and grid descent latencies in the catalepsy test, and a decrease in locomotor activity. Neramexane and idazoxan partially prevented the development of catalepsy in rotenone-treated rats. Co-administration of MPEP with rotenone resulted only in a decrease in descent latency in the grid test on day 60. Chronic rotenone treatment reduced concentrations of dopamine and serotonin in the anterior striatum, which was blocked by co-treatment with neramexane or idazoxan but not with MPEP. Only neramexane treatment blocked the rotenone-induced decrease in dopamine levels in the substantia nigra pars compacta. In conclusion, neramexane and idazoxan counteracted to some extent the development of parkinsonian symptoms and neurochemical alterations in the rotenone model of Parkinson's disease.« less

  18. CHRONIC EXPOSURE OF RATS TO 100-MHZ (CW) RADIOFREQUENCY RADIATION: ASSESSMENT OF BIOLOGICAL EFFECTS

    EPA Science Inventory

    A multidisciplinary approach was employed to assess the possible biological effects of chronic exposure of rats to 100-MHz continuous wave (CW) radiofrequency (RF) radiation. A group of 20 time-bred rats were exposed in a transverse electronmagnetic mode (TEM) transmission line t...

  19. Curcumin Attenuates Iron Accumulation and Oxidative Stress in the Liver and Spleen of Chronic Iron-Overloaded Rats

    PubMed Central

    Badria, Farid A.; Ibrahim, Ahmed S.; Badria, Adel F.; Elmarakby, Ahmed A.

    2015-01-01

    Objectives Iron overload is now recognized as a health problem in industrialized countries, as excessive iron is highly toxic for liver and spleen. The potential use of curcumin as an iron chelator has not been clearly identified experimentally in iron overload condition. Here, we evaluate the efficacy of curcumin to alleviate iron overload-induced hepatic and splenic abnormalities and to gain insight into the underlying mechanisms. Design and Methods Three groups of male adult rats were treated as follows: control rats, rats treated with iron in a drinking water for 2 months followed by either vehicle or curcumin treatment for 2 more months. Thereafter, we studied the effects of curcumin on iron overload-induced lipid peroxidation and anti-oxidant depletion. Results Treatment of iron-overloaded rats with curcumin resulted in marked decreases in iron accumulation within liver and spleen. Iron-overloaded rats had significant increases in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver and spleen when compared to control group. The effects of iron overload on lipid peroxidation and NO levels were significantly reduced by the intervention treatment with curcumin (P<0.05). Furthermore, the endogenous anti-oxidant activities/levels in liver and spleen were also significantly decreased in chronic iron overload and administration of curcumin restored the decrease in the hepatic and splenic antioxidant activities/levels. Conclusion Our study suggests that curcumin may represent a new horizon in managing iron overload-induced toxicity as well as in pathological diseases characterized by hepatic iron accumulation such as thalassemia, sickle cell anemia, and myelodysplastic syndromes possibly via iron chelation, reduced oxidative stress derived lipid peroxidation and improving the body endogenous antioxidant defense mechanism. PMID:26230491

  20. Responses to GABA(A) receptor activation are altered in NTS neurons isolated from chronic hypoxic rats.

    PubMed

    Tolstykh, Gleb; Belugin, Sergei; Mifflin, Steve

    2004-04-23

    The inhibitory amino acid GABA is released within the nucleus of the solitary tract (NTS) during hypoxia and modulates the respiratory response to hypoxia. To determine if responses of NTS neurons to activation of GABA(A) receptors are altered following exposure to chronic hypoxia, GABA(A) receptor-evoked whole cell currents were measured in enzymatically dispersed NTS neurons from normoxic and chronic hypoxic rats. Chronic hypoxic rats were exposed to 10% O(2) for 9-12 days. Membrane capacitance was the same in neurons from normoxic (6.9+/-0.5 pF, n=16) and hypoxic (6.3+/-0.5 pF, n=15) rats. The EC(50) for peak GABA-evoked current density was significantly greater in neurons from hypoxic (21.7+/-2.2 microM) compared to normoxic rats (12.2+/-0.9 microM) (p<0.001). Peak and 5-s adapted GABA currents evoked by 1, 3 and 10 microM were greater in neurons from normoxic compared to hypoxic rats (p<0.05) whereas peak and 5-s adapted responses to 30 and 100 microM GABA were not different comparing normoxic to hypoxic rats. Desensitization of GABA(A)-evoked currents was observed at concentrations greater than 3 microM and, measured as the ratio of the current 5 s after the onset of 100 microM GABA application to the peak GABA current, was the same in neurons from normoxic (0.37+/-0.03) and hypoxic rats (0.33+/-0.04). Reduced sensitivity to GABA(A) receptor-evoked inhibition in chronic hypoxia could influence chemoreceptor afferent integration by NTS neurons.

  1. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism.

    PubMed

    Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui

    2015-11-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

  2. Elevated activation of ERK1 and ERK2 accompany enhanced liver injury following alcohol binge in chronically ethanol-fed rats.

    PubMed

    Aroor, Annayya R; Jackson, Daniel E; Shukla, Shivendra D

    2011-12-01

    Binge drinking after chronic ethanol consumption is one of the important factors contributing to the progression of steatosis to steatohepatitis. The molecular mechanisms of this effect remain poorly understood. We have therefore examined in rats the effect of single and repeat ethanol binge superimposed on chronic ethanol intake on liver injury, activation of mitogen-activated protein kinases (MAPKs), and gene expression. Rats were chronically treated with ethanol in liquid diet for 4 weeks followed by single ethanol binge (5 gm/kg body weight) or 3 similar repeated doses of ethanol. Serum alcohol and alanine amino transferase (ALT) levels were determined by enzymatic methods. Steatosis was assessed by histology and hepatic triglycerides. Activation of MAPK, 90S ribosomal kinase (RSK), and caspase 3 were evaluated by Western blot. Levels of mRNA for tumor necrosis factor alpha (TNFα), early growth response-1 (egr-1), and plasminogen activator inhibitor-1 (PAI-1) were measured by real-time qRT-PCR. Chronic ethanol treatment resulted in mild steatosis and necrosis, whereas chronic ethanol followed by binge group exhibited marked steatosis and significant increase in necrosis. Chronic binge group also showed significant increase (compared with chronic ethanol alone) in the phosphorylation of extracellular regulated kinase 1 (ERK1), ERK2, and RSK. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK did not increase by the binge. Ethanol binge, after chronic ethanol intake, caused increase in mRNA for egr-1 and PAI-1, but not TNFα. Chronic ethanol exposure increases the susceptibility of rat liver to increased injury by 1 or 3 repeat binge. Among other alterations, the activated levels of ERK1, and more so ERK2, were remarkably amplified by binge suggesting a role of these isotypes in the binge amplification of the injury. In contrast, p38 MAPK and JNK1/2 activities were not amplified. These binge-induced changes were also reflected in the increases in the

  3. Acute and chronic toxicities of Bacopa monnieri extract in Sprague-Dawley rats.

    PubMed

    Sireeratawong, Seewaboon; Jaijoy, Kanjana; Khonsung, Parirat; Lertprasertsuk, Nirush; Ingkaninan, Kornkanok

    2016-07-27

    Bacopa monnieri is a medicinal plant which has long been used in Ayurvedic medicines to augment brain function and to improve memory. The purpose of our study was to identify and evaluate possible toxic effects of B. monnieri extract in rats by assessing hematological, biochemical, and histopathological parameters. Acute oral toxicity of Bacopa monnieri extract was studied in female rats by giving a single orally administered dose at a level of 5,000 mg/kg. The rats were monitored for toxic signs for 14 days. In the chronic toxicity test, groups of both female and male rats were given daily oral doses of B. monnieri extract at dose levels of either 30, 60, 300 or 1,500 mg/kg for 270 days. The behavior and health of the animals was then monitored. At the end of the observation period, the body and organ weights of the rats in each group were measured. Blood was collected and necropsy was performed to evaluate their hematology, blood clinical chemistry, and microanatomy. The acute toxicity test found no significant differences between the experimental and the control group rats. In the chronic toxicity test, animal behavior and health of the experimental groups were normal, just as in the control rats. All values of other parameters assessed remained within the normal range. A single oral administration of B. monnieri extract at the dose of 5,000 mg/kg did not cause any serious undesirable effects. B. monnieri extract at doses of 30, 60, 300 and 1,500 mg/kg given for 270 days did not produce any toxicity in rats.

  4. Neutrophil gelatinase‐associated lipocalin level is a prognostic factor for survival in rat and human chronic liver diseases

    PubMed Central

    Yoshikawa, Kyoko; Iwasa, Motoh; Kojima, Shinichi; Yoshizawa, Naohiko; Tempaku, Mina; Sugimoto, Ryosuke; Yamamoto, Norihiko; Sugimoto, Kazushi; Kobayashi, Yoshinao; Hasegawa, Hiroshi; Takei, Yoshiyuki

    2017-01-01

    Chronic liver disease patients often have complications, such as hepatocellular carcinoma (HCC) and acute bacterial infection. Model for end‐stage liver disease and Child‐Pugh scores are useful prognostic factors for chronic liver diseases but not for all chronic conditions, such as HCC. Our investigative aim targeted the prognostic abilities of neutrophil gelatinase‐associated lipocalin (NGAL) in rat and human chronic liver diseases. Blood NGAL levels were measured by enzyme‐linked immunosorbent assay in rats with cirrhosis and 96 patients with chronic liver disease and HCC. We examined the correlation between blood NGAL levels and liver functions as well as survival. In our rat model, liver NGAL expression was assessed by immunostaining, real‐time quantitative polymerase chain reaction, and immunoblot. In rats with cirrhosis, blood NGAL levels were continuously and significantly elevated in the deceased group and were significantly correlated with liver functions. Liver NGAL, toll‐like receptor 4, and interleukin‐6 levels were increased in the deceased group compared to the survival group. Blood NGAL levels were significantly correlated with liver NGAL levels, indicating blood NGAL was derived from the liver. In patients with chronic liver disease, blood NGAL levels were associated with liver function and renal function. Blood NGAL levels were significantly increased in patients with chronic liver disease with HCC compared to without HCC. For the survival group, 38 out of 96 patients were dead in the average follow‐up period of 9.9 months. The patients with blood NGAL ≤119 ng/mL had significantly longer rates of survival compared to patients with blood NGAL >119 ng/mL. Conclusion: Blood NGAL predicts the survival rate in rat and human chronic liver diseases. Our findings suggest blood NGAL may be prognostic of survival in chronic liver diseases complicated by HCC. (Hepatology Communications 2017;1:946–956) PMID:29404502

  5. Effects of 1,25-dihydroxycholecalciferol on intestinal calcium transport in cortisone-treated rats.

    PubMed

    Favus, M J; Walling, M W; Kimberg, D V

    1973-07-01

    The administration of glucocorticoids may decrease intestinal calcium absorption in vivo and the active transport of calcium in rat duodenum in vitro. It has been suggested that this apparent "anti-vitamin D-like" effect of steroid hormones may be related to alterations in vitamin D metabolism. In order to test this hypothesis, vitamin D-deficient control and cortisone-treated rats were given an intraperitoneal injection of 5.5 IU of 1,25-dihydroxycholecalciferol (1,25-DHCC), the probable end-organ active vitamin D metabolite in the intestine, and 16 h later studies of duodenal calcium transport were performed in modified Ussing chambers. In the vitamin D-deficient state, cortisone administration was associated with a diminution in J(MS), J(Net), and the flux ratio (J(MS)/J(SM)). While the magnitude of the increases in J(MS) and J(Net) that resulted from 1,25-DHCC treatment were approximately the same in control and cortisone-treated animals, 1,25-DHCC failed to restore these parameters to "normal levels" in the steroid-treated rats. Furthermore, contrary to the results obtained in the saline-treated controls, 1,25-DHCC failed to reduce J(SM) in the duodenum from cortisone-treated rats. The cortisone-related defect in calcium transport was due to alterations in both unidirectional calcium fluxes (decrease in J(MS) and increase in J(SM)), such that the J(Net) and the flux ratio (J(MS)/J(SM)) were only approximately 50% of the levels achieved in vitamin D-deficient control animals repleted with the same dose of 1,25-DHCC. The administration of 1,25-DHCC was accompanied by a marked increase in the serum calcium levels of control rats, but there was no such response in the cortisone-treated group. The results support the concept that under the conditions of these experiments in the rat the apparent antagonism between glucocorticoids and vitamin D may be due to steroid hormone-related alterations in end organ function that are independent of any direct interaction

  6. Chronic icv oxytocin attenuates the pathological high anxiety state of selectively bred Wistar rats.

    PubMed

    Slattery, D A; Neumann, I D

    2010-01-01

    Central oxytocin (OXT) has been shown to promote numerous social behaviours, to attenuate hormonal stress responsiveness of the HPA axis and to decrease anxiety. Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour, respectively, have been shown to represent a suitable animal model to study the underlying aetiology of psychopathologies like anxiety- and depression-related disorders. The goal of the present studies was to assess the effects of central OXT on anxiety- and depression-related behaviour in male and female HAB and LAB rats. Acute icv OXT (1 microg) or OXT receptor antagonist (OXT-A; 0.75 microg) administration did not affect anxiety-related behaviour in male or female HAB and LAB rats as assessed in the light-dark box. In contrast, chronic icv OXT infusion (10 ng/h; 6 d) attenuated the high level of anxiety-related behaviour in female, but not male, HAB rats, whereas chronic OXT-A infusion (7.5 ng/h; 6 d) increased anxiety-related behaviour in female, but not male, LAB rats. Neither acute nor chronic manipulation of the OXT system altered depression-related behaviour as assessed by the forced swim test. Combined, these results suggest that pharmacological manipulation of the brain OXT system is effective to attenuate extremes in trait anxiety in an animal model of psychopathological anxiety. Moreover, the data indicate that differences in the activity of the brain OXT systems between HAB and LAB rats may, at least partially, contribute to the opposing anxiety but not depression-related behaviour.

  7. Hyperalgesia, low-anxiety, and impairment of avoidance learning in neonatal caffeine-treated rats.

    PubMed

    Pan, Hong-Zhen; Chen, Hwei-Hsien

    2007-03-01

    The nonselective adenosine receptor antagonist caffeine is used clinically to treat apnea in preterm infants. The brain developmental stage of preterm infants is usually at a period of rapid brain growth, referred as brain growth spurt, which occurs during early postnatal life in rats and is highly sensitive to central nervous system (CNS) acting drugs. The aim of this work was to study whether caffeine treatment during brain growth spurt produces long-term effects on the adenosine receptor-regulated behaviors including nociception, anxiety, learning, and memory. Neonatal male and female Sprague-Dawley rats were administered either deionized water or caffeine (15-20 mg kg(-1) day(-1)) through gavage (0.05 ml/10 g) over postnatal days (PN) 2-6. The hot-plate test, elevated plus-maze, dark-light transition test, and step-through inhibitory avoidance learning task were examined in juvenile rats. Furthermore, the responses to adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA)-induced hypothermia and A(2A) receptor agonist CGS21680-induced locomotor depression were also compared. Caffeine-treated rats showed hyperalgesia in hot-plate test, less anxiety than controls in the elevated plus-maze and dark-light transition, and impairment in step-through avoidance learning test. Moreover, the responses to CPA-induced hypothermia and CGS21680-induced locomotor depression were enhanced in caffeine-treated rats. These results indicate that caffeine exposure during brain growth spurt alters the adenosine receptor-regulated behaviors and the responsiveness to adenosine agonists, suggesting the risk of adenosine receptor-related behavioral dysfunction may exist in preterm newborns treated for apnea with caffeine.

  8. Uncaria rhynchophylla (miq) Jack plays a role in neuronal protection in kainic acid-treated rats.

    PubMed

    Tang, Nou-Ying; Liu, Chung-Hsiang; Su, Shan-Yu; Jan, Ya-Min; Hsieh, Ching-Tou; Cheng, Chin-Yi; Shyu, Woei-Cherng; Hsieh, Ching-Liang

    2010-01-01

    Uncaria rhynchophylla (Miq) Jack (UR) is one of many Chinese herbs. Our previous studies have shown that UR has both anticonvulsive and free radical-scavenging activities in kainic acid (KA)-treated rats. The aim of the present study was to use the effect of UR on activated microglia, nitric oxide synthase, and apoptotic cells to investigate its function in neuroproction in KA-treated rats. UR of 1.0 or 0.5 g/kg was orally administered for 3 days (first day, second day, and 30 min prior to KA administration on the third day), or 10 mg/kg (intraperitoneal injection, i.p.) N-nitro-L-arginine methyl ester (L-NAME) 30 min prior to KA (2 microg/2 microl) was injected into the right hippocampus region of Sprague-Dawly rats. ED1 (mouse anti rat CD68), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) immunoreactive cells and apoptotic cells were observed in the hippocampus region. The results indicated that 1.0 g/kg, 0.5 g/kg of UR and 10 mg/kg of L-NAME reduced the counts of ED1, nNOS, iNOS immunoreactive cells and apoptotic cells in KA-treated rats. This study demonstrates that UR can reduce microglia activation, nNOS, iNOS and apoptosis, suggesting that UR plays a neuro-protective role against neuronal damage in KA-treated rats.

  9. Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats.

    PubMed

    Akinyemi, Ayodele Jacob; Oboh, Ganiyu; Fadaka, Adewale Oluwaseun; Olatunji, Babawale Peter; Akomolafe, Seun

    2017-09-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes have been reported to exert anticholinesterase potential with limited information on how they regulate acetylcholinesterase (AChE) gene expression. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) activity and their mRNA gene expression level in cadmium (Cd)-treated rats. Furthermore, in vitro effect of different concentrations of curcumin (1-5μg/mL) on rat cerebral cortex AChE activity was assessed. Animals were divided into six groups (n=6): group 1 serve as control (without Cd) and receive saline/vehicle, group 2 receive saline plus curcumin at 25mg/kg, group 3 receive saline plus curcumin 50mg/kg, group 4 receive Cd plus vehicle, group 5 receive Cd plus curcumin at 25mg/kg and group 6 receive Cd plus curcumin at 50mg/kg. Rats received Cd (2.5mg/kg) and curcumin (25 and 50mg/kg, respectively) by oral gavage for 7days. Acetylcholinesterase activity was measured by Ellman's method and AChE expression was carried out by a quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assay. We observed that acute administration of Cd increased acetylcholinesterase activity and in addition caused a significant (P<0.05) increase in AChE mRNA levels in whole cerebral cortex when compared to control group. However, co-treatment with curcumin inhibited AChE activity and alters AChE mRNA levels when compared to Cd-treated group. In addition, curcumin inhibits rat cerebral cortex AChE activity in vitro. In conclusion, curcumin exhibit anti-acetylcholinesterase activity and suppressed AChE mRNA gene expression level in Cd exposed rats, thus providing some biochemical and molecular evidence on the therapeutic effect of this turmeric-derived compound in treating neurological disorders including Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Psychomotor Vigilance Task Performance During and Following Chronic Sleep Restriction in Rats

    PubMed Central

    Deurveilher, Samuel; Bush, Jacquelyn E.; Rusak, Benjamin; Eskes, Gail A.; Semba, Kazue

    2015-01-01

    Study Objectives: Chronic sleep restriction (CSR) impairs sustained attention in humans, as commonly assessed with the psychomotor vigilance task (PVT). To further investigate the mechanisms underlying performance deficits during CSR, we examined the effect of CSR on performance on a rat version of PVT (rPVT). Design: Adult male rats were trained on a rPVT that required them to press a bar when they detected irregularly presented, brief light stimuli, and were then tested during CSR. CSR consisted of 100 or 148 h of continuous cycles of 3-h sleep deprivation (using slowly rotating wheels) alternating with a 1-h sleep opportunity (3/1 protocol). Measurements and Results: After 28 h of CSR, the latency of correct responses and the percentages of lapses and omissions increased, whereas the percentage of correct responses decreased. Over 52–148 h of CSR, all performance measures showed partial or nearly complete recovery, and were at baseline levels on the first or second day after CSR. There were large interindividual differences in the magnitude of performance impairment during CSR, suggesting differential vulnerability to the effects of sleep loss. Wheel-running controls showed no changes in performance. Conclusions: A 28-h period of the 3/1 chronic sleep restriction (CSR) protocol disrupted performance on a sustained attention task in rats, as sleep deprivation does in humans. Performance improved after longer periods of CSR, suggesting allostatic adaptation, contrary to some reports of progressive deterioration in psychomotor vigilance task performance during CSR in humans. However, as observed in humans, there were individual differences among rats in the vulnerability of their attention performance to CSR. Citation: Deurveilher S, Bush JE, Rusak B, Eskes GA, Semba K. Psychomotor vigilance task performance during and following chronic sleep restriction in rats. SLEEP 2015;38(4):515–528. PMID:25515100

  11. Oxidative damage and histopathological changes in lung of rat chronically exposed to nicotine alone or associated to ethanol.

    PubMed

    Dhouib, H; Jallouli, M; Draief, M; Bouraoui, S; El-Fazâa, S

    2015-12-01

    Smoking is the most important preventable risk factor of chronic obstructive pulmonary disease and lung cancer. This study was designed to investigate oxidative damage and histopathological changes in lung tissue of rats chronically exposed to nicotine alone or supplemented with ethanol. Twenty-four male Wistar rats divided into three groups were used for the study. The nicotine group received nicotine (2.5mg/kg/day); the nicotine-ethanol group was given simultaneously same dose of nicotine plus ethanol (0.2g/kg/day), while the control group was administered only normal saline (1 ml/kg/day). The treatment was administered by subcutaneous injection once daily for a period of 18 weeks. Chronic nicotine administration alone or combined to ethanol caused a significant increase in malondialdehyde (MDA) level, superoxide dismutase (SOD) activity and catalase (CAT) activity in lung tissue compared to control rats suggesting an oxidative damage. However, these increases were mostly prominent in nicotine group. The histopathological examination of lung tissue of rats in both treated groups revealed many alterations in the pulmonary structures such as emphysema change (disappearance of the alveolar septa, increased irregularity and size of air sacs) and marked lymphocytic infiltration in perivascular and interstitial areas. However, the changes characterized in the nicotine group (pulmonary congestion, hemorrhage into alveoli and interstitial areas, edema) were more drastic than those observed in the nicotine-ethanol group, and they can be attributed to a significant degree of capillary endothelial permeability and microvascular leak. Conversely, the ethanol supplementation caused an appearance of fatty change and fibrosis in pulmonary tissue essentially due to a metabolism of ethanol. Finally, the lung damage illustrated in nicotine group was more severe than that observed in the nicotine-ethanol group. We conclude that the combined administration of nicotine and ethanol

  12. Chronic vardenafil treatment improves erectile function via structural maintenance of penile corpora cavernosa in rats with acute arteriogenic erectile dysfunction.

    PubMed

    Hotta, Yuji; Hattori, Mayuko; Kataoka, Tomoya; Ohno, Risa; Mikumo, Mayumi; Maeda, Yasuhiro; Kimura, Kazunori

    2011-03-01

    Chronic phosphodiesterase type 5 inhibitor treatment may be useful in reversing erectile dysfunction (ED). However, the mechanisms of this improvement remain unknown. The aim of this article was to determine the mechanisms of the improvement by chronic vardenafil treatment for acute arteriogenic ED in rats. Eight-week-old male Wistar-ST rats were divided into four groups: sham-operated rats (Control group) and rats with acute arteriogenic ED induced by ligating bilateral internal iliac arteries (Ligation group), subsequently treated with low-dose (0.4 mg/kg/day; VL group) or high-dose (4.0 mg/kg/day; VH group) vardenafil for 20 days from 1 week after ligature. Erectile function was assessed based on changes of intracavernous pressure (ICP) followed by electrostimulation of the cavernous nerves and was evaluated by the area under the curve of ICP/area under the curve of mean arterial pressure (area of ICP/MAP). Transforming growth factor (TGF)-β(1), vascular endothelial growth factor-A, endothelial nitric oxide synthase (eNOS), inducible NOS, and neuronal NOS mRNA expression levels in penile corpus cavernosum were determined by real-time PCR. Western blotting for TGF-β(1) protein levels and Masson trichrome staining of penile tissues were performed in each at group 4 weeks after surgery. In the VH group, area of ICP/MAP was significantly improved when compared with the Ligation group (P < 0.01). The smooth muscle (SM)/collagen ratio in the VH group was significantly higher than in the Ligation group (P < 0.05), and was comparable with that in the Control group. TGF-β(1) mRNA and protein levels in the VH group were significantly lower when compared with the Ligation group (P < 0.05). Chronic vardenafil administration ameliorates impairment of penile hemodynamics and maintains normal SM to collagen ratio in cavernous tissues after acute arterial injury in rats. © 2010 International Society for Sexual Medicine.

  13. Epigallocatechin gallate attenuates ET-1-induced contraction in carotid artery from type 2 diabetic OLETF rat at chronic stage of disease.

    PubMed

    Matsumoto, Takayuki; Watanabe, Shun; Kawamura, Ryusuke; Taguchi, Kumiko; Kobayashi, Tsuneo

    2014-11-24

    There is a growing body of evidence suggesting that epigallocatechin gallate (EGCG), a major catechin isolated from green tea, has several beneficial effects, such as anti-oxidant and anti-inflammatory activities. However, whether treatment with EGCG can suppress the endothelin-1 (ET-1)-induced contraction in carotid arteries from type 2 diabetic rats is unknown, especially at the chronic stage of the disease. We hypothesized that long-term treatment with EGCG would attenuate ET-1-induced contractions in type 2 diabetic arteries. Otsuka Long-Evans Tokushima fatty (OLETF) rats (43 weeks old) were treated with EGCG (200 mg/kg/day for 2 months, p.o.), and the responsiveness to ET-1, phenylephrine (PE), acetylcholine (ACh) and sodium nitroprusside (SNP) was measured in common carotid artery (CA) from EGCG-treated and -untreated OLETF rats and control Long-Evans Tokushima Otsuka (LETO) rats. In OLETF rats, EGCG attenuated responsiveness to ET-1 in CA compared to untreated groups. However, EGCG did not alter PE-induced contractions in CA from OLETF rats. In endothelium-denuded arteries, EGCG did not affect ET-1-induced contractions in either the OLETF or LETO group. Acetylcholine-induced relaxation was increased by EGCG treatment in CA from the OLETF group. The expressions of ET receptors, endothelial nitric oxide synthase, superoxide dismutases, and gp91(phox) [an NAD(P)H oxidase component] in CA were not altered by EGCG treatment in either group. Our data suggest that, within the timescale investigated here, EGCG attenuates ET-1-induced contractions in CA from type 2 diabetic rats, and one of the mechanisms may involve normalizing endothelial function. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The identification of metabolic disturbances in the prefrontal cortex of the chronic restraint stress rat model of depression.

    PubMed

    Liu, Lanxiang; Zhou, Xinyu; Zhang, Yuqing; Liu, Yiyun; Yang, Lining; Pu, Juncai; Zhu, Dan; Zhou, Chanjuan; Xie, Peng

    2016-05-15

    Major depressive disorder, with serious impairment in cognitive and social functioning, is a complex psychiatric disorder characterized by pervasive and persistent low mood and a loss of interest or pleasure. However, the underlying molecular mechanisms of depression remain largely unknown. In this study, we used a non-targeted metabolomics approach based on gas chromatography-mass spectrometry of the prefrontal cortex in chronic restraint stress (CRS)-treated rats. CRS was induced in the stress group by restraining rats in a plastic restrainer for 6h every day. This stress paradigm continued for 21 days. Body weight measurement and behavior tests were applied, including the sucrose preference test for anhedonia, the forced swimming test for despair-like behavior, and open field test and the elevated plus-maze to test for anxiety-like behaviors in rats after CRS. Differentially expressed metabolites associated with CRS-treated rats were identified by combining multivariate and univariate statistical analysis and corrected for multiple testing using the Benjamini-Hochberg procedure. A heat map of differential metabolites was constructed using Matlab. Ingenuity Pathways Analysis was applied to identify the predicted pathways and biological functions relevant to the bio-molecules of interest. Our findings showed that CRS induces depression-like behaviors and not anxiety-like behaviors. Thirty-six metabolites were identified as potential depression biomarkers involved in amino acid metabolism, energy metabolism and lipid metabolism, as well as a disturbance in neurotransmitters. Consequently, this study provides useful insights into the molecular mechanisms of depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Vitamin C Prevents Sleep Deprivation-induced Elevation in Cortisol and Lipid Peroxidation in the Rat Plasma.

    PubMed

    Olayaki, L A; Sulaiman, S O; Anoba, N B

    2015-12-20

    Sleep deprivation (SD) is biological stressor that alters metabolic parameters, induced oxidative stress and lipid peroxidation. Previous studies have shown that antioxidants substances such as melatonin, tryptophan, vitamin E and vitamin C improved stress tolerance in laboratory animals. In this study, we examined the potential protective effects of administration of vitamin C on acute and chronic sleep deprivation-induced metabolic derangement. In addition, possible processes involved in vitamin C effects on acute and chronic sleep deprivation-induced metabolic derangement were determined. Thirty-five rats (120-250g) were used. The rats were divided into 7 groups of 5 rats each as Control (CTRL), Acute sleep deprived untreated with vitamin C (AC), Acute sleep deprived treated with vitamin C (AWC), Chronic sleep deprived untreated with vitamin C (CC), Chronic sleep deprived treated with vitamin C (CWC), Chronic sleep deprived + Recovery untreated with vitamin C (RC), and Chronic sleep deprived + Recovery treated with vitamin C (RWC). The SD was carried out for 20h for 1 day on the acute groups, and for 20h/day for 5 days on the chronic group, using the Multiple Modified Platforms (MMP) after oral administration of 300mg/kg of vitamin C to all vitamin C-treated groups. The recovery groups were further observed for five days after SD. The control group were treated with vitamin C and without stress in their home cages. At the end of the experiment, the animals were sacrificed and blood was collected for estimation of plasma glucose, insulin, cortisol and malondialdehyde (MDA). The results showed that acute and chronic SDs significantly  increased MDA and cortisol levels, while significantly reduced the levels of insulin. Treatment with vitamin C reversed the changes in the MDA, cortisol and plasma insulin levels. Additionally, allowing the rats to recover for 5 days after sleep deprivation corrected the observed changes. Plasma glucose was significantly

  16. Overlapping but distinct effects of genistein and ethinyl estradiol (EE2) in female Sprague-Dawley rats in multigenerational reproductive and chronic toxicity studies

    PubMed Central

    Delclos, K. Barry; Weis, Constance C.; Bucci, Thomas J.; Olson, Greg; Mellick, Paul; Sadovova, Natalya; Latendresse, John R.; Thorn, Brett; Newbold, Retha R.

    2009-01-01

    Genistein and ethinyl estradiol (EE2) were examined in multigenerational reproductive and chronic toxicity studies that had different treatment intervals among generations. Sprague-Dawley rats received genistein (0, 5, 100, or 500 ppm) or EE2 (0, 2, 10, or 50 ppb) in a low phytoestrogen diet. Nonneoplastic effects in females are summarized here. Genistein at 500 ppm and EE2 at 50 ppb produced similar effects in continuously exposed rats, including decreased body weights, accelerated vaginal opening, and altered estrous cycles in young animals. At the high dose, anogenital distance was subtly affected by both compounds, and a reduction in litter size was evident in genistein-treated animals. Genistein at 500 ppm induced an early onset of aberrant cycles relative to controls in the chronic studies. EE2 significantly increased the incidence of uterine lesions (atypical focal hyperplasia and squamous metaplasia). These compound-specific effects appeared to be enhanced in the offspring of prior exposed generations. PMID:19159674

  17. Hepatoprotective effect of manual acupuncture at acupoint GB34 against CCl4-induced chronic liver damage in rats

    PubMed Central

    Yim, Yun-Kyoung; Lee, Hyun; Hong, Kwon-Eui; Kim, Young-Il; Lee, Byung-Ryul; Kim, Tae-Han; Yi, Ji-Young

    2006-01-01

    AIM: To investigate the hepatoprotective effect of manual acupuncture at Yanglingquan (GB34) on CCl4-induced chronic liver damage in rats. METHODS: Rats were injected intraperitoneally with CCl4 (1 mL/kg) and treated with manual acupuncture using reinforcing manipulation techniques at left GB34 (Yanglingquan) 3 times a week for 10 wk. A non-acupoint in left gluteal area was selected as a sham point. To estimate the hepatoprotective effect of manual acupuncture at GB34, measurement of liver index, biochemical assays including serum ALT, AST, ALP and total cholesterol, histological analysis and blood cell counts were conducted. RESULTS: Manual acupuncture at GB34 reduced the liver index, serum ALT, AST, ALP and total cholesterol levels as compared with the control group and the sham acupuncture group. It also increased and normalized the populations of WBC and lymphocytes. CONCLUSION: Manual acupuncture with reinforcing manipulation techniques at left GB34 reduces liver toxicity, protects liver function and liver tissue, and normalizes immune activity in CCl4-intoxicated rats. PMID:16610030

  18. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats

    PubMed Central

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A.; Hernández-Reyes, Ana Gabriela

    2015-01-01

    Abstract One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity. PMID:25599112

  19. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats.

    PubMed

    Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A; Hernández-Reyes, Ana Gabriela; Martínez-Galero, Elizdath

    2015-08-01

    One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity.

  20. Methamphetamine enhances sexual behavior in female rats.

    PubMed

    Winland, Carissa; Haycox, Charles; Bolton, Jessica L; Jampana, Sumith; Oakley, Benjamin J; Ford, Brittany; Ornelas, Laura; Burbey, Alexandra; Marquette, Amber; Frohardt, Russell J; Guarraci, Fay A

    2011-06-01

    The present study evaluated the effects of methamphetamine (MA) on sexual behavior in female rats. In Experiment 1, ovariectomized, hormone-primed rats were injected with MA (1.0mg/kg, i.p.) or saline prior to a test for mate choice wherein females could mate with two males simultaneously. Female rats treated with saline returned to their preferred mate faster after receiving intromissions and visited their preferred mate at a higher rate than their non-preferred mate. In contrast, MA-treated female rats spent a similar amount of time with their preferred and non-preferred mate and failed to return to their preferred mate faster than to their non-preferred mate following intromissions. Two weeks later, the females received the same drug treatment but were tested for partner preference wherein females could spend time near a male or female stimulus rat. All subjects spent more time near the male stimulus than the female stimulus. However, the MA-treated rats visited the male stimulus more frequently and spent less time near the female stimulus than the saline-treated rats. Similar to Experiment 1, female rats in Experiment 2 were tested for mate choice and then two weeks later tested for partner preference; however, females received three daily injections of MA (1.0mg/kg, i.p.) or saline. Females treated chronically with MA returned to both males faster following intromissions than females treated with saline, independent of preference (i.e., preferred mate and non-preferred mate). Furthermore, MA-treated rats were more likely to leave either male (i.e., preferred or non-preferred mate) than saline-treated rats after receiving sexual stimulation. Although MA-treated subjects spent more time near the male stimulus than the female stimulus, they spent less time near either when compared to saline-treated subjects. The present results demonstrate that MA affects sexual behavior in female rats partly by increasing locomotion and partly by directly affecting sexual

  1. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    PubMed

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  2. Glutamate co-transmission from developing medial nucleus of the trapezoid body - Lateral superior olive synapses is cochlear dependent in kanamycin-treated rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae Ho; Pradhan, Jonu; Maskey, Dhiraj

    Research highlights: {yields} Glutamate co-transmission is enhanced in kanamycin-treated rats. {yields} VGLUT3 expression is increased in kanamycin-treated rats. {yields} GlyR expression is decreased in kanamycin-treated rats. {yields} GlyR, VGLUT3 expression patterns are asymmetric in unilaterally cochlear ablated rat. -- Abstract: Cochlear dependency of glutamate co-transmission at the medial nucleus of the trapezoid body (MNTB) - the lateral superior olive (LSO) synapses was investigated using developing rats treated with high dose kanamycin. Rats were treated with kanamycin from postnatal day (P) 3 to P8. A scanning electron microscopic study on P9 demonstrated partial cochlear hair cell damage. A whole cell voltagemore » clamp experiment demonstrated the increased glutamatergic portion of postsynaptic currents (PSCs) elicited by MNTB stimulation in P9-P11 kanamycin-treated rats. The enhanced VGLUT3 immunoreactivities (IRs) in kanamycin-treated rats and asymmetric VGLUT3 IRs in the LSO of unilaterally cochlear ablated rats supported the electrophysiologic data. Taken together, it is concluded that glutamate co-transmission is cochlear-dependent and enhanced glutamate co-transmission in kanamycin-treated rats is induced by partial cochlear damage.« less

  3. Insulin resistance during euglycemic clamp studies in chronically undernourished rats with mild streptozocin diabetes.

    PubMed

    Rao, R H

    1995-11-01

    Malnutrition has been shown to impair insulin sensitivity, but it is not known whether this effect has any impact on coexisting diabetes. Insulin sensitivity was therefore studied using the glucose clamp technique in rats with chronic nutritional deprivation superimposed on mild streptozocin (STZ) diabetes mellitus. In pair-feeding experiments, 4-week-old littermate rats were either allowed ad libitum access to food or restricted to 50% of ad libitum intake for 8 weeks, and were injected with STZ 40 mg/kg intraperitoneally halfway through the experiment. Fasting plasma glucose (FPG) was similar in both groups of rats, but fasting plasma insulin (FPI) was lower in the undernourished group (P = .016). Undernourished rats were significantly more insulin resistant during euglycemic hyperinsulinemia of the same degree, with glucose disposal rate being impaired by 50% as compared with that in ad libitum-fed diabetic littermates (24.4 +/- 2.8 v 51.5 +/- 4.4 mumol/kg/min, P = .0008). The insulin sensitivity index was significantly lower in the undernourished group (3.03 +/- 0.32 v 5.67 +/- 0.6, P = .0057). The results show that chronic undernutrition markedly reduces insulin sensitivity in rats with mild STZ diabetes. This is further evidence that chronic undernutrition is a deleterious modifying influence on coexisting diabetes mellitus. It suggests that the insulin resistance of malnutrition-related diabetes mellitus (MRDM) could potentially be an acquired defect mediated by the coexistent undernutrition, rather than a "distinctive" feature that is intrinsically unique to this diabetic syndrome.

  4. Antidepressant-like effects of long-term sarcosine treatment in rats with or without chronic unpredictable stress.

    PubMed

    Chen, Kuang-Ti; Wu, Ching-Hsiang; Tsai, Mang-Hung; Wu, Ya-Chieh; Jou, Ming-Jia; Huang, Chih-Chia; Wei, I-Hua

    2017-01-01

    Sarcosine, an N-methyl-d-aspartate receptor enhancer, can improve depression-like behavior in rodent models and depression in humans. We found that a single dose of sarcosine exerted antidepressant-like effects with rapid concomitant increases in the mammalian target of rapamycin (mTOR) signaling pathway activation and enhancement of α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR) membrane insertion. Sarcosine may play a crucial role in developing novel therapy for depression. For a detailed understanding of sarcosine, this study examined the effects of long-term sarcosine treatment on the forced swim test (FST), mTOR signaling, and AMPAR membrane insertion in rats. The effects of long-term sarcosine treatment were examined in naive rats and rats exposed to chronic unpredictable stress (CUS). Long-term sarcosine treatment (560mg/kg/d for 21 d) significantly ameliorated the increased immobility induced by CUS in the FST, reaffirming the potential role of sarcosine as an antidepressant for depressed patients. The same long-term treatment exhibited no such effect in naive rats despite increased mTOR activation and AMPAR membrane insertion in both groups. Our findings clearly show CUS-exposed rats are sensitive to long-term sarcosine treatment in FST and the response at the same dose is absent in naïve rats. Nevertheless, the distinct sensitivity to long-term sarcosine treatment in rats with or without CUS is not associated with the activated mTOR signaling pathway or increased AMPAR membrane insertion. Additionally, understanding the behavioral and molecular basis of distinct responses is vital important for developing personalized treatment programs to increase the probability of success when treating depression. Copyright © 2016. Published by Elsevier B.V.

  5. The antidepressant effect of an antiulcer pentadecapeptide BPC 157 in Porsolt's test and chronic unpredictable stress in rats. A comparison with antidepressants.

    PubMed

    Sikiric, P; Separovic, J; Buljat, G; Anic, T; Stancic-Rokotov, D; Mikus, D; Marovic, A; Prkacin, I; Duplancic, B; Zoricic, I; Aralica, G; Lovric-Bencic, M; Ziger, T; Perovic, D; Rotkvic, I; Mise, S; Hanzevacki, M; Hahn, V; Seiwerth, S; Turkovic, B; Grabarevic, Z; Petek, M; Rucman, R

    2000-01-01

    Various antidepressants have antiulcer activity. Likewise, the models currently used in ulcers and depression disorders research have a considerable degree of similarity. Therefore, the possibility that depression disorders could be effectively influenced by a primary antiulcer agent with a cyto/organoprotective activity, such as the novel stomach pentadecapeptide BPC 157, was investigated in two rat depression assays. First, a forced swimming test (a Porsolt's procedure) was used. As a more severe procedure, chronic unpredictable stress (after 5 d of unpredictable stress protocol, once daily drug application during stress procedure, open field-immobility test assessment at fourth or sixth day of medication) was used. In a forced swimming test, a reduction of the immobility time in BPC 157 (10 microg, 10 ng x kg(-1) i.p.) treated rats corresponds to the activity of the 15 mg or 40 mg (i.p.) of conventional antidepressants, imipramine or nialamide, respectively, given according to the original Porsolt's protocol. In chronic unpredictable stress procedure, particular aggravation of experimental conditions markedly affected the conventional antidepressant activity, whereas BPC 157 effectiveness was continuously present. The effect of daily imipramine (30 mg) medication could be seen only after a more prolonged period, but not after a shorter period (i.e., 4-d protocol). In these conditions, no delay in the effectiveness was noted in BPC 157 medication and a reduction of the immobility of chronically stressed rats was noted after both 4 and 6 d of BPC 157 (10 microg, 10 ng) medication.

  6. Characterization of White Matter Injury in a Rat Model of Chronic Cerebral Hypoperfusion.

    PubMed

    Choi, Bo-Ryoung; Kim, Dong-Hee; Back, Dong Bin; Kang, Chung Hwan; Moon, Won-Jin; Han, Jung-Soo; Choi, Dong-Hee; Kwon, Kyoung Ja; Shin, Chan Young; Kim, Bo-Ram; Lee, Jongmin; Han, Seol-Heui; Kim, Hahn Young

    2016-02-01

    Chronic cerebral hypoperfusion can lead to ischemic white matter injury resulting in vascular dementia. To characterize white matter injury in vascular dementia, we investigated disintegration of diverse white matter components using a rat model of chronic cerebral hypoperfusion. Chronic cerebral hypoperfusion was modeled in Wistar rats by permanent occlusion of the bilateral common carotid arteries. We performed cognitive behavioral tests, including the water maze task, odor discrimination task, and novel object test; histological investigation of neuroinflammation, oligodendrocytes, myelin basic protein, and nodal or paranodal proteins at the nodes of Ranvier; and serial diffusion tensor imaging. Cilostazol was administered to protect against white matter injury. Diverse cognitive impairments were induced by chronic cerebral hypoperfusion. Disintegration of white matter was characterized by neuroinflammation, loss of oligodendrocytes, attenuation of myelin density, structural derangement at the nodes of Ranvier, and disintegration of white matter tracts. Cilostazol protected against cognitive impairments and white matter disintegration. White matter injury induced by chronic cerebral hypoperfusion can be characterized by disintegration of diverse white matter components. Cilostazol might be a therapeutic strategy against white matter disintegration in patients with vascular dementia. © 2015 American Heart Association, Inc.

  7. Rat growth during chronic centrifugation

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Oyama, J.

    1978-01-01

    Female weanling rats were chronically centrifuged at 4.15 G with controls at terrestrial gravity. Samples were sacrificed for body composition studies at 0, 28, 63, 105 and 308 days of centrifugation. The centrifuged group approached a significantly lower mature body mass than the controls (251 and 318g) but the rate of approach was the same in both groups. Retirement to 1G on the 60th day resulted in complete recovery. Among individual components muscle, bone, skin, CNS, heart, kidneys, body water and body fat were changed in the centrifuged group. However, an analysis of the growth of individual components relative to growth of the total fat-free compartment revealed that only skin (which increased in mass) was responding to centrifugation per se.

  8. Chronic nicotine administration differentially affects neurotransmitter release from rat striatal slices.

    PubMed

    Yu, Z J; Wecker, L

    1994-07-01

    The objective of these experiments was to determine whether the chronic administration of nicotine, at a dose regimen that increases the density of nicotine binding sites, alters the nicotine-induced release of [3H]-dopamine ([3H]DA), [3H]norepinephrine ([3H]NE), [3H]-serotonin ([3H]5-HT), or [3H]acetylcholine ([3H]ACh) from rat striatal slices. For these experiments, rats received subcutaneous injections of either saline or nicotine bitartrate [1.76 mg (3.6 mumol)/kg, dissolved in saline] twice daily for 10 days, and neurotransmitter release was measured following preloading of the tissues with [3H]DA, [3H]NE, [3H]5-HT, or [3H]choline. Chronic nicotine administration did not affect the accumulation of tritium by striatal slices, the basal release of radioactivity, or the 25 mM KCl-evoked release of neurotransmitter. Superfusion of striatal slices with 1, 10, and 100 microM nicotine increased [3H]DA release in a concentration-dependent manner, and release from slices from nicotine-injected animals was significantly (p < 0.05) greater than release from saline-injected controls; release from the former increased to 132, 191, and 172% of release from the controls following superfusion with 1, 10, and 100 microM nicotine, respectively. Similarly, [3H]5-HT release increased in a concentration-related manner following superfusion with nicotine, and release from slices from nicotine-injected rats was significantly (p < 0.05) greater than that from controls. [3H]5-HT release from slices from nicotine-injected rats evoked by superfusion with 1 and 10 microM nicotine increased to 453 and 217%, respectively, of release from slices from saline-injected animals. The nicotine-induced release of [3H]NE from striatal slices was also concentration dependent but was unaffected by chronic nicotine administration.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Chronic prostatic infection and inflammation by Propionibacterium acnes in a rat prostate infection model.

    PubMed

    Olsson, Jan; Drott, Johanna Bergh; Laurantzon, Lovisa; Laurantzon, Oscar; Bergh, Anders; Elgh, Fredrik

    2012-01-01

    Chronic inflammation in the prostate, seen as infiltration of inflammatory cells into the prostate gland in histological samples, affects approximately half the male population without indication of prostate disease, and is almost ubiquitous in patients diagnosed with benign prostate hyperplasia and cancer. Several studies have demonstrated the gram-positive bacterium Propionibacterium acnes to be frequently present in prostate tissue from men suffering from prostate disease. P. acnes has been shown to be associated with histological inflammation in human prostatectomy specimens, and also to induce strong inflammatory response in prostate-derived tissue culture models. The present paper describes a rat model for assessment of the pathogenic potential of P. acnes in prostate. Prostate glands of Sprague Dawley rats (n = 98) were exposed via an abdominal incision and live P. acnes or, in control rats, saline were injected into the ventral and dorso-lateral lobes. Rats were sacrificed 5 days, 3 weeks, 3 months and 6 months post infection, and prostate tissue was analyzed for bacterial content and histological inflammation. Rat sera were assessed for levels of CRP and anti-P. acnes IgG. Live P. acnes could be recovered from the dorso-lateral lobes up to 3 months post infection, while the ventral lobes were cleared from bacteria at that time. In samples up to 3 months post infection, the dorso-lateral lobes exhibited intense focal inflammation. CRP and IgG levels were elevated throughout the span of the experiment, and reached maximum levels 3 weeks and 3 months post infection, respectively. We show that P. acnes have the potential to cause chronic infection in previously healthy prostate, and that the infection has potential to cause chronic histological inflammation in the infected tissue. The high prevalence of P. acnes in human prostate tissue calls for resolution of pathogenic details. The present rat model suggests that complications such as chronic

  10. Chronic Prostatic Infection and Inflammation by Propionibacterium acnes in a Rat Prostate Infection Model

    PubMed Central

    Olsson, Jan; Drott, Johanna Bergh; Laurantzon, Lovisa; Laurantzon, Oscar; Bergh, Anders; Elgh, Fredrik

    2012-01-01

    Chronic inflammation in the prostate, seen as infiltration of inflammatory cells into the prostate gland in histological samples, affects approximately half the male population without indication of prostate disease, and is almost ubiquitous in patients diagnosed with benign prostate hyperplasia and cancer. Several studies have demonstrated the Gram-positive bacterium Propionibacterium acnes to be frequently present in prostate tissue from men suffering from prostate disease. P. acnes has been shown to be associated with histological inflammation in human prostatectomy specimens, and also to induce strong inflammatory response in prostate-derived tissue culture models. The present paper describes a rat model for assessment of the pathogenic potential of P. acnes in prostate. Prostate glands of Sprague Dawley rats (n = 98) were exposed via an abdominal incision and live P. acnes or, in control rats, saline were injected into the ventral and dorso-lateral lobes. Rats were sacrificed 5 days, 3 weeks, 3 months and 6 months post infection, and prostate tissue was analyzed for bacterial content and histological inflammation. Rat sera were assessed for levels of CRP and anti-P. acnes IgG. Live P. acnes could be recovered from the dorso-lateral lobes up to 3 months post infection, while the ventral lobes were cleared from bacteria at that time. In samples up to 3 months post infection, the dorso-lateral lobes exhibited intense focal inflammation. CRP and IgG levels were elevated throughout the span of the experiment, and reached maximum levels 3 weeks and 3 months post infection, respectively. We show that P. acnes have the potential to cause chronic infection in previously healthy prostate, and that the infection has potential to cause chronic histological inflammation in the infected tissue. The high prevalence of P. acnes in human prostate tissue calls for resolution of pathogenic details. The present rat model suggests that complications such as chronic

  11. Behavioral and neurochemical effects of alpha lipoic acid associated with omega-3 in tardive dyskinesia induced by chronic haloperidol in rats.

    PubMed

    de Araújo, Dayane Pessoa; Camboim, Thaisa Gracielle Martins; Silva, Ana Patrícia Magalhães; Silva, Caio da Fonseca; de Sousa, Rebeca Canuto; Barbosa, Mabson Delâno Alves; Oliveira, Lucidio Clebeson; Cavalcanti, José Rodolfo Lopes de Paiva; Lucena, Eudes Euler de Souza; Guzen, Fausto Pierdoná

    2017-07-01

    Tardive dyskinesia (TD) is characterized by involuntary movements of the lower portion of the face being related to typical antipsychotic therapy. TD is associated with the oxidative imbalance in the basal ganglia. Lipoic acid (LA) and omega-3 (ω-3) are antioxidants acting as enzyme cofactors, regenerating antioxidant enzymes. This study aimed to investigate behavioral and neurochemical effects of supplementation with LA (100 mg/kg) and ω-3 (1 g/kg) in the treatment of TD induced by chronic use of haloperidol (HAL) (1 mg/kg) in rats. Wistar male rats were used, weighing between 180-200 g. The animals were treated chronically (31 days) with LA alone or associated with HAL or ω-3. Motor behavior was assessed by open-field test, the catalepsy test, and evaluation of orofacial dyskinesia. Oxidative stress was accessed by determination of lipid peroxidation and concentration of nitrite. LA and ω-3 alone or associated caused an improvement in motor performance by increasing locomotor activity in the open-field test and decreased the permanence time on the bar in the catalepsy test and decreased the orofacial dyskinesia. LA and ω-3 showed antioxidant effects, decreasing lipid peroxidation and nitrite levels. Thus, the use of LA associated with ω-3 reduced the extrapyramidal effects produced by chronic use of HAL.

  12. Alveolar bone dynamics in osteoporotic rats treated with raloxifene or alendronate: confocal microscopy analysis

    NASA Astrophysics Data System (ADS)

    Ramalho-Ferreira, Gabriel; Faverani, Leonardo Perez; Grossi-Oliveira, Gustavo Augusto; Okamoto, Tetuo; Okamoto, Roberta

    2015-03-01

    In this study, the characteristics of the alveolar bone of rats with induced osteoporosis were examined. Thirty-two rats were divided into four groups according to the induction of osteoporosis and drugs administered: OG, osteoporotic rats without treatment (negative control); SG, rats which underwent sham surgery ovariectomy (SHAM); alendronate (AG), osteoporotic rats treated with alendronate; and RG, osteoporotic rats treated with raloxifene (RG). On the 8th day after ovariectomy and SHAM surgeries, drug therapy was started with AG or RG. On the 52nd day, 20 mg/kg calcein was administered to all of the rats, and on the 80th day, 20 mg/kg alizarin red was administered. Euthanasia was performed on the 98th day. The bone area marked by fluorochromes was calculated and data were subjected to two-way ANOVA test and Tukey's post-hoc test (p<0.05). The comparison of the induced osteoporosis groups showed no statistically significant differences in bone turnover only between RG and SG (p=0.074) and AG and OG (p=0.138). All other comparisons showed significant differences (p<0.001). The largest bone turnover was observed in RG and SG groups. RG was the medication that improved the dynamics of the alveolar bone of rats with induced osteoporosis, resembling that of healthy rats.

  13. Effect of Low-Dose Aspirin on Chronic Acid Reflux Esophagitis in Rats.

    PubMed

    Masuda, Takahiro; Yano, Fumiaki; Omura, Nobuo; Tsuboi, Kazuto; Hoshino, Masato; Yamamoto, Se Ryung; Akimoto, Shunsuke; Kashiwagi, Hideyuki; Yanaga, Katsuhiko

    2018-01-01

    Clinical role of low-dose aspirin (LDA) in pathogenesis of gastroesophageal reflux disease is by far controversial. This can be attributed to the paucity of basic research detailing the mechanism of LDA-induced esophageal mucosal injury (EI) on underlying chronic acid reflux esophagitis (RE). The aim of this study was to clarify the effect of LDA on chronic RE in rats. Esophagitis was induced in 8-week-old male Wistar rats by ligating the border between forestomach and glandular portion with a 2-0 silk tie and covering the duodenum with a small piece of 18-Fr Nélaton catheter. Seventy-eight chronic RE rat models were divided into five treatment groups, consisting of orally administered vehicle (controls), and aspirin doses of 2, 5, 50 or 100 mg/kg once daily for 28 days. EI was assessed by gross area of macroscopic mucosal injury, severity grade of esophagitis and microscopic depth of infiltration by inflammatory cells. Area of esophagitis in animals with aspirin dose of 100 mg/kg/day showed a 36.5% increase compared with controls, although it failed to achieve statistical significance (p = 0.812). Additionally, the rate of severe EI was increased in animals with aspirin dose of 100 mg/kg/day as compared with controls (p < 0.05). The grade of severity correlated with the depth of inflammation (r s  = 0.492, p < 0.001). Maximal dose aspirin (100 mg/kg/day) contributed in exacerbating preexisting EI. LDA (2 and 5 mg/kg/day), on the other hand, did not affect chronic RE in this model. LDA seems to be safe for use in patients with chronic RE.

  14. Protective effect of heat-treated cucumber (Cucumis sativus L.) juice on alcohol detoxification in experimental rats.

    PubMed

    Bajpai, Vivek K; Kim, Na-Hyung; Kim, Ji-Eun; Kim, Kangmin; Kang, Sun Chul

    2016-05-01

    In this study, heat-treated cucumber juice was assessed for its protective effect on blood alcohol levels and hepatic alcohol metabolic enzyme system in experimental rats. Initially, during detoxification of alcohol, all groups were orally dosed to 22% alcohol (6ml/kg body weight) along with different concentrations of heat-treated cucumber juice (10, 100 and 500mg/kg) and commercial goods for hangover-removal on sale (2ml/kg). Cucumber juice was dosed before 30 min, and simultaneously after 30min of alcohol administration, and its hepatoprotective effect on blood alcohol levels and hepatic alcohol metabolic enzyme system in experimental rats was evaluated. As a result, after 7h, remarkable reduction was found in the blood alcohol levels for all concentrations of cucumber juice treatment. Treatment with cucumber juice resulted in increasing dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) enzymatic activities in rat liver at 9h after alcohol administration thereby stimulated blood alcohol metabolism as compared with control group. The effect of heat-treated cucumber juice on alcohol detoxification was observed only in the rats treated before 30min from alcohol administration. These findings indicate that heat-treated cucumber juice has significant protective effect on alcohol detoxification in experimental rats, suggesting its usefulness in the treatment of liver injury caused by alcohol consumption.

  15. Cardiovascular and metabolic consequences of the association between chronic stress and high-fat diet in rats.

    PubMed

    Simas, Bruna B; Nunes, Everson A; Crestani, Carlos C; Speretta, Guilherme F

    2018-05-01

    Obesity and chronic stress are considered independent risk factors for the development of cardiovascular diseases and changes in autonomic system activity. However, the cardiovascular consequences induced by the association between high-fat diet (HFD) and chronic stress are not fully understood. We hypothesized that the association between HFD and exposure to a chronic variable stress (CVS) protocol for four weeks might exacerbate the cardiovascular and metabolic disturbances in rats when compared to these factors singly. To test this hypothesis, male Wistar rats were divided into four groups: control-standard chow diet (SD; n = 8); control-HFD (n = 8); CVS-SD (n = 8); and CVS-HFD (n = 8). The CVS consisted of repeated exposure of the rats to different inescapable and unpredictable stressors (restraint tress; damp sawdust, cold, swim stress and light cycle inversion). We evaluated cardiovascular function, autonomic activity, dietary intake, adiposity and metabolism. The HFD increased body weight, adiposity and blood glucose concentration (∼15%) in both control and CVS rats. The CVS-HFD rats showed decreased insulin sensitivity (25%) compared to CVS-SD rats. The control-HFD and CVS-HFD rats presented increased intrinsic heart rate (HR) values (∼8%). CVS increased cardiac sympathetic activity (∼65%) in both SD- and HFD-fed rats. The HFD increased basal HR (∼10%). Blood pressure and baroreflex analyzes showed no differences among the experimental groups. In conclusion, the present data indicate absence of interaction on autonomic imbalance evoked by either CVS or HFD. Additionally, HFD increased HR and evoked metabolic disruptions which are independent of stress exposure.

  16. Acid reflux directly causes sleep disturbances in rat with chronic esophagitis.

    PubMed

    Nakahara, Kenichi; Fujiwara, Yasuhiro; Tsukahara, Takuya; Yamagami, Hirokazu; Tanigawa, Tetsuya; Shiba, Masatsugu; Tominaga, Kazunari; Watanabe, Toshio; Urade, Yoshihiro; Arakawa, Tetsuo

    2014-01-01

    Gastroesophageal reflux disease (GERD) is strongly associated with sleep disturbances. Proton pump inhibitor (PPI) therapy improves subjective but not objective sleep parameters in patients with GERD. This study aimed to investigate the association between GERD and sleep, and the effect of PPI on sleep by using a rat model of chronic acid reflux esophagitis. Acid reflux esophagitis was induced by ligating the transitional region between the forestomach and the glandular portion and then wrapping the duodenum near the pylorus. Rats underwent surgery for implantation of electrodes for electroencephalogram and electromyogram recordings, and they were transferred to a soundproof recording chamber. Polygraphic recordings were scored by using 10-s epochs for wake, rapid eye movement sleep, and non-rapid eye movement (NREM) sleep. To examine the role of acid reflux, rats were subcutaneously administered a PPI, omeprazole, at a dose of 20 mg/kg once daily. Rats with reflux esophagitis presented with several erosions, ulcers, and mucosal thickening with basal hyperplasia and marked inflammatory infiltration. The reflux esophagitis group showed a 34.0% increase in wake (232.2±11.4 min and 173.3±7.4 min in the reflux esophagitis and control groups, respectively; p<0.01) accompanied by a reduction in NREM sleep during light period, an increase in sleep fragmentation, and more frequent stage transitions. The use of omeprazole significantly improved sleep disturbances caused by reflux esophagitis, and this effect was not observed when the PPI was withdrawn. Acid reflux directly causes sleep disturbances in rats with chronic esophagitis.

  17. Acid Reflux Directly Causes Sleep Disturbances in Rat with Chronic Esophagitis

    PubMed Central

    Nakahara, Kenichi; Fujiwara, Yasuhiro; Tsukahara, Takuya; Yamagami, Hirokazu; Tanigawa, Tetsuya; Shiba, Masatsugu; Tominaga, Kazunari; Watanabe, Toshio; Urade, Yoshihiro; Arakawa, Tetsuo

    2014-01-01

    Background & Aims Gastroesophageal reflux disease (GERD) is strongly associated with sleep disturbances. Proton pump inhibitor (PPI) therapy improves subjective but not objective sleep parameters in patients with GERD. This study aimed to investigate the association between GERD and sleep, and the effect of PPI on sleep by using a rat model of chronic acid reflux esophagitis. Methods Acid reflux esophagitis was induced by ligating the transitional region between the forestomach and the glandular portion and then wrapping the duodenum near the pylorus. Rats underwent surgery for implantation of electrodes for electroencephalogram and electromyogram recordings, and they were transferred to a soundproof recording chamber. Polygraphic recordings were scored by using 10-s epochs for wake, rapid eye movement sleep, and non-rapid eye movement (NREM) sleep. To examine the role of acid reflux, rats were subcutaneously administered a PPI, omeprazole, at a dose of 20 mg/kg once daily. Results Rats with reflux esophagitis presented with several erosions, ulcers, and mucosal thickening with basal hyperplasia and marked inflammatory infiltration. The reflux esophagitis group showed a 34.0% increase in wake (232.2±11.4 min and 173.3±7.4 min in the reflux esophagitis and control groups, respectively; p<0.01) accompanied by a reduction in NREM sleep during light period, an increase in sleep fragmentation, and more frequent stage transitions. The use of omeprazole significantly improved sleep disturbances caused by reflux esophagitis, and this effect was not observed when the PPI was withdrawn. Conclusions Acid reflux directly causes sleep disturbances in rats with chronic esophagitis. PMID:25215524

  18. Dragon's blood inhibits chronic inflammatory and neuropathic pain responses by blocking the synthesis and release of substance P in rats.

    PubMed

    Li, Yu-Sang; Wang, Jun-Xian; Jia, Mei-Mei; Liu, Min; Li, Xiao-Jun; Tang, He-Bin

    2012-01-01

    As a traditional Chinese medicine, dragon's blood (DB) is widely used in treating various pains for thousands of years due to its potent anti-inflammatory and analgesic effects. In the present study, we observed that intragastric administration of DB at dosages of 0.14, 0.56, and 1.12 g/kg potently inhibited paw edema, hyperalgesia, cyclooxygenase-2 (COX-2) protein expression, or preprotachykinin-A mRNA expression in carrageenan-inflamed or sciatic nerve-injured (chronic constriction injury) rats, respectively. A short-term (15 s or 10 min) pre-exposure of cultured rat dorsal root ganglion (DRG) neurons to DB (0.3, 3, and 30 µg/ml) or its component cochinchinenin B (CB; 0.1, 1, and 10 µM) blocked capsaicin-evoked increases in both the intracellular calcium ion concentration and the substance P release. Moreover, a long-term (180 min) exposure of cultured rat DRG neurons to DB or CB significantly attenuated bradykinin-induced substance P release. These findings indicate that DB exerts anti-inflammatory and analgesic effects by blocking the synthesis and release of substance P through inhibition of COX-2 protein induction and intracellular calcium ion concentration. Therefore, DB may serve as a promising potent therapeutic agent for treatment of chronic pain, and its effective component CB might partly contribute to anti-inflammatory and analgesic effects.

  19. Changed Synaptic Plasticity in Neural Circuits of Depressive-Like and Escitalopram-Treated Rats

    PubMed Central

    Li, Xiao-Li; Yuan, Yong-Gui; Xu, Hua; Wu, Di; Gong, Wei-Gang; Geng, Lei-Yu; Wu, Fang-Fang; Tang, Hao; Xu, Lin

    2015-01-01

    Background: Although progress has been made in the detection and characterization of neural plasticity in depression, it has not been fully understood in individual synaptic changes in the neural circuits under chronic stress and antidepressant treatment. Methods: Using electron microscopy and Western-blot analyses, the present study quantitatively examined the changes in the Gray’s Type I synaptic ultrastructures and the expression of synapse-associated proteins in the key brain regions of rats’ depressive-related neural circuit after chronic unpredicted mild stress and/or escitalopram administration. Meanwhile, their depressive behaviors were also determined by several tests. Results: The Type I synapses underwent considerable remodeling after chronic unpredicted mild stress, which resulted in the changed width of the synaptic cleft, length of the active zone, postsynaptic density thickness, and/or synaptic curvature in the subregions of medial prefrontal cortex and hippocampus, as well as the basolateral amygdaloid nucleus of the amygdala, accompanied by changed expression of several synapse-associated proteins. Chronic escitalopram administration significantly changed the above alternations in the chronic unpredicted mild stress rats but had little effect on normal controls. Also, there was a positive correlation between the locomotor activity and the maximal synaptic postsynaptic density thickness in the stratum radiatum of the Cornu Ammonis 1 region and a negative correlation between the sucrose preference and the length of the active zone in the basolateral amygdaloid nucleus region in chronic unpredicted mild stress rats. Conclusion: These findings strongly indicate that chronic stress and escitalopram can alter synaptic plasticity in the neural circuits, and the remodeled synaptic ultrastructure was correlated with the rats’ depressive behaviors, suggesting a therapeutic target for further exploration. PMID:25899067

  20. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    PubMed

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  1. Adverse effects of chronic exposure to nonylphenol on non-alcoholic fatty liver disease in male rats

    PubMed Central

    Yu, Jie; Yang, Xuesong; Luo, Ya; Yang, Xuefeng; Yang, Mengxue; Yang, Jin; Zhou, Jie; Gao, Feng; He, Liting; Xu, Jie

    2017-01-01

    Endocrine-disrupting chemical (EDC) has been thought to play a role in non-alcoholic fatty liver disease (NAFLD). However, the toxic effects of Nonylphenol (NP), an EDC, on non-alcoholic fatty liver disease have never been elaborated. This study aimed to investigate whether exposure to NP could induce NAFDL, a promoting effect of high-sucrose-high-fat diet (HSHFD) on the adverse effects caused by NP was evaluated. Fourth eight male rats were assigned to four groups and each group was treated with a specific testing sample: normal-diet (ND) control group (C-ND); normal diet plus NP (180mg/kg/day) group (NP-ND); high-sucrose-high-fat-diet control group (C-HSHFD); HSHFD plus NP (180mg/kg/day) group (NP-HSHFD). At the age of 80 day, sonogram presents diffusely increased hepatic echogenicity in the NP-HSHFD group. The oblique diameter of liver in the NP-HSHFD group was significantly bigger than that in both the C-ND and NP-ND groups. At the age of 90 day, exposure to NP-HSHFD and NP-ND caused a significant increase in NP concentration in liver as compared to the C-ND group. The rats in the groups treated with NP+ND, HSHFD and NP+HSHFD produced significant increases in the body weight, fat weight and FMI, respectively, when compared to the C-ND group. The liver weight and hepatosomatic indexes (HIS) of rats in the NP-HSHFD group are higher than those in the C-HSHFD group. Exposure to NP-HSHFD induced the increases in plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol (TC), triglyceride (TG) and low density lipoprotein (LDL) as compared to the C-ND group. Morphological examination of liver tissue from rats exposed to NP+HSHFD shown steatosis with marked accumulation of lipid droplets, hepatocellular ballooning degeneration and inflammatory cell infiltration. Chronic exposure to NP might induce NAFLD in male rats. The high-sucrose-high-fat diet accelerates and exacerbates the development of NAFLD caused by NP exposure. PMID:28686624

  2. Proteomic analysis of kidney in rats chronically exposed to monosodium glutamate.

    PubMed

    Sharma, Amod; Wongkham, Chaisiri; Prasongwattana, Vitoon; Boonnate, Piyanard; Thanan, Raynoo; Reungjui, Sirirat; Cha'on, Ubon

    2014-01-01

    Chronic monosodium glutamate (MSG) intake causes kidney dysfunction and renal oxidative stress in the animal model. To gain insight into the renal changes induced by MSG, proteomic analysis of the kidneys was performed. Six week old male Wistar rats were given drinking water with or without MSG (2 mg/g body weight, n = 10 per group) for 9 months. Kidneys were removed, frozen, and stored at -75°C. After protein extraction, 2-D gel electrophoresis was performed and renal proteome profiles were examined with Colloidal Coomassie Brilliant Blue staining. Statistically significant protein spots (ANOVA, p<0.05) with 1.2-fold difference were excised and analyzed by LC-MS. Proteomic data were confirmed by immunohistochemistry and Western blot analyses. The differential image analysis showed 157 changed spots, of which 71 spots were higher and 86 spots were lower in the MSG-treated group compared with those in the control group. Eight statistically significant and differentially expressed proteins were identified: glutathione S-transferase class-pi, heat shock cognate 71 kDa, phosphoserine phosphatase, phosphoglycerate kinase, cytosolic glycerol-3-phosphate dehydrogenase, 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, α-ketoglutarate dehydrogenase and succinyl-CoA ligase. The identified proteins are mainly related to oxidative stress and metabolism. They provide a valuable clue to explore the mechanism of renal handling and toxicity on chronic MSG intake.

  3. Effect of Pulsed Radiofrequency on Rat Sciatic Nerve Chronic Constriction Injury: A Preliminary Study

    PubMed Central

    Li, Duo-Yi; Meng, Lan; Ji, Nan; Luo, Fang

    2015-01-01

    Background: Pulsed radiofrequency (PRF) application to the dorsal root ganglia can reduce neuropathic pain (NP) in animal models, but the effect of PRF on damaged peripheral nerves has not been examined. We investigated the effect of PRF to the rat sciatic nerve (SN) on pain-related behavior and SN ultrastructure following chronic constriction injury (CCI). Methods: The analgesic effect was measured by hindpaw mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Twenty rats with NP induced by ligating the common SN were then randomly divided into a PRF treatment group and a sham group. The contralateral SN served as a control. The MWT and TWL were determined again 2, 4, 6, 8, 10, 12, and 14 days after the PRF or sham treatment. On day 14, ipsilateral and contralateral common SNs were excised and examined by electron microscopy. Results: Ipsilateral MWT was significantly reduced and TWL significantly shorter compared to the contralateral side 14 days after CCI (both P = 0.000). In the PRF group, MWT was significantly higher and TWL significantly longer 14 days after the PRF treatment compared to before PRF treatment (both P = 0.000), while no such difference was observed in the sham group (P > 0.05). Electron microscopy revealed extensive demyelination and collagen fiber formation in the ipsilateral SN of sham-treated rats but sparse demyelination and some nerve fiber regrowth in the PRF treatment group. Conclusions: Hyperalgesia is relieved, and ultrastructural damage ameliorated after direct PRF treatment to the SN in the CCI rat model of NP. PMID:25673460

  4. Effects of chronic dietary exposure to monosodium glutamate on feeding behavior, adiposity, gastrointestinal motility, and cardiovascular function in healthy adult rats.

    PubMed

    López-Miranda, V; Soto-Montenegro, M L; Uranga-Ocio, J A; Vera, G; Herradón, E; González, C; Blas, C; Martínez-Villaluenga, M; López-Pérez, A E; Desco, M; Abalo, R

    2015-11-01

    Monosodium glutamate (MSG) is a flavor-enhancer widely used as a food additive. However, its safe dietary concentration and its toxicity, including its possible implication in the recent metabolic syndrome pandemia, is still a controversial issue. Therefore, a deep knowledge of its effects upon regular dietary use is needed. Our aim was to evaluate the effects of chronic exposure to MSG on feeding behavior, abdominal fat, gastrointestinal motility, and cardiovascular function in rats. Two groups of adult male Wistar rats were used: control and treated with MSG (4 g/L in drinking water) for 6 weeks. Different functional parameters were determined and the histological structure was analyzed in tissues of interest. Compared to control animals, chronic MSG increased water intake but did not modify food ingestion or body weight gain. Neither the abdominal fat volume nor the fat fraction, measured by magnetic resonance imaging, was modified by MSG. Monosodium glutamate did not alter general gastrointestinal motility, but significantly increased the colonic response to mechanical stimulation. It slightly reduced endothelium-dependent relaxation in aorta, without significantly modifying any other cardiovascular parameters. No significant histological alterations were detected in salivary glands, intestinal wall, aorta, heart, and kidney. Chronic treatment with MSG in the adult rat increased water intake. This supports its potential to improve acceptance of low-fat regimens and to increase hydration in the elderly and sportspeople, often at risk of dehydration. Changes in colonic contractility and cardiovascular function could have some long-term repercussions warranting further research. © 2015 John Wiley & Sons Ltd.

  5. Cordyceps sinensis protects against liver and heart injuries in a rat model of chronic kidney disease: a metabolomic analysis.

    PubMed

    Liu, Xia; Zhong, Fang; Tang, Xu-long; Lian, Fu-lin; Zhou, Qiao; Guo, Shan-mai; Liu, Jia-fu; Sun, Peng; Hao, Xu; Lu, Ying; Wang, Wei-ming; Chen, Nan; Zhang, Nai-xia

    2014-05-01

    To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to (1)H-NMR-based metabolomic analysis. Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The (1)H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines.

  6. Cordyceps sinensis protects against liver and heart injuries in a rat model of chronic kidney disease: a metabolomic analysis

    PubMed Central

    Liu, Xia; Zhong, Fang; Tang, Xu-long; Lian, Fu-lin; Zhou, Qiao; Guo, Shan-mai; Liu, Jia-fu; Sun, Peng; Hao, Xu; Lu, Ying; Wang, Wei-ming; Chen, Nan; Zhang, Nai-xia

    2014-01-01

    Aim: To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. Methods: Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to 1H-NMR-based metabolomic analysis. Results: Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. Conclusion: Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The 1H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines. PMID:24632844

  7. Effects of Chronic Vitamin D3 Hormone Administration on Anxiety-Like Behavior in Adult Female Rats after Long-Term Ovariectomy

    PubMed Central

    Fedotova, Julia; Pivina, Svetlana; Sushko, Anastasia

    2017-01-01

    The present preclinical study was created to determine the therapeutic effects of vitamin D hormone treatment as an adjunctive therapy alone or in a combination with low dose of 17β-estradiol (17β-E2) on anxiety-like behavior in female rats with long-term absence of estrogen. Accordingly, the aim of the current study was to examine the effects of chronic cholecalciferol administration (1.0, 2.5 or 5.0 mg/kg subcutaneously, SC, once daily, for 14 days) on the anxiety-like state after long-term ovariectomy in female rats. Twelve weeks postovariectomy, cholecalciferol was administered to ovariectomized (OVX) rats and OVX rats treated with 17β-E2 (0.5 µg/rat SC, once daily, for 14 days). Anxiety-like behavior was assessed in the elevated plus maze (EPM) and the light/dark test (LDT), and locomotor and grooming activities were tested in the open field test (OFT). Cholecalciferol at two doses of 1.0 and 2.5 mg/kg alone or in combination with 17β-E2 produced anxiolytic-like effects in OVX rats as evidenced in the EPM and the LDT, as well as increased grooming activity in the OFT. Our results indicate that cholecalciferol, at two doses of 1.0 and 2.5 mg/kg, has a profound anxiolytic-like effects in the experimental rat model of long-term estrogen deficiency. PMID:28054941

  8. Fish Oil Supplementation Reduces Heart Levels of Interleukin-6 in Rats with Chronic Inflammation due to Epilepsy

    PubMed Central

    Nejm, Mariana Bocca; Haidar, André Abou; Hirata, Aparecida Emiko; Oyama, Lila Missae; de Almeida, Antonio-Carlos Guimarães; Cysneiros, Roberta Monterazzo; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Scorza, Fulvio Alexandre

    2017-01-01

    Sudden unexpected death in epilepsy (SUDEP) is a major cause of premature death related to epilepsy. The causes of SUDEP remain unknown, but cardiac arrhythmias and asphyxia have been suggested as a major mechanism of this event. Inflammation has been implicated in the pathogenesis of both epilepsy and ventricular arrhythmia, with interleukin-6 (IL-6) being recognized as a crucial orchestrator of inflammatory states. Our group previously reported that levels of IL-6 were increased in the hearts of epileptic rats. In this scenario, anti-inflammatory actions are among the beneficial effects of fish oil dietary supplementation. This investigation revealed that elevated levels of IL-6 in the heart were markedly reduced in epileptic rats that were treated in the long-term with fish oil, suggesting protective anti-inflammatory actions against dangerously high levels of IL-6. Based on these findings, our results suggest beneficial effects of long-term intake of fish oil in reducing the inflammation associated with chronic epilepsy. PMID:28649227

  9. Noradrenergic facilitation of shock-probe defensive burying in lateral septum of rats, and modulation by chronic treatment with desipramine.

    PubMed

    Bondi, Corina O; Barrera, Gabriel; Lapiz, M Danet S; Bedard, Tania; Mahan, Amy; Morilak, David A

    2007-03-30

    , rats treated chronically with DMI showed no significant rise of plasma ACTH in response to shock-probe exposure. Thus, acute stress-induced release of NE in LS facilitated defensive burying, an active, adaptive behavioral coping response. Chronic treatment with the NE reuptake blocker and antidepressant drug DMI attenuated acute noradrenergic facilitation of the active burying response, and also attenuated the level of perceived stress driving that response. These results suggest that long-term regulation of the acute modulatory function of NE by chronic treatment with reuptake blockers may contribute to the mechanisms by which such drugs exert their anxiolytic effects in the treatment of stress-related psychiatric conditions, including depression and anxiety.

  10. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization

    PubMed Central

    Thompson, Benjamin W.; Anekonda, Vishwanath T.; Ho, Jacqueline M.; Graham, James L.; Roberts, Zachary S.; Hwang, Bang H.; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J.; Havel, Peter J.; Bales, Karen L.; Morton, Gregory J.; Schwartz, Michael W.; Baskin, Denis G.

    2016-01-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity. PMID:26791828

  11. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization.

    PubMed

    Blevins, James E; Thompson, Benjamin W; Anekonda, Vishwanath T; Ho, Jacqueline M; Graham, James L; Roberts, Zachary S; Hwang, Bang H; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J; Havel, Peter J; Bales, Karen L; Morton, Gregory J; Schwartz, Michael W; Baskin, Denis G

    2016-04-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.

  12. Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation

    USDA-ARS?s Scientific Manuscript database

    Introduction: Our previous study demonstrated that green tea polyphenols (GTP) benefit bone health in female rats with chronic inflammation, because of GTP’s antioxidant capacity. The current study further evaluates whether GTP can restore bone microstructure along with related mechanism in rats wit...

  13. Pharmacological attenuation of chronic alcoholic pancreatitis induced hypersensitivity in rats.

    PubMed

    McIlwrath, Sabrina L; Westlund, Karin N

    2015-01-21

    To characterize an alcohol and high fat diet induced chronic pancreatitis rat model that mimics poor human dietary choices. Experimental rats were fed a modified Lieber-DeCarli alcohol (6%) and high-fat (65%) diet (AHF) for 10 wk while control animals received a regular rodent chow diet. Weekly behavioral tests determined mechanical and heat sensitivity. In week 10 a fasting glucose tolerance test was performed, measuring blood glucose levels before and after a 2 g/kg bodyweight intraperitoneal (i.p.) injection of glucose. Post mortem histological analysis was performed by staining pancreas and liver tissue sections with hematoxylin and eosin. Pancreas sections were also stained with Sirius red and fast green to quantify collagen content. Insulin-expressing cells were identified immunohistochemically in separate sections. Tissue staining density was quantified using Image J software. After mechanical and heat sensitivity became stable (weeks 6-10) in the AHF-fed animals, three different drugs were tested for their efficacy in attenuating pancreatitis associated hypersensitivity: a Group II metabotropic glutamate receptor specific agonist (2R,4R)-4-Aminopyrrolidine-2,4-dicarboxylate (APDC, 3 mg/kg, ip; Tocris, Bristol, United Kingdom), nociceptin (20, 60, 200 nmol/kg, ip; Tocris), and morphine sulfate (3 mg/kg, μ-opioid receptor agonist; Baxter Healthcare, Deerfield, IL, United States). Histological analysis of pancreas and liver determined that unlike control rats, AHF fed animals had pancreatic fibrosis, acinar and beta cell atrophy, with steatosis in both organs. Fat vacuolization was significantly increased in AHF fed rats (6.4% ± 1.1% in controls vs 23.8% ± 4.2%, P < 0.05). Rats fed the AHF diet had reduced fasting glucose tolerance in week 10 when peak blood glucose levels reached significantly higher concentrations than controls (127.4 ± 9.2 mg/dL in controls vs 161.0 ± 8.6 mg/dL, P < 0.05). This concurred with a 3.5 fold higher incidence of single and

  14. Pharmacological attenuation of chronic alcoholic pancreatitis induced hypersensitivity in rats

    PubMed Central

    McIlwrath, Sabrina L; Westlund, Karin N

    2015-01-01

    AIM: To characterize an alcohol and high fat diet induced chronic pancreatitis rat model that mimics poor human dietary choices. METHODS: Experimental rats were fed a modified Lieber-DeCarli alcohol (6%) and high-fat (65%) diet (AHF) for 10 wk while control animals received a regular rodent chow diet. Weekly behavioral tests determined mechanical and heat sensitivity. In week 10 a fasting glucose tolerance test was performed, measuring blood glucose levels before and after a 2 g/kg bodyweight intraperitoneal (i.p.) injection of glucose. Post mortem histological analysis was performed by staining pancreas and liver tissue sections with hematoxylin and eosin. Pancreas sections were also stained with Sirius red and fast green to quantify collagen content. Insulin-expressing cells were identified immunohistochemically in separate sections. Tissue staining density was quantified using Image J software. After mechanical and heat sensitivity became stable (weeks 6-10) in the AHF-fed animals, three different drugs were tested for their efficacy in attenuating pancreatitis associated hypersensitivity: a Group II metabotropic glutamate receptor specific agonist (2R,4R)-4-Aminopyrrolidine-2,4-dicarboxylate (APDC, 3 mg/kg, ip; Tocris, Bristol, United Kingdom), nociceptin (20, 60, 200 nmol/kg, ip; Tocris), and morphine sulfate (3 mg/kg, μ-opioid receptor agonist; Baxter Healthcare, Deerfield, IL, United States). RESULTS: Histological analysis of pancreas and liver determined that unlike control rats, AHF fed animals had pancreatic fibrosis, acinar and beta cell atrophy, with steatosis in both organs. Fat vacuolization was significantly increased in AHF fed rats (6.4% ± 1.1% in controls vs 23.8% ± 4.2%, P < 0.05). Rats fed the AHF diet had reduced fasting glucose tolerance in week 10 when peak blood glucose levels reached significantly higher concentrations than controls (127.4 ± 9.2 mg/dL in controls vs 161.0 ± 8.6 mg/dL, P < 0.05). This concurred with a 3.5 fold higher

  15. Colforsin-induced vasodilation in chronic hypoxic pulmonary hypertension in rats.

    PubMed

    Yokochi, Ayumu; Itoh, Hiroo; Maruyama, Junko; Zhang, Erquan; Jiang, Baohua; Mitani, Yoshihide; Hamada, Chikuma; Maruyama, Kazuo

    2010-06-01

    Colforsin, a water-soluble forskolin derivative, directly activates adenylate cyclase and thereby increases the 3',5'-cyclic adenosine monophosphate (cAMP) level in vascular smooth muscle cells. In this study, we investigated the vasodilatory action of colforsin on structurally remodeled pulmonary arteries from rats with pulmonary hypertension (PH). A total of 32 rats were subjected to hypobaric hypoxia (380 mmHg, 10% oxygen) for 10 days to induce chronic hypoxic PH, while 39 rats were kept in room air. Changes in isometric force were recorded in endothelium-intact (+E) and -denuded (-E) pulmonary arteries from the PH and control (non-PH) rats. Colforsin-induced vasodilation was impaired in both +E and -E arteries from PH rats compared with their respective controls. Endothelial removal did not influence colforsin-induced vasodilation in the arteries from control rats, but attenuated it in arteries from PH rats. The inhibition of nitric oxide (NO) synthase did not influence colforsin-induced vasodilation in +E arteries from controls, but attenuated it in +E arteries from PH rats, shifting its concentration-response curve closer to that of -E arteries from PH rats. Vasodilation induced by 8-bromo-cAMP (a cell-permeable cAMP analog) was also impaired in -E arteries from PH rats, but not in +E arteries from PH rats, compared with their respective controls. cAMP-mediated vasodilatory responses without beta-adrenergic receptor activation are impaired in structurally remodeled pulmonary arteries from PH rats. In these arteries, endothelial cells presumably play a compensatory role against the impaired cAMP-mediated vasodilatory response by releasing NO (and thereby attenuating the impairment). The results suggest that colforsin could be effective in the treatment of PH.

  16. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring.

    PubMed

    Gallant, S; Welch, L; Martone, P; Shalev, U

    2017-06-15

    Patients with schizophrenia display impaired cognitive functioning and increased sensitivity to psychomimetic drugs. The neurodevelopmental hypothesis of schizophrenia posits that disruption of the developing brain predisposes neural networks to lasting structural and functional abnormalities resulting in the emergence of such symptoms in adulthood. Given the critical role of the glutamatergic system in early brain development, we investigated whether chronic prenatal exposure to the glutamate NMDA receptor antagonist, MK-801, induces schizophrenia-like behavioural and neurochemical changes in juvenile and adult rats. Pregnant Long-Evans rats were administered saline or MK-801 (0.1mg/kg; s.c.) at gestation day 7-19. Object recognition memory and cognitive flexibility were assessed in the male offspring using a novel object preference task and a maze-based set-shifting procedure, respectively. Locomotor-activating effects of acute amphetamine and MK-801 were also assessed. Adult, but not juvenile, prenatally MK-801-treated rats failed to show novel object preference after a 90min delay, suggesting that object recognition memory may have been impaired. In addition, the set-shifting task revealed impaired acquisition of a new rule in adult prenatally MK-801-treated rats compared to controls. This deficit appeared to be driven by regression to the previously learned behaviour. There were no significant differences in drug-induced locomotor activity in juvenile offspring or in adult offspring following acute amphetamine challenges. Unexpectedly, MK-801-induced locomotor activity in adult prenatally MK-801-treated rats was lower compared to controls. Glutamate transmission dysfunction during early development may modify behavioural parameters in adulthood, though these parameters do not appear to model deficits observed in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Plasma metabonomics study on toxicity biomarker in rats treated with Euphorbia fischeriana based on LC-MS.

    PubMed

    Wang, Yingfeng; Man, Hongxue; Gao, Jian; Liu, Xinfeng; Ren, Xiaolei; Chen, Jianxin; Zhang, Jiayu; Gao, Kuo; Li, Zhongfeng; Zhao, Baosheng

    2016-09-01

    Lang-du (LD) has been traditionally used to treat human diseases in China. Plasma metabolic profiling was applied in this study based on LC-MS to elucidate the toxicity in rats induced by injected ethanol extract of LD. LD injection was given by intraperitoneal injection at doses of 0.1, 0.05, 0.025 and 0 g kg(-1) body weight per day to rats. The blood biochemical levels of alanine aminotransferase, direct bilirubin, creatinine, serum β2-microglobulin and low-density lipoprotein increased in LD-injected rats, and the levels of total protein and albumin decreased in these groups. The metabolic profiles of the samples were analyzed by multivariate statistics analysis, including principal component analysis, partial least squares discriminant analysis and orthogonal projection to latent structures discriminate analysis (OPLS-DA). The metabolic characters in rats injected with LD were perturbed in a dose-dependent manner. By OPLS-DA, 18 metabolites were served as the potential toxicity biomarkers. Moreover, LD treatment resulted in an increase in the p-cresol, p-cresol sulfate, lysophosphatidylethanolamine (LPE) (18:0), LPE (16:0), lysophosphatidylcholine (16:0) and 12-HETE concentrations, and a decrease in hippuric acid, cholic acid and N-acetyl-l-phenylalanine. These results suggested that chronic exposure to LD could cause a disturbance in lipids metabolism and amino acids metabolism, etc. Therefore, an analysis of the metabolic profiles can contribute to a better understanding of the adverse effects of LD. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Effect of Chronic Administration of Low Dose Rapamycin on Development and Immunity in Young Rats.

    PubMed

    Lu, Zhenya; Liu, Furong; Chen, Linglin; Zhang, Huadan; Ding, Yuemin; Liu, Jianxiang; Wong, Michael; Zeng, Ling-Hui

    2015-01-01

    Mammalian target of rapamycin (mTOR) regulates cell growth, cell differentiation and protein synthesis. Rapamycin, an inhibitor of mTOR, has been widely used as an immunosuppressant and anti-cancer drug. Recently, mTOR inhibitors have also been reported to be a potential anti-epileptic drug, which may be effective when used in young patients with genetic epilepsy. Thus, a suitable dose of rapamycin which can maintain the normal function of mTOR and has fewer side effects ideally should be identified. In the present study, we first detected changes in marker proteins of mTOR signaling pathway during development. Then we determined the dose of rapamycin by treating rats of 2 weeks of age with different doses of rapamycin for 3 days and detected its effect on mTOR pathway. Young rats were then treated with a suitable dose of rapamycin for 4 weeks and the effect of rapamycin on mTOR, development and immunity were investigated. We found that the expression of the marker proteins of mTOR pathway was changed during development in brain hippocampus and neocortex. After 3 days of treanent, 0.03 mg/kg rapamycin had no effect on phospho-S6, whereas 0.1, 0.3, 1.0 and 3.0 mg/kg rapamycin inhibited phospho-S6 in a dose-dependent manner. However, only 1.0 mg/kg and 3.0 mg/kg rapamycin inhibited phospho-S6 after 4 weeks treatment of rapamycin. Parallel to this result, rats treated with 0.1 and 0.3 mg/kg rapamycin had no obvious adverse effects, whereas rats treated with 1.0 and 3.0 mg/kg rapamycin showed significant decreases in body, spleen and thymus weight. Additionally, rats treated with 1.0 and 3.0 mg/kg rapamycin exhibited cognitive impairment and anxiety as evident by maze and open field experiments. Furthermore, the content of IL-1β, IL-2, IFN-γ, TNF-α in serum and cerebral cortex were significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. The expression of DCX was also significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. However, rats

  19. Effect of Chronic Administration of Low Dose Rapamycin on Development and Immunity in Young Rats

    PubMed Central

    Lu, Zhenya; Liu, Furong; Chen, Linglin; Zhang, Huadan; Ding, Yuemin; Liu, Jianxiang; Wong, Michael; Zeng, Ling-Hui

    2015-01-01

    Mammalian target of rapamycin (mTOR) regulates cell growth, cell differentiation and protein synthesis. Rapamycin, an inhibitor of mTOR, has been widely used as an immunosuppressant and anti-cancer drug. Recently, mTOR inhibitors have also been reported to be a potential anti-epileptic drug, which may be effective when used in young patients with genetic epilepsy. Thus, a suitable dose of rapamycin which can maintain the normal function of mTOR and has fewer side effects ideally should be identified. In the present study, we first detected changes in marker proteins of mTOR signaling pathway during development. Then we determined the dose of rapamycin by treating rats of 2 weeks of age with different doses of rapamycin for 3 days and detected its effect on mTOR pathway. Young rats were then treated with a suitable dose of rapamycin for 4 weeks and the effect of rapamycin on mTOR, development and immunity were investigated. We found that the expression of the marker proteins of mTOR pathway was changed during development in brain hippocampus and neocortex. After 3 days of treanent, 0.03 mg/kg rapamycin had no effect on phospho-S6, whereas 0.1, 0.3, 1.0 and 3.0 mg/kg rapamycin inhibited phospho-S6 in a dose-dependent manner. However, only 1.0 mg/kg and 3.0 mg/kg rapamycin inhibited phospho-S6 after 4 weeks treatment of rapamycin. Parallel to this result, rats treated with 0.1 and 0.3 mg/kg rapamycin had no obvious adverse effects, whereas rats treated with 1.0 and 3.0 mg/kg rapamycin showed significant decreases in body, spleen and thymus weight. Additionally, rats treated with 1.0 and 3.0 mg/kg rapamycin exhibited cognitive impairment and anxiety as evident by maze and open field experiments. Furthermore, the content of IL-1β, IL-2, IFN-γ, TNF-α in serum and cerebral cortex were significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. The expression of DCX was also significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. However, rats

  20. Effects of electroacupuncture on corticotropin-releasing hormone in rats with chronic visceral hypersensitivity.

    PubMed

    Liu, Hui-Rong; Fang, Xiao-Yi; Wu, Huan-Gan; Wu, Lu-Yi; Li, Jing; Weng, Zhi-Jun; Guo, Xin-Xin; Li, Yu-Guang

    2015-06-21

    To investigate the effect of electroacupuncture on corticotropin-releasing hormone (CRH) in the colon, spinal cord, and hypothalamus of rats with chronic visceral hypersensitivity. A rat model of chronic visceral hypersensitivity was generated according to the internationally accepted method of colorectal balloon dilatation. In the 7(th) week after the procedure, rats were randomly divided into a model group (MG), electroacupuncture group (EA), and sham electroacupuncture group (S-EA). After treatment, the abdominal withdrawal reflex (AWR) score was used to assess the behavioral response of visceral hyperalgesia. Immunohistochemistry (EnVision method), ELISA, and fluorescence quantitative PCR methods were applied to detect the expression of CRH protein and mRNA in the colon, spinal cord, and hypothalamus. The sensitivity of the rats to the colorectal distension stimulus applied at different strengths (20-80 mmHg) increased with increasing stimulus strength, resulting in increasing AWR scores in each group. Compared with NG, the AWR score of MG was significantly increased (P < 0.01). After conducting EA, the AWR scores of the rats were decreased compared with MG rats. The relative expression of CRH mRNA in the colon, spinal cord, and hypothalamus of MG rats was significantly increased compared with NG rats (P < 0.01). CRH mRNA in the colon and spinal cord of EA and S-EA rats was decreased to varying degrees (P > 0.05) compared with normal rats (NG). However, the decrease in EA compared with MG rats was statistically significant (P < 0.01). The average optical density of CRH expression in the colon of the MG rats was significantly enhanced compared with NG (P < 0.05), while the average optical density of CRH expression in the EA and S-EA rats was significantly decreased compared with MG rats (P < 0.01, P < 0.05, respectively). Compared with MG rats, the CRH concentration in the spinal cord of EA rats was significantly reduced (P < 0.01), but there was no significant

  1. Effects of electroacupuncture on corticotropin-releasing hormone in rats with chronic visceral hypersensitivity

    PubMed Central

    Liu, Hui-Rong; Fang, Xiao-Yi; Wu, Huan-Gan; Wu, Lu-Yi; Li, Jing; Weng, Zhi-Jun; Guo, Xin-Xin; Li, Yu-Guang

    2015-01-01

    AIM: To investigate the effect of electroacupuncture on corticotropin-releasing hormone (CRH) in the colon, spinal cord, and hypothalamus of rats with chronic visceral hypersensitivity. METHODS: A rat model of chronic visceral hypersensitivity was generated according to the internationally accepted method of colorectal balloon dilatation. In the 7th week after the procedure, rats were randomly divided into a model group (MG), electroacupuncture group (EA), and sham electroacupuncture group (S-EA). After treatment, the abdominal withdrawal reflex (AWR) score was used to assess the behavioral response of visceral hyperalgesia. Immunohistochemistry (EnVision method), ELISA, and fluorescence quantitative PCR methods were applied to detect the expression of CRH protein and mRNA in the colon, spinal cord, and hypothalamus. RESULTS: The sensitivity of the rats to the colorectal distension stimulus applied at different strengths (20-80 mmHg) increased with increasing stimulus strength, resulting in increasing AWR scores in each group. Compared with NG, the AWR score of MG was significantly increased (P < 0.01). After conducting EA, the AWR scores of the rats were decreased compared with MG rats. The relative expression of CRH mRNA in the colon, spinal cord, and hypothalamus of MG rats was significantly increased compared with NG rats (P < 0.01). CRH mRNA in the colon and spinal cord of EA and S-EA rats was decreased to varying degrees (P > 0.05) compared with normal rats (NG). However, the decrease in EA compared with MG rats was statistically significant (P < 0.01). The average optical density of CRH expression in the colon of the MG rats was significantly enhanced compared with NG (P < 0.05), while the average optical density of CRH expression in the EA and S-EA rats was significantly decreased compared with MG rats (P < 0.01, P < 0.05, respectively). Compared with MG rats, the CRH concentration in the spinal cord of EA rats was significantly reduced (P < 0.01), but

  2. Chronic Nicotine Treatment Impacts the Regulation of Opioid and Non-opioid Peptides in the Rat Dorsal Striatum*

    PubMed Central

    Petruzziello, Filomena; Falasca, Sara; Andren, Per E.; Rainer, Gregor; Zhang, Xiaozhe

    2013-01-01

    The chronic use of nicotine, the main psychoactive ingredient of tobacco smoking, alters diverse physiological processes and consequently generates physical dependence. To understand the impact of chronic nicotine on neuropeptides, which are potential molecules associated with dependence, we conducted qualitative and quantitative neuropeptidomics on the rat dorsal striatum, an important brain region implicated in the preoccupation/craving phase of drug dependence. We used extensive LC-FT-MS/MS analyses for neuropeptide identification and LC-FT-MS in conjunction with stable isotope addition for relative quantification. The treatment with chronic nicotine for 3 months led to moderate changes in the levels of endogenous dorsal striatum peptides. Five enkephalin opioid peptides were up-regulated, although no change was observed for dynorphin peptides. Specially, nicotine altered levels of nine non-opioid peptides derived from precursors, including somatostatin and cerebellin, which potentially modulate neurotransmitter release and energy metabolism. This broad but selective impact on the multiple peptidergic systems suggests that apart from the opioid peptides, several other peptidergic systems are involved in the preoccupation/craving phase of drug dependence. Our finding permits future evaluation of the neurochemical circuits modulated by chronic nicotine exposure and provides a number of novel molecules that could serve as potential therapeutic targets for treating drug dependence. PMID:23436905

  3. Effects of Mild Chronic Intermittent Cold Exposure on Rat Organs

    PubMed Central

    Wang, Xiaohui; Che, Honglei; Zhang, Wenbin; Wang, Jiye; Ke, Tao; Cao, Rui; Meng, Shanshan; Li, Dan; Weiming, Ouyang; Chen, Jingyuan; Luo, Wenjing

    2015-01-01

    Cold adaptation is a body's protective response to cold stress. Mild chronic intermittent cold (CIC) exposure has been used to generate animal models for cold adaptation studies. However, the effects of mild CIC exposure on vital organs are not completely characterized. In the present study, we exposed rats to mild CIC for two weeks, and then measured the body weights, the weights of brown adipose tissue (BAT), the levels of ATP and reactive oxygen species (ROS) in the brains, livers, hearts, muscles and BATs. Rats formed cold adaptation after exposure to CIC for two weeks. Compared to rats of the control group that were hosted under ambient temperature, rats exposed to mild CIC showed a lower average body weight, but a higher weight of brown adipose tissue (BAT). Rats exposed to CIC for two weeks also exhibited higher levels of ATP and ROS in all examined organs as compared to those of the control group. In addition, we determined the expression levels of cold-inducible RNA binding protein (Cirbp) and thioredoxin (TRX) in rat tissues after 2 weeks of CIC exposure. Both Cirbp and TRX were increased, suggesting a role of these two proteins for establishment of cold adaptation. Together, this study reveals the effects of mild CIC exposure on vital organs of rats during CIC exposure. PMID:26327811

  4. Human recombinant erythropoietin reduces sensorimotor dysfunction and cognitive impairment in rat models of chronic kidney disease.

    PubMed

    Reza-Zaldívar, E E; Sandoval-Avila, S; Gutiérrez-Mercado, Y K; Vázquez-Méndez, E; Canales-Aguirre, A A; Esquivel-Solís, H; Gómez-Pinedo, U; Márquez-Aguirre, A L

    2017-11-10

    Chronic kidney disease (CKD) can cause anaemia and neurological disorders. Recombinant human erythropoietin (rHuEPO) is used to manage anaemia in CKD. However, there is little evidence on the effects of rHuEPO on behaviour and cognitive function in CKD. This study aimed to evaluate the impact of rHuEPO in sensorimotor and cognitive functions in a CKD model. Male Wistar rats were randomly assigned to 4 groups: control and CKD, with and without rHuEPO treatment (1050 IU per kg body weight, once weekly for 4 weeks). The Morris water maze, open field, and adhesive removal tests were performed simultaneously to kidney damage induction and treatment. Markers of anaemia and renal function were measured at the end of the study. Treatment with rHuEPO reduced kidney damage and corrected anaemia in rats with CKD. We observed reduced sensorimotor dysfunction in animals with CKD and treated with rHuEPO. These rats also completed the water maze test in a shorter time than the control groups. rHuEPO reduces kidney damage, corrects anemia, and reduces sensorimotor and cognitive dysfunction in animals with CKD. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Anti-inflammatory and antioxidant effects of umbelliferone in chronic alcohol-fed rats

    PubMed Central

    Sim, Mi-Ok; Lee, Hae-In; Ham, Ju Ri; Seo, Kwon-Il; Kim, Myung-Joo

    2015-01-01

    BACKGROUND/OBJECTIVES Inflammation is associated with various types of acute and chronic alcohol liver diseases. In this study, we examined whether umbelliferone (7-hydroxycoumarin, UF) ameliorates chronic alcohol-induced liver damage by modulating inflammatory response and the antioxidant system. METHODS Rats were fed a Liber-Decarli liquid diet containing 5% alcohol with or without UF (0.05 g/L) for 8 weeks, while normal rats received an isocaloric carbohydrate liquid diet. RESULTS Chronic alcohol intake significantly increased serum tumor necrosis factor-α (TNF-α) and interleukin 6 levels and decreased interleukin 10 level; however, UF supplementation reversed the cytokines related to liver damage. UF significantly suppressed hepatic lipopolysaccharide binding protein, toll-like receptor 4 (TLR4), nuclear factor kappa B, and TNF-α gene expression increases in response to chronic alcohol intake. Masson's trichrome staining revealed that UF improved mild hepatic fibrosis caused by alcohol, and UF also significantly increased the mRNA expressions and activities of superoxide dismutase and catalase in liver, and thus, decreased lipid peroxide and mitochondrial hydrogen peroxide levels. CONCLUSIONS The findings of this study indicate that UF protects against alcohol-induced liver damage by inhibiting the TLR4 signaling pathway and activating the antioxidant system. PMID:26244074

  6. Treating chronic arsenic toxicity with high selenium lentil diets.

    PubMed

    Sah, Shweta; Vandenberg, Albert; Smits, Judit

    2013-10-01

    Arsenic (As) toxicity causes serious health problems in humans, especially in the Indo-Gangetic plains and mountainous areas of China. Selenium (Se), an essential micronutrient is a potential mitigator of As toxicity due to its antioxidant and antagonistic properties. Selenium is seriously deficient in soils world-wide but is present at high, yet non-toxic levels in the great plains of North America. We evaluate the potential of dietary Se in counteracting chronic As toxicity in rats through serum biochemistry, blood glutathione levels, immunotoxicity (antibody response), liver peroxidative stress, thyroid response and As levels in tissues and excreta. To achieve this, we compare diets based on high-Se Saskatchewan (SK) lentils versus low-Se lentils from United States. Rats drank control (0ppm As) or As (40ppm As) water while consuming SK lentils (0.3ppm Se) or northwestern USA lentils (<0.01ppm Se) diets for 14weeks. Rats on high Se diets had higher glutathione levels regardless of As exposure, recovered antibody responses in As-exposed group, higher fecal and urinary As excretion and lower renal As residues. Selenium deficiency caused greater hepatic peroxidative damage in the As exposed animals. Thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were not different. After 14weeks of As exposure, health indicators in rats improved in response to the high Se lentil diets. Our results indicate that high Se lentils have a potential to mitigate As toxicity in laboratory mammals, which we hope will translate into benefits for As exposed humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Biological relevance of effects following chronic administration of octamethylcyclotetrasiloxane (D4) in Fischer 344 rats.

    PubMed

    Dekant, Wolfgang; Scialli, Anthony R; Plotzke, Kathy; Klaunig, James E

    2017-10-20

    Octamethylcyclotetrasiloxane (D4) is a cyclic siloxane primarily used as a monomer or intermediate in the production of silicone polymers resulting in potential exposure of workers, and potential low level inhalation or dermal exposure for consumers and the general public. Following a two-year inhalation toxicity study with D4 in rats, increases in uterine endometrial cystic hyperplasia and adenomas were observed at the highest concentration of D4 administered (700ppm). No other neoplasms were increased with D4 treatment. In addition, chronic inhalation exposure of rats to D4 induced changes in relative liver and kidney weights, and produced a chronic nephropathy. This manuscript examines the biological relevance and possible modes of action for the effects observed in the F344 rat following chronic inhalation exposure to D4. D4 is not genotoxic and appears to exert its effects through a nongenotoxic mode of action. An alteration in the estrous cycle in the aging F344 rat was the most likely mode of action for the observed uterine effects following chronic inhalation exposure. Data support the conclusion that D4 acts indirectly via a dopamine-like mechanism leading to alteration of the pituitary control of the estrous cycle in aging F344 rats with a decrease in progesterone and an increase in the estrogen/progesterone ratio most likely induced by a decrease in prolactin concentration. D4 also inhibited the pre-ovulatory LH surge causing a delay in ovulation, persistent follicles and thus a prolonged exposure to elevated estrogen in the adult Sprague Dawely rat. A lengthening of the estrous cycle in the F344 rat with an increase in endogenous estrogen was also induced by D4 inhalation. Although the mode of action responsible for induction of uterine adenomas in the female F344 rat has not been clearly confirmed, the subtlety of effects on the effects of D4 on cyclicity may prevent further assessment and definition of the mode of action. The occurrence of uterine

  8. Effect of chronic restraint stress on inhibitory gating in the auditory cortex of rats.

    PubMed

    Ma, Lanlan; Li, Wai; Li, Sibin; Wang, Xuejiao; Qin, Ling

    2017-05-01

    A fundamental adaptive mechanism of auditory function is inhibitory gating (IG), which refers to the attenuation of neural responses to repeated sound stimuli. IG is drastically impaired in individuals with emotional and cognitive impairments (i.e. posttraumatic stress disorder). The objective of this study was to test whether chronic stress impairs the IG of the auditory cortex (AC). We used the standard two-tone stimulus paradigm and examined the parametric qualities of IG in the AC of rats by recording the electrophysiological signals of a single-unit and local field potential (LFP) simultaneously. The main results of this study were that most of the AC neurons showed a weaker response to the second tone than to the first tone, reflecting an IG of the repeated input. A fast negative wave of LFP showed consistent IG across the sampled AC sites, whereas a slow positive wave of LFP had less IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level, due to the increase in response to the second tone. This study provided new evidence that chronic stress disrupts the physiological function of the AC. Lay Summary The effects of chronic stress on IG were investigated by recording both, single-unit spike and LFP activities, in the AC of rats. In normal rats, most of the single-unit and N25 LFP activities in the AC showed an IG effect. IG was diminished following chronic restraint stress at both, the single-unit and LFP level.

  9. Evaluation of sub-chronic toxic effects of petroleum ether, a laboratory solvent in Sprague-Dawley rats

    PubMed Central

    Parasuraman, Subramani; Sujithra, Jeyabalan; Syamittra, Balakrishnan; Yeng, Wong Yeng; Ping, Wu Yet; Muralidharan, Selvadurai; Raj, Palanimuthu Vasanth; Dhanaraj, Sokkalingam Arumugam

    2014-01-01

    Background: In general, organic solvents are inhibiting many physiological enzymes and alter the behavioural functions, but the available scientific knowledge on laboratory solvent induced organ specific toxins are very limited. Hence, the present study was planned to determine the sub-chronic toxic effects of petroleum ether (boiling point 40–60°C), a laboratory solvent in Sprague-Dawley (SD) rats. Materials and Methods: The SD rats were divided into three different groups viz., control, low exposure petroleum ether (250 mg/kg; i.p.) and high exposure petroleum ether (500 mg/kg; i.p.) administered group. The animals were exposed with petroleum ether once daily for 2 weeks. Prior to the experiment and end of the experiment animals behaviour, locomotor and memory levels were monitored. Before initiating the study animals were trained for 2 weeks for its learning process and its memory levels were evaluated. Body weight (BW) analysis, locomotor activity, anxiogenic effect (elevated plus maze) and learning and memory (Morris water navigation task) were monitored at regular intervals. On 14th day of the experiment, few ml of blood sample was collected from all the experimental animals for estimation of biochemical parameters. At the end of the experiment, all the animals were sacrificed, and brain, liver, heart, and kidney were collected for biochemical and histopathological analysis. Results: In rats, petroleum ether significantly altered the behavioural functions; reduced the locomotor activity, grip strength, learning and memory process; inhibited the regular body weight growth and caused anxiogenic effects. Dose-dependent organ specific toxicity with petroleum ether treated group was observed in brain, heart, lung, liver, and kidney. Extrapyramidal effects that include piloerection and cannibalism were also observed with petroleum ether administered group. These results suggested that the petroleum ether showed a significant decrease in central nervous system

  10. Effects of clenbuterol on insulin resistance in conscious obese Zucker rats.

    PubMed

    Pan, S J; Hancock, J; Ding, Z; Fogt, D; Lee, M; Ivy, J L

    2001-04-01

    The present study was conducted to determine the effect of chronic administration of the long-acting beta(2)-adrenergic agonist clenbuterol on rats that are genetically prone to insulin resistance and impaired glucose tolerance. Obese Zucker rats (fa/fa) were given 1 mg/kg of clenbuterol by oral intubation daily for 5 wk. Controls received an equivalent volume of water according to the same schedule. At the end of the treatment, rats were catheterized for euglycemic-hyperinsulinemic (15 mU insulin. kg(-1). min(-1)) clamping. Clenbuterol did not change body weight compared with the control group but caused a redistribution of body weight: leg muscle weights increased, and abdominal fat weight decreased. The glucose infusion rate needed to maintain euglycemia and the rate of glucose disappearance were greater in the clenbuterol-treated rats. Furthermore, plasma insulin levels were decreased, and the rate of glucose uptake into hindlimb muscles and abdominal fat was increased in the clenbuterol-treated rats. This increased rate of glucose uptake was accompanied by a parallel increase in the rate of glycogen synthesis. The increase in muscle glucose uptake could not be ascribed to an increase in the glucose transport protein GLUT-4 in clenbuterol-treated rats. We conclude that chronic clenbuterol treatment reduces the insulin resistance of the obese Zucker rat by increasing insulin-stimulated muscle and adipose tissue glucose uptake. The improvements noted may be related to the repartitioning of body weight between tissues.

  11. The spermatogenic and ovogenic effects of chronically administered Shilajit to rats.

    PubMed

    Park, Jeong-Sook; Kim, Gee-Young; Han, Kun

    2006-10-11

    This study examined the possibility of using Shilajit as a fertility agent. The effects of Shilajit on spermatogenesis and ovogenesis were studied using male and female rats. Shilajit was administered orally to 7-week-old rats over a 6-week period. In the male rats, the number of sperms in the testes and epididymides was significant higher than in the control. A histological examination revealed an apparent increase in the number of seminiferous tubular cell layers in the testes of the treated rats. However, there were no significant differences in the weights of heart, spleen, liver, kidney, brain, testes and epididymides. In the female rats, the effect of Shilajit was estimated by the ovulation inducing activity. Over a 5-day, ovulation was induced in seven out of nine rats in the Shilajit administration group and in three out of nine rats in the control. It was estimated that Shilajit had both a spermiogenic and ovogenic effect in mature rats.

  12. Modulation of alcohol dehydrogenase and ethanol metabolism by sex hormones in the spontaneously hypertensive rat. Effect of chronic ethanol administration

    PubMed Central

    Rachamin, Gloria; Macdonald, J. Alain; Wahid, Samina; Clapp, Jeremy J.; Khanna, Jatinder M.; Israel, Yedy

    1980-01-01

    In young (4-week-old) male and female spontaneously hypertensive (SH) rats, ethanol metabolic rate in vivo and hepatic alcohol dehydrogenase activity in vitro are high and not different in the two sexes. In males, ethanol metabolic rate falls markedly between 4 and 10 weeks of age, which coincides with the time of development of sexual maturity in the rat. Alcohol dehydrogenase activity is also markedly diminished in the male SH rat and correlates well with the changes in ethanol metabolism. There is virtually no influence of age on ethanol metabolic rate and alcohol dehydrogenase activity in the female SH rat. Castration of male SH rats prevents the marked decrease in ethanol metabolic rate and alcohol dehydrogenase activity, whereas ovariectomy has no effect on these parameters in female SH rats. Chronic administration of testosterone to castrated male SH rats and to female SH rats decreases ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in mature males. Chronic administration of oestradiol-17β to male SH rats results in marked stimulation of ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in female SH rats. Chronic administration of ethanol to male SH rats from 4 to 11 weeks of age prevents the marked age-dependent decreases in ethanol metabolic rate and alcohol dehydrogenase activity, but has virtually no effect in castrated rats. In the intoxicated chronically ethanol-fed male SH rats, serum testosterone concentrations are significantly depressed. In vitro, testosterone has no effect on hepatic alcohol dehydrogenase activity of young male and female SH rats. In conclusion, in the male SH rat, ethanol metabolic rate appears to be limited by alcohol dehydrogenase activity and is modulated by testosterone. Testosterone has an inhibitory effect and oestradiol has a testosterone-dependent stimulatory effect on alcohol dehydrogenase activity and ethanol metabolic rate in these

  13. [A comparative study on behaviors of two depression models in rats induced by chronic forced swimming stress].

    PubMed

    Han, Ming-Fei; Gao, Dong; Sun, Xue-Li

    2010-01-01

    To compare the behaviors of rats with depressions induced by chronic forced swimming stress under two different conditions. Eighteen male rats were randomly divided into 3 groups, with 6 rats in each group. The rats in the control group (C group) were not forced into swimming, while the rats in the stress groups (S1 and S2) were forced to swim for 14 consecutive days. The rats in S1 group and S2 group swam for five minutes every morning, in water with (23 +/- 1) degree C, and (10 +/- 0.5) degree C in temperature, respectively. The weight gain, food intake, open-field test and saccharin solution test were observed on the seventh day and fourteenth day. On the seventh day following chronic swim stress, the rats in the S2 group had significant lower ratio in weight gain and food intake than the controls (P < 0.05). On the fourteenth day, the rats in the S2 group had significant lower ratio in weight gain (12.26 +/- 4.04)%, food intake (9.49 +/- 0.96)%, sucrose intake (28.63 +/- 3.51) g, and preference for saccharin solution (76.25 +/- 2.51)%, and less number of crossing (12.17 +/- 9.00) and times of rearing (3.17 +/- 3.60) than the controls (P < 0.05). The rats in the S1 group had significant lower ratio in weight gain and food intake than the controls on the seventh day following forced swimming. On the fourteenth day, the rats in the S1 group still had lower ratio in weight gain, but had higher ratio in food intake and preference for saccharin solution, and greater number of crossing than the controls. Chronic forced swimming at a lower temperature could induce depression better than at a higher temperature.

  14. Chronic Nerve Compression Accelerates the Progression of Diabetic Peripheral Neuropathy in a Rat Model: A Study of Gene Expression Profiling.

    PubMed

    Tu, Yiji; Chen, Zenggan; Hu, Junda; Ding, Zuoyou; Lineaweaver, William C; Dellon, A Lee; Zhang, Feng

    2018-04-25

     This article investigates the role of chronic nerve compression in the progression of diabetic peripheral neuropathy (DPN) by gene expression profiling.  Chronic nerve compression was created in streptozotocin (STZ)-induced diabetic rats by wrapping a silicone tube around the sciatic nerve (SCN). Neurological deficits were evaluated using pain threshold test, motor nerve conduction velocity (MNCV), and histopathologic examination. Differentially expressed genes (DGEs) and metabolic processes associated with chronic nerve compression were analyzed.  Significant changes in withdrawal threshold and MNCV were observed in diabetic rats 6 weeks after diabetes induction, and in DPN rats 4 weeks after diabetes induction. Histopathologic examination of the SCN in DPN rats presented typical changes of myelin degeneration in DPN. Function analyses of DEGs demonstrated that biological processes related to inflammatory response, extracellular matrix component, and synaptic transmission were upregulated after diabetes induction, and chronic nerve compression further enhanced those changes. While processes related to lipid and glucose metabolism, response to insulin, and apoptosis regulation were inhibited after diabetes induction, chronic nerve compression further enhanced these inhibitions.  Our study suggests that additional silicone tube wrapping on the SCN of rat with diabetes closely mimics the course and pathologic findings of human DPN. Further studies are needed to verify the effectiveness of this rat model of DPN and elucidate the roles of the individual genes in the progression of DPN. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Characterizing the Effects of Chronic 2G Centrifugation on the Rat Skeletal System

    NASA Technical Reports Server (NTRS)

    Johnson, Aimee; Scott, Ryan; Ronca, April E.; Hoban-Higgins, Tana M.; Fuller, Charles A.; Alwood, Joshua S.

    2017-01-01

    During weightlessness, the skeletal system of astronauts is negatively affected by decreased calcium absorption and bone mass loss. Therefore, it is necessary to counteract these changes for long-term skeletal health during space flights. Our long-term plan is to assess artificial gravity (AG) as a possible solution to mitigate these changes. In this study, we aim to determine the skeletal acclimation to chronic centrifugation. We hypothesize that a 2G hypergravity environment causes an anabolic response in growing male rats. Specifically, we predict chronic 2G to increase tissue mineral density, bone volume fraction of the cancellous tissue and to increase overall bone strength. Systemically, we predict that bone formation markers (i.e., osteocalcin) are elevated and resorption markers (i.e., tartrate resistant acid phosphatase) are decreased or unchanged from controls. The experiment has three groups, each with an n8: chronic 2g, cage control (housed on the centrifuge, but not spun), and a vivarium control (normal rat caging). Pre-pubescent, male Long-Evans rats were used to assess our hypothesis. This group was subject to 90 days of 2G via centrifugation performed at the Chronic Acceleration Research Unit (CARU) at University of California Davis. After 90 days, animals were euthanized and tissues collected. Blood was drawn via cardiac puncture and the right leg collected for structural (via microcomputed tomography) and strength quantification. Understanding how counteract these skeletal changes will have major impacts for both the space-faring astronauts and the people living on Earth.

  16. Biliopancreatic duct injection of ethanol as an experimental model of acute and chronic pancreatitis in rats

    PubMed Central

    Unal, Ethem; Atalay, Suleyman; Tolan, Huseyin Kerem; Yuksekdag, Sema; Yucel, Metin; Acar, Aylin; Basak, Fatih; Gunes, Pembegul; Bas, Gurhan

    2015-01-01

    In the present study, we described an easily reproducable experimental pancreatits model induced by biliopancreatic duct injection of ethyl alcohol. Seventy Wistar albino rats were divided equally into seven groups randomly: the control group (group 1), acute pancreatitis groups; induced by 20% ethanol (group 2), 48% ethanol (group 3), 80% ethanol (group 4), chronic pancreatitis groups; induced by 20% ethanol (group 5), 48% ethanol (group 6) and by 80% ethanol (group 7). Acute pancreatitis groups were sacrified on postoperative day 3, while the control group and chronic pancreatitis groups were killed on postoperative day 7. Histopathologic evaluation was done, and P < 0.05 was accepted as statistically significant. All rats in group 3 developed acute pancreatitis (100%). Inflammatory infiltration of neutrophils and mononuclear cells, interstitial edema, and focal necrotic areas were seen in the pancreatic tissues. Similarly, all rats in group 6 developed chronic pancreatitis (100%). Interstitial fibrosis, lymphotic infiltration, ductal dilatation, acinar cell atrophy, periductal hyperplasia were seen in the pancreatic tissues. Mortality was seen only in group 7. The biliopancreatic ductal injection of 48% ethanol induced acute and chronic pancreatitis has 100% success rate. PMID:25785001

  17. The effects of chronic testosterone administration on body weight, food intake, and adipose tissue are changed by estrogen treatment in female rats.

    PubMed

    Iwasa, Takeshi; Matsuzaki, Toshiya; Yano, Kiyohito; Yanagihara, Rie; Tungalagsuvd, Altankhuu; Munkhzaya, Munkhsaikhan; Mayila, Yiliyasi; Kuwahara, Akira; Irahara, Minoru

    2017-07-01

    In females, estrogens play pivotal roles in preventing excess body weight (BW) gain. On the other hand, the roles of androgens in female BW, appetite, and energy metabolism have not been fully examined. We hypothesized that androgens' effects on food intake (FI) and BW regulation change according to the estrogens' levels. To evaluate this hypothesis, the effects of chronic testosterone administration in ovariectomized (OVX) female rats with or without estradiol supplementation were examined in this study. Chronic testosterone administration decreased BW, FI, white adipose tissue (WAT) weight, and adipocyte size in OVX rats, whereas it increased BW, WAT weight, and adipocyte size in OVX with estradiol-administered rats. In addition, chronic testosterone administration increased hypothalamic CYP19a1 mRNA levels in OVX rats, whereas it did not alter CYP19a1 mRNA levels in OVX with estradiol-administered rats, indicating that conversion of testosterone to estrogens in the hypothalamus may be activated in testosterone-administered OVX rats. Furthermore, chronic testosterone administration decreased hypothalamic TNF-α mRNA levels in OVX rats, whereas it increased hypothalamic IL-1β mRNA levels in OVX with estradiol-administered rats. On the other hand, IL-1β and TNF-α mRNA levels in visceral and subcutaneous WAT and liver were not changed by chronic testosterone administration in both groups. These data indicate that the effects of chronic testosterone administration on BW, FI, WAT weight, and adipocyte size were changed by estradiol treatment in female rats. Testosterone has facilitative effects on BW gain, FI, and adiposity under the estradiol-supplemented condition, whereas it has inhibitory effects in the non-supplemented condition. Differences in the responses of hypothalamic factors, such as aromatase and inflammatory cytokines, to testosterone might underlie these opposite effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Blockade of AT1 type receptors for angiotensin II prevents cardiac microvascular fibrosis induced by chronic stress in Sprague-Dawley rats.

    PubMed

    Firoozmand, Lília Taddeo; Sanches, Andrea; Damaceno-Rodrigues, Nilsa Regina; Perez, Juliana Dinéia; Aragão, Danielle Sanches; Rosa, Rodolfo Mattar; Marcondes, Fernanda Klein; Casarini, Dulce Elena; Caldini, Elia Garcia; Cunha, Tatiana Sousa

    2018-04-20

    To test the effects of chronic-stress on the cardiovascular system, the model of chronic mild unpredictable stress (CMS) has been widely used. The CMS protocol consists of the random, intermittent, and unpredictable exposure of laboratory animals to a variety of stressors, during 3 consecutive weeks. In this study, we tested the hypothesis that exposure to the CMS protocol leads to left ventricle microcirculatory remodeling that can be attenuated by angiotensin II receptor blockade. Male Sprague-Dawley rats were randomly assigned into four groups: Control, Stress, Control + losartan, and Stress + losartan (N = 6, each group, losartan: 20 mg/kg/day). The rats were euthanized 15 days after CMS exposure, and blood samples and left ventricle were collected. Rats submitted to CMS presented increased glycemia, corticosterone, noradrenaline and adrenaline concentration, and losartan reduced the concentration of the circulating amines. Cardiac angiotensin II, measured by high-performance liquid chromatography (HPLC), was significantly increased in the CMS group, and losartan treatment reduced it, while angiotensin 1-7 was significantly higher in the CMS losartan-treated group as compared with CMS. Histological analysis, verified by transmission electron microscopy, showed that rats exposed to CMS presented increased perivascular collagen and losartan effectively prevented the development of this process. Hence, CMS induced a state of microvascular disease, with increased perivascular collagen deposition, that may be the trigger for further development of cardiovascular disease. In this case, CMS fibrosis is associated with increased production of catecholamines and with a disruption of renin-angiotensin system balance, which can be prevented by angiotensin II receptor blockade.

  19. Sympathetic regulation and anterior cingulate cortex volume are altered in a rat model of chronic back pain.

    PubMed

    Touj, Sara; Houle, Sébastien; Ramla, Djamel; Jeffrey-Gauthier, Renaud; Hotta, Harumi; Bronchti, Gilles; Martinoli, Maria-Grazia; Piché, Mathieu

    2017-06-03

    Chronic pain is associated with autonomic disturbance. However, specific effects of chronic back pain on sympathetic regulation remain unknown. Chronic pain is also associated with structural changes in the anterior cingulate cortex (ACC), which may be linked to sympathetic dysregulation. The aim of this study was to determine whether sympathetic regulation and ACC surface and volume are affected in a rat model of chronic back pain, in which complete Freund Adjuvant (CFA) is injected in back muscles. Sympathetic regulation was assessed with renal blood flow (RBF) changes induced by electrical stimulation of a hind paw, while ACC structure was examined by measuring cortical surface and volume. RBF changes and ACC volume were compared between control rats and rats injected with CFA in back muscles segmental (T10) to renal sympathetic innervation or not (T2). In rats with CFA, chronic inflammation was observed in the affected muscles in addition to increased nuclear factor-kappa B (NF-kB) protein expression in corresponding spinal cord segments (p=0.01) as well as decreased ACC volume (p<0.05). In addition, intensity-dependent decreases in RBF during hind paw stimulation were attenuated by chronic pain at T2 (p's<0.05) and T10 (p's<0.05), but less so at T10 compared with T2 (p's<0.05). These results indicate that chronic back pain alters sympathetic functions through non-segmental mechanisms, possibly by altering descending regulatory pathways from ACC. Yet, segmental somato-sympathetic reflexes may compete with non-segmental processes depending on the back region affected by pain and according to the segmental organization of the sympathetic nervous system. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Characterization of a new rat model for chronic inflammatory demyelinating polyneuropathies.

    PubMed

    Brun, Susana; Beaino, Wissam; Kremer, Laurent; Taleb, Omar; Mensah-Nyagan, Ayikoe Guy; Lam, Chanh D; Greer, Judith M; de Seze, Jérôme; Trifilieff, Elisabeth

    2015-01-15

    Our objective was to develop a chronic model of EAN which could be used as a tool to test treatment strategies for CIDP. Lewis rats injected with S-palmitoylated P0(180-199) peptide developed a chronic, sometimes relapsing-remitting type of disease. Our model fulfills electrophysiological criteria of demyelination with axonal degeneration, confirmed by immunohistopathology. The late phase of the chronic disease was characterized by accumulation of IL-17(+) cells and macrophages in sciatic nerves and by high serum IL-17 levels. In conclusion, we have developed a reliable and reproducible animal model resembling CIDP that can now be used for translational drug studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of Ankaferd Blood Stopper on Skin Superoxide Dismutase and Catalase Activities in Warfarin-Treated Rats.

    PubMed

    Aktop, Sertaç; Emekli-Alturfan, Ebru; Gönül, Onur; Göçmen, Gökhan; Garip, Hasan; Yarat, Ayşen; Göker, Kamil

    2017-03-01

    Ankaferd Blood Stopper (ABS) is a new promising local hemostatic agent, and its mechanism on hemostasis has been shown by many studies. However, the effects of ABS on skin superoxide dismutase (SOD) and catalase (CAT) activities have not been investigated before. The aim of this study was to evaluate the effects of this new generation local hemostatic agent on warfarin-treated rats focusing on its the antioxidant potential in short-term soft tissue healing. Twelve systemically warfarin treated (warfarin group) and 12 none treated Wistar Albino rats (control group) were selected for the trial. Rats in the warfarin group were treated intraperitonally with 0.1 mg/kg warfarin, and rats in the control group were given 1 mL/kg saline 3 days earlier to surgical procedure and continued until killing. All rats had incisions on dorsal dermal tissue, which was applied ABS or no hemostatic agent before suturing. Six of each group were killed on day 4, and the other 6 were killed on day 8. Blood and skin samples were taken. Prothrombin time (PT) in blood samples, CAT, and SOD activities in skin samples were determined. Warfarin treatment dose was found to be convenient and warfarin treatment increased the PT levels as expected. Warfarin treatment decreased CAT activity significantly compared to the control group. The ABS treatment significantly increased SOD activities in the warfarin group at the end of the eighth day. Ankaferd Blood Stopper acted positively in short-term tissue healing by increasing SOD activity in warfarin-treated rats. Therefore, ABS may be suggeted as a promoting factor in tissue healing.

  2. Antinociceptive action of carbamazepine on thermal hypersensitive pain at spinal level in a rat model of adjuvant-induced chronic inflammation.

    PubMed

    Iwamoto, Tatsushige; Takasugi, Yoshihiro; Higashino, Hideaki; Ito, Hiroyuki; Koga, Yoshihisa; Nakao, Shinichi

    2011-02-01

    Systemic carbamazepine, a voltage-gated sodium channel blocker, has been reported to dose-dependently reduce inflammatory hyperalgesia. However, the antinociceptive effects of carbamazepine on the spinal cord in inflammatory conditions are unclear. The aim of the present study was to evaluate the antinociceptive effects of carbamazepine on the spinal cord in a chronic inflammatory condition. In Sprague-Dawley rats, a chronic inflammatory condition was induced by complete Freund's adjuvant (CFA) inoculation into the tail. Tail flick (TF) latencies were measured following intraperitoneal carbamazepine, or intrathecal carbamazepine or tetrodotoxin injection in intact rats and in the chronic inflammatory rats. From the values of TF latency at 60 min after drug injection, the effective dose required to produce 50% response (ED(50)) of each drug was derived. Carbamazepine attenuated thermal responses with both systemic and intrathecal administration. The effect was more evident in rats with chronic inflammation than in intact rats; the ED(50s) of intraperitoneal carbamazepine in intact and inflamed rats were 12.39 and 1.54 mg/kg, and those of intrathecal carbamazepine were 0.311 and 0.048 nmol, respectively. Intrathecal tetrodotoxin also clearly inhibited the response, with ED(50s) of 1.006 pmol in intact rats and 0.310 pmol in inflamed rats. The relative potencies of intrathecal carbamazepine versus tetrodotoxin for inhibition were approximately 1:150-1:300 in intact and inflamed rats. These results indicate that the inhibition of voltage-gated sodium channels, at least tetrodotoxin-sensitive channels, may contribute to the antinociceptive effect of carbamazepine on CFA-induced inflammatory pain, since lower doses of intrathecal carbamazepine and tetrodotoxin attenuated thermal responses to a greater extent in inflamed rats than in intact rats.

  3. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Jennifer L., E-mail: Jennifer.l.walters@wmich.edu; Lansdell, Theresa A., E-mail: lansdel1@msu.edu; Lookingland, Keith J., E-mail: lookingl@msu.edu

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC).more » At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.« less

  4. Beneficial effect of candesartan and lisinopril against haloperidol-induced tardive dyskinesia in rat.

    PubMed

    Thakur, Kuldeep Singh; Prakash, Atish; Bisht, Rohit; Bansal, Puneet Kumar

    2015-12-01

    Tardive dyskinesia is a serious motor disorder of the orofacial region, resulting from chronic neuroleptic treatment of schizophrenia. Candesartan (AT1 antagonist) and lisinopril (ACE inhibitor) has been reported to possess antioxidant and neuroprotective effects. The present study is designed to investigate the effect of candesartan and lisinopril on haloperidol-induced orofacial dyskinesia and oxidative damage in rats. Tardive dyskinesia was induced by administering haloperidol (1 mg/kg i.p.) and concomitantly treated with candesartan (3 and 5 mg/kg p.o.) and lisinopril (10 and 15 mg/kg p.o.) for 3 weeks in male Wistar rats. Various behavioral parameters were assessed on days 0, 7, 14 and 21 and biochemical parameters were estimated at day 22. Chronic administration of haloperidol significantly increased stereotypic behaviors in rats, which were significantly improved by administration of candesartan and lisinopril. Chronic administration of haloperidol significantly increased oxidative stress and neuro-inflammation in the striatum region of the rat's brain. Co-administration of candesartan and lisinopril significantly attenuated the oxidative damage and neuro-inflammation in the haloperidol-treated rat. The present study supports the therapeutic use of candesartan and lisinopril in the treatment of typical antipsychotic-induced orofacial dyskinesia and possible antioxidant and neuro-inflammatory mechanisms. © The Author(s) 2014.

  5. Chronic treatment with fluoxetine modulates vascular adrenergic responses by inhibition of pre- and post-synaptic mechanisms.

    PubMed

    Pereira, Camila A; Rodrigues, Fernanda L; Ruginsk, Silvia G; Zanotto, Camila Z; Rodrigues, José A; Duarte, Diego A; Costa-Neto, Claudio M; Resstel, Leonardo B; Carneiro, Fernando S; Tostes, Rita C

    2017-04-05

    Fluoxetine, a serotonin reuptake inhibitor (SSRI), has other effects in addition to blocking serotonin reuptake, including changes in the vasomotor tone. Whereas many studies focused on the acute effects of fluoxetine in the vasculature, its chronic effects are still limited. In the present study, we tested the hypothesis that chronic fluoxetine treatment modulates adrenergic vascular responses by interfering with post- and pre-synaptic mechanisms. Wistar rats were treated with vehicle (water) or chronic fluoxetine (10mg/kg/day) for 21 days. Blood pressure (BP) and heart rate were measured. Vascular reactivity was evaluated in perfused mesenteric arterial beds (MAB) and in mesenteric resistance arteries. Protein expression by western blot analysis or immunohistochemistry, β-arrestin recruitment by BRET and calcium influx by FLIPR assay. Fluoxetine treatment decreased phenylephrine (PE)-induced, but not electrical-field stimulation (EFS)-induced vasoconstriction. Fluoxetine-treated rats exhibited increased KCl-induced vasoconstriction, which was abolished by prazosin. Desipramine, an inhibitor of norepinephrine (NA) reuptake, increased EFS-induced vasoconstrictor response in vehicle-treated, but not in fluoxetine-treated rats. Chronic treatment did not alter vascular expression of α 1 adrenoceptor, phosphorylation of PKCα or ERK 1/2 and RhoA. On the other hand, vascular contractions to calcium (Ca 2+ ) as well as Ca 2+ influx in mesenteric arteries were increased, while intracellular Ca 2+ storage was decreased by the chronic treatment with fluoxetine. In vitro, fluoxetine decreased vascular contractions to PE, EFS and Ca 2+ , but did not change β-arrestin activity. In conclusion, chronic treatment with fluoxetine decreases sympathetic-mediated vascular responses by mechanisms that involve inhibition of NA release/reuptake and decreased Ca 2+ stores. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of chronic centrifugation on body composition in the rat.

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Bull, L. S.; Oyama, J.

    1972-01-01

    Two groups of adult female rats were chronically centrifuged for 60 days (2.76 G, 4.15 G, controls at 1.00 G). Live weights of centrifugal rats decreased about 20 g (6%) per Delta 1 G above control. This weight loss comprised reductions in both body fat and fat-free body weight (FFBW) as determined by body-composition studies on eight rats per group killed at the end of centrifugation. Of nine components constituting the FFBW, only skeletal muscle, liver, and heart changed significantly in weight. Chemical composition showed reductions (compared with controls) in the fat fraction of most components and increases in the water fraction of liver and gut. Identical measurements were made on the remaining eight rats per group killed 43 days after return to 1 G. Neither centrifuged group had reached the control body-weight level at this time. No statistically significant effect of previous G level was found in any of the body-composition parameters. The possible involvment of physiological regulation was considered.

  7. Gum acacia mitigates genetic damage in adenine-induced chronic renal failure in rats.

    PubMed

    Ali, B H; Al Balushi, K; Al-Husseini, I; Mandel, P; Nemmar, A; Schupp, N; Ribeiro, D A

    2015-12-01

    Subjects with chronic renal failure (CRF) exhibit oxidative genome damage, which may predispose to carcinogenesis, and Gum acacia (GumA) ameliorates this condition in humans and animals. We evaluated here renal DNA damage and urinary excretion of four nucleic acid oxidation adducts namely 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxoguanosine (8-oxoGuo) and 8-hydroxy-2-deoxyguanisone (8-OHdg) in rats with adenine (ADE)-induced CRF with and without GumA treatment. Twenty-four rats were divided into four equal groups and treated for 4 weeks. The first group was given normal food and water (control). The second group was given normal food and GumA (15% w/v) in drinking water. The third group was fed powder diet containing adenine (ADE) (0·75% w/w in feed). The fourth group was fed like in the third group, plus GumA in drinking water (15%, w/v). ADE feeding induced CRF (as measured by several physiological, biochemical and histological indices) and also caused a significant genetic damage and significant decreases in urinary 8-oxo Gua and 8-oxoGuo, but not in the other nucleic acids. However, concomitant GumA treatment reduced the level of genetic damage in kidney cells as detected by Comet assay and significantly reversed the effect of adenine on urinary 8-oxoGuo. Treatment with GumA is able to mitigate genetic damage in renal tissues of rats with ADE-induced CRF. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  8. Sustained Local Release of Methylprednisolone From a Thiol-Acrylate Poly(Ethylene Glycol) Hydrogel for Treating Chronic Compressive Radicular Pain.

    PubMed

    Slotkin, Jonathan R; Ness, Jennifer K; Snyder, Kristin M; Skiles, Amanda A; Woodard, Eric J; OʼShea, Timothy; Layer, Rick T; Aimetti, Alex A; Toms, Steven A; Langer, Robert; Tapinos, Nikos

    2016-04-01

    A preclinical animal model of chronic ligation of the sciatic nerve was used to compare the effectiveness of a slow-release hydrogel carrying methylprednisolone to methylprednisolone injection alone, which simulates the current standard of care for chronic compressive radiculopathy (CR). To extend the short-term benefits of steroid injections by using a nonswelling, biodegradable hydrogel as carrier to locally release methylprednisolone in a regulated and sustained way at the site of nerve compression. CR affects millions worldwide annually, and is a cause of costly disability with significant societal impact. Currently, a leading nonsurgical therapy involves epidural injection of steroids to temporarily alleviate the pain associated with CR. However, an effective way to extend the short-term effect of steroid treatment to address the chronic component of CR does not exist. We induced chronic compression injury of the sciatic nerves of rats by permanent ligation. Forty-eight hours later we injected our methylprednisolone infused hydrogel and assessed the effectiveness of our treatment for 4 weeks. We quantified mechanical hyperalgesia using a Dynamic Plantar Aesthesiometer (Ugo Basile, Stoelting Co., IL, USA), whereas gait analysis was conducted using the Catwalk automated gait analysis platform (Noldus, Leesburg, VA, USA). Macrophage staining was performed with immunohistochemistry and quantification of monocyte chemoattractant protein-1 in sciatic nerve lysates was performed with multiplex immunoassay using a SECTOR Imager 2400A (Meso Scale Discovery, Rockville, MA, USA). We demonstrate that using the hydrogel to deliver methylprednisolone results in significant (P < 0.05) reduction of hyperalgesia and improvement in the gait pattern of animals with chronic lesions as compared with animals treated with steroid alone. In addition, animals treated with hydrogel plus steroid showed significant reduction in the number of infiltrating macrophages at the sciatic

  9. Stimulatory effect of desipramine on lung metastases of adenocarcinoma MADB 106 in stress highly-sensitive and stress non-reactive rats.

    PubMed

    Grygier, Beata; Kubera, Marta; Wrona, Danuta; Roman, Adam; Basta-Kaim, Agnieszka; Gruca, Piotr; Papp, Mariusz; Rogoz, Zofia; Leskiewicz, Monika; Budziszewska, Boguslawa; Regulska, Magdalena; Korzeniak, Barbara; Curzytek, Katarzyna; Glombik, Katarzyna; Slusarczyk, Joanna; Maes, Michael; Lason, Wladyslaw

    2018-01-03

    The effect of antidepressant drugs on tumor progress is very poorly recognized. The aim of the present study was to examine the effect of individual reactivity to stress and 24-day desipramine (DES) administration on the metastatic colonization of adenocarcinoma MADB 106 cells in the lungs of Wistar rats. Wistar rats were subjected to stress procedure according to the chronic mild stress (CMS) model of depression for two weeks and stress highly-sensitive (SHS) and stress non-reactive (SNR) rats were selected. SHS rats were more prone to cancer metastasis than SNR ones and chronic DES treatment further increased the number of lung metastases by 59% and 50% in comparison to vehicle-treated appropriate control rats. The increase in lung metastases was connected with DES-induced skew macrophage activity towards M2 functional phenotype in SHS and SNR rats. Moreover, during 24h after DES injection in healthy rats, the decreased number of TCD8 + and B cells in SHS and SNR rats as well as NK cell cytotoxic activity in SNR rats could be attributed to the lowered capacity to defend against cancer metastasis observed in chronic DES treated and tumor injected rats. Copyright © 2017. Published by Elsevier Inc.

  10. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  11. Xiao-Yao-San, a Chinese Medicine Formula, Ameliorates Chronic Unpredictable Mild Stress Induced Polycystic Ovary in Rat

    PubMed Central

    Sun, Hao-Yu; Li, Quan; Liu, Yu-Ying; Wei, Xiao-Hong; Pan, Chun-Shui; Fan, Jing-Yu; Han, Jing-Yan

    2017-01-01

    Chronic stress induces endocrine disturbance, which contributes to the development of polycystic ovary syndrome (PCOS), a condition that remains a challenge for clinicians to cope with. The present study investigated the effect of Xiao-Yao-San (XYS), a traditional Chinese medicine formula used for treatment of gynecological disease, on the chronic stress-induced polycystic ovary and its underlying mechanism. Female Sprague-Dwaley rats underwent a 3 weeks chronic unpredictable mild stress (CUMS) procedure to establish the PCOS model, followed by 4 weeks treatment with XYS (0.505 g/kg or 1.01 g/kg) by gavage. Granulosa cells were exposed to noradrenaline (1 mM) in vitro for 24 h, followed by incubation with or without XYS-treated rat serum for 24 h. Post-treatment with XYS ameliorated CUMS-induced irregular estrous cycles and follicles development abnormalities, decrease of estradiol and progesterone level as well as increase of luteinizing hormone in serum, reduced cystic follicles formation and the apoptosis and autophagy of granulosa cells, attenuated the increase in dopamine beta hydroxylase and c-fos level in locus coeruleus, the noradrenaline level in serum and ovarian tissue, and the expression of beta 2 adrenergic receptor in ovarian tissue. Besides, XYS alleviated the reduction of phosphorylation of ribosomal protein S6 kinase polypeptide I and protein kinase B, as well as the increase of microtubule-associated protein light chain 3-I to microtubule-associated protein light chain 3-II conversion both in vivo and in vitro. This study demonstrated XYS as a potential strategy for CUMS induced polycystic ovary, and suggested that the beneficial role of XYS was correlated with the regulation of the sympathetic nerve activity. PMID:29018356

  12. Chronic oedema/lymphoedema: under-recognised and under-treated.

    PubMed

    Keast, David H; Despatis, Marc; Allen, Jill O; Brassard, Alain

    2015-06-01

    Even though it is estimated that at least 300 000 people in Canada may be affected by chronic oedema/lymphoedema, recognition of the seriousness of this chronic disease in health care is scarce. Lymphoedema affects up to 70% of breast and prostate cancer patients, substantially increasing their postoperative medical costs. Adding to this problem are the escalating rates of morbid obesity across North America and the fact that 80% of these individuals are thought to suffer with an element of lymphoedema. The costs related to these patient populations and their consumption of health care resources are alarming. Untreated chronic oedema/lymphoedema is progressive and leads to infection, disfigurement, disability and in some cases even death. Thus, prognosis for the patient is far worse and treatment is more costly when the disease is not identified and treated in the earlier stages. Although the number of individuals coping with chronic oedema/lymphoedema continues to increase, the disparity between diagnosis, treatment and funding across Canada endures. The reasons for this include a lack of public awareness of the condition, insufficient education and knowledge among health care providers regarding aetiology and management and limited financial coverage to support appropriate methods and materials. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  13. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats.

    PubMed

    Kumar, Anil; Dogra, Samrita; Prakash, Atish

    2009-12-28

    Aluminium is a potent neurotoxin and has been associated with Alzheimer's disease (AD) causality for decades. Prolonged aluminium exposure induces oxidative stress and increases amyloid beta levels in vivo. Current treatment modalities for AD provide only symptomatic relief thus necessitating the development of new drugs with fewer side effects. The aim of the study was to demonstrate the protective effect of chronic curcumin administration against aluminium-induced cognitive dysfunction and oxidative damage in rats. Aluminium chloride (100 mg/kg, p.o.) was administered to rats daily for 6 weeks. Rats were concomitantly treated with curcumin (per se; 30 and 60 mg/kg, p.o.) daily for a period of 6 weeks. On the 21st and 42nd day of the study behavioral studies to evaluate memory (Morris water maze and elevated plus maze task paradigms) and locomotion (photoactometer) were done. The rats were sacrificed on 43rd day following the last behavioral test and various biochemical tests were performed to assess the extent of oxidative damage. Chronic aluminium chloride administration resulted in poor retention of memory in Morris water maze, elevated plus maze task paradigms and caused marked oxidative damage. It also caused a significant increase in the acetylcholinesterase activity and aluminium concentration in aluminium treated rats. Chronic administration of curcumin significantly improved memory retention in both tasks, attenuated oxidative damage, acetylcholinesterase activity and aluminium concentration in aluminium treated rats (P<0.05). Curcumin has neuroprotective effects against aluminium-induced cognitive dysfunction and oxidative damage.

  14. Effect of a magnesium-based phosphate binder on medial calcification in a rat model of uremia.

    PubMed

    De Schutter, Tineke M; Behets, Geert J; Geryl, Hilde; Peter, Mirjam E; Steppan, Sonja; Gundlach, Kristina; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Neven, Ellen

    2013-06-01

    Calcium-based phosphate binders are used to control hyperphosphatemia; however, they promote hypercalcemia and may accelerate aortic calcification. Here we compared the effect of a phosphate binder containing calcium acetate and magnesium carbonate (CaMg) to that of sevelamer carbonate on the development of medial calcification in rats with chronic renal failure induced by an adenine diet for 4 weeks. After 1 week, rats with chronic renal failure were treated with vehicle, 375 or 750 mg/kg CaMg, or 750 mg/kg sevelamer by daily gavage for 5 weeks. Renal function was significantly impaired in all groups. Vehicle-treated rats with chronic renal failure developed severe hyperphosphatemia, but this was controlled in treated groups, particularly by CaMg. Neither CaMg nor sevelamer increased serum calcium ion levels. Induction of chronic renal failure significantly increased serum PTH, dose-dependently prevented by CaMg but not sevelamer. The aortic calcium content was significantly reduced by CaMg but not by sevelamer. The percent calcified area of the aorta was significantly lower than vehicle-treated animals for all three groups. The presence of aortic calcification was associated with increased sox9, bmp-2, and matrix gla protein expression, but this did not differ in the treatment groups. Calcium content in the carotid artery was lower with sevelamer than with CaMg but that in the femoral artery did not differ between groups. Thus, treatment with either CaMg or sevelamer effectively controlled serum phosphate levels in CRF rats and reduced aortic calcification.

  15. Effect of a magnesium-based phosphate binder on medial calcification in a rat model of uremia

    PubMed Central

    De Schutter, Tineke M; Behets, Geert J; Geryl, Hilde; Peter, Mirjam E; Steppan, Sonja; Gundlach, Kristina; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Neven, Ellen

    2013-01-01

    Calcium-based phosphate binders are used to control hyperphosphatemia; however, they promote hypercalcemia and may accelerate aortic calcification. Here we compared the effect of a phosphate binder containing calcium acetate and magnesium carbonate (CaMg) to that of sevelamer carbonate on the development of medial calcification in rats with chronic renal failure induced by an adenine diet for 4 weeks. After 1 week, rats with chronic renal failure were treated with vehicle, 375 or 750 mg/kg CaMg, or 750 mg/kg sevelamer by daily gavage for 5 weeks. Renal function was significantly impaired in all groups. Vehicle-treated rats with chronic renal failure developed severe hyperphosphatemia, but this was controlled in treated groups, particularly by CaMg. Neither CaMg nor sevelamer increased serum calcium ion levels. Induction of chronic renal failure significantly increased serum PTH, dose-dependently prevented by CaMg but not sevelamer. The aortic calcium content was significantly reduced by CaMg but not by sevelamer. The percent calcified area of the aorta was significantly lower than vehicle-treated animals for all three groups. The presence of aortic calcification was associated with increased sox9, bmp-2, and matrix gla protein expression, but this did not differ in the treatment groups. Calcium content in the carotid artery was lower with sevelamer than with CaMg but that in the femoral artery did not differ between groups. Thus, treatment with either CaMg or sevelamer effectively controlled serum phosphate levels in CRF rats and reduced aortic calcification. PMID:23486515

  16. Regulation of body mass in rats exposed to chronic acceleration

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.; Bull, L. S.; Oyama, J.

    1975-01-01

    Female rats approximately 6 mo old were chronically centrifuged for up to 30 days at 2.76 G or 3.18 G and sacrificed at intervals for body-composition study. Both fat and the fat-free body mass (FFBM) were reduced during the 1st wk of centrifugation, with the fat showing considerably more variation both within and between groups. The FFBM was reduced below control level to the same extent in rats fed commercial chow, a high-fat diet, or a high-protein diet or in rats prefasted to produce a body-mass deficit at the start of centrifugation. There were no centrifugation-associated changes in body water content. It was concluded that body fat showed no evidence of regulation, FFBM is regulated at any constant level of acceleration between 1 and 4.15 G, and the change in FFBM induced by a change in acceleration is probably not regulated.

  17. Functional, histological structure and mastocytes alterations in rat urinary bladders following acute and [corrected] chronic cyclophosphamide treatment.

    PubMed

    Juszczak, K; Gil, K; Wyczolkowski, M; Thor, P J

    2010-08-01

    Neurogenic inflammation is linked to urinary bladder overactivity development. Cyclophosphamide (CYP) damages all mucosal defence lines of urinary bladder and induces cystitis with overactivity. The aim of this study was to estimate the effect of CYP on rat urinary bladder function, histological structure and mastocytes numbers following acute and chronic CYP treatment. Fourty two female rats were divided into four groups: I (control), II (acute cystitis), III (chronic cystitis), IV (sham group). Acute and chronic cystitis were induced by CYP in single dose and four doses (1(st), 3(rd), 5(th), 7(th) day), respectively. In group I-III the cystometric evaluation was performed. Sections of the bladder were stained with HE and toluidine blue for the detection of mastocytes. The severity of inflammation was examined according to mucosal abrasion, haemorrhage, leukocyte infiltration and oedema. Acute and chronic CYP treatment caused inflammatory macroscopic and microscopic changes (mucosal abrasion, haemorrhage, oedema) and increased infiltration of inflammatory cells in urinary bladder. Acute treatment induced the infiltration of mastocytes within bladder wall contrary to chronic one decrement. Acute treatment caused more severe mucosal abrasion, whereas chronic one revealed more developed haemorrhage changes. Additionally, cystometric evaluation revealed urinary bladder overactivity development in both types of cystitis. Basal pressure and detrusor overactivity index after acute treatment increased considerably in comparison with the increase obtained after chronic one. Our results proved that acute model of CYP-induced cystitis in rats is more credible for further evaluation of neurogenic inflammation response in pathogenesis of overactive bladder as compared to chronic one.

  18. Proteomic Analysis of Kidney in Rats Chronically Exposed to Monosodium Glutamate

    PubMed Central

    Sharma, Amod; Wongkham, Chaisiri; Prasongwattana, Vitoon; Boonnate, Piyanard; Thanan, Raynoo; Reungjui, Sirirat; Cha’on, Ubon

    2014-01-01

    Background Chronic monosodium glutamate (MSG) intake causes kidney dysfunction and renal oxidative stress in the animal model. To gain insight into the renal changes induced by MSG, proteomic analysis of the kidneys was performed. Methods Six week old male Wistar rats were given drinking water with or without MSG (2 mg/g body weight, n = 10 per group) for 9 months. Kidneys were removed, frozen, and stored at –75°C. After protein extraction, 2-D gel electrophoresis was performed and renal proteome profiles were examined with Colloidal Coomassie Brilliant Blue staining. Statistically significant protein spots (ANOVA, p<0.05) with 1.2-fold difference were excised and analyzed by LC-MS. Proteomic data were confirmed by immunohistochemistry and Western blot analyses. Results The differential image analysis showed 157 changed spots, of which 71 spots were higher and 86 spots were lower in the MSG-treated group compared with those in the control group. Eight statistically significant and differentially expressed proteins were identified: glutathione S-transferase class-pi, heat shock cognate 71 kDa, phosphoserine phosphatase, phosphoglycerate kinase, cytosolic glycerol-3-phosphate dehydrogenase, 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, α-ketoglutarate dehydrogenase and succinyl-CoA ligase. Conclusion The identified proteins are mainly related to oxidative stress and metabolism. They provide a valuable clue to explore the mechanism of renal handling and toxicity on chronic MSG intake. PMID:25551610

  19. Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia.

    PubMed

    Bober, Sara L; Ciriello, John; Jones, Douglas L

    2018-06-01

    Obstructive sleep apnea, which involves chronic intermittent hypoxia (CIH), is a major risk factor for developing atrial fibrillation (AF). Whether or not CIH alone alters cardiac mechanisms to support AF is unknown. This study investigated the effects of CIH on atrial electrophysiology and arrhythmia vulnerability and evaluated the role of autonomics in CIH promotion of AF. Adult male Sprague-Dawley rats were exposed to 8 h/day of CIH or normoxia for 7 days. After exposure, rats were anesthetized for intracardiac electrophysiological experiments. Atrial effective refractory periods (AERPs) and AF inducibility were determined using programmed electrical stimulation and burst pacing in the absence and presence of autonomic receptor agonists and antagonists. Western blot analysis measured atrial protein expression of muscarinic M2, M3, and β 1 -adrenergic receptors. Compared with normoxia-exposed control rats, CIH-exposed rats had enhanced AF vulnerability using both programmed electrical stimulation and burst pacing, accompanied by greater AERP responses to carbachol and propranolol, lesser responses to isoproterenol, and higher atrial M2 receptor protein levels. Enhanced atrial vulnerability was accentuated by carbachol and abolished by atropine, indicating that the AF-promoting effects of CIH depended principally on parasympathetic activation. Enhancement of atrial vulnerability and AERP shortening with cholinergic agonists in CIH-exposed rats is consistent with sensitivity to parasympathetic activation. Higher responses to adrenergic receptor blockade in CIH-exposed rats is consistent with sympathetic potentiation. These findings implicate CIH as an important mediator of enhanced AF susceptibility in obstructive sleep apnea and provide novel insights into the underlying mechanisms. NEW & NOTEWORTHY Our study demonstrates, for the first time, that chronic intermittent hypoxia alone enhances vulnerability to atrial arrhythmia induction, which depends principally

  20. Evaluation of the antidepressant, anxiolytic and memory-improving efficacy of aripiprazole and fluoxetine in ethanol-treated rats.

    PubMed

    Burda-Malarz, Kinga; Kus, Krzysztof; Ratajczak, Piotr; Czubak, Anna; Hardyk, Szymon; Nowakowska, Elżbieta

    2014-07-01

    Some study results indicate a positive effect of aripiprazole (ARI) on impaired cognitive functions caused by brain damage resulting from chronic EtOH abuse. However, other research shows that to manifest itself, an ARI antidepressant effect requires a combined therapy with another selective serotonin reuptake inhibitor antidepressant, namely, fluoxetine (FLX). The aim of this article was to assess antidepressant and anxiolytic effects of ARI as well as its effect on spatial memory in ethanol-treated (alcoholized) rats. On the basis of alcohol consumption pattern, groups of (1) ethanol-preferring rats, with mean ethanol intake above 50%, and (2) ethanol-nonpreferring rats (EtNPRs), with mean ethanol intake below 50% of total daily fluid intake, were formed. The group of EtNPRs was used for this study, subdivided further into three groups administered ARI, FLX and a combination of both, respectively. Behavioral tests such as Porsolt's forced swimming test, the Morris water maze test and the two-compartment exploratory test were employed. Behavioral test results demonstrated (1) no antidepressant effect of ARI in EtNPRs in subchronic treatment and (2) no procognitive effect of ARI and FLX in EtNPRs in combined single administration. Combined administration of both drugs led to an anxiogenic effect and spatial memory deterioration in study animals. ARI had no antidepressant effect and failed to improve spatial memory in rats. However, potential antidepressant, anxiolytic and procognitive properties of the drug resulting from its mechanism of action encourage further research aimed at developing a dose of both ARI and FLX that will prove such effects in alcoholized EtNPRs.

  1. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.

    PubMed

    Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze

    2014-08-01

    Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Therapy with granulocyte colony-stimulating factor in the chronic stage, but not in the acute stage, improves experimental autoimmune myocarditis in rats via nitric oxide.

    PubMed

    Shimada, Kana; Okabe, Taka-aki; Mikami, Yu; Hattori, Miki; Fujita, Masatoshi; Kishimoto, Chiharu

    2010-09-01

    We systematically investigated serial efficacy of granulocyte colony-stimulating factor (G-CSF) therapy upon experimental autoimmune myocarditis (EAM) in rats treated with and without the inhibition of nitric oxide (NO) with the analyses of tissue regeneration. G-CSF could mobilize multipotent progenitor cells of bone marrow into the peripheral blood and may improve ventricular function. A rat model of porcine myosin-induced EAM was used. After the immunization of myosin, G-CSF (10 microg/kg/day) or saline was injected intraperitoneally on days 0-21 in experiment 1 and on days 21-42 in experiment 2. Additional myosin-immunized rats were orally given 25 mg/kg/day of N(G)-nitro-L-arginine methylester (L-NAME), an inhibitor of nitric oxide synthase (NOS), in each experiment (each group; n=8-21). Serum cytokines and peripheral blood cell counts were measured in each group. In experiment 1, G-CSF treatment aggravated cardiac pathology associated with increased macrophage inflammatory protein-2 (MIP-2) and interleukin-6 (IL-6) levels and enhanced superoxide production. In experiment 2, G-CSF treatment reduced the severity of myocarditis with increased capillary density and improved left ventricular ejection fraction. In the rats with EAM treated with G-CSF associated with oral L-NAME treatment in experiment 2, the severity of myocarditis was not reduced. Myocardial c-kit(+) cells were demonstrated only in G-CSF-treated group in experiment 2 but not in other groups. G-CSF has differential effects on EAM in rats associated with the modulation of cytokine network. The overwhelming superoxide production by G-CSF administration in the acute stage may worsen the disease. G-CSF therapy improved cardiac function via NO system in a rat model of myocarditis in the chronic stage, but not in the acute stage, possibly through the myocardial regeneration and acceleration of healing process. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Topical Combinations to Treat Microvascular Dysfunction of Chronic Postischemia Pain

    PubMed Central

    Laferrière, André; Abaji, Rachid; Tsai, Cheng-Yu Mark; Ragavendran, J. Vaigunda; Coderre, Terence J.

    2015-01-01

    Background Growing evidence indicates that patients with complex regional pain syndrome (CRPS) exhibit tissue abnormalities caused by microvascular dysfunction in the blood vessels of skin, muscle and nerve. We tested whether topical combinations aimed at improving microvascular function would relieve allodynia in an animal model of CRPS. We hypothesized that topical administration of either α2-adrenergic (α2A) receptor agonists or nitric oxide (NO) donors given to increase arterial blood flow, combined with either phosphatidic acid (PA) or phosphodiesterase (PDE) inhibitors to increase capillary blood flow, would effectively reduce allodynia and signs of microvascular dysfunction in the animal model of chronic pain. Methods Mechanical allodynia was induced in the hind paws of rats with chronic postischemia pain (CPIP). Allodynia was assessed before and after topical application of vehicle, single drugs or combinations of an α2A receptor agonist (apraclonidine) or an NO donor (linsidomine), with PA or PDE inhibitors (lisofylline, pentoxifylline). A topical combination of apraclonidine + lisofylline was also evaluated for its effects on a measure of microvascular function (post-occlusive reactive hyperemia) and tissue oxidative capacity (formazan production by tetrazolium reduction) in CPIP rats. Results Each of the single topical drugs produced significant dose-dependent antiallodynic effects compared to vehicle in CPIP rats (n = 30), and the antiallodynic dose-response curves of either PA or PDE inhibitors were shifted 5 to 10 fold to the left when combined with nonanalgesic doses of α2A receptor agonists or NO donors (n = 28). The potent antiallodynic effects of ipsilateral treatment with combinations of α2A receptor agonists or NO donors with PA or PDE inhibitors, were not reproduced by the same treatment of the contralateral hindpaw (n = 28). Topical combinations produced antiallodynic effects lasting up to 6 h (n = 15), and were significantly enhanced by

  4. Carvedilol suppresses circulating and hepatic IL-6 responsible for hepatocarcinogenesis of chronically damaged liver in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaha, Mohamed, E-mail: Mohamed.Balaha@Med.Tanta.

    Carvedilol is an anti-oxidant non-selective β-blocker used for reduction of portal blood pressure, prophylaxis of esophageal varices development and bleeding in chronic liver diseases. Recently, it exhibited potent anti-inflammatory, anti-fibrotic, anti-proliferative and anti-carcinogenic effects. In the present study, we evaluated the possible suppressive effect of carvedilol on circulating and hepatic IL-6 levels responsible for hepatocarcinogenesis in a rat model of hepatic cirrhosis. Besides, its effect on hepatic STAT-3 levels, function tests, oxidative stress markers, and hydroxyproline content, hepatic tissue histopathological changes and immunohistochemical expression of E & N-cadherin. Nine-week-old male Wistar rats injected intraperitoneal by 1 ml/kg 10% CCL{sub 4}more » in olive oil three times/week (every other day) for 12 weeks to induce hepatic cirrhosis. Carvedilol (10 mg/kg/day suspended in 0.5% CMC orally), silymarin (50 mg/kg/day suspended in 0.5% CMC orally) or combination of both used to treat hepatic cirrhosis from 15th to 84th day. Our data showed that carvedilol and silymarin co-treatment each alone or in combination efficiently reduced the elevated serum IL-6, ALT, AST, ALP and BIL, hepatic IL-6, STAT-3, MDA levels and hydroxyproline content. In addition, it elevated the reduced serum ALB level, hepatic CAT activity and GSH level. Meanwhile, it apparently restored the normal hepatic architecture, collagen distribution and immunohistochemical E & N-cadherin expression. Furthermore, carvedilol was superior to silymarin in improving MDA level. Moreover, the combination of carvedilol and silymarin showed an upper hand in amelioration of the CCL{sub 4} induced hepatotoxicity than each alone. Therefore, carvedilol could be promising in prevention of hepatocarcinogenesis in chronic hepatic injuries. - Highlights: • Chronic liver damage ends into hepatocellular carcinoma in 5% of patients. • Persistent elevation of IL-6 induces

  5. Role of insular cortex in visceral hypersensitivity model in rats subjected to chronic stress.

    PubMed

    Yi, LiSha; Sun, HuiHui; Ge, Chao; Chen, Ying; Peng, HaiXia; Jiang, YuanXi; Wu, Ping; Tang, YinHan; Meng, QingWei; Xu, ShuChang

    2014-12-30

    Abnormal processing of visceral sensation at the level of the central nervous system has been proven to be important in the pathophysiologic mechanisms of stress related functional gastrointestinal disorders. However, the specific mechanism is still not clear. The insular cortex (IC) was considered as one important visceral sensory area. Moreover, the IC has been shown to be involved in various neuropsychiatric diseases such as panic disorders and post-traumatic stress disorder. However, whether the IC is important in psychological stress related visceral hypersensitivity has not been studied yet. In our study, through destruction of the bilateral IC, we explored whether the IC played a critical role in the formation of visceral hypersensitivity induced by chronic stress on rats. Chronic partial restraint stress was used to establish viscerally hypersensitive rat model. Bilateral IC lesions were generated by N-methyl-D-day (door) aspartate. After a recovery period of 7 days, 14-day consecutive restraint stress was performed. The visceromotor response to colorectal distension was monitored by recording electromyogram to measure rats׳ visceral sensitivity. We found that bilateral insular cortex lesion could markedly inhibit the formation of visceral hypersensitivity induced by chronic stress. The insular cortex plays a critical role in the pathophysiology of stress-related visceral hypersensitivity.

  6. Panax ginseng extract attenuates neuronal injury and cognitive deficits in rats with vascular dementia induced by chronic cerebral hypoperfusion.

    PubMed

    Zhu, Jun-De; Wang, Jun-Jie; Zhang, Xian-Hu; Yu, Yan; Kang, Zhao-Sheng

    2018-04-01

    Panax ginseng is a slow-growing perennial plant. Panax ginseng extract has numerous biological activities, including antitumor, anti-inflammatory and antistress activities. Panax ginseng extract also has a cognition-enhancing effect in rats with alcohol-induced memory impairment. In this study, we partially occluded the bilateral carotid arteries in the rat to induce chronic cerebral hypoperfusion, a well-known model of vascular dementia. The rats were then intragastrically administered 50 or 100 mg/kg Panax ginseng extract. Morris water maze and balance beam tests were used to evaluate memory deficits and motor function, respectively. Protein quantity was used to evaluate cholinergic neurons. Immunofluorescence staining was used to assess the number of glial fibrillary acidic protein-positive cells. Western blot assay was used to evaluate protein levels of vascular endothelial growth factor, basic fibroblast growth factor, Bcl-2 and Bax. Treatment with Panax ginseng extract for 8 weeks significantly improved behavioral function and increased neuronal density and VEGF and bFGF protein expression in the hippocampal CA3 area. Furthermore, Panax ginseng extract reduced the number of glial fibrillary acidic protein-immunoreactive cells, and it decreased apoptosis by upregulating Bcl-2 and downregulating Bax protein expression. The effect of Panax ginseng extract was dose-dependent and similar to that of nimodipine, a commonly used drug for the treatment of vascular dementia. These findings suggest that Panax ginseng extract is neuroprotective against vascular dementia induced by chronic cerebral hypoperfusion, and therefore might have therapeutic potential for preventing and treating the disease.

  7. Gender differences in CMS and the effects of antidepressant venlafaxine in rats.

    PubMed

    Xing, Yanli; He, Jie; Hou, Jian; Lin, Fei; Tian, Jingwei; Kurihara, Hiroshi

    2013-11-01

    Gender differences in susceptibility to chronic mild stress (CMS) and effects of venlafaxine in rats have been investigated in the current study. Male and female SD rats were exposed to CMS or CMS plus chronic venlafaxine administration (10mg/kg, 21days) in order to study depressive behavior in rats. Rats were tested in open field test and sucrose preference test to figure out gender differences in behavior. Then serum corticosterone and the expression of FKBP5 in hippocampus of rats were detected to explore the possible mechanism. The results showed that the CMS impact on behavioral parameters and corticosterone levels and response to venlafaxine were gender dependent. Female rats appeared more vulnerable in the dysregulation of HPA axis to CMS. Venlafaxine treatment normalized depressive-like behavior in both gender. However, venlafaxine treated male rats exhibited better improved explore behavior and anhedonia. FKBP5 might be involved in the explanation of gender differences in CMS and venlafaxine treatment. Male and female rats respond differently to chronic stress and venlafaxine continuous treatment. This results have guiding meaning in design of trials related to stress induced depression. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The ROCK Inhibitor Fasudil Prevents Chronic Restraint Stress-Induced Depressive-Like Behaviors and Dendritic Spine Loss in Rat Hippocampus

    PubMed Central

    García-Rojo, Gonzalo; Fresno, Cristóbal; Vilches, Natalia; Díaz-Véliz, Gabriela; Mora, Sergio; Aguayo, Felipe; Pacheco, Aníbal; Parra-Fiedler, Nicolás; Parra, Claudio S.; Rojas, Paulina S.; Tejos, Macarena; Aliaga, Esteban

    2017-01-01

    Abstract Background: Dendritic arbor simplification and dendritic spine loss in the hippocampus, a limbic structure implicated in mood disorders, are assumed to contribute to symptoms of depression. These morphological changes imply modifications in dendritic cytoskeleton. Rho GTPases are regulators of actin dynamics through their effector Rho kinase. We have reported that chronic stress promotes depressive-like behaviors in rats along with dendritic spine loss in apical dendrites of hippocampal pyramidal neurons, changes associated with Rho kinase activation. The present study proposes that the Rho kinase inhibitor Fasudil may prevent the stress-induced behavior and dendritic spine loss. Methods: Adult male Sprague-Dawley rats were injected with saline or Fasudil (i.p., 10 mg/kg) starting 4 days prior to and maintained during the restraint stress procedure (2.5 h/d for 14 days). Nonstressed control animals were injected with saline or Fasudil for 18 days. At 24 hours after treatment, forced swimming test, Golgi-staining, and immuno-western blot were performed. Results: Fasudil prevented stress-induced immobility observed in the forced swimming test. On the other hand, Fasudil-treated control animals showed behavioral patterns similar to those of saline-treated controls. Furthermore, we observed that stress induced an increase in the phosphorylation of MYPT1 in the hippocampus, an exclusive target of Rho kinase. This change was accompanied by dendritic spine loss of apical dendrites of pyramidal hippocampal neurons. Interestingly, increased pMYPT1 levels and spine loss were both prevented by Fasudil administration. Conclusion: Our findings suggest that Fasudil may prevent the development of abnormal behavior and spine loss induced by chronic stress by blocking Rho kinase activity. PMID:27927737

  9. The ROCK Inhibitor Fasudil Prevents Chronic Restraint Stress-Induced Depressive-Like Behaviors and Dendritic Spine Loss in Rat Hippocampus.

    PubMed

    García-Rojo, Gonzalo; Fresno, Cristóbal; Vilches, Natalia; Díaz-Véliz, Gabriela; Mora, Sergio; Aguayo, Felipe; Pacheco, Aníbal; Parra-Fiedler, Nicolás; Parra, Claudio S; Rojas, Paulina S; Tejos, Macarena; Aliaga, Esteban; Fiedler, Jenny L

    2017-04-01

    Dendritic arbor simplification and dendritic spine loss in the hippocampus, a limbic structure implicated in mood disorders, are assumed to contribute to symptoms of depression. These morphological changes imply modifications in dendritic cytoskeleton. Rho GTPases are regulators of actin dynamics through their effector Rho kinase. We have reported that chronic stress promotes depressive-like behaviors in rats along with dendritic spine loss in apical dendrites of hippocampal pyramidal neurons, changes associated with Rho kinase activation. The present study proposes that the Rho kinase inhibitor Fasudil may prevent the stress-induced behavior and dendritic spine loss. Adult male Sprague-Dawley rats were injected with saline or Fasudil (i.p., 10 mg/kg) starting 4 days prior to and maintained during the restraint stress procedure (2.5 h/d for 14 days). Nonstressed control animals were injected with saline or Fasudil for 18 days. At 24 hours after treatment, forced swimming test, Golgi-staining, and immuno-western blot were performed. Fasudil prevented stress-induced immobility observed in the forced swimming test. On the other hand, Fasudil-treated control animals showed behavioral patterns similar to those of saline-treated controls. Furthermore, we observed that stress induced an increase in the phosphorylation of MYPT1 in the hippocampus, an exclusive target of Rho kinase. This change was accompanied by dendritic spine loss of apical dendrites of pyramidal hippocampal neurons. Interestingly, increased pMYPT1 levels and spine loss were both prevented by Fasudil administration. Our findings suggest that Fasudil may prevent the development of abnormal behavior and spine loss induced by chronic stress by blocking Rho kinase activity. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  10. Candesartan, rather than losartan, improves motor dysfunction in thioacetamide-induced chronic liver failure in rats

    PubMed Central

    Murad, H.A.; Gazzaz, Z.J.; Ali, S.S.; Ibraheem, M.S.

    2017-01-01

    Minimal hepatic encephalopathy is more common than the acute syndrome. Losartan, the first angiotensin-II receptor blocker (ARB), and candesartan, another widely-used ARB, have protected against developing fibrogenesis, but there is no clear data about their curative antifibrotic effects. The current study was designed to examine their effects in an already-established model of hepatic fibrosis and also their effects on the associated motor dysfunction. Low-grade chronic liver failure (CLF) was induced in 3-month old Sprague-Dawley male rats using thioacetamide (TAA, 50 mg·kg−1·day−1) intraperitoneally for 2 weeks. The TAA-CLF rats were randomly divided into five groups (n=8) treated orally for 14 days (mg·kg−1·day−1) as follows: TAA (distilled water), losartan (5 and 10 mg/kg), and candesartan (0.1 and 0.3 mg/kg). Rats were tested for rotarod and open-field tests. Serum and hepatic biochemical markers, and hepatic histopathological changes were evaluated by H&E and Masson's staining. The TAA-CLF rats showed significant increases of hepatic malondialdehyde, hepatic expression of tumor necrosis factor-α (TNF-α), and serum ammonia, alanine aminotransferase, γ-glutamyl transferase, TNF-α, and malondialdehyde levels as well as significant decreases of hepatic and serum glutathione levels. All treatments significantly reversed these changes. The histopathological changes were moderate in losartan-5 and candesartan-0.1 groups and mild in losartan-10 and candesartan-0.3 groups. Only candesartan significantly improved TAA-induced motor dysfunction. In conclusion, therapeutic antifibrotic effects of losartan and candesartan in thioacetamide-induced hepatic fibrosis in rats are possibly through angiotensin-II receptor blocking, antioxidant, and anti-inflammatory activities. Improved motor dysfunction by candesartan could be attributed to better brain penetration and slower “off-rate” from angiotensin-II receptors. Clinical trials are recommended. PMID

  11. Candesartan, rather than losartan, improves motor dysfunction in thioacetamide-induced chronic liver failure in rats.

    PubMed

    Murad, H A; Gazzaz, Z J; Ali, S S; Ibraheem, M S

    2017-09-21

    Minimal hepatic encephalopathy is more common than the acute syndrome. Losartan, the first angiotensin-II receptor blocker (ARB), and candesartan, another widely-used ARB, have protected against developing fibrogenesis, but there is no clear data about their curative antifibrotic effects. The current study was designed to examine their effects in an already-established model of hepatic fibrosis and also their effects on the associated motor dysfunction. Low-grade chronic liver failure (CLF) was induced in 3-month old Sprague-Dawley male rats using thioacetamide (TAA, 50 mg·kg-1·day-1) intraperitoneally for 2 weeks. The TAA-CLF rats were randomly divided into five groups (n=8) treated orally for 14 days (mg·kg-1·day-1) as follows: TAA (distilled water), losartan (5 and 10 mg/kg), and candesartan (0.1 and 0.3 mg/kg). Rats were tested for rotarod and open-field tests. Serum and hepatic biochemical markers, and hepatic histopathological changes were evaluated by H&E and Masson's staining. The TAA-CLF rats showed significant increases of hepatic malondialdehyde, hepatic expression of tumor necrosis factor-α (TNF-α), and serum ammonia, alanine aminotransferase, γ-glutamyl transferase, TNF-α, and malondialdehyde levels as well as significant decreases of hepatic and serum glutathione levels. All treatments significantly reversed these changes. The histopathological changes were moderate in losartan-5 and candesartan-0.1 groups and mild in losartan-10 and candesartan-0.3 groups. Only candesartan significantly improved TAA-induced motor dysfunction. In conclusion, therapeutic antifibrotic effects of losartan and candesartan in thioacetamide-induced hepatic fibrosis in rats are possibly through angiotensin-II receptor blocking, antioxidant, and anti-inflammatory activities. Improved motor dysfunction by candesartan could be attributed to better brain penetration and slower "off-rate" from angiotensin-II receptors. Clinical trials are recommended.

  12. History of chronic stress modifies acute stress-evoked fear memory and acoustic startle in male rats.

    PubMed

    Schmeltzer, Sarah N; Vollmer, Lauren L; Rush, Jennifer E; Weinert, Mychal; Dolgas, Charles M; Sah, Renu

    2015-01-01

    Chronicity of trauma exposure plays an important role in the pathophysiology of posttraumatic stress disorder (PTSD). Thus, exposure to multiple traumas on a chronic scale leads to worse outcomes than acute events. The rationale for the current study was to investigate the effects of a single adverse event versus the same event on a background of chronic stress. We hypothesized that a history of chronic stress would lead to worse behavioral outcomes than a single event alone. Male rats (n = 14/group) were exposed to either a single traumatic event in the form of electric foot shocks (acute shock, AS), or to footshocks on a background of chronic stress (chronic variable stress-shock, CVS-S). PTSD-relevant behaviors (fear memory and acoustic startle responses) were measured following 7 d recovery. In line with our hypothesis, CVS-S elicited significant increases in fear acquisition and conditioning versus the AS group. Unexpectedly, CVS-S elicited reduced startle reactivity to an acoustic stimulus in comparison with the AS group. Significant increase in FosB/ΔFosB-like immunostaining was observed in the dentate gyrus, basolateral amygdala and medial prefrontal cortex of CVS-S rats. Assessments of neuropeptide Y (NPY), a stress-regulatory transmitter associated with chronic PTSD, revealed selective reduction in the hippocampus of CVS-S rats. Collectively, our data show that cumulative stress potentiates delayed fear memory and impacts defensive responding. Altered neuronal activation in forebrain limbic regions and reduced NPY may contribute to these phenomena. Our preclinical studies support clinical findings reporting worse PTSD outcomes stemming from cumulative traumatization in contrast to acute trauma.

  13. Improvement of exercise capacity of rats with chronic heart failure by long-term treatment with trandolapril

    PubMed Central

    Yamaguchi, Fuminari; Kawana, Ken-ichiro; Tanonaka, Kouichi; Kamano, Isamu; Igarashi, Takahiro; Gen, Eigyoku; Fujimoto, Yoko; Maki, Toshiyuki; Sanbe, Atsushi; Nasa, Yoshihisa; Takeo, Satoshi

    1999-01-01

    The effects of long-term treatment with trandolapril, an angiotensin I-converting enzyme inhibitor, on exercise capacity of rats with chronic heart failure (CHF) following coronary artery ligation were examined. CHF was developed by 8 weeks after the coronary artery ligation. The running time of rats with CHF in the treadmill test was shortened to approximately 65% of that of sham-operated rats (16.3±1.2 vs 25.1±1.6 min, n=7; P<0.05). ATP, creatine phosphate (CP), and lactate contents of the gracilis muscle of rats with CHF were similar to those of sham-operated rats before running. After running, ATP and CP were decreased and lactate was increased in both rats with CHF and sham-operated rats. There were no significant differences in the levels of energy metabolites between rats with CHF and sham-operated rats. The rates of decrease in ATP and CP and rate of increase in lactate in the gracilis muscle of rats with CHF during exercise were greater than those of sham operated rats (2.5, 2.0 and 1.5 fold high, respectively), suggesting wastage of energy during exercise in the animals with CHF. Myofibrillar Ca2+-stimulated ATPase (Ca-ATPase) activity of skeletal muscle of rats with CHF was increased over that of the sham-operated control (62.03±1.88 vs 52.34±1.19 μmol Pi mg−1 protein h−1 n=7; P<0.05). The compositions of myosin heavy chain (MHC) isoforms of gracilis muscle were altered by CHF; decreases in MHC types I and IIb and an increase in MHC type IIa were found (P<0.05). Rats with CHF were treated with 1 mg kg−1 day−1 trandolapril from the 2nd to 8th week after surgery. Treatment with trandolapril prolonged the running time, reversed the rates of decrease in ATP and CP and the rate of increase in lactate, and restored the Ca-ATPase activity (51.11±0.56 μmol Pi mg−1 protein h−1, n=7; P<0.05) and composition ratio of MHC isoforms in the gracilis muscle. The results suggest that long-term trandolapril treatment of rats with CHF

  14. Ca 45 Uptake in Fracture Callus of Normal and Aminoacetonitrile-Treated Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolognani, L.; Ponseti, T. V.

    1962-04-01

    Calcium content and Ca 45 uptake were measured in the fracture callus of normal and AAN-treated rats. It appears that total calcium deposition and Ca 45 uptake are both higher in the young callus, 5 and 10 days after fracture, of the AAN-treated animals. By the 20th day, mineralization of the callus in both groups is similar.

  15. Regression of endometrial explants in a rat model of endometriosis treated with melatonin.

    PubMed

    Güney, Mehmet; Oral, Baha; Karahan, Nermin; Mungan, Tamer

    2008-04-01

    To determine the antioxidant, antiinflammatory, and immunomodulatory effects of melatonin on endometrial explants, the distribution of cyclooxygenase-2 (COX-2), the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and levels of malondialdehyde (MDA) in the rat endometriosis model. Prospective, placebo-controlled experimental study. Experimental surgery laboratory in a university department. Twenty-five rats with experimentally induced endometriosis. Endometriosis was surgically induced in 25 rats by transplanting an autologous fragment of endometrial tissue onto the inner surface of the abdominal wall. Four weeks later, three rats were killed and the remaining 22 rats given second-look laparotomies to identify and measure ectopic uterine tissue in three dimensions. After the second laparotomy, 4 weeks of vehicle and melatonin treatment were administered, then all of the rats were given a third laparotomy and killed. The volume and weight of the implants were measured. The remaining rats were randomly divided into two groups. In control group (group 1; n = 11) no medication was given. To the rats in melatonin-treated group (group 2; n = 11), 10 mg/kg a day of melatonin was administered intraperitoneally. Four weeks later, after the second laparotomy, the endometrial explants were reevaluated morphologically, and COX-2 expression was evaluated immunohistochemically and histologically. In addition, endometrial explants were analyzed for the antioxidant enzymes SOD, CAT, and MDA, a marker of lipid peroxidation. A scoring system was used to evaluate expression of COX-2 and preservation of epithelia. The pretreatment and posttreatment volumes within the control group were 135.9 +/- 31.5 and 129.4 +/- 28.7, respectively. The mean explant volume was 141.4 +/- 34.4 within the melatonin group before the treatment and 42.9 +/- 14.0 after 4 weeks of treatment. There was a statistically significant difference in spherical volumes (129.4 +/- 28

  16. Investigation of chronic toxicity of hydroxyapatite nanoparticles administered orally for one year in wistar rats.

    PubMed

    Remya, N S; Syama, S; Sabareeswaran, A; Mohanan, P V

    2017-07-01

    Although the toxicity/biocompatibility of hydroxyapatite nanoparticles (nano HA), a prospective nano biomaterial is extensively studied, its interaction on biological systems following chronic exposure is less exploited. In the present study, Wistar rats were given various concentrations of nano HA in the diet to determine the chronic toxicity and potential carcinogenicity. Altogether 140 rats were used for the study under various administration dosages along with control. The animals were sacrificed after 12months of controlled continuous dosing. All in-life parameters, including body weight, food consumption, clinical observations, survival, biochemical and hematology, were unaffected by the chronic exposure of nano HA orally. Similarly, gross and histopathological evaluation was also unchanged following exposure to nano HA. No evidence of nano HA-related lesions or Nano HA-induced neoplasia was suggested in this rodent bioassay study. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Individual differences in anhedonic and accumbal dopamine responses to chronic social stress and their link to cocaine self-administration in female rats

    PubMed Central

    Holly, Elizabeth N.; Boyson, Christopher O.; DeBold, Joseph F.; Miczek, Klaus A.

    2014-01-01

    Rationale Women are twice as likely as men to develop major depressive disorder. Exposure to chronic stress can induce depression in some vulnerable individuals, while others are resistant to depressive-like symptoms after equivalent levels of chronic stress. Objectives In female rats, individual differences in saccharin intake during chronic social defeat stress may predict subsequent cocaine self-administration, and may be attributed to alterations in mesolimbic dopamine activity. Methods Female rats were exposed to 21 days of chronic social defeat stress, during which they were evaluated for their anhedonia-like responses in the form of saccharin intake. After chronic social defeat stress, the rats were tested for behavioral cross-sensitization to cocaine and escalated cocaine self-administration in a 24-h “binge.” A separate group of animals underwent in vivo microdialysis of the nucleus accumbens (NAc) shell to assess dopamine (DA) in response to acute cocaine challenge. Results Cluster analysis revealed two phenotypes among the stressed female rats based on their saccharin intake while being exposed to stress, termed stress-resistant (SR, 28 %) and stress-sensitive (SS, 72 %). The amount of cocaine self-administered during the 24-h “binge” was positively correlated with preceding saccharin intake. The NAc DA response to a cocaine challenge was significantly lower in SR rats than in the SS and non-stressed control rats. No other significant differences were observed in behavioral cross-sensitization or cocaine self-administration prior to the “binge.” Conclusion Female rats showed individual differences in their anhedonic-like response to chronic social defeat stress, and these differences were reliably associated with subsequent cocaine-taking behavior. PMID:25178816

  18. Multiparameter rodent chronic model for complex evaluation of alcoholism-mediated metabolic violations.

    PubMed

    Shayakhmetova, Ganna M; Bondarenko, Larysa B; Kovalenko, Valentina M; Kharchenko, Olga I; Bohun, Larisa I; Omelchenko, Yuliya O

    2015-01-01

    Despite of the wide spectrum of alcoholism experimental models, the majority of them are very specialized on the short list of investigated parameters and could not provide reproduction of complex metabolic changes in the rats. The aim of the present study was to estimate whether rats selected by high alcohol preference, allowed free access to 15% alcohol for 150 days, develop simultaneous multilevel disturbances of cell macromolecules structure, metabolism and oxidative/nitrosative stress. Wistar albino male rats were divided into groups: I - rats selected by preferences to alcohol were used for chronic alcoholism modeling by replacing water with 15% ethanol (150 days), II - control. Contents of amino acids in serum, liver mRNA CYP2E1 and CYP3A2 expression, DNA fragmentation and lipid peroxidation levels, the reduced glutathione content, superoxide dismutase, catalase, iNOS and cNOS activities were evaluated. In serum of ethanol-treated rats contents of aspartic acid, serine, glycine, alanine and valine were decreased whereas contents of histidine, methionine and phenylalanine were increased. Liver CYP2E1, CYP3A2 mRNA expression, DNA fragmentation levels significantly elevated. Level of cNOS in ethanol-treated rat's hepatocytes was within the normal limits, whereas iNOS activity was raised 1.6 times. Liver pro- and anti-oxidant system alterations were shown. Rats' chronic 15% alcohol consumption (150 days) led solely to complex metabolomic changes at different levels, which simultaneously characterized cell macromolecules structure, metabolism, and oxidative/nitrosative stress. Rodent model of chronic alcoholism in the proposed modification could be an adequate and reasonably priced tool for further preclinical development and testing of pharmacotherapeutic agents.

  19. Chronic pain impairs cognitive flexibility and engages novel learning strategies in rats.

    PubMed

    Cowen, Stephen L; Phelps, Caroline E; Navratilova, Edita; McKinzie, David L; Okun, Alec; Husain, Omar; Gleason, Scott D; Witkin, Jeffrey M; Porreca, Frank

    2018-03-22

    Cognitive flexibility, the ability to adapt behavior to changing outcomes, is critical for survival. The prefrontal cortex is a key site of cognitive control and chronic pain is known to lead to significant morphological changes to this brain region. Nevertheless, the effects of chronic pain on cognitive flexibility and learning remain uncertain. We used an instrumental paradigm to assess adaptive learning in an experimental model of chronic pain induced by tight ligation of the spinal nerves L5/6 (SNL model). Naïve, sham-operated, and SNL rats were trained to perform fixed-ratio, variable-ratio, and contingency-shift behaviors for food reward. Although all groups learned an initial lever-reward contingency, learning was slower in SNL animals in a subsequent choice task that reversed reinforcement contingencies. Temporal analysis of lever-press responses across sessions indicated no apparent deficits in memory consolidation or retrieval. However, analysis of learning within sessions revealed that the lever presses of SNL animals occurred in bursts followed by delays. Unexpectedly, the degree of bursting correlated positively with learning. Under a variable-ratio probabilistic task, SNL rats chose a less profitable behavioral strategy compared to naïve and sham-operated animals. Following extinction of behavior for learned preferences, SNL animals reverted to their initially preferred (i.e., less profitable) behavioral choice. Our data suggest, that in the face of uncertainty, chronic pain drives a preference for familiar associations, consistent with reduced cognitive flexibility. The observed burst-like responding may represent a novel learning strategy in animals with chronic pain.

  20. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    PubMed Central

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  1. Chronic ethanol consumption induces erectile dysfunction: Role of oxidative stress.

    PubMed

    Muniz, Jaqueline J; Leite, Letícia N; De Martinis, Bruno S; Carneiro, Fernando S; Tirapelli, Carlos R

    2015-11-15

    Investigate the effects of chronic ethanol consumption on erectile function and on the corpus cavernosum (CC) reactivity to endothelin-1 (ET-1). Male Wistar rats were treated with ethanol (20% v/v) for six weeks. Ethanol-treated rats showed impaired erectile function represented by decreased intracavernosal pressure/mean arterial pressure (ICP/MAP) responses. Ethanol consumption increased the contractile response induced by ET-1 in the isolated CC. Tiron increased ET-1-induced contraction in CC from control and ethanol-treated rats. No differences in the maximal contraction to ET-1 were observed after incubation of CC with PEG-catalase. SC560 and SC236 increased ET-1-induced contraction in CC from ethanol-treated rats. Y27632 reduced the contraction induced by ET-1 in CC from control and ethanol-treated rats. Ethanol increased plasma TBARS, superoxide anion (O2(-)) levels and intracellular reactive oxygen species (ROS) generation in the rat CC. Reduced hydrogen peroxide (H2O2) levels in CC and increased catalase (CAT) activity in plasma and CC were detected after treatment with ethanol. Ethanol decreased superoxide dismutase (SOD) activity in the rat CC. Increased expression of COX-1 was observed in CC from ethanol-treated rats. Treatment with ethanol decreased COX-2 expression but did not alter the expression of Nox1, RhoA and p-RhoA (ser(188)) in the rat CC. The major new findings of our study are that ethanol consumption induces erectile dysfunction (ED) and increases the contraction induced by ET-1 in the rat CC by a mechanism that involves decreased generation of H2O2 and vasodilator prostanoids as well as increased activation of the RhoA/Rho-kinase pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine

    PubMed Central

    Bullock, W. Michael; Bolognani, Federico; Botta, Paolo; Valenzuela, C. Fernando; Perrone-Bizzozero, Nora I.

    2009-01-01

    One of the most consistent findings in schizophrenia is the decreased expression of the GABA synthesizing enzymes GAD67 and GAD65 in specific interneuron populations. This dysfunction is observed in distributed brain regions including the prefrontal cortex, hippocampus, and cerebellum. In an effort to understand the mechanisms for this GABA deficit, we investigated the effect of the N-methyl-D-aspartate receptor (NMDAR) antagonist phencyclidine (PCP), which elicits schizophrenia-like symptoms in both humans and animal models, in a chronic, low-dose exposure paradigm. Adult rats were given PCP at a dose of 2.58 mg/kg/day i.p. for a month, after which levels of various GABAergic cell mRNAs and other neuromodulators were examined in the cerebellum by RT-qPCR. Administration of PCP decreased the expression of GAD67, GAD65, and the presynaptic GABA transporter GAT-1, and increased GABAA receptor subunits similar to those seen in patients with schizophrenia. Additionally, we found that the mRNA levels of two Golgi cell selective NMDAR subunits, NR2B and NR2D, were decreased in PCP treated rats. Furthermore, we localized the deficits in GAD67 expression solely to these interneurons. Slice electrophysiological studies showed that spontaneous firing of Golgi cells was reduced by acute exposure to low dose PCP, suggesting that these neurons are particularly vulnerable to NMDA receptor antagonism. In conclusion, our results demonstrate that chronic exposure to low levels of PCP in rats mimics the GABAergic alterations reported in the cerebellum of patients with schizophrenia (Bullock et al., Am J Psychiatry 165: 1594-1603, 2008), further supporting the validity of this animal model. PMID:19651169

  3. Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas.

    PubMed

    Silveira, Edna Aparecida; Siman, Fabiana Dayse Magalhães; de Oliveira Faria, Thaís; Vescovi, Marcos Vinícius Altoé; Furieri, Lorena Barros; Lizardo, Juliana Hott Fúcio; Stefanon, Ivanita; Padilha, Alessandra Simão; Vassallo, Dalton Valentim

    2014-02-01

    Chronic lead exposure induces hypertension affecting endothelial function. We investigated whether low-concentration lead exposure alters blood pressure and vascular reactivity, focusing on the roles of NO, oxidative stress, cyclooxygenase-derived vasoconstrictor prostanoids, and the local angiotensin-renin system. Aortic rings from 3-month-old Wistar rats were treated daily with lead acetate (first dose 4mg/100g, subsequent doses 0.05mg/100g, im) or vehicle for 30 days. Treatment increased lead blood levels (12μg/dl), blood pressure, and aortic ring contractile response to phenylephrine (1nM-100mM). Contractile response after L-NAME administration increased in both groups but was higher after lead treatment. Lead effects on Rmax decreased more after apocynin and superoxide dismutase administration compared to control. Indomethacin reduced phenylephrine response more after lead treatment than in controls. The selective COX-2 inhibitor NS398, thromboxane A2/prostaglandin H2 receptor antagonist SQ 29,548, TXA2 synthase inhibitor furegrelate, EP1 receptor antagonist SC 19220, and ACE inhibitor and AT1 receptor antagonist losartan reduced phenylephrine responses only in vessels from lead-treated rats. Basal and stimulated NO release was reduced and local O2(-) liberation increased in the lead-treated group compared to controls. eNOS, iNOS, and AT1 receptor protein expression increased with lead exposure, but COX-2 protein expression decreased. This is the first demonstration that blood Pb(2+) (12µg/dl) concentrations below the WHO-established values increased systolic blood pressure and vascular phenylephrine reactivity. This effect was associated with reduced NO bioavailability, increased reactive oxygen species production, increased participation of COX-derived contractile prostanoids, and increased renin-angiotensin system activity. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Haemodynamic effects of a selective adenosine A2A receptor agonist, CGS 21680, in chronic heart failure in anaesthetized rats.

    PubMed

    Nekooeian, A A; Tabrizchi, R

    1998-10-01

    1. Recently we demonstrated that the administration of an A2A adenosine receptor agonist, CGS 21680, to anaesthetized rats with acute heart failure (1 h post-coronary artery ligation) resulted in an increase in cardiac output. In the present investigation, the effects of CGS 21680 on cardiac output, vascular resistance, heart rate, blood pressure and mean circulatory filling pressure (Pmcf) were investigated in anaesthetized rats with chronic heart failure (8 weeks post-coronary artery ligation). 2. Experiments were conducted in five groups (n = 6) of animals: sham-operated vehicle-treated (0.9% NaCl; 0.037 mL kg(-1) min(-1)) animals in which the occluder was placed but not pulled to ligate the coronary artery; coronary artery-ligated vehicle-treated animals; and coronary artery-ligated CGS 21680-treated (0.1. 0.3 or 1.0 microg kg(-1) min(-1)) animals. 3. Baseline blood pressure, cardiac output and rate of rise in left ventricular pressure (+dP/dt) were significantly reduced in animals with coronary artery ligation when compared to sham-operated animals. Coronary artery ligation resulted in a significant increase in left ventricular end-diastolic pressure, Pmcf and venous resistance when compared to sham-operated animals. 4. Administration of CGS 21680 at 0.3 and 1.0 microg kg(-1) min(-1) significantly (n = 6; P<0.05) increased cardiac output by 19+/-4% and 39+/-5%, and heart rate by 14+/-2% and 15+/-1%, respectively, when compared to vehicle treatment in coronary artery-ligated animals. Administration of CGS 21680 also significantly reduced blood pressure and arterial resistance when compared to coronary artery-ligated vehicle-treated animals. Infusion of CGS 21680 also significantly reduced venous resistance when compared to vehicle-treated coronary artery-ligated animals. 5. The results show that heart failure is characterized by reduced cardiac output, and increased left ventricular end-diastolic pressure, venous resistance and Pmcf. Acute treatment with CGS

  5. Haemodynamic effects of a selective adenosine A2A receptor agonist, CGS 21680, in chronic heart failure in anaesthetized rats

    PubMed Central

    Nekooeian, Ali A; Tabrizchi, Reza

    1998-01-01

    Recently we demonstrated that the administration of an A2A adenosine receptor agonist, CGS 21680, to anaesthetized rats with acute heart failure (1 h post-coronary artery ligation) resulted in an increase in cardiac output. In the present investigation, the effects of CGS 21680 on cardiac output, vascular resistance, heart rate, blood pressure and mean circulatory filling pressure (Pmcf) were investigated in anaesthetized rats with chronic heart failure (8 weeks post-coronary artery ligation).Experiments were conducted in five groups (n=6) of animals: sham-operated vehicle-treated (0.9% NaCl; 0.037 mL kg−1 min−1) animals in which the occluder was placed but not pulled to ligate the coronary artery; coronary artery-ligated vehicle-treated animals; and coronary artery-ligated CGS 21680-treated (0.1, 0.3 or 1.0 μg kg−1 min−1) animals.Baseline blood pressure, cardiac output and rate of rise in left ventricular pressure (+dP/dt) were significantly reduced in animals with coronary artery ligation when compared to sham-operated animals. Coronary artery ligation resulted in a significant increase in left ventricular end-diastolic pressure, Pmcf and venous resistance when compared to sham-operated animals.Administration of CGS 21680 at 0.3 and 1.0 μg kg−1 min−1 significantly (n=6; P<0.05) increased cardiac output by 19±4% and 39±5%, and heart rate by 14±2% and 15±1%, respectively, when compared to vehicle treatment in coronary artery-ligated animals. Administration of CGS 21680 also significantly reduced blood pressure and arterial resistance when compared to coronary artery-ligated vehicle-treated animals. Infusion of CGS 21680 also significantly reduced venous resistance when compared to vehicle-treated coronary artery-ligated animals.The results show that heart failure is characterized by reduced cardiac output, and increased left ventricular end-diastolic pressure, venous resistance and Pmcf. Acute treatment with CGS 21680 in

  6. Up-regulation of CXCR4 expression contributes to persistent abdominal pain in rats with chronic pancreatitis.

    PubMed

    Zhu, Hong-Yan; Liu, Xuelian; Miao, Xiuhua; Li, Di; Wang, Shusheng; Xu, Guang-Yin

    2017-01-01

    Background Pain in patients with chronic pancreatitis is critical hallmark that accompanied inflammation, fibrosis, and destruction of glandular pancreas. Many researchers have demonstrated that stromal cell-derived factor 1 (also named as CXCL12) and its cognate receptor C-X-C chemokine receptor type 4 (CXCR4) involved in mediating neuropathic and bone cancer pain. However, their roles in chronic pancreatic pain remain largely unclear. Methods Chronic pancreatitis was induced by intraductal injection of trinitrobenzene sulfonic acid to the pancreas. Von Frey filament tests were conducted to evaluate pancreas hypersensitivity of rat. Expression of CXCL12, CXCR4, NaV1.8, and pERK in rat dorsal root ganglion was detected by Western blot analyses. Dorsal root ganglion neuronal excitability was assessed by electrophysiological recordings. Results We showed that both CXCL12 and CXCR4 were dramatically up-regulated in the dorsal root ganglion in trinitrobenzene sulfonic acid-induced chronic pancreatitis pain model. Intrathecal application with AMD3100, a potent and selective CXCR4 inhibitor, reversed the hyperexcitability of dorsal root ganglion neurons innervating the pancreas of rats following trinitrobenzene sulfonic acid injection. Furthermore, trinitrobenzene sulfonic acid-induced extracellular signal-regulated kinase activation and Nav1.8 up-regulation in dorsal root ganglias were reversed by intrathecal application with AMD3100 as well as by blockade of extracellular signal-regulated kinase activation by intrathecal U0126. More importantly, the trinitrobenzene sulfonic acid-induced persistent pain was significantly suppressed by CXCR4 and extracellular signal-regulated kinase inhibitors. Conclusions The present results suggest that the activation of CXCL12-CXCR4 signaling might contribute to pancreatic pain and that extracellular signal-regulated kinase-dependent Nav1.8 up-regulation might lead to hyperexcitability of the primary nociceptor neurons in rats with

  7. Sea buckthorn (Hippophae rhamnoides L.) oil protects against chronic stress-induced inhibitory function of natural killer cells in rats.

    PubMed

    Diandong, Hou; Feng, Gu; Zaifu, Liang; Helland, Timothy; Weixin, Fu; Liping, Cai

    2016-03-01

    Chronic stress can suppress natural killer (NK) cell activity; this may also be related to the effect of stress on the neuroendocrine-immune network. Sea buckthorn (SBT) (Hippophae rhamnoides L.) is a thorny nitrogen fixing deciduous shrub, native to both Europe and Asia. It has been used as a medicinal plant in Tibetan and Mongolian traditional medicines. SBT has multifarious medical properties, including anti-fatigue as well as immunoregulatory effects. This study reports the effects of SBT oil with regard to the cytotoxicity and quantity of NK cells in the blood of a chronic-stress rat model, in addition to its mechanisms on the neuroendocrine-immune network. These results show that SBT oil, given by gavage to rats with chronic stress, could increase the following: body weight, NK cell quantities, and cytotoxicity, as well as the expression of perforin and granzyme B. The results also show that SBT oil in rats with chronic stress could suppress cortisol, ACTH, IL-1β and TNF-α levels, in addition to increasing 5-HT and IFN-γ serum levels. This leads to suggest that SBT oil, in rats with chronic stress, can increase NK cell cytotoxicity by upregulating the expression of perforin and granzyme B, thus causing associated effects of SBT oil on the neuroendocrine-immune network. © The Author(s) 2015.

  8. Sea buckthorn (Hippophae rhamnoides L.) oil protects against chronic stress-induced inhibitory function of natural killer cells in rats

    PubMed Central

    Diandong, Hou; Feng, Gu; Zaifu, Liang; Helland, Timothy; Weixin, Fu; Liping, Cai

    2015-01-01

    Chronic stress can suppress natural killer (NK) cell activity; this may also be related to the effect of stress on the neuroendocrine–immune network. Sea buckthorn (SBT) (Hippophae rhamnoides L.) is a thorny nitrogen fixing deciduous shrub, native to both Europe and Asia. It has been used as a medicinal plant in Tibetan and Mongolian traditional medicines. SBT has multifarious medical properties, including anti-fatigue as well as immunoregulatory effects. This study reports the effects of SBT oil with regard to the cytotoxicity and quantity of NK cells in the blood of a chronic-stress rat model, in addition to its mechanisms on the neuroendocrine–immune network. These results show that SBT oil, given by gavage to rats with chronic stress, could increase the following: body weight, NK cell quantities, and cytotoxicity, as well as the expression of perforin and granzyme B. The results also show that SBT oil in rats with chronic stress could suppress cortisol, ACTH, IL-1β and TNF-α levels, in addition to increasing 5-HT and IFN-γ serum levels. This leads to suggest that SBT oil, in rats with chronic stress, can increase NK cell cytotoxicity by upregulating the expression of perforin and granzyme B, thus causing associated effects of SBT oil on the neuroendocrine–immune network. PMID:26684638

  9. Xiao Yao San Improves Depressive-Like Behaviors in Rats with Chronic Immobilization Stress through Modulation of Locus Coeruleus-Norepinephrine System.

    PubMed

    Ding, Xiu-Fang; Zhao, Xiao-Hua; Tao, Yang; Zhong, Wei-Chao; Fan, Qin; Diao, Jian-Xin; Liu, Yuan-Liang; Chen, Yu-Yao; Chen, Jia-Xu; Lv, Zhi-Ping

    2014-01-01

    Most research focuses on the hypothalamic-pituitary-adrenal (HPA) axis, hypothalamus-pituitary-thyroid (HPT) axis, and hypothalamus-pituitary-gonadal (HPGA) axis systems of abnormalities of emotions and behaviors induced by stress, while no studies of Chinese herbal medicine such as Xiao Yao San (XYS) on the mechanisms of locus coeruleus-norepinephrine (LC-NE) system have been reported. Therefore, experiments were carried out to observe mechanism of LC-NE system in response to chronic immobilization stress (CIS) and explore the antidepressant effect of XYS. Rat model was established by CIS. LC morphology in rat was conducted. The serum norepinephrine (NE) concentrations and NE biosynthesis such as tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH), and corticotrophin-releasing-factor (CRF) in LC were determined. Results showed that there were no discernible alterations in LC in rats. The serum NE concentrations, positive neurons, mean optical density (MOD), and protein levels of TH, DBH, and CRF in model group were significantly increased compared to the control group. But XYS-treated group displayed a significantly decreased in NE levels and expressions of TH, DBH, and CRF compared to the model group. In conclusion, CIS can activate LC-NE system to release NE and then result in a significant decrease in rats. XYS treatment can effectively improve depressive-like behaviors in rats through inhibition of LC-NE neurons activity.

  10. Xiao Yao San Improves Depressive-Like Behaviors in Rats with Chronic Immobilization Stress through Modulation of Locus Coeruleus-Norepinephrine System

    PubMed Central

    Ding, Xiu-Fang; Zhao, Xiao-Hua; Tao, Yang; Zhong, Wei-Chao; Fan, Qin; Diao, Jian-Xin; Liu, Yuan-Liang; Chen, Yu-Yao; Chen, Jia-Xu; Lv, Zhi-Ping

    2014-01-01

    Most research focuses on the hypothalamic-pituitary-adrenal (HPA) axis, hypothalamus-pituitary-thyroid (HPT) axis, and hypothalamus-pituitary-gonadal (HPGA) axis systems of abnormalities of emotions and behaviors induced by stress, while no studies of Chinese herbal medicine such as Xiao Yao San (XYS) on the mechanisms of locus coeruleus-norepinephrine (LC-NE) system have been reported. Therefore, experiments were carried out to observe mechanism of LC-NE system in response to chronic immobilization stress (CIS) and explore the antidepressant effect of XYS. Rat model was established by CIS. LC morphology in rat was conducted. The serum norepinephrine (NE) concentrations and NE biosynthesis such as tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH), and corticotrophin-releasing-factor (CRF) in LC were determined. Results showed that there were no discernible alterations in LC in rats. The serum NE concentrations, positive neurons, mean optical density (MOD), and protein levels of TH, DBH, and CRF in model group were significantly increased compared to the control group. But XYS-treated group displayed a significantly decreased in NE levels and expressions of TH, DBH, and CRF compared to the model group. In conclusion, CIS can activate LC-NE system to release NE and then result in a significant decrease in rats. XYS treatment can effectively improve depressive-like behaviors in rats through inhibition of LC-NE neurons activity. PMID:25610478

  11. The effects of chronic ketorolac tromethamine (toradol) on wound healing.

    PubMed

    Haws, M J; Kucan, J O; Roth, A C; Suchy, H; Brown, R E

    1996-08-01

    Intramuscular ketorolac is a commonly used nonsteroidal anti-inflammatory (NSAI) agent for analgesia in surgical patients. Increasing numbers of surgical patients are chronically taking some form of an NSAI drug. We examined the effects of "chronic" intramuscular ketorolac on the healing of a closed linear surgical wound in the rat. Wistar rats were pretreated with 4 mg per kilogram per day ketorolac intramuscularly prior to receiving dorsal incisional wounds. The ketorolac treatment was continued and after 2 weeks the wounds were excised and separated with a tensiometer to measure mechanical properties. Breaking strength was directly measured, tensile strength was calculated, and collagen concentrations at the wound site were determined. A significant decrease in the mean breaking strength was seen in the ketorolac-treated animals when compared to controls. The ketorolac-treated animals had a mean tensile strength less than the controls, although this difference did not reach statistical significance. The mean collagen concentration of the ketorolac-treated wounds was significantly less than the untreated wounds. Use of ketorolac for just 1 week prior to surgery in rats produced a significant decrease in the breaking strength of their wounds. With the increasing use of ketorolac in surgical patients as well as the increasing use of oral NSAI drugs, more study of this effect is warranted.

  12. Increased densities of monocarboxylate transport protein MCT1 after chronic administration of nicotine in rat brain.

    PubMed

    Canis, Martin; Mack, Brigitte; Gires, Olivier; Maurer, Martin H; Kuschinsky, Wolfgang; Duembgen, Lutz; Duelli, Roman

    2009-08-01

    Chronic administration of nicotine is followed by a general stimulation of brain metabolism that results in a distinct increase of glucose transport protein densities for Glut1 and Glu3, and local cerebral glucose utilization (LCGU). This increase of LCGU might be paralleled by an enhanced production of lactate. Therefore, the question arose as to whether chronic nicotine infusion is accompanied by increased local densities of monocarboxylate transporter MCT1 in the brain. Secondly, we inquired whether LCGU might be correlated with local densities of MCT1 during normal conditions and after chronic nicotine infusion. Nicotine was given subcutaneously for 1 week by osmotic mini-pumps and local densities of MCT1 were measured by immunoautoradiographic methods in cryosections of rat brains. MCT1 density was significantly increased in 21 of 32 brain structures investigated (median increase 15.0+/-3.6%). Immunohistochemical stainings of these substructures revealed an over-expression of MCT1 within endothelial cells and astrocytes of treated animals. A comparison of 23 MCT1 densities with LCGU measured in the same structures in a previous study revealed a partial correlation between both parameters under control conditions and after chronic nicotine infusion. 10 out of 23 brain areas, which showed a significant increase of MCT1 density due to chronic nicotine infusion, also showed a significant increase of LCGU. In summary, our data show that chronic nicotine infusion induces a moderate increase of local and global density of MCT1 in defined brain structures. However, in terms of brain topologies and substructures this phenomenon did partially match with increased LCGU. It is concluded that MCT1 transporters were upregulated during chronic nicotine infusion at the level of brain substructures and, at least partially, independently of LCGU.

  13. AT1 and aldosterone receptors blockade prevents the chronic effect of nandrolone on the exercise-induced cardioprotection in perfused rat heart subjected to ischemia and reperfusion.

    PubMed

    Marques-Neto, Silvio Rodrigues; Ferraz, Emanuelle Baptista; Rodrigues, Deivid Carvalho; Njaine, Brian; Rondinelli, Edson; Campos de Carvalho, Antônio Carlos; Nascimento, Jose Hamilton Matheus

    2014-04-01

    Myocardial tolerance to ischaemia/reperfusion (I/R) injury is improved by exercise training, but this cardioprotection is impaired by the chronic use of anabolic androgenic steroids (AAS). The present study evaluated whether blockade of angiotensin II receptor (AT1-R) with losartan and aldosterone receptor (mineralocorticoid receptor, MR) with spironolactone could prevent the deleterious effect of AAS on the exercise-induced cardioprotection. Male Wistar rats were exercised and treated with either vehicle, nandrolone decanoate (10 mg/kg/week i.m.) or the same dose of nandrolone plus losartan or spironolactone (20 mg/kg/day orally) for 8 weeks. Langendorff-perfused hearts were subjected to I/R and evaluated for the postischaemic recovery of left ventricle (LV) function and infarct size. mRNA and protein expression of angiotensin II type 1 receptor (AT1-R), mineralocorticoid receptor (MR), and KATP channels were determined by reverse-transcriptase polymerase chain reaction and Western blotting. Postischaemic recovery of LV function was better and infarct size was smaller in the exercised rat hearts than in the sedentary rat hearts. Nandrolone impaired the exercise-induced cardioprotection, but this effect was prevented by losartan (AT1-R antagonist) and spironolactone (MR antagonist) treatments. Myocardial AT1-R and MR expression levels were increased, and the expression of the KATP channel subunits SUR2a and Kir6.1 was decreased and Kir6.2 increased in the nandrolone-treated rat hearts. The nandrolone-induced changes of AT1-R, MR, and KATP subunits expression was normalized by the losartan and spironolactone treatments. The chronic nandrolone treatment impairs the exercise-induced cardioprotection against ischaemia/reperfusion injury by activating the cardiac renin-angiotensin-aldosterone system and downregulating KATP channel expression.

  14. Chronic nandrolone administration induces dysfunction of the reward pathway in rats.

    PubMed

    Zotti, Margherita; Tucci, Paolo; Colaianna, Marilena; Morgese, Maria Grazia; Mhillaj, Emanuela; Schiavone, Stefania; Scaccianoce, Sergio; Cuomo, Vincenzo; Trabace, Luigia

    2013-10-24

    Data in animal models and surveys in humans have shown psychiatric complications of long-term anabolic androgenic steroids abuse. However, neurobiochemical mechanisms behind observed behavioral changes are poorly understood. The aim of the present study was to investigate the effects of nandrolone decanoate on emotional behavior and neurochemical brain alterations in gonadally intact male rats. Behavioral reactivity to elevated plus maze and social interaction test was used to assess anxiety-related symptoms, while sucrose preference test was used to evaluate anhedonia. Dopaminergic, serotonergic and noradrenergic transmissions were also evaluated in selected brain areas. Chronic administration of nandrolone, at 5 mg kg -1 injected for 4 weeks, induced loss of sweet taste preference, as sign of anhedonia and dysfunction of reward pathway. Behavioral outcomes were accompanied by reduction of dopamine, serotonin and noradrenaline contents in nucleus accumbens. Neither alterations in time spent in open arms nor in social interaction test were found, suggesting that nandrolone did not induce an anxiogenic profile. No differences were revealed between experimental groups in the amygdala in terms of neurotransmitters measured. Our data suggest that nandrolone-treated rats have a depressive, but not anxiogenic-like, profile, accompanied by brain region-dependent changes in dopaminergic, serotonergic and noradrenergic neurotransmission. As anabolic androgenic steroid dependence is plausibly the major form of worldwide substance dependence that remains largely unexplored, it should be underlined that our data could contribute to a better understanding of altered reward induced by nandrolone treatment and to develop appropriate treatment. Copyright © 2013. Published by Elsevier Inc.

  15. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    PubMed

    Arime, Yosefu; Akiyama, Kazufumi

    2017-01-01

    Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC) and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP) mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days) of either saline or PCP (10 mg/kg): (1) a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2) brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s) in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells) in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  16. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice

    PubMed Central

    Akiyama, Kazufumi

    2017-01-01

    Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC) and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP) mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days) of either saline or PCP (10 mg/kg): (1) a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2) brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s) in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2–3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells) in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2–3 of the prelimbic cortex of the PFC. PMID:29253020

  17. Ciproxifan differentially modifies cognitive impairment evoked by chronic stress and chronic corticosterone administration in rats.

    PubMed

    Trofimiuk, Emil; Braszko, Jan J

    2015-04-15

    Despite the development of neuroscience and spectacular discoveries, the clear functions and the role of histamine are still not fully understood, especially in the context of the negative impact of prolonged stress exposure on the cognition. The purpose of this study was to evaluate the participation of hypercortisolemia in the detrimental effect of stress on cognitive function and their preclusion by affecting the histaminergic system with ciproxifan. Specifically, we attempted to characterize the preventive action of a single dose of ciproxifan (3mg/kg, i.p.) against an impairment caused by chronic restraint stress as well as parallel exogenous corticosterone (equivalent to that seen in chronically stressed rats), and show differences in the interaction on reference and working memories tested in both aversive (Morris water maze - MWM) and appetitive (Barnes maze-BM) incentives. We found that administration of ciproxifan potently prevented equally deleterious effects of chronic restraint stress (p<0.01) as well as prolonged administration of corticosterone (p<0.01), especially in the tests, which themselves generate high levels of stress. As it turns out, test provided in the less stressful conditions (BM) showed that administration of the H3 receptor antagonist to naïve rats resulted in even memory impairment (p<0.01, in some aspects of reference memory). These data support the idea that modulation of H3 receptors represents a novel and viable therapeutic strategy in the treatment but rather not for prevention of stress-evoked cognitive impairments. Even a single dose abolishes the effect of prolonged exposure to stress or steroids. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Clinical Impact and Evidence Base for Physiotherapy in Treating Childhood Chronic Pain

    PubMed Central

    Amaria, Khush; Campbell, Fiona; McGrath, Patricia A.

    2011-01-01

    ABSTRACT Purpose: As part of the special series on pain, our objectives are to describe the key features of chronic pain in children, present the rationale for interdisciplinary treatment, report a case study based on our biopsychosocial approach, and highlight the integral role of physiotherapy in reducing children's pain and improving function. We also evaluate the evidence base supporting physiotherapy for treating chronic neuropathic pain in children. Summary of Key Points: Chronic pain affects many children and adolescents. Certain challenging pain conditions begin primarily during adolescence and disproportionately affect girls and women. Children with these conditions require an interdisciplinary treatment programme that includes physiotherapy as well as medication and/or psychological intervention. Converging lines of evidence from cohort follow-up studies, retrospective chart reviews, and one randomized controlled trial support the effectiveness of physiotherapy within an interdisciplinary programme for treating children with chronic pain. Conclusions: Evidence-based practice dictates that health care providers adopt clear guidelines for determining when treatments are effective and for identifying children for whom such treatments are most effective. Thus, additional well-designed trials are required to better identify the specific physiotherapy modalities that are most important in improving children's pain and function. PMID:22210976

  19. Combination therapy of chitosan, gynostemma, and motherwort alleviates the progression of experimental rat chronic renal failure by inhibiting STAT1 activation

    PubMed Central

    Bai, Wenxia; Wang, Shudong; An, Shanshan; Guo, Mengjie; Gong, Guangming; Liu, Wenya; Ma, Shaoxin; Li, Xin; Fu, Jihua; Yao, Wenbing

    2018-01-01

    This study aimed to investigate the effect of single and combination therapy using chitosan (K), gynostemma (J), and motherwort (Y) on an experimental rat model of chronic renal failure (CRF) induced by adenine and the underlying mechanisms. CRF rats were treated with individual or combinational therapy with two or three of these agents. Biochemical indicators showed that the levels of blood urea nitrogen, creatinine and uric acid decreased and the levels of albumin and hemoglobin increased by single or combination therapy of these drugs. Drug treatment also decreased oxidative stress damage of renal tissues in CRF rats. Histopathological lesions were attenuated in each drug treatment group by various degrees. Additionally, drug treatment affected the expression of extracellular matrix (ECM) proteins including plasminogen activator inhibitor 1, collagen I, matrix metalloprotease-1, and tissue inhibitor of metalloproteinases 1. In particular, the combination therapy of K, J, and Y was superior to the respective monotherapy, which supported the prescription of KJY combination. We further studied the inhibitory effect of KJY on LPS-induced inflammation in RAW264.7 macrophages. The results showed that KJY inhibited LPS-induced secretion of inflammatory cytokines (Interferon-gamma, Interleukin-1 Beta, chemokine (C-X-C motif) ligand 10, cyclooxygenase-2 and Tumor necrosis factor-α in RAW264.7 macrophages. Combination therapy of KJY suppressed the protein expression of Cyclooxygenase-2 and inducible nitric oxide synthase in vivo and in vitro. Further study indicated that KJY inhibited STAT1 activation by down regulating p-STAT1 to exert anti-inflammatory effect and improve renal function in rats with chronic renal failure. PMID:29643988

  20. Chronic valproic acid treatment triggers increased neuropeptide y expression and signaling in rat nucleus reticularis thalami.

    PubMed

    Brill, Julia; Lee, Michelle; Zhao, Sheng; Fernald, Russell D; Huguenard, John R

    2006-06-21

    Valproate (VPA) can suppress absence and other seizures, but its precise mechanisms of action are not completely understood. We investigated whether VPA influences the expression of neuropeptide Y (NPY), an endogenous anticonvulsant. Chronic VPA administration to young rats (300-600 mg.kg(-1).d(-1) in divided doses over 4 d) resulted in a 30-50% increase in NPY mRNA and protein expression in the nucleus reticularis thalami (nRt) and hippocampus, but not in the neocortex, as shown by real-time PCR, radioimmunoassay, and immunohistochemistry. No increased expression was observed after a single acute dose of VPA. Chronic treatment with the pharmacologically inactive VPA analog octanoic acid did not elicit changes in NPY expression. No significant expression changes could be shown for the mRNAs of the Y1 receptor or of the neuropeptides somatostatin, vasoactive intestinal polypeptide, and choleocystokinin. Fewer synchronous spontaneous epileptiform oscillations were recorded in thalamic slices from VPA-treated animals, and oscillation duration as well as the period of spontaneous and evoked oscillations were decreased. Application of the Y1 receptor inhibitor N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-D-arginine-amide (BIBP3226) enhanced thalamic oscillations, indicating that NPY is released during those oscillations and acts to downregulate oscillatory strength. Chronic VPA treatment significantly potentiated the effect of BIBP3226 on oscillation duration but not on oscillation period. These results demonstrate a novel mechanism for the antiepileptic actions of chronic VPA therapy.

  1. Acidosis mediates recurrent hypoglycemia-induced increase in ischemic brain injury in treated diabetic rats.

    PubMed

    Rehni, Ashish K; Shukla, Vibha; Perez-Pinzon, Miguel A; Dave, Kunjan R

    2018-03-15

    Cerebral ischemia is a serious possible manifestation of diabetic vascular disease. Recurrent hypoglycemia (RH) enhances ischemic brain injury in insulin-treated diabetic (ITD) rats. In the present study, we determined the role of ischemic acidosis in enhanced ischemic brain damage in RH-exposed ITD rats. Diabetic rats were treated with insulin and mild/moderate RH was induced for 5 days. Three sets of experiments were performed. The first set evaluated the effects of RH exposure on global cerebral ischemia-induced acidosis in ITD rats. The second set evaluated the effect of an alkalizing agent (Tris-(hydroxymethyl)-aminomethane: THAM) on ischemic acidosis-induced brain injury in RH-exposed ITD rats. The third experiment evaluated the effect of the glucose transporter (GLUT) inhibitor on ischemic acidosis-induced brain injury in RH-exposed ITD rats. Hippocampal pH and lactate were measured during ischemia and early reperfusion for all three experiments. Neuronal survival in Cornu Ammonis 1 (CA1) hippocampus served as a measure of ischemic brain injury. Prior RH exposure increases lactate concentration and decreases pH during ischemia and early reperfusion when compared to controls. THAM and GLUT inhibitor treatments attenuated RH-induced increase in ischemic acidosis. GLUT inhibitor treatment reduced the RH-induced increase in lactate levels. Both THAM and GLUT inhibitor treatments significantly decreased ischemic damage in RH-exposed ITD rats. Ischemia causes increased acidosis in RH-exposed ITD rats via a GLUT-sensitive mechanism. Exploring downstream pathways may help understand mechanisms by which prior exposure to RH increases cerebral ischemic damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Renal denervation improves cardiac function in rats with chronic heart failure: Effects on expression of β-adrenoceptors

    PubMed Central

    Zheng, Hong; Liu, Xuefei; Sharma, Neeru M.

    2016-01-01

    Chronic activation of the sympathetic drive contributes to cardiac remodeling and dysfunction during chronic heart failure (HF). The present study was undertaken to assess whether renal denervation (RDN) would abrogate the sympathoexcitation in HF and ameliorate the adrenergic dysfunction and cardiac damage. Ligation of the left coronary artery was used to induce HF in Sprague-Dawley rats. Four weeks after surgery, RDN was performed, 1 wk before the final measurements. At the end of the protocol, cardiac function was assessed by measuring ventricular hemodynamics. Rats with HF had an average infarct area >30% of the left ventricle and left ventricular end-diastolic pressure (LVEDP) >20 mmHg. β1- and β2-adrenoceptor proteins in the left ventricle were reduced by 37 and 49%, respectively, in the rats with HF. RDN lowered elevated levels of urinary excretion of norepinephrine and brain natriuretic peptide levels in the hearts of rats with HF. RDN also decreased LVEDP to 10 mmHg and improved basal dP/dt to within the normal range in rats with HF. RDN blunted loss of β1-adrenoceptor (by 47%) and β2-adrenoceptor (by 100%) protein expression and improved isoproterenol (0.5 μg/kg)-induced increase in +dP/dt (by 71%) and −dP/dt (by 62%) in rats with HF. RDN also attenuated the increase in collagen 1 expression in the left ventricles of rats with HF. These findings demonstrate that RDN initiated in chronic HF condition improves cardiac function mediated by adrenergic agonist and blunts β-adrenoceptor expression loss, providing mechanistic insights for RDN-induced improvements in cardiac function in the HF condition. PMID:27288440

  3. Hippocampal synapsin I, growth-associated protein-43, and microtubule-associated protein-2 immunoreactivity in learned helplessness rats and antidepressant-treated rats.

    PubMed

    Iwata, M; Shirayama, Y; Ishida, H; Kawahara, R

    2006-09-01

    Learned helplessness rats are thought to be an animal model of depression. To study the role of synapse plasticity in depression, we examined the effects of learned helplessness and antidepressant treatments on synapsin I (a marker of presynaptic terminals), growth-associated protein-43 (GAP-43; a marker of growth cones), and microtubule-associated protein-2 (MAP-2; a marker of dendrites) in the hippocampus by immunolabeling. (1) Learned helplessness rats showed significant increases in the expression of synapsin I two days after the attainment of learned helplessness, and significant decreases in the protein expression eight days after the achievement of learned helplessness. Subchronic treatment of naïve rats with imipramine or fluvoxamine significantly decreased the expression of synapsin I. (2) Learned helplessness increased the expression of GAP-43 two days and eight days after learned helplessness training. Subchronic treatment of naïve rats with fluvoxamine but not imipramine showed a tendency to decrease the expression of synapsin I. (3) Learned helplessness rats showed increased expression of MAP-2 eight days after the attainment of learned helplessness. Naïve rats subchronically treated with imipramine showed a tendency toward increased expression of MAP-2, but those treated with fluvoxamine did not. These results indicate that the neuroplasticity-related proteins synapsin I, GAP-43, and MAP-2 may play a role in the pathophysiology of depression and the mechanisms of antidepressants.

  4. Biochemical, metabolic, and behavioral characteristics of immature chronic hyperphenylalanemic rats

    PubMed Central

    Dienel, Gerald A.; Cruz, Nancy F.

    2015-01-01

    Phenylketonuria and hyperphenylalanemia are inborn errors in metabolism of phenylalanine arising from defects in steps to convert phenylalanine to tyrosine. Phe accumulation causes severe mental retardation that can be prevented by timely identification of affected individuals and their placement on a Phe-restricted diet. In spite of many studies in patients and animal models, the basis for acquisition of mental retardation during the critical period of brain development is not adequately understood. All animal models for human disease have advantages and limitations, and characteristics common to different models are most likely to correspond to the disorder. This study established similar levels of Phe exposure in developing rats between 3 and 16 days of age using three models to produce chronic hyperphenylalanemia, and identified changes in brain amino acid levels common to all models that persist for ~16h of each day. In a representative model, local rates of glucose utilization (CMRglc) were determined at 25–27 days of age, and only selective changes that appeared to depend on Phe exposure were observed. CMRglc was reduced in frontal cortex and thalamus and increased in hippocampus and globus pallidus. Behavioral testing to evaluate neuromuscular competence revealed poor performance in chronically-hyperphenylalanemic rats that persisted for at least three weeks after cessation of Phe injections and did not occur with mild or acute hyperphenylalanemia. Thus, the abnormal amino acid environment, including hyperglycinemia, in developing rat brain is associated with selective regional changes in glucose utilization and behavioral abnormalities that are not readily reversed after they are acquired. PMID:26224289

  5. Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat.

    PubMed

    Zhang, Yang; Gu, Fenghua; Chen, Jia; Dong, Wenxin

    2010-12-17

    Stress activates the hypothalamo-pituitary-adrenal (HPA) axis, regulates the expression of brain-derived neurotrophic factor (BDNF) in the brain, and mediates mood. Antidepressants alleviate stress and up-regulate BDNF gene expression. In this study, we investigated the effect of chronic unpredictable mild stress (CUMS) and the different kinds of antidepressant treatments on the HPA axis and the BDNF expression in the rat brain. Adult Wistar male rats were exposed to a six-week CUMS procedure and received different antidepressant treatments including venlafaxine, mirtazapine, and fluoxetine. Immunohistochemistry and real-time PCR were used to measure BDNF expression levels in the rat brain, and ELISAs were used to investigate the plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. CUMS significantly decreased the BDNF protein level in the DG, CA1, and CA3 of the hippocampus and increased plasma CORT level. Chronic antidepressant treatments all significantly increased BDNF protein levels in the hippocampus and the pre-frontal cortex. In addition, venlafaxine and mirtazapine inhibited the increase of plasma CORT level. These results suggested that an increase in the BDNF level in the brain could be a pivotal mechanism of various antidepressants to exert their therapeutic effects. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure.

    PubMed

    Li, Wen; Wang, Li; Chu, Xiaoqian; Cui, Huantian; Bian, Yuhong

    2017-04-01

    At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.

  7. Chronic social instability increases anxiety-like behavior and ethanol preference in male Long Evans rats.

    PubMed

    Roeckner, Alyssa R; Bowling, Alexandra; Butler, Tracy R

    2017-05-01

    Chronic stress during adolescence is related to increased prevalence of anxiety disorders and alcohol use disorders in humans. This phenotype has been consistently recapitulated in animal models with male subjects, but models using female subjects are fewer. The aim of these studies was to test the hypothesis that chronic social instability (CSI) during adolescence engenders increased anxiety-like behavior, increased corticosterone, and greater ethanol intake and/or preference than control groups in male and female rats. A chronic social instability (CSI) procedure was conducted in separate cohorts of female and male adolescent Long Evans rats. CSI included daily social isolation for 1h, and then pair housing with a novel cage mate for 23h until the next 1h isolation period from PND 30-46. Control groups included social stability (SS), chronic isolation (ISO), and acute social instability (aSI). At PND 49-50, anxiety-like behavior was assessed on the elevated plus maze, and on PND 51 tails bloods were obtained for determination of corticosterone (CORT) levels. This was followed by 4weeks of ethanol drinking in a home cage intermittent access ethanol drinking paradigm (PND 55-81 for males, PND 57-83 for females). Planned contrast testing showed that the male CSI group had greater anxiety-like behavior compared controls, but group differences were not apparent for CORT. CSI males had significantly higher levels of ethanol preference during drinking weeks 2-3 compared to all other groups and compared to SS and ISO groups in week 4. For the female cohort, we did not observe consistent group differences in anxiety-like behavior, CORT levels were unexpectedly lower in the ISO group only compared to the other groups, and group differences were not apparent for ethanol intake/preference. In conclusion, chronic stress during adolescence in the form of social instability increases anxiety-like behavior and ethanol preference in male rats, consistent with other models of

  8. Effect of Inhaling Bergamot Oil on Depression-Related Behaviors in Chronic Stressed Rats.

    PubMed

    Saiyudthong, Somrudee; Mekseepralard, Chantana

    2015-10-01

    Bergamot essential oil (BEO) possesses sedation and anxiolytic properties similar to diazepam. After long period of exposure to stressors, including restrained stress, depressive-like behavior can be produced. BEO has been suggested to reduce depression. However, there is no scientific evidence supporting this property. To investigate the effect of BEO in chronic stressed rats on: 1) behavior related depressive disorder, 2) hypothalamic pituitary adrenal (HPA) axis response, and iii) brain-derived neurotrophic factor (BDNF) protein levels in hippocampus. Male Wistar rats, weighing 200 to 250 g, were induced chronic restrained stress 15 minutes dailyfor two weeks. For the next two weeks, these rats were divided intofour groups, control-i.p., fluoxetine-i.p., control-inhale, and BEO-inhale. Fluoxetine (10 mg/kg i.p.) or saline was intraperitoneally administered daily while 2.5% BEO or saline was inhaled daily. At the end of the treatment, rats were assessed for depressive-like behavior using the forced swimming test (FST). After the behavioral test, the animals were immediately decapitated and trunk blood samples were collected for the measurement ofcorticosterone and adrenocorticotropic hormone (ACTH) levels and hippocampus was dissected and stored in afreezer at -80 °C until assay for BDNF protein. BEO andfluoxetine significantly decreased the immobility time in the FST (p < 0.05). Fluoxetine tended to decrease serum corticosterone and significantly (p < 0.05) decreased serum ACTH while BEO had no effect on these two stress hormones. For BDNF protein determination, neither BEO norfluoxetine had any effect on BDNF protein levels in hippocampus compared to their controls. The inhalation ofBEO decrease behavior related depressive disorder similar tofluoxetine but has no effect on HPA axis response and BDNF protein levels in chronic restrained stress.

  9. Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats.

    PubMed

    Monserrat Hernández-Hernández, Elizabeth; Serrano-García, Carolina; Antonio Vázquez-Roque, Rubén; Díaz, Alfonso; Monroy, Elibeth; Rodríguez-Moreno, Antonio; Florán, Benjamin; Flores, Gonzalo

    2016-05-01

    Resveratrol may induce its neuroprotective effects by reducing oxidative damage and chronic inflammation apart from improving vascular function and activating longevity genes, it also has the ability to promote the activity of neurotrophic factors. Morphological changes in dendrites of the pyramidal neurons of the prefrontal cortex (PFC) and hippocampus have been reported in the brain of aging humans, or in humans with neurodegenerative diseases such as Alzheimer's disease. These changes are reflected particularly in the decrement of both the dendritic tree and spine density. Here we evaluated the effect of resveratrol on the dendrites of pyramidal neurons of the PFC (Layers 3 and 5), CA1- and CA3-dorsal hippocampus (DH) as well as CA1-ventral hippocampus, dentate gyrus (DG), and medium spiny neurons of the nucleus accumbens of aged rats. 18-month-old rats were administered resveratrol (20 mg/kg, orally) daily for 60 days. Dendritic morphology was studied by the Golgi-Cox stain procedure, followed by Sholl analysis on 20-month-old rats. In all resveratrol-treated rats, a significant increase in dendritic length and spine density in pyramidal neurons of the PFC, CA1, and CA3 of DH was observed. Interestingly, the enhancement in dendritic length was close to the soma in pyramidal neurons of the PFC, whereas in neurons of the DH and DG, the increase in dendritic length was further from the soma. Our results suggest that resveratrol induces modifications of dendritic morphology in the PFC, DH, and DG. These changes may explain the therapeutic effect of resveratrol in aging and in Alzheimer's disease. © 2016 Wiley Periodicals, Inc.

  10. Spatial cognition and sexually dimorphic synaptic plasticity balance impairment in rats with chronic prenatal ethanol exposure.

    PubMed

    An, Lei; Zhang, Tao

    2013-11-01

    Prenatal ethanol exposure can lead to long-lasting impairments in the ability of rats to process spatial information, as well as produce long-lasting deficits in long-term potentiation (LTP), a biological model of learning and memory processing. The present study aimed to examine the sexually dimorphic effects of chronic prenatal ethanol exposure (CPEE) on behavior cognition and synaptic plasticity balance (SPB), and tried to understand a possible mechanism by evaluating the alternation of SPB. The animal model was produced by ethanol exposure throughout gestational period with 4 g/kg bodyweight. Offspring of both male and female were selected and studied on postnatal days 36. Subsequently, the data showed that chronic ethanol exposure resulted in birth weight reduction, losing bodyweight gain, microcephaly and hippocampus weight retardation. In Morris water maze (MWM) test, escape latencies were significantly higher in CPEE-treated rats than that in control ones. They also spent much less time in the target quadrant compared to that of control animals in the probe phase. In addition, it was found that there was a more severe impairment in females than that in males after CPEE treatment. Electrophysiological studies showed that CPEE considerably inhibited hippocampal LTP and facilitated depotentiation in males, while significantly enhanced LTP and suppressed depotentiation in females. A novel index, developed by us, showed that the action of CPEE on SPB was more sensitive in females than that in males, suggesting that it might be an effective index to distinguish the difference of SPB impairment between males and females. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. CHRONIC TOXICITY OF 1,3,5-TRINITROBENZENE IN FISCHER 344 RATS

    EPA Science Inventory

    The chronic toxicity of 1,3,5-trinitrobenzene (TNB) in male and female Fischer 344 (F344) rats was evaluated by feeding a diet containing 0, 5, 60 and 300 ppm of TNB for 2 years. The calculated average TNB intake over 2 years for males and females was 0.22, 2.64, 13.44 and 0.23,...

  12. Experimental occlusal disharmony - A promoting factor for anxiety in rats under chronic psychological stress.

    PubMed

    Tang, Xuan; Li, Jian; Jiang, Ting; Han, Shu-Hui; Yao, Dong-Yuan

    2017-04-03

    Clinically, patients under chronic psychological stress (PS) appear to be more susceptible to occlusal disharmony (OD) compared with those without PS. OD was proved to introduce anxiety-like stress. Therefore, the purpose of the study was to investigate whether OD would affect psychological stress-induced anxiety and its underlying mechanisms. Chronic PS was induced by a communication box, and OD was produced by bonding a 0.3mm-thick crown on the right maxillary first molar of male Sprague-Dawley rats. Sixty-seven rats were randomly divided into 8 groups: (A) chronic PS plus OD group (n=6); (B) chronic PS plus sham OD group (n=6); (C) chronic PS only group (n=6); (D) OD group (n=6); (E) sham OD group (n=6); (F) control group (n=6); (G) naive group (n=6); (H) foot-shock group (n=25). Open-field test (OFT) and elevated plus maze test (EPM) were conducted on the 7th, 21th, 35th day to measure the anxiety level of each group except naive and foot-shock group. In addition, corticosterone (CORT) level in serum, 5-hydroxytryptamine (5-HT) and 5-HT 2A receptor (5-HT 2A R) expressions in prefrontal cortex (PFC), hippocampal CA1 and dentate gyrus (DG) areas were measured on the 35th day to elucidate the mechanism(s) by which the exacerbation occurred. The significant differences in OFT and EPM tests on day 21 or day 35 between groups (p<0.01) indicated the successful establishment of animal model of PS or OD. And there was a significant increase in CORT concentration in serum (p<0.01), 5-HT expressions in PFC, hippocampal DG areas and 5-HT 2A R expressions in PFC, hippocampal CA1 areas (p<0.05) in group A, B, C, D compared with group F. Similar results were also found in group A, B, C, D when compared with group G (p<0.05) except 5-HT expression in DG area in group C and D (p>0.05), together with a gradual decrease in values of all the parameters mentioned above from group A to group G. The significant changes in exploratory behaviors, serum CORT concentration, 5-HT and 5-HT

  13. Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in a rat model of chronic stress.

    PubMed

    Yu, Mei; Zhang, Yuan; Chen, Xiaoyu; Zhang, Tao

    2016-01-01

    The aim of this study was to examine whether amantadine (AMA), as a low-affinity noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, is able to improve cognitive deficits caused by chronic stress in rats. Male Wistar rats were divided into four groups: control, control + AMA, stress and stress + AMA groups. The chronic stress model combined chronic unpredictable stress (CUS) with isolated feeding. Animals were exposed to CUS continued for 21 days. AMA (25 mg/kg) was administrated p.o. for 20 days from the 4th day of CUS to the 23rd. Weight and sucrose consumption were measured during model establishing period. Spatial memory was evaluated using the Morris water maze (MWM) test. Following MWM testing, both long-term potentiation (LTP) and depotentiation were recorded in the hippocampal CA1 region. NR2B and postsynaptic density protein 95 (PSD-95) proteins were measured by Western-blot analysis. AMA increased weight and sucrose consumption of stressed rats. Spatial memory and reversal learning in stressed rats were impaired relative to controls, whereas AMA significantly attenuated cognitive impairment. AMA also mitigated the chronic stress-induced impairment of hippocampal synaptic plasticity, in which both the LTP and depotentiation were significantly inhibited in stressed rats. Moreover, AMA enhanced the expression of hippocampal NR2B and PSD-95 in stressed rats. The data suggest that AMA may be an effective therapeutic agent for depression-like symptoms and associated cognitive disturbances.

  14. Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus.

    PubMed

    Pereira, Pedro A; Rocha, João P; Cardoso, Armando; Vilela, Manuel; Sousa, Sérgio; Madeira, M Dulce

    2016-05-01

    Several studies have demonstrated the vulnerability of the hippocampal formation (HF) to chronic alcohol consumption and withdrawal. Among the brain systems that appear to be particularly vulnerable to the effects of these conditions are the neuropeptide Y (NPY)-ergic and the cholinergic systems. Because these two systems seem to closely interact in the HF, we sought to study the effects of chronic alcohol consumption (6months) and subsequent withdrawal (2months) on the expression of NPY and on the cholinergic innervation of the rat dentate hilus. As such, we have estimated the areal density and the somatic volume of NPY-immunoreactive neurons, and the density of the cholinergic varicosities. In addition, because alcohol consumption and withdrawal are associated with impaired nerve growth factor (NGF) trophic support and the administration of exogenous NGF alters the effects of those conditions on various cholinergic markers, we have also estimated the same morphological parameters in withdrawn rats infused intracerebroventricularly with NGF. NPY expression increased after withdrawal and returned to control values after NGF treatment. Conversely, the somatic volume of these neurons did not differ among all groups. On other hand, the expression of vesicular acetylcholine transporter (VAChT) was reduced by 24% in ethanol-treated rats and by 46% in withdrawn rats. The administration of NGF to withdrawn rats increased the VAChT expression to values above control levels. These results show that the effects of prolonged alcohol intake and protracted withdrawal on the hilar NPY expression differ from those induced by shorter exposures to ethanol and by abrupt withdrawal. They also suggest that the normalizing effect of NGF on NPY expression might rely on the NGF-induced improvement of cholinergic neurotransmission in the dentate hilus. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effects of chronic administration of nicotine on storage and synthesis of noradrenaline in rat brain

    PubMed Central

    Bhagat, B.

    1970-01-01

    1. Chronic administration of nicotine (0·5 mg/kg, subcutaneously four times a day, 5 days a week, for 6 weeks) did not affect the growth rate and water intake in rats. In these animals food intake was normal for the first 5 weeks, but was significantly increased during the sixth week of treatment. 2. Nicotine administration increased the blood pressure of rats from 120 mm Hg to 151 mm Hg. 3. The concentrations of endogenous noradrenaline, dopamine, 5-hydroxytryptamine and acetylcholine in the brain remained unaltered. However, chronic treatment with nicotine increased the turnover rate of noradrenaline. Initial accumulation of 3H-noradrenaline was also significantly increased. 4. It is concluded from these studies that changes in the turnover of cerebral noradrenaline caused by chronic administration rather than changes in the concentration of noradrenaline may be an important factor in nicotine-induced behavioural changes. PMID:5413293

  16. Effect of a long-acting analogue of somatostatin, SMS 201-995, on the development of intestinal tumours in azoxymethane-treated rats.

    PubMed

    Savage, A P; Matthews, J L; Adrian, T E; Ghatei, M A; Cooke, T; Bloom, S R

    1987-04-01

    The effect of daily parenteral administration of a long-acting analogue of somatostatin (SMS 201-995) on the development of intestinal tumours and the rate of crypt cell proliferation in azoxymethane-treated rats has been studied. SMS 201-995 had no significant effect on the number of colonic tumours induced. In the duodenum, SMS 201-995 administration was associated with a change in the number of tumours from 1.4/rat in saline-treated animals to 2.4/rat in animals treated for the last third of the study and 2.8/rat in animals treated with SMS for the entire duration of the study (P less than 0.02). SMS had no significant effect on the rate of cell proliferation in the duodenum, ileum or colon. The inhibition of release of gastrointestinal trophic hormones by this analogue of somatostatin thus does not appear to reduce the number of tumours in the intestine of azoxymethane-treated rats.

  17. Nitric oxide is involved in the hypothyroidism with significant morphology changes in female Wistar rats induced by chronic exposure to high water iodine from potassium iodate.

    PubMed

    Rong, Shengzhong; Gao, Yanhui; Yang, Yanmei; Shao, Hanwen; Okekunle, Akinkunmi Paul; Lv, Chunpeng; Du, Yang; Sun, Hongna; Jiang, Yuting; Darko, Gottfried M; Sun, Dianjun

    2018-05-03

    Epidemiological studies indicated that chronic exposure to high water iodine is associated with primary hypothyroidism (PH) and subclinical hypothyroidism (SCH). However, the mechanism is not well understood. In this study, we explored whether chronic exposure to high water iodine from potassium iodate (KIO 3 ) can induce hypothyroidism in addition to determining if nitric oxide (NO) is involved in the pathogenesis. 96 female Wistar rats were divided into six groups: control, I 1000μg/L , I 3000μg/L , I 6000μg/L , N-nitro-L-arginine methylester (L-NAME) and L-NAME+I 6000μg/L . After 3 months, urine iodine concentration, thyroid hormone, NO and nitric oxide synthase (NOS) serum levels were determined. Additionally, thyroid expression of inducible nitric oxide synthase (iNOS) was also investigated. Thyroid morphology was observed under light microscopy and transmission electron microscope. SCH as indicated by elevated serum thyrotropin (TSH) was induced among rats exposed to 3000 μg/L I - , while rats treated with 6000 μg/L I - presented PH characterized by elevated TSH and lowered total thyroxine in serum. Moreover, serum NO, NOS and iNOS expression in the thyroid were significantly increased in I 3000μg/L and I 6000μg/L groups. Changes in thyroid function and morphology in the L-NAME+I 6000μg/L group were extenuated compared to I 6000μg/L group. These findings suggested that chronic exposure to high water iodine from KIO 3 likely induces hypothyroidism with significant morphology changes in female Wistar rats and NO appears to be involved in the pathogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Mitochondrionopathy phenotype in doxorubicin-treated Wistar rats depends on treatment protocol and is cardiac-specific.

    PubMed

    Pereira, Gonçalo C; Pereira, Susana P; Pereira, Claudia V; Lumini, José A; Magalhães, José; Ascensão, António; Santos, Maria S; Moreno, António J; Oliveira, Paulo J

    2012-01-01

    Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations.

  19. Mitochondrionopathy Phenotype in Doxorubicin-Treated Wistar Rats Depends on Treatment Protocol and Is Cardiac-Specific

    PubMed Central

    Pereira, Gonçalo C.; Pereira, Susana P.; Pereira, Claudia V.; Lumini, José A.; Magalhães, José; Ascensão, António; Santos, Maria S.; Moreno, António J.; Oliveira, Paulo J.

    2012-01-01

    Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations. PMID:22745682

  20. Adverse effect of combination of chronic psychosocial stress and high fat diet on hippocampus-dependent memory in rats.

    PubMed

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2009-12-01

    The combined effects of high fat diet (HFD) and chronic stress on the hippocampus-dependent spatial learning and memory were studied in rats using the radial arm water maze (RAWM). Chronic psychosocial stress and/or HFD were simultaneously administered for 3 months to young adult male Wister rats. In the RAWM, rats were subjected to 12 learning trials as well as short-term and long-term memory tests. This procedure was applied on a daily basis until the animal reaches days to criterion (DTC) in the 12th learning trial and in memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Groups were compared based on the number of errors per trial or test as well as on the DTC. Chronic stress, HFD and chronic stress/HFD animal groups showed impaired learning as indicated by committing significantly (P<0.05) more errors than untreated control group in trials 6 through 9 of day 4. In memory tests, chronic stress, HFD and chronic stress/HFD groups showed significantly impaired performance compared to control group. Additionally, the stress/HFD was the only group that showed significantly impaired performance in memory tests on the 5th training day, suggesting more severe memory impairment in that group. Furthermore, DTC value for above groups indicated that chronic stress or HFD, alone, resulted in a mild impairment of spatial memory, but the combination of chronic stress and HFD resulted in a more severe and long-lasting memory impairment. The data indicated that the combination of stress and HFD produced more deleterious effects on hippocampal cognitive function than either chronic stress or HFD alone.

  1. Gene expression profile of isolated rat adipocytes treated with anthocyanins.

    PubMed

    Tsuda, Takanori; Ueno, Yuki; Kojo, Hitoshi; Yoshikawa, Toshikazu; Osawa, Toshihiko

    2005-04-15

    Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and adipocyte gene expression in adipocytes. In this study, we have shown for the first time the gene expression profile in isolated rat adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The rat adipocytes were treated with 100 muM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. A total of 633 or 427 genes was up-regulated (>1.5-fold) by the treatment of adipocytes with C3G or Cy, respectively. The up-regulated genes include lipid metabolism and signal transduction-related genes, however, the altered genes were partly different between the C3G- and Cy-treated groups. Based on the gene expression profile, we demonstrated the up-regulation of hormone sensitive lipase and enhancement of the lipolytic activity by the treatment of adipocytes with C3G or Cy. These data have provided an overview of the gene expression profiles in adipocytes treated with anthocyanins and identified new responsive genes with potentially important functions in adipocytes related with obesity and diabetes that merit further investigation.

  2. Extraction, characterization and evaluation of Kaempferia galanga L. (Zingiberaceae) rhizome extracts against acute and chronic inflammation in rats.

    PubMed

    Jagadish, Puralae Channabasavaiah; Latha, Kotehal Parameshwarappa; Mudgal, Jayesh; Nampurath, Gopalan Kutty

    2016-12-24

    The rhizomes of an acaulescent perennial herb, Kaempferia galanga Linn (Family: Zingiberaceae), used as traditional ayurvedic herb to get relief from indigestion, swelling, pain, high blood pressure and dyslipidemia. To prepare and characterize various extracts of Kaempferia galanga (K. galanga) for their comparative evaluation for the identification of the most efficacious extract and its possible pharmacological implication in acute and chronic inflammatory paradigm. Dried and powdered rhizome of K. galanga was subjected to alcoholic extraction as well as successive extractions with various solvents. After phytochemical characterization, all the extracts were standardized for the presence of ethyl-p-methoxycinnamate. The extracts, and the isolated compound, were tested against carrageenan-induced acute inflammation in rats. The most promising extract was tested against adjuvant-induced chronic inflammation in rats. Further, local myeloperoxidase (MPO) levels were investigated to establish the possible mechanism of action. Among the extracts, petroleum ether extract (SKG-1) and crude alcoholic extract (KG) had the maximum quantity of ethyl-p-methoxycinnamate. SKG-1 (300mg/kg) was found effective against acute inflammation in rats. Further, SKG-1 (100mg/kg) reversed the inflammation and elevated MPO levels found in the chronic model. The results suggest that among all the extracts of K. galanga, SKG-1 effectively suppresses the progression of acute and chronic inflammation in rats by inhibition of neutrophil infiltration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Effect of Fetal Membrane-Derived Mesenchymal Stem Cell Transplantation in Rats With Acute and Chronic Pancreatitis.

    PubMed

    Kawakubo, Kazumichi; Ohnishi, Shunsuke; Fujita, Hirotoshi; Kuwatani, Masaki; Onishi, Reizo; Masamune, Atsushi; Takeda, Hiroshi; Sakamoto, Naoya

    2016-01-01

    Mesenchymal stem cells (MSCs) are a valuable cell source in regenerative medicine and can be isolated from fetal membranes (FMs), particularly amniotic membranes. We investigated the effect of rat FM-derived MSCs (rFM-MSCs) and human amnion-derived MSCs (hAMSCs) on the inflammatory reaction in vitro and therapeutic effects in rats with acute and chronic pancreatitis. Effect of rFM-MSCs or hAMSC-conditioned medium was investigated in vitro. Acute pancreatitis was induced by intraductal injection of 4% taurocholate, and rFM-MSCs were transplanted intravenously. Chronic pancreatitis was induced by intravenous injection of 5 mg/kg dibutyltin dichloride, and hAMSCs were transplanted intravenously. The inflammatory reaction of macrophages induced by lipopolysaccharide and trypsin was significantly suppressed by rFM-MSC coculture. Pancreatic acinar cell injury induced by cerulein was significantly ameliorated by hAMSC-conditioned medium. Pancreatic stellate cell activation induced by tumor necrosis factor-α was significantly decreased by hAMSC-conditioned medium. Transplantation of rFM-MSCs significantly reduced the histological score and infiltration of CD68-positive macrophages in the rat pancreas. The hAMSC transplantation significantly decreased the expression of MCP-1 and attenuated the downregulation of amylase expression in the pancreas. Transplantation of FM-MSCs and AMSCs suppressed the inflammatory reaction of acute and chronic pancreatitis in rats.

  4. [Met5]Enkephalin content in brain regions of rats treated with lithium.

    PubMed Central

    Gillin, J C; Hong, J S; Yang, H Y; Costa, E

    1978-01-01

    In rats, chronic treatment with lithium elicits a dose-dependent increase in the [Met5]enkephalin content of nucleus caudatus and globus pallidus. A single injection of lithium fails to change the striatal [Met5]enkephalin content. The increase in [Met5]enkephalin caused by chronic lithium is proportional to the serum lithium level. The extent of the increase in striatal [Met5]enkephalin content levels off at a value of about 250% that of untreated rats. This increase has a time latency of 2--3 days and reaches a plateau at 5 days. The increase that was present at 5 days was no longer evident if the treatment was continued for 2 weeks. Lithium also increases striatal [Leu5]enkephalin content by an extent equal to the increase of [Met 5]enkephalin. Based on the characteristics of the lithium-induced increase in [Met6]enkephalin content, it is proposed that lithium may reduce the rate of release of [Met5]enkephalin from the small enkephalinergic neurons that are intrinsic to the striatum; this action may be related to a change in the regulation of striatal neurons. PMID:275866

  5. Effect of chronic intracerebroventricular angiotensin II infusion on vasopressin release in rats

    NASA Technical Reports Server (NTRS)

    Sterling, G. H.; Chee, O.; Riggs, R. V.; Keil, L. C.

    1980-01-01

    The effects of the chronic infusion of angiotensin II into the lateral cerebral ventricle on the release of arginine vasopressin in rats are investigated. Rats were subjected to a continuous infusion of angiotensin at a rate of 1 microgram/h for five days, during which they were offered water, isotonic saline or hypertonic saline ad libitum or 40 ml water/day, and fluid intake, changes in body weight, plasma sodium ion concentrations and plasma and pituitary arginine vasopressin levels were measured. Angiotensin II is found to increase the fluid intake of rats given isotonic saline and decrease plasma sodium ion levels with no changes in plasma or pituitary arginine vasopressin in those given water or isotonic saline. However, in rats given hypertonic saline, plasma sodium concentrations remained at control levels while plasma vasopressin increased, and in water-restricted rats the effects of angiotensin II were intermediate. Results thus demonstrate that angiotensin II-stimulated arginine vasopressin release is reduced under conditions in which plasma sodium ion concentration becomes dilute, compatible with a central role of angiotensin in the regulation of salt and water balance.

  6. Flow Cytometric Analysis of Hepatocytes from Normal, PFDA, and PH/DEN/ PB-Treated Rats

    DTIC Science & Technology

    1989-12-31

    SUB-GROUP’ Perfluorodecanoic acid ( PFDA ); hepatocarcinogenesis; preneoplastic lesions; flow cytometry; imunotoxicitYyc3 1%&STRACT (Continue on...effects of perfluorodecanoic acid ( PFDA ). Flow cytometric evaluation of hepatocytes from PEDA-treated rats revealed an increase in size and granularity...was designed to generate preliminary information regarding the toxic and potential carcinogenic effects of perfluorodecanoic acid ( PFDA ) on rat

  7. Anthriscus nemorosa essential oil inhalation prevents memory impairment, anxiety and depression in scopolamine-treated rats.

    PubMed

    Bagci, Eyup; Aydin, Emel; Ungureanu, Eugen; Hritcu, Lucian

    2016-12-01

    Anthriscus nemorosa (Bieb.) Sprengel is used for medicinal purposes in traditional medicine around the world, including Turkey. Ethnobotanical studies suggest that Anthriscus essential oil could improve memory in Alzheimer's disease. The current study was hypothesized to investigate the beneficial effects of inhaled Anthriscus nemorosa essential oil on memory, anxiety and depression in scopolamine-treated rats. Anthriscus nemorosa essential oil was administered by inhalation in the doses of 1% and 3% for 21 continuous days and scopolamine (0.7mg/kg) was injected intraperitoneally 30min before the behavioral testing. Y-maze and radial arm-maze tests were used for assessing memory processes. Also, the anxiety and depressive responses were studied by elevated plus-maze and forced swimming tests. As expected, the scopolamine alone-treated rats exhibited the following: decrease the percentage of the spontaneous alternation in Y-maze test, increase the number of working and reference memory errors in radial arm-maze test, decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. However, dual scopolamine and Anthriscus nemorosa essential oil-treated rats showed significant improvement of memory formation and exhibited anxiolytic- and antidepressant-like effects in scopolamine-treated rats. These results suggest that Anthriscus nemorosa essential oil inhalation can prevent scopolamine-induced memory impairment, anxiety and depression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Fluoxetine Exerts Age-Dependent Effects on Behavior and Amygdala Neuroplasticity in the Rat

    PubMed Central

    Homberg, Judith R.; Olivier, Jocelien D. A.; Blom, Tom; Arentsen, Tim; van Brunschot, Chantal; Schipper, Pieter; Korte-Bouws, Gerdien; van Luijtelaar, Gilles; Reneman, Liesbeth

    2011-01-01

    The selective serotonin reuptake inhibitor (SSRI) Prozac® (fluoxetine) is the only registered antidepressant to treat depression in children and adolescents. Yet, while the safety of SSRIs has been well established in adults, serotonin exerts neurotrophic actions in the developing brain and thereby may have harmful effects in adolescents. Here we treated adolescent and adult rats chronically with fluoxetine (12 mg/kg) at postnatal day (PND) 25 to 46 and from PND 67 to 88, respectively, and tested the animals 7–14 days after the last injection when (nor)fluoxetine in blood plasma had been washed out, as determined by HPLC. Plasma (nor)fluoxetine levels were also measured 5 hrs after the last fluoxetine injection, and matched clinical levels. Adolescent rats displayed increased behavioral despair in the forced swim test, which was not seen in adult fluoxetine treated rats. In addition, beneficial effects of fluoxetine on wakefulness as measured by electroencephalography in adults was not seen in adolescent rats, and age-dependent effects on the acoustic startle response and prepulse inhibition were observed. On the other hand, adolescent rats showed resilience to the anorexic effects of fluoxetine. Exploratory behavior in the open field test was not affected by fluoxetine treatment, but anxiety levels in the elevated plus maze test were increased in both adolescent and adult fluoxetine treated rats. Finally, in the amygdala, but not the dorsal raphe nucleus and medial prefrontal cortex, the number of PSA-NCAM (marker for synaptic remodeling) immunoreactive neurons was increased in adolescent rats, and decreased in adult rats, as a consequence of chronic fluoxetine treatment. No fluoxetine-induced changes in 5-HT1A receptor immunoreactivity were observed. In conclusion, we show that fluoxetine exerts both harmful and beneficial age-dependent effects on depressive behavior, body weight and wakefulness, which may relate, in part, to differential fluoxetine

  9. Announced reward counteracts the effects of chronic social stress on anticipatory behavior and hippocampal synaptic plasticity in rats.

    PubMed

    Kamal, Amer; Van der Harst, Johanneke E; Kapteijn, Chantal M; Baars, Annemarie J M; Spruijt, Berry M; Ramakers, Geert M J

    2010-04-01

    Chronic stress causes insensitivity to rewards (anhedonia) in rats, reflected by the absence of anticipatory behavior for a sucrose-reward, which can be reversed by antidepressant treatment or repeated announced transfer to an enriched cage. It was, however, not clear whether the highly rewarding properties of the enriched cage alone caused this reversal or whether the anticipation of this reward as such had an additional effect. Therefore, the present study compared the consequences of the announcement of a reward to the mere effect of a reward alone with respect to their efficacy to counteract the consequences of chronic stress. Two forms of synaptic plasticity, long-term potentiation and long-term depression were investigated in area CA1 of the hippocampus. This was done in socially stressed rats (induced by defeat and subsequent long-term individual housing), socially stressed rats that received a reward (short-term enriched housing) and socially stressed rats to which this reward was announced by means of a stimulus that was repeatedly paired to the reward. The results were compared to corresponding control rats. We show that announcement of enriched housing appeared to have had an additional effect compared to the enriched housing per se as indicated by a significant higher amount of LTP. In conclusion, announced short-term enriched housing has a high and long-lasting counteracting efficacy on stress-induced alterations of hippocampal synaptic plasticity. This information is important for counteracting the consequences of chronic stress in both human and captive rats.

  10. Estrogen-dependent effects on behavior, lipid-profile, and glycemic index of ovariectomized rats subjected to chronic restraint stress.

    PubMed

    da Silva, Caroline Calice; Lazzaretti, Camilla; Fontanive, Tiago; Dartora, Daniela Ravizzoni; Bauereis, Brian; Gamaro, Giovana Duzzo

    2014-03-01

    Stress has been shown to negatively affect the immune system, alter the body's metabolism, and play a strong role in the development of mood disorders. These effects are mainly driven through the release of hormones from the hypothalamic-pituitary-adrenal axis (HPA). Additionally, women are more likely to be affected by stress due to the estrogen fluctuation associated with their menstrual cycle. This study aims to evaluate the effect of chronic restraint stress, applied for 30 days, and estrogen replacement on behavior, glucose level, and the lipid profile of ovariectomized rats. Our results suggest that stress increases sweet food consumption in OVX females treated with estradiol (E2), but reduces consumption in animals not treated. Furthermore, stress increases locomotor activity and anxiety as assessed by the Open Field test and in the Elevated Plus Maze. Similarly, our results suggest that E2 increases anxiety in female rats under the same behavioral tests. In addition, stress reduces glucose and TC levels. Moreover, stress increase TG levels in the presence of E2 and decrease in its absence, as well as the estradiol increase TG levels in stressed groups and reduced in non-stressed groups. Our data suggest an important interaction between stress and estrogen, showing that hormonal status can induce changes in the animal's response to stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Sub-chronic lead exposure produces β1-adrenoceptor downregulation decreasing arterial pressure reactivity in rats.

    PubMed

    Toscano, Cindy Medici; Simões, Maylla Ronacher; Alonso, Maria Jesus; Salaices, Mercedes; Vassallo, Dalton Valentim; Fioresi, Mirian

    2017-07-01

    Lead is considered a causative factor for hypertension and other cardiovascular diseases. To investigate the effects of sub-chronic lead exposure on blood pressure reactivity and cardiac β 1 -adrenoceptor activity and to evaluate whether the effects found in vitro are similar to those found in vivo. Male Wistar rats were randomly distributed into two groups: control rats (Ct) and rats administered drinking water containing 100ppm lead (Pb) for 30days. Blood pressure in the Pb rats increased starting from the first week of treatment until the end of the study [systolic blood pressure, Ct: 122±4 vs. Pb: 143±3mmHg; diastolic blood pressure, Ct: 63±4 vs. Pb: 84±4mmHg]. The heart rate was also increased (Ct: 299±11 vs. Pb: 365±11bpm), but the pressure reactivity to phenylephrine was decreased. Losartan and hexamethonium exhibited a greater reduction in blood pressure of Pb rats than in the Ct rats. Isoproterenol increased the left ventricular systolic and end-diastolic pressure, and heart rate only in Ct rats, suggesting that lead induced β 1 -adrenoceptor downregulation. Indomethacin reduced the blood pressure and heart rate in the Pb rats, suggesting the involvement of cyclooxygenase-derived products (which are associated with reduced nitric oxide bioavailability) in this process. These findings offer further evidence that the effects of sub-chronic lead exposure in vitro can be reproduced in vivo-even at low concentrations-thus triggering mechanisms for the development of hypertension. Therefore, lead should be considered an environmental risk factor for cardiovascular disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of rMnSOD on Sodium Reabsorption in Renal Proximal Tubule in Ochratoxin A-Treated Rats.

    PubMed

    Damiano, Sara; Puzio, Maria V; Squillacioti, Caterina; Mirabella, Nicola; Zona, Enrica; Mancini, Aldo; Borrelli, Antonella; Astarita, Carlo; Boffo, Silvia; Giordano, Antonio; Avallone, Luigi; Florio, Salvatore; Ciarcia, Roberto

    2018-01-01

    Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that represent toxic real threat for human beings and animal health. In this study we evaluated the effect of a new recombinant mitochondrial manganese containing superoxide dismutase (rMnSOD) on oxidative stress and on the alterations of fluid reabsorption in renal proximal tubule (PT) as possible causes of OTA nephrotoxicity. Finally, we have measured the concentration of O 2 - in the kidney through dihydroethidium assay (DHE) and nitric oxide (NO) concentration through nitrites and nitrates assay. Male Sprague Dawley rats weighing 120-150 g were treated for 14 days by gavage, as follows: Control group, 12 rats received a corresponding amount of saline solution (including 10% DMSO); rMnSOD group, 12 rats treated with rMnSOD (10 µg/kg bw); OTA group, 12 rats treated with OTA (0.5 mg/kg bw) dissolved in 10% DMSO and then scaled to required volume with corn oil; rMnSOD + OTA, 12 rats treated with rMnSOD (10 µg/kg bw) plus OTA (0.5 mg/kg bw). Our results have shown that rMnSOD restores the alteration of reabsorption in PT in rats treated with OTA plus rMnSOD, probably through the response to pressure natriuresis, where nitric oxide plays a key role. Moreover, rMnSOD prevents the nephrotoxicity induced by OTA probably restoring the balance between superoxide and NO that is most probably the cause of hypertension and renal functional alterations through the inhibition of NO synthase. In conclusion these data provide important information for understanding of mechanism of toxic action of OTA. J. Cell. Biochem. 119: 424-430, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Chronic Deep Brain Stimulation of the Hypothalamic Nucleus in Wistar Rats Alters Circulatory Levels of Corticosterone and Proinflammatory Cytokines

    PubMed Central

    Calleja-Castillo, Juan Manuel; De La Cruz-Aguilera, Dora Luz; Manjarrez, Joaquín; Velasco-Velázquez, Marco Antonio; Morales-Espinoza, Gabriel; Moreno-Aguilar, Julia; Hernández, Maria Eugenia; Aguirre-Cruz, Lucinda

    2013-01-01

    Deep brain stimulation (DBS) is a therapeutic option for several diseases, but its effects on HPA axis activity and systemic inflammation are unknown. This study aimed to detect circulatory variations of corticosterone and cytokines levels in Wistar rats, after 21 days of DBS-at the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), unilateral cervical vagotomy (UCVgX), or UCVgX plus DBS. We included the respective control (C) and sham (S) groups (n = 6 rats per group). DBS treated rats had higher levels of TNF-α (120%; P < 0.01) and IFN-γ (305%; P < 0.001) but lower corticosterone concentration (48%; P < 0.001) than C and S. UCVgX animals showed increased corticosterone levels (154%; P < 0.001) versus C and S. UCVgX plus DBS increased IL-1β (402%; P < 0.001), IL-6 (160%; P < 0.001), and corsticosterone (178%; P < 0.001 versus 48%; P < 0.001) compared with the C and S groups. Chronic DBS at VMHvl induced a systemic inflammatory response accompanied by a decrease of HPA axis function. UCVgX rats experienced HPA axis hyperactivity as result of vagus nerve injury; however, DBS was unable to block the HPA axis hyperactivity induced by unilateral cervical vagotomy. Further studies are necessary to explore these findings and their clinical implication. PMID:24235973

  14. Effects of chronic treatment with 7-nitroindazole in hyperthyroid rats.

    PubMed

    Wangensteen, Rosemary; Rodríguez-Gómez, Isabel; Moreno, Juan Manuel; Alvarez-Guerra, Miriam; Osuna, Antonio; Vargas, Félix

    2006-11-01

    This study analyzed the contribution of neuronal nitric oxide synthase (nNOS) to the hemodynamic manifestations of hyperthyroidism. The effects on hyperthyroid rats of the chronic administration of 7-nitroindazole (7-NI), an inhibitor of nNOS, were studied. Six groups of male Wistar rats were used: control, 7-NI (30 mg.kg-1.day-1 by gavage), T(4)50, T(4)75 (50 or 75 microg thyroxine.rat-1.day-1, respectively), T(4)50+7-NI, and T(4)75+7-NI. All treatments were maintained for 4 wk. Body weight, tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, SBP, pulse pressure (PP), and HR were measured in conscious rats, and morphological, metabolic, plasma, and renal variables were determined. Expression of nNOS in the hypothalamus of T(4)75 and control rats was analyzed by Western blot analysis. The response of mean arterial pressure (MAP) to pentolinium (10 mg/kg iv) was used to evaluate the sympathetic contribution to BP in T(4)75 and T(4)75+7-NI rats. T(4) produced an increased hypothalamic nNOS expression and dose-related increases in blood pressure (BP), HR, and PP vs. control rats. 7-NI did not modify BP or any other hemodynamic variable in normal rats. However, 7-NI produced a marked reduction in BP, HR, PP, and food and water intake in both hyperthyroid groups and improved creatinine clearance in the T(4)75 group. Pentolinium produced a greater MAP decrease in the T(4)75+7-NI than in the T(4)75 group. In conclusion, administration of 7-NI attenuates the hemodynamic and metabolic manifestations of hyperthyroidism, suggesting that nNOS contributes to the hyperdynamic circulation of this endocrine disease by modulating sympathetic activity.

  15. Chronic moderate alcohol drinking alters insulin release without affecting cognitive and emotion-like behaviors in rats.

    PubMed

    Nelson, Nnamdi G; Suhaidi, Faten A; Law, Wen Xuan; Liang, Nu-Chu

    2017-12-16

    Because the consumption of alcoholic beverages prevails in society, its effects on diabetes risk is a subject of interest. Extant literature on this issue often disagrees. Here, we probed the effects of chronic moderate ethanol consumption on glucose metabolism in rats. The effect of chronic moderate alcohol drinking on depression- and anxiety-like behaviors and memory was also explored. Adolescent male and female Long-Evans rats consumed saccharin-sweetened 5% (1 week) and 10% ethanol (7 weeks) under a 7.5-h/day (Monday-Friday) access schedule. This exposure was followed by sucrose preference and elevated plus maze (EPM) tests during an intervening week, before a 6-week intermittent-access (Monday, Wednesday, Friday) to 20% unsweetened ethanol in a 2-bottle choice drinking paradigm was implemented (EtOH). A free-feeding control group received water (Water). Our prior work revealed that voluntary ethanol consumption decreases food intake in rats. Hence, a second control group that received water was mildly food-restricted (FR), and their average body weight was matched to that of the EtOH group. During the week following week 6 of intermittent-access to 20% ethanol, rats were submitted to sucrose preference, EPM, and novel object recognition (NOR) tests. Insulin response to a glucose load was subsequently assessed via an oral glucose tolerance test (OGTT). Rats attained and maintained blood ethanol concentrations of ∼55 mg/dL that correlated with the dose of sweetened 10% ethanol ingested. Relative to intake by Water controls, EtOH rats consumed less chow. There was no body weight difference between both groups. Neither sex of EtOH rats showed increased depression- and anxiety-like behaviors, as respectively measured by sucrose preference and EPM, nor did they show deficit in object recognition memory during abstinence. Male EtOH rats, however, showed signs of reduced general activity on the EPM. During OGTT, male EtOH rats showed a time-dependent potentiation

  16. [Effect of glutamine on small intestinal repair in weanling rats after chronic diarrhea].

    PubMed

    Huang, Zu-xiong; Ye, Li-yan; Zheng, Zhi-yong; Chen, Xin-min; Ren, Rong-na; Tong, Guo-yuan

    2005-05-01

    To investigate the nutrient effect of glutamine on small intestinal repair in weanling rats after chronic diarrhea. Forty 21-day-old wistar rats were randomly divided into five groups (8 in each). Animal model of chronic diarrhea was induced by a lactose enriched diet in the weanling Wistar rat, normal control group was fed with a standard semipurified diet, and after 14 days the rats in both groups were killed to test the establishment of the model. After the establishment of the model, the other groups were fed with the standard semipurified diet to recover for 7 days, and were randomly divided into three groups: non-intervention group, glutamine (Gln)-intervention group and control group. Glutamine concentrations in blood was detected by high-performance liquid chromatography (HPLC). Morphological changes including villus height and villus surface area of the jejunum were measured under a light microscope and electron microscope, expression of proliferating cell nuclear antigen (PCNA) as an index of cell proliferation was observed using immunohistochemical staining and image analysis. The diarrhea rate in model group was 100 percent, average diarrhea index was 1.16 +/- 0.06, but both diarrhea rate and average diarrhea index in control group were 0 (P < 0.01), which affirmed establishment of the model. There was significant decrease of body weight, plasma Gln concentration, villus height, villus surface area and expression of PCNA in non-intervened group compared with the control group (P < 0.01). There was still significant decrease of body weight, villus height and villus surface area in Gln-intervened group compared with control group (P < 0.01), but plasma Gln concentration and expression of PCNA in Gln-intervened group had recovered to normal (P > 0.05). And compared with non-intervened group, except for body weight (P > 0.05), plasma glutamine, villus height, villus surface area and expression of PCNA were all significantly increased in Gln-intervened group

  17. Changes in rat parotid saliva protein composition following chronic reserpine treatment and their relation to inanition.

    PubMed

    Johnson, D A

    1988-01-01

    Chronic administration of the catecholamine-depleting agent, reserpine (0.5 mg/kg), resulted in a reduction in food intake after 3 days. To differentiate effects of the drug from those of reduced food intake a pair-fed group, whose daily caloric intake was restricted to the amount consumed by the reserpine-treated rats, was included. After 7 days, both the reserpine-treated and pair-fed control exhibited a marked reduction in the volume of saliva collected in a 30 min interval following a secretory stimulus compared to untreated ad libitum-fed controls, and the proportion of salivary proteins attributable to acidic and basic proline-rich proteins and to minor 1b protein were decreased whereas deoxyribonuclease was increased. For two of the salivary proteins (fractions I and V) changes for the reserpine-treated and pair-fed groups were different. Fraction I was reduced in both groups, but exhibited a greater decrease in the pair-fed than in the reserpine-treated, whereas fraction V was significantly increased only in the pair-fed group. Thus many of the salivary changes associated with reserpine treatment may have resulted from the change in feeding habits and not from reserpine treatment per se. The study demonstrates the importance of controlling for food intake under experimental circumstances which may lead to a marked change in daily feeding habits.

  18. Protection against hyperoxia by serum from endotoxin treated rats: absence of superoxide dismutase induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, J.T.; Smith, R.M.

    Endotoxin greatly reduces lung injury and pleural effusions in adult rats exposed to normobaric hyperoxia (> 98% oxygen for 60 hours). This study reports that serum from endotoxin treated donor rats protects serum recipients against hyperoxic lung injury without altering lung superoxide dismutase (SOD) activity. Rats pretreated with endotoxin alone were protected and exhibited an increase in lung SOD activity as previously reported by others. Protection by serum was not due to the transfer of residual endotoxin or SOD. These results show, that protection from oxygen toxicity can occur in rats without an increase in lung SOD and suggest thatmore » a serum factor may be involved.« less

  19. Effect of alpha lipoic acid on intracerebroventricular streptozotocin model of cognitive impairment in rats.

    PubMed

    Sharma, Monisha; Gupta, Y K

    2003-08-01

    In the present study, the effect of alpha lipoic acid, a potent free radical scavenger, was investigated against the intracerebroventricular streptozotocin model of cognitive impairment in rats, which is characterized by a progressive deterioration of memory, cerebral glucose and energy metabolism, and oxidative stress. Wistar rats were injected with intracerebroventricular streptozotocin bilaterally. The rats were treated chronically with alpha lipoic acid (50, 100 and 200 mg/kg) orally for 21 days starting from day 1 of streptozotocin injection in separate groups. The learning and memory behavior was evaluated and the rats were sacrificed for estimation of oxidative stress. The intracerebroventricular streptozotocin rats treated with alpha lipoic acid (200 mg/kg, p.o.) showed significantly less cognitive impairment as compared to the vehicle treated rats. There was also an insignificant increase in oxidative stress in the alpha lipoic acid treated groups. The study demonstrated the effectiveness of alpha lipoic acid in preventing cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin and its potential in dementia associated with age and age related neurodegenerative disorders where oxidative stress is involved such as Alzheimer's disease.

  20. Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy.

    PubMed

    Hellier, J L; Patrylo, P R; Buckmaster, P S; Dudek, F E

    1998-06-01

    Human temporal lobe epilepsy is associated with complex partial seizures that can produce secondarily generalized seizures and motor convulsions. In some patients with temporal lobe epilepsy, the seizures and convulsions occur following a latent period after an initial injury and may progressively increase in frequency for much of the patient's life. Available animal models of temporal lobe epilepsy are produced by acute treatments that often have high mortality rates and/or are associated with a low proportion of animals developing spontaneous chronic motor seizures. In this study, rats were given multiple low-dose intraperitoneal (i.p.) injections of kainate in order to minimize the mortality rate usually associated with single high-dose injections. We tested the hypothesis that these kainate-treated rats consistently develop a chronic epileptic state (i.e. long-term occurrence of spontaneous, generalized seizures and motor convulsions) following a latent period after the initial treatment. Kainate (5 mg/kg per h, i.p.) was administered to rats every hour for several hours so that class III-V seizures were elicited for > or = 3 h, while control rats were treated similarly with saline. This treatment protocol had a relatively low mortality rate (15%). After acute treatment, rats were observed for the occurrence of motor seizures for 6-8 h/week. Nearly all of the kainate-treated rats (97%) had two or more spontaneous motor seizures months after treatment. With this observation protocol, the average latency for the first spontaneous motor seizure was 77+/-38 (+/-S.D.) days after treatment. Although variability was observed between rats, seizure frequency initially increased with time after treatment, and nearly all of the kainate-treated rats (91%) had spontaneous motor seizures until the time of euthanasia (i.e. 5-22 months after treatment). Therefore, multiple low-dose injections of kainate, which cause recurrent motor seizures for > or = 3 h, lead to the

  1. Tolerance and sensitization to chronic escalating-dose heroin following extended withdrawal in Fischer rats: possible role of mu-opioid receptors

    PubMed Central

    Seip-Cammack, Katharine M.; Reed, Brian; Zhang, Yong; Ho, Ann; Kreek, Mary Jeanne

    2012-01-01

    Rationale/objectives Heroin addiction is characterized by recurrent cycles of drug use, abstinence and relapse. It is likely that neurobiological changes during chronic heroin exposure persist across withdrawal and impact behavioral responses to re-exposure. We hypothesized that, after extended withdrawal, heroin-withdrawn rats would express behavioral tolerance and/or sensitization in response to heroin re-exposure and that these responses might be associated with altered mu-opioid receptor (MOPr) activity. Methods Male Fischer rats were exposed chronically to escalating doses of heroin (7.5–75mg/kg/day), experienced acute spontaneous withdrawal and extended (10-day) abstinence, and were re-exposed chronically to heroin. Homecage behaviors and locomotor activity in response to heroin, as well as somatic withdrawal signs, were recorded. Separate groups of rats were sacrificed after extended abstinence and MOPr expression and G-protein coupling were analyzed using [3H]DAMGO and [35S]GTPγS assays. Results The depth of behavioral stupor was lower during the initial days of heroin re-exposure compared to the initial days of the first exposure period. Behavioral responses (e.g., stereotypy) and locomotion were elevated in response to heroin re-exposure at low doses. Rats conditioned for heroin place preference during the chronic re-exposure period expressed heroin preference during acute withdrawal; this preference was stronger than rats conditioned during chronic heroin exposure that followed chronic saline and injection-free periods. Extended withdrawal was associated with increased MOPr expression in the caudate-putamen and frontal and cingulate cortices. No changes in G-protein coupling were identified. Conclusions Aspects of tolerance/sensitization to heroin are present even after extended abstinence and may be associated with altered MOPr density. PMID:22829433

  2. Safety assessment of widely used fermented virgin coconut oil (Cocos nucifera) in Malaysia: Chronic toxicity studies and SAR analysis of the active components.

    PubMed

    Ibrahim, Ahmad H; Khan, Md Shamsuddin Sultan; Al-Rawi, Sawsan S; Ahamed, Mohamed B Khadeer; Majid, Aman Shah Bin Abdul; Al-Suede, Fouad Saleih R; Ji, Dan; Majid, Amin Malik Shah Abdul

    2016-11-01

    Fermented Virgin Coconut Oil (FVCO) is widely used in the Southeast Asia as food and traditional medicine. The objective of the present study is the evaluation of chronic safety of the commercialized FVCO of Malaysia and other Southeast Asian countries. A single dose of 5000 mg/kg of FVCO was administered orally in rats (each group, n = 5) for the acute toxicity study and 175, 550 and 2000 mg/kg for sub-chronic and chronic studies (each group, n = 10), respectively. The behavior, mortality, and body weight of the rats were assessed to determine the toxic effects of FVCO. The haematology, biochemistry and histopathology of the treated rats were evaluated. The treated rats were safe with the dose of 5000 mg/kg in acute, sub-chronic and chronic indication. Abnormal clinical signs and morphology (gross necroscopy), changes of organ weight, anomalous haematology and biochemistry indexes were not found in comparison with the control (p > 0.05). In general, food and water intake were higher in the treated rats related to control. It was concluded that the presence of the antioxidant active compounds of FVCO might be the reason of safety. The structure activity relationship (SAR) provides a comprehensive mechanism to determine the safety that is the presence of the electron donating phenolic groups, carbonyl groups, and carboxylic acid in the ortho and meta position of the aromatic rings. The SAR showed the antioxidant properties of myristic acid and lauric acid determined by GC-MS analysis. This result suggests the safety of FVCO for chronic use, nutritional activity that FVCO formulation complies the requirements of regulatory agencies. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.

    PubMed

    Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F

    2017-08-01

    Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Perinatal outcomes associated with abnormal cardiac remodeling in women with treated chronic hypertension.

    PubMed

    Ambia, Anne M; Morgan, Jamie L; Wells, C Edward; Roberts, Scott W; Sanghavi, Monika; Nelson, David B; Cunningham, F Gary

    2018-05-01

    Adverse maternal outcomes associated with chronic hypertension include accelerated hypertension and resultant target organ damage. One example is long-standing hypertension leading to maternal cardiac dysfunction. Our group has previously identified that features of such injury manifest as cardiac remodeling with left ventricular hypertrophy. Moreover, these features of cardiac remodeling identified in women with chronic hypertension during pregnancy were associated with adverse perinatal outcomes. Recent definitions of maternal cardiac remodeling using echocardiography have been expanded to include measurements of wall thickness. We hypothesized that these new features characterizing cardiac remodeling in women with chronic hypertension may also be associated with adverse perinatal outcomes. There were 3 aims in this study of women with treated chronic hypertension during pregnancy: to (1) apply the updated definitions of maternal cardiac remodeling; (2) elucidate whether these features of cardiac remodeling were associated with adverse perinatal outcomes; and (3) determine which, if any, of the newly defined cardiac remodeling strata were most damaging when compared to women with normal cardiac geometry. This was a retrospective study of women with treated chronic hypertension during pregnancy delivered from January 2009 through January 2016. Cardiac remodeling was categorized by left ventricular mass index and relative wall thickness into 4 groups determined using the 2015 American Society of Echocardiography guidelines: normal geometry, concentric remodeling, eccentric hypertrophy, and concentric hypertrophy. Perinatal outcomes were analyzed according to each category of cardiac remodeling compared with outcomes in women with normal geometry. A total of 314 women with treated chronic hypertension underwent echocardiography at a mean gestational age of 17.9 weeks. There were no differences between maternal age (P = .896), habitus (P = .36), or duration of

  5. Angiotensin type 1 receptor mediates chronic ethanol consumption-induced hypertension and vascular oxidative stress.

    PubMed

    Passaglia, Patrícia; Ceron, Carla S; Mecawi, André S; Antunes-Rodrigues, José; Coelho, Eduardo B; Tirapelli, Carlos R

    2015-11-01

    We hypothesized that chronic ethanol intake enhances vascular oxidative stress and induces hypertension through renin-angiotensin system (RAS) activation. Male Wistar rats were treated with ethanol (20% v/v). The increase in blood pressure induced by ethanol was prevented by losartan (10mg/kg/day; p.o. gavage), a selective AT1 receptor antagonist. Chronic ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels and serum aldosterone levels. No differences on plasma osmolality and sodium or potassium levels were detected after treatment with ethanol. Ethanol consumption did not alter ACE activity, as well as the levels of ANG I and ANG II in the rat aorta or mesenteric arterial bed (MAB). Ethanol induced systemic and vascular oxidative stress (aorta and MAB) and these effects were prevented by losartan. The decrease on plasma and vascular nitrate/nitrite (NOx) levels induced by ethanol was prevented by losartan. Ethanol intake did not alter protein expression of ACE, AT1 or AT2 receptors in both aorta and MAB. Aortas from ethanol-treated rats displayed decreased ERK1/2 phosphorylation and increased protein expression of SAPK/JNK. These responses were prevented by losartan. MAB from ethanol-treated rats displayed reduced phosphorylation of p38MAPK and ERK1/2 and losartan did not prevent these responses. Our study provides novel evidence that chronic ethanol intake increases blood pressure, induces vascular oxidative stress and decreases nitric oxide (NO) bioavailability through AT1-dependent mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Gastro-protective and Anti-stress Efficacies of Monomethyl Fumarate and a Fumaria indica Extract in Chronically Stressed Rats.

    PubMed

    Shakya, Anshul; Soni, Upendra Kumar; Rai, Geeta; Chatterjee, Shyam Sunder; Kumar, Vikas

    2016-05-01

    Results of the very first experiments conducted to evaluate therapeutic potentials of a fumarate containing Fumaria indica extract and of fairly low daily oral doses of monomethyl fumarate for prevention of chronic unavoidable foot-shock stress-induced gastric ulcers, and possible involvement of diverse neuro-hormonal and oxidative process in their stress response desensitizing effects are reported and discussed in this article. Preventive effects of 21 daily oral 60, 120, and 240 mg/kg doses of a standardized 50 % methanolic F. indica extract (MFI) and 1.25, 2.50, and 5.00 mg/kg/day of pure monomethyl fumarate (MMF) were compared in rats subjected to one hour daily unavoidable foot-shocks. A pharmaceutically well-standardized Withania somnifera (WS) root extract was used as a reference herbal anti-stress agent in all experiments. Effects of the treatments on stress-induced alterations in body weight, adrenal and spleen weights, gastric ulcer and ulcer index, weight of glandular stomach, protective mucosal glycoprotein content, cellular proliferation, oxidative stress on stomach fundus, and brain tissues of male rats were quantified. Other parameters quantified were plasma corticosterone levels, brain monoamine levels, and expressions of the cytokines TNF-α, IL-10, and IL-1β in blood and brain of stressed and treated rats. Most but not every observed stress-induced anomalies were suppressed or completely prevented by both MFI and pure MMF treatments in dose-dependent manner. Qualitatively, the observed activity profiles of both of them were similar to those of WS dose tested. These results reveal that both MFI and MMF are potent gastro-protective agents against chronic unavoidable stress-induced ulcers and strongly suggest that they act as regulators or modulators of monoamine, corticosterone, and cytokine homeostasis.

  7. Serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats.

    PubMed

    Glisić, Radmila; Koko, Vesna; Todorović, Vera; Drndarević, Neda; Cvijić, Gordana

    2006-09-11

    The aim of our study was to investigate the morphological, immunohistochemical and ultrastructural changes of rat serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2 mg/kg dexamethasone, rats developed diabetes similar to human diabetes type 2. Stomach, small and large intestines were examined. Large serotonin positive EC cells appeared in the corpus mucosa epithelium of D group of rats, although these cells were not present in control (C) rats. Both volume fraction and the number of EC cells per mm(2) of mucosa were significantly increased only in the duodenum. However, the number of EC cells per circular sections of both antrum and small intestine was increased, but reduced both in the ascending and descending colon in D group. The dexamethasone treatment caused a strong reduction in number of granules in the antral EC cells, while it was gradually increased beginning from the jejunum to descending colon. The mean granular content was reduced in the antral EC cells but increased in the jejunal EC cells in D group. In conclusion, the present study showed that morphological changes in gut serotonin-producing EC cells occurred in diabetic rats.

  8. Chronic Ethanol Administration Prevents Compensatory Cardiac Hypertrophy in Pressure Overload.

    PubMed

    Ninh, Van K; El Hajj, Elia C; Mouton, Alan J; El Hajj, Milad C; Gilpin, Nicholas W; Gardner, Jason D

    2018-05-30

    Alcohol is among the most commonly abused drugs worldwide and affects many organ systems, including the heart. Alcoholic cardiomyopathy is characterized by a dilated cardiac phenotype with extensive hypertrophy and extracellular matrix (ECM) remodeling. We have previously shown that chronic ethanol (EtOH) administration accelerates the progression to heart failure in a rat model of volume overload. However, the mechanism by which this decompensation occurs is unknown. For this study, we hypothesized that chronic EtOH administration would prevent compensatory hypertrophy and cardiac remodeling in a rodent model of pressure overload (PO). Abdominal aortic constriction was used to create PO in 8-week-old male Wistar rats. Alcohol administration was performed via chronic intermittent EtOH vapor inhalation for 2 weeks prior to surgery and for the duration of the 8-week study. Echocardiography measurements were taken to assess ventricular functional and structural changes. PO increased posterior wall thickness and the hypertrophic markers, atrial and B-type natriuretic peptides (ANP and BNP). With the added stressor of EtOH, wall thickness, ANP, and BNP decreased in PO animals. The combination of PO and EtOH resulted in increased wall stress compared to PO alone. PO also caused increased expression of collagen I and III, whereas EtOH alone only increased collagen III. The combined stresses of PO and EtOH led to an increase in collagen I expression, but collagen III did not change, resulting in an increased collagen I/III ratio in the PO rats treated with EtOH. Lastly, Notch1 expression was significantly increased only in the PO rats treated with EtOH. Our data indicate that chronic EtOH may limit the cardiac hypertrophy induced by PO which may be associated with a Notch1 mechanism, resulting in increased wall stress and altered ECM profile. Copyright © 2018 by the Research Society on Alcoholism.

  9. Sweet food improves chronic stress-induced irritable bowel syndrome-like symptoms in rats.

    PubMed

    Rho, Sang-Gyun; Kim, Yong Sung; Choi, Suck Chei; Lee, Moon Young

    2014-03-07

    To investigate whether palatable sweet foods have a beneficial effect on chronic stress-induced colonic motility and inflammatory cytokines. Adult male rats were divided into 3 groups: control (CON, n = 5), chronic variable stress with chow (CVS-A, n = 6), and chronic variable stress with chow and sweet food (CVS-B, n = 6). The rats were fed standard rodent chow as the chow food and/or AIN-76A as the sweet food. A food preference test for AIN-76A was performed in another group of normal rats (n = 10) for twelve days. Fecal pellet output (FPO) was measured for 6 wk during water bedding stress in the CVS groups. The weight of the adrenal glands, adrenocorticotropic hormone (ACTH) and corticosterone levels in plasma were measured. The expression levels of transforming growth factor-β, interleukin (IL)-2, and interferon-gamma (IFN-γ) were measured in the distal part of colonic tissues and plasma using Western blot analysis. In sweet preference test, all rats initially preferred sweet food to chow food. However, the consumption rate of sweet food gradually decreased and reduced to below 50% of total intake eight days after sweet food feeding. Accumulated FPO was higher in the CVS-A group compared with the CVS-B group over time. All stress groups showed significant increases in the adrenal to body weight ratio (CVS-A, 0.14 ± 0.01; CVS-B, 0.14 ± 0.01) compared with the control group (0.12 ± 0.01, P < 0.05). The plasma corticosterone and ACTH levels were significantly higher in the CVS-A (537.42 ± 32.95, 44.44 ± 6.54 pg/mL) and CVS-B (655.07 ± 30.82, 65.46 ± 4.44 pg/mL) groups than in the control group (46.96 ± 13.29, 8.51 ± 1.35 pg/mL, P < 0.05). Notably, the ratio of corticosterone to ACTH was significantly increased in the CVS-A group only. Rats exposed to CVS displayed significantly increased expression of IL-2 and IFN-γ in the plasma and distal colon compared to the control group, whereas this effect was significantly attenuated in the CVS-B group. These

  10. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    PubMed

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  11. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    PubMed Central

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  12. Anti-inflammatory and Analgesic Activities of Topical Formulations of Pterocarpus Santalinus Powder in Rat Model of Chronic Inflammation.

    PubMed

    Dhande, Priti Pravin; Gupta, Amit O; Jain, Sourav; Dawane, Jayshree Shriram

    2017-07-01

    The incidence of arthritis is quite high and there is a need for the search of natural products to halt the progression of disease or provide symptomatic relief without significant adverse effects. This study aimed at evaluating the anti-inflammatory and analgesic activities of topical Pterocarpus santalinus in an animal model of chronic inflammation. Albino rats of either sex were divided into five groups of six rats each (Group I - Control, Group II -Gel base, Group III - P. santalinus paste, Group IV - P. santalinus gel, Group V- Diclofenac gel). Chronic inflammation was induced on day 0 by injecting 0.1 ml Complete Freund's Adjuvant (CFA) in sub-plantar tissue of left hind paw of the rats. Topical treatment was started from day 12 till day 28. Body weight and paw volume (Plethysmometer) were assessed on day 0, 12 and 28. Pain assessment was done using Randall and Selitto paw withdrawal method. Data was analysed using GraphPad Prism version 5. Unpaired students t-test and ANOVA followed by Tukey's test was used for comparison among groups. Only topical P.santalinus gel significantly reduced the body weight (p=0.02) due to reduction in inflammatory oedema of the left limb. P. santalinus gel also showed significant reduction (p=0.03) in paw volume of rats compared to the other groups. There was significant reduction in pain threshold (gm/sec) due to chronic inflammation, with all the study drugs (p<0.05) but with P. santalinus gel, this reduction was less (p<0.001). Gel showed significant anti-inflammatory and mild analgesic activity on topical application in rat model of chronic inflammation.

  13. Chronic stress effects and their reversibility on the Fallopian tubes and uterus in rats.

    PubMed

    Divyashree, S; Yajurvedi, H N

    2018-01-01

    The durational effects of chronic stress on the Fallopian tubes and uterus were studied by exposing rats to stressors in the form of restraint (1h) and forced swimming (15min) daily for 4, 8 or 12 weeks. One group of stressed rats from each time period was then maintained without exposure to stressors for a further 4 weeks to assess their ability to recover from stress. All time periods of stress exposure resulted in decreased weight of the body and Fallopian tubes; however, the relative weight of the uterus and serum concentrations of oestradiol and insulin increased significantly. The antioxidant potential was decreased with increased malondialdehyde concentrations in the Fallopian tubes following all durations of exposure and after 4 and 8 weeks of stress exposure in the uterus. Interestingly, rats stressed for 12 weeks showed an increase in serum testosterone concentration and antioxidant enzyme activities with a decrease in malondialdehyde concentration in the uterus. The antioxidant enzyme activities and malondialdehyde concentration in the Fallopian tubes of all recovery group rats were similar to stressed rats. However, in the uterus these parameters were similar to controls in recovery group rats after 4 weeks or 8 weeks of exposure, but after 12 weeks of stress exposure these parameters did not return to control levels following the recovery period. These results reveal, for the first time, that chronic stress elicits an irreversible decrease in antioxidant defence in the Fallopian tubes irrespective of exposure duration, whereas the uterus develops reversible oxidative stress under short-term exposure but increased antioxidant potential with endometrial proliferation following long-term exposure.

  14. Chronic marijuana smoke exposure in the rhesus monkey. IV: Neurochemical effects and comparison to acute and chronic exposure to delta-9-tetrahydrocannabinol (THC) in rats.

    PubMed

    Ali, S F; Newport, G D; Scallet, A C; Paule, M G; Bailey, J R; Slikker, W

    1991-11-01

    THC is the major psychoactive constituent of marijuana and is known to produce psychopharmacological effects in humans. These studies were designed to determine whether acute or chronic exposure to marijuana smoke or THC produces in vitro or in vivo neurochemical alterations in rat or monkey brain. For the in vitro study, THC was added (1-100 nM) to membranes prepared from different regions of the rat brain and muscarinic cholinergic (MCh) receptor binding was measured. For the acute in vivo study, rats were injected IP with vehicle, 1, 3, 10, or 30 mg THC/kg and sacrificed 2 h later. For the chronic study, rats were gavaged with vehicle or 10 or 20 mg THC/kg daily, 5 days/week for 90 days and sacrificed either 24 h or 2 months later. Rhesus monkeys were exposed to the smoke of a single 2.6% THC cigarette once a day, 2 or 7 days a week for 1 year. Approximately 7 months after the last exposure, animals were sacrificed by overdose with pentobarbital for neurochemical analyses. In vitro exposure to THC produced a dose-dependent inhibition of MCh receptor binding in several brain areas. This inhibition of MCh receptor binding, however, was also observed with two other nonpsychoactive derivatives of marijuana, cannabidiol and cannabinol. In the rat in vivo study, we found no significant changes in MCh or other neurotransmitter receptor binding in hippocampus, frontal cortex or caudate nucleus after acute or chronic exposure to THC. In the monkey brain, we found no alterations in the concentration of neurotransmitters in caudate nucleus, frontal cortex, hypothalamus or brain stem.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Effect of Rifaximin on Hepatic Fibrosis in Bile Duct-ligated Rat Model.

    PubMed

    Shin, Seung Kak; Kwon, Oh Sang; Lee, Jong Joon; Park, Yeon Ho; Choi, Cheol Soo; Jeong, Sung Hwan; Choi, Duck Joo; Kim, Yun Soo; Kim, Ju Hyun

    2017-11-25

    The translocation of bacteria and their lipopolysaccharides from the gut can promote fibrosis in cirrhotic patients. The aim of this study was to investigate the effects of rifaximin on hepatic fibrosis in a bile duct-ligated rat model. The bile duct ligation (BDL) was carried out for eight days (acute injury model: sham-operated rats [G1], BDL rats [G2], and BDL rats treated with rifaximin [G3]) or 22 days (chronic injury model: sham-operated rats [G4], BDL rats [G5], and BDL rats treated with rifaximin [G6]). Rifaximin (50 mg/kg/day) was administered daily via gavage after BDL. Liver function, serum tumor necrosis factor-alpha (TNF-α), and hepatic hydroxyproline levels were measured. Moreover, a histological analysis of fibrosis contents was performed using sirius red stain. In the acute injury model, the liver function and TNF-α level were not improved after the rifaximin treatment. The hydroxyproline levels (µg/g liver tissue) in G1, G2, and G3 were 236.4±103.1, 444.8±114.4, and 312.5±131.6, respectively; and fibrosis contents (%) were 0.22±0.04, 1.64±0.53, and 1.66±0.44, respectively. The rifaximin treatment did not ameliorate acute BDL-induced fibrosis. In the chronic injury model, the hydroxyproline levels in G4, G5, and G6 were 311.5±72.9, 1,110.3±357.9, and 944.3±209.3, respectively; and fibrosis contents (%) were 0.19±0.03, 5.04±0.18, and 4.42±0.68, respectively (G5 vs. G6, p=0.059). The rifaximin treatment marginally ameliorated chronic BDL-induced fibrosis. Rifaximin did not reduce inflammation and fibrosis in bile duct-ligated rat model.

  16. Meta-ethnography to understand healthcare professionals’ experience of treating adults with chronic non-malignant pain

    PubMed Central

    Seers, Kate; Barker, Karen L

    2017-01-01

    Objectives We aimed to explore healthcare professionals’ experience of treating chronic non-malignant pain by conducting a qualitative evidence synthesis. Understanding this experience from the perspective of healthcare professionals will contribute to improvements in the provision of care. Design Qualitative evidence synthesis using meta-ethnography. We searched five electronic bibliographic databases from inception to November 2016. We included studies that explore healthcare professionals’ experience of treating adults with chronic non-malignant pain. We used the GRADE-CERQual framework to rate confidence in review findings. Results We screened the 954 abstracts and 184 full texts and included 77 published studies reporting the experiences of over 1551 international healthcare professionals including doctors, nurses and other health professionals. We abstracted six themes: (1) a sceptical cultural lens, (2) navigating juxtaposed models of medicine, (3) navigating the geography between patient and clinician, (4) challenge of dual advocacy, (5) personal costs and (6) the craft of pain management. We rated confidence in review findings as moderate to high. Conclusions This is the first qualitative evidence synthesis of healthcare professionals’ experiences of treating people with chronic non-malignant pain. We have presented a model that we developed to help healthcare professionals to understand, think about and modify their experiences of treating patients with chronic pain. Our findings highlight scepticism about chronic pain that might explain why patients feel they are not believed. Findings also indicate a dualism in the biopsychosocial model and the complexity of navigating therapeutic relationships. Our model may be transferable to other patient groups or situations. PMID:29273663

  17. Permanently Hypoxic Cell Culture Yields Rat Bone Marrow Mesenchymal Cells with Higher Therapeutic Potential in the Treatment of Chronic Myocardial Infarction.

    PubMed

    Liu, Yihua; Yang, Xiaoxi; Maureira, Pablo; Falanga, Aude; Marie, Vanessa; Gauchotte, Guillaume; Poussier, Sylvain; Groubatch, Frederique; Marie, Pierre-Yves; Tran, Nguyen

    2017-01-01

    The mismatch between traditional in vitro cell culture conditions and targeted chronic hypoxic myocardial tissue could potentially hamper the therapeutic effects of implanted bone marrow mesenchymal stem cells (BMSCs). This study sought to address (i) the extent of change to BMSC biological characteristics in different in vitro culture conditions and (ii) the effectiveness of permanent hypoxic culture for cell therapy in treating chronic myocardial infarction (MI) in rats. rat BMSCs were harvested and cultured in normoxic (21% O2, n=27) or hypoxic conditions (5% O2, n=27) until Passage 4 (P4). Cell growth tests, flow cytometry, and Bio-Plex assays were conducted to explore variations in the cell proliferation, phenotype, and cytokine expression, respectively. In the in vivo set-up, P3-BMSCs cultured in normoxia (n=6) or hypoxia (n=6) were intramyocardially injected into rat hearts that had previously experienced 1-month-old MI. The impact of cell therapy on cardiac segmental viability and hemodynamic performance was assessed 1 month later by 2-Deoxy-2[18F]fluoro-D-glucose (18F-FDG) positron emission tomography (PET) imaging and pressure-volume catheter, respectively. Additional histomorphological examinations were conducted to evaluate inflammation, fibrosis, and neovascularization. Hypoxic preconditioning significantly enhanced rat BMSC clonogenic potential and proliferation without altering the multipotency. Different profiles of inflammatory, fibrotic, and angiogenic cytokine secretion were also documented, with a marked correlation observed between in vitro and in vivo proangiogenic cytokine expression and tissue neovessels. Hypoxic-preconditioned cells presented a beneficial effect on the myocardial viability of infarct segments and intrinsic contractility. Hypoxic-preconditioned BMSCs were able to benefit myocardial perfusion and contractility, probably by modulating the inflammation and promoting angiogenesis. © 2017 The Author(s). Published by S. Karger AG

  18. Epigenetics of proteasome inhibition in the liver of rats fed ethanol chronically

    PubMed Central

    Oliva, Joan; Dedes, Jennifer; Li, Jun; French, Samuel W; Bardag-Gorce, Fawzia

    2009-01-01

    AIM: To examine the effects of ethanol-induced proteasome inhibition, and the effects of proteasome inhibition in the regulation of epigenetic mechanisms. METHODS: Rats were fed ethanol for 1 mo using the Tsukamoto-French model and were compared to rats given the proteasome inhibitor PS-341 (Bortezomib, Velcade™) by intraperitoneal injection. Microarray analysis and real time PCR were performed and proteasome activity assays and Western blot analysis were performed using isolated nuclei. RESULTS: Chronic ethanol feeding caused a significant inhibition of the ubiquitin proteasome pathway in the nucleus, which led to changes in the turnover of transcriptional factors, histone-modifying enzymes, and, therefore, affected epigenetic mechanisms. Chronic ethanol feeding was related to an increase in histone acetylation, and it is hypothesized that the proteasome proteolytic activity regulated histone modifications by controlling the stability of histone modifying enzymes, and, therefore, regulated the chromatin structure, allowing easy access to chromatin by RNA polymerase, and, thus, proper gene expression. Proteasome inhibition by PS-341 increased histone acetylation similar to chronic ethanol feeding. In addition, proteasome inhibition caused dramatic changes in hepatic remethylation reactions as there was a significant decrease in the enzymes responsible for the regeneration of S-adenosylmethionine, and, in particular, a significant decrease in the betaine-homocysteine methyltransferase enzyme. This suggested that hypomethylation was associated with proteasome inhibition, as indicated by the decrease in histone methylation. CONCLUSION: The role of proteasome inhibition in regulating epigenetic mechanisms, and its link to liver injury in alcoholic liver disease, is thus a promising approach to study liver injury due to chronic ethanol consumption. PMID:19222094

  19. Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte

    PubMed Central

    Kumar, Suresh N.; Konorev, Eugene A.; Aggarwal, Deepika; Kalyanaraman, Balaraman

    2011-01-01

    Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48 h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity. PMID:21338723

  20. Chronic nandrolone administration induces dysfunction of the reward pathway in rats.

    PubMed

    Zotti, Margherita; Tucci, Paolo; Colaianna, Marilena; Morgese, Maria Grazia; Mhillaj, Emanuela; Schiavone, Stefania; Scaccianoce, Sergio; Cuomo, Vincenzo; Trabace, Luigia

    2014-01-01

    Data in animal models and surveys in humans have revealed psychiatric complications of long-term anabolic androgenic steroid abuse. However, the neurobiochemical mechanisms behind the observed behavioral changes are poorly understood. The aim of the present study was to investigate the effects of nandrolone decanoate on emotional behavior and neurochemical brain alterations in gonadally intact male rats. The behavioral reactivity to the elevated plus maze and the social interaction test was used to assess anxiety-related symptoms, and the sucrose preference test was used to evaluate anhedonia. Dopaminergic, serotonergic and noradrenergic transmissions were also evaluated in selected brain areas. The chronic administration of nandrolone, at 5 mg kg(-1) injected daily for 4 weeks, induced the loss of sweet taste preference, a sign of anhedonia and dysfunction of the reward pathway. The behavioral outcomes were accompanied by reductions in the dopamine, serotonin and noradrenaline contents in the nucleus accumbens. Alterations in the time spent in the open arms and in the social interaction test were not found, suggesting that nandrolone did not induce an anxiogenic profile. No differences were revealed between the experimental groups in the amygdala in terms of the neurotransmitters measured. Our data suggest that nandrolone-treated rats have a depressive, but not anxiogenic-like, profile, accompanied by brain region-dependent changes in dopaminergic, serotonergic and noradrenergic neurotransmission. As anabolic androgenic steroid dependence is plausibly the major form of worldwide substance dependence that remains largely unexplored, it should be highlighted that our data could contribute to a better understanding of the altered rewards induced by nandrolone treatment and to the development of appropriate treatments.

  1. Effects of chronic stress and high-fat diet on metabolic and nutritional parameters in Wistar rats.

    PubMed

    Bruder-Nascimento, Thiago; Campos, Dijon Henrique Salomé; Alves, Carlos; Thomaz, Samuel; Cicogna, Antônio Carlos; Cordellini, Sandra

    2013-11-01

    The aim of this study was assess the role of chronic stress on the metabolic and nutritional profile of rats exposed to a high-fat diet. Thirty-day-old male Wistar rats (70-100 g) were distributed into four groups: normal-diet (NC), chronic stress (St), high-fat diet (HD), and chronic stress/high-fat diet (HD/St). Stress consisted at immobilization during 15 weeks, 5 times per week, 1h per day; and exposure to the high-fat diet lasted 15 weeks. Nutritional and metabolic parameters were assessed. The level of significance was 5%. The HD group had final body weight, total fat, as well as insulin and leptin increased, and they were insulin resistant. The St and HD/St had arterial hypertension and increased levels of corticosterone. Stress blocked the effects of the high-fat diet. Chronic stress prevented the appearance of obesity. Our results help to clarify the mechanisms involved in metabolic and nutritional dysfunction, and contribute to clinical cases linked to stress and high-fat diet.

  2. Chronic Sarpogrelate Treatment Reveals 5-HT7 Receptor in the Serotonergic Inhibition of the Rat Vagal Bradycardia.

    PubMed

    García-Pedraza, José Ángel; García, Mónica; Martín, María Luisa; Eleno, Nélida; Morán, Asunción

    2017-01-01

    5-Hydroxytryptamine (5-HT) modulates the cardiac parasympathetic neurotransmission, inhibiting the bradyarrhythmia by 5-HT2 receptor activation. We aimed to determine whether the chronic selective 5-HT2 blockade (sarpogrelate) could modify the serotonergic modulation on vagal cardiac outflow in pithed rat. Bradycardic responses in rats treated with sarpogrelate (30 mg·kg·d; orally) were obtained by electrical stimulation of the vagal fibers (3, 6, and 9 Hz) or intravenous (IV) injections of acetylcholine (1, 5, and 10 μg/kg). 5-HT7 receptor expression was quantified by Western blot in vagus nerve and right atrium. The IV administration of 5-HT (10-200 μg/kg) dose dependently decreased the vagally induced bradycardia, and agonists 5-CT (5-HT1/7), 8-OH-DPAT (5-HT1A), or AS-19 (5-HT7) (50 μg/kg each) mimicked the 5-HT-induced inhibitory effect. Neither agonists CGS-12066B (5-HT1B), L-694,247 (5-HT1D), nor 1-phenylbiguanide (5-HT3) modified the electrically-induced bradycardic responses. Moreover, SB-258719 (5-HT7 antagonist) abolished the 5-HT-, 5-CT-, 8-OH-DPAT-, and AS-19-induced bradycardia inhibition; 5-HT or AS-19 did not modify the bradycardia induced by IV acetylcholine; and 5-HT7 receptor was expressed in both the vagus nerve and the right atrium. Our outcomes suggest that blocking chronically 5-HT2 receptors modifies the serotonergic influence on cardiac vagal neurotransmission exhibiting 5-HT as an exclusively inhibitory agent via prejunctional 5-HT7 receptor.

  3. Iron overload prevents oxidative damage to rat brain after chlorpromazine administration.

    PubMed

    Piloni, Natacha E; Caro, Andres A; Puntarulo, Susana

    2018-05-15

    The hypothesis tested is that Fe administration leads to a response in rat brain modulating the effects of later oxidative challenges such as chlorpromazine (CPZ) administration. Either a single dose (acute Fe overload) or 6 doses every second day (sub-chronic Fe overload) of 500 or 50 mg Fe-dextran/kg, respectively, were injected intraperitoneally (ip) to rats. A single dose of 10 mg CPZ/kg was injected ip 8 h after Fe treatment. DNA integrity was evaluated by quantitative PCR, lipid radical (LR · ) generation rate by electron paramagnetic resonance (EPR), and catalase (CAT) activity by UV spectrophotometry in isolated brains. The maximum increase in total Fe brain was detected after 6 or 2 h in the acute and sub-chronic Fe overload model, respectively. Mitochondrial and nuclear DNA integrity decreased after acute Fe overload at the time of maximal Fe content; the decrease in DNA integrity was lower after sub-chronic than after acute Fe overload. CPZ administration increased LR · generation rate in control rat brain after 1 and 2 h; however, CPZ administration after acute or sub-chronic Fe overload did not affect LR · generation rate. CPZ treatment did not affect CAT activity after 1-4 h neither in control rats nor in acute Fe-overloaded rats. However, CPZ administration to rats treated sub-chronically with Fe showed increased brain CAT activity after 2 or 4 h, as compared to control values. Fe supplementation prevented brain damage in both acute and sub-chronic models of Fe overload by selectively activating antioxidant pathways.

  4. Chronic High Dose Intraperitoneal Bisphenol A (BPA) Induces Substantial Histological and Gene Expression Alterations in Rat Penile Tissue Without Impairing Erectile Function

    PubMed Central

    Kovanecz, Istvan; Gelfand, Robert; Masouminia, Maryam; Gharib, Sahir; Segura, Denesse; Vernet, Dolores; Rajfer, Jacob; Li, De-Kun; Liao, Chun Yang; Kannan, Kurunthachalam; Gonzalez-Cadavid, Nestor F.

    2014-01-01

    Introduction Bisphenol A (BPA), released from plastics and dental sealants, is a suspected endocrine disruptor and reproductive toxicant. In occupationally exposed workers, BPA has been associated with erectile dysfunction (ED). Aims To determine whether long-term exposure to high doses of BPA in the rat affects serum levels of testosterone (T) and estradiol (E2), and induces corporal histopathology and resultant ED. Methods Young rats were injected intraperitoneal (IP) injection daily with BPA at 25 mg/kg/day or vehicle (n = 8/group). Erectile function was measured at 3 months by cavernosometry and electrical field stimulation (EFS). BPA was assayed in serum, urine, and penile tissue, and serum T and E2 were determined. Quantitative Masson trichrome, terminal deoxynucleotidyl transferase dUTP nick end labeling, Oil Red O, immunohistochemistry for calponin, α-smooth muscle actin, and Oct 4 were applied to penile tissue sections. Protein markers were assessed by Western blots and 2–D minigels, and RNA by DNA microarrays. Main Outcome Measures Erectile function, histological, and biochemical markers in corporal tissue. Results In the BPA-treated rats, total and free BPA levels were increased in the serum, urine, and penile tissue while serum T and E2 levels were reduced. In addition, the corpora cavernosa demonstrated a reduction in smooth muscle (SM) content, SM/collagen ratio, together with an increase in myofibroblasts, fat deposits, and apoptosis, but no significant change in collagen content or stem cells (nuclear/perinuclear Oct 4). In the penile shaft, BPA induced a downregulation of Nanog (stem cells), neuronal nitric oxide synthase (nitrergic terminals), and vascular endothelial growth factor (angiogenesis), with genes related to SM tone and cytoskeleton upregulated 5- to 50-fold, accompanied by changes in the multiple protein profile. However, both cavernosometry and EFS were unaltered by BPA. Conclusions While rats treated chronically with a high IP

  5. Chronic ethanol intake leads to structural and molecular alterations in the rat endometrium.

    PubMed

    Martinez, Marcelo; Milton, Flora A; Pinheiro, Patricia Fernanda F; Almeida-Francia, Camila C D; Cagnon-Quitete, Valeria H A; Tirapelli, Luiz F; Padovani, Carlos Roberto; Chuffa, Luiz Gustavo A; Martinez, Francisco Eduardo

    2016-05-01

    We described the effects of low- and high-dose ethanol intake on the structure and apoptosis signaling of the uterine endometrium of UChA and UChB rats (animals with voluntary ethanol consumption). Thirty adult female rats, 90 days old, were divided into three groups (n = 10/group): UChA rats fed with 10% (v/v) ethanol ad libitum (free choice for water or ethanol) drinking < 1.9 g/kg/day; UChB rats fed with 10% (v/v) ethanol ad libitum (free choice for water or ethanol) drinking from 2 to 5 g/kg/day; control rats without ethanol (only water). After 120 days of treatment, rats displaying estrus were euthanized. Uterine epithelial cells of the UCh rats showed dilated cisterns of the rough endoplasmic reticulum, presence of lipid droplets, altered nuclear chromatin, and disrupted mitochondria. The UCh rats exhibited intense atrophied epithelial cells with smaller areas and perimeters of cytoplasm and nuclei. The endometrium of UChA rats showed higher levels of caspase-3 while Xiap and Bcl2 varied from moderate to weak. Both UChA and UChB rats exhibited a stronger immunoreaction to Ki-67 and IGFR-1 on epithelial and stromal cells. Chronic ethanol intake leads to structural and molecular alterations in the uterine endometrium of UCh rats, regardless of low- or high-dose consumption, promoting reproductive disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Regulation of ODC activity in the thymus and liver of rats by adrenal hormones.

    PubMed

    Zahner, S L; Prahlad, K V; Mitchell, J L

    1986-01-01

    The activity of L-ornithine decarboxylase (EC 4.1.1.17, ODC) has become a useful indicator of hormone responsiveness. Various regimens of dexamethasone, aldosterone and epinephrine, alone or in combination, were administered to adrenalectomized rats either in acute or chronic doses. In addition, adrenalectomized rats, which were chronically treated with aldosterone and epinephrine, were given a single injection of 50 micrograms dexamethasone and sacrificed at various time intervals after hormone treatment. Hepatic and thymic ODC activity was measured. The expected dexamethasone effect, an increase in hepatic and a decrease in thymic ODC, was observed. This study also revealed that aldosterone induced similar responses in these tissues. Epinephrine had the opposite effect since chronic administration of dexamethasone or aldosterone with epinephrine resulted in control levels of ODC. Furthermore, when aldosterone and epinephrine were chronically administered to adrenalectomized rats, to study the acute effects of dexamethasone on rat thymus and liver, the time course of the response in each tissue was found to be distinct. The influence of the adrenal gland on rat thymus and liver is not restricted only to glucocorticoids, but may also involve other hormones which it secretes.

  7. Effect of the Combination of Ezetimibe and Simvastatin on Gluconeogenesis and Oxygen Consumption in the Rat Liver.

    PubMed

    Bracht, Lívia; Caparroz-Assef, Silvana Martins; Bracht, Adelar; Bersani-Amado, Ciomar Aparecida

    2016-06-01

    The aim of this work was to investigate the effects of chronic treatment with the combination of ezetimibe and simvastatin on gluconeogenesis in rat liver. Rats were treated daily for 28 days with the combination of ezetimibe and simvastatin (10/40 mg/kg) by oral gavage. To measure gluconeogenesis and the associated pathways, isolated perfused rat liver was used. In addition, subcellular fractions, such as microsomes and mitochondria, were used for complementary measures of enzymatic activities. Treatment with the combination of simvastatin and ezetimibe resulted in a decrease in gluconeogenesis from pyruvate (-62%). Basal oxygen consumption of the treated animals was higher (+22%) than that of the control rats, but the resulting oxygen consumption that occurred after pyruvate infusion was 43% lower in animals treated with the combination of simvastatin and ezetimibe. Oxygen consumption in the livers from treated animals was completely inhibited by cyanide (electron transport chain inhibitor), but not by proadifen (cytochrome P450 inhibitor). Chronic treatment with ezetimibe/simvastatin decreased the activity of the key enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase by 59% and 45%, respectively, which is probably the major reason for the decreased gluconeogenesis seen in ezetimibe-/simvastatin-treated rats. It is also possible that part of the effect of this combination on gluconeogenesis and on the oxygen consumption is related to the impairment of mitochondrial energy transduction. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  8. Effect of modified alkaline supplementation on bone metabolic turnover in rats.

    PubMed

    Chui, D H; Marotta, F; Liu, T; Minelli, E; Yadav, H; Signorelli, P; Lorenzetti, A; Jain, S

    2008-01-01

    This study aims to determine the effects of a high protein diet and alkaline supplementation on bone metabolic turnover in rats. Eight-week-old male Sprague-Dawley rats were investigated by bone status, including bone mineral density (BMD) and biomechanical markers from blood and urine. Thirty rats were randomly divided into three groups and treated for 8 weeks as follows: baseline control group (n. 10, C), high-protein supplemented diet group (n. 10, chronic acidosis, CA group) and supplemented chronic acidosis (n.10, SCA). Diet-treated rats were fed an acidic high-protein diet and the supplementation consisted in a modified alkaline formula (Basenpulver, NaMed, Italy). At the end of the experimental period, the rats were sacrificed, blood samples were drawn and femur and tibia were removed for analysis of bone mineral density (BMD) by dual energy X-ray absorptiometry (DEXA). In the CA group, 24-hour urinary calcium (Ca) and phosphorus (P) excretion were increased 2.1-fold (p<0.05 vs normal diet controls) as well as kidney weight. However, serum Ca and P concentration, as well as urinary Dpd excretion were not significantly changed. Femural and tibial BMD was significantly decreased in the CA group (p<0.05), but alkaline supplementation prevented such phenomenon (p<0.05 vs CA). These results suggest that blood Ca and P concentrations in chronic acidosis condition during the 12-week supplementation might be maintained by hypercalciuria and hyperphosphaturia at the expenses of bone structure. However, modified alkaline supplementation is able to prevent such derangements.

  9. Vaccine Therapy Plus Immune Adjuvant in Treating Patients With Chronic Myeloid Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-04

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  10. Chronic oral treatment with 13-cis-retinoic acid (isotretinoin) or all-trans-retinoic acid does not alter depression-like behaviors in rats.

    PubMed

    Ferguson, Sherry A; Cisneros, F Javier; Gough, B; Hanig, Joseph P; Berry, Kimberly J

    2005-10-01

    Oral treatment with the anti-acne drug Accutane (isotretinoin, 13-cis-retinoic acid) has been associated with suicide ideation and depression. Here, depression-like behaviors (i.e., behavioral despair and anhedonia) were quantified in adult Sprague-Dawley rats gavaged daily beginning at postnatal day (PND) 82 with 13-cis-RA (7.5 or 22.5 mg/kg) or all-trans-retinoic acid (10 or 15 mg/kg ). Tested at PND 130-131 in the Forced Swim Test, 7.5 mg/kg 13-cis-RA marginally decreased immobility and slightly increased climb/struggle durations whereas neither all-trans-retinoic acid group differed from controls. Voluntary saccharin solution (0.03%) intake at PND 102-104 and PND 151-153 was not different from controls in any treated group, although all RA-treated groups had lower intakes. Swim speed in a water maze at PND 180 was similar across groups, indicating no RA-induced differences in physical ability. Open field activity was mildly decreased at PND 91 in 7.5 mg/kg-treated males only, but it was within the control range at PND 119, 147, and 175. Thus, at serum levels similar to those in humans receiving the drug, chronic 13-cis-RA treatment did not severely affect depression-like behaviors in rats. These data do not substantiate the hypothesis of 13-cis-RA-induced depression.

  11. [Open-field behavioral study in rat hyperlipidemia combined with chronic unpredictable mild stress model].

    PubMed

    Hu, Hua; Zhang, Yingchun; Xu, Yeqing; Liu, Chunfeng; Wang, Liwei

    2015-06-16

    To investigate behavioral changes in a rat hyperlipidemia model induced by high lipid feed combined with depression by Chronic Unpredictable Mild Stress (CUMS). A total of 40 rats were randomly divided into control (CON), control feed for 9 weeks followed by CUMS for 4 weeks (CON + CUMS), high fat diet (HFD) and high lipid feed for 9 weeks followed by CUMS for 4 weeks (HFD + CUMS) (n = 10 each). Open-field test was individually measured at baseline, week 9 and week 13. (1) Serum lipids: total cholesterol [(2.67 ± 0.04) mmol/L, (2.68 ± 0.02) mmol/L] and low density lipoprotein [(1.08 ± 0.03) mmol/L, (1.06 ± 0.01) mmol/L] of HFD and HFD + CUMS were both significantly higher than those of CON and CON + CUMS [(1.78 ± 0.12) mmol/L, (0.79 ± 0.04) mmol/L; (1.76 ± 0.09) mmol/L, (0.76 ± 0.06) mmol/L, all P < 0.01]. (2) Open-field test: at week 13, compared to CON rats, CON + CUMS rats exhibited enhanced locomotor activity during the first minute, reduced activity in the center squares and rearing, and increased the number of grooming and defecation (all P < 0.05). In comparison to the CON rats, a decrease in total squares in 5 min, central squares and peripheral squares was observed in HFD rats at week 13 (all P < 0.05). However, compared with HFD, CON, CON + CUMS rats, when high lipid feed for 9 weeks combined with depression, significant decrease activities in total squares in 5 min, central squares and peripheral squares were observed in HFD + CUMS rats at week 13. Besides these, the number of rearing was reduced, however, locomotor activity during the first minute and the number of grooming and defecation was significantly increased (all P < 0.001). Under uncontrolled hyperlipidemia, severe depressive symptoms will present more early once exposure to a series of chronic stressors followed by significant autonomic nervous dysfunctional symptoms.

  12. EXPERIMENTAL INDUCTION OF CHRONIC PULMONARY DISEASE IN GENETICALLY SUSCEPTIBLE RAT MODEL

    EPA Science Inventory



    Experimental induction of chronic pulmonary disease in genetically susceptible rat model. M.C.Schladweiler, BS 1, A.D.Ledbetter 1, K.E.Pinkerton, PhD 2, K.R.Smith, PhD 2, P.S.Gilmour, PhD 1, P.A.Evansky 1, D.L.Costa, ScD 1, W.P.Watkinson, PhD 1, J.P.Nolan 1 and U.P.Kodava...

  13. Neuropathological Responses to Chronic NMDA in Rats Are Worsened by Dietary n-3 PUFA Deprivation but Are Not Ameliorated by Fish Oil Supplementation

    PubMed Central

    Kim, Hyung-Wook; Taha, Ameer Y.; Cheon, Yewon; Igarashi, Miki; Rapoport, Stanley I.; Rao, Jagadeesh S.

    2014-01-01

    Background Dietary long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation may be beneficial for chronic brain illnesses, but the issue is not agreed on. We examined effects of dietary n-3 PUFA deprivation or supplementation, compared with an n-3 PUFA adequate diet (containing alpha-linolenic acid [18:3 n-3] but not docosahexaenoic acid [DHA, 22:6n-3]), on brain markers of lipid metabolism and excitotoxicity, in rats treated chronically with NMDA or saline. Methods Male rats after weaning were maintained on one of three diets for 15 weeks. After 12 weeks, each diet group was injected i.p. daily with saline (1 ml/kg) or a subconvulsive dose of NMDA (25 mg/kg) for 3 additional weeks. Then, brain fatty acid concentrations and various markers of excitotoxicity and fatty acid metabolism were measured. Results Compared to the diet-adequate group, brain DHA concentration was reduced, while n-6 docosapentaenoic acid (DPA, 22:5n-6) concentration was increased in the n-3 deficient group; arachidonic acid (AA, 20:4n-6) concentration was unchanged. These concentrations were unaffected by fish oil supplementation. Chronic NMDA increased brain cPLA2 activity in each of the three groups, but n-3 PUFA deprivation or fish oil did not change cPLA2 activity or protein compared with the adequate group. sPLA2 expression was unchanged in the three conditions, whereas iPLA2 expression was reduced by deprivation but not changed by supplementation. BDNF protein was reduced by NMDA in N-3 PUFA deficient rats, but protein levels of IL-1β, NGF, and GFAP did not differ between groups. Conclusions N-3 PUFA deprivation significantly worsened several pathological NMDA-induced changes produced in diet adequate rats, whereas n-3 PUFA supplementation did not affect NMDA induced changes. Supplementation may not be critical for this measured neuropathology once the diet has an adequate n-3 PUFA content. PMID:24798187

  14. The effects of chronic administration of pyrimethamine on spermatogenesis and fertility in male rats.

    PubMed

    Awoniyi, C A; Chandrashekar, V; Hurst, B S; Kim, W K; Schlaff, W D

    1993-01-01

    The present study examines whether the antifertility effects of pyrimethamine (PYR), an inhibitor of dihydrofolate reductase, are mediated by a reduction in intratesticular testosterone (T) concentrations or whether PYR exerts its effect by a cytotoxic insult to spermatogenic cells that is independent of intratesticular testosterone. Adult male rats were treated daily with 100 mg/kg (n = 16) or 400 mg/kg (n = 16) of PYR in honey for 8 weeks. Control rats (n = 16) received honey without PYR. Eight weeks after treatment, five rats from each PYR-treated group and five control rats were mated with normal cycling female rats, and fertility was assessed. These rats were euthanized after the fertility trial; testis weight, testicular sperm, and epididymal sperm counts were determined, and serum levels of T, LH, FSH, and seminiferous tubule fluid T (STF-T) concentrations were measured by RIA. Testes from three rats per group were perfusion-fixed for histological evaluation. PYR was discontinued in the remaining rats for 8 weeks and similar parameters were evaluated after 8 weeks of recovery. PYR (100 mg/kg/day) treatment for 8 weeks did not have any effects on organ weights, testicular and epididymal sperm counts, and hormone levels when compared to controls. In contrast, PYR (400 mg/kg/day) treatment significantly reduced testis and epididymis weights, testicular and epididymal sperm counts, and fertility. Despite these effects, serum T, LH, FSH, and STF-T concentrations were not altered.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Psychomotor vigilance task performance during and following chronic sleep restriction in rats.

    PubMed

    Deurveilher, Samuel; Bush, Jacquelyn E; Rusak, Benjamin; Eskes, Gail A; Semba, Kazue

    2015-04-01

    Chronic sleep restriction (CSR) impairs sustained attention in humans, as commonly assessed with the psychomotor vigilance task (PVT). To further investigate the mechanisms underlying performance deficits during CSR, we examined the effect of CSR on performance on a rat version of PVT (rPVT). Adult male rats were trained on a rPVT that required them to press a bar when they detected irregularly presented, brief light stimuli, and were then tested during CSR. CSR consisted of 100 or 148 h of continuous cycles of 3-h sleep deprivation (using slowly rotating wheels) alternating with a 1-h sleep opportunity (3/1 protocol). After 28 h of CSR, the latency of correct responses and the percentages of lapses and omissions increased, whereas the percentage of correct responses decreased. Over 52-148 h of CSR, all performance measures showed partial or nearly complete recovery, and were at baseline levels on the first or second day after CSR. There were large interindividual differences in the magnitude of performance impairment during CSR, suggesting differential vulnerability to the effects of sleep loss. Wheel-running controls showed no changes in performance. A 28-h period of the 3/1 chronic sleep restriction (CSR) protocol disrupted performance on a sustained attention task in rats, as sleep deprivation does in humans. Performance improved after longer periods of CSR, suggesting allostatic adaptation, contrary to some reports of progressive deterioration in psychomotor vigilance task performance during CSR in humans. However, as observed in humans, there were individual differences among rats in the vulnerability of their attention performance to CSR. © 2015 Associated Professional Sleep Societies, LLC.

  16. Zhen-wu-tang ameliorates adenine-induced chronic renal failure in rats: regulation of the canonical Wnt4/beta-catenin signaling in the kidneys.

    PubMed

    La, Lei; Wang, Lili; Qin, Fei; Jiang, Jian; He, Songqi; Wang, Chunxia; Li, Yuhao

    2018-06-12

    Zhen-wu-tang (ZWT), composed of Radix Aconiti lateralis, Rhizoma Atractylodis macrocephalae, Poria, Radix Paeoniae alba and ginger, is a classic Chinese herbal formula for the treatment of chronic kidney diseases that may cause chronic renal failure (CRF). To better understand its clinical use, this study investigated the effects and underlying mechanisms of action of ZWT on CRF. CRF was induced by adenine. ZWT was given via an oral gavage method. The serum biochemical parameters were measured enzymatically or by ELISA. The kidneys were examined pathohistologically. The gene expression was analyzed by real time PCR and Western blot. Similar to the positive control losartan, ZWT extract inhibited adenine-induced increase in serum concentrations of creatinine, BUN and advanced oxidation protein products in rats. These effects were accompanied by attenuation of proteinuria and renal pathological changes and suppression of renal mRNA and protein overexpression of Collagen IV and fibronectin, two of the key components of fibrosis. Mechanistically, renal mRNA and protein expression of Wnt4, a Wnt signaling ligand, was increased in the adenine-treated group, compared to the vehicle-treated control. Consistently, Wnt4 downstream genes beta-catenin and Axin were also overexpressed. Treatment with ZWT extract and losartan suppressed adenine-stimulated overexpression of these mRNAs and proteins. The present results demonstrate that ZWT extract ameliorates adenine-induced CRF in rats by regulation of the canonical Wnt4/beta-catenin signaling in the kidneys. Our findings provide new insight into the underlying renoprotective mechanisms of the ancient formula. Copyright © 2017. Published by Elsevier B.V.

  17. Exposure to chronic alcohol accelerates development of wall stress and eccentric remodeling in rats with volume overload.

    PubMed

    Mouton, Alan J; Ninh, Van K; El Hajj, Elia C; El Hajj, Milad C; Gilpin, Nicholas W; Gardner, Jason D

    2016-08-01

    Chronic alcohol abuse is one of the leading causes of dilated cardiomyopathy (DCM) in the United States. Volume overload (VO) also produces DCM characterized by left ventricular (LV) dilatation and reduced systolic and diastolic function, eventually progressing to congestive heart failure. For this study, we hypothesized that chronic alcohol exposure would exacerbate cardiac dysfunction and remodeling due to VO. Aortocaval fistula surgery was used to induce VO, and compensatory cardiac remodeling was allowed to progress for either 3days (acute) or 8weeks (chronic). Alcohol was administered via chronic intermittent ethanol vapor (EtOH) for 2weeks before the acute study and for the duration of the 8week chronic study. Temporal alterations in LV function were assessed by echocardiography. At the 8week end point, pressure-volume loop analysis was performed by LV catheterization and cardiac tissue collected. EtOH did not exacerbate LV dilatation (end-systolic and diastolic diameter) or systolic dysfunction (fractional shortening, ejection fraction) due to VO. The combined stress of EtOH and VO decreased the eccentric index (posterior wall thickness to end-diastolic diameter ratio), increased end-diastolic pressure (EDP), and elevated diastolic wall stress. VO also led to increases in posterior wall thickness, which was not observed in the VO+EtOH group, and wall thickness significantly correlated with LV BNP expression. VO alone led to increases in interstitial collagen staining (picrosirius red), which while not statistically significant, tended to be decreased by EtOH. VO increased LV collagen I protein expression, whereas in rats with VO+EtOH, LV collagen I was not elevated relative to Sham. The combination of VO and EtOH also led to increases in LV collagen III expression relative to Sham. Rats with VO+EtOH had significantly lower collagen I/III ratio than rats with VO alone. During the acute remodeling phase of VO (3days), VO significantly increased collagen III

  18. Toxicity profiles in rats treated with tumorigenic and nontumorigenic triazole conazole fungicides: Propiconazole, triadimefon, and myclobutanil.

    PubMed

    Wolf, Douglas C; Allen, James W; George, Michael H; Hester, Susan D; Sun, Guobin; Moore, Tanya; Thai, Sheau-Fung; Delker, Don; Winkfield, Ernest; Leavitt, Sharon; Nelson, Gail; Roop, Barbara C; Jones, Carlton; Thibodeaux, Julie; Nesnow, Stephen

    2006-01-01

    Conazoles are a class of azole based fungicides used in agriculture and as pharmaceutical products. They have a common mode of antifungal action through inhibition of ergosterol biosynthesis. Some members of this class have been shown to be hepatotoxic and will induce mouse hepatocellular tumors and/or rat thyroid follicular cell tumors. The particular mode of toxic and tumorigenic action for these compounds is not known, however it has been proposed that triadimefon-induced rat thyroid tumors arise through the specific mechanism of increased TSH. The present study was designed to identify commonalities of effects across the different conazoles and to determine unique features of the tissue responses that suggest a toxicity pathway and a mode of action for the observed thyroid response for triadimefon. Male Wistar/Han rats were treated with triadimefon (100, 500, 1800 ppm), propiconazole (100, 500, 2500 ppm), or myclobutanil (100, 500, 2000 ppm) in feed for 4, 30, or 90 days. The rats were evaluated for clinical signs, body and liver weight, histopathology of thyroid and liver, hepatic metabolizing enzyme activity, and serum T3, T4, TSH, and cholesterol levels. There was a dose-dependent increase in liver weight but not body weight for all treatments. The indication of cytochrome induction, pentoxyresorufin O-dealkylation (PROD) activity, had a dose-related increase at all time points for all conazoles. Uridine diphopho-glucuronosyl transferase (UDPGT), the T4 metabolizing enzyme measured as glucuronidation of 1-naphthol, was induced to the same extent after 30 and 90 days for all three conazoles. Livers from all high dose treated rats had centrilobular hepatocyte hypertrophy after 4 days, while only triadimefon and propiconazole treated rats had hepatocyte hypertrophy after 30 days, and only triadimefon treated rats had hepatocyte hypertrophy after 90 days. Thyroid follicular cell hypertrophy, increased follicular cell proliferation, and colloid depletion were

  19. Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN2 surface expression in the hippocampal CA1 area in rats.

    PubMed

    Luo, Pan; Zhang, Xiaoxue; Lu, Yun; Chen, Cheng; Li, Changjun; Zhou, Mei; Lu, Qing; Xu, Xulin; Shen, Guanxin; Guo, Lianjun

    2016-01-01

    Chronic cerebral hypoperfusion (CCH) causes cognitive impairments and increases the risk of Alzheimer's disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the underlying neurobiological mechanisms are still poorly understood. In this study, we investigated whether fluoxetine, a selective serotonin reuptake inhibitor (SSRI), could play a neuroprotective role against chronic cerebral hypoperfusion injury and to clarify underlying mechanisms of its efficacy. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg/kg fluoxetine (intragastric injection, i.g.) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recognition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Western blotting was used to quantify the protein levels. Our results showed that fluoxetine treatment significantly improved the cognitive impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, 2VO caused an up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) surface expressions in the hippocampal CA1 area and fluoxetine also effectively recovered the disorder of HCN2 surface expressions, which may be a possible mechanism that fluoxetine treatment ameliorates cognitive impairments in rats with CCH. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Supplementation of Citrus maxima Peel Powder Prevented Oxidative Stress, Fibrosis, and Hepatic Damage in Carbon Tetrachloride (CCl4) Treated Rats

    PubMed Central

    Chowdhury, Mohammed Riaz Hasan; Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah

    2015-01-01

    Citrus maxima peel is rich in natural phenolic compounds and has a long use in the traditional medicine. HPLC-DAD analysis on Citrus maxima peel powder exhibited the presence of various phenolic compounds such as caffeic acid and (−)-epicatechin. To determine the plausible hepatoprotective activity of Citrus maxima peel powder, we used carbon tetrachloride (CCl4) treated rat model. Liver damage in rats was confirmed by measuring the AST, ALT, and ALP enzyme activities. In addition, lipid peroxidation products (MDA), nitric oxide, advanced protein oxidation products level (APOP), and catalase activities were also analyzed along with the histological profiling for the inflammatory cell infiltration, collagen, and iron deposition in liver. Dietary supplementation of Citrus maxima peel powder exhibited significant reduction of serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. Moreover, Citrus maxima peel powder also showed a significant reduction of the oxidative stress markers (MDA, NO, and APOP level) and restored the catalase activity in CCl4 treated rats. Histological examination of the liver section revealed reduced inflammatory cells infiltration, collagen, and iron deposition in CCl4 treated rats. The results from this study demonstrated that Citrus maxima peel powder produced significant hepatoprotective action in CCl4 administered rats. PMID:26106435