Plane-Based Sampling for Ray Casting Algorithm in Sequential Medical Images
Lin, Lili; Chen, Shengyong; Shao, Yan; Gu, Zichun
2013-01-01
This paper proposes a plane-based sampling method to improve the traditional Ray Casting Algorithm (RCA) for the fast reconstruction of a three-dimensional biomedical model from sequential images. In the novel method, the optical properties of all sampling points depend on the intersection points when a ray travels through an equidistant parallel plan cluster of the volume dataset. The results show that the method improves the rendering speed at over three times compared with the conventional algorithm and the image quality is well guaranteed. PMID:23424608
GPU-accelerated depth map generation for X-ray simulations of complex CAD geometries
NASA Astrophysics Data System (ADS)
Grandin, Robert J.; Young, Gavin; Holland, Stephen D.; Krishnamurthy, Adarsh
2018-04-01
Interactive x-ray simulations of complex computer-aided design (CAD) models can provide valuable insights for better interpretation of the defect signatures such as porosity from x-ray CT images. Generating the depth map along a particular direction for the given CAD geometry is the most compute-intensive step in x-ray simulations. We have developed a GPU-accelerated method for real-time generation of depth maps of complex CAD geometries. We preprocess complex components designed using commercial CAD systems using a custom CAD module and convert them into a fine user-defined surface tessellation. Our CAD module can be used by different simulators as well as handle complex geometries, including those that arise from complex castings and composite structures. We then make use of a parallel algorithm that runs on a graphics processing unit (GPU) to convert the finely-tessellated CAD model to a voxelized representation. The voxelized representation can enable heterogeneous modeling of the volume enclosed by the CAD model by assigning heterogeneous material properties in specific regions. The depth maps are generated from this voxelized representation with the help of a GPU-accelerated ray-casting algorithm. The GPU-accelerated ray-casting method enables interactive (> 60 frames-per-second) generation of the depth maps of complex CAD geometries. This enables arbitrarily rotation and slicing of the CAD model, leading to better interpretation of the x-ray images by the user. In addition, the depth maps can be used to aid directly in CT reconstruction algorithms.
Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu
1995-01-01
As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.
Volumetric visualization algorithm development for an FPGA-based custom computing machine
NASA Astrophysics Data System (ADS)
Sallinen, Sami J.; Alakuijala, Jyrki; Helminen, Hannu; Laitinen, Joakim
1998-05-01
Rendering volumetric medical images is a burdensome computational task for contemporary computers due to the large size of the data sets. Custom designed reconfigurable hardware could considerably speed up volume visualization if an algorithm suitable for the platform is used. We present an algorithm and speedup techniques for visualizing volumetric medical CT and MR images with a custom-computing machine based on a Field Programmable Gate Array (FPGA). We also present simulated performance results of the proposed algorithm calculated with a software implementation running on a desktop PC. Our algorithm is capable of generating perspective projection renderings of single and multiple isosurfaces with transparency, simulated X-ray images, and Maximum Intensity Projections (MIP). Although more speedup techniques exist for parallel projection than for perspective projection, we have constrained ourselves to perspective viewing, because of its importance in the field of radiotherapy. The algorithm we have developed is based on ray casting, and the rendering is sped up by three different methods: shading speedup by gradient precalculation, a new generalized version of Ray-Acceleration by Distance Coding (RADC), and background ray elimination by speculative ray selection.
Interactive high-resolution isosurface ray casting on multicore processors.
Wang, Qin; JaJa, Joseph
2008-01-01
We present a new method for the interactive rendering of isosurfaces using ray casting on multi-core processors. This method consists of a combination of an object-order traversal that coarsely identifies possible candidate 3D data blocks for each small set of contiguous pixels, and an isosurface ray casting strategy tailored for the resulting limited-size lists of candidate 3D data blocks. While static screen partitioning is widely used in the literature, our scheme performs dynamic allocation of groups of ray casting tasks to ensure almost equal loads among the different threads running on multi-cores while maintaining spatial locality. We also make careful use of memory management environment commonly present in multi-core processors. We test our system on a two-processor Clovertown platform, each consisting of a Quad-Core 1.86-GHz Intel Xeon Processor, for a number of widely different benchmarks. The detailed experimental results show that our system is efficient and scalable, and achieves high cache performance and excellent load balancing, resulting in an overall performance that is superior to any of the previous algorithms. In fact, we achieve an interactive isosurface rendering on a 1024(2) screen for all the datasets tested up to the maximum size of the main memory of our platform.
Hans, P; Grant, A J; Laitt, R D; Ramsden, R T; Kassner, A; Jackson, A
1999-08-01
Cochlear implantation requires introduction of a stimulating electrode array into the scala vestibuli or scala tympani. Although these structures can be separately identified on many high-resolution scans, it is often difficult to ascertain whether these channels are patent throughout their length. The aim of this study was to determine whether an optimized combination of an imaging protocol and a visualization technique allows routine 3D rendering of the scala vestibuli and scala tympani. A submillimeter T2 fast spin-echo imaging sequence was designed to optimize the performance of 3D visualization methods. The spatial resolution was determined experimentally using primary images and 3D surface and volume renderings from eight healthy subjects. These data were used to develop the imaging sequence and to compare the quality and signal-to-noise dependency of four data visualization algorithms: maximum intensity projection, ray casting with transparent voxels, ray casting with opaque voxels, and isosurface rendering. The ability of these methods to produce 3D renderings of the scala tympani and scala vestibuli was also examined. The imaging technique was used in five patients with sensorineural deafness. Visualization techniques produced optimal results in combination with an isotropic volume imaging sequence. Clinicians preferred the isosurface-rendered images to other 3D visualizations. Both isosurface and ray casting displayed the scala vestibuli and scala tympani throughout their length. Abnormalities were shown in three patients, and in one of these, a focal occlusion of the scala tympani was confirmed at surgery. Three-dimensional images of the scala vestibuli and scala tympani can be routinely produced. The combination of an MR sequence optimized for use with isosurface rendering or ray-casting algorithms can produce 3D images with greater spatial resolution and anatomic detail than has been possible previously.
Industrial applications of automated X-ray inspection
NASA Astrophysics Data System (ADS)
Shashishekhar, N.
2015-03-01
Many industries require that 100% of manufactured parts be X-ray inspected. Factors such as high production rates, focus on inspection quality, operator fatigue and inspection cost reduction translate to an increasing need for automating the inspection process. Automated X-ray inspection involves the use of image processing algorithms and computer software for analysis and interpretation of X-ray images. This paper presents industrial applications and illustrative case studies of automated X-ray inspection in areas such as automotive castings, fuel plates, air-bag inflators and tires. It is usually necessary to employ application-specific automated inspection strategies and techniques, since each application has unique characteristics and interpretation requirements.
Ray Casting of Large Multi-Resolution Volume Datasets
NASA Astrophysics Data System (ADS)
Lux, C.; Fröhlich, B.
2009-04-01
High quality volume visualization through ray casting on graphics processing units (GPU) has become an important approach for many application domains. We present a GPU-based, multi-resolution ray casting technique for the interactive visualization of massive volume data sets commonly found in the oil and gas industry. Large volume data sets are represented as a multi-resolution hierarchy based on an octree data structure. The original volume data is decomposed into small bricks of a fixed size acting as the leaf nodes of the octree. These nodes are the highest resolution of the volume. Coarser resolutions are represented through inner nodes of the hierarchy which are generated by down sampling eight neighboring nodes on a finer level. Due to limited memory resources of current desktop workstations and graphics hardware only a limited working set of bricks can be locally maintained for a frame to be displayed. This working set is chosen to represent the whole volume at different local resolution levels depending on the current viewer position, transfer function and distinct areas of interest. During runtime the working set of bricks is maintained in CPU- and GPU memory and is adaptively updated by asynchronously fetching data from external sources like hard drives or a network. The CPU memory hereby acts as a secondary level cache for these sources from which the GPU representation is updated. Our volume ray casting algorithm is based on a 3D texture-atlas in GPU memory. This texture-atlas contains the complete working set of bricks of the current multi-resolution representation of the volume. This enables the volume ray casting algorithm to access the whole working set of bricks through only a single 3D texture. For traversing rays through the volume, information about the locations and resolution levels of visited bricks are required for correct compositing computations. We encode this information into a small 3D index texture which represents the current octree subdivision on its finest level and spatially organizes the bricked data. This approach allows us to render a bricked multi-resolution volume data set utilizing only a single rendering pass with no loss of compositing precision. In contrast most state-of-the art volume rendering systems handle the bricked data as individual 3D textures, which are rendered one at a time while the results are composited into a lower precision frame buffer. Furthermore, our method enables us to integrate advanced volume rendering techniques like empty-space skipping, adaptive sampling and preintegrated transfer functions in a very straightforward manner with virtually no extra costs. Our interactive volume ray tracing implementation allows high quality visualizations of massive volume data sets of tens of Gigabytes in size on standard desktop workstations.
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
A Thermo-Optic Propagation Modeling Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrader, Karl; Akau, Ron
2014-10-01
A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developedmore » for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.« less
Pose estimation of teeth through crown-shape matching
NASA Astrophysics Data System (ADS)
Mok, Vevin; Ong, Sim Heng; Foong, Kelvin W. C.; Kondo, Toshiaki
2002-05-01
This paper presents a technique for determining a tooth's pose given a dental plaster cast and a set of generic tooth models. The ultimate goal of pose estimation is to obtain information about the sizes and positions of the roots, which lie hidden within the gums, without the use of X-rays, CT or MRI. In our approach, the tooth of interest is first extracted from the 3D dental cast image through segmentation. 2D views are then generated from the extracted tooth and are matched against a target view generated from the generic model with known pose. Additional views are generated in the vicinity of the best view and the entire process is repeated until convergence. Upon convergence, the generic tooth is superimposed onto the dental cast to show the position of the root. The results of applying the technique to canines demonstrate the excellent potential of the algorithm for generic tooth fitting.
A general and Robust Ray-Casting-Based Algorithm for Triangulating Surfaces at the Nanoscale
Decherchi, Sergio; Rocchia, Walter
2013-01-01
We present a general, robust, and efficient ray-casting-based approach to triangulating complex manifold surfaces arising in the nano-bioscience field. This feature is inserted in a more extended framework that: i) builds the molecular surface of nanometric systems according to several existing definitions, ii) can import external meshes, iii) performs accurate surface area estimation, iv) performs volume estimation, cavity detection, and conditional volume filling, and v) can color the points of a grid according to their locations with respect to the given surface. We implemented our methods in the publicly available NanoShaper software suite (www.electrostaticszone.eu). Robustness is achieved using the CGAL library and an ad hoc ray-casting technique. Our approach can deal with any manifold surface (including nonmolecular ones). Those explicitly treated here are the Connolly-Richards (SES), the Skin, and the Gaussian surfaces. Test results indicate that it is robust to rotation, scale, and atom displacement. This last aspect is evidenced by cavity detection of the highly symmetric structure of fullerene, which fails when attempted by MSMS and has problems in EDTSurf. In terms of timings, NanoShaper builds the Skin surface three times faster than the single threaded version in Lindow et al. on a 100,000 atoms protein and triangulates it at least ten times more rapidly than the Kruithof algorithm. NanoShaper was integrated with the DelPhi Poisson-Boltzmann equation solver. Its SES grid coloring outperformed the DelPhi counterpart. To test the viability of our method on large systems, we chose one of the biggest molecular structures in the Protein Data Bank, namely the 1VSZ entry, which corresponds to the human adenovirus (180,000 atoms after Hydrogen addition). We were able to triangulate the corresponding SES and Skin surfaces (6.2 and 7.0 million triangles, respectively, at a scale of 2 grids per Å) on a middle-range workstation. PMID:23577073
Ye, Hao; Luo, Heng; Ng, Hui Wen; Meehan, Joe; Ge, Weigong; Tong, Weida; Hong, Huixiao
2016-01-01
ToxCast data have been used to develop models for predicting in vivo toxicity. To predict the in vivo toxicity of a new chemical using a ToxCast data based model, its ToxCast bioactivity data are needed but not normally available. The capability of predicting ToxCast bioactivity data is necessary to fully utilize ToxCast data in the risk assessment of chemicals. We aimed to understand and elucidate the relationships between the chemicals and bioactivity data of the assays in ToxCast and to develop a network analysis based method for predicting ToxCast bioactivity data. We conducted modularity analysis on a quantitative network constructed from ToxCast data to explore the relationships between the assays and chemicals. We further developed Nebula (neighbor-edges based and unbiased leverage algorithm) for predicting ToxCast bioactivity data. Modularity analysis on the network constructed from ToxCast data yielded seven modules. Assays and chemicals in the seven modules were distinct. Leave-one-out cross-validation yielded a Q(2) of 0.5416, indicating ToxCast bioactivity data can be predicted by Nebula. Prediction domain analysis showed some types of ToxCast assay data could be more reliably predicted by Nebula than others. Network analysis is a promising approach to understand ToxCast data. Nebula is an effective algorithm for predicting ToxCast bioactivity data, helping fully utilize ToxCast data in the risk assessment of chemicals. Published by Elsevier Ltd.
Montanini, R; Freni, F; Rossi, G L
2012-09-01
This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phase image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.
Lymph node segmentation by dynamic programming and active contours.
Tan, Yongqiang; Lu, Lin; Bonde, Apurva; Wang, Deling; Qi, Jing; Schwartz, Lawrence H; Zhao, Binsheng
2018-03-03
Enlarged lymph nodes are indicators of cancer staging, and the change in their size is a reflection of treatment response. Automatic lymph node segmentation is challenging, as the boundary can be unclear and the surrounding structures complex. This work communicates a new three-dimensional algorithm for the segmentation of enlarged lymph nodes. The algorithm requires a user to draw a region of interest (ROI) enclosing the lymph node. Rays are cast from the center of the ROI, and the intersections of the rays and the boundary of the lymph node form a triangle mesh. The intersection points are determined by dynamic programming. The triangle mesh initializes an active contour which evolves to low-energy boundary. Three radiologists independently delineated the contours of 54 lesions from 48 patients. Dice coefficient was used to evaluate the algorithm's performance. The mean Dice coefficient between computer and the majority vote results was 83.2%. The mean Dice coefficients between the three radiologists' manual segmentations were 84.6%, 86.2%, and 88.3%. The performance of this segmentation algorithm suggests its potential clinical value for quantifying enlarged lymph nodes. © 2018 American Association of Physicists in Medicine.
Segmentation of Unstructured Datasets
NASA Technical Reports Server (NTRS)
Bhat, Smitha
1996-01-01
Datasets generated by computer simulations and experiments in Computational Fluid Dynamics tend to be extremely large and complex. It is difficult to visualize these datasets using standard techniques like Volume Rendering and Ray Casting. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This thesis explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and from Finite Element Analysis.
Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging
Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.
2010-01-01
Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341
Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.
2011-01-01
Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414
Outsourcing neural active control to passive composite mechanics: a tissue engineered cyborg ray
NASA Astrophysics Data System (ADS)
Gazzola, Mattia; Park, Sung Jin; Park, Kyung Soo; Park, Shirley; di Santo, Valentina; Deisseroth, Karl; Lauder, George V.; Mahadevan, L.; Parker, Kevin Kit
2016-11-01
Translating the blueprint that stingrays and skates provide, we create a cyborg swimming ray capable of orchestrating adaptive maneuvering and phototactic navigation. The impossibility of replicating the neural system of batoids fish is bypassed by outsourcing algorithmic functionalities to the body composite mechanics, hence casting the active control problem into a design, passive one. We present a first step in engineering multilevel "brain-body-flow" systems that couple sensory information to motor coordination and movement, leading to behavior. This work paves the way for the development of autonomous and adaptive artificial creatures able to process multiple sensory inputs and produce complex behaviors in distributed systems and may represent a path toward soft-robotic "embodied cognition".
Balaskó, M; Korösi, F; Szalay, Zs
2004-10-01
A semi-simultaneous application of neutron and X-ray radiography (NR, XR) respectively, was applied to an Al casting. The experiments were performed at the 10MW VVR-SM research reactor in Budapest (Hungary). The aim was to reveal, identify and parameterize the hidden defects in the Al casting. The joint application of NR and XR revealed hidden defects located in the Al casting. Image analysis of the NR and XR images unveiled a cone-like dimensionality of the defects. The spectral density analysis of the images showed a distinctly different character for the hidden defect region of Al casting in comparison with that of the defect-free one.
Flux-vector splitting algorithm for chain-rule conservation-law form
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Nguyen, H. L.; Willis, E. A.; Steinthorsson, E.; Li, Z.
1991-01-01
A flux-vector splitting algorithm with Newton-Raphson iteration was developed for the 'full compressible' Navier-Stokes equations cast in chain-rule conservation-law form. The algorithm is intended for problems with deforming spatial domains and for problems whose governing equations cannot be cast in strong conservation-law form. The usefulness of the algorithm for such problems was demonstrated by applying it to analyze the unsteady, two- and three-dimensional flows inside one combustion chamber of a Wankel engine under nonfiring conditions. Solutions were obtained to examine the algorithm in terms of conservation error, robustness, and ability to handle complex flows on time-dependent grid systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montanini, R.; Freni, F.; Rossi, G. L.
This paper reports one of the first experimental results on the application of ultrasound activated lock-in vibrothermography for quantitative assessment of buried flaws in complex cast parts. The use of amplitude modulated ultrasonic heat generation allowed selective response of defective areas within the part, as the defect itself is turned into a local thermal wave emitter. Quantitative evaluation of hidden damages was accomplished by estimating independently both the area and the depth extension of the buried flaws, while x-ray 3D computed tomography was used as reference for sizing accuracy assessment. To retrieve flaw's area, a simple yet effective histogram-based phasemore » image segmentation algorithm with automatic pixels classification has been developed. A clear correlation was found between the thermal (phase) signature measured by the infrared camera on the target surface and the actual mean cross-section area of the flaw. Due to the very fast cycle time (<30 s/part), the method could potentially be applied for 100% quality control of casting components.« less
NASA Astrophysics Data System (ADS)
Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.
2018-05-01
During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.
Application of TRIZ Theory in Patternless Casting Manufacturing Technique
NASA Astrophysics Data System (ADS)
Yang, Weidong; Gan, Dequan; Jiang, Ping; Tian, Yumei
The ultimate goal of Patternless Casting Manufacturing (referred to as PCM) is how to obtain the casts by casting the sand mold directly. In the previous PCM, the resin content of sand mold is much higher than that required by traditional resin sand, so the casts obtained are difficult to be sound and qualified products, which limits the application of this technique greatly. In this paper, the TRIZ algorithm is introduced to the innovation process in PCM systematically.
NASA Astrophysics Data System (ADS)
Moreno, Javier; Somolinos, Álvaro; Romero, Gustavo; González, Iván; Cátedra, Felipe
2017-08-01
A method for the rigorous computation of the electromagnetic scattering of large dielectric volumes is presented. One goal is to simplify the analysis of large dielectric targets with translational symmetries taken advantage of their Toeplitz symmetry. Then, the matrix-fill stage of the Method of Moments is efficiently obtained because the number of coupling terms to compute is reduced. The Multilevel Fast Multipole Method is applied to solve the problem. Structured meshes are obtained efficiently to approximate the dielectric volumes. The regular mesh grid is achieved by using parallelepipeds whose centres have been identified as internal to the target. The ray casting algorithm is used to classify the parallelepiped centres. It may become a bottleneck when too many points are evaluated in volumes defined by parametric surfaces, so a hierarchical algorithm is proposed to minimize the number of evaluations. Measurements and analytical results are included for validation purposes.
Computing the apparent centroid of radar targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.E.
1996-12-31
A high-frequency multibounce radar scattering code was used as a simulation platform for demonstrating an algorithm to compute the ARC of specific radar targets. To illustrate this simulation process, several targets models were used. Simulation results for a sphere model were used to determine the errors of approximation associated with the simulation; verifying the process. The severity of glint induced tracking errors was also illustrated using a model of an F-15 aircraft. It was shown, in a deterministic manner, that the ARC of a target can fall well outside its physical extent. Finally, the apparent radar centroid simulation based onmore » a ray casting procedure is well suited for use on most massively parallel computing platforms and could lead to the development of a near real-time radar tracking simulation for applications such as endgame fuzing, survivability, and vulnerability analyses using specific radar targets and fuze algorithms.« less
Hybrid Parallelism for Volume Rendering on Large-, Multi-, and Many-Core Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howison, Mark; Bethel, E. Wes; Childs, Hank
2012-01-01
With the computing industry trending towards multi- and many-core processors, we study how a standard visualization algorithm, ray-casting volume rendering, can benefit from a hybrid parallelism approach. Hybrid parallelism provides the best of both worlds: using distributed-memory parallelism across a large numbers of nodes increases available FLOPs and memory, while exploiting shared-memory parallelism among the cores within each node ensures that each node performs its portion of the larger calculation as efficiently as possible. We demonstrate results from weak and strong scaling studies, at levels of concurrency ranging up to 216,000, and with datasets as large as 12.2 trillion cells.more » The greatest benefit from hybrid parallelism lies in the communication portion of the algorithm, the dominant cost at higher levels of concurrency. We show that reducing the number of participants with a hybrid approach significantly improves performance.« less
Markov chain algorithms: a template for building future robust low-power systems
Deka, Biplab; Birklykke, Alex A.; Duwe, Henry; Mansinghka, Vikash K.; Kumar, Rakesh
2014-01-01
Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems. PMID:24842030
Patient-specific coronary territory maps
NASA Astrophysics Data System (ADS)
Beliveau, Pascale; Setser, Randolph; Cheriet, Farida; O'Donnell, Thomas
2007-03-01
It is standard practice for physicians to rely on empirical, population based models to define the relationship between regions of left ventricular (LV) myocardium and the coronary arteries which supply them with blood. Physicians use these models to infer the presence and location of disease within the coronary arteries based on the condition of the myocardium within their distribution (which can be established non-invasively using imaging techniques such as ultrasound or magnetic resonance imaging). However, coronary artery anatomy often varies from the assumed model distribution in the individual patient; thus, a non-invasive method to determine the correspondence between coronary artery anatomy and LV myocardium would have immediate clinical impact. This paper introduces an image-based rendering technique for visualizing maps of coronary distribution in a patient-specific approach. From an image volume derived from computed tomography (CT) images, a segmentation of the LV epicardial surface, as well as the paths of the coronary arteries, is obtained. These paths form seed points for a competitive region growing algorithm applied to the surface of the LV. A ray casting procedure in spherical coordinates from the center of the LV is then performed. The cast rays are mapped to a two-dimensional circular based surface forming our coronary distribution map. We applied our technique to a patient with known coronary artery disease and a qualitative evaluation by an expert in coronary cardiac anatomy showed promising results.
Hair casts due to a deodorant spray.
Ena, Pasquale; Mazzarello, Vittorio; Chiarolini, Fausto
2005-11-01
A 7-year-old girl presented with itching and greyish-white sleeve-like structures in her hair. After ruling out other possible causes for the symptoms, such as nits and dandruff, it was determined that the patient was affected by hair casts. These are small cylindrical structures resembling louse eggs that encircle individual scalp hairs and are easily movable along the hair shafts. It was concluded that she had induced the condition through misuse of a deodorant body spray. Scanning electron microscopy combined with electron dispersive X-ray analysis (X-ray microanalysis) of the hair casts showed the chemical nature of the structures. Some elements present in the composition of the ingredients of the deodorant spray, such as aluminium, chlorine, silicon, magnesium and carbon, were also present in this uncommon type of hair casts.
Grebner, Christoph; Becker, Johannes; Weber, Daniel; Bellinger, Daniel; Tafipolski, Maxim; Brückner, Charlotte; Engels, Bernd
2014-09-15
The presented program package, Conformational Analysis and Search Tool (CAST) allows the accurate treatment of large and flexible (macro) molecular systems. For the determination of thermally accessible minima CAST offers the newly developed TabuSearch algorithm, but algorithms such as Monte Carlo (MC), MC with minimization, and molecular dynamics are implemented as well. For the determination of reaction paths, CAST provides the PathOpt, the Nudge Elastic band, and the umbrella sampling approach. Access to free energies is possible through the free energy perturbation approach. Along with a number of standard force fields, a newly developed symmetry-adapted perturbation theory-based force field is included. Semiempirical computations are possible through DFTB+ and MOPAC interfaces. For calculations based on density functional theory, a Message Passing Interface (MPI) interface to the Graphics Processing Unit (GPU)-accelerated TeraChem program is available. The program is available on request. Copyright © 2014 Wiley Periodicals, Inc.
3D-printed coded apertures for x-ray backscatter radiography
NASA Astrophysics Data System (ADS)
Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David
2017-09-01
Many different mask patterns can be used for X-ray backscatter imaging using coded apertures, which can find application in the medical, industrial and security sectors. While some of these patterns may be considered to have a self-supporting structure, this is not the case for some of the most frequently used patterns such as uniformly redundant arrays or any pattern with a high open fraction. This makes mask construction difficult and usually requires a compromise in its design by drilling holes or adopting a no two holes touching version of the original pattern. In this study, this compromise was avoided by 3D printing a support structure that was then filled with a radiopaque material to create the completed mask. The coded masks were manufactured using two different methods, hot cast and cold cast. Hot casting involved casting a bismuth alloy at 80°C into the 3D printed acrylonitrile butadiene styrene mould which produced an absorber with density of 8.6 g cm-3. Cold casting was undertaken at room temperature, when a tungsten/epoxy composite was cast into a 3D printed polylactic acid mould. The cold cast procedure offered a greater density of around 9.6 to 10 g cm-3 and consequently greater X-ray attenuation. It was also found to be much easier to manufacture and more cost effective. A critical review of the manufacturing procedure is presented along with some typical images. In both cases the 3D printing process allowed square apertures to be created avoiding their approximation by circular holes when conventional drilling is used.
Microstructural analysis of aluminum high pressure die castings
NASA Astrophysics Data System (ADS)
David, Maria Diana
Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.
NASA Astrophysics Data System (ADS)
Gavarieva, K. N.; Simonova, L. A.; Pankratov, D. L.; Gavariev, R. V.
2017-09-01
In article the main component of expert system of process of casting under pressure which consists of algorithms, united in logical models is considered. The characteristics of system showing data on a condition of an object of management are described. A number of logically interconnected steps allowing to increase quality of the received castings is developed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Suh, T; Cho, W
Purpose: A potential validation tool for compensating patient positioning error was developed using 2D/3D and 3D/3D image registration. Methods: For 2D/3D registration, digitally reconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR. We adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-Knife system from the anterior-posterior (AP)more » and right lateral (RL) views. The 3D-CT and two orthogonal images of an anthropomorphic phantom and head and neck cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT image were applied. After registration, the translation and rotation factors were calculated to position a couch to be movable in six dimensions. Results: Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23° ± 0.40° for rotations were acquired by 2D/3D registration using an anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00° ± 0.2° for rotations were acquired using CT image sets. Conclusion: We demonstrated that this validation tool could compensate for patient positioning error. In addition, this research could be the fundamental step for compensating patient positioning error at the first Korea heavy-ion medical accelerator treatment center.« less
Structural and compositional analysis of a casting mold sherd from ancient China.
Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong
2017-01-01
Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting.
Influence of Ni Interlayer on Microstructure and Mechanical Properties of Mg/Al Bimetallic Castings
NASA Astrophysics Data System (ADS)
Liu, Ning; Liu, Canchun; Liang, Chunyong; Zhang, Yongguang
2018-05-01
Dissimilar joining of magnesium and aluminum using a compound casting process was investigated in the present work. For the first time, a Ni interlayer prepared by plasma spraying was inserted between the two base metals to improve the interfacial characteristics. Examination of the interfacial regions using scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and X-ray diffraction revealed the formation of a three-layered interface between Mg and Al without the interlayer. The thickness of the interface was approximately 600 μm when the casting was performed at 700 °C and increased with increasing casting temperature. However, with the addition of the Ni interlayer, the Al-Mg reaction was successfully prevented, and metallurgical bonding between the Ni interlayer and two base metals was achieved at a casting temperature of 700 °C. Upon increasing this temperature, Mg-Ni and Al-Ni intermetallics were generated at the separate interfaces. The shear strength of the Mg/Al bimetallic castings with the Ni interlayer was substantially improved compared with that of the direct Mg/Al joint, with a maximum value of 25.4 MPa achieved at 700 °C. Fracture occurred mainly along the Mg/Ni interface for the Mg/Ni/Al multilayer structure castings.
New CAST limit on the axion–photon interaction
Anastassopoulos, V.; Aune, S.; Barth, K.; ...
2017-05-01
Hypothetical low-mass particles, such as axions, provide a compelling explanation for the dark matter in the universe. Such particles are expected to emerge abundantly from the hot interior of stars. To test this prediction, the CERN Axion Solar Telescope (CAST) uses a 9 T refurbished Large Hadron Collider test magnet directed towards the Sun. In the strong magnetic field, solar axions can be converted to X-ray photons which can be recorded by X-ray detectors. In the 2013–2015 run, thanks to low-background detectors and a new X-ray telescope, the signal-to-noise ratio was increased by about a factor of three. Here, wemore » report the best limit on the axion–photon coupling strength (0.66 × 10 -10 GeV -1 at 95% confidence level) set by CAST, which now reaches similar levels to the most restrictive astrophysical bounds.« less
X-ray system simulation software tools for radiology and radiography education.
Kengyelics, Stephen M; Treadgold, Laura A; Davies, Andrew G
2018-02-01
To develop x-ray simulation software tools to support delivery of radiological science education for a range of learning environments and audiences including individual study, lectures, and tutorials. Two software tools were developed; one simulated x-ray production for a simple two dimensional radiographic system geometry comprising an x-ray source, beam filter, test object and detector. The other simulated the acquisition and display of two dimensional radiographic images of complex three dimensional objects using a ray casting algorithm through three dimensional mesh objects. Both tools were intended to be simple to use, produce results accurate enough to be useful for educational purposes, and have an acceptable simulation time on modest computer hardware. The radiographic factors and acquisition geometry could be altered in both tools via their graphical user interfaces. A comparison of radiographic contrast measurements of the simulators to a real system was performed. The contrast output of the simulators had excellent agreement with measured results. The software simulators were deployed to 120 computers on campus. The software tools developed are easy-to-use, clearly demonstrate important x-ray physics and imaging principles, are accessible within a standard University setting and could be used to enhance the teaching of x-ray physics to undergraduate students. Current approaches to teaching x-ray physics in radiological science lack immediacy when linking theory with practice. This method of delivery allows students to engage with the subject in an experiential learning environment. Copyright © 2017. Published by Elsevier Ltd.
Tzika, Faidra; Burda, Oleksiy; Hult, Mikael; Arnold, Dirk; Marroyo, Belén Caro; Dryák, Pavel; Fazio, Aldo; Ferreux, Laurent; García-Toraño, Eduardo; Javornik, Andrej; Klemola, Seppo; Luca, Aurelian; Moser, Hannah; Nečemer, Marijan; Peyrés, Virginia; Reis, Mario; Silva, Lidia; Šolc, Jaroslav; Svec, Anton; Tyminski, Zbigniew; Vodenik, Branko; Wätjen, Uwe
2016-08-01
Two series of activity standards of (60)Co in cast steel matrix, developed for the calibration of gamma-ray spectrometry systems in the metallurgical sector, were characterised using a European interlaboratory comparison among twelve National Metrology Institutes and one international organisation. The first standard, consisting of 14 disc shaped samples, was cast from steel contaminated during production ("originally"), and the second, consisting of 15 similar discs, from artificially-contaminated ("spiked") steel. The reference activity concentrations of (60)Co in the cast steel standards were (1.077±0.019) Bqg(-1) on 1 January 2013 12h00 UT and (1.483±0.022) Bqg(-1) on 1 June 2013 12h00 UT, respectively. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Single underwater image enhancement based on color cast removal and visibility restoration
NASA Astrophysics Data System (ADS)
Li, Chongyi; Guo, Jichang; Wang, Bo; Cong, Runmin; Zhang, Yan; Wang, Jian
2016-05-01
Images taken under underwater condition usually have color cast and serious loss of contrast and visibility. Degraded underwater images are inconvenient for observation and analysis. In order to address these problems, an underwater image-enhancement method is proposed. A simple yet effective underwater image color cast removal algorithm is first presented based on the optimization theory. Then, based on the minimum information loss principle and inherent relationship of medium transmission maps of three color channels in an underwater image, an effective visibility restoration algorithm is proposed to recover visibility, contrast, and natural appearance of degraded underwater images. To evaluate the performance of the proposed method, qualitative comparison, quantitative comparison, and color accuracy test are conducted. Experimental results demonstrate that the proposed method can effectively remove color cast, improve contrast and visibility, and recover natural appearance of degraded underwater images. Additionally, the proposed method is comparable to and even better than several state-of-the-art methods.
ScienceCast 32: 600 Mysteries in the Night Sky
2011-10-14
The Fermi Gamma-ray Space Telescope recently produced a map of the night sky. Out of 1873 new sources, nearly 600 were complete mysteries. In this week's ScienceCast, researchers speculate on the nature of the mystery objects.
ICAM Manufacturing Cost/Design Guide. Volume 3. Airframes. User’s Manual.
1983-01-01
COST-DRIVER EFFECT 17 -413H Investment Cast 17 - 4PH Investment Cast 2 2 - U) *oo 0±0.01 ±0.02 ±0.03 0±0.01 ±0.02 ±0.03 356iA356 Aluminum 356/A356...B +20% CAST B +50% 17 - 4PH CRES DORC BASE INVESTMENT D OR C WITH 10% B +20% CAST D OR C WITH 50% B +30% B +60% NOTE: X-Ray Grade A Is an Impractical...per QQ-A-601 (sand castings) - 357 per MIL-A-21180 (sand castings) a Steel - 17 - 4PH CRES per AMS-5342, 5343, and 5344 or * company equivalent
NASA Astrophysics Data System (ADS)
Gao, Zhiyun; Holtze, Colin; Sonka, Milan; Hoffman, Eric; Saha, Punam K.
2010-03-01
Distinguishing pulmonary arterial and venous (A/V) trees via in vivo imaging is a critical first step in the quantification of vascular geometry for purposes of determining, for instance, pulmonary hypertension, detection of pulmonary emboli and more. A multi-scale topo-morphologic opening algorithm has recently been introduced by us separating A/V trees in pulmonary multiple-detector X-ray computed tomography (MDCT) images without contrast. The method starts with two sets of seeds - one for each of A/V trees and combines fuzzy distance transform, fuzzy connectivity, and morphologic reconstruction leading to multi-scale opening of two mutually fused structures while preserving their continuity. The method locally determines the optimum morphological scale separating the two structures. Here, a validation study is reported examining accuracy of the method using mathematically generated phantoms with different levels of fuzziness, overlap, scale, resolution, noise, and geometric coupling and MDCT images of pulmonary vessel casting of pigs. After exsanguinating the animal, a vessel cast was generated using rapid-hardening methyl methacrylate compound with additional contrast by 10cc of Ethiodol in the arterial side which was scanned in a MDCT scanner at 0.5mm slice thickness and 0.47mm in plane resolution. True segmentations of A/V trees were computed from these images by thresholding. Subsequently, effects of distinguishing A/V contrasts were eliminated and resulting images were used for A/V separation by our method. Experimental results show that 92% - 98% accuracy is achieved using only one seed for each object in phantoms while 94.4% accuracy is achieved in MDCT cast images using ten seeds for each of A/V trees.
Structural and compositional analysis of a casting mold sherd from ancient China
Zong, Yunbing; Yao, Shengkun; Lang, Jianfeng; Chen, Xuexiang; Fan, Jiadong; Sun, Zhibin; Duan, Xiulan; Li, Nannan; Fang, Hui; Zhou, Guangzhao; Xiao, Tiqiao; Li, Aiguo; Jiang, Huaidong
2017-01-01
Casting had symbolic significance and was strictly controlled in the Shang dynasty of ancient China. Vessel casting was mainly distributed around the Shang capital, Yin Ruins, which indicates a rigorous centralization of authority. Thus, for a casting mold to be excavated far from the capital region is rare. In addition to some bronze vessel molds excavated at the Buyao Village site, another key discovery of a bronze vessel mold occurred at Daxinzhuang. The Daxinzhuang site was a core area in the east of Shang state and is an important site to study the eastward expansion of the Shang. Here, combining synchrotron X-rays and other physicochemical analysis methods, nondestructive three-dimensional structure imaging and different elemental analyses were conducted on this mold sherd. Through high penetration X-ray tomography, we obtained insights on the internal structure and discovered some pores. We infer that the generation of pores inside the casting mold sherd was used to enhance air permeability during casting. Furthermore, we suppose that the decorative patterns on the surface were carved and not pasted onto it. Considering the previous compositional studies of bronze vessels, the copper and iron elements were analyzed by different methods. Unexpectedly, a larger amount of iron than of copper was detected on the surface. According to the data analysis and archaeological context, the source of iron on the casting mold sherd could be attributed to local soil contamination. A refined compositional analysis confirms that this casting mold was fabricated locally and used for bronze casting. PMID:28296963
Thermodynamic cost of computation, algorithmic complexity and the information metric
NASA Technical Reports Server (NTRS)
Zurek, W. H.
1989-01-01
Algorithmic complexity is discussed as a computational counterpart to the second law of thermodynamics. It is shown that algorithmic complexity, which is a measure of randomness, sets limits on the thermodynamic cost of computations and casts a new light on the limitations of Maxwell's demon. Algorithmic complexity can also be used to define distance between binary strings.
Realistic tissue visualization using photoacoustic image
NASA Astrophysics Data System (ADS)
Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong
2018-02-01
Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Zhenming; Guo Zhenqi; Li Jianguo
2004-12-15
A new method for the evaluation of the quality of an Ohno continuous cast (OCC) Cu single crystal by X-ray diffraction (XRD) butterfly pattern was brought forward. Experimental results show that the growth direction of single crystal Cu is inclined from both sides of the single crystal Cu rod to the axis and is axially symmetric. The degree of deviation from the [100] orientation from the crystal axis is less than 5 deg. with a casting speed 10-40 mm/min. The orientation of single crystal Cu does not have a fixed direction but is in a regular range. Moreover, the orientationmore » of stray grains in the single crystal Cu is random from continuous casting.« less
3D analysis of macrosegregation in twin-roll cast AA3003 alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Šlapáková, Michaela, E-mail: slapakova@karlov.mff.
Twin-roll cast aluminium alloys have a high potential for industrial applications. However, one of the drawbacks of such materials is an inhomogeneous structure generated by macrosegregation, which appears under certain conditions in the center of sheets during solidification. Segregations in AA3003 alloy form as manganese, iron and silicon rich channels spread in the rolling direction. Their spatial distribution was successfully detected by X-ray computed tomography. Scanning electron microscopy was used for a detailed observation of microstructure, morphology and chemical analysis of the segregation. - Highlights: •Macrosegregations in twin-roll cast sheets stretch along the rolling direction. •X-ray computed tomography is anmore » effective tool for visualization of the segregation. •The segregations copy the shape of grain boundaries.« less
Three-dimensional microstructure simulation of Ni-based superalloy investment castings
NASA Astrophysics Data System (ADS)
Pan, Dong; Xu, Qingyan; Liu, Baicheng
2011-05-01
An integrated macro and micro multi-scale model for the three-dimensional microstructure simulation of Ni-based superalloy investment castings was developed, and applied to industrial castings to investigate grain evolution during solidification. A ray tracing method was used to deal with the complex heat radiation transfer. The microstructure evolution was simulated based on the Modified Cellular Automaton method, which was coupled with three-dimensional nested macro and micro grids. Experiments for Ni-based superalloy turbine wheel investment casting were carried out, which showed a good correspondence with the simulated results. It is indicated that the proposed model is able to predict the microstructure of the casting precisely, which provides a tool for the optimizing process.
NASA Astrophysics Data System (ADS)
Li, You Yun; Tsai, DeChang; Hwang, Weng Sing
2008-06-01
The purpose of this study is to develop a technique of numerically simulating the microstructure of 17-4PH (precipitation hardening) stainless steel during investment casting. A cellular automation (CA) algorithm was adopted to simulate the nucleation and grain growth. First a calibration casting was made, and then by comparing the microstructures of the calibration casting with those simulated using different kinetic growth coefficients (a2, a3) in CA, the most appropriate set of values for a2 and a3 would be obtained. Then, this set of values was applied to the microstructure simulation of a separate casting, where the casting was actually made. Through this approach, this study has arrived at a set of growth kinetic coefficients from the calibration casting: a2 is 2.9 × 10-5, a3 is 1.49 × 10-7, which is then used to predict the microstructure of the other test casting. Consequently, a good correlation has been found between the microstructure of actual 17-4PH casting and the simulation result.
NASA Astrophysics Data System (ADS)
Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan
2017-01-01
Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.
Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.
Asghar, Z; Requena, G; Sket, F
2015-07-01
The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Kim, Min-Joo; Suh, Tae-Suk; Cho, Woong; Jung, Won-Gyun
2015-07-01
In this study, a potential validation tool for compensating for the patient positioning error was developed by using 2D/3D and 3D/3D image registration. For 2D/3D registration, digitallyreconstructed radiography (DRR) and three-dimensional computed tomography (3D-CT) images were applied. The ray-casting algorithm is the most straightforward method for generating DRR, so we adopted the traditional ray-casting method, which finds the intersections of a ray with all objects, voxels of the 3D-CT volume in the scene. The similarity between the extracted DRR and the orthogonal image was measured by using a normalized mutual information method. Two orthogonal images were acquired from a Cyber-knife system from the anterior-posterior (AP) and right lateral (RL) views. The 3D-CT and the two orthogonal images of an anthropomorphic phantom and of the head and neck of a cancer patient were used in this study. For 3D/3D registration, planning CT and in-room CT images were applied. After registration, the translation and the rotation factors were calculated to position a couch to be movable in six dimensions. Registration accuracies and average errors of 2.12 mm ± 0.50 mm for transformations and 1.23 ° ± 0.40 ° for rotations were acquired by using 2D/3D registration with the anthropomorphic Alderson-Rando phantom. In addition, registration accuracies and average errors of 0.90 mm ± 0.30 mm for transformations and 1.00 ° ± 0.2 ° for rotations were acquired by using CT image sets. We demonstrated that this validation tool could compensate for patient positioning errors. In addition, this research could be a fundamental step in compensating for patient positioning errors at the Korea Heavy-ion Medical Accelerator Treatment Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, James; Mandal, Animesh
X-ray computed tomography (XCT) was used to characterise the internal microstructure and clustering behaviour of TiB{sub 2} particles in in-situ processed Al-Cu metal matrix composites prepared by casting method. Forging was used in semi-solid state to reduce the porosity and to uniformly disperse TiB{sub 2} particles in the composite. Quantification of porosity and clustering of TiB{sub 2} particles was evaluated for different forging reductions (30% and 50% reductions) and compared with an as-cast sample using XCT. Results show that the porosity content was decreased by about 40% due to semi-solid forging as compared to the as-cast condition. Further, XCT resultsmore » show that the 30% forging reduction resulted in greater uniformity in distribution of TiB{sub 2} particles within the composite compared to as-cast and the 50% forge reduction in semi-solid state. These results show that the application of forging in semi-solid state enhances particle distribution and reduces porosity formation in cast in-situ Al-Cu-TiB{sub 2} metal matrix composites. - Highlights: •XCT was used to visualise 3D internal structure of Al-Cu-TiB{sub 2} MMCs. •Al-Cu-TiB{sub 2} MMC was prepared by casting using flux assisted synthesis method. •TiB{sub 2} particles and porosity size distribution were evaluated. •Results show that forging in semi-solid condition decreases the porosity content and improve the particle dispersion in MMCs.« less
Operation of an InGrid based X-ray detector at the CAST experiment
NASA Astrophysics Data System (ADS)
Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael
2018-02-01
The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the observed background rates and improving sensitivity.
Development of a new casting method to fabricate U–Zr alloy containing minor actinides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong Hwan Kim; Hoon Song; Hyung Tae Kim
2014-01-01
Metal fuel slugs of U–Zr alloys for a sodium-cooled fast reactor (SFR) have conventionally been fabricated using an injection casting method. However, casting alloys containing volatile radioactive constituents, such as Am, are problematic in a conventional injection casting method. As an alternative fabrication method, low pressure gravity casting has been developed. Casting soundness, microstructural characteristics, alloying composition, density, and fuel losses were evaluated for the following as-cast fuel slugs: U–10 wt% Zr, U–10 wt% Zr–5 wt% RE, and U–10 wt% Zr–5 wt% RE–5 wt% Mn. The U and Zr contents were uniform throughout the matrix, and impurities such as oxyen,more » carbon, and nitrogen satisfied the specification of total impurities less than 2,000 ppm. The appearance of the fuel slugs was generally sound, and the internal integrity was shown to be satisfactory based on gamma-ray radiography. In a volatile surrogate casting test, the U–Zr–RE–Mn fuel slug showed that nearly all of the manganese was retained when casting was done under an inert atmosphere.« less
USDA-ARS?s Scientific Manuscript database
In this study, cellulose (C) and cellulose nanocrystals (CN) were blended with chayote tuber (Sechium edule Sw.) starch (CS) in formulations cast into films. The films were conditioned at different storage temperatures and relative humidity (RH), and analyzed by mechanical tests, X-ray diffraction, ...
X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Giovanni, Mario; Warnett, Jason M.; Williams, Mark A.
2015-12-15
X-ray computed tomography (XCT) was used to characterise three dimensional internal structure of Al–SiC metal matrix composites. The alloy composite was prepared by casting method with the application of intensive shearing to uniformly disperse SiC particles in the matrix. Visualisation of SiC clusters as well as porosity distribution were evaluated and compared with non-shearing samples. Results showed that the average particle size as well as agglomerate size is smaller in sheared sample compared to conventional cast samples. Further, it was observed that the volume fraction of porosity was reduced by 50% compared to conventional casting, confirming that the intensive shearingmore » helps in deagglomeration of particle clusters and decrease in porosity of Al–SiC metal matrix composites. - Highlights: • XCT was used to visualise 3D internal structure of Al-SiC MMC. • Al-SiC MMC was prepared by casting with the application of intensive shearing. • SiC particles and porosity distribution were evaluated. • Results show shearing deagglomerates particle clusters and reduces porosity in MMC.« less
Automatic casting surface defect recognition and classification
NASA Astrophysics Data System (ADS)
Wong, Boon K.; Elliot, M. P.; Rapley, C. W.
1995-03-01
High integrity castings require surfaces free from defects to reduce, if not eliminate, vulnerability to component failure from such as physical or thermal fatigue or corrosion attack. Previous studies have shown that defects on casting surfaces can be optically enhanced from the surrounding randomly textured surface by liquid penetrants, magnetic particle and other methods. However, very little has been reported on recognition and classification of the defects. The basic problem is one of shape recognition and classification, where the shape can vary in size and orientation as well as in actual shape generally within an envelope that classifies it as a particular defect. The initial work done towards this has focused on recognizing and classifying standard shapes such as the circle, square, rectangle and triangle. Various approaches were tried and this led eventually to a series of fuzzy logic based algorithms from which very good results were obtained. From this work fuzzy logic memberships were generated for the detection of defects found on casting surfaces. Simulated model shapes of such as the quench crack, mechanical crack and hole have been used to test the generated algorithm and the results for recognition and classification are very encouraging.
Rough case-based reasoning system for continues casting
NASA Astrophysics Data System (ADS)
Su, Wenbin; Lei, Zhufeng
2018-04-01
The continuous casting occupies a pivotal position in the iron and steel industry. The rough set theory and the CBR (case based reasoning, CBR) were combined in the research and implementation for the quality assurance of continuous casting billet to improve the efficiency and accuracy in determining the processing parameters. According to the continuous casting case, the object-oriented method was applied to express the continuous casting cases. The weights of the attributes were calculated by the algorithm which was based on the rough set theory and the retrieval mechanism for the continuous casting cases was designed. Some cases were adopted to test the retrieval mechanism, by analyzing the results, the law of the influence of the retrieval attributes on determining the processing parameters was revealed. A comprehensive evaluation model was established by using the attribute recognition theory. According to the features of the defects, different methods were adopted to describe the quality condition of the continuous casting billet. By using the system, the knowledge was not only inherited but also applied to adjust the processing parameters through the case based reasoning method as to assure the quality of the continuous casting and improve the intelligent level of the continuous casting.
Baumrind, S; Carlson, S; Beers, A; Curry, S; Norris, K; Boyd, R L
2003-01-01
Past research in integrated three-dimensional (3D) craniofacial mapping at the Craniofacial Research Instrumentation Laboratory (CRIL) of the University of the Pacific is summarized in narrative form. The advantages and limitations of recent commercial developments in the application of cone beam geometry volumetric X-ray scanners in dentistry and surface digital mapping of study casts are discussed. The rationale for methods currently in development at CRIL for merging longitudinal information from existing 3D study casts and two-dimensional lateral X-ray cephalograms in studies of orthodontic treatment outcome is presented.
AMCC casting development, volume 2
NASA Technical Reports Server (NTRS)
1995-01-01
PCC successfully cast and performed nondestructive testing, FPI and x-ray, on seventeen AMCC castings. Destructive testing, lab analysis and chemical milling, was performed on eleven of the castings and the remaining six castings were shipped to NASA or Aerojet. Two of the six castings shipped, lots 015 and 016, were fully processed per blueprint requirements. PCC has fully developed the gating and processing parameters of this part and feels the part could be implemented into production, after four more castings have been completed to ensure the repeatability of the process. The AMCC casting has been a technically challenging part due to its size, configuration, and alloy type. The height and weight of the wax pattern assembly necessitated the development of a hollow gating system to ensure structural integrity of the shell throughout the investment process. The complexity in the jacket area of the casting required the development of an innovative casting technology that PCC has termed 'TGC' or thermal gradient control. This method of setting up thermal gradients in the casting during solidification represents a significant process improvement for PCC and has been successfully implemented on other programs. The alloy, JBK75, is a relatively new alloy in the investment casting arena and required our engineering staff to learn the gating, processing, and dimensional characteristics of the material.
Casting materials and their application in research and teaching.
Haenssgen, Kati; Makanya, Andrew N; Djonov, Valentin
2014-04-01
From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations.
Fabrication of Ti-0.48Al Alloy by Centrifugal Casting.
Park, Jong Bum; Lee, Jung-Il; Ryu, Jeong Ho
2018-09-01
Many of the unique properties of TiAl alloys that make are attractive for use in high-temperature structural applications also make it challenging to process them into useful products. Cast TiAl is rapidly nearing commercialization, particularly in the vehicle industry, owing to its low production cost. In this study, the centrifugal casting of a TiAl (Ti-48%Al, mole fraction) turbocharger was simulated and an experimental casting was created in vacuum using an induction melting furnace coupled to a ceramic composite mold. Numerical simulation results agreed with the experiment. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometry, optical microscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). FE-SEM and EDS examinations of the TiAl casting revealed that the thickness of the oxide layer (α-case) was typically less than 35 μm.
Surface smoothing and template partitioning for cranial implant CAD
NASA Astrophysics Data System (ADS)
Min, Kyoung-june; Dean, David
2005-04-01
Employing patient-specific prefabricated implants can be an effective treatment for large cranial defects (i.e., > 25 cm2). We have previously demonstrated the use of Computer Aided Design (CAD) software that starts with the patient"s 3D head CT-scan. A template is accurately matched to the pre-detected skull defect margin. For unilateral cranial defects the template is derived from a left-to-right mirrored skull image. However, two problems arise: (1) slice edge artifacts generated during isosurface polygonalization are inherited by the final implant; and (2) partitioning (i.e., cookie-cutting) the implant surface from the mirrored skull image usually results in curvature discontinuities across the interface between the patient"s defect and the implant. To solve these problems, we introduce a novel space curve-to-surface partitioning algorithm following a ray-casting surface re-sampling and smoothing procedure. Specifically, the ray-cast re-sampling is followed by bilinear interpolation and low-pass filtering. The resulting surface has a highly regular grid-like topological structure of quadrilaterally arranged triangles. Then, we replace the regions to be partitioned with predefined sets of triangular elements thereby cutting the template surface to accurately fit the defect margin at high resolution and without surface curvature discontinuities. Comparisons of the CAD implants for five patients against the manually generated implant that the patient actually received show an average implant-patient gap of 0.45mm for the former and 2.96mm for the latter. Also, average maximum normalized curvature of interfacing surfaces was found to be smoother, 0.043, for the former than the latter, 0.097. This indicates that the CAD implants would provide a significantly better fit.
Microstructures of ancient and modern cast silver–copper alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Northover, S.M., E-mail: s.m.northover@open.ac.uk; Northover, J.P., E-mail: peter.northover@materials.ox.ac.uk
The microstructures of modern cast Sterling silver and of cast silver objects about 2500 years old have been compared using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray microanalysis (EDX) and electron backscatter diffraction (EBSD). Microstructures of both ancient and modern alloys were typified by silver-rich dendrites with a few pools of eutectic and occasional cuprite particles with an oxidised rim on the outer surface. EBSD showed the dendrites to have a complex internal structure, often involving extensive twinning. There was copious intragranular precipitation within the dendrites, in themore » form of very fine copper-rich rods which TEM, X-ray diffraction (XRD), SEM and STEM suggest to be of a metastable face-centred-cubic (FCC) phase with a cube–cube orientation relationship to the silver-rich matrix but a higher silver content than the copper-rich β in the eutectic. Samples from ancient objects displayed a wider range of microstructures including a fine scale interpenetration of the adjoining grains not seen in the modern material. Although this study found no unambiguous evidence that this resulted from microstructural change produced over archaeological time, the copper supersaturation remaining after intragranular precipitation suggests that such changes, previously proposed for wrought and annealed material, may indeed occur in ancient silver castings. - Highlights: • Similar twinned structures and oxidised surfaces seen in ancient and modern cast silver • General precipitation of fine Cu-rich rods apparently formed by discontinuous precipitation is characteristic of as-cast silver. • The fine rods are cube-cube related to the matrix in contrast with the eutectic. • The silver-rich phase remains supersaturated with copper. • Possibly age-related grain boundary features seen in ancient cast silver.« less
Narayanaswamy, Arunachalam; Dwarakapuram, Saritha; Bjornsson, Christopher S; Cutler, Barbara M; Shain, William; Roysam, Badrinath
2010-03-01
This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering based methods are not effective. The structure deviates from a tubular geometry, so tracing algorithms are not effective. We propose a four step approach. The first step detects candidate voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally planar geometry. The second step performs an adaptive region growth to extract weakly labeled and fine vessels while rejecting spectral artifacts. To enable interactive visualization and estimation of features such as statistical confidence, local curvature, local thickness, and local normal, we perform the third step. In the third step, we construct an accurate mesh representation using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To enable topological analysis and efficient validation, we describe a method to estimate vessel centerlines using a ray casting and vote accumulation algorithm which forms the final step of our algorithm. Our algorithm lends itself to parallel processing, and yielded an 8 x speedup on a graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values of (0.1-1.6) voxels per mesh face for peak signal-to-noise ratios from (110-28 dB). Separately, the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1 voxel/face. When validated on real datasets, the average recall and precision values were found to be 94.66% and 94.84%, respectively.
Matysiak, Hubert; Zagorska, Malgorzata; Andersson, Joel; Balkowiec, Alicja; Cygan, Rafal; Rasinski, Marcin; Pisarek, Marcin; Andrzejczuk, Mariusz; Kubiak, Krzysztof; Kurzydlowski, Krzysztof J
2013-11-01
The aim of this work was to characterize the microstructure of the as-cast Haynes ® 282 ® alloy. Observations and analyses were carried out using techniques such as X-ray diffraction (XRD), light microscopy (LM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray spectroscopy (EDS), wave length dispersive X-ray spectroscopy (WDS), auger electron spectroscopy (AES) and electron energy-loss spectrometry (EELS). The phases identified in the as-cast alloy include: γ (gamma matrix), γ' (matrix strengthening phase), (TiMoCr)C (primary carbide), TiN (primary nitride), σ (sigma-TCP phase), (TiMo)₂SC (carbosulphide) and a lamellar constituent consisting of molybdenum and chromium rich secondary carbide phase together with γ phase. Within the dendrites the γ' appears mostly in the form of spherical, nanometric precipitates (74 nm), while coarser (113 nm) cubic γ' precipitates are present in the interdendritic areas. Volume fraction content of the γ' precipitates in the dendrites and interdendritic areas are 9.6% and 8.5%, respectively. Primary nitrides metallic nitrides (MN), are homogeneously dispersed in the as-cast microstructure, while primary carbides metallic carbides (MC), preferentially precipitate in interdendritic areas. Such preference is also observed in the case of globular σ phase. Lamellar constituents characterized as secondary carbides/γ phases were together with (TiMo)₂SC phase always observed adjacent to σ phase precipitates. Crystallographic relations were established in-between the MC, σ, secondary carbides and γ/γ' matrix.
Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
Alnewaini, Zaid; Langer, Eric; Schaber, Philipp; David, Matthias; Kretz, Dominik; Steil, Volker; Hesser, Jürgen
2017-03-01
Dosimetric control of staff exposure during interventional procedures under fluoroscopy is of high relevance. In this paper, a novel ray casting approximation of radiation transport is presented and the potential and limitation vs. a full Monte Carlo transport and dose measurements are discussed. The x-ray source of a Siemens Axiom Artix C-arm is modeled by a virtual source model using single Gaussian-shaped source. A Geant4-based Monte Carlo simulation determines the radiation transport from the source to compute scatter from the patient, the table, the ceiling and the floor. A phase space around these scatterers stores all photon information. Only those photons are traced that hit a surface of phantom that represents medical staff in the treatment room, no indirect scattering is considered; and a complete dose deposition on the surface is calculated. To evaluate the accuracy of the approximation, both experimental measurements using Thermoluminescent dosimeters (TLDs) and a Geant4-based Monte Carlo simulation of dose depositing for different tube angulations of the C-arm from cranial-caudal angle 0° and from LAO (Left Anterior Oblique) 0°-90° are realized. Since the measurements were performed on both sides of the table, using the symmetry of the setup, RAO (Right Anterior Oblique) measurements were not necessary. The Geant4-Monte Carlo simulation agreed within 3% with the measured data, which is within the accuracy of measurement and simulation. The ray casting approximation has been compared to TLD measurements and the achieved percentage difference was -7% for data from tube angulations 45°-90° and -29% from tube angulations 0°-45° on the side of the x-ray source, whereas on the opposite side of the x-ray source, the difference was -83.8% and -75%, respectively. Ray casting approximation for only LAO 90° was compared to a Monte Carlo simulation, where the percentage differences were between 0.5-3% on the side of the x-ray source where the highest dose usually detected was mainly from primary scattering (photons), whereas percentage differences between 2.8-20% are found on the side opposite to the x-ray source, where the lowest doses were detected. Dose calculation time of our approach was 0.85 seconds. The proposed approach yields a fast scatter dose estimation where we could run the Monte Carlo simulation only once for each x-ray tube angulation to get the Phase Space Files (PSF) for being used later by our ray casting approach to calculate the dose from only photons which will hit an movable elliptical cylinder shaped phantom and getting an output file for the positions of those hits to be used for visualizing the scatter dose propagation on the phantom surface. With dose calculation times of less than one second, we are saving much time compared to using a Monte Carlo simulation instead. With our approach, larger deviations occur only in regions with very low doses, whereas it provides a high precision in high-dose regions. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Characterization and Evaluation of Incorporation the Casting Sand in Mortar
NASA Astrophysics Data System (ADS)
Zanelato, E. B.; Azevedo, A. R. G.; Alexandre, J.; Xavier, C. G.; Monteiro, S. N.; Mendonça, T. A. O.
The process of casting metals and alloys occurs through the fusion of this metal and its subsequent casting into a mold with the dimensions and geometry close to the final piece. Most foundries use sand casting molds for making you. This work aims to characterize and evaluate the foundry sand to allow its use in segments of Civil Engineering, creating a viable destination for a residue is that discarded. The following characterization tests were performer: particle size, chemical analysis, X-ray Diffraction and Density Real grain. For the execution of the test specimens was used to 1:3 cement and sand, and the incorporation of 10% and 20% of the total mass replacing the sand, and the trace reference. The results show that best results in compression and bending tests were obtained by replacing 10 % of common sand for sand casting.
ACToR - Aggregated Computational Toxicology Resource ...
There are too many uncharacterized environmental chemicals to test with current in vivo protocols. Develop predictive in vitro screening assays that can be used to prioritize chemicals for detailed testing. ToxCast program requires large amounts of data: In vitro assays (mainly generated by ToxCast program) and In vivo data to develop and validate predictive signatures ACToR is compiling both sets of data for use in predictive algorithms.
Multi-Scale Porous Ultra High Temperature Ceramics
2015-01-08
different techniques: replica, particle stabilized foams, ice templating (freeze casting) and partial sintering. The pore morphology (closed-bubble...the porosity, pore size, shape and morphology . X-Ray Tomography was used to study their 3D microstructure. The 3D microstructures captured with...four different techniques: replica, particle stabilized foams, ice templating (freeze casting) and partial sintering. The pore morphology (closed-bubble
Changes Found on Run-In and Scuffed Surfaces of Steel Chrome Plate, and Cast Iron
NASA Technical Reports Server (NTRS)
Good, J. N.; Godfrey, Douglas
1947-01-01
A study was made of run-in and scuffed steel, chrome-plate, and cast-iron surfaces. X-ray and electron diffraction techniques, micro-hardness determinations, and microscopy were used. Surface changes varied and were found to include three classes: chemical reaction, hardening, and crystallite-size alteration. The principal chemical reactions were oxidation and carburization.
NASA Astrophysics Data System (ADS)
Liu, Yu; Lin, Xiaocheng; Fan, Nianfei; Zhang, Lin
2016-01-01
Wireless video multicast has become one of the key technologies in wireless applications. But the main challenge of conventional wireless video multicast, i.e., the cliff effect, remains unsolved. To overcome the cliff effect, a hybrid digital-analog (HDA) video transmission framework based on SoftCast, which transmits the digital bitstream with the quantization residuals, is proposed. With an effective power allocation algorithm and appropriate parameter settings, the residual gains can be maximized; meanwhile, the digital bitstream can assure transmission of a basic video to the multicast receiver group. In the multiple-input multiple-output (MIMO) system, since nonuniform noise interference on different antennas can be regarded as the cliff effect problem, ParCast, which is a variation of SoftCast, is also applied to video transmission to solve it. The HDA scheme with corresponding power allocation algorithms is also applied to improve video performance. Simulations show that the proposed HDA scheme can overcome the cliff effect completely with the transmission of residuals. What is more, it outperforms the compared WSVC scheme by more than 2 dB when transmitting under the same bandwidth, and it can further improve performance by nearly 8 dB in MIMO when compared with the ParCast scheme.
Synthesis, Characterization and Cold Workability of Cast Copper-Magnesium-Tin Alloys
NASA Astrophysics Data System (ADS)
Bravo Bénard, Agustín Eduardo; Martínez Hernández, David; González Reyes, José Gonzalo; Ortiz Prado, Armando; Schouwenaars Franssens, Rafael
2014-02-01
The use of Mg as an alloying element in copper alloys has largely been overlooked in scientific literature and technological applications. Its supposed tribological compatibility with iron makes it an interesting option to replace Pb in tribological alloys. This work describes the casting process of high-quality thin slabs of Cu-Mg-Sn alloys with different compositions by means of conventional methods. The resulting phases were analyzed using X-ray diffraction, scanning electron microscopy, optical microscopy, and energy dispersive X-ray spectroscopy techniques. Typical dendritic α-Cu, eutectic Cu2Mg(Sn) and eutectoid non-equilibrium microstructures were found. Tensile tests and Vickers microhardness show the excellent hardening capability of Mg as compared to other copper alloys in the as-cast condition. For some of the slabs and compositions, cold rolling reductions of over 95 pct have been easily achieved. Other compositions and slabs have failed during the deformation process. Failure analysis after cold rolling reveals that one cause for brittleness is the presence of casting defects such as microshrinkage and inclusions, which can be eliminated. However, for high Mg contents, a high volume fraction of the intermetallic phase provides a contiguous path for crack propagation through the connected interdendritic regions.
Corrosion behavior of as-cast Mg-8Li-3Al+ xCe alloy in 3.5wt% NaCl solution
NASA Astrophysics Data System (ADS)
Manivannan, S.; Dinesh, P.; Mahemaa, R.; MariyaPillai, Nandhakumaran; Kumaresh Babu, S. P.; Sundarrajan, Srinivasan
2016-10-01
Mg-8Li-3Al+ xCe alloys ( x = 0.5wt%, 1.0wt%, and 1.5wt%) were prepared through a casting route in an electric resistance furnace under a controlled atmosphere. The cast alloys were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The corrosion behavior of the as-cast Mg-8Li-3Al+ xCe alloys were studied under salt spray tests in 3.5wt% NaCl solution at 35°C, in accordance with standard ASTM B-117, in conjunction with potentiodynamic polarization (PDP) tests. The results show that the addition of Ce to Mg-8Li-3Al (LA83) alloy results in the formation of Al2Ce intermetallic phase, refines both the α-Mg phase and the Mg17Al12 intermetallic phase, and then increases the microhardness of the alloys. The results of PDP and salt spray tests reveal that an increase in Ce content to 1.5wt% decreases the corrosion rate. The best corrosion resistance is observed for the LA83 alloy sample with 1.0wt% Ce.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastassopoulos, V.; Aune, S.; Barth, K.
Hypothetical low-mass particles, such as axions, provide a compelling explanation for the dark matter in the universe. Such particles are expected to emerge abundantly from the hot interior of stars. To test this prediction, the CERN Axion Solar Telescope (CAST) uses a 9 T refurbished Large Hadron Collider test magnet directed towards the Sun. In the strong magnetic field, solar axions can be converted to X-ray photons which can be recorded by X-ray detectors. In the 2013–2015 run, thanks to low-background detectors and a new X-ray telescope, the signal-to-noise ratio was increased by about a factor of three. Here, wemore » report the best limit on the axion–photon coupling strength (0.66 × 10 -10 GeV -1 at 95% confidence level) set by CAST, which now reaches similar levels to the most restrictive astrophysical bounds.« less
Robert, Christopher E; Jiang, Jimmy J; Khoury, Joseph G
2011-03-01
Distal forearm fractures, one of the most common fractures seen in the pediatric population, are regularly treated by closed reduction and casting. Our study investigates the effectiveness of Gore-Tex-lined casting in maintaining the reduction of 100% displaced distal forearm fractures compared with traditional cotton-lined casts. We screened all patients from February 2007 to July 2009 who presented to Children's Hospital in Birmingham, AL with a distal radius fracture. Only patients with 100% displaced distal radius fractures were eligible to be assigned to either the cotton-lined or Gore-Tex-lined cast groups. Power analysis was performed to identify an adequate patient sample size. The mean maximum change between initial post-reduction x-rays and follow-up x-rays for anterior-posterior (AP) angulation, AP displacement, lateral angulation, and lateral displacement of the radius were calculated for both cotton and Gore-Tex groups. The rate of subsequent intervention and/or unacceptable results for each group was also analyzed. Seven hundred and twenty-two patients were treated with distal radius fractures at our hospital with 59 patients eligible for inclusion in our study. Thirty-six of our patients were treated with cotton-lined casts, and 23 patients were treated with Gore-Tex-lined cast. The mean maximum change in AP angulation, AP displacement, lateral angulation, and lateral displacement of the radius after initial reduction was 9.2 degrees, 6.9%, 13.9 degrees, and 13.6%, respectively, for the cotton-lined cast group and 7.7 degrees, 6.1%, 14.6 degrees, and 9.6%, respectively, for the Gore-Tex-lined cast group. There were no statistical differences between the means of the 4 measurements (P=0.33, 0.69, 0.73, and 0.10, respectively). There were also no significant differences between groups for final AP and lateral angulation and displacement. Subgroup analysis showed no significant differences in all measurements between cotton and Gore-Tex groups. Gore-Tex and cotton-lined casts are equally effective in their ability to maintain the reduction of 100% displaced distal forearm fractures. Thus, Gore-Tex-lined casts can be offered to pediatric patients immediately after closed reduction of distal radius fractures of any severity. Therapeutic level II.
Modeling the surface contamination of dental titanium investment castings.
Atwood, R C; Lee, P D; Curtis, R V
2005-02-01
The objective of this study was to develop a computational tool for assisting the design of titanium dental castings with minimal defects and to compare computational simulations with casting experiments. Modeling. An in-house cellular-automata solidification and finite-difference diffusion program was coupled with a commercial casting program and applied to (a) simple geometric wedge models and (b) a 3D-laser scan of a molar crown casting. Experimental. Wedges and molar crowns were hand-waxed and investment cast in commercial purity grade 1 (CP-1) titanium by a commercial dental laboratory. The castings were sectioned and analyzed using light and scanning electron microscopy, X-ray microanalysis, and microhardness testing. In the wedge sample, contamination with impurities (Al, Si), including intermetallic precipitates, was found to extend to a depth ranging from 30 to 120 microm depending on the section thickness and hence the local cooling rate. Microstructural and mechanical (hardness) effects were found to a depth ranging from 80 to 250 microm. The coupled micro/macro model predictions showed reasonable agreement for the pattern of contamination. Dental and medical applications demand close dimensional tolerance and freedom from surface impurities and structural flaws in castings having unique shapes. The ability to predict the structural, mechanical, and chemical changes resulting from the casting process will help to design the casting and post-casting processes to minimize these problems.
Real-time 3D human pose recognition from reconstructed volume via voxel classifiers
NASA Astrophysics Data System (ADS)
Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo
2014-03-01
This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.
Direct 3-D morphological measurements of silicone rubber impression using micro-focus X-ray CT.
Kamegawa, Masayuki; Nakamura, Masayuki; Fukui, Yu; Tsutsumi, Sadami; Hojo, Masaki
2010-01-01
Three-dimensional computer models of dental arches play a significant role in prosthetic dentistry. The microfocus X-ray CT scanner has the advantage of capturing precise 3D shapes of deep fossa, and we propose a new method of measuring the three-dimensional morphology of a dental impression directly, which will eliminate the conversion process to dental casts. Measurement precision and accuracy were evaluated using a standard gage comprised of steel balls which simulate the dental arch. Measurement accuracy, standard deviation of distance distribution of superimposed models, was determined as +/-0.050 mm in comparison with a CAD model. Impressions and casts of an actual dental arch were scanned by microfocus X-ray CT and three-dimensional models were compared. The impression model had finer morphology, especially around the cervical margins of teeth. Within the limitations of the current study, direct three-dimensional impression modeling was successfully demonstrated using microfocus X-ray CT.
Synchrotron x-ray modification of nanoparticle superlattice formation
NASA Astrophysics Data System (ADS)
Lu, Chenguang; Akey, Austin J.; Herman, Irving P.
2012-09-01
The synchrotron x-ray radiation used to perform small angle x-ray scattering (SAXS) during the formation of three-dimensional nanoparticle superlattices by drop casting nanoparticle solutions affects the structure and the local crystalline order of the resulting films. The domain size decreases due to the real-time SAXS analysis during drying and more macroscopic changes are visible to the eye.
Recent constraints on axion-photon and axion-electron coupling with the CAST experiment
Ruz, J.; Vogel, J. K.; Pivovaroff, M. J.
2015-03-24
The CERN Axion Solar Telescope (CAST) is a helioscope looking for axions arising from the solar core plasma and arriving to Earth. The experiment, located in Geneva (Switzerland) is able to follow the Sun during sunrise and sunset. Four x-ray detectors mounted on both ends of the magnet wait for photons from axion-to-photon conversion due to the Primakoff effect. Up to date, with the completion of Phases I and II, CAST has been looking for axions that could be produced in the Sun by both, hadronic and non-hadronic mechanisms.
A GridPix-based X-ray detector for the CAST experiment
NASA Astrophysics Data System (ADS)
Krieger, C.; Kaminski, J.; Lupberger, M.; Desch, K.
2017-09-01
The CAST experiment has been searching for axions and axion-like particles for more than 10 years. The continuous improvements in the detector designs have increased the physics reach of the experiment far beyond what was originally conceived. As part of this development, a new detector based on a GridPix readout had been developed in 2014 and was mounted on the CAST experiment during the end of the data taking period of 2014 and the complete period in 2015. We report on the detector design, its advantages and the performance during both periods.
Dispersion Morphology of Poly(methyl acrylate)/Silica Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
D Janes; J Moll; S Harton
Nearly monodisperse poly(methyl acrylate) (PMA) and spherical SiO{sub 2} nanoparticles (NP, d = 14 {+-} 4 nm) were co-cast from 2-butanone, a mutually good solvent and a displacer of adsorbed PMA from silica. The effects of NP content and post-casting sample history on the dispersion morphology were found by small-angle X-ray scattering supplemented by transmission electron microscopy. Analysis of the X-ray results show that cast and thermally annealed samples exhibited a nearly random particle dispersion. That the same samples, prior to annealing, were not well-dispersed is indicative of thermodynamic miscibility during thermal annealing over the range of NP loadings studied.more » A simple mean-field thermodynamic model suggests that miscibility results primarily from favorable polymer segment/NP surface interactions. The model also indicates, and experiments confirm, that subsequent exposure of the composites to the likely displacer ethyl acetate results in entropic destabilization and demixing into NP-rich and NP-lean phases.« less
Sloto, Ronald A.; Martin f. Helmke,
2014-01-01
Sampling cast iron produced by the furnace posed two problems. First, verification that the iron was actually cast at Hopewell Furnace was necessary, as some iron objects found at Hopewell may not have originated there. This was accomplished by using artifacts on display at the Hopewell visitor center (fig. 2). All artifacts on display have been positively attributed to the furnace, and stoves produced by the furnace are easily recognized by the name “Hopewell” cast into them. The second problem was the analysis of the trace metal content of the cast iron, because it was not possible to break off part of a historically important artifact and send it to a laboratory for analysis. This problem was solved when the USGS collaborated with West Chester University, which owns a portable X-ray fluorescence (XRF) spectrometer.
NASA Astrophysics Data System (ADS)
Mori, Kensaku; Suenaga, Yasuhito; Toriwaki, Jun-ichiro
2003-05-01
This paper describes a software-based fast volume rendering (VolR) method on a PC platform by using multimedia instructions, such as SIMD instructions, which are currently available in PCs' CPUs. This method achieves fast rendering speed through highly optimizing software rather than an improved rendering algorithm. In volume rendering using a ray casting method, the system requires fast execution of the following processes: (a) interpolation of voxel or color values at sample points, (b) computation of normal vectors (gray-level gradient vectors), (c) calculation of shaded values obtained by dot-products of normal vectors and light source direction vectors, (d) memory access to a huge area, and (e) efficient ray skipping at translucent regions. The proposed software implements these fundamental processes in volume rending by using special instruction sets for multimedia processing. The proposed software can generate virtual endoscopic images of a 3-D volume of 512x512x489 voxel size by volume rendering with perspective projection, specular reflection, and on-the-fly normal vector computation on a conventional PC without any special hardware at thirteen frames per second. Semi-translucent display is also possible.
NASA Astrophysics Data System (ADS)
Cho, Soo Haeng; Park, Sung Bin; Lee, Jong Hyeon; Hur, Jin Mok; Lee, Han Soo
2011-05-01
In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li 2O molten salt at 650 °C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 °C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, NiO, and (Al,Nb,Ti)O 2; those of as cast and heat treated high Si/low Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.
Parikh, Tapan; Gupta, Simerdeep Singh; Meena, Anuprabha K; Vitez, Imre; Mahajan, Nidhi; Serajuddin, Abu T M
2015-07-01
Determination of drug-polymer miscibility is critical for successful development of solid dispersions. This report details a practical method to predict miscibility and physical stability of drug with various polymers in solid dispersion and, especially, in melt extrudates by applying a film-casting technique. Mixtures of itraconazole (ITZ) with hydroxypropylmethylcellulose phthalate (HPMCP), Kollidon(®) VA 64, Eudragit(®) E PO, and Soluplus(®) were film-casted, exposed to 40°C/75% RH for 1 month and then analyzed using differential scanning calorimetry (DSC), powder X-ray diffractometry, and polarized light microscopy (PLM). ITZ had the highest miscibility with HPMCP, being miscible at drug to polymer ratio of 6:4 (w/w). There was a downward trend of lower miscibility with Soluplus(®) (miscible at 3:7, w/w, and a few microcrystals present at 4:6, w/w), Kollidon(®) VA 64 (2:8, w/w) and Eudragit(®) E PO (<1:9, w/w). PLM was found more sensitive to detect drug crystallization than DSC and powder X-ray diffractometry. There was general correlation between results of film casting and hot-melt extrusion (HME) using a twin screw extruder. For ITZ-Soluplus(®) mixtures, HME at 4:6 (w/w) resulted in a single phase, whereas drug crystallization was observed at higher drug load. HME of ITZ-Kollidon(®) VA 64 mixtures also correlated well with the miscibility predicted by film casting. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Location, location & size: defects close to surfaces dominate fatigue crack initiation
NASA Astrophysics Data System (ADS)
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-03-01
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards
Location, location &size: defects close to surfaces dominate fatigue crack initiation.
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-03-27
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards.
Location, location & size: defects close to surfaces dominate fatigue crack initiation
Serrano-Munoz, Itziar; Buffiere, Jean-Yves; Mokso, Rajmund; Verdu, Catherine; Nadot, Yves
2017-01-01
Metallic cast components inevitably contain defects such as shrinkage cavities which are inherent to the solidification process. Those defects are known to significantly alter the fatigue life of components. Yet very little is known, quantitatively, on the dangerosity of internal casting defects compared to surface ones. In this study, fatigue specimens containing controlled internal defects (shrinkage pores) are used to foster internal cracking. In situ fatigue tests monitored by X ray synchrotron tomography revealed that the internal nucleation and propagation of cracks was systematically overran by surface cracking initiated at castings defects up to ten times smaller than the internal ones. These findings indicate that the presence of internal defects in cast components can be tolerated to a larger extent than is allowed by nowadays standards PMID:28345599
Compositional redistribution during casting of Hg sub 0.8 Cd sub 0.2 Te alloys
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Perry, G. L. E.; Szofran, F. R.; Lehoczky, S. L.
1986-01-01
A series of Hg(0.8)Cd(0.2)Te ingots was cast both vertically and horizontally under well-defined thermal conditions by using a two-zone furnace with isothermal heat-pipe liners. The main objective of the experiments was to establish correlations between casting parameters and compositional redistribution and to develop ground-based data for a proposed flight experiment of casting of Hg(1-x)Cd(x)Te alloys under reduced gravity conditions. The compositional variations along the axial and radial directions were determined by precision density measurements, infrared transmission spectra, and X-ray energy dispersion spectrometry. Comparison between the experimental results and a numerical simulation of the solidification process of Hg(0.8)Cd(0.2)Te is described.
Numerical simulation of the casting process of titanium removable partial denture frameworks.
Wu, Menghuai; Wagner, Ingo; Sahm, Peter R; Augthun, Michael
2002-03-01
The objective of this work was to study the filling incompleteness and porosity defects in titanium removal partial denture frameworks by means of numerical simulation. Two frameworks, one for lower jaw and one for upper jaw, were chosen according to dentists' recommendation to be simulated. Geometry of the frameworks were laser-digitized and converted into a simulation software (MAGMASOFT). Both mold filling and solidification of the castings with different sprue designs (e.g. tree, ball, and runner-bar) were numerically calculated. The shrinkage porosity was quantitatively predicted by a feeding criterion, the potential filling defect and gas pore sensitivity were estimated based on the filling and solidification results. A satisfactory sprue design with process parameters was finally recommended for real casting trials (four replica for each frameworks). All the frameworks were successfully cast. Through X-ray radiographic inspections it was found that all the castings were acceptably sound except for only one case in which gas bubbles were detected in the grasp region of the frame. It is concluded that numerical simulation aids to achieve understanding of the casting process and defect formation in titanium frameworks, hence to minimize the risk of producing defect casting by improving the sprue design and process parameters.
Sloto, R.A.; Helmke, M.F.
2011-01-01
Iron ore containing elevated concentrations of trace metals was smelted at Hopewell Furnace during its 113 years of operation (1771-1883). For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment to determine the fate of trace metals released into the environment during the iron-smelting process. Standard techniques were used to sample and analyze all media except cast iron. We analyzed the trace-metal content of the cast iron using a portable X-ray fluorescence spectrometer, which provided rapid, on-site, nondestructive analyses for 23 elements. The artifacts analyzed included eight cast iron stoves, a footed pot, and a kettle in the Hopewell Furnace museum. We measured elevated concentrations of arsenic, copper, lead, and zinc in the cast iron. Lead concentrations as great as 3,150 parts per million were measured in the stoves. Cobalt was detectable but not quantifiable because of interference with iron. Our study found that arsenic, cobalt, and lead were not released to soil or slag, which could pose a significant health risk to visitors and employees. Instead, our study demonstrates these heavy metals remained with the cast iron and were removed from the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong
2013-04-01
Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation wasmore » observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong
2013-04-01
Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find themore » correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.« less
Experimental investigation on in-situ microwave casting of copper
NASA Astrophysics Data System (ADS)
Raman Mishra, Radha; Sharma, Apurbba Kumar
2018-04-01
The in-situ microwave casting of metallic materials is a recently developed casting process. The process works on the principles of hybrid microwave heating and is accomplished inside the applicator cavity. The process involves – melting of the charge, in-situ pouring and solidification of the melt. The electromagnetic and thermal properties of the charge affects microwave-material interaction and hence melting of the charge. On the other hand, cooling conditions inside the applicator controls solidification process. The present work reports on in-situ casting of copper developed inside a multimode cavity at 2.45 GHz using 1400 W. The molten metal was allowed to get poured in-situ inside a graphite mold and solidification was carried out in the same mold inside the applicator cavity. The interaction of microwave with the charge during exposure was studied and the role of oxide layer during meltingthe copper blocks has been presented. The developed in-situ cast was characterized to access the cast quality. Microstructural study revealed the homogeneous and dense structure of the cast. The X-ray diffraction pattern indicated presence of copper in different orientations with (1 1 1) as the dominant orientation. The average micro indentation hardness of the casts was found 93±20 HV.
Testing a Variety of Encryption Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henson, T J
2001-04-09
Review and test speeds of various encryption technologies using Entrust Software. Multiple encryption algorithms are included in the product. Algorithms tested were IDEA, CAST, DES, and RC2. Test consisted of taking a 7.7 MB Word document file which included complex graphics and timing encryption, decryption and signing. Encryption is discussed in the GIAC Kickstart section: Information Security: The Big Picture--Part VI.
A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations
NASA Astrophysics Data System (ADS)
Felix, Simon; Bolzern, Roman; Battaglia, Marina
2017-11-01
One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS_CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation of quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.
A Compressed Sensing-based Image Reconstruction Algorithm for Solar Flare X-Ray Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felix, Simon; Bolzern, Roman; Battaglia, Marina, E-mail: simon.felix@fhnw.ch, E-mail: roman.bolzern@fhnw.ch, E-mail: marina.battaglia@fhnw.ch
One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new compressed sensing-based algorithm named VIS-CS, which reconstructs the spatial distribution from such Fourier components. We demonstrate the application of the algorithm on synthetic and observed solar flare X-ray data from the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite and compare its performance with existing algorithms. VIS-CS produces competitive results with accurate photometry and morphology, without requiring any algorithm- and X-ray-source-specific parameter tuning. Its robustness and performance make this algorithm ideally suited for the generation ofmore » quicklook images or large image cubes without user intervention, such as for imaging spectroscopy analysis.« less
NASA Astrophysics Data System (ADS)
Kazantseva, N. V.; Stepanova, N. N.; Rigmant, M. B.; Davidov, D. I.; Shishkin, D. A.; Romanov, E. P.
The Co-19 at.%Al-6 at.%W alloy was prepared by two methods of casting. We used arc melting under an argon atmosphere with casting into a copper water-cooled casting mold and induction melting furnace with casting into a ceramic Al2O3 mold. According to the X-ray and SEM analyses, phase compositions depend on the cooling rate of the ingot after melting. After arc melting, the cast alloy has a three-phase structure, consisting of γ cobalt (FCC), intermetallic phases CoAl (B2) type, and Co3W (DO19) type. After the induction melting, the alloy has a three-phase structure, consisting of γ cobalt (FCC), intermetallic phases CoAl (B2) type, and Co7W6 (µ) type. All phases in the investigated ternary alloy at the room temperature are ferromagnetic. Curie temperatures of all obtained phases were defined. It is shown that the magnetic properties of the studied alloy are typical for soft magnetic materials.
Geometric optics for a coupling model of electromagnetic and gravitational fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, Jiliang, E-mail: jljing@hunnu.edu.cn; Chen, Songbai; Pan, Qiyuan
2016-04-15
The coupling between the electromagnetic and gravitational fields results in “faster than light” photons, and then the first and third laws of geometric optics are invalid in usual spacetime. By introducing an effective spacetime, we find that the wave vector can be casted into null and then it obeys the geodesic equation, the polarization vector is perpendicular to the rays, and the number of photons is conserved. That is to say, the laws of geometric optics are valid for the modified theory in the effective spacetime. We also show that the focusing theorem of light rays for the modified theorymore » in the effective spacetime can be cast into the usual form.« less
Development of a CFD code for casting simulation
NASA Technical Reports Server (NTRS)
Murph, Jesse E.
1992-01-01
The task of developing a computational fluid dynamics (CFD) code to accurately model the mold filling phase of a casting operation was accomplished in a systematic manner. First the state-of-the-art was determined through a literature search, a code search, and participation with casting industry personnel involved in consortium startups. From this material and inputs from industry personnel, an evaluation of the currently available codes was made. It was determined that a few of the codes already contained sophisticated CFD algorithms and further validation of one of these codes could preclude the development of a new CFD code for this purpose. With industry concurrence, ProCAST was chosen for further evaluation. Two benchmark cases were used to evaluate the code's performance using a Silicon Graphics Personal Iris system. The results of these limited evaluations (because of machine and time constraints) are presented along with discussions of possible improvements and recommendations for further evaluation.
Implementation of trinary logic in a polarization encoded optical shadow-casting scheme.
Rizvi, R A; Zaheer, K; Zubairy, M S
1991-03-10
The design of various multioutput trinary combinational logic units by a polarization encoded optical shadow-casting (POSC) technique is presented. The POSC modified algorithm is employed to design and implement these logic elements in a trinary number system with separate and simultaneous generation of outputs. A detailed solution of the POSC logic equations for a fixed source plane and a fixed decoding mask is given to obtain input pixel coding for a trinary half-adder, full adder, and subtractor.
XCAT/DRASIM: a realistic CT/human-model simulation package
NASA Astrophysics Data System (ADS)
Fung, George S. K.; Stierstorfer, Karl; Segars, W. Paul; Taguchi, Katsuyuki; Flohr, Thomas G.; Tsui, Benjamin M. W.
2011-03-01
The aim of this research is to develop a complete CT/human-model simulation package by integrating the 4D eXtended CArdiac-Torso (XCAT) phantom, a computer generated NURBS surface based phantom that provides a realistic model of human anatomy and respiratory and cardiac motions, and the DRASIM (Siemens Healthcare) CT-data simulation program. Unlike other CT simulation tools which are based on simple mathematical primitives or voxelized phantoms, this new simulation package has the advantages of utilizing a realistic model of human anatomy and physiological motions without voxelization and with accurate modeling of the characteristics of clinical Siemens CT systems. First, we incorporated the 4D XCAT anatomy and motion models into DRASIM by implementing a new library which consists of functions to read-in the NURBS surfaces of anatomical objects and their overlapping order and material properties in the XCAT phantom. Second, we incorporated an efficient ray-tracing algorithm for line integral calculation in DRASIM by computing the intersection points of the rays cast from the x-ray source to the detector elements through the NURBS surfaces of the multiple XCAT anatomical objects along the ray paths. Third, we evaluated the integrated simulation package by performing a number of sample simulations of multiple x-ray projections from different views followed by image reconstruction. The initial simulation results were found to be promising by qualitative evaluation. In conclusion, we have developed a unique CT/human-model simulation package which has great potential as a tool in the design and optimization of CT scanners, and the development of scanning protocols and image reconstruction methods for improving CT image quality and reducing radiation dose.
[Effects of laser welding on bond of porcelain fused cast pure titanium].
Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi
2006-04-01
To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.
NASA Astrophysics Data System (ADS)
Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo
2017-05-01
Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.
Corrosion Behavior of Cast Iron in Freely Aerated Stagnant Arabian Gulf Seawater
Sherif, El-Sayed M.; Abdo, Hany S.; Almajid, Abdulhakim A.
2015-01-01
In this work, the results obtained from studying the corrosion of cast iron in freely aerated stagnant Arabian Gulf seawater (AGS) at room temperature were reported. The study was carried out using weight-loss (WL), cyclic potentiodynamic polarization (CPP), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) measurements and complemented by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) investigations. WL experiments between two and 10 days’ immersion in the test electrolyte indicated that the weight-loss the cast iron increases with increasing the time of immersion. CPP measurements after 1 h and 24 h exposure period showed that the increase of time decreases the corrosion via decreasing the anodic and cathodic currents, as well as decreasing the corrosion current and corrosion rate and increasing the polarization resistance of the cast iron. EIS data confirmed the ones obtained by WL and CPP that the increase of immersion time decreases the corrosion of cast iron by increasing its polarization resistance.
Microstructure and texture development of 7075 alloy during homogenisation
NASA Astrophysics Data System (ADS)
Ghosh, Abhishek; Ghosh, Manojit
2018-06-01
The microstructure evolution of Al-Zn-Mg-Cu alloy during homogenisation was studied by optical microscope, field emission scanning electron microscope, energy dispersive X-ray Spectroscopy, differential scanning calorimetry and X-ray diffraction in detailed. It has been found that primary cast structure consisted of primary α (Al), lamellar eutectic structure η Mg(Zn, Cu, Al)2 and a small amount of θ (Al2Cu) phase. A transformation of primary eutectic phase from η Mg(Zn, Cu, Al)2 to S (Al2CuMg) was observed after 6 h of homogenisation treatment. The volume fraction of dendrite network structure and intermetallic phase was decreased with increase in holding time and finally disappeared after 96 h of homogenisation, which is consistent with the results of homogenisation kinetic analysis. Crystallographic texture of this alloy after casting and 96 h of homogenisation was also studied. It was found that casting process led the development of strong Goss, Brass, P and CuT components, while after homogenisation Cube, S and Copper components became predominant. Mechanical tests revealed higher hardness, yield strength and tensile strength for cast materials compared to homogenised alloys due to the presence of coarse micro-segregation of MgZn2 phase. The significant improvement of ductility was observed after 96-h homogenisation, which was attributed to dissolution of second phase particles and grain coarsening. Fracture surfaces of the cast samples indicated the presence of shrinkage porosity and consequently failure occurred in the interdendritic regions or grain boundaries with brittle mode, while homogenised alloys failed under ductile mode as evident by the presence of fine dimple surfaces.
A computerized compensator design algorithm with launch vehicle applications
NASA Technical Reports Server (NTRS)
Mitchell, J. R.; Mcdaniel, W. L., Jr.
1976-01-01
This short paper presents a computerized algorithm for the design of compensators for large launch vehicles. The algorithm is applicable to the design of compensators for linear, time-invariant, control systems with a plant possessing a single control input and multioutputs. The achievement of frequency response specifications is cast into a strict constraint mathematical programming format. An improved solution algorithm for solving this type of problem is given, along with the mathematical necessities for application to systems of the above type. A computer program, compensator improvement program (CIP), has been developed and applied to a pragmatic space-industry-related example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, Stephen
The Sandia hyperspectral upper-bound spectrum algorithm (hyper-UBS) is a cosmic ray despiking algorithm for hyperspectral data sets. When naturally-occurring, high-energy (gigaelectronvolt) cosmic rays impact the earth’s atmosphere, they create an avalanche of secondary particles which will register as a large, positive spike on any spectroscopic detector they hit. Cosmic ray spikes are therefore an unavoidable spectroscopic contaminant which can interfere with subsequent analysis. A variety of cosmic ray despiking algorithms already exist and can potentially be applied to hyperspectral data matrices, most notably the upper-bound spectrum data matrices (UBS-DM) algorithm by Dongmao Zhang and Dor Ben-Amotz which served as themore » basis for the hyper-UBS algorithm. However, the existing algorithms either cannot be applied to hyperspectral data, require information that is not always available, introduce undesired spectral bias, or have otherwise limited effectiveness for some experimentally relevant conditions. Hyper-UBS is more effective at removing a wider variety of cosmic ray spikes from hyperspectral data without introducing undesired spectral bias. In addition to the core algorithm the Sandia hyper-UBS software package includes additional source code useful in evaluating the effectiveness of the hyper-UBS algorithm. The accompanying source code includes code to generate simulated hyperspectral data contaminated by cosmic ray spikes, several existing despiking algorithms, and code to evaluate the performance of the despiking algorithms on simulated data.« less
Hadwiger, M; Beyer, J; Jeong, Won-Ki; Pfister, H
2012-12-01
This paper presents the first volume visualization system that scales to petascale volumes imaged as a continuous stream of high-resolution electron microscopy images. Our architecture scales to dense, anisotropic petascale volumes because it: (1) decouples construction of the 3D multi-resolution representation required for visualization from data acquisition, and (2) decouples sample access time during ray-casting from the size of the multi-resolution hierarchy. Our system is designed around a scalable multi-resolution virtual memory architecture that handles missing data naturally, does not pre-compute any 3D multi-resolution representation such as an octree, and can accept a constant stream of 2D image tiles from the microscopes. A novelty of our system design is that it is visualization-driven: we restrict most computations to the visible volume data. Leveraging the virtual memory architecture, missing data are detected during volume ray-casting as cache misses, which are propagated backwards for on-demand out-of-core processing. 3D blocks of volume data are only constructed from 2D microscope image tiles when they have actually been accessed during ray-casting. We extensively evaluate our system design choices with respect to scalability and performance, compare to previous best-of-breed systems, and illustrate the effectiveness of our system for real microscopy data from neuroscience.
Regional ionospheric TEC data assimilation and now-casting service
NASA Astrophysics Data System (ADS)
Aa, E.; Liu, S.; Wengeng, H.
2017-12-01
Ionospheric data assimilation is a now-casting technique to incorporate irregular ionospheric measurements into certain background model, which is an effective and efficient way to overcome the limitation of the unbalanced data distribution and to improve the accuracy of the model, so that the model and the data can be optimally combined with each other to produce a more reliable and reasonable system specification. In this study, a regional total electron content (TEC) now-casting system over China and adjacent areas (70E-140E and 15N-55N) is developed on the basis of data assimilation technique. The International Reference Ionosphere (IRI) is used here as background model, and the GNSS data are derived from both the Space Environment Monitoring Network of Chinese Academy of Sciences (SEMnet) and International GNSS Service (IGS) data. A Three-dimensional variation algorithm (3DVAR) combined with Gauss-Markov Kalman filter technique is used to implement the data assimilation. The regional gridded TEC maps and the position errors of single-frequency GPS receivers can be generated and publicized online (http://sepc.ac.cn/TEC_chn.php) in quasi-real time, which is updated for every 15 min. It is one of the ionospheric now-casting systems in China based on data assimilation algorithm, which can be used not only for real-time monitoring of ionosphere environment over China and adjacent areas, but also in providing accurate and effective specification of regional ionospheric TEC and error correction for satellite navigation, radar imaging, shortwave communication, and other relevant applications.
Corrosion Resistance of a Cast-Iron Material Coated With a Ceramic Layer Using Thermal Spray Method
NASA Astrophysics Data System (ADS)
Florea, C. D.; Bejinariu, C.; Munteanu, C.; Istrate, B.; Toma, S. L.; Alexandru, A.; Cimpoesu, R.
2018-06-01
Cast-iron 250 used for breake systems present many corrosion signs after a mean usage time based on the environment conditions they work. In order to improve them corrosion resistance we propose to cover the active part of the material using a ceramic material. The deposition process is an industrial deposition system based on thermal spraying that can cover high surfaces in low time. In this articol we analyze the influence of a ceramic layer (40-50 µm) on the corrosion resistance of FC250 cast iron. The results were analyzed using scanning electron microscopy (SEM), X-ray energy dispersive (EDS) and linear and cyclic potentiometry.
Spectral correction algorithm for multispectral CdTe x-ray detectors
NASA Astrophysics Data System (ADS)
Christensen, Erik D.; Kehres, Jan; Gu, Yun; Feidenhans'l, Robert; Olsen, Ulrik L.
2017-09-01
Compared to the dual energy scintillator detectors widely used today, pixelated multispectral X-ray detectors show the potential to improve material identification in various radiography and tomography applications used for industrial and security purposes. However, detector effects, such as charge sharing and photon pileup, distort the measured spectra in high flux pixelated multispectral detectors. These effects significantly reduce the detectors' capabilities to be used for material identification, which requires accurate spectral measurements. We have developed a semi analytical computational algorithm for multispectral CdTe X-ray detectors which corrects the measured spectra for severe spectral distortions caused by the detector. The algorithm is developed for the Multix ME100 CdTe X-ray detector, but could potentially be adapted for any pixelated multispectral CdTe detector. The calibration of the algorithm is based on simple attenuation measurements of commercially available materials using standard laboratory sources, making the algorithm applicable in any X-ray setup. The validation of the algorithm has been done using experimental data acquired with both standard lab equipment and synchrotron radiation. The experiments show that the algorithm is fast, reliable even at X-ray flux up to 5 Mph/s/mm2, and greatly improves the accuracy of the measured X-ray spectra, making the algorithm very useful for both security and industrial applications where multispectral detectors are used.
Evolution of Constitution, Structure, and Morphology in FeCo-Based Multicomponent Alloys
NASA Astrophysics Data System (ADS)
Li, R.; Stoica, M.; Liu, G.; Eckert, J.
2010-07-01
Constituent phases, melting behaviors, and microstructure of multicomponent (Fe0.5Co0.5) x (Mo0.1C0.2B0.5Si0.2)100- x alloys ( x = 95, 90, 85, 80, and 70) produced by copper mold casting were evaluated by various analysis techniques, i.e., X-ray diffractometry, scanning electronic microscopy with energy dispersive X-ray spectrometry, and differential scanning calorimetry. Metastable Fe3C- and Cr23C6-type phases were identified in the chill-cast alloys. A schematic illustration was proposed to explain the evolution of constituent phases and microstructure for the alloys with x = 95, 90, and 85 during the solidification process, which could be applicable to controlling microstructural formation of other multicomponent alloys with similar microstructures by artificially adjusting the composition.
Li, Y; Zheng, G; Lin, H
2014-12-18
To develop a new kind of dental radiographic image quality indicator (IQI) for internal quality of casting metallic restoration to influence on its usage life. Radiographic image quality indicator method was used to evaluate the depth of the defects region and internal quality of 127 casting metallic restoration and the accuracy was compared with that of conventional callipers method. In the 127 cases of casting metallic restoration, 9 were found the thickness less than 0.7 mm and the thinnest thickness only 0.2 mm in 26 casting metallic crowns or bridges' occlusal defects region. The data measured by image quality indicator were consistent with those measured by conventional gauging. Two metal inner crowns were found the thickness less than 0.3 mm in 56 porcelain crowns or bridges. The thickness of casting removable partial denture was more than 1.0 mm, but thinner regions were not found. It was found that in a titanium partial denture, the X-ray image of clasp was not uniform and there were internal porosity defects in the clasp. Special dental image quality indicator can solve the visual error problems caused by different observing backgrounds and estimate the depth of the defects region in the casting.
Modeling the investment casting of a titanium crown.
Atwood, R C; Lee, P D; Curtis, R V; Maijer, D M
2007-01-01
The objective of this study was to apply computational modeling tools to assist in the design of titanium dental castings. The tools developed should incorporate state-of-the-art micromodels to predict the depth to which the mechanical properties of the crown are affected by contamination from the mold. The model should also be validated by comparison of macro- and micro-defects found in a typical investment cast titanium tooth crown. Crowns were hand-waxed and investment cast in commercial purity grade 1 (CP-1) titanium by a commercial dental laboratory. The castings were analyzed using X-ray microtomography (XMT). Following sectioning, analysis continued with optical and scanning electron microscopy, and microhardness testing. An in-house cellular-automata solidification and finite-difference diffusion program was coupled with a commercial casting program to model the investment casting process. A three-dimensional (3D) digital image generated by X-ray tomography was used to generate an accurate geometric representation of a molar crown casting. Previously reported work was significantly expanded upon by including transport of dissolved oxygen and impurity sources upon the arbitrarily shaped surface of the crown, and improved coupling of micro- and macro-scale simulations. Macroscale modeling was found to be sufficient to accurately predict the location of the large internal porosity. These are shrinkage pores located in the thick sections of the cusp. The model was used to determine the influence of sprue design on the size and location of these pores. Combining microscale with macroscale modeling allowed the microstructure and depth of contamination to be predicted qualitatively. This combined model predicted a surprising result--the dissolution of silicon from the mold into the molten titanium is sufficient to depress the freezing point of the liquid metal such that the crown solidifies the subsurface. Solidification then progresses inwards and back out to the surface through the silicon-enriched near-surface layer. The microstructure and compositional analysis of the near-surface region are consistent with this prediction. A multiscale model was developed and validated, which can be used to design CP-Ti dental castings to minimize both macro- and micro-defects, including shrinkage porosity, grain size and the extent of surface contamination due to reaction with the mold material. The model predicted the surprising result that the extent of Si contamination from the mold was sufficient to suppress the liquidus temperature to the extent that the surface (to a depth of approximately 100 microm) of the casting solidifies after the bulk. This significantly increases the oxygen pickup, thereby increasing the depth of formation of alpha casing. The trend towards mold materials with reduced Si in order to produce easier-to-finish titanium castings is a correct approach.
Effect of pressure difference on the quality of titanium casting.
Watanabe, I; Watkins, J H; Nakajima, H; Atsuta, M; Okabe, T
1997-03-01
In casting titanium using a two-compartment casting machine, Herø et al. (1993) reported that the pressure difference between the melting chamber and the mold chamber affected the soundness of the castings. This study tested the hypothesis that differences in pressure produce castings with various amounts of porosity and different mechanical properties values. Plastic dumbbell-shaped patterns were invested with an alumina-based, phosphate-bonded investment material. Both chambers of the casting machine were evacuated to 6 x 10(-2) torr; the argon pressure difference was then adjusted to either 50, 150, 300, or 450 torr. The porosity of the cast specimens was determined by x-ray radiography and quantitative image analysis. Tensile strength and elongation were measured by means of a universal testing machine at a strain rate of 1.7 x 10(-4)/s. The fractured surfaces were examined by SEM. Changes in Vickers hardness with depth from the cast surface were measured on polished cross-sections of the specimens. Raising the argon pressure difference to 300 and 450 torr caused a significant increase in internal porosity and a resultant decrease in the engineering tensile strength and elongation. The highest tensile strength (approximately 540 MPa), elongation (approximately 10%), bulk hardness (HV50g 209), and lowest porosity level (approximately 0.8%) occurred in the specimens cast at 150 torr. Turbulence of the metal during casting was thought to be responsible for the increase in porosity levels with the increase in argon pressure difference. By choosing an argon pressure difference (around 150 torr) suitable for this geometry, we could produce castings which have adequate mechanical properties and low porosity levels.
NASA Astrophysics Data System (ADS)
Mukherjee, Arunava; Messenger, Chris; Riles, Keith
2018-02-01
The LIGO's discovery of binary black hole mergers has opened up a new era of transient gravitational wave astronomy. The potential detection of gravitational radiation from another class of astronomical objects, rapidly spinning nonaxisymmetric neutron stars, would constitute a new area of gravitational wave astronomy. Scorpius X-1 (Sco X-1) is one of the most promising sources of continuous gravitational radiation to be detected with present-generation ground-based gravitational wave detectors, such as Advanced LIGO and Advanced Virgo. As the sensitivity of these detectors improve in the coming years, so will power of the search algorithms being used to find gravitational wave signals. Those searches will still require integration over nearly year long observational spans to detect the incredibly weak signals from rotating neutron stars. For low mass X-ray binaries such as Sco X-1 this difficult task is compounded by neutron star "spin wandering" caused by stochastic accretion fluctuations. In this paper, we analyze X-ray data from the R X T E satellite to infer the fluctuating torque on the neutron star in Sco X-1. We then perform a large-scale simulation to quantify the statistical properties of spin-wandering effects on the gravitational wave signal frequency and phase evolution. We find that there are a broad range of expected maximum levels of frequency wandering corresponding to maximum drifts of between 0.3 - 50 μ Hz /sec over a year at 99% confidence. These results can be cast in terms of the maximum allowed length of a coherent signal model neglecting spin-wandering effects as ranging between 5-80 days. This study is designed to guide the development and evaluation of Sco X-1 search algorithms.
Bile Cast Nephropathy in Cirrhotic Patients: Effects of Chronic Hyperbilirubinemia.
Foshat, Michelle; Ruff, Heather M; Fischer, Wayne G; Beach, Robert E; Fowler, Mark R; Ju, Hyunsu; Aronson, Judith F; Afrouzian, Marjan
2017-05-01
The aim of this study was to determine the prevalence of bile cast nephropathy (BCN) in autopsied cirrhotic patients and to correlate BCN with clinical and laboratory data to direct attention to this underrecognized renal complication of liver failure. We assessed 114 autopsy cases of cirrhosis for the presence of renal intratubular bile casts using Hall stain for bile. Presence of bile casts was correlated with etiology of cirrhosis, clinical and laboratory data, and histologic findings. Bile casts were identified in 55% of cases. The most common etiology of cirrhosis was hepatitis C virus (HCV) infection (52%), and serum creatinine ( P = .02) and serum urea nitrogen ( P = .01) were significantly higher in the Hall-positive group. Conjugated bilirubin was below 20 mg/dL in 90%, and levels below 10 mg/dL were noted in 80% of cases. To our knowledge, this is the largest study of BCN in human subjects and a first report describing the association of BCN with HCV-related cirrhosis. We demonstrated that in the face of protracted chronic hyperbilirubinemia, bile casts are formed at much lower bilirubin levels than previously thought. Furthermore, we proposed an algorithm to assist in better identification of bile casts. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Yan, Hai-xin; Zhao, Yan-bo; Qin, Li-mei; Zhu, Hai-ting; Wu, Lin
2015-12-01
To investigate the changes of retentive force of cobalt-chromium alloy, pure titanium and vitallium cast clasps in the simulated 3-year clinical use. Fifteen metal abutment crowns made of No.QT800-2 nodular cast iron were used in the test. Five clasps from each of the following alloys: cobalt-chromium alloy, pure titanium and vitallium were fabricated. The undercut depth was 0.25 mm. A masticatory simulator was used to cycle the clasp on and off the metal abutment crown 5000 times, simulating 3-year clinical use. Retentive force was measured 11 times during this process. SPSS13.0 software package was used to analyze the results. Casting defects were observed using X-ray non destructive testing (X-ray NDT) before cyclic test. Surface characteristics were qualitatively evaluated using scanning electron microscope (SEM) before and after cyclic test. The results indicated that there were significant differences (P=0.000) in the retentive force of the 3 groups before and after the cyclic test. The highest retentive force was recorded in the vitallium clasps, and the lowest retentive force was measured in the pure titanium clasps. The results of X-ray NDT depicted the typical casting defect seen at the end of the connector. SEM examination revealed that no evidence of pores and cracks in the inner surfaces of the 3 groups was found before cyclic test. Wear was evident in the inner surfaces of the 3 groups but none of the clasps exhibited any evidence of cracks after cyclic test through SEM examination. In this in vitro test, vitallium clasps show the best retentive force in the 3 groups before and after 5000 cycles at 0.25 mm undercut depth. Cobalt-chromium alloy and vitallium clasps can maintain ideal retentive force at 0.25mm undercut depth in the long-term use. Wear may be one of the reasons for the loss of retentive force of clasps in the cyclic test.
NASA Astrophysics Data System (ADS)
Sitko, Rafał
2008-11-01
Knowledge of X-ray tube spectral distribution is necessary in theoretical methods of matrix correction, i.e. in both fundamental parameter (FP) methods and theoretical influence coefficient algorithms. Thus, the influence of X-ray tube distribution on the accuracy of the analysis of thin films and bulk samples is presented. The calculations are performed using experimental X-ray tube spectra taken from the literature and theoretical X-ray tube spectra evaluated by three different algorithms proposed by Pella et al. (X-Ray Spectrom. 14 (1985) 125-135), Ebel (X-Ray Spectrom. 28 (1999) 255-266), and Finkelshtein and Pavlova (X-Ray Spectrom. 28 (1999) 27-32). In this study, Fe-Cr-Ni system is selected as an example and the calculations are performed for X-ray tubes commonly applied in X-ray fluorescence analysis (XRF), i.e., Cr, Mo, Rh and W. The influence of X-ray tube spectra on FP analysis is evaluated when quantification is performed using various types of calibration samples. FP analysis of bulk samples is performed using pure-element bulk standards and multielement bulk standards similar to the analyzed material, whereas for FP analysis of thin films, the bulk and thin pure-element standards are used. For the evaluation of the influence of X-ray tube spectra on XRF analysis performed by theoretical influence coefficient methods, two algorithms for bulk samples are selected, i.e. Claisse-Quintin (Can. Spectrosc. 12 (1967) 129-134) and COLA algorithms (G.R. Lachance, Paper Presented at the International Conference on Industrial Inorganic Elemental Analysis, Metz, France, June 3, 1981) and two algorithms (constant and linear coefficients) for thin films recently proposed by Sitko (X-Ray Spectrom. 37 (2008) 265-272).
A novel approach to segmentation and measurement of medical image using level set methods.
Chen, Yao-Tien
2017-06-01
The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Gating geometry studies of thin-walled 17-4PH investment castings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maguire, M.C.; Zanner, F.J.
1992-11-01
The ability to design gating systems that reliably feed and support investment castings is often the result of ``cut-and-try`` methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less
Gating geometry studies of thin-walled 17-4PH investment castings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maguire, M.C.; Zanner, F.J.
1992-01-01
The ability to design gating systems that reliably feed and support investment castings is often the result of cut-and-try'' methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less
Search for chameleons with CAST
Anastassopoulos, V.; Arik, M.; Aune, S.; ...
2015-07-28
In this paper we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (β m) and to photons (β γ) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1 keV to 400 eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600 eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons tomore » photons of β γ≲10 11 for 1< β m < 10 6.« less
NASA Astrophysics Data System (ADS)
Klasik, Adam; Pietrzak, Krystyna; Makowska, Katarzyna; Sobczak, Jerzy; Rudnik, Dariusz; Wojciechowski, Andrzej
2016-08-01
Based on previous results, the commercial composites of A359 (AlSi9Mg) alloy reinforced with 22 vol.% Al2O3 particles were submitted to multiple remelting by means of gravity casting and squeeze-casting procedures. The studies were focused on tribological tests, x-ray phase analyses, and microstructural examinations. More promising results were obtained for squeeze-casting method mainly because of the reduction of the negative microstructural effects such as shrinkage porosity or other microstructural defects and discontinuities. The results showed that direct remelting may be treated as economically well-founded and alternative way compared to other recycling processes. It was underlined that the multiple remelting method must be analyzed for any material separately.
Crystallography and Morphology of MC Carbides in Niobium-Titanium Modified As-Cast HP Alloys
NASA Astrophysics Data System (ADS)
Buchanan, Karl G.; Kral, Milo V.; Bishop, Catherine M.
2014-07-01
The microstructures of two as-cast heats of HP alloy stainless steels modified with niobium and titanium were examined with particular attention paid to the interdendritic niobium-titanium-rich carbides formed during solidification of these alloys. Generally, these precipitates obtain a blocky morphology in the as-cast condition. However, the (NbTi)C precipitates may obtain a nodular morphology. To provide further insight to the origin of the two different morphologies obtained by the (NbTi)C precipitates in the HP-NbTi alloy, the microstructure and crystallography of each have been studied in detail using scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (EBSD, SAD, and CBED), and energy-dispersive X-ray spectroscopy.
Thompson, Geoffrey A; Luo, Qing; Hefti, Arthur
2013-12-01
Previous studies have shown casting methodology to influence the as-cast properties of dental casting alloys. It is important to consider clinically important mechanical properties so that the influence of casting can be clarified. The purpose of this study was to evaluate how torch/centrifugal and inductively cast and vacuum-pressure casting machines may affect the castability, microhardness, chemical composition, and microstructure of 2 high noble, 1 noble, and 1 base metal dental casting alloys. Two commonly used methods for casting were selected for comparison: torch/centrifugal casting and inductively heated/ vacuum-pressure casting. One hundred and twenty castability patterns were fabricated and divided into 8 groups. Four groups were torch/centrifugally cast in Olympia (O), Jelenko O (JO), Genesis II (G), and Liberty (L) alloys. Similarly, 4 groups were cast in O, JO, G, and L by an inductively induction/vacuum-pressure casting machine. Each specimen was evaluated for casting completeness to determine a castability value, while porosity was determined by standard x-ray techniques. Each group was metallographically prepared for further evaluation that included chemical composition, Vickers microhardness, and grain analysis of microstructure. Two-way ANOVA was used to determine significant differences among the main effects. Statistically significant effects were examined further with the Tukey HSD procedure for multiple comparisons. Data obtained from the castability experiments were non-normal and the variances were unequal. They were analyzed statistically with the Kruskal-Wallis rank sum test. Significant results were further investigated statistically with the Steel-Dwass method for multiple comparisons (α=.05). The alloy type had a significant effect on surface microhardness (P<.001). In contrast, the technique used for casting did not affect the microhardness of the test specimen (P=.465). Similarly, the interaction between the alloy and casting technique was not significant (P=.119). A high level of castability (98.5% on average) was achieved overall. The frequency of casting failures as a function of alloy type and casting method was determined. Failure was defined as a castability index score of <100%. Three of 28 possible comparisons between alloy and casting combinations were statistically significant. The results suggested that casting technique affects the castability index of alloys. Radiographic analysis detected large porosities in regions near the edge of the castability pattern and infrequently adjacent to noncast segments. All castings acquired traces of elements found in the casting crucibles. The grain size for each dental casting alloy was generally finer for specimens produced by the induction/vacuum-pressure method. The difference was substantial for JO and L. This study demonstrated a relation between casting techniques and some physical properties of metal ceramic casting alloys. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Ray-tracing method for creeping waves on arbitrarily shaped nonuniform rational B-splines surfaces.
Chen, Xi; He, Si-Yuan; Yu, Ding-Feng; Yin, Hong-Cheng; Hu, Wei-Dong; Zhu, Guo-Qiang
2013-04-01
An accurate creeping ray-tracing algorithm is presented in this paper to determine the tracks of creeping waves (or creeping rays) on arbitrarily shaped free-form parametric surfaces [nonuniform rational B-splines (NURBS) surfaces]. The main challenge in calculating the surface diffracted fields on NURBS surfaces is due to the difficulty in determining the geodesic paths along which the creeping rays propagate. On one single parametric surface patch, the geodesic paths need to be computed by solving the geodesic equations numerically. Furthermore, realistic objects are generally modeled as the union of several connected NURBS patches. Due to the discontinuity of the parameter between the patches, it is more complicated to compute geodesic paths on several connected patches than on one single patch. Thus, a creeping ray-tracing algorithm is presented in this paper to compute the geodesic paths of creeping rays on the complex objects that are modeled as the combination of several NURBS surface patches. In the algorithm, the creeping ray tracing on each surface patch is performed by solving the geodesic equations with a Runge-Kutta method. When the creeping ray propagates from one patch to another, a transition method is developed to handle the transition of the creeping ray tracing across the border between the patches. This creeping ray-tracing algorithm can meet practical requirements because it can be applied to the objects with complex shapes. The algorithm can also extend the applicability of NURBS for electromagnetic and optical applications. The validity and usefulness of the algorithm can be verified from the numerical results.
"FORCE" learning in recurrent neural networks as data assimilation
NASA Astrophysics Data System (ADS)
Duane, Gregory S.
2017-12-01
It is shown that the "FORCE" algorithm for learning in arbitrarily connected networks of simple neuronal units can be cast as a Kalman Filter, with a particular state-dependent form for the background error covariances. The resulting interpretation has implications for initialization of the learning algorithm, leads to an extension to include interactions between the weight updates for different neurons, and can represent relationships within groups of multiple target output signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev
2014-08-26
Adding a small amount of a processing additive to the casting solution of photoactive organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, the effects of the processing additive diiodooctane (DIO) on the morphology of the established blend of PBDTTT-C-T polymer and the fullerene derivative PC71BM used for OPVs are investigated, starting in the casting solution and tracing the effects in spun-cast thin filmsmore » by using neutron/X-ray scattering, neutron reflectometry, and other characterization techniques. The results reveal that DIO has no observable effect on the structures of PBDTTT-C-T and PC71BM in solution; however, in the spun-cast films, it significantly promotes their molecular ordering and phase segregation, resulting in improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation due to changes in concentration resulting from evaporation of the solvent and additive during film formation. Such information may help improve the rational design of ternary blends to more consistently achieve improved PCE for OPVs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Ming; Keum, Jong Kahk; Kumar, Rajeev
2014-01-01
Adding a small amount of a processing additive to the casting solution of organic blends has been demonstrated to be an effective method for achieving improved power conversion efficiency (PCE) in organic photovoltaics (OPVs). However, an understanding of the nano-structural evolution occurring in the transformation from casting solution to thin photoactive films is still lacking. In this report, we investigate the effects of the processing additive diiodooctane (DIO) on the morphology of OPV blend of PBDTTT-C-T and fullerene derivative, PC71BM in a casting solution and in spun-cast thin films by using neutron/x-ray scattering, neutron reflectometry and other characterization techniques. Themore » results reveal that DIO has no effect on the solution structures of PBDTTT-C-T and PC71BM. In the spun-cast films, however, DIO is found to promote significantly the molecular ordering of PBDTTT-C-T and PC71BM, and phase segregation, resulting in the improved PCE. Thermodynamic analysis based on Flory-Huggins theory provides a rationale for the effects of DIO on different characteristics of phase segregation as a solvent and due to evaporationg during the film formation. Such information may enable improved rational design of ternary blends to more consistently achieve improved PCE for OPVs.« less
Factors affecting bone mineral mass loss after lower-limb fractures in a pediatric population.
Ceroni, Dimitri; Martin, Xavier; Kherad, Omar; Salvo, Davide; Dubois-Ferrière, Victor
2015-06-01
The purpose of this study was to assess the effects of the durations of cast immobilization and non-weight-bearing periods, and decreases in vigorous physical activity (VPA) on bone mineral parameters in a pediatric population treated for a lower-limb fracture. Fifty children and teenagers who had undergone a cast-mediated immobilization for a leg or ankle fracture were prospectively recruited. The durations of cast immobilization and non-weight-bearing periods were recorded for each participant. Dual-energy x-ray absorptiometry scans were performed at the time of fracture treatment (baseline) and at cast removal. Physical activity during cast immobilization was assessed using accelerometers. A strong negative correlation was found between the total duration of cast immobilization and decreases in both calcaneal bone mineral density (BMD) (r=-0.497) and total lower-limb bone mineral content (BMC) (r=-0.405). A strong negative correlation was also noted between the durations of the non-weight-bearing periods and alterations in calcaneal BMD (r=-0.420). No apparent correlations were found between lower BMD and BMC and decreased VPA. Bone mineral loss was correlated to the total duration of cast immobilization for all measurement sites on the affected leg, whereas it was only correlated to the durations of non-weight-bearing periods for calcaneal BMD and total lower-limb BMC. However, no correlations were noted between bone mineral loss and decreased VPA.
FPGA based charge acquisition algorithm for soft x-ray diagnostics system
NASA Astrophysics Data System (ADS)
Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Zabolotny, W.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Krawczyk, R. D.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.
2015-09-01
Soft X-ray (SXR) measurement systems working in tokamaks or with laser generated plasma can expect high photon fluxes. Therefore it is necessary to focus on data processing algorithms to have the best possible efficiency in term of processed photon events per second. This paper refers to recently designed algorithm and data-flow for implementation of charge data acquisition in FPGA. The algorithms are currently on implementation stage for the soft X-ray diagnostics system. In this paper despite of the charge processing algorithm is also described general firmware overview, data storage methods and other key components of the measurement system. The simulation section presents algorithm performance and expected maximum photon rate.
ScienceCast 238: Southern Hemisphere Solar Eclipse
2017-02-24
On Sunday, February 26th, the moon will pass in front of the sun, transforming rays of sunlight across parts of South America, southern Africa and Antarctica into fat crescents and thin rings of light.
NASA Astrophysics Data System (ADS)
Hoggan, Rita E.; Harp, Jason M.
2018-02-01
Injection casting has historically been used to fabricate metallic nuclear fuel on a large scale. Casting of intermetallic fuel forms, such as U3Si2, may be an alternative pathway for fabrication of fuel pins to powder metallurgy. To investigate casting on a small scale, arc melt gravity drop casting was employed to cast a one-off pin of U3Si2 for evaluation as a fabrication method for U3Si2 as a light water reactor fuel. The pin was sectioned and examined via optical microscopy and scanning electron microscopy equipped with energy dispersive x-ray spectroscopy (EDS). Image analysis was used to estimate the volume fraction of phase impurities as well as porosity. The primary phase determined by EDS was U3Si2 with U-O and U-Si-W phase impurities. Unusually high levels of tungsten were observed because of accidental tungsten introduction during arc melting. No significant changes in microstructure were observed after annealing a section of the pin at 800°C for 72 h. The average density of the sectioned specimens was 12.4 g/cm3 measured via Archimedes principle immersion density and He gas displacement.
Effect of casting solvent on crystallinity of ondansetron in transdermal films.
Pattnaik, Satyanarayan; Swain, Kalpana; Mallick, Subrata; Lin, Zhiqun
2011-03-15
The purpose of the present investigation is to assess the influence of casting solvent on crystallinity of ondansetron hydrochloride in transdermal polymeric matrix films fabricated using povidone and ethyl cellulose as matrix forming polymers. Various casting solvents like chloroform (CHL), dichloromethane (DCM), methanol (MET); and mixture of chloroform and ethanol (C-ETH) were used for fabrication of the transdermal films. Analytical tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) studies, differential scanning calorimetry (DSC), etc. were utilized to characterize the crystalline state of ondansetron in the film. Recrystallisation was observed in all the transdermal films fabricated using the casting solvents other than chloroform. Long thin slab-looking, long wire-like or spherulite-looking crystals with beautiful impinged boundaries were observed in SEM. Moreover, XRD revealed no crystalline peaks of ondansetron hydrochloride in the transdermal films prepared using chloroform as casting solvent. The significantly decreased intensity and sharpness of the DSC endothermic peaks corresponding to the melting point of ondansetron in the formulation (specifically in CHL) indicated partial dissolution of ondansetron crystals in the polymeric films. The employed analytical tools suggested chloroform as a preferred casting solvent with minimum or practically absence of recrystallization indicating a relatively amorphous state of ondansetron in transdermal films. Copyright © 2011 Elsevier B.V. All rights reserved.
Perez, Louis A; Chou, Kang Wei; Love, John A; van der Poll, Thomas S; Smilgies, Detlef-M; Nguyen, Thuc-Quyen; Kramer, Edward J; Amassian, Aram; Bazan, Guillermo C
2013-11-26
Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Utilization of Space Shuttle External Tank materials by melting and powder metallurgy
NASA Technical Reports Server (NTRS)
Chern, T. S.
1985-01-01
The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.
Utilization of space shuttle external tank materials by melting and powder metallurgy
NASA Astrophysics Data System (ADS)
Chern, Terry S.
The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.
Water-induced nanochannel networks in self-assembled block ionomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineart, Kenneth P.; Al-Mohsin, Heba A.; Lee, Byeongdu
2016-03-07
Block ionomers cast from solution exhibit solvent-templated morphologies that can be altered by solvent-vapor annealing. When cast from a mixed solvent, a midblock-sulfonated pentablock ion- omer self-assembles into spherical ionic microdomains that are loosely connected. Upon exposure to liquid water, nanoscale channels irreversibly develop between the microdomains due to swelling and form a continuous mesoscale network. We use electron tomography and real-time X-ray scat- tering to follow this transformation and show that the resultant morphology provides a highly effec- tive diffusive pathway.
Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2005-01-01
Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.
Effect of Tunable Surface Potential on the Structure of Spin-Cast Polymeric Blend Films
NASA Astrophysics Data System (ADS)
Hawker, C.; Huang, E.; Russell, T. P.
1998-03-01
The demixing of binary polymeric mixtures has been studied with various surface potentials. This was performed by spin casting polystyrene/poly(methyl methacrylate) mixtures on to silicon substrates that had been modified with an end-grafted random copolymer brush layer. The composition of the random copolymer brush, containing the same monomeric components as the homopolymers can be varied in a precise manner over the entire concentration range. Atomic force and optical microscopy were used to study the morphology formed during spin casting and after annealing. Further insight into the structure was gained by rinsing these films with preferential solvents to remove one of the constituents and by performing the microscopy measurements. Finally, x-ray photoelectron spectroscopy, XPS, was used to elucidate the composition of the film near the air/polymer interface. Our data show that the resulting thin film structure depends strongly on the composition of the end grafted random copolymer film. Furthermore, the effect of thickness, solvent used in casting, and annealing conditions will be addressed.
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Shafizadeh, Mahdi; Nikzad, Siamak
2015-12-01
Semisolid stir joining has been under deliberation as a possible method for joining of copper alloys. In this study, the effect of temperature and rotational speed of stirrer on macrostructure evaluation and mechanical properties of samples were investigated. Optical microscopy and X-ray diffraction were performed for macro and microstructural analysis. A uniform micro-hardness profile was attained by semisolid stir joining method. The ultimate shear strength and bending strength of welded samples were improved in comparison with the cast sample. There is also lower area porosity in welded samples than the cast metal. The mechanical properties were improved by increasing temperature and rotational speed of the joining process.
Sinogram-based adaptive iterative reconstruction for sparse view x-ray computed tomography
NASA Astrophysics Data System (ADS)
Trinca, D.; Zhong, Y.; Wang, Y.-Z.; Mamyrbayev, T.; Libin, E.
2016-10-01
With the availability of more powerful computing processors, iterative reconstruction algorithms have recently been successfully implemented as an approach to achieving significant dose reduction in X-ray CT. In this paper, we propose an adaptive iterative reconstruction algorithm for X-ray CT, that is shown to provide results comparable to those obtained by proprietary algorithms, both in terms of reconstruction accuracy and execution time. The proposed algorithm is thus provided for free to the scientific community, for regular use, and for possible further optimization.
Pourghassem, Hossein
2012-01-01
Material detection is a vital need in dual energy X-ray luggage inspection systems at security of airport and strategic places. In this paper, a novel material detection algorithm based on statistical trainable models using 2-Dimensional power density function (PDF) of three material categories in dual energy X-ray images is proposed. In this algorithm, the PDF of each material category as a statistical model is estimated from transmission measurement values of low and high energy X-ray images by Gaussian Mixture Models (GMM). Material label of each pixel of object is determined based on dependency probability of its transmission measurement values in the low and high energy to PDF of three material categories (metallic, organic and mixed materials). The performance of material detection algorithm is improved by a maximum voting scheme in a neighborhood of image as a post-processing stage. Using two background removing and denoising stages, high and low energy X-ray images are enhanced as a pre-processing procedure. For improving the discrimination capability of the proposed material detection algorithm, the details of the low and high energy X-ray images are added to constructed color image which includes three colors (orange, blue and green) for representing the organic, metallic and mixed materials. The proposed algorithm is evaluated on real images that had been captured from a commercial dual energy X-ray luggage inspection system. The obtained results show that the proposed algorithm is effective and operative in detection of the metallic, organic and mixed materials with acceptable accuracy.
Data-Driven Neural Network Model for Robust Reconstruction of Automobile Casting
NASA Astrophysics Data System (ADS)
Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Lu
2017-09-01
In computer vision system, it is a challenging task to robustly reconstruct complex 3D geometries of automobile castings. However, 3D scanning data is usually interfered by noises, the scanning resolution is low, these effects normally lead to incomplete matching and drift phenomenon. In order to solve these problems, a data-driven local geometric learning model is proposed to achieve robust reconstruction of automobile casting. In order to relieve the interference of sensor noise and to be compatible with incomplete scanning data, a 3D convolution neural network is established to match the local geometric features of automobile casting. The proposed neural network combines the geometric feature representation with the correlation metric function to robustly match the local correspondence. We use the truncated distance field(TDF) around the key point to represent the 3D surface of casting geometry, so that the model can be directly embedded into the 3D space to learn the geometric feature representation; Finally, the training labels is automatically generated for depth learning based on the existing RGB-D reconstruction algorithm, which accesses to the same global key matching descriptor. The experimental results show that the matching accuracy of our network is 92.2% for automobile castings, the closed loop rate is about 74.0% when the matching tolerance threshold τ is 0.2. The matching descriptors performed well and retained 81.6% matching accuracy at 95% closed loop. For the sparse geometric castings with initial matching failure, the 3D matching object can be reconstructed robustly by training the key descriptors. Our method performs 3D reconstruction robustly for complex automobile castings.
Modeling, Materials, and Metrics: The Three-m Approach to FCS Signature Solutions
2002-05-07
calculations. These multiple levels will be incorporated into the MuSES software. The four levels are described as follows: "* Radiosity - Deterministic...view-factor-based, all-diffuse solution. Very fast. Independent of user position. "* Directional Reflectivity - Radiosity with directional incident...target and environment facets (view factor with BRDF). Last ray cast bounce = radiosity solution. "* Multi-bounce path trace - Rays traced from observer
Deptuch, Grzegorz W.; Fahim, Farah; Grybos, Pawel; ...
2017-06-28
An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less
Random lattice structures. Modelling, manufacture and FEA of their mechanical response
NASA Astrophysics Data System (ADS)
Maliaris, G.; Sarafis, I. T.; Lazaridis, T.; Varoutoglou, A.; Tsakataras, G.
2016-11-01
The implementation of lightweight structures in various applications, especially in Aerospace/ Automotive industries and Orthopaedics, has become a necessity due to their exceptional mechanical properties with respect to reduced weight. In this work we present a Voronoi tessellation based algorithm, which has been developed for modelling stochastic lattice structures. With the proposed algorithm, is possible to generate CAD geometry with controllable structural parameters, such as porosity, cell number and strut thickness. The digital structures were transformed into physical objects through the combination of 3D printing technics and investment casting. This process was applied to check the mechanical behaviour of generated digital models. Until now, the only way to materialize such structures into physical objects, was feasible through 3D printing methods such as Selective Laser Sintering/ Melting (SLS/ SLM). Investment casting possesses numerous advantages against SLS or SLA, with the major one being the material variety. On the other hand, several trials are required in order to calibrate the process parameters to have successful castings, which is the major drawback of investment casting. The manufactured specimens were subjected to compression tests, where their mechanical response was registered in the form of compressive load - displacement curves. Also, a finite element model was developed, using the specimens’ CAD data and compression test parameters. The FE assisted calculation of specimen plastic deformation is identical with the one of the physical object, which validates the conclusions drawn from the simulation results. As it was observed, strut contact is initiated when specimen deformation is approximately 5mm. Although FE calculated compressive force follows the same trend for the first 3mm of compression, then diverges because of the elasto-plastic FE model type definition and the occurred remeshing steps.
Hutchins, Daniel O; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E; Castner, David G; Ma, Hong; Jen, Alex K-Y
2012-11-15
Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlO x (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10 -8 A cm -2 and capacitance density of 0.62 µF cm -2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm 2 V -1 s -1 .
Influence of Casting Defects on S- N Fatigue Behavior of Ni-Al Bronze
NASA Astrophysics Data System (ADS)
Sarkar, Aritra; Chakrabarti, Abhishek; Nagesha, A.; Saravanan, T.; Arunmuthu, K.; Sandhya, R.; Philip, John; Mathew, M. D.; Jayakumar, T.
2015-02-01
Nickel-aluminum bronze (NAB) alloys have been used extensively in marine applications such as propellers, couplings, pump casings, and pump impellers due to their good mechanical properties such as tensile strength, creep resistance, and corrosion resistance. However, there have been several instances of in-service failure of the alloy due to high cycle fatigue (HCF). The present paper aims at characterizing the casting defects in this alloy through X-ray radiography and X-ray computed tomography into distinct defect groups having particular defect size and location. HCF tests were carried out on each defect group of as-cast NAB at room temperature by varying the mean stress. A significant decrease in the HCF life was observed with an increase in the tensile mean stress, irrespective of the defect size. Further, a considerable drop in the HCF life was observed with an increase in the size of defects and proximity of the defects to the surface. However, the surface proximity indicated by location of the defect in the sample was seen to override the influence of defect size and maximum cyclic stress. This leads to huge scatter in S- N curve. For a detailed quantitative analysis of defect size and location, an empirical model is developed which was able to minimize the scatter to a significant extent. Further, a concept of critical distance is proposed, beyond which the defect would not have a deleterious consequence on the fatigue behavior. Such an approach was found to be suitable for generating S- N curves for cast NAB.
Hutchins, Daniel O.; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E.; Castner, David G.; Ma, Hong; Jen, Alex K.-Y.
2013-01-01
Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlOx (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10−8 A cm−2 and capacitance density of 0.62 µF cm−2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm2 V−1 s−1. PMID:24288423
Jia, J; Liu, F; Ren, Q; Pei, X; Cao, R; Wu, Y
2012-06-01
Image-guided radiotherapy (IGRT) is becoming increasingly important in the planning and delivery of radiotherapy. With the aim of implementing the key technologies in a flexible and integrated way in IGRT for accurate radiotherapy system (ARTS), a prototype system named as ARTS-IGRT was designed and completed to apply main principles in image-guided radiotherapy. The basic workflow of the ARTS-IGRT software was completed with five functional modules including management of patient information, X-ray image acquisition, 2D/2D anatomy match, 2D/3D match as well as marker-based match. For 2D/2D match, an image registration method was proposed based on maximization of mutual information with multi-resolution and regions of interest. For the 2D/3D registration, optimizations have been employed to improve the existing digitally reconstructed radiography generation algorithm based on ray-casting, and also an image registration method based on implanted markers with different numbers was adopted for 3D/3D match. In additional, the kV X-Ray imaging on rail device was finished for a better internal anatomy image checking at any angle. Together with an infrared device, a positioning and tracking system was developed as well for accurate patient setup and motion monitoring during each treatment. A lot of tests were carried out based on the head phantom to testify the availability of the improved algorithms. Compared with a set of controlled experiments adopted on the released commercial IGRT platform in the hospital, the functions of both software and hardware were testified comprehensively. The results showed a validity verification of ARTS-IGRT. The accuracy and efficiency of ARTS-IGRT on both software and hardware proved to be valid. And also with a flexible and user-friendly interface it can meet the principles of clinical radiotherapy practice. Supported by the Natural Science Foundation of Anhui Province (11040606Q55) and the National Natural Science Foundation of China (30900386). © 2012 American Association of Physicists in Medicine.
Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin
2018-05-04
The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry.
Kim, Hae Ri; Jang, Seong-Ho; Kim, Young Kyung; Son, Jun Sik; Min, Bong Ki; Kim, Kyo-Han; Kwon, Tae-Yub
2016-01-01
The microstructures and mechanical properties of cobalt-chromium (Co-Cr) alloys produced by three CAD/CAM-based processing techniques were investigated in comparison with those produced by the traditional casting technique. Four groups of disc- (microstructures) or dumbbell- (mechanical properties) specimens made of Co-Cr alloys were prepared using casting (CS), milling (ML), selective laser melting (SLM), and milling/post-sintering (ML/PS). For each technique, the corresponding commercial alloy material was used. The microstructures of the specimens were evaluated via X-ray diffractometry, optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy, and electron backscattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test according to ISO 22674 (n = 6). The microstructure of the alloys was strongly influenced by the manufacturing processes. Overall, the SLM group showed superior mechanical properties, the ML/PS group being nearly comparable. The mechanical properties of the ML group were inferior to those of the CS group. The microstructures and mechanical properties of Co-Cr alloys were greatly dependent on the manufacturing technique as well as the chemical composition. The SLM and ML/PS techniques may be considered promising alternatives to the Co-Cr alloy casting process. PMID:28773718
NASA Astrophysics Data System (ADS)
Bhagat Singh, P.; Sabat, R. K.; Kumaran, S.; Suwas, S.
2018-02-01
In the present investigation, an effort has been made to understand the effect of aluminum addition to α Mg-Li alloys. The corresponding composition Mg-4Li- xAl ( x = 0, 2, 4 and 6 wt.%) alloys have been prepared by stir casting route under an argon environment. Extrusion was carried out at 300 °C with the extrusion ratio of 15:1. Significant grain refinement was observed after extrusion. X-ray diffraction-based investigation of the cast and extruded alloys showed the presence of intermetallic compounds such as Mg17Al12 and AlLi in the Al-rich alloys namely, Mg-4Li- xAl ( x = 4 and 6 wt.%). These precipitates were also present in the extruded plus annealed samples, indicating the stability of the precipitates at high temperature. The bulk x-ray texture measurement revealed a crystallographic texture where the c-axis of the h.c.p crystals was perpendicular to the extrusion direction (ED) for extruded sample. A texture transition was observed on annealing. The c-axis was oriented parallel to the ED. Mechanical properties of the cast, extruded and extruded plus annealed material illustrate that the addition of Al led to enhancement in hardness, yield strength and ultimate tensile strength.
Generating soft shadows with a depth buffer algorithm
NASA Technical Reports Server (NTRS)
Brotman, L. S.; Badler, N. I.
1984-01-01
Computer-synthesized shadows used to appear with a sharp edge when cast onto a surface. At present the production of more realistic, soft shadows is considered. However, significant costs arise in connection with such a representation. The current investigation is concerned with a pragmatic approach, which combines an existing shadowing method with a popular visible surface rendering technique, called a 'depth buffer', to generate soft shadows resulting from light sources of finite extent. The considered method represents an extension of Crow's (1977) shadow volume algorithm.
2011-01-01
0.25 s−1 to 0.75 s−1 The return mapping algorithm consists of an initial elastic predictor step, where the elastic response is assumed and the stresses...18 different loadings are used. The parameters F, G, H are solved by an iterative algorithm with C = 3. The step is repeated for different values of...a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 c⃝
Modeling the Homogenization Kinetics of As-Cast U-10wt% Mo alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Joshi, Vineet; Hu, Shenyang Y.
2016-01-15
Low-enriched U-22at% Mo (U-10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U-10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding ofmore » the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.« less
X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT
NASA Technical Reports Server (NTRS)
Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven;
2015-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.
Mohamed, Lamiaa Z; Ghanem, Wafaa A; El Kady, Omayma A; Lotfy, Mohamed M; Ahmed, Hafiz A; Elrefaie, Fawzi A
2017-11-01
The oxidation behavior of two types of inhomogeneous nickel was investigated in air at 1273 K for a total oxidation time of 100 h. The two types were porous sintered-nickel and microstructurally inhomogeneous cast-nickel. The porous-nickel samples were fabricated by compacting Ni powder followed by sintering in vacuum at 1473 K for 2 h. The oxidation kinetics of the samples was determined gravimetrically. The topography and the cross-section microstructure of each oxidized sample were observed using optical and scanning electron microscopy. X-ray diffractometry and X-ray energy dispersive analysis were used to determine the nature of the formed oxide phases. The kinetic results revealed that the porous-nickel samples had higher trend for irreproducibility. The average oxidation rate for porous- and cast-nickel samples was initially rapid, and then decreased gradually to become linear. Linear rate constants were 5.5 × 10 -8 g/cm 2 s and 3.4 × 10 -8 g/cm 2 s for the porous- and cast-nickel samples, respectively. Initially a single-porous non-adherent NiO layer was noticed on the porous- and cast-nickel samples. After a longer time of oxidation, a non-adherent duplex NiO scale was formed. The two layers of the duplex scales were different in color. NiO particles were observed in most of the pores of the porous-nickel samples. Finally, the linear oxidation kinetics and the formation of porous non-adherent duplex oxide scales on the inhomogeneous nickel substrates demonstrated that the addition of new layers of NiO occurred at the scale/metal interface due to the thermodynamically possible reaction between Ni and the molecular oxygen migrating inwardly.
Concept of a small satellite for sub-MeV and MeV all sky survey: the CAST mission
NASA Astrophysics Data System (ADS)
Nakazawa, Kazuhiro; Takahashi, Tadayuki; Ichinohe, Yuto; Takeda, Shin'ichiro; Tajima, Hiroyasu; Kamae, Tuneyoshi; Kokubun, Motohide; Takashima, Takeshi; Tashiro, Makoto; Tamagawa, Toru; Terada, Yukikatsu; Nomachi, Masaharu; Fukazawa, Yasushi; Makishima, Kazuo; Mizuno, Tsunefumi; Mitani, Takefumi; Yoshimitsu, Tetsuo; Watanabe, Shin
2012-09-01
MeV and sub-MeV energy band from ~200 keV to ~2 MeV contains rich information of high-energy phenomena in the universe. The CAST (Compton Telescope for Astro and Solar Terrestrial) mission is planned to be launched at the end of 2010s, and aims at providing all-sky map in this energy-band for the first time. It is made of a semiconductor Compton telescope utilizing Si as a scatterer and CdTe as an absorber. CAST provides allsky sub-MeV polarization map for the first time, as well. The Compton telescope technology is based on the design used in the Soft Gamma-ray Detector (SGD) onboard ASTRO-H, characterized by its tightly stacked semiconductor layers to obtain high Compton reconstruction efficiency. The CAST mission is currently planned as a candidate for the small scientific satellite series in ISAS/JAXA, weighting about 500 kg in total. Scalable detector design enables us to consider other options as well. Scientific outcome of CAST is wide. It will provide new information from high-energy sources, such as AGN and/or its jets, supernova remnants, magnetors, blackhole and neutron-star binaries and others. Polarization map will tell us about activities of jets and reflections in these sources, as well. In addition, CAST will simultaneously observe the Sun, and depending on its attitude, the Earth.
Farace, Paolo; Righetto, Roberto; Deffet, Sylvain; Meijers, Arturs; Vander Stappen, Francois
2016-12-01
To introduce a fast ray-tracing algorithm in pencil proton radiography (PR) with a multilayer ionization chamber (MLIC) for in vivo range error mapping. Pencil beam PR was obtained by delivering spots uniformly positioned in a square (45 × 45 mm 2 field-of-view) of 9 × 9 spots capable of crossing the phantoms (210 MeV). The exit beam was collected by a MLIC to sample the integral depth dose (IDD MLIC ). PRs of an electron-density and of a head phantom were acquired by moving the couch to obtain multiple 45 × 45 mm 2 frames. To map the corresponding range errors, the two-dimensional set of IDD MLIC was compared with (i) the integral depth dose computed by the treatment planning system (TPS) by both analytic (IDD TPS ) and Monte Carlo (IDD MC ) algorithms in a volume of water simulating the MLIC at the CT, and (ii) the integral depth dose directly computed by a simple ray-tracing algorithm (IDD direct ) through the same CT data. The exact spatial position of the spot pattern was numerically adjusted testing different in-plane positions and selecting the one that minimized the range differences between IDD direct and IDD MLIC . Range error mapping was feasible by both the TPS and the ray-tracing methods, but very sensitive to even small misalignments. In homogeneous regions, the range errors computed by the direct ray-tracing algorithm matched the results obtained by both the analytic and the Monte Carlo algorithms. In both phantoms, lateral heterogeneities were better modeled by the ray-tracing and the Monte Carlo algorithms than by the analytic TPS computation. Accordingly, when the pencil beam crossed lateral heterogeneities, the range errors mapped by the direct algorithm matched better the Monte Carlo maps than those obtained by the analytic algorithm. Finally, the simplicity of the ray-tracing algorithm allowed to implement a prototype procedure for automated spatial alignment. The ray-tracing algorithm can reliably replace the TPS method in MLIC PR for in vivo range verification and it can be a key component to develop software tools for spatial alignment and correction of CT calibration.
[Effect of heat treatment on the structure of a Cu-Zn-Al-Ni system dental alloy].
Guastaldi, A C; Adorno, A T; Beatrice, C R; Mondelli, J; Ishikiriama, A; Lacefield, W
1990-01-01
This article characterizes the structural phases present in the copper-based metallic alloy system "Cu-Zn-Al-Ni" developed for dental use, and relates those phases to other properties. The characterization was obtained after casting (using the lost wax process), and after heat treatment. In order to obtain better corrosion resistance by changing the microstructure, the castings were submitted to 30, 45 and 60 minutes of heat treatment at the following temperatures: 750 degrees C, 800 degrees C, and 850 degrees C. The various phases were analyzed using X-ray diffraction and scanning electron microscopy (SEM). The results after heat treatment showed a phase (probably Cu3Al), that could be responsible for the improvement in the alloy's resistance to corrosion as compared to the as-cast structure.
Color constancy by characterization of illumination chromaticity
NASA Astrophysics Data System (ADS)
Nikkanen, Jarno T.
2011-05-01
Computational color constancy algorithms play a key role in achieving desired color reproduction in digital cameras. Failure to estimate illumination chromaticity correctly will result in invalid overall colour cast in the image that will be easily detected by human observers. A new algorithm is presented for computational color constancy. Low computational complexity and low memory requirement make the algorithm suitable for resource-limited camera devices, such as consumer digital cameras and camera phones. Operation of the algorithm relies on characterization of the range of possible illumination chromaticities in terms of camera sensor response. The fact that only illumination chromaticity is characterized instead of the full color gamut, for example, increases robustness against variations in sensor characteristics and against failure of diagonal model of illumination change. Multiple databases are used in order to demonstrate the good performance of the algorithm in comparison to the state-of-the-art color constancy algorithms.
NASA Astrophysics Data System (ADS)
Gujral, Parth; Varshney, Swati; Dhawan, S. K.
2016-06-01
Fly ash and multiwalled carbon nanotubes (MWCNT) reinforced multiphase polyurethane (PU) composite sheets have been fabricated by using a solution casting technique. Utilization of fly ash was the prime objective in order to reduce environmental pollution and to enhance the shielding properties of PU polymer. Our study proves that fly ash particles with MWCNTs in a PU matrix leads to novel hybrid high performance electromagnetic shielding interference material. Scanning electron microscopy confirms the existence of fly ash particles along with MWCNTs in a PU matrix. This multiphase composite shows total shielding effectiveness of 35.8 dB (>99.99% attenuation) in the Ku-band (12.4-18 GHz) frequency range. This is attributed to high dielectric losses of reinforcement present in the polymers matrix. The Nicolson-Ross-Weir algorithm has been applied to calculate the electromagnetic attributes and dielectric parameters of the PU samples by using scattering parameters ( S 11, S 22, S 12, S 21). The synthesized multiphase composites were further characterized by using x-ray diffraction, Fourier transform infrared spectroscopy, and thermo gravimetric analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Zioutas, Konstantin
2010-08-15
We analyze the creation of chameleons deep inside the Sun (R{approx}0.7R{sub sun}) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, whenmore » regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.« less
Physical Evaluation of PVA/Chitosan Film Blends with Glycerine and Calcium Chloride
NASA Astrophysics Data System (ADS)
Nugraheni, A. D.; Purnawati, D.; Kusumaatmaja, A.
2018-04-01
PVA/chitosan film has been fabricated by using drop casting method. PVA/chitosan film is produced by dissolving 2% (w/v) PVA solution and 2% (w/v) chitosan solution. PVA/chitosan film is produced with weight ratio variation (w/w) 100/0, 75/25, 50/50 and 0/100. The film is fabricated using drop casting method in Petry dish with diameter 11 cm at room temperature and RH 50%–60% during seven days. The mechanical properties were characterized by using Universal Technical Machine (UTM) and UV-Vis to understand the physical properties of weight ratio (w/w) of PVA/Chitosan film by addition of plasticizer and calcium chloride. The film thickness tends to decrease with PVA content. The addition of chitosan will increase film thickness, and it will decrease swelling index, elongation (%), and transmittance of UV rays. The additions of plasticizer to PVA/Chitosan film will increase film thickness and elongation (%), and it will decrease swelling index, tensile strength and transmittance of UV rays. The crosslink of PVA/Chitosan film with calcium chloride will decrease film thickness, swelling index, elongation (%) and transmittance of UV rays, and increase tensile strength.
Texture and anisotropy in ferroelectric lead metaniobate
NASA Astrophysics Data System (ADS)
Iverson, Benjamin John
Ferroelectric lead metaniobate, PbNb2O6, is a piezoelectric ceramic typically used because of its elevated Curie temperature and anisotropic properties. However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics when compared to other ferroelectrics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of grains are better aligned. In this research, crystallographic textures induced through tape casting are distinguished from textures induced through electrical poling. Texture is described using multiple quantitative approaches utilizing X-ray and neutron time-of-flight diffraction. Tape casting lead metaniobate with an inclusion of acicular template particles induces an orthotropic texture distribution. Templated grain growth from seed particles oriented during casting results in anisotropic grain structures. The degree of preferred orientation is directly linked to the shear behavior of the tape cast slurry. Increases in template concentration, slurry viscosity, and casting velocity lead to larger textures by inducing more particle orientation in the tape casting plane. The maximum 010 texture distributions were two and a half multiples of a random distribution. Ferroelectric texture was induced by electrical poling. Electric poling increases the volume of material oriented with the spontaneous polarization direction in the material. Samples with an initial paraelectric texture exhibit a greater change in the domain volume fraction during electrical poling than randomly oriented ceramics. In tape cast samples, the resulting piezoelectric response is proportional to the 010 texture present prior to poling. This results in property anisotropy dependent on initial texture. Piezoelectric properties measured on the most textured ceramics were similar to those obtained with a commercial standard.
Analysis of surface scale on the Ni-based superalloy CMSX-10N and proposed mechanism of formation
NASA Astrophysics Data System (ADS)
Simmonds, S.; D'Souza, N.; Ryder, K. S.; Dong, H.
2012-01-01
There is a continuing demand to raise the operating temperature of jet engine turbine blades to meet the need for higher turbine entry temperatures (TET) in order to increase thermal efficiency and thrust. Modern, high-pressure turbine blades are made from Ni-based superalloys in single-crystal form via the investment casting process. One important post-cast surface defect, known as 'surface scale', has been investigated on the alloy CMSX-10N. This is an area of distinct discolouration of the aerofoil seen after casting. Auger electron and X-ray photoelectron spectroscopy analysis were carried out on both scaled and un-scaled areas. In the scaled region, a thin layer (~800nm) of Ni oxide is evident. In the un-scaled regions there is a thicker Al2O3 layer. It is shown that, as the blade cools during casting, differential thermal contraction of mould and alloy causes the solid blade to 'detach' from the mould in these scaled areas. The formation of Ni Oxides is facilitated by this separation.
NASA Astrophysics Data System (ADS)
Shashank Lingappa, M.; Srinath, M. S.; Amarendra, H. J.
2017-07-01
Microwave processing of metals is an emerging area. Melting of bulk metallic materials through microwave irradiation is still immature. In view of this, the present paper discusses the melting of bulk Al 1050 metallic material through microwave irradiation. The melting process is carried out successfully in a domestic microwave oven with 900 W power at 2450 MHz frequency. Metallurgical and mechanical characterization of the processed and as-received material is carried out. Aluminium phase is found to be dominant in processed material when tested through x-ray diffraction (XRD). Microstructure study of as-cast metal through scanning electron microscopy (SEM) reveals the formation of uniform hexagonal grain structure free from pores and cavities. The average tensile strength of the cast material is found to be around 21% higher, when compared to as-received material. Vickers’ microhardness of the as-cast metal is measured and is 10% higher than that of the as-received metal. Radiography on as-cast metal shows no significant defects. Al 1050 material melted through microwave irradiation has exhibited superior properties than the as-received Al 1050.
Ray Tracing Through Non-Imaging Concentrators
NASA Astrophysics Data System (ADS)
Greynolds, Alan W.
1984-01-01
A generalized algorithm for tracing rays through both imaging and non-imaging radiation collectors is presented. A computer program based on the algorithm is then applied to analyzing various two-stage Winston concentrators.
Tomography and the Herglotz-Wiechert inverse formulation
NASA Astrophysics Data System (ADS)
Nowack, Robert L.
1990-04-01
In this paper, linearized tomography and the Herglotz-Wiechert inverse formulation are compared. Tomographic inversions for 2-D or 3-D velocity structure use line integrals along rays and can be written in terms of Radon transforms. For radially concentric structures, Radon transforms are shown to reduce to Abel transforms. Therefore, for straight ray paths, the Abel transform of travel-time is a tomographic algorithm specialized to a one-dimensional radially concentric medium. The Herglotz-Wiechert formulation uses seismic travel-time data to invert for one-dimensional earth structure and is derived using exact ray trajectories by applying an Abel transform. This is of historical interest since it would imply that a specialized tomographic-like algorithm has been used in seismology since the early part of the century (see Herglotz, 1907; Wiechert, 1910). Numerical examples are performed comparing the Herglotz-Wiechert algorithm and linearized tomography along straight rays. Since the Herglotz-Wiechert algorithm is applicable under specific conditions, (the absence of low velocity zones) to non-straight ray paths, the association with tomography may prove to be useful in assessing the uniqueness of tomographic results generalized to curved ray geometries.
Teluguntla, Pardhasaradhi G.; Thenkabail, Prasad S.; Xiong, Jun N.; Gumma, Murali Krishna; Congalton, Russell G.; Oliphant, Adam; Poehnelt, Justin; Yadav, Kamini; Rao, Mahesh N.; Massey, Richard
2017-01-01
Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human water use globally. Given these facts and the increase in global population to nearly 10 billion by the year 2050, the need for routine, rapid, and automated cropland mapping year-after-year and/or season-after-season is of great importance. The overarching goal of this study was to generate standard and routine cropland products, year-after-year, over very large areas through the use of two novel methods: (a) quantitative spectral matching techniques (QSMTs) applied at continental level and (b) rule-based Automated Cropland Classification Algorithm (ACCA) with the ability to hind-cast, now-cast, and future-cast. Australia was chosen for the study given its extensive croplands, rich history of agriculture, and yet nonexistent routine yearly generated cropland products using multi-temporal remote sensing. This research produced three distinct cropland products using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m normalized difference vegetation index 16-day composite time-series data for 16 years: 2000 through 2015. The products consisted of: (1) cropland extent/areas versus cropland fallow areas, (2) irrigated versus rainfed croplands, and (3) cropping intensities: single, double, and continuous cropping. An accurate reference cropland product (RCP) for the year 2014 (RCP2014) produced using QSMT was used as a knowledge base to train and develop the ACCA algorithm that was then applied to the MODIS time-series data for the years 2000–2015. A comparison between the ACCA-derived cropland products (ACPs) for the year 2014 (ACP2014) versus RCP2014 provided an overall agreement of 89.4% (kappa = 0.814) with six classes: (a) producer’s accuracies varying between 72% and 90% and (b) user’s accuracies varying between 79% and 90%. ACPs for the individual years 2000–2013 and 2015 (ACP2000–ACP2013, ACP2015) showed very strong similarities with several other studies. The extent and vigor of the Australian croplands versus cropland fallows were accurately captured by the ACCA algorithm for the years 2000–2015, thus highlighting the value of the study in food security analysis. The ACCA algorithm and the cropland products are released through http://croplands.org/app/map and http://geography.wr.usgs.gov/science/croplands/algorithms/australia_250m.html
Energy dependent features of X-ray signals in a GridPix detector
NASA Astrophysics Data System (ADS)
Krieger, C.; Kaminski, J.; Vafeiadis, T.; Desch, K.
2018-06-01
We report on the calibration of an argon/isobutane (97.7%/2.3%)-filled GridPix detector with soft X-rays (277 eV to 8 keV) using the variable energy X-ray source of the CAST Detector Lab at CERN. We study the linearity and energy resolution of the detector using both the number of pixels hit and the total measured charge as energy measures. For the latter, the energy resolution σE / E is better than 10% (20%) for energies above 2 keV (0.5 keV). Several characteristics of the recorded events are studied.
Lee, JuneHyuck; Noh, Sang Do; Kim, Hyun-Jung; Kang, Yong-Shin
2018-01-01
The prediction of internal defects of metal casting immediately after the casting process saves unnecessary time and money by reducing the amount of inputs into the next stage, such as the machining process, and enables flexible scheduling. Cyber-physical production systems (CPPS) perfectly fulfill the aforementioned requirements. This study deals with the implementation of CPPS in a real factory to predict the quality of metal casting and operation control. First, a CPPS architecture framework for quality prediction and operation control in metal-casting production was designed. The framework describes collaboration among internet of things (IoT), artificial intelligence, simulations, manufacturing execution systems, and advanced planning and scheduling systems. Subsequently, the implementation of the CPPS in actual plants is described. Temperature is a major factor that affects casting quality, and thus, temperature sensors and IoT communication devices were attached to casting machines. The well-known NoSQL database, HBase and the high-speed processing/analysis tool, Spark, are used for IoT repository and data pre-processing, respectively. Many machine learning algorithms such as decision tree, random forest, artificial neural network, and support vector machine were used for quality prediction and compared with R software. Finally, the operation of the entire system is demonstrated through a CPPS dashboard. In an era in which most CPPS-related studies are conducted on high-level abstract models, this study describes more specific architectural frameworks, use cases, usable software, and analytical methodologies. In addition, this study verifies the usefulness of CPPS by estimating quantitative effects. This is expected to contribute to the proliferation of CPPS in the industry. PMID:29734699
NASA Astrophysics Data System (ADS)
Drezet, Jean-Marie; Mireux, Bastien; Kurtuldu, Güven; Magdysyuk, Oxana; Drakopoulos, Michael
2015-09-01
During solidification of metallic alloys, coalescence leads to the formation of solid bridges between grains or grain clusters when both solid and liquid phases are percolated. As such, it represents a key transition with respect to the mechanical behavior of solidifying alloys and to the prediction of solidification cracking. Coalescence starts at the coherency point when the grains begin to touch each other, but are unable to sustain any tensile loads. It ends up at mechanical coherency when the solid phase is sufficiently coalesced to transmit macroscopic tensile strains and stresses. Temperature at mechanical coherency is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for Al-Zn alloys using in situ X-ray diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is prevented. The cooling on both extremities of the mold induces a hot spot at the middle of the sample which is irradiated by X-ray. Diffraction patterns were recorded every 0.5 seconds using a detector covering a 426 × 426 mm2 area. The change of diffraction angles allowed measuring the general decrease of the lattice parameter of the fcc aluminum phase. At high solid volume fraction, a succession of strain/stress build up and release is explained by the formation of hot tears. Mechanical coherency temperatures, 829 K to 866 K (556 °C to 593 °C), and solid volume fractions, ca. 98 pct, are shown to depend on solidification time for grain refined Al-6.2 wt pct Zn alloys.
Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T
2003-06-01
The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P < 0.05). X-ray fluorescence analysis revealed that nickel was attached to the debonded resin surface of the resin-to-nickel bonded specimen, indicating that corrosion of high-purity nickel occurred at the resin-nickel interface. Durable bonding to super-elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.
Effects of recasting on the biocompatibility of a Ni-Cr alloy.
Zhang, Chang Yuan; Cheng, Hui; Lin, Dong Hong; Zheng, Ming; Ozcan, Mutlu; Zhao, Wei; Yu, Hao
2012-01-01
To evaluate the effects of recasting on the biocompatibility of a commercially available Ni-Cr alloy. The alloy tested was cast and subsequently recast four more times. For each cast condition, 24 disk shaped specimens were fabricated (5 mm in diameter, 0.5 mm in thickness). All the recasting was performed without adding new alloy. After the first cast and following each recast, the surface composition and microstructure of the alloy were determined using an X-ray fluorescence spectrometer and optical microscope, respectively. The in vitro cytotoxicity and in vivo mucous irritation potential of the cast and recast Ni-Cr alloy were investigated. The results were statistically analysed at the significance level of 0.05. Recasting neither yielded to cytotoxicity or to changes in the surface composition of the Ni-Cr alloy tested. However, an increase in impurities and porosity of the surface structure was observed with recasting. Also, the segregation of the impurities to grain boundaries was evident after multiple castings. After the fourth recast, the alloys showed significantly greater mucosal irritation than the control. After fourth recast, the alloy of this type may contribute to mucosal inflammation. Furthermore, there is a need for diverse methods addressing different biological endpoints for the evaluation of dental alloys.
A data distributed parallel algorithm for ray-traced volume rendering
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Painter, James S.; Hansen, Charles D.; Krogh, Michael F.
1993-01-01
This paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image compositing method, along with their implementation and performance on the Connection Machine CM-5, and networked workstations. This algorithm distributes both the data and the computations to individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume data, once distributed, is left intact. The processing nodes perform local ray tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Test results on both the CM-5 and a group of networked workstations demonstrate the practicality of our rendering algorithm and compositing method.
2D and 3D characterization of pore defects in die cast AM60
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhuofei; CanmetMATERIALS, 183 Longwood Road South, Hamilton L8P 0A5, Ontario Canada; Maurey, Alexandre
2016-04-15
The widespread application of die castings can be hampered due to the potential of large scale porosity to act as nucleation sites for fracture and fatigue. It is therefore important to develop robust approaches to the characterization of porosity providing parameters that can be linked to the material's mechanical properties. We have tackled this problem in a study of the AM60 die cast Mg alloy, using samples extracted from a prototype shock tower. A quantitative characterization of porosity has been undertaken, analyzing porosity in both 2D (using classical metallographic methods) and in 3D (using X-ray computed tomography (XCT)). Metallographic characterizationmore » results show that shrinkage pores and small gas pores can be distinguished based on their distinct geometrical features. Shrinkage pores are irregular with multiple arms, resulting in a form factor less than 0.4. In contrast, gas pores are generally more circular in shape yielding form factors larger than 0.6. XCT provides deeper insight into the shape of pores, although this understanding is limited by the resolution obtainable by laboratory based XCT. It also shows how 2D sectioning can produce artefacts as single complex pores are sectioned into multiple small pores. - Highlights: • Mg (e.g. AM60) die castings may contain large scale porosity that act as nucleation sites for fracture and fatigue • Quantitative characterization of porosity metallography (2D) and X-ray tomography (3D) is used • Shrinkage pores and small gas pores can be distinguished based on their distinct geometrical features. • Shrinkage pores are irregular giving a form factor < 0.4; gas pores are rounder with form factors > 0.6 • XCT enables pore visualization, although limited by the resolution obtainable by laboratory based XCT.« less
Advancing X-ray scattering metrology using inverse genetic algorithms.
Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph
2016-01-01
We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.
Friction surfaced Stellite6 coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid, E-mail: khalidrafi@gmail.com
2012-08-15
Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material formore » friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.« less
ERIC Educational Resources Information Center
Walker, Jearl
1984-01-01
Discusses the optics of fly fishing, considering where to cast the fly once a fish is seen. Also considers what the fisherman looks like to the fish, examining refraction at a water surface, actual and apparent light rays, and how sticks in the water might look to a fish. (JN)
MC carbide structures in M(lc2)ar-M247. M.S. Thesis - Final Report
NASA Technical Reports Server (NTRS)
Wawro, S. W.
1982-01-01
The morphologies and distribution of the MC carbides in Mar-M247 ingot stock and castings were investigated using metallographic, X-ray diffraction and energy-dispersive X-ray analysis techniques. The MC carbides were found to form script structures during solidification. The script structures were composed of three distinct parts. The central cores and elongated arms of the MC carbide script structures had compositions (Ti, Cr, Hf, Ta, W)C and lattice parameters of 4.39 A. The elongated script arms terminated in enlarged, angular "heads". The heads had compositions (Ti, Hf, Ta, W)C and lattice parameters of approximately 4.50 A. The heads had a higher Hf content than the cores and arms. The size of the script structures, as well as the relative amount of head-type to core and arm-type MC carbide, was found to be determined by solidification conditions. No carryover of the MC carbides from the ingot stock to the remelted and cast material was observed.
NASA Astrophysics Data System (ADS)
Mitter, Thomas; Grün, Hubert; Roither, Jürgen; Betz, Andreas; Bozorgi, Salar; Reitinger, Bernhard; Burgholzer, Peter
2014-05-01
In the continuous casting process the avoidance and rapid detection of occurring solidification cracks in the slab is a crucial issue, in particular for the maintenance of a high quality level in further production processes. Due to the elevated temperatures of the slab surface a remote sensing non-destructive tool for quality inspection is required, which is also applicable for the harsh industrial environment. In this work the application of laser ultrasound (LUS) technique during the continuous casting process in industrial environment is shown. The proof of principle of the detection of the centered solidification cracks is shown by pulse-echo measurements with laser ultrasonic equipment for inline quality inspection. Preliminary examinations in the lab of different casted samples have shown the distinguishability of slabs with and without any solidification cracks. Furthermore the damping of the bulk wave has been used for the prediction of the dimension of the crack. With an adapted "synthetic aperture focusing technique" (SAFT) algorithm the image reconstruction of multiple measurements at different positions around the circumference has provided enough information for the estimation of the localization and extension of the centered solidification cracks. Subsequent first measurements using this laser ultrasonic setup during the continuous casting of aluminum were carried out and showed the proof of principle in an industrial environment with elevated temperatures, dust, cooling water and vibrations.
USDA-ARS?s Scientific Manuscript database
An algorithm using a Bayesian classifier was developed to automatically detect olive fruit fly infestations in x-ray images of olives. The data set consisted of 249 olives with various degrees of infestation and 161 non-infested olives. Each olive was x-rayed on film and digital images were acquired...
Microstructure and Porosity of Laser Welds in Cast Ti-6Al-4V with Addition of Boron
NASA Astrophysics Data System (ADS)
Tolvanen, Sakari; Pederson, Robert; Klement, Uta
2018-03-01
Addition of small amounts of boron to cast Ti-6Al-4V alloy has shown to render a finer microstructure and improved mechanical properties. For such an improved alloy to be widely applicable for large aerospace structural components, successful welding of such castings is essential. In the present work, the microstructure and porosity of laser welds in a standard grade cast Ti-6Al-4V alloy as well as two modified alloy versions with different boron concentrations have been investigated. Prior-β grain reconstruction revealed the prior-β grain structure in the weld zones. In fusion zones of the welds, boron was found to refine the grain size significantly and rendered narrow elongated grains. TiB particles in the prior-β grain boundaries in the cast base material restricted grain growth in the heat-affected zone. The TiB particles that existed in the as cast alloys decreased in size in the fusion zones of welds. The hardness in the weld zones was higher than in the base material and boron did not have a significant effect on hardness of the weld zones. The fusion zones were smaller in the boron-modified alloys as compared with Ti-6Al-4V without boron. Computed tomography X-ray investigations of the laser welds showed that pores in the FZ of the boron modified alloys were confined to the lower part of the welds, suggesting that boron addition influences melt pool flow.
Self-assembly Morphology and Crystallinity Control of Di-block Copolymer Inspired by Spider Silk
NASA Astrophysics Data System (ADS)
Huang, Wenwen; Krishnaji, Sreevidhya; Kaplan, David; Cebe, Peggy
2012-02-01
To obtain a fuller understanding of the origin of self-assembly behavior, and thus be able to control the morphology of biomaterials with well defined amino acid sequences for tissue regeneration and drug delivery, we created a family of synthetic silk-based block copolymers inspired by the genetic sequences found in spider dragline, HABn and HBAn (n=1,2,3,6), where B = hydrophilic block, A = hydrophobic block, and H is a histidine tag. We assessed the secondary structure of water cast films by Fourier transform infrared spectroscopy (FTIR). The crystallinity was determined by Fourier self-deconvolution of amide I spectra and confirmed by wide angle X-ray diffraction (WAXD). Results indicate that we can control the self-assembled morphology and the crystallinity by varying the block length, and a minimum of 3 A-blocks are required to form beta sheet crystalline regions in water-cast spider silk block copolymers. The morphology and crystallinity can also be tuned by annealing. Thermal properties of water cast films and films annealed at 120 C were determined by differential scanning calorimetry and thermogravimetry. The sample films were also treated with 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) to obtain wholly amorphous samples, and crystallized by exposure to methanol. Using scanning and transmission electron microscopies, we observe that fibrillar networks and hollow micelles are formed in water cast and methanol cast samples, but not in samples cast from HFIP.
Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, D.; Robson, J.D.; Withers, P.J.
2015-06-15
Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al{sub 8}Mn{sub 5} in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallicmore » phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets.« less
On the Multilevel Solution Algorithm for Markov Chains
NASA Technical Reports Server (NTRS)
Horton, Graham
1997-01-01
We discuss the recently introduced multilevel algorithm for the steady-state solution of Markov chains. The method is based on an aggregation principle which is well established in the literature and features a multiplicative coarse-level correction. Recursive application of the aggregation principle, which uses an operator-dependent coarsening, yields a multi-level method which has been shown experimentally to give results significantly faster than the typical methods currently in use. When cast as a multigrid-like method, the algorithm is seen to be a Galerkin-Full Approximation Scheme with a solution-dependent prolongation operator. Special properties of this prolongation lead to the cancellation of the computationally intensive terms of the coarse-level equations.
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Ali; Abbasi, Seyed Mehdi; Madar, Karim Zangeneh
2018-04-01
The effects of boron and zirconium on cast structure, hardness, and tensile properties of the nickel-based superalloy 718Plus were investigated. For this purpose, five alloys with different contents of boron and zirconium were cast via vacuum induction melting and then purified via vacuum arc remelting. Microstructural analysis by light-optical microscope and scanning electron microscope equipped with energy-dispersive x-ray spectroscopy and phase studies by x-ray diffraction analysis were performed. The results showed that boron and zirconium tend to significantly reduce dendritic arm spacing and increase the amount of Laves, Laves/gamma eutectic, and carbide phases. It was also found that boron led to the formation of B4C and (Cr, Fe, Mo, Ni, Ti)3B2 phases and zirconium led to the formation of intermetallic phases and ZrC carbide. In the presence of boron and zirconium, the hardness and its difference between dendritic branches and inter-dendritic spaces increased by concentrating such phases as Laves in the inter-dendritic spaces. These elements had a negative effect on tensile properties of the alloy, including ductility and strength, mainly because of the increase in the Laves phase. It should be noted that the largest degradation of the tensile properties occurred in the alloys containing the maximum amount of zirconium.
PRISM: An open source framework for the interactive design of GPU volume rendering shaders.
Drouin, Simon; Collins, D Louis
2018-01-01
Direct volume rendering has become an essential tool to explore and analyse 3D medical images. Despite several advances in the field, it remains a challenge to produce an image that highlights the anatomy of interest, avoids occlusion of important structures, provides an intuitive perception of shape and depth while retaining sufficient contextual information. Although the computer graphics community has proposed several solutions to address specific visualization problems, the medical imaging community still lacks a general volume rendering implementation that can address a wide variety of visualization use cases while avoiding complexity. In this paper, we propose a new open source framework called the Programmable Ray Integration Shading Model, or PRISM, that implements a complete GPU ray-casting solution where critical parts of the ray integration algorithm can be replaced to produce new volume rendering effects. A graphical user interface allows clinical users to easily experiment with pre-existing rendering effect building blocks drawn from an open database. For programmers, the interface enables real-time editing of the code inside the blocks. We show that in its default mode, the PRISM framework produces images very similar to those produced by a widely-adopted direct volume rendering implementation in VTK at comparable frame rates. More importantly, we demonstrate the flexibility of the framework by showing how several volume rendering techniques can be implemented in PRISM with no more than a few lines of code. Finally, we demonstrate the simplicity of our system in a usability study with 5 medical imaging expert subjects who have none or little experience with volume rendering. The PRISM framework has the potential to greatly accelerate development of volume rendering for medical applications by promoting sharing and enabling faster development iterations and easier collaboration between engineers and clinical personnel.
PRISM: An open source framework for the interactive design of GPU volume rendering shaders
Collins, D. Louis
2018-01-01
Direct volume rendering has become an essential tool to explore and analyse 3D medical images. Despite several advances in the field, it remains a challenge to produce an image that highlights the anatomy of interest, avoids occlusion of important structures, provides an intuitive perception of shape and depth while retaining sufficient contextual information. Although the computer graphics community has proposed several solutions to address specific visualization problems, the medical imaging community still lacks a general volume rendering implementation that can address a wide variety of visualization use cases while avoiding complexity. In this paper, we propose a new open source framework called the Programmable Ray Integration Shading Model, or PRISM, that implements a complete GPU ray-casting solution where critical parts of the ray integration algorithm can be replaced to produce new volume rendering effects. A graphical user interface allows clinical users to easily experiment with pre-existing rendering effect building blocks drawn from an open database. For programmers, the interface enables real-time editing of the code inside the blocks. We show that in its default mode, the PRISM framework produces images very similar to those produced by a widely-adopted direct volume rendering implementation in VTK at comparable frame rates. More importantly, we demonstrate the flexibility of the framework by showing how several volume rendering techniques can be implemented in PRISM with no more than a few lines of code. Finally, we demonstrate the simplicity of our system in a usability study with 5 medical imaging expert subjects who have none or little experience with volume rendering. The PRISM framework has the potential to greatly accelerate development of volume rendering for medical applications by promoting sharing and enabling faster development iterations and easier collaboration between engineers and clinical personnel. PMID:29534069
Modeling of Dendritic Evolution of Continuously Cast Steel Billet with Cellular Automaton
NASA Astrophysics Data System (ADS)
Wang, Weiling; Ji, Cheng; Luo, Sen; Zhu, Miaoyong
2018-02-01
In order to predict the dendritic evolution during the continuous steel casting process, a simple mechanism to connect the heat transfer at the macroscopic scale and the dendritic growth at the microscopic scale was proposed in the present work. As the core of the across-scale simulation, a two-dimensional cell automaton (CA) model with a decentered square algorithm was developed and parallelized. Apart from nucleation undercooling and probability, a temperature gradient was introduced to deal with the columnar-to-equiaxed transition (CET) by considering its variation during continuous casting. Based on the thermal history, the dendritic evolution in a 4 mm × 40 mm region near the centerline of a SWRH82B steel billet was predicted. The influences of the secondary cooling intensity, superheat, and casting speed on the dendritic structure of the billet were investigated in detail. The results show that the predicted equiaxed dendritic solidification of Fe-5.3Si alloy and columnar dendritic solidification of Fe-0.45C alloy are consistent with in situ experimental results [Yasuda et al. Int J Cast Metals Res 22:15-21 (2009); Yasuda et al. ISIJ Int 51:402-408 (2011)]. Moreover, the predicted dendritic arm spacing and CET location agree well with the actual results in the billet. The primary dendrite arm spacing of columnar dendrites decreases with increasing secondary cooling intensity, or decreasing superheat and casting speed. Meanwhile, the CET is promoted as the secondary cooling intensity and superheat decrease. However, the CET is not influenced by the casting speed, owing to the adjusting of the flow rate of secondary spray water. Compared with the superheat and casting speed, the secondary cooling intensity can influence the cooling rate and temperature gradient in deeper locations, and accordingly exerts a more significant influence on the equiaxed dendritic structure.
Kohlmann, Rebekka; Gatermann, Sören G
2016-01-01
Many clinical microbiology laboratories report on cumulative antimicrobial susceptibility testing (cAST) data on a regular basis. Criteria for generation of cAST reports, however, are often obscure and inconsistent. Whereas the CLSI has published a guideline for analysis and presentation of cAST data, national guidelines directed at clinical microbiology laboratories are not available in Europe. Thus, we sought to describe the influence of different parameters in the process of cAST data analysis in the setting of a German routine clinical microbiology laboratory during 2 consecutive years. We developed various program scripts to assess the consequences ensuing from different algorithms for calculation of cumulative antibiograms from the data collected in our clinical microbiology laboratory in 2013 and 2014. One of the most pronounced effects was caused by exclusion of screening cultures for multi-drug resistant organisms which decreased the MRSA rate in some cases to one third. Dependent on the handling of duplicate isolates, i.e. isolates of the same species recovered from successive cultures on the same patient during the time period analyzed, we recorded differences in resistance rates of up to 5 percentage points for S. aureus, E. coli and K. pneumoniae and up to 10 percentage points for P. aeruginosa. Stratification by site of care and specimen type, testing of antimicrobials selectively on resistant isolates, change of interpretation rules and analysis at genus level instead of species level resulted in further changes of calculated antimicrobial resistance rates. The choice of parameters for cAST data analysis may have a substantial influence on calculated antimicrobial resistance rates. Consequently, comparability of cAST reports from different clinical microbiology laboratories may be limited. We suggest that laboratories communicate the strategy used for cAST data analysis as long as national guidelines for standardized cAST data analysis and reporting do not exist in Europe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, G. W.; Fahim, F.; Grybos, P.
An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel that recovers composite signals and event driven strobes to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32×32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3 μm X-ray beam. The results of these tests are given in the paper assessing physical implementation of the algorithm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deptuch, Grzegorz W.; Fahim, Farah; Grybos, Pawel
An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less
Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination
Park, Anjin; Lee, Byeong Ha; Eom, Joo Beom
2017-01-01
We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed 3D registration of an individual 3D point cloud, which includes alignment and merging the 3D point clouds to exhibit a 3D model of the dental cast. PMID:28714897
Modified signed-digit trinary arithmetic by using optical symbolic substitution.
Awwal, A A; Islam, M N; Karim, M A
1992-04-10
Carry-free addition and borrow-free subtraction of modified signed-digit trinary numbers with optical symbolic substitution are presented. The proposed two-step and three-step algorithms can be easily implemented by using phase-only holograms, optical content-addressable memories, a multichannel correlator, or a polarization-encoded optical shadow-casting system.
Modified signed-digit trinary arithmetic by using optical symbolic substitution
NASA Astrophysics Data System (ADS)
Awwal, A. A. S.; Islam, M. N.; Karim, M. A.
1992-04-01
Carry-free addition and borrow-free subtraction of modified signed-digit trinary numbers with optical symbolic substitution are presented. The proposed two-step and three-step algorithms can be easily implemented by using phase-only holograms, optical content-addressable memories, a multichannel correlator, or a polarization-encoded optical shadow-casting system.
Toward a unifying framework for evolutionary processes.
Paixão, Tiago; Badkobeh, Golnaz; Barton, Nick; Çörüş, Doğan; Dang, Duc-Cuong; Friedrich, Tobias; Lehre, Per Kristian; Sudholt, Dirk; Sutton, Andrew M; Trubenová, Barbora
2015-10-21
The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of 1500mm Wide Wrought Magnesium Alloys by Twin Roll Casting Technique in Turkey
NASA Astrophysics Data System (ADS)
Duygulu, Ozgur; Ucuncuoglu, Selda; Oktay, Gizem; Temur, Deniz Sultan; Yucel, Onuralp; Kaya, Ali Arslan
Magnesium alloy AZ31, AZ61, AZ91, AM50 and AM60 sheets were produced by twin roll casting first time in Turkey. Sheets of 4.5-6.5mm thick and 1500mm width were successfully achieved. Microstructure of the sheet was analyzed by optical microscope, scanning electron microscope (SEM) and transmission electron microscope (TEM). Semi-quantitative analyses were performed by SEM-EDS. In addition, X-ray studies were performed for both characterization and texture purposes. Mechanical properties were investigated by tensile tests and also hardness measurements. Homogenization and annealing heat treatments were performed on the produced sheets.
Wu, Lin; Zhu, Haiting; Gai, Xiuying; Wang, Yanyan
2014-01-01
Limited information is available regarding the microstructure and mechanical properties of dental alloy fabricated by selective laser melting (SLM). The purpose of this study was to evaluate the mechanical properties of a cobalt-chromium (Co-Cr) dental alloy fabricated by SLM and to determine the correlation between its microstructure and mechanical properties and its porcelain bond strength. Five metal specimens and 10 metal ceramic specimens were fabricated to evaluate the mechanical properties of SLM Co-Cr dental alloy (SLM alloy) with a tensile test and its porcelain bond strength with a 3-point bending test. The relevant properties of the SLM alloy were compared with those of the currently used Co-Cr dental alloy fabricated with conventional cast technology (cast alloy). The Student t test was used to compare the results of the SLM alloy and the cast alloy (α=.05). The microstructure of the SLM alloy was analyzed with a metallographic microscope; the metal ceramic interface of the SLM porcelain bonded alloy was studied with scanning electron microscopy, energy dispersive x-ray spectroscopy, and an electron probe microanalyzer. Both the mean (standard deviation) yield strength (884.37 ± 8.96 MPa) and tensile strength (1307.50 ±10.65 MPa) of the SLM alloy were notably higher than yield strength (568.10 ± 30.94 MPa) and tensile strength (758.73 ± 25.85 MPa) of the currently used cast alloy, and the differences were significant (P<.05). The porcelain bond strength of the SLM alloy was 55.78 ± 3.02 MPa, which was similar to that of the cast alloy, 54.17 ± 4.96 MPa (P>.05). Microstructure analysis suggested that the SLM alloy had a dense and obviously orientated microstructure, which led to excellent mechanical properties. Analysis from scanning electron microscopy, energy dispersive x-ray spectroscopy, and the electron probe microanalyzer indicated that the SLM alloy had an intermediate layer with elemental interpenetration between the alloy and the porcelain, which resulted in an improved bonding interface. Compared with the currently used cast alloy, SLM alloy possessed improved mechanical properties and similar porcelain bond strength. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
1987-05-15
Ozal did provide a " ray of hope" but he did not go far in casting much light on the subject. Ozal said: "Countries that have economic free zones...combat principles uniformly compiled according to the wording of all drill regulations by Major Wilberg, Oldenburg , 1912, second edition. 57 4
Potential Technology Transfer to the DoD Unmanned Ground Vehicle Program.
1996-10-01
Germany. This process combines x-ray lithography, galvanic casting, and micromolding technology and can be used to produce a variety of sensors and...whether circulation is being obstructed by atherosclerosis . Finally, work is being done at the University of Minnesota on a microrobotic device
Heat Treatment of Thixo-Formed Hypereutectic X210CrW12 Tool Steel
NASA Astrophysics Data System (ADS)
Rogal, Łukasz; Dutkiewicz, Jan
2012-12-01
Steel is a particularly challenging material to semisolid process because of the high temperatures involved and the potential for surface oxidation. Hot-rolled X210CrW12 tool steel was applied as a feedstock for thixoforming. The samples were heated up to 1525 K (1250 °C) to obtain 30 pct of the liquid phase. They were pressed in the semisolid state into a die preheated up to 473 K (200 °C) using a device based on a high-pressure die casting machine. As a result, a series of main bucket tooth thixo-casts for a mining combine was obtained. The microstructure of the thixo-cast consisted of austenite globular grains (average grain size 46 μm) surrounded by a eutectic mixture (ferrite, austenite, and M7C3 carbides). The average hardness of primary austenite grains was 470 HV0.02 and that of eutectic 551 HV0.02. The X-ray analysis confirmed the presence of 11.8 pct α-Fe, 82.4 pct γ-Fe, and 5.8 pct M7C3 carbides in the thixo-cast samples. Thermal and dilatometric effects were registered in the solid state, and the analysis of curves enabled the determination of characteristic temperatures of heat treatment: 503 K, 598 K, 693 K, 798 K, 828 K, 903 K, and 953 K (230 °C, 325 °C, 420 °C, 525 °C, 555 °C, 630 °C, 680 °C). The thixo-casts were annealed at these temperatures for 2 hours. During annealing in the temperature range 503 K to 693 K (230 °C to 420 °C), the hardness of primary globular grains continuously decreased down to 385HV0.02. The X-ray diffraction showed a slight shift of peaks responsible for the tension release. Moreover, after the treatment at 693 K (420 °C), an additional peak from precipitated carbides was observed in the X-ray diffraction. Thin plates of perlite (average hardness 820 HV0.02) with carbide precipitates appeared at the boundaries of globular grains at 798 K (525 °C). They occupied 17 pct of the grain area. Plates of martensite were found in the center of grains, while the retained austenite was observed among them (average hardness of center grains was 512 HV0.02). A nearly complete decomposition of metastable austenite was achieved after tempering at 828 K (555 °C) due to prevailing lamellar pearlite structure starting at grain boundaries and the martensite located in the center of the grains. The X-ray analysis confirmed the presence of 3.4 pct γ-Fe, 84.6 pct α-Fe, and 12 pct M7C3 carbides. The dilatometric analysis showed that the transformation of metastable austenite into martensite took place during cooling from 828 K (555 °C). The additional annealing at 523 K (250 °C) for 2 hours after heat treatment at 828 K (555 °C) caused the precipitation of carbides from the martensite. After tempering at 903 K (630 °C), the thixo-cast microstructure showed globular grains consisting mainly of thick lamellar perlite of the average hardness 555 HV0.02.
NASA Astrophysics Data System (ADS)
Kim, W.; Hahm, I.; Ahn, S. J.; Lim, D. H.
2005-12-01
This paper introduces a powerful method for determining hypocentral parameters for local earthquakes in 1-D using a genetic algorithm (GA) and two-point ray tracing. Using existing algorithms to determine hypocentral parameters is difficult, because these parameters can vary based on initial velocity models. We developed a new method to solve this problem by applying a GA to an existing algorithm, HYPO-71 (Lee and Larh, 1975). The original HYPO-71 algorithm was modified by applying two-point ray tracing and a weighting factor with respect to the takeoff angle at the source to reduce errors from the ray path and hypocenter depth. Artificial data, without error, were generated by computer using two-point ray tracing in a true model, in which velocity structure and hypocentral parameters were known. The accuracy of the calculated results was easily determined by comparing calculated and actual values. We examined the accuracy of this method for several cases by changing the true and modeled layer numbers and thicknesses. The computational results show that this method determines nearly exact hypocentral parameters without depending on initial velocity models. Furthermore, accurate and nearly unique hypocentral parameters were obtained, although the number of modeled layers and thicknesses differed from those in the true model. Therefore, this method can be a useful tool for determining hypocentral parameters in regions where reliable local velocity values are unknown. This method also provides the basic a priori information for 3-D studies. KEY -WORDS: hypocentral parameters, genetic algorithm (GA), two-point ray tracing
Li, Kai Chun; Prior, David J; Waddell, J Neil; Swain, Michael V
2015-12-01
The objective of this study was to identify the different microstructures produced by CC, PM and as-cast techniques for Co-Cr alloys and their phase stability following porcelain firings. Three bi-layer porcelain veneered Co-Cr specimens and one monolithic Co-Cr specimen of each alloy group [cast, powder metallurgy (PM), CAD/CAM (CC)] were manufactured and analyzed using electron backscatter diffraction (EBSD), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Specimens were treated to incremental numbers of porcelain firings (control 0, 5, 15) with crystallographic data, grain size and chemical composition subsequently obtained and analyzed. EBSD datasets of the cast alloy indicated large grains >200 μm whereas PM and CC alloy consisted of mean arithmetic grain sizes of 29.6 μm and 19.2 μm respectively. XRD and EBSD results both indicated the highest increase in hcp content (>13vol%) for cast Co-Cr alloy after treatment with porcelain firing while PM and CC indicated <2vol% hcp content. A fine grain interfacial layer developed on all surfaces of the alloy after porcelain firing. The depth of this layer increased with porcelain firings for as-cast and PM but no significant increase (p>.05) was observed in CC. EDS line scans indicated an increase in Cr content at the alloy surface after porcelain firing treatment for all three alloys. PM and CC produced alloy had superior fcc phase stability after porcelain firings compared to a traditional cast alloy. It is recommended that PM and CC alloys be used for porcelain-fused-to-metal restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita
2012-05-17
The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major stepsmore » of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.« less
Quantitative Electron Probe Microanalysis: State of the Art
NASA Technical Reports Server (NTRS)
Carpernter, P. K.
2005-01-01
Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.
Composition for radiation shielding
Kronberg, J.W.
1994-08-02
A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.
Composition for radiation shielding
Kronberg, James W.
1994-01-01
A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.
Automated segmentation and feature extraction of product inspection items
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1997-03-01
X-ray film and linescan images of pistachio nuts on conveyor trays for product inspection are considered. The final objective is the categorization of pistachios into good, blemished and infested nuts. A crucial step before classification is the separation of touching products and the extraction of features essential for classification. This paper addresses new detection and segmentation algorithms to isolate touching or overlapping items. These algorithms employ a new filter, a new watershed algorithm, and morphological processing to produce nutmeat-only images. Tests on a large database of x-ray film and real-time x-ray linescan images of around 2900 small, medium and large nuts showed excellent segmentation results. A new technique to detect and segment dark regions in nutmeat images is also presented and tested on approximately 300 x-ray film and approximately 300 real-time linescan x-ray images with 95-97 percent detection and correct segmentation. New algorithms are described that determine nutmeat fill ratio and locate splits in nutmeat. The techniques formulated in this paper are of general use in many different product inspection and computer vision problems.
NASA Astrophysics Data System (ADS)
Gok, Gokhan; Mosna, Zbysek; Arikan, Feza; Arikan, Orhan; Erdem, Esra
2016-07-01
Ionospheric observation is essentially accomplished by specialized radar systems called ionosondes. The time delay between the transmitted and received signals versus frequency is measured by the ionosondes and the received signals are processed to generate ionogram plots, which show the time delay or reflection height of signals with respect to transmitted frequency. The critical frequencies of ionospheric layers and virtual heights, that provide useful information about ionospheric structurecan be extracted from ionograms . Ionograms also indicate the amount of variability or disturbances in the ionosphere. With special inversion algorithms and tomographical methods, electron density profiles can also be estimated from the ionograms. Although structural pictures of ionosphere in the vertical direction can be observed from ionosonde measurements, some errors may arise due to inaccuracies that arise from signal propagation, modeling, data processing and tomographic reconstruction algorithms. Recently IONOLAB group (www.ionolab.org) developed a new algorithm for effective and accurate extraction of ionospheric parameters and reconstruction of electron density profile from ionograms. The electron density reconstruction algorithm applies advanced optimization techniques to calculate parameters of any existing analytical function which defines electron density with respect to height using ionogram measurement data. The process of reconstructing electron density with respect to height is known as the ionogram scaling or true height analysis. IONOLAB-RAY algorithm is a tool to investigate the propagation path and parameters of HF wave in the ionosphere. The algorithm models the wave propagation using ray representation under geometrical optics approximation. In the algorithm , the structural ionospheric characteristics arerepresented as realistically as possible including anisotropicity, inhomogenity and time dependence in 3-D voxel structure. The algorithm is also used for various purposes including calculation of actual height and generation of ionograms. In this study, the performance of electron density reconstruction algorithm of IONOLAB group and standard electron density profile algorithms of ionosondes are compared with IONOLAB-RAY wave propagation simulation in near vertical incidence. The electron density reconstruction and parameter extraction algorithms of ionosondes are validated with the IONOLAB-RAY results both for quiet anddisturbed ionospheric states in Central Europe using ionosonde stations such as Pruhonice and Juliusruh . It is observed that IONOLAB ionosonde parameter extraction and electron density reconstruction algorithm performs significantly better compared to standard algorithms especially for disturbed ionospheric conditions. IONOLAB-RAY provides an efficient and reliable tool to investigate and validate ionosonde electron density reconstruction algorithms, especially in determination of reflection height (true height) of signals and critical parameters of ionosphere. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.
NASA Astrophysics Data System (ADS)
Dorn-Wallenstein, Trevor Z.; Levesque, Emily
2017-11-01
Thanks to incredible advances in instrumentation, surveys like the Sloan Digital Sky Survey have been able to find and catalog billions of objects, ranging from local M dwarfs to distant quasars. Machine learning algorithms have greatly aided in the effort to classify these objects; however, there are regimes where these algorithms fail, where interesting oddities may be found. We present here an X-ray bright quasar misidentified as a red supergiant/X-ray binary, and a subsequent search of the SDSS quasar catalog for X-ray bright stars misidentified as quasars.
The nucleation and growth mechanism of Ni-Sn eutectic in a single crystal superalloy
NASA Astrophysics Data System (ADS)
Jiang, Weiguo; Wang, Li; Li, Xiangwei; Lou, Langhong
2017-12-01
The microstructure of single crystal superalloy with and without tin layer on the surface of as-cast and heat-treatment state was investigated by optical microscope (OM) and scanning electron microscopy (SEM). The composition of different regions on the surface was tested by energy dispersive X-ray (EDS). The reaction intermetallic compound (IMC) formed in the heat treatment process was confirmed by X-ray diffraction (XRD). The orientations of different microstructure in samples as heat treatment state were determined by electron back-scattering diffraction (EBSD) method. The porosity location in the interdendritic region was observed by X-ray computed tomography (XCT). The experiment results showed that the remained Sn on the surface of the superalloy reacted with Ni, and then formed Ni3Sn4 in the as-cast state. Sn enriched by diffusion along the porosity located in the interdendritic region and γ + γ‧ (contain a little of Sn) eutectic and Ni3Sn2 formed in single crystal superalloy during heat treatment, and the recalescence behaviors were found. Ni3Sn2 nucleated independently in the cooled liquid at the front of (γ + γ‧) (Sn) eutectic. The nucleation and growth mechanism of the eutectic and Ni3Sn2 IMC during heat treatment was discussed in the present paper.
X-Ray Radiography of Gas Turbine Ceramics.
1979-10-20
Microfocus X-ray equipment. 1a4ihe definition of equipment concepts for a computer assisted tomography ( CAT ) system; and 4ffthe development of a CAT ...were obtained from these test coupons using Microfocus X-ray and image en- hancement techniques. A Computer Assisted Tomography ( CAT ) design concept...monitor. Computer reconstruction algorithms were investigated with respect to CAT and a preferred approach was determined. An appropriate CAT algorithm
The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy.
Mrówka-Nowotnik, G; Sieniawski, J; Nowotnik, A
2010-03-01
This paper presents a chemical extraction technique for determination of intermetallic phases formed in the casting AlSi5Cu1Mg aluminium alloy. Commercial aluminium alloys contain a wide range of intermetallic particles that are formed during casting, homogenization and thermomechanical processing. During solidification, particles of intermetallics are dispersed in interdendritic spaces as fine primary phases. Coarse intermetallic compounds that are formed in this aluminium alloy are characterized by unique atomic arrangement (crystallographic structure), morphology, stability, physical and mechanical properties. The volume fraction, chemistry and morphology of the intermetallics significantly affect properties and material behaviour during thermomechanical processing. Therefore, accurate determination of intermetallics is essential to understand and control microstructural evolution in Al alloys. Thus, in this paper it is shown that chemical phenol extraction method can be applied for precise qualitative evaluation. The results of optical light microscopy LOM, scanning electron microscopy SEM and X-ray diffraction XRD analysis reveal that as-cast AlSi5Cu1Mg alloy contains a wide range of intermetallic phases such as Al(4)Fe, gamma- Al(3)FeSi, alpha-Al(8)Fe(2)Si, beta-Al(5)FeSi, Al(12)FeMnSi.
Soinila, E; Pihlajamäki, T; Bossuyt, S; Hänninen, H
2011-07-01
An arc-melting furnace which includes a tilt-casting facility was designed and built, for the purpose of producing bulk metallic glass specimens. Tilt-casting was chosen because reportedly, in combination with high-purity processing, it produces the best fatigue endurance in Zr-based bulk metallic glasses. Incorporating the alloying and casting facilities in a single piece of equipment reduces the amount of laboratory space and capital investment needed. Eliminating the sample transfer step from the production process also saves time and reduces sample contamination. This is important because the glass forming ability in many alloy systems, such as Zr-based glass-forming alloys, deteriorates rapidly with increasing oxygen content of the specimen. The challenge was to create a versatile instrument, in which high purity conditions can be maintained throughout the process, even when melting alloys with high affinity for oxygen. Therefore, the design provides a high-vacuum chamber to be filled with a low-oxygen inert atmosphere, and takes special care to keep the system hermetically sealed throughout the process. In particular, movements of the arc-melting electrode and sample manipulator arm are accommodated by deformable metal bellows, rather than sliding O-ring seals, and the whole furnace is tilted for tilt-casting. This performance of the furnace is demonstrated by alloying and casting Zr(55)Cu(30)Al(10)Ni(5) directly into rods up to ø 10 mm which are verified to be amorphous by x-ray diffraction and differential scanning calorimetry, and to exhibit locally ductile fracture at liquid nitrogen temperature.
Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip.
Paesani, S; Gentile, A A; Santagati, R; Wang, J; Wiebe, N; Tew, D P; O'Brien, J L; Thompson, M G
2017-03-10
Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, nonfault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a silicon quantum photonic device. The approach is verified to be well suited for prethreshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed.
Underwater image enhancement through depth estimation based on random forest
NASA Astrophysics Data System (ADS)
Tai, Shen-Chuan; Tsai, Ting-Chou; Huang, Jyun-Han
2017-11-01
Light absorption and scattering in underwater environments can result in low-contrast images with a distinct color cast. This paper proposes a systematic framework for the enhancement of underwater images. Light transmission is estimated using the random forest algorithm. RGB values, luminance, color difference, blurriness, and the dark channel are treated as features in training and estimation. Transmission is calculated using an ensemble machine learning algorithm to deal with a variety of conditions encountered in underwater environments. A color compensation and contrast enhancement algorithm based on depth information was also developed with the aim of improving the visual quality of underwater images. Experimental results demonstrate that the proposed scheme outperforms existing methods with regard to subjective visual quality as well as objective measurements.
An algorithm for automatic reduction of complex signal flow graphs
NASA Technical Reports Server (NTRS)
Young, K. R.; Hoberock, L. L.; Thompson, J. G.
1976-01-01
A computer algorithm is developed that provides efficient means to compute transmittances directly from a signal flow graph or a block diagram. Signal flow graphs are cast as directed graphs described by adjacency matrices. Nonsearch computation, designed for compilers without symbolic capability, is used to identify all arcs that are members of simple cycles for use with Mason's gain formula. The routine does not require the visual acumen of an interpreter to reduce the topology of the graph, and it is particularly useful for analyzing control systems described for computer analyses by means of interactive graphics.
Vertex shading of the three-dimensional model based on ray-tracing algorithm
NASA Astrophysics Data System (ADS)
Hu, Xiaoming; Sang, Xinzhu; Xing, Shujun; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan
2016-10-01
Ray Tracing Algorithm is one of the research hotspots in Photorealistic Graphics. It is an important light and shadow technology in many industries with the three-dimensional (3D) structure, such as aerospace, game, video and so on. Unlike the traditional method of pixel shading based on ray tracing, a novel ray tracing algorithm is presented to color and render vertices of the 3D model directly. Rendering results are related to the degree of subdivision of the 3D model. A good light and shade effect is achieved by realizing the quad-tree data structure to get adaptive subdivision of a triangle according to the brightness difference of its vertices. The uniform grid algorithm is adopted to improve the rendering efficiency. Besides, the rendering time is independent of the screen resolution. In theory, as long as the subdivision of a model is adequate, cool effects as the same as the way of pixel shading will be obtained. Our practical application can be compromised between the efficiency and the effectiveness.
Fast kinematic ray tracing of first- and later-arriving global seismic phases
NASA Astrophysics Data System (ADS)
Bijwaard, Harmen; Spakman, Wim
1999-11-01
We have developed a ray tracing algorithm that traces first- and later-arriving global seismic phases precisely (traveltime errors of the order of 0.1 s), and with great computational efficiency (15 rays s- 1). To achieve this, we have extended and adapted two existing ray tracing techniques: a graph method and a perturbation method. The two resulting algorithms are able to trace (critically) refracted, (multiply) reflected, some diffracted (Pdiff), and (multiply) converted seismic phases in a 3-D spherical geometry, thus including the largest part of seismic phases that are commonly observed on seismograms. We have tested and compared the two methods in 2-D and 3-D Cartesian and spherical models, for which both algorithms have yielded precise paths and traveltimes. These tests indicate that only the perturbation method is computationally efficient enough to perform 3-D ray tracing on global data sets of several million phases. To demonstrate its potential for non-linear tomography, we have applied the ray perturbation algorithm to a data set of 7.6 million P and pP phases used by Bijwaard et al. (1998) for linearized tomography. This showed that the expected heterogeneity within the Earth's mantle leads to significant non-linear effects on traveltimes for 10 per cent of the applied phases.
Probabilistic Common Spatial Patterns for Multichannel EEG Analysis
Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai
2015-01-01
Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228
Predicting hepatotoxicity using ToxCast in vitro bioactivity and ...
Background: The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors then used supervised machine learning to predict their hepatotoxic effects.Results: A set of 677 chemicals were represented by 711 in vitro bioactivity descriptors (from ToxCast assays), 4,376 chemical structure descriptors (from QikProp, OpenBabel, PADEL, and PubChem), and three hepatotoxicity categories (from animal studies). Hepatotoxicants were defined by rat liver histopathology observed after chronic chemical testing and grouped into hypertrophy (161), injury (101) and proliferative lesions (99). Classifiers were built using six machine learning algorithms: linear discriminant analysis (LDA), Naïve Bayes (NB), support vector classification (SVM), classification and regression trees (CART), k-nearest neighbors (KNN) and an ensemble of classifiers (ENSMB). Classifiers of hepatotoxicity were built using chemical structure, ToxCast bioactivity, and a hybrid representation. Predictive performance was evaluated using 10-fold cross-validation testing and in-loop, filter-based, feature subset selection. Hybrid classifiers had the best balanced accuracy for predicting hypertrophy (0.78±0.08), injury (0.73±0.10) and proliferative lesions (0.72±0.09). Though chemical and bioactivity class
Elimination of Hot Tears in Steel Castings by Means of Solidification Pattern Optimization
NASA Astrophysics Data System (ADS)
Kotas, Petr; Tutum, Cem Celal; Thorborg, Jesper; Hattel, Jesper Henri
2012-06-01
A methodology of how to exploit the Niyama criterion for the elimination of various defects such as centerline porosity, macrosegregation, and hot tearing in steel castings is presented. The tendency of forming centerline porosity is governed by the temperature distribution close to the end of the solidification interval, specifically by thermal gradients and cooling rates. The physics behind macrosegregation and hot tears indicate that these two defects also are dependent heavily on thermal gradients and pressure drop in the mushy zone. The objective of this work is to show that by optimizing the solidification pattern, i.e., establishing directional and progressive solidification with the help of the Niyama criterion, macrosegregation and hot tearing issues can be both minimized or eliminated entirely. An original casting layout was simulated using a transient three-dimensional (3-D) thermal fluid model incorporated in a commercial simulation software package to determine potential flaws and inadequacies. Based on the initial casting process assessment, multiobjective optimization of the solidification pattern of the considered steel part followed. That is, the multiobjective optimization problem of choosing the proper riser and chill designs has been investigated using genetic algorithms while simultaneously considering their impact on centerline porosity, the macrosegregation pattern, and primarily on hot tear formation.
X-ray simulation algorithms used in ISP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, John P.
ISP is a simulation code which is sometimes used in the USNDS program. ISP is maintained by Sandia National Lab. However, the X-ray simulation algorithm used by ISP was written by scientists at LANL – mainly by Ed Fenimore with some contributions from John Sullivan and George Neuschaefer and probably others. In email to John Sullivan on July 25, 2016, Jill Rivera, ISP project lead, said “ISP uses the function xdosemeters_sim from the xgen library.” The is a fortran subroutine which is also used to simulate the X-ray response in consim (a descendant of xgen). Therefore, no separate documentation ofmore » the X-ray simulation algorithms in ISP have been written – the documentation for the consim simulation can be used.« less
NASA Astrophysics Data System (ADS)
Yadav, T. P.; Mukhopadhyay, Semanti; Mishra, S. S.; Mukhopadhyay, N. K.; Srivastava, O. N.
2017-12-01
The high-entropy Ti-Zr-V-Cr-Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema's approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength ( 3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.
NASA Astrophysics Data System (ADS)
Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.
2015-08-01
AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.
Microstructure Aspects of a Newly Developed, Low Cost, Corrosion-Resistant White Cast Iron
NASA Astrophysics Data System (ADS)
Sain, P. K.; Sharma, C. P.; Bhargava, A. K.
2013-04-01
The purpose of this work is to study the influence of heat treatment on the corrosion resistance of a newly developed white cast iron, basically suitable for corrosion- and wear-resistant applications, and to attain a microstructure that is most suitable from the corrosion resistance point of view. The composition was selected with an aim to have austenitic matrix both in as-cast and heat-treated conditions. The difference in electrochemical potential between austenite and carbide is less in comparison to that between austenite and graphite. Additionally, graphitic corrosion which is frequently encountered in gray cast irons is absent in white cast irons. These basic facts encouraged us to undertake this work. Optical metallography, hardness testing, X-ray diffractometry, and SEM-EDX techniques were employed to identify the phases present in the as-cast and heat-treated specimens of the investigated alloy and to correlate microstructure with corrosion resistance and hardness. Corrosion testing was carried out in 5 pct NaCl solution (approximate chloride content of sea water) using the weight loss method. In the investigated alloy, austenite was retained the in as-cast and heat-treated conditions. The same was confirmed by X-ray and EDX analysis. The stability and volume fraction of austenite increased with an increase of heat-treated temperature/time with a simultaneous decrease in the volume fraction of massive carbides. The decrease in volume fraction of massive carbides resulted in the availability of alloying elements. These alloying elements, on increasing the heat treatment temperature or increasing the soaking period at certain temperatures, get dissolved in austenite. As a consequence, austenite gets enriched as well as becomes more stable. On cooling from lower soaking period/temperature, enriched austenite decomposes to lesser enriched austenite and to a dispersed phase due to decreasing solid solubility of alloying elements with decreasing temperature. The dispersed second phase precipitated from the austenite adversely influenced corrosion resistance due to unfavorable morphology and enhanced galvanic action. Corrosion rate and hardness were found to decrease with an increase in heat treatment temperatures/soaking periods. It was essentially due to the increase in the volume fraction and stability of the austenitic matrix and favorable morphology of the second phase (carbides). The corrosion resistance of the investigated alloy, heat treated at 1223 K (950 °C) for 8 hours, was comparable to that of Ni-Resist iron. Thus, a microstructure comprising austenite and nearly spherical and finer carbides is the most appropriate from a corrosion point of view. Fortunately, the literature reveals that the same microstructure is also well suited from a wear point of view. It confirms that this investigated alloy will be suitable for corrosive-wear applications.
Akberov, R F; Gorshkov, A N
1997-01-01
The X-ray endoscopic semiotics of precancerous gastric mucosal changes (epithelial dysplasia, intestinal epithelial rearrangement) was examined by the results of 1574 gastric examination. A diagnostic algorithm was developed for radiation studies in the diagnosis of the above pathology.
Aluminium alloys in municipal solid waste incineration bottom ash.
Hu, Yanjun; Rem, Peter
2009-05-01
With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.
Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S. M.; Xiao, X.; Faber, K. T.
Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less
The origin and location of the 5 March 1979 gamma-ray burst
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
1988-01-01
Evidence and arguments concerning the origin and location of the gamma-ray burst (GRB) of March 5, 1979 are reviewed. This GRB has been positionally identified with the SNR 49 in the LMC. Such an association would fix the GRB's distance at 55 kpc, and the observed flux from the GRB would require prodigious energy and luminosity, casting doubt on the GRB's distance and its association with the LMC. Some Kosmos 856 observations which may provide more direct evidence on the energy released are discussed.
NASA Astrophysics Data System (ADS)
Korshak, V. F.; Chushkina, R. A.; Shapovalov, Yu. A.; Mateichenko, P. V.
2011-07-01
Samples of a Bi-43 wt % Sn superplastic alloy have been studied by X-ray diffraction in the ascast state, after compression of as-cast samples to ˜70% on a hydraulic press, after aging in the as-cast and preliminarily compressed state, and using samples deformed under superplastic conditions. The X-ray diffraction studies have been carried out using a DRON-2.0 diffractometer in Cu Kα radiation. The samples aged and deformed under superplasticity conditions have been studied using electron-microprobe analysis in a JSM-820 scanning electron microscope equipped with a LINK AN/85S EDX system. It has been found that the initial structural-phase state of the alloy was amorphous-crystalline. Causes that lead to a change in this state upon deformation and aging are discussed. A conclusion is made that the superplasticity effect manifests itself against the background of processes that are stipulated by the tendency of the initially metastable alloy to phase equilibrium similarly to what is observed in the Sn-38 wt % Pb eutectic alloy studied earlier.
TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding
Liu, Yanhui; Qu, Weicheng; Su, Yu
2016-01-01
In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage. PMID:28773934
TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.
Liu, Yanhui; Qu, Weicheng; Su, Yu
2016-09-30
In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α -Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.
Evaluation of angiogram visualization methods for fast and reliable aneurysm diagnosis
NASA Astrophysics Data System (ADS)
Lesar, Žiga; Bohak, Ciril; Marolt, Matija
2015-03-01
In this paper we present the results of an evaluation of different visualization methods for angiogram volumetric data-ray casting, marching cubes, and multi-level partition of unity implicits. There are several options available with ray-casting: isosurface extraction, maximum intensity projection and alpha compositing, each producing fundamentally different results. Different visualization methods are suitable for different needs, so this choice is crucial in diagnosis and decision making processes. We also evaluate visual effects such as ambient occlusion, screen space ambient occlusion, and depth of field. Some visualization methods include transparency, so we address the question of relevancy of this additional visual information. We employ transfer functions to map data values to color and transparency, allowing us to view or hide particular tissues. All the methods presented in this paper were developed using OpenCL, striving for real-time rendering and quality interaction. An evaluation has been conducted to assess the suitability of the visualization methods. Results show superiority of isosurface extraction with ambient occlusion effects. Visual effects may positively or negatively affect perception of depth, motion, and relative positions in space.
Multiscale X-ray and Proton Imaging of Bismuth-Tin Solidification
NASA Astrophysics Data System (ADS)
Gibbs, P. J.; Imhoff, S. D.; Morris, C. L.; Merrill, F. E.; Wilde, C. H.; Nedrow, P.; Mariam, F. G.; Fezzaa, K.; Lee, W.-K.; Clarke, A. J.
2014-08-01
The formation of structural patterns during metallic solidification is complex and multiscale in nature, ranging from the nanometer scale, where solid-liquid interface properties are important, to the macroscale, where casting mold filling and intended heat transfer are crucial. X-ray and proton imaging can directly interrogate structure, solute, and fluid flow development in metals from the microscale to the macroscale. X-rays permit high spatio-temporal resolution imaging of microscopic solidification dynamics in thin metal sections. Similarly, high-energy protons permit imaging of mesoscopic and macroscopic solidification dynamics in large sample volumes. In this article, we highlight multiscale x-ray and proton imaging of bismuth-tin alloy solidification to illustrate dynamic measurement of crystal growth rates and solute segregation profiles that can be that can be acquired using these techniques.
Characterizing X-ray Attenuation of Containerized Cargo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birrer, N.; Divin, C.; Glenn, S.
X-ray inspection systems can be used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, the attenuation characteristics of imported cargo need to be determined. This project focused on developing image processing algorithms for segmenting cargo and using x-ray attenuation to quantify equivalent steel thickness to determine cargo density. These algorithms were applied to over 450 cargo radiographs. The results are summarized in this report.
Automated isotope identification algorithm using artificial neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair
There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less
Automated isotope identification algorithm using artificial neural networks
Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair
2017-04-12
There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.
2016-01-01
Richard O. Duda and Peter E. Hart of Stanford Research Institute in [1] described the recurring problem in computer image processing as the detection of straight lines in digitized images. The problem is to detect the presence of groups of collinear or almost collinear figure points. It is clear that the problem can be solved to any desired degree of accuracy by testing the lines formed by all pairs of points. However, the computation required for n=NxM points image is approximately proportional to n2 or O(n2), becoming prohibitive for large images or when data processing cadence time is in milliseconds. Rosenfeld in [2] described an ingenious method due to Hough [3] for replacing the original problem of finding collinear points by a mathematically equivalent problem of finding concurrent lines. This method involves transforming each of the figure points into a straight line in a parameter space. Hough chose to use the familiar slope-intercept parameters, and thus his parameter space was the two-dimensional slope-intercept plane. A parallel Hough transform running on multi-core processors was elaborated in [4]. There are many other proposed methods of solving a similar problem, such as sampling-up-the-ramp algorithm (SUTR) [5] and algorithms involving artificial swarm intelligence techniques [6]. However, all state-of-the-art algorithms lack in real time performance. Namely, they are slow for large images that require performance cadence of a few dozens of milliseconds (50ms). This problem arises in spaceflight applications such as near real-time analysis of gamma ray measurements contaminated by overwhelming amount of traces of cosmic rays (CR). Future spaceflight instruments such as the Advanced Energetic Pair Telescope instrument (AdEPT) [7-9] for cosmos gamma ray survey employ large detector readout planes registering multitudes of cosmic ray interference events and sparse science gamma ray event traces' projections. The AdEPT science of interest is in the gamma ray events and the problem is to detect and reject the much more voluminous cosmic ray projections, so that the remaining science data can be telemetered to the ground over the constrained communication link. The state-of-the-art in cosmic rays detection and rejection does not provide an adequate computational solution. This paper presents a novel approach to the AdEPT on-board data processing burdened with the CR detection top pole bottleneck problem. This paper is introducing the data processing object, demonstrates object segmentation and distribution for processing among many processing elements (PEs) and presents solution algorithm for the processing bottleneck - the CR-Algorithm. The algorithm is based on the a priori knowledge that a CR pierces the entire instrument pressure vessel. This phenomenon is also the basis for a straightforward CR simulator, allowing the CR-Algorithm performance testing. Parallel processing of the readout image's (2(N+M) - 4) peripheral voxels is detecting all CRs, resulting in O(n) computational complexity. This algorithm near real-time performance is making AdEPT class spaceflight instruments feasible.
Xiao, Kai; Chen, Danny Z; Hu, X Sharon; Zhou, Bo
2012-12-01
The three-dimensional digital differential analyzer (3D-DDA) algorithm is a widely used ray traversal method, which is also at the core of many convolution∕superposition (C∕S) dose calculation approaches. However, porting existing C∕S dose calculation methods onto graphics processing unit (GPU) has brought challenges to retaining the efficiency of this algorithm. In particular, straightforward implementation of the original 3D-DDA algorithm inflicts a lot of branch divergence which conflicts with the GPU programming model and leads to suboptimal performance. In this paper, an efficient GPU implementation of the 3D-DDA algorithm is proposed, which effectively reduces such branch divergence and improves performance of the C∕S dose calculation programs running on GPU. The main idea of the proposed method is to convert a number of conditional statements in the original 3D-DDA algorithm into a set of simple operations (e.g., arithmetic, comparison, and logic) which are better supported by the GPU architecture. To verify and demonstrate the performance improvement, this ray traversal method was integrated into a GPU-based collapsed cone convolution∕superposition (CCCS) dose calculation program. The proposed method has been tested using a water phantom and various clinical cases on an NVIDIA GTX570 GPU. The CCCS dose calculation program based on the efficient 3D-DDA ray traversal implementation runs 1.42 ∼ 2.67× faster than the one based on the original 3D-DDA implementation, without losing any accuracy. The results show that the proposed method can effectively reduce branch divergence in the original 3D-DDA ray traversal algorithm and improve the performance of the CCCS program running on GPU. Considering the wide utilization of the 3D-DDA algorithm, various applications can benefit from this implementation method.
NASA Astrophysics Data System (ADS)
2004-05-01
A rare celestial event was captured by NASA's Chandra X-ray Observatory as Titan -- Saturn's largest moon and the only moon in the Solar System with a thick atmosphere -- crossed in front of the X-ray bright Crab Nebula. The X-ray shadow cast by Titan allowed astronomers to make the first X-ray measurement of the extent of its atmosphere. On January 5, 2003, Titan transited the Crab Nebula, the remnant of a supernova explosion that was observed to occur in the year 1054. Although Saturn and Titan pass within a few degrees of the Crab Nebula every 30 years, they rarely pass directly in front of it. "This may have been the first transit of the Crab Nebula by Titan since the birth of the Crab Nebula," said Koji Mori of Pennsylvania State University in University Park, and lead author on an Astrophysical Journal paper describing these results. "The next similar conjunction will take place in the year 2267, so this was truly a once in a lifetime event." Animation of Titan's Shadow on Crab Nebula Animation of Titan's Shadow on Crab Nebula Chandra's observation revealed that the diameter of the X-ray shadow cast by Titan was larger than the diameter of its solid surface. The difference in diameters gives a measurement of about 550 miles (880 kilometers) for the height of the X-ray absorbing region of Titan's atmosphere. The extent of the upper atmosphere is consistent with, or slightly (10-15%) larger, than that implied by Voyager I observations made at radio, infrared, and ultraviolet wavelengths in 1980. "Saturn was about 5% closer to the Sun in 2003, so increased solar heating of Titan may account for some of this atmospheric expansion," said Hiroshi Tsunemi of Osaka University in Japan, one of the coauthors on the paper. The X-ray brightness and extent of the Crab Nebula made it possible to study the tiny X-ray shadow cast by Titan during its transit. By using Chandra to precisely track Titan's position, astronomers were able to measure a shadow one arcsecond in diameter, which corresponds to the size of a dime as viewed from about two and a half miles. Illustration of Crab, Titan's Shadow and Chandra Illustration of Crab, Titan's Shadow and Chandra Unlike almost all of Chandra's images which are made by focusing X-ray emission from cosmic sources, Titan's X-ray shadow image was produced in a manner similar to a medical X-ray. That is, an X-ray source (the Crab Nebula) is used to make a shadow image (Titan and its atmosphere) that is recorded on film (Chandra's ACIS detector). Titan's atmosphere, which is about 95% nitrogen and 5% methane, has a pressure near the surface that is one and a half times the Earth's sea level pressure. Voyager I spacecraft measured the structure of Titan's atmosphere at heights below about 300 miles (500 kilometers), and above 600 miles (1000 kilometers). Until the Chandra observations, however, no measurements existed at heights in the range between 300 and 600 miles. Understanding the extent of Titan's atmosphere is important for the planners of the Cassini-Huygens mission. The Cassini-Huygens spacecraft will reach Saturn in July of this year to begin a four-year tour of Saturn, its rings and its moons. The tour will include close flybys of Titan that will take Cassini as close as 600 miles, and the launching of the Huygens probe that will land on Titan's surface. Chandra's X-ray Shadow of Titan Chandra's X-ray Shadow of Titan "If Titan's atmosphere has really expanded, the trajectory may have to be changed." said Tsunemi. The paper on these results has been accepted and is expected to appear in a June 2004 issue of The Astrophysical Journal. Other members of the research team were Haroyoski Katayama (Osaka University), David Burrows and Gordon Garmine (Penn State University), and Albert Metzger (JPL). Chandra observed Titan from 9:04 to 18:46 UT on January 5, 2003, using its Advanced CCD Imaging Spectrometer instrument. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hao-Ze, E-mail: lhzqq83@163.com; Liu, Hai-Tao; Liu, Zhen-Yu, E-mail: zyliu@mail.neu.edu.cn
A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious
Hierarchical modeling of professional skills in the field of castings manufacture engineering
NASA Astrophysics Data System (ADS)
Samuilă, V.; Soporan, V. F.; Conțiu, G.; Pădurețu, S.; Lehene, T. R.; Vescan, M. M.
2017-06-01
The paper presents a method of hierarchizing professional skills in the manufacturing of molded parts (castings) by using and adapting the FAHP algorithm (Fuzzy Analitical Hierarchy Process). Assessments are made regarding the peculiarities of the professional training process, specifying the activities to be carried out and the competences necessary for their development. The contribution of the design of the method extends to the design of the hierarchy system architecture, the linguistic determination of the importance of each characteristic, the construction of the fuzzy ordering matrices for each stage of the process, the determination of the share of the characteristics for each hierarchy step and establishing the hierarchy of the characteristics taking into account the influences of the others, grouped at the level of the steps and within the global matrix. The research carried out represents the support for generating an instrument of hierarchy of professional competencies that can be used in various professional and institutional contexts. Case study on the hierarchy of professional skills in the manufacturing of molded parts engineering. Keywords: Materials engineering, castings manufacture professional skills, hierarchy, AHP method, standard occupational curriculum.
Prediction of Contact Fatigue Life of Alloy Cast Steel Rolls Using Back-Propagation Neural Network
NASA Astrophysics Data System (ADS)
Jin, Huijin; Wu, Sujun; Peng, Yuncheng
2013-12-01
In this study, an artificial neural network (ANN) was employed to predict the contact fatigue life of alloy cast steel rolls (ACSRs) as a function of alloy composition, heat treatment parameters, and contact stress by utilizing the back-propagation algorithm. The ANN was trained and tested using experimental data and a very good performance of the neural network was achieved. The well-trained neural network was then adopted to predict the contact fatigue life of chromium alloyed cast steel rolls with different alloy compositions and heat treatment processes. The prediction results showed that the maximum value of contact fatigue life was obtained with quenching at 960 °C, tempering at 520 °C, and under the contact stress of 2355 MPa. The optimal alloy composition was C-0.54, Si-0.66, Mn-0.67, Cr-4.74, Mo-0.46, V-0.13, Ni-0.34, and Fe-balance (wt.%). Some explanations of the predicted results from the metallurgical viewpoints are given. A convenient and powerful method of optimizing alloy composition and heat treatment parameters of ACSRs has been developed.
PS3 CELL Development for Scientific Computation and Research
NASA Astrophysics Data System (ADS)
Christiansen, M.; Sevre, E.; Wang, S. M.; Yuen, D. A.; Liu, S.; Lyness, M. D.; Broten, M.
2007-12-01
The Cell processor is one of the most powerful processors on the market, and researchers in the earth sciences may find its parallel architecture to be very useful. A cell processor, with 7 cores, can easily be obtained for experimentation by purchasing a PlayStation 3 (PS3) and installing linux and the IBM SDK. Each core of the PS3 is capable of 25 GFLOPS giving a potential limit of 150 GFLOPS when using all 6 SPUs (synergistic processing units) by using vectorized algorithms. We have used the Cell's computational power to create a program which takes simulated tsunami datasets, parses them, and returns a colorized height field image using ray casting techniques. As expected, the time required to create an image is inversely proportional to the number of SPUs used. We believe that this trend will continue when multiple PS3s are chained using OpenMP functionality and are in the process of researching this. By using the Cell to visualize tsunami data, we have found that its greatest feature is its power. This fact entwines well with the needs of the scientific community where the limiting factor is time. Any algorithm, such as the heat equation, that can be subdivided into multiple parts can take advantage of the PS3 Cell's ability to split the computations across the 6 SPUs reducing required run time by one sixth. Further vectorization of the code can allow for 4 simultanious floating point operations by using the SIMD (single instruction multiple data) capabilities of the SPU increasing efficiency 24 times.
Measurement of Solid Rocket Propellant Burning Rate Using X-ray Imaging
NASA Astrophysics Data System (ADS)
Denny, Matthew D.
The burning rate of solid propellants can be difficult to measure for unusual burning surface geometries, but X-ray imaging can be used to measure burning rate. The objectives of this work were to measure the baseline burning rate of an electrically-controlled solid propellant (ESP) formulation with real-time X-ray radiography and to determine the uncertainty of the measurements. Two edge detection algorithms were written to track the burning surface in X-ray videos. The edge detection algorithms were informed by intensity profiles of simulated 2-D X-ray images. With a 95% confidence level, the burning rates measured by the Projected-Slope Intersection algorithm in the two combustion experiments conducted were 0.0839 in/s +/-2.86% at an average pressure of 407 psi +/-3.6% and 0.0882 in/s +/-3.04% at 410 psi +/-3.9%. The uncertainty percentages were based on the statistics of a Monte Carlo analysis on burning rate.
Direct integration of the inverse Radon equation for X-ray computed tomography.
Libin, E E; Chakhlov, S V; Trinca, D
2016-11-22
A new mathematical appoach using the inverse Radon equation for restoration of images in problems of linear two-dimensional x-ray tomography is formulated. In this approach, Fourier transformation is not used, and it gives the chance to create the practical computing algorithms having more reliable mathematical substantiation. Results of software implementation show that for especially for low number of projections, the described approach performs better than standard X-ray tomographic reconstruction algorithms.
Localization algorithms for micro-channel x-ray telescope on board SVOM space mission
NASA Astrophysics Data System (ADS)
Gosset, L.; Götz, D.; Osborne, J.; Willingale, R.
2016-07-01
SVOM is a French-Chinese space mission to be launched in 2021, whose goal is the study of Gamma-Ray Bursts, the most powerful stellar explosions in the Universe. The Micro-channel X-ray Telescope (MXT) is an X-ray focusing telescope, on board SVOM, with a field of view of 1 degree (working in the 0.2-10 keV energy band), dedicated to the rapid follow-up of the Gamma-Ray Bursts counterparts and to their precise localization (smaller than 2 arc minutes). In order to reduce the optics mass and to have an angular resolution of few arc minutes, a "lobster-Eye" configuration has been chosen. Using a numerical model of the MXT Point Spread Function (PSF) we simulated MXT observations of point sources in order to develop and test different localization algorithms to be implemented on board MXT. We included preliminary estimations of the instrumental and sky background. The algorithms on board have to be a combination of speed and precision (the brightest sources are expected to be localized at a precision better than 10 arc seconds in the MXT reference frame). We present the comparison between different methods such as barycentre, PSF fitting in one or two dimensions. The temporal performance of the algorithms is being tested using the X-ray afterglow data base of the XRT telescope on board the NASA Swift satellite.
NASA Astrophysics Data System (ADS)
Tichý, Vladimír; Hudec, René; Němcová, Šárka
2016-06-01
The algorithm presented is intended mainly for lobster eye optics. This type of optics (and some similar types) allows for a simplification of the classical ray-tracing procedure that requires great many rays to simulate. The method presented performs the simulation of a only few rays; therefore it is extremely effective. Moreover, to simplify the equations, a specific mathematical formalism is used. Only a few simple equations are used, therefore the program code can be simple as well. The paper also outlines how to apply the method to some other reflective optical systems.
Nanocrystallization in Cu-Zr-Al-Sm Bulk Metallic Glasses
NASA Astrophysics Data System (ADS)
Sikan, Fatih; Yasar, Bengisu; Kalay, Ilkay
2018-04-01
The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 °C). The sequence continues with the precipitation of Cu10Zr7 and then these two phases coexist. XRD and TEM studies on 1 mm diameter as suction-cast rods indicated the precipitation of 30-nm-mean size Cu2Sm crystals during solidification. TEM investigation of the isothermal crystallization sequence of melt-spun ribbons and 1-mm-diameter suction-cast rods revealed the precipitation of Cu2Sm nanocrystals at the onset of crystallization and the restriction of the growth of these nanocrystals up to 10 nm diameter with further annealing. APT analysis of 1-mm-diameter suction-cast rods showed that the limited growth of Cu2Sm nanocrystals is due to sluggish diffusion of Sm and Al-Zr pile up at the interface.
Chao, Yong-lie; Lui, Chang-hong; Li, Ning; Yang, Xiao-yu
2005-02-01
To investigate a kind of Co-Cr-Mo alloys used for both porcelain fused to metal (PFM) restorations and casting framework of removable partial dentures. The Co-Cr-Mo alloy underwent the design for elementary compositions of the alloys and the production from the raw materials by means of a vacuum melt furnace. The strength, hardness, plasticity and casting ability of the alloy were examined with metal tensile test. Vickers hardness test and grid casting were examined respectively. The microstructure of the Co-Cr-Mo alloy was also inspected by scanning electron microscope and X-ray diffraction analysis. The elementary composition of DA9-4 alloy mainly consisted of Co 54%-67%, Cr 21%-26%, Mo 5%-8%, W 5%-8%, Si 1%-3%, Mn 0.1%-0.25% and trace elements. The yield strength of the alloy was 584 MPa, while the tensile strength was 736 MPa. The coefficient of expansion was 15.0%, the Vickers hardness reached 322, and the casting ratio exibited 100%. The DA9-4 Co-Cr-Mo alloy used for PFM and framework shown in this paper can meet the clinical demands and have reached the objects of the experiment plan.
Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron
NASA Astrophysics Data System (ADS)
Wollmann, D.; Soares, G. P. P. P.; Grabarski, M. I.; Weigert, N. B.; Escobar, J. A.; Pintaude, G.; Neves, J. C. K.
2017-05-01
Rolling contact fatigue (RCF) of a nitrided ductile cast iron was investigated. Flat washers machined from a pearlitic ductile cast iron bar were quenched and tempered to maximum hardness, ground, polished and divided into four groups: (1) specimens tested as quenched and tempered; (2) specimens plasma-nitrided for 8 h at 400 °C; (3) specimens plasma-nitrided and submitted to a diffusion process for 16 h at 400 °C; and (4) specimens submitted to a second tempering for 24 h at 400 °C. Hardness profiles, phase analyses and residual stress measurements by x-ray diffraction, surface roughness and scanning electron microscopy were applied to characterize the surfaces at each step of this work. Ball-on-flat washer tests were conducted with a maximum contact pressure of 3.6 GPa, under flood lubrication with a SAE 90 API GL-5 oil at 50 °C. Test ending criterion was the occurrence of a spalling. Weibull analysis was used to characterize RCF's lifetime data. Plasma-nitrided specimens exhibited a shorter RCF lifetime than those just quenched and tempered. The effects of nitriding on the mechanical properties and microstructure of the ductile cast iron are discussed in order to explain the shorter endurance of nitrided samples.
Macrini, Thomas E; Rowe, Timothy; Archer, Michael
2006-08-01
A digital cranial endocast of the Miocene platypus Obdurodon dicksoni was extracted from high-resolution X-ray computed tomography scans. This endocast represents the oldest from an unequivocal member of either extant monotreme lineage and is therefore important for inferring character support for Monotremata, a clade that is not well diagnosed. We describe the Obdurodon endocast with reference to endocasts extracted from skulls of the three species of extant monotremes, particularly Ornithorhynchus anatinus, the duckbill platypus. We consulted published descriptions and illustrations of whole and sectioned brains of monotremes to determine which external features of the nervous system are represented on the endocasts. Similar to Ornithorhynchus, well-developed parafloccular casts and reduced olfactory bulb casts are present in the Obdurodon endocast. Reduction of the olfactory bulbs in comparison with tachyglossids and therian mammals is a potential apomorphy for Ornithorhynchidae. The trigeminal nuclei, ganglia, and nerves (i.e., trigeminal complex) are enlarged in Obdurodon, as evidenced by their casts on the endocast, as is the case in the extant platypus. The visibility of enlarged trigeminal nucleus casts on the endocasts of Obdurodon and Ornithorhynchus is a possible synapomorphy of Ornithorhynchidae. Electroreception and enlargement of the trigeminal complex are possible synapomorphies for Monotremata. Copyright 2006 Wiley-Liss, Inc.
SEXTANT - Station Explorer for X-Ray Timing and Navigation Technology
NASA Technical Reports Server (NTRS)
Mitchell, Jason; Hasouneh, Monther; Winternitz, Luke; Valdez, Jennifer; Price, Sam; Semper, Sean; Yu, Wayne; Gaebler, John; Ray, Paul; Wood, Kent;
2015-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technology- demonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.
Modeling IrisCode and its variants as convex polyhedral cones and its security implications.
Kong, Adams Wai-Kin
2013-03-01
IrisCode, developed by Daugman, in 1993, is the most influential iris recognition algorithm. A thorough understanding of IrisCode is essential, because over 100 million persons have been enrolled by this algorithm and many biometric personal identification and template protection methods have been developed based on IrisCode. This paper indicates that a template produced by IrisCode or its variants is a convex polyhedral cone in a hyperspace. Its central ray, being a rough representation of the original biometric signal, can be computed by a simple algorithm, which can often be implemented in one Matlab command line. The central ray is an expected ray and also an optimal ray of an objective function on a group of distributions. This algorithm is derived from geometric properties of a convex polyhedral cone but does not rely on any prior knowledge (e.g., iris images). The experimental results show that biometric templates, including iris and palmprint templates, produced by different recognition methods can be matched through the central rays in their convex polyhedral cones and that templates protected by a method extended from IrisCode can be broken into. These experimental results indicate that, without a thorough security analysis, convex polyhedral cone templates cannot be assumed secure. Additionally, the simplicity of the algorithm implies that even junior hackers without knowledge of advanced image processing and biometric databases can still break into protected templates and reveal relationships among templates produced by different recognition methods.
Solidification and Microstructure of Ni-Containing Al-Si-Cu Alloy
NASA Astrophysics Data System (ADS)
Fang, Li; Ren, Luyang; Geng, Xinyu; Hu, Henry; Nie, Xueyuan; Tjong, Jimi
2018-01-01
2 wt. % nickel (Ni) addition was introduced into a conventional cast aluminum alloy A380. The influence of transition alloying element nickel on the solidification behavior of cast aluminum alloy A380 was investigated via thermal analyses based on temperature measurements recorded on cooling curves. The corresponding first and second derivatives of the cooling curves were derived to reveal the details of phase changes during solidification. The nucleation of the primary α-Al phase and eutectic phases were analyzed. The microstructure analyses by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) indicate that different types and amount of eutectic phases are present in the tested two alloys. The introduction of Ni forms the complex Ni-containing intermetallic phases with Cu and Al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, S., E-mail: shilpatr3@gmail.com; Shripathi, T.; Tripathi, J.
The results are reported on solution cast PMMA-PCTFE blend films characterized using x-ray diffraction and FTIR. The nanocrystalline nature of PMMA is still seen in the blends, however, the bond modifications are clearly observed. The addition of PCTFE results in the modification in structural properties, as reflected in the XRD and FTIR spectra showing modifications in bonding as a function of PCTFE percentage.
GPU-based multi-volume ray casting within VTK for medical applications.
Bozorgi, Mohammadmehdi; Lindseth, Frank
2015-03-01
Multi-volume visualization is important for displaying relevant information in multimodal or multitemporal medical imaging studies. The main objective with the current study was to develop an efficient GPU-based multi-volume ray caster (MVRC) and validate the proposed visualization system in the context of image-guided surgical navigation. Ray casting can produce high-quality 2D images from 3D volume data but the method is computationally demanding, especially when multiple volumes are involved, so a parallel GPU version has been implemented. In the proposed MVRC, imaginary rays are sent through the volumes (one ray for each pixel in the view), and at equal and short intervals along the rays, samples are collected from each volume. Samples from all the volumes are composited using front to back α-blending. Since all the rays can be processed simultaneously, the MVRC was implemented in parallel on the GPU to achieve acceptable interactive frame rates. The method is fully integrated within the visualization toolkit (VTK) pipeline with the ability to apply different operations (e.g., transformations, clipping, and cropping) on each volume separately. The implemented method is cross-platform (Windows, Linux and Mac OSX) and runs on different graphics card (NVidia and AMD). The speed of the MVRC was tested with one to five volumes of varying sizes: 128(3), 256(3), and 512(3). A Tesla C2070 GPU was used, and the output image size was 600 × 600 pixels. The original VTK single-volume ray caster and the MVRC were compared when rendering only one volume. The multi-volume rendering system achieved an interactive frame rate (> 15 fps) when rendering five small volumes (128 (3) voxels), four medium-sized volumes (256(3) voxels), and two large volumes (512(3) voxels). When rendering single volumes, the frame rate of the MVRC was comparable to the original VTK ray caster for small and medium-sized datasets but was approximately 3 frames per second slower for large datasets. The MVRC was successfully integrated in an existing surgical navigation system and was shown to be clinically useful during an ultrasound-guided neurosurgical tumor resection. A GPU-based MVRC for VTK is a useful tool in medical visualization. The proposed multi-volume GPU-based ray caster for VTK provided high-quality images at reasonable frame rates. The MVRC was effective when used in a neurosurgical navigation application.
Improved algorithm of ray tracing in ICF cryogenic targets
NASA Astrophysics Data System (ADS)
Zhang, Rui; Yang, Yongying; Ling, Tong; Jiang, Jiabin
2016-10-01
The high precision ray tracing inside inertial confinement fusion (ICF) cryogenic targets plays an important role in the reconstruction of the three-dimensional density distribution by algebraic reconstruction technique (ART) algorithm. The traditional Runge-Kutta methods, which is restricted by the precision of the grid division and the step size of ray tracing, cannot make an accurate calculation in the case of refractive index saltation. In this paper, we propose an improved algorithm of ray tracing based on the Runge-Kutta methods and Snell's law of refraction to achieve high tracing precision. On the boundary of refractive index, we apply Snell's law of refraction and contact point search algorithm to ensure accuracy of the simulation. Inside the cryogenic target, the combination of the Runge-Kutta methods and self-adaptive step algorithm are employed for computation. The original refractive index data, which is used to mesh the target, can be obtained by experimental measurement or priori refractive index distribution function. A finite differential method is performed to calculate the refractive index gradient of mesh nodes, and the distance weighted average interpolation methods is utilized to obtain refractive index and gradient of each point in space. In the simulation, we take ideal ICF target, Luneberg lens and Graded index rod as simulation model to calculate the spot diagram and wavefront map. Compared the simulation results to Zemax, it manifests that the improved algorithm of ray tracing based on the fourth-order Runge-Kutta methods and Snell's law of refraction exhibits high accuracy. The relative error of the spot diagram is 0.2%, and the peak-to-valley (PV) error and the root-mean-square (RMS) error of the wavefront map is less than λ/35 and λ/100, correspondingly.
A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.
Neylon, J; Sheng, K; Yu, V; Chen, Q; Low, D A; Kupelian, P; Santhanam, A
2014-10-01
Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy into a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.
A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neylon, J., E-mail: jneylon@mednet.ucla.edu; Sheng, K.; Yu, V.
Purpose: Real-time adaptive planning and treatment has been infeasible due in part to its high computational complexity. There have been many recent efforts to utilize graphics processing units (GPUs) to accelerate the computational performance and dose accuracy in radiation therapy. Data structure and memory access patterns are the key GPU factors that determine the computational performance and accuracy. In this paper, the authors present a nonvoxel-based (NVB) approach to maximize computational and memory access efficiency and throughput on the GPU. Methods: The proposed algorithm employs a ray-tracing mechanism to restructure the 3D data sets computed from the CT anatomy intomore » a nonvoxel-based framework. In a process that takes only a few milliseconds of computing time, the algorithm restructured the data sets by ray-tracing through precalculated CT volumes to realign the coordinate system along the convolution direction, as defined by zenithal and azimuthal angles. During the ray-tracing step, the data were resampled according to radial sampling and parallel ray-spacing parameters making the algorithm independent of the original CT resolution. The nonvoxel-based algorithm presented in this paper also demonstrated a trade-off in computational performance and dose accuracy for different coordinate system configurations. In order to find the best balance between the computed speedup and the accuracy, the authors employed an exhaustive parameter search on all sampling parameters that defined the coordinate system configuration: zenithal, azimuthal, and radial sampling of the convolution algorithm, as well as the parallel ray spacing during ray tracing. The angular sampling parameters were varied between 4 and 48 discrete angles, while both radial sampling and parallel ray spacing were varied from 0.5 to 10 mm. The gamma distribution analysis method (γ) was used to compare the dose distributions using 2% and 2 mm dose difference and distance-to-agreement criteria, respectively. Accuracy was investigated using three distinct phantoms with varied geometries and heterogeneities and on a series of 14 segmented lung CT data sets. Performance gains were calculated using three 256 mm cube homogenous water phantoms, with isotropic voxel dimensions of 1, 2, and 4 mm. Results: The nonvoxel-based GPU algorithm was independent of the data size and provided significant computational gains over the CPU algorithm for large CT data sizes. The parameter search analysis also showed that the ray combination of 8 zenithal and 8 azimuthal angles along with 1 mm radial sampling and 2 mm parallel ray spacing maintained dose accuracy with greater than 99% of voxels passing the γ test. Combining the acceleration obtained from GPU parallelization with the sampling optimization, the authors achieved a total performance improvement factor of >175 000 when compared to our voxel-based ground truth CPU benchmark and a factor of 20 compared with a voxel-based GPU dose convolution method. Conclusions: The nonvoxel-based convolution method yielded substantial performance improvements over a generic GPU implementation, while maintaining accuracy as compared to a CPU computed ground truth dose distribution. Such an algorithm can be a key contribution toward developing tools for adaptive radiation therapy systems.« less
Automatic SMT Inspection With -X-Ray Vision
NASA Astrophysics Data System (ADS)
Kuntz, Robert A.; Steinmetz, Peter D.
1988-02-01
X-ray is used in many different ways and in a broad variety of applications with today's world. One of the most obvious uses is in the medically related applications. Although less obvious, x-ray is used within industry as well. Inspection of metal castings, pipe-line welds, equipment structures and personal security are just a few. Historically, both medical and industrial x-ray have been dependent on film exposure, development and reading to capture and present the projected image. This process however is labor intensive, time consuming and costly. Correct exposure time and proper view orientation are in question until the film is developed and examined. In many cases, this trial and error causes retakes with the accompanying expense and delays. Recently, due to advances in x-ray tube technology, tubes with microfocus construction have become available. These tubes operate at high enough flux density such that when combined with x-ray to visible light converters, real-time imaging is possible.
Direct X-ray photoconversion in flexible organic thin film devices operated below 1 V
Basiricò, Laura; Ciavatti, Andrea; Cramer, Tobias; Cosseddu, Piero; Bonfiglio, Annalisa; Fraboni, Beatrice
2016-01-01
The application of organic electronic materials for the detection of ionizing radiations is very appealing thanks to their mechanical flexibility, low-cost and simple processing in comparison to their inorganic counterpart. In this work we investigate the direct X-ray photoconversion process in organic thin film photoconductors. The devices are realized by drop casting solution-processed bis-(triisopropylsilylethynyl)pentacene (TIPS-pentacene) onto flexible plastic substrates patterned with metal electrodes; they exhibit a strong sensitivity to X-rays despite the low X-ray photon absorption typical of low-Z organic materials. We propose a model, based on the accumulation of photogenerated charges and photoconductive gain, able to describe the magnitude as well as the dynamics of the X-ray-induced photocurrent. This finding allows us to fabricate and test a flexible 2 × 2 pixelated X-ray detector operating at 0.2 V, with gain and sensitivity up to 4.7 × 104 and 77,000 nC mGy−1 cm−3, respectively. PMID:27708274
Comparison of joint designs for laser welding of cast metal plates and wrought wires.
Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro
2013-01-01
The purpose of the present study was to compare joint designs for the laser welding of cast metal plates and wrought wire, and to evaluate the welded area internally using X-ray micro-focus computerized tomography (micro-CT). Cast metal plates (Ti, Co-Cr) and wrought wires (Ti, Co-Cr) were welded using similar metals. The specimens were welded using four joint designs in which the wrought wires and the parent metals were welded directly (two designs) or the wrought wires were welded to the groove of the parent metal from one or both sides (n = 5). The porosity and gap in the welded area were evaluated by micro-CT, and the maximum tensile load of the welded specimens was measured with a universal testing machine. An element analysis was conducted using an electron probe X-ray microanalyzer. The statistical analysis of the results was performed using Bonferroni's multiple comparisons (α = 0.05). The results included that all the specimens fractured at the wrought wire when subjected to tensile testing, although there were specimens that exhibited gaps due to the joint design. The wrought wires were affected by laser irradiation and observed to melt together and onto the filler metal. Both Mo and Sn elements found in the wrought wire were detected in the filler metal of the Ti specimens, and Ni was detected in the filler metal of the Co-Cr specimens. The four joint designs simulating the designs used clinically were confirmed to have adequate joint strength provided by laser welding.
Fine-scaled human genetic structure revealed by SNP microarrays.
Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B
2009-05-01
We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.
Directional Unfolded Source Term (DUST) for Compton Cameras.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Horne, Steven M.; O'Brien, Sean
2018-03-01
A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.
Shield materials recommended for space power nuclear reactors
NASA Technical Reports Server (NTRS)
Kaszubinski, L. J.
1973-01-01
Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.
Ceroni, Dimitri; Martin, Xavier; Delhumeau, Cécile; Rizzoli, René; Kaelin, André; Farpour-Lambert, Nathalie
2012-02-01
Leg or ankle fractures occur commonly in the pediatric population and are primarily treated with closed reduction and cast immobilization. The most predictable consequences of immobilization and subsequent weight-bearing restriction are loss of bone mineral mass, substantial muscle atrophy, and functional limitations. The purposes of this study were to determine if lower-limb fractures in adolescents are associated with abnormal bone mineral density or content at the time of fracture, and to quantify bone mineral loss at various sites due to cast-mediated immobilization and limited weight-bearing. We recruited fifty adolescents aged ten to sixteen years who had undergone cast immobilization for a leg or ankle fracture. Dual x-ray absorptiometry scans of the total body, lumbar spine, hip, leg, and calcaneus were performed at the time of fracture and at cast removal. Patients with a fracture were paired with healthy controls according to sex and age. Values at baseline and at cast removal, or at equivalent time intervals in the control group, were compared between groups and between the injured and uninjured legs of the adolescents with the fracture. At the time of fracture, there were no observed differences in the bone mineral density or bone mineral content Z-scores of the total body or the lumbar spine, or in the bone mineral density Z-scores of the calcaneus, between the injured and healthy subjects. At cast removal, bone mineral parameters on the injured side were significantly lower than those on the uninjured side in the injured group. Differences ranged from -5.8% to -31.7% for bone mineral density and from -5.2% to -19.4% for bone mineral content. During the cast period, the injured adolescents had a significant decrease of bone mineral density at the hip, greater trochanter, calcaneus, and total lower limb as compared with the healthy controls. Lower-limb fractures are not related to osteopenia in adolescents at the time of fracture. However, osteopenia does develop in the injured limb during cast immobilization for fracture treatment. Further investigation is required to determine if the bone mineral mass will return to normal or if a permanent decrease is to be expected, which may constitute a hypothetical risk of sustaining a second fracture.
Lung partitioning for x-ray CAD applications
NASA Astrophysics Data System (ADS)
Annangi, Pavan; Raja, Anand
2011-03-01
Partitioning the inside region of lung into homogeneous regions becomes a crucial step in any computer-aided diagnosis applications based on chest X-ray. The ribs, air pockets and clavicle occupy major space inside the lung as seen in the chest x-ray PA image. Segmenting the ribs and clavicle to partition the lung into homogeneous regions forms a crucial step in any CAD application to better classify abnormalities. In this paper we present two separate algorithms to segment ribs and the clavicle bone in a completely automated way. The posterior ribs are segmented based on Phase congruency features and the clavicle is segmented using Mean curvature features followed by Radon transform. Both the algorithms work on the premise that the presentation of each of these anatomical structures inside the left and right lung has a specific orientation range within which they are confined to. The search space for both the algorithms is limited to the region inside the lung, which is obtained by an automated lung segmentation algorithm that was previously developed in our group. Both the algorithms were tested on 100 images of normal and patients affected with Pneumoconiosis.
NASA Astrophysics Data System (ADS)
Huh, Jangyong; Ji, Yunseo; Lee, Rena
2018-05-01
An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.
NASA Astrophysics Data System (ADS)
Ferasat, Keyvan; Aashuri, Hossein; Kokabi, Amir Hossein; Nikzad, Siamak; Shafizadeh, Mahdi
2015-02-01
In this research, the semisolid stir joining method was used to overcome the problem of hot cracking in welding aluminum and silicon bronzes. Moreover, the effects of grooved and cylindrical tools on the microstructure and mechanical properties of samples were examined. After welding specimens, mechanical tests were carried out to find differences between the cast and welded samples. Optical microscopy and scanning electron microscopy were used to study microstructure. X-ray diffraction was used to investigate compounds formed during casting and welding. The solidus and liquidus temperatures of the alloy were measured by differential scanning calorimetry. In this study, the temperature of the work pieces was raised to 1203 K (930 °C) that is in the semisolid region, and the weld seams were stirred by two different types of tools at the speed of 1600 rpm. Macro and micro-structural analyses show uniformity in the phase distribution for specimens welded by cylindrical tool. Desirable and uniform mechanical properties obtained when the cylindrical tool was used.
Zhang, Y. B.; Andriollo, T.; Faester, S.; ...
2016-09-14
A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic strains are measured with a maximum strain of ~6.5–8 × 10 –4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found but with a significant overprediction of the maximum strain. Thismore » is discussed in terms of stress relaxation during cooling or during storage by plastic deformation of the nodule, the matrix or both. Furthermore, relaxation by plastic deformation of the ferrite is demonstrated by the formation of low energy dislocation cell structure also quantified by the DAXM technique.« less
Synthesis of As-Cast Ti-Al-V Alloy from Titanium-Rich Material by Thermite Reduction
NASA Astrophysics Data System (ADS)
Cheng, Chu; Dou, Zhi He; Zhang, Ting An; Zhang, Hui Jie; Yi, Xin; Su, Jian Ming
2017-10-01
We present a novel methodology for preparing as-cast Ti-Al-V alloy directly from titanium-rich material through a thermite reduction. The new method is shown to be feasible through a thermodynamics and dynamics analysis. The as-cast Ti-Al-V alloys synthesized from titanium dioxide, rutile, and high-titanium slag were analyzed by an x-ray diffractometer, a scanning electron microscope, an inductively coupled plasma emission spectrometer, and an oxygen/nitrogen/hydrogen analyzer. The results indicate that the alloy is composed of a Ti-Al-V matrix and Al2O3 inclusions. The Al and V contents in the matrix are close to the mass ratio of Ti-6Al-4V (Al: 5.5-6.8 wt.%, V: 3.5-4.5 wt.%). The Si and Fe in the alloys synthesized from rutile and high-titanium slag can be used as alloying elements in low-cost titanium alloys. The present method is expected to be useful for preparing Ti-Al-V alloys at a low production cost.
NASA Astrophysics Data System (ADS)
Timmel, K.; Kratzsch, C.; Asad, A.; Schurmann, D.; Schwarze, R.; Eckert, S.
2017-07-01
The present paper reports about numerical simulations and model experiments concerned with the fluid flow in the continuous casting process of steel. This work was carried out in the LIMMCAST project in the framework of the Helmholtz alliance LIMTECH. A brief description of the LIMMCAST facilities used for the experimental modeling at HZDR is given here. Ultrasonic and inductive techniques and the X-ray radioscopy were employed for flow measurements or visualizations of two-phase flow regimes occurring in the submerged entry nozzle and the mold. Corresponding numerical simulations were performed at TUBAF taking into account the dimensions and properties of the model experiments. Numerical models were successfully validated using the experimental data base. The reasonable and in many cases excellent agreement of numerical with experimental data allows to extrapolate the models to real casting configurations. Exemplary results will be presented here showing the effect of electromagnetic brakes or electromagnetic stirrers on the flow in the mold or illustrating the properties of two-phase flows resulting from an Ar injection through the stopper rod.
NASA Astrophysics Data System (ADS)
Davanageri, Mahesh; Narendranath, S.; Kadoli, Ravikiran
2017-08-01
The effect of ageing time on hardness, microstructure and wear behaviour of super duplex stainless AISI 2507 is examined. The material was solution treated at 1050 °C and water quenched, further the ageing has been carried out at 850 °C for 30 min, 60 min and 90 min. The chromium (Cr) and molybdenum (Mo) enriched intermetallic sigma phase (σ) were found to precipitate at the ferrite/austenite interface and within the ferrite region. The concentration of intermetallic sigma phase (σ), which was quantified by a combination of scanning electron microscopy and image analysis, increases with increasing ageing time, leading to significant increase in the hardness. The x-ray diffraction (XRD) and energy dispersive x-ray (EDX) was employed to investigate the element distribution and phase identification. Wear characterstics of the aged super duplex stainless steel were measured by varying normal loads, sliding speeds, sliding distance and compared with solution treated (as-cast) specimens. Scanning electron microscopy was used to assist in analysis of worn out surfaces. The outcomes suggested that the increase in percentage of sigma phase increases hardness and wear resistance in heat-treated specimens compared to solution treated specimens (as-cast).
Failure Mechanisms of the Protective Coatings for the Hot Stamping Applications
NASA Astrophysics Data System (ADS)
Zhao, Chen
In the present study, four different nitriding techniques were carried on the ductile irons NAAMS-D6510 and cast steels NAAMS-S0050A, which are widely used stamping die materials; duplex treatments (PVD CrN coating+nitriding) were carried on H13 steels, which are common inserts for the hot stamping dies. Inclined impact-sliding wear tests were performed on the nitriding cases under simulated stamping conditions. Surface profilometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to investigate the wear and failure mechanisms of the protective coatings. It was found that the nitrided ductile iron samples performed better than the nitrided cast steel specimens. High temperature inclined impact-sliding wear tests were carried out on the CrN coatings. It was found that the coating performed better at elevated temperature. XPS analysis indicated the top surface layer (about 3-4nm) of the coating was oxidized at 400 °C and formed a Cr2O3 protective film. The in-situ formation of the thin Cr2O3 protective layer likely led to the change of wear mechanisms from severe adhesive failure to mild abrasive wear.
NASA Astrophysics Data System (ADS)
Qin, Huaili; Yang, Guang; Kuang, Shan; Wang, Qiang; Liu, Jingjing; Zhang, Xiaomin; Li, Cancan; Han, Zhiwei; Li, Yuanjing
2018-02-01
The present project will adopt the principle and technology of X-ray imaging to quickly measure the mass thickness (wherein the mass thickness of the item =density of the item × thickness of the item) of the irradiated items and thus to determine whether the packaging size and inside location of the item will meet the requirements for treating thickness upon electron beam irradiation processing. The development of algorithm of X-ray mass thickness detector as well as the prediction of dose distribution have been completed. The development of the algorithm was based on the X-ray attenuation. 4 standard modules, Al sheet, Al ladders, PMMA sheet and PMMA ladders, were selected for the algorithm development. The algorithm was optimized until the error between tested mass thickness and standard mass thickness was less than 5%. Dose distribution of all energy (1-10 MeV) for each mass thickness was obtained using Monte-carlo method and used for the analysis of dose distribution, which provides the information of whether the item will be penetrated or not, as well as the Max. dose, Min. dose and DUR of the whole item.
XDesign: an open-source software package for designing X-ray imaging phantoms and experiments.
Ching, Daniel J; Gürsoy, Dogˇa
2017-03-01
The development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.
XDesign: An open-source software package for designing X-ray imaging phantoms and experiments
Ching, Daniel J.; Gursoy, Dogˇa
2017-02-21
Here, the development of new methods or utilization of current X-ray computed tomography methods is impeded by the substantial amount of expertise required to design an X-ray computed tomography experiment from beginning to end. In an attempt to make material models, data acquisition schemes and reconstruction algorithms more accessible to researchers lacking expertise in some of these areas, a software package is described here which can generate complex simulated phantoms and quantitatively evaluate new or existing data acquisition schemes and image reconstruction algorithms for targeted applications.
Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz
2015-01-01
Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.
NASA Technical Reports Server (NTRS)
Walker, K. P.; Freed, A. D.
1991-01-01
New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.
NASA Astrophysics Data System (ADS)
Swanson, C.; Jandovitz, P.; Cohen, S. A.
2018-02-01
We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. The algorithm is found to out-perform current leading x-ray inversion algorithms when the error due to counting statistics is high.
Senary refractory high-entropy alloy HfNbTaTiVZr
Gao, Michael C.; Zhang, B.; Yang, S.; ...
2015-09-03
Discovery of new single-phase high-entropy alloys (HEAs) is important to understand HEA formation mechanisms. The present study reports computational design and experimental validation of a senary HEA, HfNbTaTiVZr, in a body-centered cubic structure. The phase diagrams and thermodynamic properties of this senary system were modeled using the CALPHAD method. Its atomic structure and diffusion constants were studied using ab initio molecular dynamics simulations. Here, the microstructure of the as-cast HfNbTaTiVZr alloy was studied using X-ray diffraction and scanning electron microscopy, and the microsegregation in the as-cast state was found to qualitatively agree with the solidification predictions from CALPHAD. Supported bymore » both simulation and experimental results, the HEA formation rules are discussed.« less
Environmentally benign processing of YAG transparent wafers
NASA Astrophysics Data System (ADS)
Yang, Yan; Wu, Yiquan
2015-12-01
Transparent yttrium aluminum garnet (YAG) wafers were successfully produced via aqueous tape casting and vacuum sintering techniques using a new environmentally friendly binder, a copolymer of isobutylene and maleic anhydride with the commercial name ISOBAM (noted as ISOBAM). Aqueous YAG slurries were mixed by ball-milling, which was followed by de-gassing and tape casting of wafers. The final YAG green tapes were homogenous and flexible, and could be bent freely without cracking. After the drying and sintering processes, transparent YAG wafers were achieved. The microstructures of both the green tape and vacuum-sintered YAG ceramic were observed by scanning electronic microscopy (SEM). Phase compositions were examined by X-ray diffraction (XRD). Optical transmittance was measured in UV-VIS regions with the result that the transmittance is 82.6% at a wavelength of 800 nm.
Parametric Quantum Search Algorithm as Quantum Walk: A Quantum Simulation
NASA Astrophysics Data System (ADS)
Ellinas, Demosthenes; Konstandakis, Christos
2016-02-01
Parametric quantum search algorithm (PQSA) is a form of quantum search that results by relaxing the unitarity of the original algorithm. PQSA can naturally be cast in the form of quantum walk, by means of the formalism of oracle algebra. This is due to the fact that the completely positive trace preserving search map used by PQSA, admits a unitarization (unitary dilation) a la quantum walk, at the expense of introducing auxiliary quantum coin-qubit space. The ensuing QW describes a process of spiral motion, chosen to be driven by two unitary Kraus generators, generating planar rotations of Bloch vector around an axis. The quadratic acceleration of quantum search translates into an equivalent quadratic saving of the number of coin qubits in the QW analogue. The associated to QW model Hamiltonian operator is obtained and is shown to represent a multi-particle long-range interacting quantum system that simulates parametric search. Finally, the relation of PQSA-QW simulator to the QW search algorithm is elucidated.
Distributed consensus for metamorphic systems using a gossip algorithm for CAT(0) metric spaces
NASA Astrophysics Data System (ADS)
Bellachehab, Anass; Jakubowicz, Jérémie
2015-01-01
We present an application of distributed consensus algorithms to metamorphic systems. A metamorphic system is a set of identical units that can self-assemble to form a rigid structure. For instance, one can think of a robotic arm composed of multiple links connected by joints. The system can change its shape in order to adapt to different environments via reconfiguration of its constituting units. We assume in this work that several metamorphic systems form a network: two systems are connected whenever they are able to communicate with each other. The aim of this paper is to propose a distributed algorithm that synchronizes all the systems in the network. Synchronizing means that all the systems should end up having the same configuration. This aim is achieved in two steps: (i) we cast the problem as a consensus problem on a metric space and (ii) we use a recent distributed consensus algorithm that only make use of metrical notions.
NASA Technical Reports Server (NTRS)
Baker, A. J.
1982-01-01
An order-of-magnitude analysis of the subsonic three dimensional steady time averaged Navier-Stokes equations, for semibounded aerodynamic juncture geometries, yields the parabolic Navier-Stokes simplification. The numerical solution of the resultant pressure Poisson equation is cast into complementary and particular parts, yielding an iterative interaction algorithm with an exterior three dimensional potential flow solution. A parabolic transverse momentum equation set is constructed, wherein robust enforcement of first order continuity effects is accomplished using a penalty differential constraint concept within a finite element solution algorithm. A Reynolds stress constitutive equation, with low turbulence Reynolds number wall functions, is employed for closure, using parabolic forms of the two-equation turbulent kinetic energy-dissipation equation system. Numerical results document accuracy, convergence, and utility of the developed finite element algorithm, and the CMC:3DPNS computer code applied to an idealized wing-body juncture region. Additional results document accuracy aspects of the algorithm turbulence closure model.
Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.
2018-01-01
The analysis of measured data plays a significant role in enhancing nuclear nonproliferation mainly by inferring the presence of patterns associated with special nuclear materials. Among various types of measurements, gamma-ray spectra is the widest utilized type of data in nonproliferation applications. In this paper, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular, FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, where non-zero coefficients express the detected signatures. FWA is tested on a set of experimentallymore » obtained measurements optimizing various objective functions—MSE, RMSE, Theil-2, MAE, MAPE, MAP—with results exhibiting its potential in providing highly accurate and precise signature detection. Finally and furthermore, FWA is benchmarked against genetic algorithms and multiple linear regression, showing its superiority over those algorithms regarding precision with respect to MAE, MAPE, and MAP measures.« less
Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal
2016-05-23
X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependentmore » structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.« less
Passenger baggage object database (PBOD)
NASA Astrophysics Data System (ADS)
Gittinger, Jaxon M.; Suknot, April N.; Jimenez, Edward S.; Spaulding, Terry W.; Wenrich, Steve A.
2018-04-01
Detection of anomalies of interest in x-ray images is an ever-evolving problem that requires the rapid development of automatic detection algorithms. Automatic detection algorithms are developed using machine learning techniques, which would require developers to obtain the x-ray machine that was used to create the images being trained on, and compile all associated metadata for those images by hand. The Passenger Baggage Object Database (PBOD) and data acquisition application were designed and developed for acquiring and persisting 2-D and 3-D x-ray image data and associated metadata. PBOD was specifically created to capture simulated airline passenger "stream of commerce" luggage data, but could be applied to other areas of x-ray imaging to utilize machine-learning methods.
Real time ray tracing based on shader
NASA Astrophysics Data System (ADS)
Gui, JiangHeng; Li, Min
2017-07-01
Ray tracing is a rendering algorithm for generating an image through tracing lights into an image plane, it can simulate complicate optical phenomenon like refraction, depth of field and motion blur. Compared with rasterization, ray tracing can achieve more realistic rendering result, however with greater computational cost, simple scene rendering can consume tons of time. With the GPU's performance improvement and the advent of programmable rendering pipeline, complicated algorithm can also be implemented directly on shader. So, this paper proposes a new method that implement ray tracing directly on fragment shader, mainly include: surface intersection, importance sampling and progressive rendering. With the help of GPU's powerful throughput capability, it can implement real time rendering of simple scene.
NASA Astrophysics Data System (ADS)
Fattah-alhosseini, Arash; Asgari, Hamed
2018-05-01
In the present study, electrochemical behavior of as-cast Mg-Y-RE-Zr alloy (RE: rare-earth alloying elements) was investigated using electrochemical tests in phosphate buffer solutions (X Na3PO4 + Y Na2HPO4). X-ray diffraction techniques and Scanning electron microscopy equipped with energy dispersive x-ray spectroscopy were used to investigate the microstructure and phases of the experimental alloy. Different electrochemical tests such as potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis were carried out in order to study the electrochemical behavior of the experimental alloy in phosphate buffer solutions. The PDP curves and EIS measurements indicated that the passive behavior of the as-cast Mg-Y-RE-Zr alloy in phosphate buffer solutions was weakened by an increase in the pH, which is related to formation of an imperfect and less protective passive layer on the alloy surface. The presence of the insoluble zirconium particles along with high number of intermetallic phases of RE elements mainly Mg24Y5 in the magnesium matrix can deteriorate the corrosion performance of the alloy by disrupting the protective passive layer that is formed at pH values over 11. These insoluble zirconium particles embedded in the matrix can detrimentally influence the passivation. The M-S analysis revealed that the formed passive layers on Mg-Y-RE-Zr alloy behaved as an n-type semiconductor. An increase in donor concentration accompanying solutions of higher alkalinity is thought to result in the formation of a less resistive passive layer.
A Rapid Convergent Low Complexity Interference Alignment Algorithm for Wireless Sensor Networks.
Jiang, Lihui; Wu, Zhilu; Ren, Guanghui; Wang, Gangyi; Zhao, Nan
2015-07-29
Interference alignment (IA) is a novel technique that can effectively eliminate the interference and approach the sum capacity of wireless sensor networks (WSNs) when the signal-to-noise ratio (SNR) is high, by casting the desired signal and interference into different signal subspaces. The traditional alternating minimization interference leakage (AMIL) algorithm for IA shows good performance in high SNR regimes, however, the complexity of the AMIL algorithm increases dramatically as the number of users and antennas increases, posing limits to its applications in the practical systems. In this paper, a novel IA algorithm, called directional quartic optimal (DQO) algorithm, is proposed to minimize the interference leakage with rapid convergence and low complexity. The properties of the AMIL algorithm are investigated, and it is discovered that the difference between the two consecutive iteration results of the AMIL algorithm will approximately point to the convergence solution when the precoding and decoding matrices obtained from the intermediate iterations are sufficiently close to their convergence values. Based on this important property, the proposed DQO algorithm employs the line search procedure so that it can converge to the destination directly. In addition, the optimal step size can be determined analytically by optimizing a quartic function. Numerical results show that the proposed DQO algorithm can suppress the interference leakage more rapidly than the traditional AMIL algorithm, and can achieve the same level of sum rate as that of AMIL algorithm with far less iterations and execution time.
Realtime Compositing of Procedural Facade Textures on the Gpu
NASA Astrophysics Data System (ADS)
Krecklau, L.; Kobbelt, L.
2011-09-01
The real time rendering of complex virtual city models has become more important in the last few years for many practical applications like realistic navigation or urban planning. For maximum rendering performance, the complexity of the geometry or textures can be reduced by decreasing the resolution until the data set can fully reside on the memory of the graphics card. This typically results in a low quality of the virtual city model. Alternatively, a streaming algorithm can load the high quality data set from the hard drive. However, this approach requires a large amount of persistent storage providing several gigabytes of static data. We present a system that uses a texture atlas containing atomic tiles like windows, doors or wall patterns, and that combines those elements on-the-fly directly on the graphics card. The presented approach benefits from a sophisticated randomization approach that produces lots of different facades while the grammar description itself remains small. By using a ray casting apporach, we are able to trace through transparent windows revealing procedurally generated rooms which further contributes to the realism of the rendering. The presented method enables real time rendering of city models with a high level of detail for facades while still relying on a small memory footprint.
Development of a Real-Time Pulse Processing Algorithm for TES-Based X-Ray Microcalorimeters
NASA Technical Reports Server (NTRS)
Tan, Hui; Hennig, Wolfgang; Warburton, William K.; Doriese, W. Bertrand; Kilbourne, Caroline A.
2011-01-01
We report here a real-time pulse processing algorithm for superconducting transition-edge sensor (TES) based x-ray microcalorimeters. TES-based. microca1orimeters offer ultra-high energy resolutions, but the small volume of each pixel requires that large arrays of identical microcalorimeter pixe1s be built to achieve sufficient detection efficiency. That in turn requires as much pulse processing as possible must be performed at the front end of readout electronics to avoid transferring large amounts of data to a host computer for post-processing. Therefore, a real-time pulse processing algorithm that not only can be implemented in the readout electronics but also achieve satisfactory energy resolutions is desired. We have developed an algorithm that can be easily implemented. in hardware. We then tested the algorithm offline using several data sets acquired with an 8 x 8 Goddard TES x-ray calorimeter array and 2x16 NIST time-division SQUID multiplexer. We obtained an average energy resolution of close to 3.0 eV at 6 keV for the multiplexed pixels while preserving over 99% of the events in the data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H; Yang, D; Xiao, Z
2014-06-15
Purpose: Recent research has shown that KCl:Eu2+ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports our attempts to fabricate 2D KCl:Eu2+ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. Methods: A thin layer of KCl:Eu2+ was deposited on a substrate of borosilicate glass (e.g., laboratory slides) with a PVD system. For tape casting, a homogenous suspension containing storage phosphor particles, liquid vehicle and polymer binder was formed and subsequently cast bymore » doctor-blade onto a polyethylene terephthalate substrate to form a 150 μm thick SPF. Results: X ray diffraction analysis showed that a 10 μm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had completed been incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl−) centers were the electron storage centers post x ray irradiation and that Eu2+ cations acted as luminescence centers in the photostimulation process. The 150 μm thick casted KCl:Eu2+ SPF showed sub-millimeter spatial resolution. Monte Carlo simulations further demonstrated that the admixture of 20% KCl:Eu2+ and 80% low Z polymer binder exhibited almost no energy dependence in a 6 MV beam. KCl:Eu2+ pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a Result of its intrinsic high radiation hardness. Conclusions: This discovery research provides strong evidence that KCl:Eu2+ based SPF with associated readout apparatus could Result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of each detector. This work was supported in part by NIH Grant No. R01CA148853. The authors would like to thank Paul Leblans (AGFA Healthcare, Belgium) for many helpful discussions on this topic.« less
Integrated circuit authentication using photon-limited x-ray microscopy.
Markman, Adam; Javidi, Bahram
2016-07-15
A counterfeit integrated circuit (IC) may contain subtle changes to its circuit configuration. These changes may be observed when imaged using an x-ray; however, the energy from the x-ray can potentially damage the IC. We have investigated a technique to authenticate ICs under photon-limited x-ray imaging. We modeled an x-ray image with lower energy by generating a photon-limited image from a real x-ray image using a weighted photon-counting method. We performed feature extraction on the image using the speeded-up robust features (SURF) algorithm. We then authenticated the IC by comparing the SURF features to a database of SURF features from authentic and counterfeit ICs. Our experimental results with real and counterfeit ICs using an x-ray microscope demonstrate that we can correctly authenticate an IC image captured using orders of magnitude lower energy x-rays. To the best of our knowledge, this Letter is the first one on using a photon-counting x-ray imaging model and relevant algorithms to authenticate ICs to prevent potential damage.
Corrosion behavior of as-received and previously cast type III gold alloy.
Ayad, Mohamed F; Ayad, Ghada M
2010-04-01
The rationale for using gold alloys is based largely upon their alleged ability to resist corrosion, but little information is available to determine the corrosion behavior of recast alloys. This study characterized the elemental composition of as-received and recast type III gold alloy and examined the in vitro corrosion behavior in two media using a potentiodynamic polarization technique. Seventy-eight disk-shaped specimens were prepared from a type III gold alloy under three casting protocols according to the proportion of as-received and recast gold alloy (n = 26). (1) Group as received (100% as-received metal), (2) group 50% to 50% (50% wt. new metal, 50% wt. once recast metal), and (3) group recast (100% once recast metal). The surface structures of 20 specimens from each group were examined under scanning electron microscopy, and their elemental compositions were determined using X-ray energy-dispersive spectroscopy. Further, the potentiodynamic cyclic polarization between -1000 and +1000 mV (SCE) were performed for six specimens from each casting protocol in 0.09% NaCl solution (n = 3) and Fusayama artificial saliva (n = 3) at 37 degrees C. Zero-current potential and corrosion current density were determined. The data were analyzed with 1-way ANOVA and the Ryan-Einot-Gabriel-Welsch multiple-range test t (alpha= 0.05). Elemental composition was significantly different among the casting groups (p < 0.001). The mean weight percentage values were 72.4 to 75.7% Au, 4.5 to 7.0% Pd, 10.7 to 11.1% Ag, 7.8 to 8.4% Cu, and 1.0 to 1.4% Zn. The mean values for Zero-current potential and corrosion current density for all casting protocols were not significant (p > 0.05); however, the difference between the electrolytes was significant (p < 0.001). Fusayama artificial saliva seemed to offer the most corrosive environment. Type III gold alloy in any casting protocol retained passivity under electrochemical conditions similar to the oral environment. Moreover, high-gold type III alloys from reputable manufacturers and recasting protocol tested should produce acceptable corrosion-resistant castings.
Bounds on the polymer scale from gamma ray bursts
NASA Astrophysics Data System (ADS)
Bonder, Yuri; Garcia-Chung, Angel; Rastgoo, Saeed
2017-11-01
The polymer representations, which are partially motivated by loop quantum gravity, have been suggested as alternative schemes to quantize the matter fields. Here we apply a version of the polymer representations to the free electromagnetic field, in a reduced phase space setting, and derive the corresponding effective (i.e., semiclassical) Hamiltonian. We study the propagation of an electromagnetic pulse, and we confront our theoretical results with gamma ray burst observations. This comparison reveals that the dimensionless polymer scale must be smaller than 4 ×10-35 , casting doubts on the possibility that the matter fields are quantized with the polymer representation we employed.
NASA Technical Reports Server (NTRS)
Lowell, C. E.; Miner, R. V.
1973-01-01
Cast B-1900 with and without 1 weight percent Si was subjected to cyclic oxidation at 1000 and 1100 C in air for 700 and 200 hours, respectively. The results were judged by specific weight change, metallography and X-ray diffraction. Si was found to be of significant value in reducing oxidation attack, probably by increasing scale adherence.
NASA Technical Reports Server (NTRS)
1972-01-01
A compilation on the technical uses of various metallurgical processes is presented. Descriptions are given of the mechanical properties of various alloys, ranging from TAZ-813 at 2200 F to investment cast alloy 718 at -320 F. Methods are also described for analyzing some of the constituents of various alloys from optical properties of carbide precipitates in Rene 41 to X-ray spectrographic analysis of the manganese content of high chromium steels.
Is Self-organization a Rational Expectation?
NASA Astrophysics Data System (ADS)
Luediger, Heinz
Over decades and under varying names the study of biology-inspired algorithms applied to non-living systems has been the subject of a small and somewhat exotic research community. Only the recent coincidence of a growing inability to master the design, development and operation of increasingly intertwined systems and processes, and an accelerated trend towards a naïve if not romanticizing view of nature in the sciences, has led to the adoption of biology-inspired algorithmic research by a wider range of sciences. Adaptive systems, as we apparently observe in nature, are meanwhile viewed as a promising way out of the complexity trap and, propelled by a long list of ‘self’ catchwords, complexity research has become an influential stream in the science community. This paper presents four provocative theses that cast doubt on the strategic potential of complexity research and the viability of large scale deployment of biology-inspired algorithms in an expectation driven world.
Feedback control for unsteady flow and its application to the stochastic Burgers equation
NASA Technical Reports Server (NTRS)
Choi, Haecheon; Temam, Roger; Moin, Parviz; Kim, John
1993-01-01
The study applies mathematical methods of control theory to the problem of control of fluid flow with the long-range objective of developing effective methods for the control of turbulent flows. Model problems are employed through the formalism and language of control theory to present the procedure of how to cast the problem of controlling turbulence into a problem in optimal control theory. Methods of calculus of variations through the adjoint state and gradient algorithms are used to present a suboptimal control and feedback procedure for stationary and time-dependent problems. Two types of controls are investigated: distributed and boundary controls. Several cases of both controls are numerically simulated to investigate the performances of the control algorithm. Most cases considered show significant reductions of the costs to be minimized. The dependence of the control algorithm on the time-descretization method is discussed.
Swanson, C.; Jandovitz, P.; Cohen, S. A.
2018-02-27
We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. Finally, the algorithm is found to out-perform current leading x-ray inversion algorithms when the error duemore » to counting statistics is high.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, C.; Jandovitz, P.; Cohen, S. A.
We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. Finally, the algorithm is found to out-perform current leading x-ray inversion algorithms when the error duemore » to counting statistics is high.« less
Full-Spectrum-Analysis Isotope ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G.
2017-06-28
FSAIsotopeID analyzes gamma ray spectra to identify radioactive isotopes (radionuclides). The algorithm fits the entire spectrum with combinations of pre-computed templates for a comprehensive set of radionuclides with varying thicknesses and compositions of shielding materials. The isotope identification algorithm is suitable for the analysis of spectra collected by gamma-ray sensors ranging from medium-resolution detectors, such a NaI, to high-resolution detectors, such as HPGe. In addition to analyzing static measurements, the isotope identification algorithm is applied for the radiation search applications. The search subroutine maintains a running background spectrum that is passed to the isotope identification algorithm, and it also selectsmore » temporal integration periods that optimize the responsiveness and sensitivity. Gain stabilization is supported for both types of applications.« less
Ray tracing through a hexahedral mesh in HADES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, G L; Aufderheide, M B
In this paper we describe a new ray tracing method targeted for inclusion in HADES. The algorithm tracks rays through three-dimensional tetrakis hexahedral mesh objects, like those used by the ARES code to model inertial confinement experiments.
NASA Astrophysics Data System (ADS)
Li, Liang; Chen, Zhiqiang; Zhao, Ziran; Wu, Dufan
2013-01-01
At present, there are mainly three x-ray imaging modalities for dental clinical diagnosis: radiography, panorama and computed tomography (CT). We develop a new x-ray digital intra-oral tomosynthesis (IDT) system for quasi-three-dimensional dental imaging which can be seen as an intermediate modality between traditional radiography and CT. In addition to normal x-ray tube and digital sensor used in intra-oral radiography, IDT has a specially designed mechanical device to complete the tomosynthesis data acquisition. During the scanning, the measurement geometry is such that the sensor is stationary inside the patient's mouth and the x-ray tube moves along an arc trajectory with respect to the intra-oral sensor. Therefore, the projection geometry can be obtained without any other reference objects, which makes it be easily accepted in clinical applications. We also present a compressed sensing-based iterative reconstruction algorithm for this kind of intra-oral tomosynthesis. Finally, simulation and experiment were both carried out to evaluate this intra-oral imaging modality and algorithm. The results show that IDT has its potentiality to become a new tool for dental clinical diagnosis.
[Design of longitudinal auto-tracking of the detector on X-ray in digital radiography].
Yu, Xiaomin; Jiang, Tianhao; Liu, Zhihong; Zhao, Xu
2018-04-01
One algorithm is designed to implement longitudinal auto-tracking of the the detector on X-ray in the digital radiography system (DR) with manual collimator. In this study, when the longitudinal length of field of view (LFOV) on the detector is coincided with the longitudinal effective imaging size of the detector, the collimator half open angle ( Ψ ), the maximum centric distance ( e max ) between the center of X-ray field of view and the projection center of the focal spot, and the detector moving distance for auto-traking can be calculated automatically. When LFOV is smaller than the longitudinal effective imaging size of the detector by reducing Ψ , the e max can still be used to calculate the detector moving distance. Using this auto-tracking algorithm in DR with manual collimator, the tested results show that the X-ray projection is totally covered by the effective imaging area of the detector, although the center of the field of view is not aligned with the center of the effective imaging area of the detector. As a simple and low-cost design, the algorithm can be used for longitudinal auto-tracking of the detector on X-ray in the manual collimator DR.
Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.
Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan
2015-02-01
Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.
Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in
2015-02-15
Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at themore » inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less
The Rotated Speeded-Up Robust Features Algorithm (R-SURF)
2014-06-01
blue color model YUV one luminance two chrominance color model xviii THIS PAGE INTENTIONALLY LEFT BLANK xix EXECUTIVE SUMMARY Automatic...256 256 3 color scheme with an uncompressed image is used, each visual pixel has a possibility of 3256 combinations 2 [5]. There are...Portugal, 2009. [41] J. Sivic and A. Zisserman, “Efficient visual search of videos cast as text retrieval,” IEEE Transactions on Pattern Analysis and
Fitch-Vargas, Perla Rosa; Aguilar-Palazuelos, Ernesto; de Jesús Zazueta-Morales, José; Vega-García, Misael Odín; Valdez-Morales, Jesús Enrique; Martínez-Bustos, Fernando; Jacobo-Valenzuela, Noelia
2016-09-01
Starch edible films (EFs) have been widely studied due to their potential in food preservation; however, their application is limited because of their poor mechanical and barrier properties. Because of that, the aim of this work was to use the extrusion technology (Ex T) as a pretreatment of casting technique to change the starch structure in order to obtain EFs with improved physicochemical properties. To this, corn starch and a mixture of plasticizers (sorbitol and glycerol, in different ratios) were processed in a twin screw extruder to generate the starch modification and subsequently casting technique was used for EFs formation. The best conditions of the Ex T and plasticizers concentration were obtained using response surface methodology. All the response variables evaluated, were affected significatively by the Plasticizers Ratio (Sorbitol:Glycerol) (PR (S:G)) and Extrusion Temperature (ET), while the Screw Speed (SS) did not show significant effect on any of these variables. The optimization study showed that the appropriate conditions to obtain EFs with the best mechanical and barrier properties were ET = 89 °C, SS = 66 rpm and PR (S:G) = 79.7:20.3. Once the best conditions were obtained, the optimal treatment was characterized according to its microstructural properties (X-ray diffraction, Scanning Electron Microscopy and Atomic Force Microscopy) to determine the damage caused in the starch during Ex T and casting technique. In conclusion, with the combination of Ex T and casting technique were obtained EFs with greater breaking strength and deformation, as well as lower water vapor permeability than those reported in the literature. © 2016 Institute of Food Technologists®
Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen
2018-02-28
In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.
Detection of insect damage in almonds
NASA Astrophysics Data System (ADS)
Kim, Soowon; Schatzki, Thomas F.
1999-01-01
Pinhole insect damage in natural almonds is very difficult to detect on-line. Further, evidence exists relating insect damage to aflatoxin contamination. Hence, for quality and health reasons, methods to detect and remove such damaged nuts are of great importance in this study, we explored the possibility of using x-ray imaging to detect pinhole damage in almonds by insects. X-ray film images of about 2000 almonds and x-ray linescan images of only 522 pinhole damaged almonds were obtained. The pinhole damaged region appeared slightly darker than non-damaged region in x-ray negative images. A machine recognition algorithm was developed to detect these darker regions. The algorithm used the first order and the second order information to identify the damaged region. To reduce the possibility of false positive results due to germ region in high resolution images, germ detection and removal routines were also included. With film images, the algorithm showed approximately an 81 percent correct recognition ratio with only 1 percent false positives whereas line scan images correctly recognized 65 percent of pinholes with about 9 percent false positives. The algorithms was very fast and efficient requiring only minimal computation time. If implemented on line, theoretical throughput of this recognition system would be 66 nuts/second.
NASA Astrophysics Data System (ADS)
Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko
2018-05-01
Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.
Segmentation of blurred objects using wavelet transform: application to x-ray images
NASA Astrophysics Data System (ADS)
Barat, Cecile S.; Ducottet, Christophe; Bilgot, Anne; Desbat, Laurent
2004-02-01
First, we present a wavelet-based algorithm for edge detection and characterization, which is an adaptation of Mallat and Hwang"s method. This algorithm relies on a modelization of contours as smoothed singularities of three particular types (transitions, peaks and lines). On the one hand, it allows to detect and locate edges at an adapted scale. On the other hand, it is able to identify the type of each detected edge point and to measure its amplitude and smoothing size. The latter parameters represent respectively the contrast and the smoothness level of the edge point. Second, we explain that this method has been integrated in a 3D bone surface reconstruction algorithm designed for computer-assisted and minimal invasive orthopaedic surgery. In order to decrease the dose to the patient and to obtain rapidly a 3D image, we propose to identify a bone shape from few X-ray projections by using statistical shape models registered to segmented X-ray projections. We apply this approach to pedicle screw insertion (scoliosis, fractures...) where ten to forty percent of the screws are known to be misplaced. In this context, the proposed edge detection algorithm allows to overcome the major problem of vertebrae segmentation in the X-ray images.
Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation
NASA Astrophysics Data System (ADS)
Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao
1998-08-01
We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.
ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bin; Maddumage, Prasad; Kantowski, Ronald
2015-05-15
Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravitymore » field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.« less
Algorithms and Programs for Strong Gravitational Lensing In Kerr Space-time Including Polarization
NASA Astrophysics Data System (ADS)
Chen, Bin; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie; Maddumage, Prasad
2015-05-01
Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.
NASA Astrophysics Data System (ADS)
Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun
2017-04-01
Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.
NASA Astrophysics Data System (ADS)
Kumar, Anil; Chopkar, Manoj
2018-05-01
Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.
Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes
NASA Astrophysics Data System (ADS)
Buchanan, Karl G.; Kral, Milo V.
2012-06-01
The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alamaniotis, Miltiadis; Tsoukalas, Lefteri H.
2018-01-01
Significant role in enhancing nuclear nonproliferation plays the analysis of obtained data and the inference of the presence or not of special nuclear materials in them. Among various types of measurements, gamma-ray spectra is the widest used type of data utilized for analysis in nonproliferation. In this chapter, a method that employs the fireworks algorithm (FWA) for analyzing gamma-ray spectra aiming at detecting gamma signatures is presented. In particular FWA is utilized to fit a set of known signatures to a measured spectrum by optimizing an objective function, with non-zero coefficients expressing the detected signatures. FWA is tested on amore » set of experimentally obtained measurements and various objective functions -MSE, RMSE, Theil-2, MAE, MAPE, MAP- with results exhibiting its potential in providing high accuracy and high precision of detected signatures. Furthermore, FWA is benchmarked against genetic algorithms, and multiple linear regression with results exhibiting its superiority over the rest tested algorithms with respect to precision for MAE, MAPE and MAP measures.« less
Monochromatic-beam-based dynamic X-ray microtomography based on OSEM-TV algorithm.
Xu, Liang; Chen, Rongchang; Yang, Yiming; Deng, Biao; Du, Guohao; Xie, Honglan; Xiao, Tiqiao
2017-01-01
Monochromatic-beam-based dynamic X-ray computed microtomography (CT) was developed to observe evolution of microstructure inside samples. However, the low flux density results in low efficiency in data collection. To increase efficiency, reducing the number of projections should be a practical solution. However, it has disadvantages of low image reconstruction quality using the traditional filtered back projection (FBP) algorithm. In this study, an iterative reconstruction method using an ordered subset expectation maximization-total variation (OSEM-TV) algorithm was employed to address and solve this problem. The simulated results demonstrated that normalized mean square error of the image slices reconstructed by the OSEM-TV algorithm was about 1/4 of that by FBP. Experimental results also demonstrated that the density resolution of OSEM-TV was high enough to resolve different materials with the number of projections less than 100. As a result, with the introduction of OSEM-TV, the monochromatic-beam-based dynamic X-ray microtomography is potentially practicable for the quantitative and non-destructive analysis to the evolution of microstructure with acceptable efficiency in data collection and reconstructed image quality.
Micromechanical Characterization and Texture Analysis of Direct Cast Titanium Alloys Strips
NASA Technical Reports Server (NTRS)
2000-01-01
This research was conducted to determine a post-processing technique to optimize mechanical and material properties of a number of Titanium based alloys and aluminides processed via Melt Overflow Solidification Technique (MORST). This technique was developed by NASA for the development of thin sheet titanium and titanium aluminides used in high temperature applications. The materials investigated in this study included conventional titanium alloy strips and foils, Ti-1100, Ti-24Al-11Nb (Alpha-2), and Ti-48Al-2Ta (Gamma). The methodology used included micro-characterization, heat-treatment, mechanical processing and mechanical testing. Characterization techniques included optical, electron microscopy, and x-ray texture analysis. The processing included heat-treatment and mechanical deformation through cold rolling. The initial as-cast materials were evaluated for their microstructure and mechanical properties. Different heat-treatment and rolling steps were chosen to process these materials. The properties were evaluated further and a processing relationship was established in order to obtain an optimum processing condition. The results showed that the as-cast material exhibited a Widmanstatten (fine grain) microstructure that developed into a microstructure with larger grains through processing steps. The texture intensity showed little change for all processing performed in this investigation.
NASA Astrophysics Data System (ADS)
Hassani, Behzad; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Sabooni, Soheil; Vallant, Rudolf
2016-07-01
In this study, friction stir processing (FSP) was applied to the GTAW (TIG)-welded AZ91C cast alloy to refine the microstructure and optimize the mechanical properties of the weld zone. Microstructural investigation of the samples was performed by optical microscopy and the phases in the microstructure were determined by x-ray diffraction (XRD). The microstructural evaluations showed that FSP destroys the coarse dendritic microstructure. Furthermore, it dissolves the secondary hard and brittle β-Mg17Al12 phase existing at grain boundaries of the TIG weld zone. The closure and decrease in amount of porosities along with the elimination of the cracks in the microstructure were observed. These changes were followed by a significant grain refinement to an average value of 11 µm. The results showed that the hardness values increased to the mean ones, respectively, for as-cast (63 Hv), TIG weld zone (67 Hv), and stir zone (79 Hv). The yield and ultimate strength were significantly enhanced after FSP. The fractography evaluations, by scanning electron microscopy (SEM), indicated to a transition from brittle to ductile fracture surface after applying FSP to the TIG weld zone.
NASA Astrophysics Data System (ADS)
Moreno, H. A.; Ogden, F. L.; Alvarez, L. V.
2016-12-01
This research work presents a methodology for estimating terrain slope degree, aspect (slope orientation) and total incoming solar radiation from Triangular Irregular Network (TIN) terrain models. The algorithm accounts for self shading and cast shadows, sky view fractions for diffuse radiation, remote albedo and atmospheric backscattering, by using a vectorial approach within a topocentric coordinate system and establishing geometric relations between groups of TIN elements and the sun position. A normal vector to the surface of each TIN element describes slope and aspect while spherical trigonometry allows computingunit vector defining the position of the sun at each hour and day of the year. Thus, a dot product determines the radiation flux at each TIN element. Cast shadows are computed by scanning the projection of groups of TIN elements in the direction of the closest perpendicular plane to the sun vector only in the visible horizon range. Sky view fractions are computed by a simplified scanning algorithm from the highest to the lowest triangles along prescribed directions and visible distances, useful to determine diffuse radiation. Finally, remotealbedo is computed from the sky view fraction complementary functions for prescribed albedo values of the surrounding terrain only for significant angles above the horizon. The sensitivity of the different radiative components is tested a in a moutainuous watershed in Wyoming, to seasonal changes in weather and surrounding albedo (snow). This methodology represents an improvement on the current algorithms to compute terrain and radiation values on triangular-based models in an accurate and efficient manner. All terrain-related features (e.g. slope, aspect, sky view fraction) can be pre-computed and stored for easy access for a subsequent, progressive-in-time, numerical simulation.
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2018-01-01
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.
Gregoire, John M; Dale, Darren; van Dover, R Bruce
2011-01-01
Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud
The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysismore » and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms« less
A fast recognition method of warhead target in boost phase using kinematic features
NASA Astrophysics Data System (ADS)
Chen, Jian; Xu, Shiyou; Tian, Biao; Wu, Jianhua; Chen, Zengping
2015-12-01
The radar targets number increases from one to more when the ballistic missile is in the process of separating the lower stage rocket or casting covers or other components. It is vital to identify the warhead target quickly among these multiple targets for radar tracking. A fast recognition method of the warhead target is proposed to solve this problem by using kinematic features, utilizing fuzzy comprehensive method and information fusion method. In order to weaken the influence of radar measurement noise, an extended Kalman filter with constant jerk model (CJEKF) is applied to obtain more accurate target's motion information. The simulation shows the validity of the algorithm and the effects of the radar measurement precision upon the algorithm's performance.
Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.
Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi
2017-12-01
Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.
Army Research Laboratory 2009 Annual Review
2009-01-01
and in new Navy DDX and DDG ships . As a result of the high performance and low weight of composite materials, it is very likely that the Services...labs, an explosives casting lab, and it also has explosives x-ray capability . An indoor small arms shooting performance simulator with a high ...of nervous systems, rather than simply depending upon the adaptive abilities of Soldiers, and radically improve Soldier-system performance . a high
Telescope for x ray and gamma ray studies in astrophysics
NASA Technical Reports Server (NTRS)
Weaver, W. D.; Desai, Upendra D.
1993-01-01
Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.
Real-time stereographic display of volumetric datasets in radiology
NASA Astrophysics Data System (ADS)
Wang, Xiao Hui; Maitz, Glenn S.; Leader, J. K.; Good, Walter F.
2006-02-01
A workstation for testing the efficacy of stereographic displays for applications in radiology has been developed, and is currently being tested on lung CT exams acquired for lung cancer screening. The system exploits pre-staged rendering to achieve real-time dynamic display of slabs, where slab thickness, axial position, rendering method, brightness and contrast are interactively controlled by viewers. Stereo presentation is achieved by use of either frame-swapping images or cross-polarizing images. The system enables viewers to toggle between alternative renderings such as one using distance-weighted ray casting by maximum-intensity-projection, which is optimal for detection of small features in many cases, and ray casting by distance-weighted averaging, for characterizing features once detected. A reporting mechanism is provided which allows viewers to use a stereo cursor to measure and mark the 3D locations of specific features of interest, after which a pop-up dialog box appears for entering findings. The system's impact on performance is being tested on chest CT exams for lung cancer screening. Radiologists' subjective assessments have been solicited for other kinds of 3D exams (e.g., breast MRI) and their responses have been positive. Objective estimates of changes in performance and efficiency, however, must await the conclusion of our study.
NASA Astrophysics Data System (ADS)
Ahmed, Syed Faisal; Srivastava, Sanjay; Agarwal, Alka Bani
2018-04-01
Metal matrix composite offers outstanding properties for better performance of disc brakes. In the present study, the composite of AlTiCr master alloy was prepared by stir die casting method. The developed material was reinforced with (0-10 wt%) silicon carbide (SiC) and boron carbide (B4C). The effects of SiC reinforcement from 0 to 10 wt% on mechanical, microstructure and surface morphological properties of Al MMC was investigated and compared with B4C reinforcement. Physical properties like density and micro Vickers hardness number show an increasing trend with an increase in the percentage of SiC and B4C reinforcement. Mechanical properties viz. UTS, yield strength and percentage of elongation are improved with increasing the fraction of reinforcement. The surface morphology and phase were identified from scanning electron microscopy (SEM) and X-ray diffraction analysis and the oxidized product formed during the casting was investigated by Fourier transformation infrared spectroscopy. This confirms the presence of crystallization of corundum (α-Al2O3) in small traces as one of the alumina phases, within casting sample. Micro-structural characterization by SEM depicted that the particles tend to be more agglomerated more and more with the percentage of the reinforcement. The AFM results reveal that the surface roughness value shows a decreasing trend with SiC reinforcement while roughness increases with increase the percentage of B4C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, Douglas F., E-mail: souzadf@outlook.com; Nunes, Eduardo H.M., E-mail: eduardohmn@gmail.com; Pimenta, Daiana S.
In this work we fabricated alumina samples by the freeze-casting technique using tert-butanol as the solvent. The prepared materials were examined by scanning electron microscopy and X-ray microtomography. Next, they were coated with sol–gel silica films by dip-coating. Permeability tests were carried out in order to assess the permeation behavior of the materials processed in this study. We observed that the sintering time and alumina loading showed a remarkable effect on both the structural properties and flexural strength of the freeze-cast samples. Nitrogen adsorption tests revealed that the silica prepared in this study exhibited a microporous structure. It was observedmore » that the presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance by about one order of magnitude. Because of the similar kinetic diameters of nitrogen and carbon dioxide, the CO{sub 2}/N{sub 2} system showed a separation efficiency that was lower than that observed for the He/CO{sub 2} and He/N{sub 2} systems. We noticed that increasing the feed pressure improved the separation capacity of the obtained materials. - Highlights: • Porous alumina samples obtained by the freeze-casting technique • Microporous silica coating prepared by a simple sol–gel dip-coating methodology • Samples examined by SEM, μ-CT, and nitrogen sorption tests • Mechanical tests were carried out in the freeze-cast samples. • The presence of silica coatings on the alumina surface decreased the CO{sub 2} permeance.« less
Effects of Yttrium Addition on Microstructure and Mechanical Properties of AZ80-2Sn Magnesium Alloys
NASA Astrophysics Data System (ADS)
Xue, Hansong; Yang, Gang; Li, Di; Xing, Zhihui; Pan, Fusheng
2015-12-01
The effects of Y on microstructure and mechanical properties of as-cast AZ80-2Sn magnesium alloys were investigated by optical microscopy, scanning electron microscopy and X-ray diffraction. Y addition not only changes the as-cast microstructure but also influences the mechanical properties of AZ80-2Sn alloy. Unmodified AZ80-2Sn alloys under casting state show that Mg17Al12 eutectic phase is semicontinuous and reticulated shape and distributes mainly at grain boundaries. Moreover, there are numerous Mg2Sn precipitate particles dispersing in Mg17Al12 eutectic phases. Y addition to as-cast AZ80-2Sn alloys has an important influence on the precipitation phase. But there has no obvious effect on grain refinement with Y addition. The results show that the AZ80-2Sn alloys with variable Y contents all contain Al2Y phase. By adding Y, the amount of Mg17Al12 is decreased and the dimension of that is reduced. Mg17Al12 eutectic phase turns to discontinuous, and the more disperse phases occur with the increase of Y content. The tensile tests indicate that a minor addition of Y can contribute to the formation of the dispersed small polygonal Al2Y particles and the improvement in the room-temperature strength. However, excessive Y addition leads to the coarsening of Al2Y phases, and thus results in the decline of strength and ductility.
NASA Astrophysics Data System (ADS)
Brenden, T. O.; Clark, R. D.; Wiley, M. J.; Seelbach, P. W.; Wang, L.
2005-05-01
Remote sensing and geographic information systems have made it possible to attribute variables for streams at increasingly detailed resolutions (e.g., individual river reaches). Nevertheless, management decisions still must be made at large scales because land and stream managers typically lack sufficient resources to manage on an individual reach basis. Managers thus require a method for identifying stream management units that are ecologically similar and that can be expected to respond similarly to management decisions. We have developed a spatially-constrained clustering algorithm that can merge neighboring river reaches with similar ecological characteristics into larger management units. The clustering algorithm is based on the Cluster Affinity Search Technique (CAST), which was developed for clustering gene expression data. Inputs to the clustering algorithm are the neighbor relationships of the reaches that comprise the digital river network, the ecological attributes of the reaches, and an affinity value, which identifies the minimum similarity for merging river reaches. In this presentation, we describe the clustering algorithm in greater detail and contrast its use with other methods (expert opinion, classification approach, regular clustering) for identifying management units using several Michigan watersheds as a backdrop.
Three-dimensional contour edge detection algorithm
NASA Astrophysics Data System (ADS)
Wang, Yizhou; Ong, Sim Heng; Kassim, Ashraf A.; Foong, Kelvin W. C.
2000-06-01
This paper presents a novel algorithm for automatically extracting 3D contour edges, which are points of maximum surface curvature in a surface range image. The 3D image data are represented as a surface polygon mesh. The algorithm transforms the range data, obtained by scanning a dental plaster cast, into a 2D gray scale image by linearly converting the z-value of each vertex to a gray value. The Canny operator is applied to the median-filtered image to obtain the edge pixels and their orientations. A vertex in the 3D object corresponding to the detected edge pixel and its neighbors in the direction of the edge gradient are further analyzed with respect to their n-curvatures to extract the real 3D contour edges. This algorithm provides a fast method of reducing and sorting the unwieldy data inherent in the surface mesh representation. It employs powerful 2D algorithms to extract features from the transformed 3D models and refers to the 3D model for further analysis of selected data. This approach substantially reduces the computational burden without losing accuracy. It is also easily extended to detect 3D landmarks and other geometrical features, thus making it applicable to a wide range of applications.
Three-dimensional monochromatic x-ray CT
NASA Astrophysics Data System (ADS)
Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Ktsuyuki; Uyama, Chikao
1995-08-01
In this paper, we describe a 3D computed tomography (3D CT) using monochromatic x-rays generated by synchrotron radiation, which performs a direct reconstruction of 3D volume image of an object from its cone-beam projections. For the develpment of 3D CT, scanning orbit of x-ray source to obtain complete 3D information about an object and corresponding 3D image reconstruction algorithm are considered. Computer simulation studies demonstrate the validities of proposed scanning method and reconstruction algorithm. A prototype experimental system of 3D CT was constructed. Basic phantom examinations and specific material CT image by energy subtraction obtained in this experimental system are shown.
NASA Astrophysics Data System (ADS)
Wen, Xianfei; Enqvist, Andreas
2017-09-01
Cs2LiYCl6:Ce3+ (CLYC) detectors have demonstrated the capability to simultaneously detect γ-rays and thermal and fast neutrons with medium energy resolution, reasonable detection efficiency, and substantially high pulse shape discrimination performance. A disadvantage of CLYC detectors is the long scintillation decay times, which causes pulse pile-up at moderate input count rate. Pulse processing algorithms were developed based on triangular and trapezoidal filters to discriminate between neutrons and γ-rays at high count rate. The algorithms were first tested using low-rate data. They exhibit a pulse-shape discrimination performance comparable to that of the charge comparison method, at low rate. Then, they were evaluated at high count rate. Neutrons and γ-rays were adequately identified with high throughput at rates of up to 375 kcps. The algorithm developed using the triangular filter exhibits discrimination capability marginally higher than that of the trapezoidal filter based algorithm irrespective of low or high rate. The algorithms exhibit low computational complexity and are executable on an FPGA in real-time. They are also suitable for application to other radiation detectors whose pulses are piled-up at high rate owing to long scintillation decay times.
An Efficient Augmented Lagrangian Method for Statistical X-Ray CT Image Reconstruction.
Li, Jiaojiao; Niu, Shanzhou; Huang, Jing; Bian, Zhaoying; Feng, Qianjin; Yu, Gaohang; Liang, Zhengrong; Chen, Wufan; Ma, Jianhua
2015-01-01
Statistical iterative reconstruction (SIR) for X-ray computed tomography (CT) under the penalized weighted least-squares criteria can yield significant gains over conventional analytical reconstruction from the noisy measurement. However, due to the nonlinear expression of the objective function, most exiting algorithms related to the SIR unavoidably suffer from heavy computation load and slow convergence rate, especially when an edge-preserving or sparsity-based penalty or regularization is incorporated. In this work, to address abovementioned issues of the general algorithms related to the SIR, we propose an adaptive nonmonotone alternating direction algorithm in the framework of augmented Lagrangian multiplier method, which is termed as "ALM-ANAD". The algorithm effectively combines an alternating direction technique with an adaptive nonmonotone line search to minimize the augmented Lagrangian function at each iteration. To evaluate the present ALM-ANAD algorithm, both qualitative and quantitative studies were conducted by using digital and physical phantoms. Experimental results show that the present ALM-ANAD algorithm can achieve noticeable gains over the classical nonlinear conjugate gradient algorithm and state-of-the-art split Bregman algorithm in terms of noise reduction, contrast-to-noise ratio, convergence rate, and universal quality index metrics.
Mori, S
2014-05-01
To ensure accuracy in respiratory-gating treatment, X-ray fluoroscopic imaging is used to detect tumour position in real time. Detection accuracy is strongly dependent on image quality, particularly positional differences between the patient and treatment couch. We developed a new algorithm to improve the quality of images obtained in X-ray fluoroscopic imaging and report the preliminary results. Two oblique X-ray fluoroscopic images were acquired using a dynamic flat panel detector (DFPD) for two patients with lung cancer. The weighting factor was applied to the DFPD image in respective columns, because most anatomical structures, as well as the treatment couch and port cover edge, were aligned in the superior-inferior direction when the patient lay on the treatment couch. The weighting factors for the respective columns were varied until the standard deviation of the pixel values within the image region was minimized. Once the weighting factors were calculated, the quality of the DFPD image was improved by applying the factors to multiframe images. Applying the image-processing algorithm produced substantial improvement in the quality of images, and the image contrast was increased. The treatment couch and irradiation port edge, which were not related to a patient's position, were removed. The average image-processing time was 1.1 ms, showing that this fast image processing can be applied to real-time tumour-tracking systems. These findings indicate that this image-processing algorithm improves the image quality in patients with lung cancer and successfully removes objects not related to the patient. Our image-processing algorithm might be useful in improving gated-treatment accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Shiyang; Song, Peng; Pei, Wenbing
2013-09-15
Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux canmore » be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.« less
A three-image algorithm for hard x-ray grating interferometry.
Pelliccia, Daniele; Rigon, Luigi; Arfelli, Fulvia; Menk, Ralf-Hendrik; Bukreeva, Inna; Cedola, Alessia
2013-08-12
A three-image method to extract absorption, refraction and scattering information for hard x-ray grating interferometry is presented. The method comprises a post-processing approach alternative to the conventional phase stepping procedure and is inspired by a similar three-image technique developed for analyzer-based x-ray imaging. Results obtained with this algorithm are quantitatively comparable with phase-stepping. This method can be further extended to samples with negligible scattering, where only two images are needed to separate absorption and refraction signal. Thanks to the limited number of images required, this technique is a viable route to bio-compatible imaging with x-ray grating interferometer. In addition our method elucidates and strengthens the formal and practical analogies between grating interferometry and the (non-interferometric) diffraction enhanced imaging technique.
Separation of overlapping dental arch objects using digital records of illuminated plaster casts.
Yadollahi, Mohammadreza; Procházka, Aleš; Kašparová, Magdaléna; Vyšata, Oldřich; Mařík, Vladimír
2015-07-11
Plaster casts of individual patients are important for orthodontic specialists during the treatment process and their analysis is still a standard diagnostical tool. But the growing capabilities of information technology enable their replacement by digital models obtained by complex scanning systems. This paper presents the possibility of using a digital camera as a simple instrument to obtain the set of digital images for analysis and evaluation of the treatment using appropriate mathematical tools of image processing. The methods studied in this paper include the segmentation of overlapping dental bodies and the use of different illumination sources to increase the reliability of the separation process. The circular Hough transform, region growing with multiple seed points, and the convex hull detection method are applied to the segmentation of orthodontic plaster cast images to identify dental arch objects and their sizes. The proposed algorithm presents the methodology of improving the accuracy of segmentation of dental arch components using combined illumination sources. Dental arch parameters and distances between the canines and premolars for different segmentation methods were used as a measure to compare the results obtained. A new method of segmentation of overlapping dental arch components using digital records of illuminated plaster casts provides information with the precision required for orthodontic treatment. The distance between corresponding teeth was evaluated with a mean error of 1.38% and the Dice similarity coefficient of the evaluated dental bodies boundaries reached 0.9436 with a false positive rate [Formula: see text] and false negative rate [Formula: see text].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, J. J.; Almer, J. D.; Vogel, S. C.
The metallic glass-forming alloy VIT-105 (Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10}Ti{sub 5}) was used to study the effect of oxygen on nucleation. Ex situ synchrotron X-ray scattering experiments performed on as-cast samples showed that oxygen leads to the formation of tetragonal and/or cubic phases, depending on oxygen content. The samples crystallized into either a primitive tetragonal phase or the so-called fcc 'big cube' phase in a glassy matrix. A subsequent discussion on the role of oxygen in heterogeneous nucleation in Zr-based bulk metallic glasses is presented.
NASA Astrophysics Data System (ADS)
Park, Y. O.; Hong, D. K.; Cho, H. S.; Je, U. K.; Oh, J. E.; Lee, M. S.; Kim, H. J.; Lee, S. H.; Jang, W. S.; Cho, H. M.; Choi, S. I.; Koo, Y. S.
2013-09-01
In this paper, we introduce an effective imaging system for digital tomosynthesis (DTS) with a circular X-ray tube, the so-called circular-DTS (CDTS) system, and its image reconstruction algorithm based on the total-variation (TV) minimization method for low-dose, high-accuracy X-ray imaging. Here, the X-ray tube is equipped with a series of cathodes distributed around a rotating anode, and the detector remains stationary throughout the image acquisition. We considered a TV-based reconstruction algorithm that exploited the sparsity of the image with substantially high image accuracy. We implemented the algorithm for the CDTS geometry and successfully reconstructed images of high accuracy. The image characteristics were investigated quantitatively by using some figures of merit, including the universal-quality index (UQI) and the depth resolution. For selected tomographic angles of 20, 40, and 60°, the corresponding UQI values in the tomographic view were estimated to be about 0.94, 0.97, and 0.98, and the depth resolutions were about 4.6, 3.1, and 1.2 voxels in full width at half maximum (FWHM), respectively. We expect the proposed method to be applicable to developing a next-generation dental or breast X-ray imaging system.
NASA Astrophysics Data System (ADS)
Eilbert, Richard F.; Krug, Kristoph D.
1993-04-01
The Vivid Rapid Explosives Detection Systems is a true dual energy x-ray machine employing precision x-ray data acquisition in combination with unique algorithms and massive computation capability. Data from the system's 960 detectors is digitally stored and processed by powerful supermicro-computers organized as an expandable array of parallel processors. The algorithms operate on the dual energy attenuation image data to recognize and define objects in the milieu of the baggage contents. Each object is then systematically examined for a match to a specific effective atomic number, density, and mass threshold. Material properties are determined by comparing the relative attenuations of the 75 kVp and 150 kVp beams and electronically separating the object from its local background. Other heuristic algorithms search for specific configurations and provide additional information. The machine automatically detects explosive materials and identifies bomb components in luggage with high specificity and throughput, X-ray dose is comparable to that of current airport x-ray machines. The machine is also configured to find heroin, cocaine, and US currency by selecting appropriate settings on-site. Since January 1992, production units have been operationally deployed at U.S. and European airports for improved screening of checked baggage.
CT brush and CancerZap!: two video games for computed tomography dose minimization.
Alvare, Graham; Gordon, Richard
2015-05-12
X-ray dose from computed tomography (CT) scanners has become a significant public health concern. All CT scanners spray x-ray photons across a patient, including those using compressive sensing algorithms. New technologies make it possible to aim x-ray beams where they are most needed to form a diagnostic or screening image. We have designed a computer game, CT Brush, that takes advantage of this new flexibility. It uses a standard MART algorithm (Multiplicative Algebraic Reconstruction Technique), but with a user defined dynamically selected subset of the rays. The image appears as the player moves the CT brush over an initially blank scene, with dose accumulating with every "mouse down" move. The goal is to find the "tumor" with as few moves (least dose) as possible. We have successfully implemented CT Brush in Java and made it available publicly, requesting crowdsourced feedback on improving the open source code. With this experience, we also outline a "shoot 'em up game" CancerZap! for photon limited CT. We anticipate that human computing games like these, analyzed by methods similar to those used to understand eye tracking, will lead to new object dependent CT algorithms that will require significantly less dose than object independent nonlinear and compressive sensing algorithms that depend on sprayed photons. Preliminary results suggest substantial dose reduction is achievable.
Methods for coherent lensless imaging and X-ray wavefront measurements
NASA Astrophysics Data System (ADS)
Guizar Sicairos, Manuel
X-ray diffractive imaging is set apart from other high-resolution imaging techniques (e.g. scanning electron or atomic force microscopy) for its high penetration depth, which enables tomographic 3D imaging of thick samples and buried structures. Furthermore, using short x-ray pulses, it enables the capability to take ultrafast snapshots, giving a unique opportunity to probe nanoscale dynamics at femtosecond time scales. In this thesis we present improvements to phase retrieval algorithms, assess their performance through numerical simulations, and develop new methods for both imaging and wavefront measurement. Building on the original work by Faulkner and Rodenburg, we developed an improved reconstruction algorithm for phase retrieval with transverse translations of the object relative to the illumination beam. Based on gradient-based nonlinear optimization, this algorithm is capable of estimating the object, and at the same time refining the initial knowledge of the incident illumination and the object translations. The advantages of this algorithm over the original iterative transform approach are shown through numerical simulations. Phase retrieval has already shown substantial success in wavefront sensing at optical wavelengths. Although in principle the algorithms can be used at any wavelength, in practice the focus-diversity mechanism that makes optical phase retrieval robust is not practical to implement for x-rays. In this thesis we also describe the novel application of phase retrieval with transverse translations to the problem of x-ray wavefront sensing. This approach allows the characterization of the complex-valued x-ray field in-situ and at-wavelength and has several practical and algorithmic advantages over conventional focused beam measurement techniques. A few of these advantages include improved robustness through diverse measurements, reconstruction from far-field intensity measurements only, and significant relaxation of experimental requirements over other beam characterization approaches. Furthermore, we show that a one-dimensional version of this technique can be used to characterize an x-ray line focus produced by a cylindrical focusing element. We provide experimental demonstrations of the latter at hard x-ray wavelengths, where we have characterized the beams focused by a kinoform lens and an elliptical mirror. In both experiments the reconstructions exhibited good agreement with independent measurements, and in the latter a small mirror misalignment was inferred from the phase retrieval reconstruction. These experiments pave the way for the application of robust phase retrieval algorithms for in-situ alignment and performance characterization of x-ray optics for nanofocusing. We also present a study on how transverse translations help with the well-known uniqueness problem of one-dimensional phase retrieval. We also present a novel method for x-ray holography that is capable of reconstructing an image using an off-axis extended reference in a non-iterative computation, greatly generalizing an earlier approach by Podorov et al. The approach, based on the numerical application of derivatives on the field autocorrelation, was developed from first mathematical principles. We conducted a thorough theoretical study to develop technical and intuitive understanding of this technique and derived sufficient separation conditions required for an artifact-free reconstruction. We studied the effects of missing information in the Fourier domain, and of an imperfect reference, and we provide a signal-to-noise ratio comparison with the more traditional approach of Fourier transform holography. We demonstrated this new holographic approach through proof-of-principle optical experiments and later experimentally at soft x-ray wavelengths, where we compared its performance to Fourier transform holography, iterative phase retrieval and state-of-the-art zone-plate x-ray imaging techniques (scanning and full-field). Finally, we present a demonstration of the technique using a single 20 fs pulse from a high-harmonic table-top source. Holography with an extended reference is shown to provide fast, good quality images that are robust to noise and artifacts that arise from missing information due to a beam stop. (Abstract shortened by UMI.)
A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
Kang, Eunhee; Min, Junhong; Ye, Jong Chul
2017-10-01
Due to the potential risk of inducing cancer, radiation exposure by X-ray CT devices should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts typically occur due to photon starvation, beam hardening, and other causes, all of which decrease the reliability of the diagnosis. Thus, a high-quality reconstruction method from low-dose X-ray CT data has become a major research topic in the CT community. Conventional model-based de-noising approaches are, however, computationally very expensive, and image-domain de-noising approaches cannot readily remove CT-specific noise patterns. To tackle these problems, we want to develop a new low-dose X-ray CT algorithm based on a deep-learning approach. We propose an algorithm which uses a deep convolutional neural network (CNN) which is applied to the wavelet transform coefficients of low-dose CT images. More specifically, using a directional wavelet transform to extract the directional component of artifacts and exploit the intra- and inter- band correlations, our deep network can effectively suppress CT-specific noise. In addition, our CNN is designed with a residual learning architecture for faster network training and better performance. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns from CT images derived from a reduced X-ray dose. In addition, we show that the wavelet-domain CNN is efficient when used to remove noise from low-dose CT compared to existing approaches. Our results were rigorously evaluated by several radiologists at the Mayo Clinic and won second place at the 2016 "Low-Dose CT Grand Challenge." To the best of our knowledge, this work is the first deep-learning architecture for low-dose CT reconstruction which has been rigorously evaluated and proven to be effective. In addition, the proposed algorithm, in contrast to existing model-based iterative reconstruction (MBIR) methods, has considerable potential to benefit from large data sets. Therefore, we believe that the proposed algorithm opens a new direction in the area of low-dose CT research. © 2017 American Association of Physicists in Medicine.
Image stack alignment in full-field X-ray absorption spectroscopy using SIFT_PyOCL.
Paleo, Pierre; Pouyet, Emeline; Kieffer, Jérôme
2014-03-01
Full-field X-ray absorption spectroscopy experiments allow the acquisition of millions of spectra within minutes. However, the construction of the hyperspectral image requires an image alignment procedure with sub-pixel precision. While the image correlation algorithm has originally been used for image re-alignment using translations, the Scale Invariant Feature Transform (SIFT) algorithm (which is by design robust versus rotation, illumination change, translation and scaling) presents an additional advantage: the alignment can be limited to a region of interest of any arbitrary shape. In this context, a Python module, named SIFT_PyOCL, has been developed. It implements a parallel version of the SIFT algorithm in OpenCL, providing high-speed image registration and alignment both on processors and graphics cards. The performance of the algorithm allows online processing of large datasets.
Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network.
Kang, Eunhee; Chang, Won; Yoo, Jaejun; Ye, Jong Chul
2018-06-01
Model-based iterative reconstruction algorithms for low-dose X-ray computed tomography (CT) are computationally expensive. To address this problem, we recently proposed a deep convolutional neural network (CNN) for low-dose X-ray CT and won the second place in 2016 AAPM Low-Dose CT Grand Challenge. However, some of the textures were not fully recovered. To address this problem, here we propose a novel framelet-based denoising algorithm using wavelet residual network which synergistically combines the expressive power of deep learning and the performance guarantee from the framelet-based denoising algorithms. The new algorithms were inspired by the recent interpretation of the deep CNN as a cascaded convolution framelet signal representation. Extensive experimental results confirm that the proposed networks have significantly improved performance and preserve the detail texture of the original images.
Statistical reconstruction for cosmic ray muon tomography.
Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J
2007-08-01
Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.
Jiang, Xiaolei; Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang
2015-01-01
X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm.
Zhang, Li; Zhang, Ran; Yin, Hongxia; Wang, Zhenchang
2015-01-01
X-ray grating interferometry offers a novel framework for the study of weakly absorbing samples. Three kinds of information, that is, the attenuation, differential phase contrast (DPC), and dark-field images, can be obtained after a single scanning, providing additional and complementary information to the conventional attenuation image. Phase shifts of X-rays are measured by the DPC method; hence, DPC-CT reconstructs refraction indexes rather than attenuation coefficients. In this work, we propose an explicit filtering based low-dose differential phase reconstruction algorithm, which enables reconstruction from reduced scanning without artifacts. The algorithm adopts a differential algebraic reconstruction technique (DART) with the explicit filtering based sparse regularization rather than the commonly used total variation (TV) method. Both the numerical simulation and the biological sample experiment demonstrate the feasibility of the proposed algorithm. PMID:26089971
Himmi, S. Khoirul; Yoshimura, Tsuyoshi; Yanase, Yoshiyuki; Oya, Masao; Torigoe, Toshiyuki; Akada, Masanori; Imadzu, Setsuo
2016-01-01
An X-ray computed-tomographic examination of nest-gallery development from timbers naturally infested by foraging groups of Incisitermes minor colonies was conducted. This study documents the colonization process of I. minor to new timbers and how the isolated groups maintain their nest-gallery system. The results suggested that development of a nest-gallery within a suitable wood item is not random, but shows selection for softer substrate and other adaptations to the different timber environments. Stigmergic coordinations were expressed in dynamic changes of the nest-gallery system; indicated by fortification behavior in sealing and re-opening a tunnel approaching the outer edge of the timber, and accumulating fecal pellets in particular chambers located beneath the timber surface. The study also examines the caste composition of isolated groups to discover how I. minor sustains colonies with and without primary reproductives. PMID:27455332
The Effect of Porosity on Fatigue of Die Cast AM60
NASA Astrophysics Data System (ADS)
Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.
2016-07-01
AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charatis, G.; Hugg, E.; McEllistrem, M.
1997-04-01
PENETRON, Inc., in two phases, demonstrated the effectiveness of its Neutron elastic Scatter (NES) techniques in detecting the change in the carbon weight percentage (CWt%) as a measure of corrosion in gray cast iron pipe. In Phase I, experiments were performed with synthetic standards supplied by IIT Research Institute (IITRI) to test the applicability of the NES techniques. Irradiation experiments performed at the University of Kentucky showed that CWt% could be detected, ranging from 1.6% to 13%, within an uncertainty of around 4%. In Phase II, experiments were performed on seven (7) corroded pipe sections supplied by MichCon. Tests weremore » made on pipe sliced lengthwise into quarter sections, and in re-assembled whole pipe sections. X-ray films of the quarter sections indicated probable areas of corrosion for each quarter section.« less
A Comparison of Shadowgraphy and X-ray Computed Tomography in Liquid Spray Analysis
2014-11-14
atomizers and downstream of the nozzle exit gives insight into optimizing atomizers, particularly for combustion applications. The performance of gas ...regions near the spray nozzle [9, 10]. Because light refraction by liquid sheets is significant, these areas all cast a full shadow on the camera...hollow-cone pressure swirl design. Within this nozzle design, liquid swirls around an air-cored vortex. Upon exiting, the fluid expands due to its
Program for Research on Conducting Polymers
1991-07-17
Excitations in Polyaniline (Synthetic Metals). 29. Transient Photoconductivity in Oriented Irans-Polyacetylene Prepared by the Naarmann-Theophilou Method...State Physics). 33. X-Ray Scattering from Crystalline Polyaniline (Polymer Commun.). 34. Photogenerated Carriers in La2CuO4,YBa2Cu3O7-8 and TI2Ba2Ca...1- x)GdxCu208: Polarizability-Induced Pairing of Polarons (Synthetic Metals). 35. Spectroscopic Studies of Polyaniline in Solution and in Spin-Cast
NASA Astrophysics Data System (ADS)
Dobromyslov, A. V.; Taluts, N. I.
2017-06-01
Al-Fe alloys prepared by casting, rapid quenching from the melt, and mechanical alloying from elemental powders have been studied using X-ray diffraction analysis, optical metallography, transmission electron microscopy, and microhardness measurements in the initial state and after severe plastic deformation by high-pressure torsion using Bridgman anvils. The relationship between the phase composition, microstructure, and the microhardness of the investigated alloys has been established.
Algorithm and program for information processing with the filin apparatus
NASA Technical Reports Server (NTRS)
Gurin, L. S.; Morkrov, V. S.; Moskalenko, Y. I.; Tsoy, K. A.
1979-01-01
The reduction of spectral radiation data from space sources is described. The algorithm and program for identifying segments of information obtained from the Film telescope-spectrometer on the Salyut-4 are presented. The information segments represent suspected X-ray sources. The proposed algorithm is an algorithm of the lowest level. Following evaluation, information free of uninformative segments is subject to further processing with algorithms of a higher level. The language used is FORTRAN 4.
The Complexity of Bit Retrieval
Elser, Veit
2018-09-20
Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.
The Complexity of Bit Retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elser, Veit
Bit retrieval is the problem of reconstructing a periodic binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.
Dong, Jian; Hayakawa, Yoshihiko; Kannenberg, Sven; Kober, Cornelia
2013-02-01
The objective of this study was to reduce metal-induced streak artifact on oral and maxillofacial x-ray computed tomography (CT) images by developing the fast statistical image reconstruction system using iterative reconstruction algorithms. Adjacent CT images often depict similar anatomical structures in thin slices. So, first, images were reconstructed using the same projection data of an artifact-free image. Second, images were processed by the successive iterative restoration method where projection data were generated from reconstructed image in sequence. Besides the maximum likelihood-expectation maximization algorithm, the ordered subset-expectation maximization algorithm (OS-EM) was examined. Also, small region of interest (ROI) setting and reverse processing were applied for improving performance. Both algorithms reduced artifacts instead of slightly decreasing gray levels. The OS-EM and small ROI reduced the processing duration without apparent detriments. Sequential and reverse processing did not show apparent effects. Two alternatives in iterative reconstruction methods were effective for artifact reduction. The OS-EM algorithm and small ROI setting improved the performance. Copyright © 2012 Elsevier Inc. All rights reserved.
Cone-beam reconstruction for the two-circles-plus-one-line trajectory
NASA Astrophysics Data System (ADS)
Lu, Yanbin; Yang, Jiansheng; Emerson, John W.; Mao, Heng; Zhou, Tie; Si, Yuanzheng; Jiang, Ming
2012-05-01
The Kodak Image Station In-Vivo FX has an x-ray module with cone-beam configuration for radiographic imaging but lacks the functionality of tomography. To introduce x-ray tomography into the system, we choose the two-circles-plus-one-line trajectory by mounting one translation motor and one rotation motor. We establish a reconstruction algorithm by applying the M-line reconstruction method. Numerical studies and preliminary physical phantom experiment demonstrate the feasibility of the proposed design and reconstruction algorithm.
Computerized tomography platform using beta rays
NASA Astrophysics Data System (ADS)
Paetkau, Owen; Parsons, Zachary; Paetkau, Mark
2017-12-01
A computerized tomography (CT) system using a 0.1 μCi Sr-90 beta source, Geiger counter, and low density foam samples was developed. A simple algorithm was used to construct images from the data collected with the beta CT scanner. The beta CT system is analogous to X-ray CT as both types of radiation are sensitive to density variations. This system offers a platform for learning opportunities in an undergraduate laboratory, covering topics such as image reconstruction algorithms, radiation exposure, and the energy dependence of absorption.
Three-dimensional propagation in near-field tomographic X-ray phase retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim
An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less
Automatic creation of object hierarchies for ray tracing
NASA Technical Reports Server (NTRS)
Goldsmith, Jeffrey; Salmon, John
1987-01-01
Various methods for evaluating generated trees are proposed. The use of the hierarchical extent method of Rubin and Whitted (1980) to find the objects that will be hit by a ray is examined. This method employs tree searching; the construction of a tree of bounding volumes in order to determine the number of objects that will be hit by a ray is discussed. A tree generation algorithm, which uses a heuristic tree search strategy, is described. The effects of shuffling and sorting on the input data are investigated. The cost of inserting an object into the hierarchy during the construction of a tree algorithm is estimated. The steps involved in estimating the number of intersection calculations are presented.
NASA Astrophysics Data System (ADS)
Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing
2017-03-01
Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.
Chen, Bo; Bian, Zhaoying; Zhou, Xiaohui; Chen, Wensheng; Ma, Jianhua; Liang, Zhengrong
2018-04-12
Total variation (TV) minimization for the sparse-view x-ray computer tomography (CT) reconstruction has been widely explored to reduce radiation dose. However, due to the piecewise constant assumption for the TV model, the reconstructed images often suffer from over-smoothness on the image edges. To mitigate this drawback of TV minimization, we present a Mumford-Shah total variation (MSTV) minimization algorithm in this paper. The presented MSTV model is derived by integrating TV minimization and Mumford-Shah segmentation. Subsequently, a penalized weighted least-squares (PWLS) scheme with MSTV is developed for the sparse-view CT reconstruction. For simplicity, the proposed algorithm is named as 'PWLS-MSTV.' To evaluate the performance of the present PWLS-MSTV algorithm, both qualitative and quantitative studies were conducted by using a digital XCAT phantom and a physical phantom. Experimental results show that the present PWLS-MSTV algorithm has noticeable gains over the existing algorithms in terms of noise reduction, contrast-to-ratio measure and edge-preservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; An, R.
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Acciarri, R.; Adams, C.; An, R.; ...
2018-01-29
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Compressed sensing with gradient total variation for low-dose CBCT reconstruction
NASA Astrophysics Data System (ADS)
Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Seongchae; Huh, Young; Park, Justin C.; Lee, Byeonghun; Baek, Junghee; Kim, Eunyoung
2015-06-01
This paper describes the improvement of convergence speed with gradient total variation (GTV) in compressed sensing (CS) for low-dose cone-beam computed tomography (CBCT) reconstruction. We derive a fast algorithm for the constrained total variation (TV)-based a minimum number of noisy projections. To achieve this task we combine the GTV with a TV-norm regularization term to promote an accelerated sparsity in the X-ray attenuation characteristics of the human body. The GTV is derived from a TV and enforces more efficient computationally and faster in convergence until a desired solution is achieved. The numerical algorithm is simple and derives relatively fast convergence. We apply a gradient projection algorithm that seeks a solution iteratively in the direction of the projected gradient while enforcing a non-negatively of the found solution. In comparison with the Feldkamp, Davis, and Kress (FDK) and conventional TV algorithms, the proposed GTV algorithm showed convergence in ≤18 iterations, whereas the original TV algorithm needs at least 34 iterations in reducing 50% of the projections compared with the FDK algorithm in order to reconstruct the chest phantom images. Future investigation includes improving imaging quality, particularly regarding X-ray cone-beam scatter, and motion artifacts of CBCT reconstruction.
Multiple Microcomputer Control Algorithm.
1979-09-01
discrete and semaphore supervisor calls can be used with tasks in separate processors, in which case they are maintained in shared memory. Operations on ...the source or destination operand specifier of each mode in most cases . However, four of the 16 general register addressing modes and one of the 8 pro...instruction time is based on the specified usage factors and the best cast, and worst case execution times for the instruc- 1I 5 1NAVTRAEQZJ1PCrN M’.V7~j
Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James
2016-01-01
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984
Munke, Anna; Andreasson, Jakob; Aquila, Andrew; ...
2016-08-01
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. Here, the diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB)more » as a resource for algorithm development, the contents of which are described here.« less
Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James
2016-08-01
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
Realtime automatic metal extraction of medical x-ray images for contrast improvement
NASA Astrophysics Data System (ADS)
Prangl, Martin; Hellwagner, Hermann; Spielvogel, Christian; Bischof, Horst; Szkaliczki, Tibor
2006-03-01
This paper focuses on an approach for real-time metal extraction of x-ray images taken from modern x-ray machines like C-arms. Such machines are used for vessel diagnostics, surgical interventions, as well as cardiology, neurology and orthopedic examinations. They are very fast in taking images from different angles. For this reason, manual adjustment of contrast is infeasible and automatic adjustment algorithms have been applied to try to select the optimal radiation dose for contrast adjustment. Problems occur when metallic objects, e.g., a prosthesis or a screw, are in the absorption area of interest. In this case, the automatic adjustment mostly fails because the dark, metallic objects lead the algorithm to overdose the x-ray tube. This outshining effect results in overexposed images and bad contrast. To overcome this limitation, metallic objects have to be detected and extracted from images that are taken as input for the adjustment algorithm. In this paper, we present a real-time solution for extracting metallic objects of x-ray images. We will explore the characteristic features of metallic objects in x-ray images and their distinction from bone fragments which form the basis to find a successful way for object segmentation and classification. Subsequently, we will present our edge based real-time approach for successful and fast automatic segmentation and classification of metallic objects. Finally, experimental results on the effectiveness and performance of our approach based on a vast amount of input image data sets will be presented.
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng
2010-08-01
In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.
Predictive Rate-Distortion for Infinite-Order Markov Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2016-06-01
Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.
Idris A, Elbakri; Fessler, Jeffrey A
2003-08-07
This paper describes a statistical image reconstruction method for x-ray CT that is based on a physical model that accounts for the polyenergetic x-ray source spectrum and the measurement nonlinearities caused by energy-dependent attenuation. Unlike our earlier work, the proposed algorithm does not require pre-segmentation of the object into the various tissue classes (e.g., bone and soft tissue) and allows mixed pixels. The attenuation coefficient of each voxel is modelled as the product of its unknown density and a weighted sum of energy-dependent mass attenuation coefficients. We formulate a penalized-likelihood function for this polyenergetic model and develop an iterative algorithm for estimating the unknown density of each voxel. Applying this method to simulated x-ray CT measurements of objects containing both bone and soft tissue yields images with significantly reduced beam hardening artefacts relative to conventional beam hardening correction methods. We also apply the method to real data acquired from a phantom containing various concentrations of potassium phosphate solution. The algorithm reconstructs an image with accurate density values for the different concentrations, demonstrating its potential for quantitative CT applications.
FUX-Sim: Implementation of a fast universal simulation/reconstruction framework for X-ray systems.
Abella, Monica; Serrano, Estefania; Garcia-Blas, Javier; García, Ines; de Molina, Claudia; Carretero, Jesus; Desco, Manuel
2017-01-01
The availability of digital X-ray detectors, together with advances in reconstruction algorithms, creates an opportunity for bringing 3D capabilities to conventional radiology systems. The downside is that reconstruction algorithms for non-standard acquisition protocols are generally based on iterative approaches that involve a high computational burden. The development of new flexible X-ray systems could benefit from computer simulations, which may enable performance to be checked before expensive real systems are implemented. The development of simulation/reconstruction algorithms in this context poses three main difficulties. First, the algorithms deal with large data volumes and are computationally expensive, thus leading to the need for hardware and software optimizations. Second, these optimizations are limited by the high flexibility required to explore new scanning geometries, including fully configurable positioning of source and detector elements. And third, the evolution of the various hardware setups increases the effort required for maintaining and adapting the implementations to current and future programming models. Previous works lack support for completely flexible geometries and/or compatibility with multiple programming models and platforms. In this paper, we present FUX-Sim, a novel X-ray simulation/reconstruction framework that was designed to be flexible and fast. Optimized implementation for different families of GPUs (CUDA and OpenCL) and multi-core CPUs was achieved thanks to a modularized approach based on a layered architecture and parallel implementation of the algorithms for both architectures. A detailed performance evaluation demonstrates that for different system configurations and hardware platforms, FUX-Sim maximizes performance with the CUDA programming model (5 times faster than other state-of-the-art implementations). Furthermore, the CPU and OpenCL programming models allow FUX-Sim to be executed over a wide range of hardware platforms.
Improving image quality in laboratory x-ray phase-contrast imaging
NASA Astrophysics Data System (ADS)
De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.
2017-03-01
Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.
ASCA Observation of an "X-Ray Shadow" in the Galactic Plane
NASA Technical Reports Server (NTRS)
Park, Sangwook; Ebisawa, Ken
2001-01-01
The diffuse X-ray background (DXB) emission near the Galactic plane (l,b approximately 25.6 degrees, 0.78 degrees) has been observed with ASCA (Advanced Satellite for Cosmology and Astrophysics). The observed region is toward a Galactic molecular cloud which was recently reported to cast a deep X-ray shadow in the 0.5 - 2.0 keV band DXB. The selection of this particular region is intended to provide a constraint on the spatial distribution of the DXB emission along the line of sight: i.e., the molecular cloud is optically thick at <2 keV and so the bulk of the observed soft X-rays must originate in the foreground of the cloud, which is at approximately 3 kpc from the Sun. In the 0.8 - 9.0 keV band, the observed spectrum is primarily from multiple components of thermal plasmas. We here report a detection of soft X-ray (0.5 - 2 keV) emission from an approximately 10(exp 7) K thermal plasma. Comparisons with the ROSAT (Roentgen Satellite) data suggest that this soft X-ray emission is absorbed by N(sub H) = 1 - 3 x 10(exp 21) cm(exp -2), which implies a path-length through the soft X-ray emitting regions of approximately less than 1 kpc from the Sun.
Zhang, Hao; Zeng, Dong; Zhang, Hua; Wang, Jing; Liang, Zhengrong
2017-01-01
Low-dose X-ray computed tomography (LDCT) imaging is highly recommended for use in the clinic because of growing concerns over excessive radiation exposure. However, the CT images reconstructed by the conventional filtered back-projection (FBP) method from low-dose acquisitions may be severely degraded with noise and streak artifacts due to excessive X-ray quantum noise, or with view-aliasing artifacts due to insufficient angular sampling. In 2005, the nonlocal means (NLM) algorithm was introduced as a non-iterative edge-preserving filter to denoise natural images corrupted by additive Gaussian noise, and showed superior performance. It has since been adapted and applied to many other image types and various inverse problems. This paper specifically reviews the applications of the NLM algorithm in LDCT image processing and reconstruction, and explicitly demonstrates its improving effects on the reconstructed CT image quality from low-dose acquisitions. The effectiveness of these applications on LDCT and their relative performance are described in detail. PMID:28303644
Development of Nanostructured Austempered Ductile Cast Iron
NASA Astrophysics Data System (ADS)
Panneerselvam, Saranya
Austempered Ductile Cast Iron is emerging as an important engineering materials in recent years because of its excellent combination of mechanical properties such as high strength with good ductility, good fatigue strength and fracture toughness together with excellent wear resistance. These combinations of properties are achieved by the microstructure consisting of acicular ferrite and high carbon austenite. Refining of the ausferritic microstructure will further enhance the mechanical properties of ADI and the presence of proeutectoid ferrite in the microstructure will considerably improve the ductility of the material. Thus, the focus of this investigation was to develop nanostructured austempered ductile cast iron (ADI) consisting of proeutectoid ferrite, bainitic ferrite and high carbon austenite and to determine its microstructure-property relationships. Compact tension and cylindrical tensile test samples were prepared as per ASTM standards, subjected to various heat treatments and the mechanical tests including the tensile tests, plane strain fracture toughness tests, hardness tests were performed as per ASTM standards. Microstructures were characterized by optical metallography, X-ray diffraction, SEM and TEM. Nanostructured ADI was achieved by a unique heat treatment consisting of austenitization at a high temperature and subsequent plastic deformation at the same austenitizing temperature followed by austempering. The investigation also examined the effect of cryogenic treatment, effect of intercritical austenitizing followed by single and two step austempering, effect of high temperature plastic deformation on the microstructure and mechanical properties of the low alloyed ductile cast iron. The mechanical and thermal stability of the austenite was also investigated. An analytical model has been developed to understand the crack growth process associated with the stress induced transformation of retained austenite to martensite.
Xiong, Zheng; He, Yinyan; Hattrick-Simpers, Jason R; Hu, Jianjun
2017-03-13
The creation of composition-processing-structure relationships currently represents a key bottleneck for data analysis for high-throughput experimental (HTE) material studies. Here we propose an automated phase diagram attribution algorithm for HTE data analysis that uses a graph-based segmentation algorithm and Delaunay tessellation to create a crystal phase diagram from high throughput libraries of X-ray diffraction (XRD) patterns. We also propose the sample-pair based objective evaluation measures for the phase diagram prediction problem. Our approach was validated using 278 diffraction patterns from a Fe-Ga-Pd composition spread sample with a prediction precision of 0.934 and a Matthews Correlation Coefficient score of 0.823. The algorithm was then applied to the open Ni-Mn-Al thin-film composition spread sample to obtain the first predicted phase diagram mapping for that sample.
A hybrid method for transient wave propagation in a multilayered solid
NASA Astrophysics Data System (ADS)
Tian, Jiayong; Xie, Zhoumin
2009-08-01
We present a hybrid method for the evaluation of transient elastic-wave propagation in a multilayered solid, integrating reverberation matrix method with the theory of generalized rays. Adopting reverberation matrix formulation, Laplace-Fourier domain solutions of elastic waves in the multilayered solid are expanded into the sum of a series of generalized-ray group integrals. Each generalized-ray group integral containing Kth power of reverberation matrix R represents the set of K-times reflections and refractions of source waves arriving at receivers in the multilayered solid, which was computed by fast inverse Laplace transform (FILT) and fast Fourier transform (FFT) algorithms. However, the calculation burden and low precision of FILT-FFT algorithm limit the application of reverberation matrix method. In this paper, we expand each of generalized-ray group integrals into the sum of a series of generalized-ray integrals, each of which is accurately evaluated by Cagniard-De Hoop method in the theory of generalized ray. The numerical examples demonstrate that the proposed method makes it possible to calculate the early-time transient response in the complex multilayered-solid configuration efficiently.
NBSGSC - a FORTRAN program for quantitative x-ray fluorescence analysis. Technical note (final)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, G.Y.; Pella, P.A.; Rousseau, R.M.
1985-04-01
A FORTRAN program (NBSGSC) was developed for performing quantitative analysis of bulk specimens by x-ray fluorescence spectrometry. This program corrects for x-ray absorption/enhancement phenomena using the comprehensive alpha coefficient algorithm proposed by Lachance (COLA). NBSGSC is a revision of the program ALPHA and CARECAL originally developed by R.M. Rousseau of the Geological Survey of Canada. Part one of the program (CALCO) performs the calculation of theoretical alpha coefficients, and part two (CALCOMP) computes the composition of the analyte specimens. The analysis of alloys, pressed minerals, and fused specimens can currently be treated by the program. In addition to using measuredmore » x-ray tube spectral distributions, spectra from seven commonly used x-ray tube targets could also be calculated with an NBS algorithm included in the program. NBSGSC is written in FORTRAN IV for a Digital Equipment Corporation (DEC PDP-11/23) minicomputer using RLO2 firm disks and an RSX 11M operating system.« less
Neural network Hilbert transform based filtered backprojection for fast inline x-ray inspection
NASA Astrophysics Data System (ADS)
Janssens, Eline; De Beenhouwer, Jan; Van Dael, Mattias; De Schryver, Thomas; Van Hoorebeke, Luc; Verboven, Pieter; Nicolai, Bart; Sijbers, Jan
2018-03-01
X-ray imaging is an important tool for quality control since it allows to inspect the interior of products in a non-destructive way. Conventional x-ray imaging, however, is slow and expensive. Inline x-ray inspection, on the other hand, can pave the way towards fast and individual quality control, provided that a sufficiently high throughput can be achieved at a minimal cost. To meet these criteria, an inline inspection acquisition geometry is proposed where the object moves and rotates on a conveyor belt while it passes a fixed source and detector. Moreover, for this acquisition geometry, a new neural-network-based reconstruction algorithm is introduced: the neural network Hilbert transform based filtered backprojection. The proposed algorithm is evaluated both on simulated and real inline x-ray data and has shown to generate high quality reconstructions of 400 × 400 reconstruction pixels within 200 ms, thereby meeting the high throughput criteria.
Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin
2013-06-01
In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less
Fox, Kathryn; Wood, David J; Youngson, Callum C
2007-01-01
The objective of this investigation was to determine the materials used in metallic post and core construction and investigate and the modes of failure that occurred resulting in post fracture. Eighty-five fractured metal posts were clinically retrieved over a 5-year period. The tooth with the fractured post, and relevant clinical details were recorded. Investigation of the fractured posts was undertaken to determine their constituent elements and modes of fracture using scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). The results showed that 77% of the posts were cast and 23% wrought. The modes of fracture were ductile (67%) or brittle (52%) although some posts exhibited both within the same specimen. In addition, evidence of fatigue was present in 20% of posts and porosity in 48%. A large variety of materials were used in the construction of post and cores although low-gold silver-palladium alloy most commonly encountered. Their failure was predominantly ductile in nature although a significant amount of brittle fracture was also noted. Porosity within castings also appeared to be a contributory factor in some cases and this was particularly evident in high-palladium castings. Evidence of fatigue was noted in a minority of posts.
As-Cast Icosashedral Quasicrystals in Ti-Zr-Ni Alloys
NASA Astrophysics Data System (ADS)
Lee, Geun Woo; Gangopadhyay, Anup K.; Kelton, Kenneth F.
2002-03-01
Most Ti-based icosahedral quasicrystals (i-phase) obtained by rapid quenching from the melt are metastable and disordered. In contrast, the Ti-Zr-Ni i-phase prepared by low temperature annealing is stable and better ordered. This i-phase is formed by a solid-state transformation from C14 Laves phase and α (Ti/Zr) solid-solution phase. It has not been possible previously to grow this i-phase directly from the liquid. Here, the nucleation and growth of the i-phase from the liquid in as-cast Ti-Zr-Ni alloys is reported. Pentagonal growth ledges in as-cast Ti-Zr-Ni ingots are clearly observed. Transmission electron microscopy and x-ray diffraction studies confirm the phase identity. Differential scanning calorimetry measurements show an endothermic transformation from the i-phase to a phase mixture of the C14 Laves and solid-solution phases, demonstrating that this i-phase is also stable. The short time that the liquid remains in the Laves phase-forming-field and the higher nucleation rate of the i-phase, owing to the presumed similarity between the local atomic structures of the i-phase and liquid, allows the i-phase to nucleate and grow directly from the liquid. Container-less solidification studies using electrostatic levitation (ESL) techniques support this conclusion.
Modification of the sample's surface of hypereutectic silumin by pulsed electron beam
NASA Astrophysics Data System (ADS)
Rygina, M. E.; Ivanov, Yu F.; Lasconev, A. P.; Teresov, A. D.; Cherenda, N. N.; Uglov, V. V.; Petricova, E. A.; Astashinskay, M. V.
2016-04-01
The article presents the results of the analysis of the elemental and phase composition, defect substructures. It demonstrates strength and tribological characteristics of the aluminium-silicon alloy of the hypereutectic composition in the cast state and after irradiation with a high-intensity pulsed electron beam of a submillisecond exposure duration (a Solo installation, Institute of High Current Electrons of the Siberian Branch of the Russian Academy of Sciences). The research has been conducted using optical and scanning electron microscopy, and the X-ray phase analysis. Mechanical properties have been characterized by microhardness, tribological properties - by wear resistance and the friction coefficient value. Irradiation of silumin with the high-intensity pulsed electron beam has led to the modification of the surface layer up to 1000 microns thick. The surface layer with the thickness of up to 100 microns is characterized by melting of all phases present in the alloy; subsequent highspeed crystallization leads to the formation of a submicro- and nanocrystalline structure in this layer. The hardness of the modified layer decreases with the increasing distance from the surface exposure. The hardness of the surface layer is more than twice the hardness of cast silumin. Durability of silumin treated with a high intensity electron beam is ≈ 1, 2 times as much as the wear resistance of the cast material.
Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2014-01-01
Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis. PMID:28788573
Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro
2014-03-21
Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.
Novel carbon-ion fuel cells. Final report, October 1, 1993--September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocks, F.H.
1997-01-01
Mixed lanthanide dicarbides having the fluorite crystal structure have been synthesized using the elemental lanthanide metals and elemental carbon that was 99.9% pure carbon-13 isotope. A two step process of first, arc furnace melting of the components, followed by an annealing step in a high vacuum furnace, was adopted as the standard method of fabricating small cast ingots of the dicarbides. The crystal structure of the various lanthanide dicarbides produced were confirmed by x-ray diffraction under protective atmospheres at both room temperature at Duke University and at high temperature at Oak Ridge National Laboratory. After more than 15 combinations ofmore » cerium or lanthanum with dopants were tried, low temperature x-ray diffraction showed that Ce{sub .5}Er{sub .5}C{sub 2} had been successfully stabilized and had the desired fluorite crystal structure at room temperature. The fluorite crystal structure lanthanide dicarbide cast ingots were further prepared by having flat and clean surfaces ground onto their surfaces by high-speed milling machines inside argon gas atmosphere gloveboxes. The surfaces thus created were then coated with carbon-12 by the arc evaporation method under low pressure argon gas. The coated ingots were then allowed to have carbon diffusion occur from the surface coating of carbon-12 into the ingot of dicarbide that had been synthesized from carbon-13. After the diffusion run, the cast ingots were slit down the axis perpendicular to the carbon coating. The fracture surface created was then squared and polished by high,speed milling in a glove box with a argon atmosphere. The high diffusion co-efficient of carbon in lanthanide dicarbides having the fluorite crystal structure would make possible the manufacture of a carbon-ion electrolyte for use in a battery or a fuel cell that could consume solid carbon as it`s feedstock.« less
NASA Astrophysics Data System (ADS)
Avilova, I. P.; Krutilova, M. O.
2018-01-01
Economic growth is the main determinant of the trend to increased greenhouse gas (GHG) emission. Therefore, the reduction of emission and stabilization of GHG levels in the atmosphere become an urgent task to avoid the worst predicted consequences of climate change. GHG emissions in construction industry take a significant part of industrial GHG emission and are expected to consistently increase. The problem could be successfully solved with a help of both economical and organizational restrictions, based on enhanced algorithms of calculation and amercement of environmental harm in building industry. This study aims to quantify of GHG emission caused by different constructive schemes of RC framework in concrete casting. The result shows that proposed methodology allows to make a comparative analysis of alternative projects in residential housing, taking into account an environmental damage, caused by construction process. The study was carried out in the framework of the Program of flagship university development on the base of Belgorod State Technological University named after V.G. Shoukhov
Context-based user grouping for multi-casting in heterogeneous radio networks
NASA Astrophysics Data System (ADS)
Mannweiler, C.; Klein, A.; Schneider, J.; Schotten, H. D.
2011-08-01
Along with the rise of sophisticated smartphones and smart spaces, the availability of both static and dynamic context information has steadily been increasing in recent years. Due to the popularity of social networks, these data are complemented by profile information about individual users. Making use of this information by classifying users in wireless networks enables targeted content and advertisement delivery as well as optimizing network resources, in particular bandwidth utilization, by facilitating group-based multi-casting. In this paper, we present the design and implementation of a web service for advanced user classification based on user, network, and environmental context information. The service employs simple and advanced clustering algorithms for forming classes of users. Available service functionalities include group formation, context-aware adaptation, and deletion as well as the exposure of group characteristics. Moreover, the results of a performance evaluation, where the service has been integrated in a simulator modeling user behavior in heterogeneous wireless systems, are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thiago A. R. M.; Ilavsky, Jan; Hammons, Joshua
Hydroxyapatite (HAP) scaffolds with a hierarchical porous architecture were prepared by a new dual-template (corn starch and cetyltrimethylammonium bromide (CTAB) surfactant) used to cast HAP nanoparticles and development scaffolds with size hierarchical porous distribution. The Powder X-Ray diffraction (XRD) results showed that only the HAP crystalline phase is present in the samples after calcination; the Scanning Electron Microscopy (SEM) combined with Small Angle (SAXS) and Ultra-Small Angle X-ray Scattering (USAXS) techniques showed that the porous arrangement is promoted by needle-like HAP nanoparticles, and that the pore size distributions depend on the drip-order of the calcium and the phosphate solutions duringmore » the template preparation stage.« less
A multiple technique approach to the analysis of urinary calculi.
Rodgers, A L; Nassimbeni, L R; Mulder, K J
1982-01-01
10 urinary calculi have been qualitatively and quantitatively analysed using X-ray diffraction, infra-red, scanning electron microscopy, X-ray fluorescence, atomic absorption and density gradient procedures. Constituents and compositional features which often go undetected due to limitations in the particular analytical procedure being used, have been identified and a detailed picture of each stone's composition and structure has been obtained. In all cases at least two components were detected suggesting that the multiple technique approach might cast some doubt as to the existence of "pure" stones. Evidence for a continuous, non-sequential deposition mechanism has been detected. In addition, the usefulness of each technique in the analysis of urinary stones has been assessed and the multiple technique approach has been evaluated as a whole.
Pieralini, Anelise R F; Benjamin, Camila M; Ribeiro, Ricardo Faria; Scaf, Gulnara; Adabo, Gelson Luis
2010-10-01
This study evaluated the effect of pattern coating with spinel-based investment Rematitan Ultra (RU) on the castability and internal porosity of commercially pure (CP) titanium invested into phosphate-bonded investments. The apparent porosity of the investment was also measured. Square patterns (15 × 15 × 0.3 mm(3)) were either coated with RU, or not and invested into the phosphate-bonded investments: Rematitan Plus (RP), Rema Exakt (RE), Castorit Super C (CA), and RU (control group). The castings were made in an Ar-arc vacuum-pressure machine. The castability area (mm(2) ) was measured by an image-analysis system (n = 10). For internal porosity, the casting (12 × 12 × 2 mm(3) ) was studied by the X-ray method, and the projected porous area percentage was measured by an image-analysis system (n = 10). The apparent porosity of the investment (n = 10) was measured in accordance with the ASTM C373-88 standard. Analysis of variance (One-way ANOVA) of castability was significant, and the Tukey test indicated that RU had the highest mean but the investing technique with coating increased the castability for all phosphate-bonded investments. The analysis of the internal porosity of the cast by the nonparametric test demonstrated that the RP, RE, and CA with coating and RP without coating did not differ from the control group (RU), while the CA and RE casts without coating were more porous. The one-way ANOVA of apparent porosity of the investment was significant, and the Tukey test showed that the means of RU (36.10%) and CA (37.22%) were higher than those of RP (25.91%) and RE (26.02%). Pattern coating with spinel-based material prior to phosphate-bonded investments can influence the castability and the internal porosity of CP Ti. © 2010 by The American College of Prosthodontists.
Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Matos Martins, Marcelo
2018-01-01
In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds. PMID:29495620
NASA Astrophysics Data System (ADS)
Ma, Ming; Wang, Huafeng; Liu, Yan; Zhang, Hao; Gu, Xianfeng; Liang, Zhengrong
2014-03-01
Cone-beam computed tomography (CBCT) has attracted growing interest of researchers in image reconstruction. The mAs level of the X-ray tube current, in practical application of CBCT, is mitigated in order to reduce the CBCT dose. The lowering of the X-ray tube current, however, results in the degradation of image quality. Thus, low-dose CBCT image reconstruction is in effect a noise problem. To acquire clinically acceptable quality of image, and keep the X-ray tube current as low as achievable in the meanwhile, some penalized weighted least-squares (PWLS)-based image reconstruction algorithms have been developed. One representative strategy in previous work is to model the prior information for solution regularization using an anisotropic penalty term. To enhance the edge preserving and noise suppressing in a finer scale, a novel algorithm combining the local binary pattern (LBP) with penalized weighted leastsquares (PWLS), called LBP-PWLS-based image reconstruction algorithm, is proposed in this work. The proposed LBP-PWLS-based algorithm adaptively encourages strong diffusion on the local spot/flat region around a voxel and less diffusion on edge/corner ones by adjusting the penalty for cost function, after the LBP is utilized to detect the region around the voxel as spot, flat and edge ones. The LBP-PWLS-based reconstruction algorithm was evaluated using the sinogram data acquired by a clinical CT scanner from the CatPhan® 600 phantom. Experimental results on the noiseresolution tradeoff measurement and other quantitative measurements demonstrated its feasibility and effectiveness in edge preserving and noise suppressing in comparison with a previous PWLS reconstruction algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Chihpin; Singh, Dileep; Kenesei, Peter
The size and morphology of the graphite particles play a crucial role in determining various mechanical and thermal properties of cast iron. In the present study, we utilized high-energy synchrotron X-ray tomography to perform quantitative 3D-characterization of the distribution of graphite particles in high-strength compacted graphite iron (CGI). The size, shape, and spatial connectivity of graphite were examined. The analysis reveals that the compacted graphite can grow with a coral-tree-like morphology and span several hundred microns in the iron matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shivananda, C. S.; Rao, B. Lakshmeesha; Madhukumar, R.
In this work silk fibroin/pullulan blend films have been prepared by solution casting method. The blend films were examined for structural, and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results indicate that with the introduction of pullulan, the interaction between SF and pullulan in the blend films induced the conformation transition of SF films and amorphous phase increases with increasing pullulan ratio. The thermal properties of the blend films were improved significantly in the blend films.
Thermoplastic/Nanotube Composite Fibers
NASA Astrophysics Data System (ADS)
Haggenmueller, Reto; Fischer, John; Winey, Karen
2000-03-01
A combination of solvent casting and melt mixing methods are used to compound selected thermoplastics with single-wall carbon nanotubes. Subsequently, melt extrusion is used to form thermoplastic-nanotube composite fibers. The structural characteristics are investigated by electron microscopy and x-ray scattering methods. In addition the electrical, thermal and mechanical properties were measured. Correlations are sought between the viscoelastic properties of the compounded materials, the nanotube loading and elongation ratio after spinning, and the properties of the resultant fibers.
NASA Astrophysics Data System (ADS)
Titov, A.; Jiraskova, Y.; Zivotsky, O.; Bursik, J.; Janickovic, D.
2018-04-01
This paper is devoted to investigations of the structural and magnetic properties of the Co2FeAl Heusler alloy produced by three technologies. The alloys prepared by arc and induction melting have resulted in coarse-grained samples in contrast to the fine-grained ribbon-type sample prepared by planar flow casting. Scanning electron microscopy completed by energy dispersive X-ray spectroscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetic methods sensitive to both bulk and surface were applied. The chemical composition was slightly different from the nominal only for the ribbon sample. From the viewpoint of magnetic properties, the bulk coercivity and remnant magnetization have followed the structure influenced by the technology used. Saturation magnetization was practically the same for samples prepared by arc and induction melting, whereas the magnetization of ribbon is slightly lower due to a higher Al content at the expense of iron and cobalt. The surface magnetic properties were markedly influenced by anisotropy, grain size, and surface roughness of the samples. The surface roughness and brittleness of the ribbon-type sample did not make domain structure observation possible. The other two samples could be well polished and their highly smooth surface has enabled domain structure visualization by both magneto-optical Kerr microscopy and magnetic force microscopy.
Ahmad, Mariam; Andersen, Frederik; Brend Bech, Ári; Bendixen, H. Krestian L.; Nawrocki, Patrick R.; Bloch, Anders J.; Bora, Ilkay; Bukhari, Tahreem A.; Bærentsen, Nicolai V.; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T.; Daniels, Joshua A.; Dinckan, Nermin; El Idrissi, Mohamed; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V.; Hyllested, Louise O. H.; Jensen, Casper; Kallenbach, Amalie S.; Kaur, Kirandip; Khan, Suheb R.; Kjær, Emil T. S.; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M.; Munk, Chastine F.; Møller, Theis; Nehme, Ola M. Z.; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V.; Nøhr, Peter C. T.; Skaarup Ovesen, Jacob; Paustian, Lucas; Pedersen, Adam S.; Petersen, Mathias K.; Poulsen, Camilla M.; Praeger-Jahnsen, Louis; Qureshi, L. Sonia; Schiermacher, Louise S.; Simris, Martin B.; Smith, Gorm; Smith, Heidi N.; Sonne, Alexander K.; Zenulovic, Marko R.; Winther Sørensen, Alma; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B.
2018-01-01
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained. PMID:29462883
Kühnel, Miguel R Carro-Temboury Martin; Ahmad, Mariam; Andersen, Frederik; Bech, Ári Brend; Bendixen, H Krestian L; Nawrocki, Patrick R; Bloch, Anders J; Bora, Ilkay; Bukhari, Tahreem A; Bærentsen, Nicolai V; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T; Daniels, Joshua A; Dinckan, Nermin; Idrissi, Mohamed El; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V; Hyllested, Louise O H; Jensen, Casper; Kallenbach, Amalie S; Kaur, Kirandip; Khan, Suheb R; Kjær, Emil T S; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M; Munk, Chastine F; Møller, Theis; Nehme, Ola M Z; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V; Nøhr, Peter C T; Orlowski, Dominik B; Overgaard, Marc; Ovesen, Jacob Skaarup; Paustian, Lucas; Pedersen, Adam S; Petersen, Mathias K; Poulsen, Camilla M; Praeger-Jahnsen, Louis; Qureshi, L Sonia; Ree, Nicolai; Schiermacher, Louise S; Simris, Martin B; Smith, Gorm; Smith, Heidi N; Sonne, Alexander K; Zenulovic, Marko R; Sørensen, Alma Winther; Sørensen, Karina; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B; Sørensen, Thomas Just
2018-02-15
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.
Muhammad, Aliyu; Yusof, Nor Azah; Hajian, Reza; Abdullah, Jaafar
2016-01-20
In this work, a novel electrochemical sensor was fabricated for determination of amoxicillin in bovine milk samples by decoration of carboxylated multi-walled carbon nanotubes (MWCNTs) with gold nanoparticles (AuNPs) using ethylenediamine (en) as a cross linker (AuNPs/en-MWCNTs). The constructed nanocomposite was homogenized in dimethylformamide and drop casted on screen printed electrode. Field emission scanning electron microscopy (FESEM), energy dispersive X-Ray (EDX), X-Ray diffraction (XRD) and cyclic voltammetry were used to characterize the synthesized nanocomposites. The results show that the synthesized nanocomposites induced a remarkable synergetic effect for the oxidation of amoxicillin. Effect of some parameters, including pH, buffer, scan rate, accumulation potential, accumulation time and amount of casted nanocomposites, on the sensitivity of fabricated sensor were optimized. Under the optimum conditions, there was two linear calibration ranges from 0.2-10 µM and 10-30 µM with equations of Ipa (µA) = 2.88C (µM) + 1.2017; r = 0.9939 and Ipa (µA) = 0.88C (µM) + 22.97; r = 0.9973, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) were calculated as 0.015 µM and 0.149 µM, respectively. The fabricated electrochemical sensor was successfully applied for determination of Amoxicillin in bovine milk samples and all results compared with high performance liquid chromatography (HPLC) standard method.
Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.
Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg
2017-11-03
In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.
Development and Evaluation of Real-Time Volumetric Compton Gamma-Ray Imaging
NASA Astrophysics Data System (ADS)
Barnowski, Ross Wegner
An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. The real-time tracking allows the imager to be moved throughout the environment or around a particular object of interest, obtaining the multiple perspectives necessary for standoff 3D imaging. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, can be incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and two different mobile gamma-ray imaging platforms. The first is a cart-based imaging platform known as the Volumetric Compton Imager (VCI), comprising two 3D position-sensitive high purity germanium (HPGe) detectors, exhibiting excellent gamma-ray imaging characteristics, but with limited mobility due to the size and weight of the cart. The second system is the High Efficiency Multimodal Imager (HEMI) a hand-portable gamma-ray imager comprising 96 individual cm3 CdZnTe crystals arranged in a two-plane, active-mask configuration. The HEMI instrument has poorer energy and angular resolution than the VCI, but is truly hand-portable, allowing the SDF concept to be tested in multiple environments and for more challenging imaging scenarios. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. Each of the two mobile imaging systems are used to demonstrate SDF for a variety of scenarios, including general search and mapping scenarios with several point gamma-ray sources over the range of energies relevant for Compton imaging. More specific imaging scenarios are also addressed, including directed search and object interrogation scenarios. Finally, the volumetric image quality is quantitatively investigated with respect to the number of Compton events acquired during a measurement, the list-mode uncertainty of the Compton cone data, and the uncertainty in the pose estimate from the real-time tracking algorithm. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractability of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.
Classifying threats with a 14-MeV neutron interrogation system.
Strellis, Dan; Gozani, Tsahi
2005-01-01
SeaPODDS (Sea Portable Drug Detection System) is a non-intrusive tool for detecting concealed threats in hidden compartments of maritime vessels. This system consists of an electronic neutron generator, a gamma-ray detector, a data acquisition computer, and a laptop computer user-interface. Although initially developed to detect narcotics, recent algorithm developments have shown that the system is capable of correctly classifying a threat into one of four distinct categories: narcotic, explosive, chemical weapon, or radiological dispersion device (RDD). Detection of narcotics, explosives, and chemical weapons is based on gamma-ray signatures unique to the chemical elements. Elements are identified by their characteristic prompt gamma-rays induced by fast and thermal neutrons. Detection of RDD is accomplished by detecting gamma-rays emitted by common radioisotopes and nuclear reactor fission products. The algorithm phenomenology for classifying threats into the proper categories is presented here.
Automatic segmentation of mandible in panoramic x-ray.
Abdi, Amir Hossein; Kasaei, Shohreh; Mehdizadeh, Mojdeh
2015-10-01
As the panoramic x-ray is the most common extraoral radiography in dentistry, segmentation of its anatomical structures facilitates diagnosis and registration of dental records. This study presents a fast and accurate method for automatic segmentation of mandible in panoramic x-rays. In the proposed four-step algorithm, a superior border is extracted through horizontal integral projections. A modified Canny edge detector accompanied by morphological operators extracts the inferior border of the mandible body. The exterior borders of ramuses are extracted through a contour tracing method based on the average model of mandible. The best-matched template is fetched from the atlas of mandibles to complete the contour of left and right processes. The algorithm was tested on a set of 95 panoramic x-rays. Evaluating the results against manual segmentations of three expert dentists showed that the method is robust. It achieved an average performance of [Formula: see text] in Dice similarity, specificity, and sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munke, Anna; Andreasson, Jakob; Aquila, Andrew
Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. Here, the diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB)more » as a resource for algorithm development, the contents of which are described here.« less
Projection matrix acquisition for cone-beam computed tomography iterative reconstruction
NASA Astrophysics Data System (ADS)
Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Shi, Wenlong; Zhang, Caixin; Gao, Zongzhao
2017-02-01
Projection matrix is an essential and time-consuming part in computed tomography (CT) iterative reconstruction. In this article a novel calculation algorithm of three-dimensional (3D) projection matrix is proposed to quickly acquire the matrix for cone-beam CT (CBCT). The CT data needed to be reconstructed is considered as consisting of the three orthogonal sets of equally spaced and parallel planes, rather than the individual voxels. After getting the intersections the rays with the surfaces of the voxels, the coordinate points and vertex is compared to obtain the index value that the ray traversed. Without considering ray-slope to voxel, it just need comparing the position of two points. Finally, the computer simulation is used to verify the effectiveness of the algorithm.
A grey incidence algorithm to detect high-Z material using cosmic ray muons
NASA Astrophysics Data System (ADS)
He, W.; Xiao, S.; Shuai, M.; Chen, Y.; Lan, M.; Wei, M.; An, Q.; Lai, X.
2017-10-01
Muon scattering tomography (MST) is a method for using cosmic muons to scan cargo containers and vehicles for special nuclear materials. However, the flux of cosmic ray muons is low, in the real life application, the detection has to be done a short timescale with small numbers of muons. In this paper, we present a novel approach to detection of special nuclear material by using cosmic ray muons. We use the degree of grey incidence to distinguish typical waste fuel material, uranium, from low-Z material, medium-Z material and other high-Z materials of tungsten and lead. The result shows that using this algorithm, it is possible to detect high-Z materials with an acceptable timescale.
Timing Analysis with INTEGRAL: Comparing Different Reconstruction Algorithms
NASA Technical Reports Server (NTRS)
Grinberg, V.; Kreykenboehm, I.; Fuerst, F.; Wilms, J.; Pottschmidt, K.; Bel, M. Cadolle; Rodriquez, J.; Marcu, D. M.; Suchy, S.; Markowitz, A.;
2010-01-01
INTEGRAL is one of the few instruments capable of detecting X-rays above 20keV. It is therefore in principle well suited for studying X-ray variability in this regime. Because INTEGRAL uses coded mask instruments for imaging, the reconstruction of light curves of X-ray sources is highly non-trivial. We present results from the comparison of two commonly employed algorithms, which primarily measure flux from mask deconvolution (ii-lc-extract) and from calculating the pixel illuminated fraction (ii-light). Both methods agree well for timescales above about 10 s, the highest time resolution for which image reconstruction is possible. For higher time resolution, ii-light produces meaningful results, although the overall variance of the lightcurves is not preserved.
GEMS X-ray Polarimeter Performance Simulations
NASA Technical Reports Server (NTRS)
Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean
2012-01-01
The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.
Stochastic resonance investigation of object detection in images
NASA Astrophysics Data System (ADS)
Repperger, Daniel W.; Pinkus, Alan R.; Skipper, Julie A.; Schrider, Christina D.
2007-02-01
Object detection in images was conducted using a nonlinear means of improving signal to noise ratio termed "stochastic resonance" (SR). In a recent United States patent application, it was shown that arbitrarily large signal to noise ratio gains could be realized when a signal detection problem is cast within the context of a SR filter. Signal-to-noise ratio measures were investigated. For a binary object recognition task (friendly versus hostile), the method was implemented by perturbing the recognition algorithm and subsequently thresholding via a computer simulation. To fairly test the efficacy of the proposed algorithm, a unique database of images has been constructed by modifying two sample library objects by adjusting their brightness, contrast and relative size via commercial software to gradually compromise their saliency to identification. The key to the use of the SR method is to produce a small perturbation in the identification algorithm and then to threshold the results, thus improving the overall system's ability to discern objects. A background discussion of the SR method is presented. A standard test is proposed in which object identification algorithms could be fairly compared against each other with respect to their relative performance.
Sidky, Emil Y.; Jørgensen, Jakob H.; Pan, Xiaochuan
2012-01-01
The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented. PMID:22538474
NASA Astrophysics Data System (ADS)
Zagorchev, Lyubomir; Manzke, Robert; Cury, Ricardo; Reddy, Vivek Y.; Chan, Raymond C.
2007-03-01
Interventional cardiac electrophysiology (EP) procedures are typically performed under X-ray fluoroscopy for visualizing catheters and EP devices relative to other highly-attenuating structures such as the thoracic spine and ribs. These projections do not however contain information about soft-tissue anatomy and there is a recognized need for fusion of conventional fluoroscopy with pre-operatively acquired cardiac multislice computed tomography (MSCT) volumes. Rapid 2D-3D integration in this application would allow for real-time visualization of all catheters present within the thorax in relation to the cardiovascular anatomy visible in MSCT. We present a method for rapid fusion of 2D X-ray fluoroscopy with 3DMSCT that can facilitate EP mapping and interventional procedures by reducing the need for intra-operative contrast injections to visualize heart chambers and specialized systems to track catheters within the cardiovascular anatomy. We use hardware-accelerated ray-casting to compute digitally reconstructed radiographs (DRRs) from the MSCT volume and iteratively optimize the rigid-body pose of the volumetric data to maximize the similarity between the MSCT-derived DRR and the intra-operative X-ray projection data.
Li, Ruijiang; Fahimian, Benjamin P; Xing, Lei
2011-07-01
Monoscopic x-ray imaging with on-board kV devices is an attractive approach for real-time image guidance in modern radiation therapy such as VMAT or IMRT, but it falls short in providing reliable information along the direction of imaging x-ray. By effectively taking consideration of projection data at prior times and/or angles through a Bayesian formalism, the authors develop an algorithm for real-time and full 3D tumor localization with a single x-ray imager during treatment delivery. First, a prior probability density function is constructed using the 2D tumor locations on the projection images acquired during patient setup. Whenever an x-ray image is acquired during the treatment delivery, the corresponding 2D tumor location on the imager is used to update the likelihood function. The unresolved third dimension is obtained by maximizing the posterior probability distribution. The algorithm can also be used in a retrospective fashion when all the projection images during the treatment delivery are used for 3D localization purposes. The algorithm does not involve complex optimization of any model parameter and therefore can be used in a "plug-and-play" fashion. The authors validated the algorithm using (1) simulated 3D linear and elliptic motion and (2) 3D tumor motion trajectories of a lung and a pancreas patient reproduced by a physical phantom. Continuous kV images were acquired over a full gantry rotation with the Varian TrueBeam on-board imaging system. Three scenarios were considered: fluoroscopic setup, cone beam CT setup, and retrospective analysis. For the simulation study, the RMS 3D localization error is 1.2 and 2.4 mm for the linear and elliptic motions, respectively. For the phantom experiments, the 3D localization error is < 1 mm on average and < 1.5 mm at 95th percentile in the lung and pancreas cases for all three scenarios. The difference in 3D localization error for different scenarios is small and is not statistically significant. The proposed algorithm eliminates the need for any population based model parameters in monoscopic image guided radiotherapy and allows accurate and real-time 3D tumor localization on current standard LINACs with a single x-ray imager.
NASA Astrophysics Data System (ADS)
Uchida, Y.; Takada, E.; Fujisaki, A.; Kikuchi, T.; Ogawa, K.; Isobe, M.
2017-08-01
A method to stochastically discriminate neutron and γ-ray signals measured with a stilbene organic scintillator is proposed. Each pulse signal was stochastically categorized into two groups: neutron and γ-ray. In previous work, the Expectation Maximization (EM) algorithm was used with the assumption that the measured data followed a Gaussian mixture distribution. It was shown that probabilistic discrimination between these groups is possible. Moreover, by setting the initial parameters for the Gaussian mixture distribution with a k-means algorithm, the possibility of automatic discrimination was demonstrated. In this study, the Student's t-mixture distribution was used as a probabilistic distribution with the EM algorithm to improve the robustness against the effect of outliers caused by pileup of the signals. To validate the proposed method, the figures of merit (FOMs) were compared for the EM algorithm assuming a t-mixture distribution and a Gaussian mixture distribution. The t-mixture distribution resulted in an improvement of the FOMs compared with the Gaussian mixture distribution. The proposed data processing technique is a promising tool not only for neutron and γ-ray discrimination in fusion experiments but also in other fields, for example, homeland security, cancer therapy with high energy particles, nuclear reactor decommissioning, pattern recognition, and so on.
Acceleration of High Energy Cosmic Rays in the Nonlinear Shock Precursor
NASA Astrophysics Data System (ADS)
Derzhinsky, F.; Diamond, P. H.; Malkov, M. A.
2006-10-01
The problem of understanding acceleration of very energetic cosmic rays to energies above the 'knee' in the spectrum at 10^15-10^16eV remains one of the great challenges in modern physics. Recently, we have proposed a new approach to understanding high energy acceleration, based on exploiting scattering of cosmic rays by inhomogenities in the compressive nonlinear shock precursor, rather than by scattering across the main shock, as is conventionally assumed. We extend that theory by proposing a mechanism for the generation of mesoscale magnetic fields (krg<1, where rg is the cosmic ray gyroradius). The mechanism is the decay or modulational instability of resonantly generated Alfven waves scattering off ambient density perturbations in the precursors. Such perturbations can be produced by Drury instability. This mechanism leads to the generation of longer wavelength Alfven waves, thus enabling the confinement of higher energy particles. A simplified version of the theory, cast in the form of a Fokker-Planck equation for the Alfven population, will also be presented. This process also limits field generation on rg scales.
[Object Separation from Medical X-Ray Images Based on ICA].
Li, Yan; Yu, Chun-yu; Miao, Ya-jian; Fei, Bin; Zhuang, Feng-yun
2015-03-01
X-ray medical image can examine diseased tissue of patients and has important reference value for medical diagnosis. With the problems that traditional X-ray images have noise, poor level sense and blocked aliasing organs, this paper proposes a method for the introduction of multi-spectrum X-ray imaging and independent component analysis (ICA) algorithm to separate the target object. Firstly image de-noising preprocessing ensures the accuracy of target extraction based on independent component analysis and sparse code shrinkage. Then according to the main proportion of organ in the images, aliasing thickness matrix of each pixel was isolated. Finally independent component analysis obtains convergence matrix to reconstruct the target object with blind separation theory. In the ICA algorithm, it found that when the number is more than 40, the target objects separate successfully with the aid of subjective evaluation standard. And when the amplitudes of the scale are in the [25, 45] interval, the target images have high contrast and less distortion. The three-dimensional figure of Peak signal to noise ratio (PSNR) shows that the different convergence times and amplitudes have a greater influence on image quality. The contrast and edge information of experimental images achieve better effects with the convergence times 85 and amplitudes 35 in the ICA algorithm.
2007-08-01
In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods) rather than linear trajectories. The...coupling the radiative transport solution into heat transfer and damage models. 15. SUBJECT TERMS: B-Splines, Ray-Tracing, Eikonal Equation...multi-layer biological tissue model. In the approach, photon trajectories are computed using a solution of the Eikonal equation (ray-tracing methods
A knowledge-based framework for image enhancement in aviation security.
Singh, Maneesha; Singh, Sameer; Partridge, Derek
2004-12-01
The main aim of this paper is to present a knowledge-based framework for automatically selecting the best image enhancement algorithm from several available on a per image basis in the context of X-ray images of airport luggage. The approach detailed involves a system that learns to map image features that represent its viewability to one or more chosen enhancement algorithms. Viewability measures have been developed to provide an automatic check on the quality of the enhanced image, i.e., is it really enhanced? The choice is based on ground-truth information generated by human X-ray screening experts. Such a system, for a new image, predicts the best-suited enhancement algorithm. Our research details the various characteristics of the knowledge-based system and shows extensive results on real images.
Research on illumination uniformity of high-power LED array light source
NASA Astrophysics Data System (ADS)
Yu, Xiaolong; Wei, Xueye; Zhang, Ou; Zhang, Xinwei
2018-06-01
Uniform illumination is one of the most important problem that must be solved in the application of high-power LED array. A numerical optimization algorithm, is applied to obtain the best LED array typesetting so that the light intensity of the target surface is evenly distributed. An evaluation function is set up through the standard deviation of the illuminance function, then the particle swarm optimization algorithm is utilized to optimize different arrays. Furthermore, the light intensity distribution is obtained by optical ray tracing method. Finally, a hybrid array is designed and the optical ray tracing method is applied to simulate the array. The simulation results, which is consistent with the traditional theoretical calculation, show that the algorithm introduced in this paper is reasonable and effective.
Dynamic X-ray diffraction sampling for protein crystal positioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
NASA Astrophysics Data System (ADS)
Nazarian, Robert H.; Legg, Sonya
2017-10-01
When internal waves interact with topography, such as continental slopes, they can transfer wave energy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our idealized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continuous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach has been employed in other studies, we have, for the first time, used ray tracing to calculate changes in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial envelopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm, as well as a test of robustness of the ray tracing, is presented in the companion article.
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558
Dynamic X-ray diffraction sampling for protein crystal positioning.
Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.
Automated generation and ensemble-learned matching of X-ray absorption spectra
NASA Astrophysics Data System (ADS)
Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping
2018-12-01
X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.
Thermal casting of polymers in centrifuge for producing X-ray optics
Hill, Randy M [Livermore, CA; Decker, Todd A [Livermore, CA
2012-03-27
An optic is produced by the steps of placing a polymer inside a rotateable cylindrical chamber, the rotateable cylindrical chamber having an outside wall, rotating the cylindrical chamber, heating the rotating chamber forcing the polymer to the outside wall of the cylindrical chamber, allowing the rotateable cylindrical chamber to cool while rotating producing an optic substrate with a substrate surface, sizing the optic substrate, and coating the substrate surface of the optic substrate to produce the optic with an optic surface.
Structural mechanical and antibacterial properties of HPMC/SF-AgNPs nanocomposite films
NASA Astrophysics Data System (ADS)
Harish, K. V.; Rao, B. Lakshmeesha; Asha, S.; Vipin, C.; Sangappa, Y.
2018-04-01
In the present study, Hydroxypropyl Methylcellulose (HPMC) pure and HPMC/SF-AgNPs biopolymer nanocomposite films were prepared by simple solution casting method. The prepared nanocomposite films were characterized using UV-Visible spectroscopy(UV-Vis), X-ray diffraction (XRD) measurements. The mechanical properties of HPMC/SF-AgNPs nanocomposites were found to be decrease with increase in the AgNP's concentrations. The HPMC/SF-AgNPs nanocomposites showed very good antibacterial activity against human pathogens P. aeruginosa, E.coli, and S.aureus.
3D reconstruction techniques made easy: know-how and pictures.
Luccichenti, Giacomo; Cademartiri, Filippo; Pezzella, Francesca Romana; Runza, Giuseppe; Belgrano, Manuel; Midiri, Massimo; Sabatini, Umberto; Bastianello, Stefano; Krestin, Gabriel P
2005-10-01
Three-dimensional reconstructions represent a visual-based tool for illustrating the basis of three-dimensional post-processing such as interpolation, ray-casting, segmentation, percentage classification, gradient calculation, shading and illumination. The knowledge of the optimal scanning and reconstruction parameters facilitates the use of three-dimensional reconstruction techniques in clinical practise. The aim of this article is to explain the principles of multidimensional image processing in a pictorial way and the advantages and limitations of the different possibilities of 3D visualisation.
Decisive Routing and Admission Control According to Quality of Service Constraints
2009-03-01
Level &(Key Size) 1 1 RSA (1280); RSA (1536); Elg-E (1280) 1 2 Elg-E ( 768 ); Elg-E(1024); RSA (1024) 1 3 3DES, BlowFish, CAST5 2 1 Elg-E(1536); Elg-E(1792...upon the intractibility of the discrete logarithm problem [11] RSA A public key encryption scheme named after inventors R. Rivest, A. Shamir, and L...gpgTester would make system calls to the GNU Privacy Guard to choose from system and public key algorithms, ElGamal, RSA , AES, AES192, AES256, TwoFish
Improving Learning Performance Through Rational Resource Allocation
NASA Technical Reports Server (NTRS)
Gratch, J.; Chien, S.; DeJong, G.
1994-01-01
This article shows how rational analysis can be used to minimize learning cost for a general class of statistical learning problems. We discuss the factors that influence learning cost and show that the problem of efficient learning can be cast as a resource optimization problem. Solutions found in this way can be significantly more efficient than the best solutions that do not account for these factors. We introduce a heuristic learning algorithm that approximately solves this optimization problem and document its performance improvements on synthetic and real-world problems.
Developing robust arsenic awareness prediction models using machine learning algorithms.
Singh, Sushant K; Taylor, Robert W; Rahman, Mohammad Mahmudur; Pradhan, Biswajeet
2018-04-01
Arsenic awareness plays a vital role in ensuring the sustainability of arsenic mitigation technologies. Thus far, however, few studies have dealt with the sustainability of such technologies and its associated socioeconomic dimensions. As a result, arsenic awareness prediction has not yet been fully conceptualized. Accordingly, this study evaluated arsenic awareness among arsenic-affected communities in rural India, using a structured questionnaire to record socioeconomic, demographic, and other sociobehavioral factors with an eye to assessing their association with and influence on arsenic awareness. First a logistic regression model was applied and its results compared with those produced by six state-of-the-art machine-learning algorithms (Support Vector Machine [SVM], Kernel-SVM, Decision Tree [DT], k-Nearest Neighbor [k-NN], Naïve Bayes [NB], and Random Forests [RF]) as measured by their accuracy at predicting arsenic awareness. Most (63%) of the surveyed population was found to be arsenic-aware. Significant arsenic awareness predictors were divided into three types: (1) socioeconomic factors: caste, education level, and occupation; (2) water and sanitation behavior factors: number of family members involved in water collection, distance traveled and time spent for water collection, places for defecation, and materials used for handwashing after defecation; and (3) social capital and trust factors: presence of anganwadi and people's trust in other community members, NGOs, and private agencies. Moreover, individuals' having higher social network positively contributed to arsenic awareness in the communities. Results indicated that both the SVM and the RF algorithms outperformed at overall prediction of arsenic awareness-a nonlinear classification problem. Lower-caste, less educated, and unemployed members of the population were found to be the most vulnerable, requiring immediate arsenic mitigation. To this end, local social institutions and NGOs could play a crucial role in arsenic awareness and outreach programs. Use of SVM or RF or a combination of the two, together with use of a larger sample size, could enhance the accuracy of arsenic awareness prediction. Copyright © 2018 Elsevier Ltd. All rights reserved.
A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere
NASA Technical Reports Server (NTRS)
Schoeberl, M. R.
1985-01-01
Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.
Finite element analyses of thin film active grazing incidence x-ray optics
NASA Astrophysics Data System (ADS)
Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.
2010-09-01
The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.
A fast forward algorithm for real-time geosteering of azimuthal gamma-ray logging.
Qin, Zhen; Pan, Heping; Wang, Zhonghao; Wang, Bintao; Huang, Ke; Liu, Shaohua; Li, Gang; Amara Konaté, Ahmed; Fang, Sinan
2017-05-01
Geosteering is an effective method to increase the reservoir drilling rate in horizontal wells. Based on the features of an azimuthal gamma-ray logging tool and strata spatial location, a fast forward calculation method of azimuthal gamma-ray logging is deduced by using the natural gamma ray distribution equation in formation. The response characteristics of azimuthal gamma-ray logging while drilling in the layered formation models with different thickness and position are simulated and summarized by using the method. The result indicates that the method calculates quickly, and when the tool nears a boundary, the method can be used to identify the boundary and determine the distance from the logging tool to the boundary in time. Additionally, the formation parameters of the algorithm in the field can be determined after a simple method is proposed based on the information of an offset well. Therefore, the forward method can be used for geosteering in the field. A field example validates that the forward method can be used to determine the distance from the azimuthal gamma-ray logging tool to the boundary for geosteering in real-time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Uncertainty analysis technique for OMEGA Dante measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M. J.; Widmann, K.; Sorce, C.
2010-10-15
The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less
Uncertainty Analysis Technique for OMEGA Dante Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, M J; Widmann, K; Sorce, C
2010-05-07
The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less
Modeling multilayer x-ray reflectivity using genetic algorithms
NASA Astrophysics Data System (ADS)
Sánchez del Río, M.; Pareschi, G.; Michetschläger, C.
2000-06-01
The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thickness, density, roughness). Non-linear fitting of experimental data with simulations requires the use of initial values sufficiently close to the optimum value. This is a difficult task when the topology of the space of the variables is highly structured. We apply global optimization methods to fit multilayer reflectivity. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (selection, crossover, mutation, etc.) on the members of the parent generation. The pressure of selection drives the population to include "good" individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C and W/Si multilayers using genetic algorithms are presented. This method can also be applied to design multilayers optimized for a target application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Andrew J.; McDonald, Benjamin S.; Smith, Leon E.
The methods currently used by the International Atomic Energy Agency to account for nuclear materials at fuel fabrication facilities are time consuming and require in-field chemistry and operation by experts. Spectral X-ray radiography, along with advanced inverse algorithms, is an alternative inspection that could be completed noninvasively, without any in-field chemistry, with inspections of tens of seconds. The proposed inspection system and algorithms are presented here. The inverse algorithm uses total variation regularization and adaptive regularization parameter selection with the unbiased predictive risk estimator. Performance of the system is quantified with simulated X-ray inspection data and sensitivity of the outputmore » is tested against various inspection system instabilities. Material quantification from a fully-characterized inspection system is shown to be very accurate, with biases on nuclear material estimations of < 0.02%. It is shown that the results are sensitive to variations in the fuel powder sample density and detector pixel gain, which increase biases to 1%. Options to mitigate these inaccuracies are discussed.« less
Ning, Ruola; Tang, Xiangyang; Conover, David; Yu, Rongfeng
2003-07-01
Cone beam computed tomography (CBCT) has been investigated in the past two decades due to its potential advantages over a fan beam CT. These advantages include (a) great improvement in data acquisition efficiency, spatial resolution, and spatial resolution uniformity, (b) substantially better utilization of x-ray photons generated by the x-ray tube compared to a fan beam CT, and (c) significant advancement in clinical three-dimensional (3D) CT applications. However, most studies of CBCT in the past are focused on cone beam data acquisition theories and reconstruction algorithms. The recent development of x-ray flat panel detectors (FPD) has made CBCT imaging feasible and practical. This paper reports a newly built flat panel detector-based CBCT prototype scanner and presents the results of the preliminary evaluation of the prototype through a phantom study. The prototype consisted of an x-ray tube, a flat panel detector, a GE 8800 CT gantry, a patient table and a computer system. The prototype was constructed by modifying a GE 8800 CT gantry such that both a single-circle cone beam acquisition orbit and a circle-plus-two-arcs orbit can be achieved. With a circle-plus-two-arcs orbit, a complete set of cone beam projection data can be obtained, consisting of a set of circle projections and a set of arc projections. Using the prototype scanner, the set of circle projections were acquired by rotating the x-ray tube and the FPD together on the gantry, and the set of arc projections were obtained by tilting the gantry while the x-ray tube and detector were at the 12 and 6 o'clock positions, respectively. A filtered backprojection exact cone beam reconstruction algorithm based on a circle-plus-two-arcs orbit was used for cone beam reconstruction from both the circle and arc projections. The system was first characterized in terms of the linearity and dynamic range of the detector. Then the uniformity, spatial resolution and low contrast resolution were assessed using different phantoms mainly in the central plane of the cone beam reconstruction. Finally, the reconstruction accuracy of using the circle-plus-two-arcs orbit and its related filtered backprojection cone beam volume CT reconstruction algorithm was evaluated with a specially designed disk phantom. The results obtained using the new cone beam acquisition orbit and the related reconstruction algorithm were compared to those obtained using a single-circle cone beam geometry and Feldkamp's algorithm in terms of reconstruction accuracy. The results of the study demonstrate that the circle-plus-two-arcs cone beam orbit is achievable in practice. Also, the reconstruction accuracy of cone beam reconstruction is significantly improved with the circle-plus-two-arcs orbit and its related exact CB-FPB algorithm, as compared to using a single circle cone beam orbit and Feldkamp's algorithm.
Grain refinement of cast zinc through magnesium inoculation: Characterisation and mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhilin; Qiu, Dong; Wang, Feng
2015-08-15
It was previously found that peritectic-forming solutes are more favourable for the grain refinement of cast Al alloys than eutectic-forming solutes. In this work, we report that the eutectic-forming solute, Mg, can also significantly grain refine cast Zn. Differential thermal analysis (DTA) of a Zn–Mg alloy, in which efficient grain refinement occurred, evidenced an unexpected peak that appeared before the nucleation of η-Zn grains on the DTA spectrum. Based on extensive examination using X-ray diffraction, high resolution SEM and EDS, it was found that: (a) some faceted Zn–Mg intermetallic particles were reproducibly observed; (b) the particles were located at ormore » near grain centres; (c) the atomic ratio of Mg to Zn in the intermetallic compound was determined to be around 1/2. Using tilting selected area diffraction (SAD) and convergent beam Kikuchi line diffraction pattern (CBKLDP) techniques, these faceted particles were identified as MgZn{sub 2} and an orientation relationship between such grain-centred MgZn{sub 2} particles and the η-Zn matrix was determined. Hence, the unexpected peak on the DTA spectrum is believed to correspond to the formation of MgZn{sub 2} particles, which act as effective heterogeneous nucleation sites in the alloy. Together with the effect of Mg solute on restricting grain growth, such heterogeneous nucleation is cooperatively responsible for the grain size reduction in Zn–Mg alloys. - Highlights: • A new eutectic-based grain refiner for the cast Zn was found. • The formation process of an intermetallic compound (MgZn{sub 2}) was characterised. • MgZn{sub 2} can act as potent heterogeneous nucleation sites above the liquidus. • A new OR between MgZn{sub 2} and η-Zn was determined using the CBKLDP technique.« less
NASA Astrophysics Data System (ADS)
Andriollo, Tito; Hellström, Kristina; Sonne, Mads Rostgaard; Thorborg, Jesper; Tiedje, Niels; Hattel, Jesper
2018-02-01
Recent X-ray diffraction (XRD) measurements have revealed that plastic deformation and a residual elastic strain field can be present around the graphite particles in ductile cast iron after manufacturing, probably due to some local mismatch in thermal contraction. However, as only one component of the elastic strain tensor could be obtained from the XRD data, the shape and magnitude of the associated residual stress field have remained unknown. To compensate for this and to provide theoretical insight into this unexplored topic, a combined experimental-numerical approach is presented in this paper. First, a material equivalent to the ductile cast iron matrix is manufactured and subjected to dilatometric and high-temperature tensile tests. Subsequently, a two-scale hierarchical top-down model is devised, calibrated on the basis of the collected data and used to simulate the interaction between the graphite particles and the matrix during manufacturing of the industrial part considered in the XRD study. The model indicates that, besides the viscoplastic deformation of the matrix, the effect of the inelastic deformation of the graphite has to be considered to explain the magnitude of the XRD strain. Moreover, the model shows that the large elastic strain perturbations recorded with XRD close to the graphite-matrix interface are not artifacts due to e.g. sharp gradients in chemical composition, but correspond to residual stress concentrations induced by the conical sectors forming the internal structure of the graphite particles. In contrast to common belief, these results thus suggest that ductile cast iron parts cannot be considered, in general, as stress-free at the microstructural scale.
Jakobsen, Stig S; Larsen, A; Stoltenberg, M; Bruun, J M; Soballe, K
2007-09-11
Insertion of metal implants is associated with a possible change in the delicate balance between pro- and anti-inflammatory proteins, probably leading to an unfavourable predominantly pro-inflammatory milieu. The most likely cause is an inappropriate activation of macrophages in close relation to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines (TNF-alpha, IL-6, IL-alpha, IL-1beta, IL-10) and proteins known to induce proliferation (M-CSF), chemotaxis (MCP-1) and osteogenesis (TGF-beta, OPG) were determined by ELISA and Real Time reverse transcriptase - PCR (Real Time rt-PCR). Lactate dehydrogenase (LDH) was measured in the medium to asses the cell viability. Surface properties of the discs were characterised with a profilometer and with energy dispersive X-ray spectroscopy. We here report, for the first time, that the prosthetic material surface (non-phagocytable) of as-cast high carbon CoCrMo reduces the pro-inflammatory cytokine IL-6 transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove to be a superior implant material generating less inflammation which might result in less osteolysis.
Formation of Hot Tear Under Controlled Solidification Conditions
NASA Astrophysics Data System (ADS)
Subroto, Tungky; Miroux, Alexis; Bouffier, Lionel; Josserond, Charles; Salvo, Luc; Suéry, Michel; Eskin, Dmitry G.; Katgerman, Laurens
2014-06-01
Aluminum alloy 7050 is known for its superior mechanical properties, and thus finds its application in aerospace industry. Vertical direct-chill (DC) casting process is typically employed for producing such an alloy. Despite its advantages, AA7050 is considered as a "hard-to-cast" alloy because of its propensity to cold cracking. This type of cracks occurs catastrophically and is difficult to predict. Previous research suggested that such a crack could be initiated by undeveloped hot tears (microscopic hot tear) formed during the DC casting process if they reach a certain critical size. However, validation of such a hypothesis has not been done yet. Therefore, a method to produce a hot tear with a controlled size is needed as part of the verification studies. In the current study, we demonstrate a method that has a potential to control the size of the created hot tear in a small-scale solidification process. We found that by changing two variables, cooling rate and displacement compensation rate, the size of the hot tear during solidification can be modified in a controlled way. An X-ray microtomography characterization technique is utilized to quantify the created hot tear. We suggest that feeding and strain rate during DC casting are more important compared with the exerted force on the sample for the formation of a hot tear. In addition, we show that there are four different domains of hot-tear development in the explored experimental window—compression, microscopic hot tear, macroscopic hot tear, and failure. The samples produced in the current study will be used for subsequent experiments that simulate cold-cracking conditions to confirm the earlier proposed model.
Characterization of a 12-pdr wrought-iron cannonball from the Akko 1 shipwreck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cvikel, D.; Ashkenazi, D., E-mail: dana@eng.tau.ac.il; Stern, A.
2013-09-15
The Akko 1 shipwreck, discovered in Akko harbor, Israel, is the remains of an eastern Mediterranean brig built at the beginning of the 19th century. Among other finds, eleven cannonballs were found in the shipwreck and three of them were retrieved. Two of the cannonballs, the 9- and 24-pdrs, have been studied previously. The present study of the 12-pdr cannonball included γ-rays radiographic testing, XRF analysis, density measurements, optical microscopy and SEM-EDS observation, OES analysis and microhardness tests. The investigation included characterization of the composition, microstructure and slag analysis. The results revealed a quite homogenous microstructure of α-ferrite phase, withmore » glassy, wüstite and fayalite slags, as typical for a wrought-iron—annealed product, a more complicated and an earlier technology, compared to the 9- and 24-pdr that were made of cast-iron. Ferritic cannonballs are extremely rare, especially in the 19th century, when cannonballs were manufactured of cast iron by the sand casting process. The different manufacturing methods may indicate a different place of fabrication, and an apparently earlier production date for the 12-pdr, which might have even been used as ballast. - Highlights: • Three cannonballs were retrieved from the 19th century Akko 1 shipwreck. • The 12-pdr differs from the 9- and 24-pdr cannonballs previously studied. • The 12-pdr was made of high quality annealed wrought-iron, not of cast-iron. • The technology used indicates a date earlier than the middle of the 19th century. • Perhaps the 12-pdr belonged to another navy than the other two or used as ballast.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiengmoon, A., E-mail: ampornw@nu.ac.th
The effects of Si on microstructure and phase transformation at elevated temperature of ferritic 31wt.%Cr-1.1wt.%C white cast irons with up to 3wt.%Si have been studied. Applications of these irons include parts requiring heat resistance at elevated temperature. The irons were produced by sand casting. The microstructure in as-cast condition and after being subjected to high temperature (700 to 1000 °C) was investigated by light microscopy, X-ray diffraction, and electron microscopy. The results revealed that the as-cast microstructure consisted mainly of primary ferrite dendrites and eutectic (ferrite + M{sub 7}C{sub 3}). Si promotes M{sub 7}C{sub 3}-to-M{sub 23}C{sub 6} transformation in themore » irons subjected to transformation at elevated temperature, but no sigma phase was found. The extent of M{sub 7}C{sub 3}-to-M{sub 23}C{sub 6} transformation increases proportional to the increasing transformation temperature, holding time and Si content in the irons. For the iron with 1.0wt.%Si content after holding at elevated temperatures, martensite was also found, which could be attributed to carbon accretion effects in eutectic ferrite. Si was incorporated in M{sub 23}C{sub 6} such that M{sub 23}C{sub 6} containing Si can show darker contrast under SEM-BEI as compared to M{sub 7}C{sub 3}; this is the opposite to what has been observed for the cases of typical M{sub 23}C{sub 6} and M{sub 23}C{sub 6} containing Mo or W. The results obtained are important to understand the change in properties of ferritic, high chromium irons containing Si subjected to elevated temperature.« less
Development of a digital method for neutron/gamma-ray discrimination based on matched filtering
NASA Astrophysics Data System (ADS)
Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.
2016-09-01
Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.
Simulated annealing two-point ray tracing
NASA Astrophysics Data System (ADS)
Velis, Danilo R.; Ulrych, Tadeusz J.
We present a new method for solving the two-point seismic ray tracing problem based on Fermat's principle. The algorithm overcomes some well known difficulties that arise in standard ray shooting and bending methods. Problems related to: (1) the selection of new take-off angles, and (2) local minima in multipathing cases, are overcome by using an efficient simulated annealing (SA) algorithm. At each iteration, the ray is propagated from the source by solving a standard initial value problem. The last portion of the raypath is then forced to pass through the receiver. Using SA, the total traveltime is then globally minimized by obtaining the initial conditions that produce the absolute minimum path. The procedure is suitable for tracing rays through 2D complex structures, although it can be extended to deal with 3D velocity media. Not only direct waves, but also reflected and head-waves can be incorporated in the scheme. One important advantage is its simplicity, in as much as any available or user-preferred initial value solver system can be used. A number of clarifying examples of multipathing in 2D media are examined.
Mechanical properties enhancement and microstructure study of Al-Si-TiB2 in situ composites
NASA Astrophysics Data System (ADS)
Sahoo, S. K.; Majhi, J.; Pattnaik, A. B.; Sahoo, J. K.; Das, Swagat
2018-03-01
Al–Si alloy-based composite is one of the most promising MMC materials owing to its outstanding mechanical properties, wear and corrosion resistance, low cost and ability to be synthesized via conventional casting routes. Challenges in achieving clean interface between reinforced particles and matrix alloy have been overcome by means of in-situ techniques of fabrication. Present investigation is concerned with synthesizing Al-Si-TiB2 in-situ composites through stir casting route using K2TiF6 and KBF4 halide salts for exothermic salt metal reaction. X-Ray diffraction analysis revealed the existence of TiB2 in the prepared samples. Effect of TiB2in-situ particles in the Al-Si base alloy has been investigated from the results obtained from optical microscopy as well as SEM study and wear analysis with a pin on disc wear testing apparatus. Improved hardness and wear properties were observed with addition of TiB2.
NASA Astrophysics Data System (ADS)
Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.
2013-12-01
The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.
Correction of hypermobile flatfoot in children by molded insert.
Bordelon, R L
1980-11-01
One hundred feet in 50 children between the ages of 3 and 9 years with a diagnosis of idiopathic hypermobile flatfoot had a custom-molded insert ordered. A specific method of casting, correcting the various components of the deformity was utilized. An 1/8-inch polypropolene insert was fabricated from the positive cast. The insert was worn in leather shoes with a long counter, steel shank, and Thomas heel. The flatfoot was evaluated and classified by measurement of the talometatarsal angle on a standing lateral X-ray. The insert was fabricated so that the standing lateral talometatarsal angle was corrected to neutral with the insert on the foot and the foot in the shoe. The preliminary reports indicate that a correction can be obtained at the rate of 0.41 degrees per month or approximately 5 degrees per year. There was no significant loss of motion of the foot or the ankle. Perhaps this regimen may be utilized in those children with a hypermobile flatfoot for whom treatment is advised.
Effects of thermal treatments on protein adsorption of Co-Cr-Mo ASTM-F75 alloys.
Duncan, L A; Labeed, F H; Abel, M-L; Kamali, A; Watts, J F
2011-06-01
Post-manufacturing thermal treatments are commonly employed in the production of hip replacements to reduce shrinkage voids which can occur in cast components. Several studies have investigated the consequences of these treatments upon the alloy microstructure and tribological properties but none have determined if there are any biological ramifications. In this study the adsorption of proteins from foetal bovine serum (FBS) on three Co-Cr-Mo ASTM-F75 alloy samples with different metallurgical histories, has been studied as a function of protein concentration. Adsorption isotherms have been plotted using the surface concentration of nitrogen as a diagnostic of protein uptake as measured by X-ray photoelectron spectroscopy. The data was a good fit to the Langmuir adsorption isotherm up to the concentration at which critical protein saturation occurred. Differences in protein adsorption on each alloy have been observed. This suggests that development of the tissue/implant interface, although similar, may differ between as-cast (AC) and heat treated samples.
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-05-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.
de Souza, Clayton F; Lucyszyn, Neoli; Woehl, Marco A; Riegel-Vidotti, Izabel C; Borsali, Redouane; Sierakowski, Maria Rita
2013-03-01
We describe the mechanical defibrillation of bacterial cellulose (BC) followed by the dry-cast generation of reconstituted BC films (RBC). Xyloglucan (XGT), extracted from tamarind seeds, was incorporated into the defibrillated cellulose at various compositions, and new films were created using the same process. Microscopy and contact angle analyses of films revealed an increase in the microfibre adhesion, a reduced polydispersity in the diameters of the microfibrils and increased hydrophobic behaviour as a function of %XGT. X-ray diffraction analysis revealed changes to the crystallographic planes of the RBC and the biocomposite films with preferential orientation along the (110) plane. Compared with BC, RBC/XGT biocomposite with 10% XGT exhibited improvement in its thermal properties and in Young's modulus. These results indicated a reorganisation of the microfibres with mechanical treatment, which when combined with hydrocolloids, can create cellulose-based materials that could be applied as scaffolding for tissue engineering and drug release. Copyright © 2012 Elsevier Ltd. All rights reserved.
Feasibility study on development of metal matrix composite by microwave stir casting
NASA Astrophysics Data System (ADS)
Lingappa, S. M.; Srinath, M. S.; Amarendra, H. J.
2018-04-01
Need for better service oriented materials has boosted the demand for metal matrix composite materials, which can be developed to have necessary properties. One of the most widely utilized metal matrix composite is Al-SiC, which is having a matrix made of aluminium metal and SiC as reinforcement. Lightweight and conductivity of aluminium, when combined with hardness and wear resistance of SiC provides an excellent platform for various applications in the field of electronics, automotives, and aerospace and so on. However, uniform distribution of reinforcement particles is an issue and has to be addressed. The present study is an attempt made to develop Al-SiC metal matrix composite by melting base metal using microwave hybrid heating technique, followed by addition of reinforcement and stirring the mixture for obtaining homogenous mixture. X-Ray Diffraction analysis shows the presence of aluminium and SiC in the cast material. Further, microstructural study shows the distribution of SiC particles in the grain boundaries.
Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-01-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability. PMID:27222742
Real-Time Investigation of Solidification of Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Kaukler, William; Sen, Subhayu
1999-01-01
Casting of metal matrix composites can develop imperfections either as non- uniform distributions of the reinforcement phases or as outright defects such as porosity. The solidification process itself initiates these problems. To identify or rectify the problems, one must be able to detect and to study how they form. Until, recently this was only possible by experiments that employed transparent metal model organic materials with glass beads to simulate the reinforcing phases. Recent results obtained from a Space Shuttle experiment (using transparent materials) will be used to illustrate the fundamental physics that dictates the final distribution of agglomerates in a casting. We have further extended this real time investigation to aluminum alloys using X-ray microscopy. A variety of interface-particle interactions will be discussed and how they alter the final properties of the composite. A demonstration of how a solid-liquid interface is distorted by nearby voids or particles, particle pushing or engulfment by the interface, formations of wormholes, Aggregation of particles, and particle-induced segregation of alloying elements will be presented.
NASA Astrophysics Data System (ADS)
Ardhyananta, Hosta; Wibisono, Alvian Toto; Ramadhani, Mavindra; Widyastuti, Farid, Muhammad; Gumilang, Muhammad Shena
2018-04-01
Cu-Zn-Al alloy is one type of brass, which has high strength and high corrosion resistant. It has been applied on ship propellers and marine equipment. In this research, the addition of aluminum (Al) with variation of 1, 2, 3, 4% aluminum to know the effect on mechanical properties and micro structure at casting process using a copper chill and without copper chill. This alloy is melted using furnace in 1100°C without holding. Then, the molten metal is poured into the mold with copper chill and without copper chill. The speciment of Cu-Zn-Al alloy were chracterized by using Optical Emission Spectroscopy (OES), Metallography Test, X-Ray Diffraction (XRD), Hardness Test of Rockwell B and Charpy Impact Test. The result is the addition of aluminum and the use of copper chill on the molds can reduce the grain size, increases the value of hardness and impact.
Characteristics of copper-clad aluminum rods prepared by horizontal continuous casting
NASA Astrophysics Data System (ADS)
Zhang, Yubo; Fu, Ying; Jie, Jinchuan; Wu, Li; Svynarenko, Kateryna; Guo, Qingtao; Li, Tingju; Wang, Tongmin
2017-11-01
An innovative horizontal continuous casting method was developed and successfully used to prepare copper-clad aluminum (CCA) rods with a diameter of 85 mm and a sheath thickness of 16 mm. The solidification structure and element distribution near the interface of the CCA ingots were investigated by means of a scanning electron microscope, an energy dispersive spectrometer, and an electron probe X-ray microanalyzer. The results showed that the proposed process can lead to a good metallurgical bond between Cu and Al. The interface between Cu and Al was a multilayered structure with a thickness of 200 μm, consisting of Cu9Al4, CuAl2, α-Al/CuAl2 eutectic, and α-Al + α-Al/CuAl2 eutectic layers from the Cu side to the Al side. The mean tensile-shear strength of the CCA sample was 45 MPa, which fulfills the requirements for the further extrusion process. The bonding and diffusion mechanisms are also discussed in this paper.
Magnetic studies of melt spun NdFeAl-C alloys
NASA Astrophysics Data System (ADS)
Rodríguez Torres, C. E.; Cabrera, A. F.; Sánchez, F. H.; Billoni, O. V.; Urreta, S. E.; Fabietti, L. M.
2004-12-01
Alloys with compositions Nd 60-xC xFe 30Al 10 ( x=0, 1, 5 and 10) were processed by melt spinning at a tangential speed of 5 m/s. The as-cast ribbons were characterized by X-ray diffraction, Mössbauer Effect spectroscopy and their room temperature hysteresis loops. The substitution of Nd by C is found to affect the phase selection, from mainly DHCP-Nd for x=0 to DHCP-Nd /FCC-Nd for the other ones. Mössbauer spectra of all the as-cast samples indicate that Fe is present in crystalline magnetic phases as well as in a paramagnetic one. The major crystalline phase was identified as a μ-type (or A1) metastable phase, which is reported to have a large anisotropy field and a relatively high saturation polarization. Interstitial C stabilizes the μ-type phase and improves its average hyperfine field. The magnetic measurements display an increase of coercivity and remanence with the C concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Bonnie; Hitchcock, Adam; Brash, John
Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. Amore » phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.« less
Multi- and hyperspectral scene modeling
NASA Astrophysics Data System (ADS)
Borel, Christoph C.; Tuttle, Ronald F.
2011-06-01
This paper shows how to use a public domain raytracer POV-Ray (Persistence Of Vision Raytracer) to render multiand hyper-spectral scenes. The scripting environment allows automatic changing of the reflectance and transmittance parameters. The radiosity rendering mode allows accurate simulation of multiple-reflections between surfaces and also allows semi-transparent surfaces such as plant leaves. We show that POV-Ray computes occlusion accurately using a test scene with two blocks under a uniform sky. A complex scene representing a plant canopy is generated using a few lines of script. With appropriate rendering settings, shadows cast by leaves are rendered in many bands. Comparing single and multiple reflection renderings, the effect of multiple reflections is clearly visible and accounts for 25% of the overall apparent canopy reflectance in the near infrared.
Skylab observations of X-ray loops connecting separate active regions. [solar activity
NASA Technical Reports Server (NTRS)
Chase, R. C.; Krieger, A. S.; Svestka, Z.; Vaiana, G. S.
1976-01-01
One hundred loops interconnecting 94 separate active solar regions detectable in soft X-rays were identified during the Skylab mission. While close active regions are commonly interconnected with loops, the number of such interconnections decreases steeply for longer distances; the longest interconnecting loop observed in the Skylab data connected regions separated by 37 deg. Several arguments are presented which support the point of view that this is the actual limit of the size of magnetic interconnections between active regions. No sympathetic flares could be found in the interconnected regions. These results cast doubt on the hypothesis that accelerated particles can be guided in interconnecting loops from one active region to another over distances of 100 deg or more and eventually produce sympathetic flares in them.
Radiative transfer of X-rays in the solar corona
NASA Technical Reports Server (NTRS)
Acton, L. W.
1978-01-01
The problem of resonance scattering of X-ray emission lines in the solar corona is investigated. For the resonance lines of some helium-like ions, significant optical depths are reached over distances small compared with the size of typical coronal features. A general integral equation for the transfer of resonance-line radiation under solar coronal conditions is derived. This expression is in a form useful for modeling the complex three-dimensional temperature and density structure of coronal active regions. The transfer equation is then cast in a form illustrating the terms which give rise to the attenuation or enhancement of the resonance-line intensity. The source function for helium-like oxygen (O VII) under coronal conditions is computed and discussed in terms of the relative importance of scattering.
Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera.
Barchuk, Angel R; Cristino, Alexandre S; Kucharski, Robert; Costa, Luciano F; Simões, Zilá L P; Maleszka, Ryszard
2007-06-18
In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks.
NASA Astrophysics Data System (ADS)
Marcello Falcieri, Francesco; Kantha, Lakshmi; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Malačič, Vlado; Sclavo, Mauro; Carniel, Sandro
2016-03-01
The oceanographic campaign CARPET2014 (Characterizing Adriatic Region Preconditionig EvenTs), (30 January-4 February 2014) collected the very first turbulence data in the Gulf of Trieste (northern Adriatic Sea) under moderate wind (average wind speed 10 m s-1) and heat flux (net negative heat flux ranging from 150 to 400 W m-2). Observations consisted of 38 CTD (Conductivity, Temperature, Depth) casts and 478 microstructure profiles (grouped into 145 ensembles) with three sets of yoyo casts, each lasting for about 12 consecutive hours. Averaging closely repeated casts, such as the ensembles, can lead to a smearing effect when in the presence of a vertical density structure with strong interfaces that can move up or down between subsequent casts under the influence of tides and internal waves. In order to minimize the smearing effect of such displacements on mean quantities, we developed an algorithm to realign successive microstructure profiles to produce sharper and more meaningful mean profiles of measured turbulence parameters. During the campaign, the water column in the gulf evolved from well-mixed to stratified conditions due to Adriatic waters intruding at the bottom along the gulf's south-eastern coast. We show that during the warm and relatively dry winter, the water column in the Gulf of Trieste, even under moderate wind forcing, was not completely mixed due to the influence of bottom waters intruding from the open sea. Inside the gulf, two types of water intrusions were found during yoyo casts: one coming from the northern coast of the Adriatic Sea (i.e. cooler, fresher and more turbid) and one coming from the open sea in front of the Po Delta (i.e. warmer, saltier and less turbid). The two intrusions had different impacts on turbulence kinetic energy dissipation rate profiles. The former, with high turbidity, acted as a barrier to wind-driven turbulence, while the latter, with low sediment concentrations and a smaller vertical density gradient, was not able to suppress downward penetration of turbulence from the surface.
Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera
Barchuk, Angel R; Cristino, Alexandre S; Kucharski, Robert; Costa, Luciano F; Simões, Zilá LP; Maleszka, Ryszard
2007-01-01
Background In honeybees, differential feeding of female larvae promotes the occurrence of two different phenotypes, a queen and a worker, from identical genotypes, through incremental alterations, which affect general growth, and character state alterations that result in the presence or absence of specific structures. Although previous studies revealed a link between incremental alterations and differential expression of physiometabolic genes, the molecular changes accompanying character state alterations remain unknown. Results By using cDNA microarray analyses of >6,000 Apis mellifera ESTs, we found 240 differentially expressed genes (DEGs) between developing queens and workers. Many genes recorded as up-regulated in prospective workers appear to be unique to A. mellifera, suggesting that the workers' developmental pathway involves the participation of novel genes. Workers up-regulate more developmental genes than queens, whereas queens up-regulate a greater proportion of physiometabolic genes, including genes coding for metabolic enzymes and genes whose products are known to regulate the rate of mass-transforming processes and the general growth of the organism (e.g., tor). Many DEGs are likely to be involved in processes favoring the development of caste-biased structures, like brain, legs and ovaries, as well as genes that code for cytoskeleton constituents. Treatment of developing worker larvae with juvenile hormone (JH) revealed 52 JH responsive genes, specifically during the critical period of caste development. Using Gibbs sampling and Expectation Maximization algorithms, we discovered eight overrepresented cis-elements from four gene groups. Graph theory and complex networks concepts were adopted to attain powerful graphical representations of the interrelation between cis-elements and genes and objectively quantify the degree of relationship between these entities. Conclusion We suggest that clusters of functionally related DEGs are co-regulated during caste development in honeybees. This network of interactions is activated by nutrition-driven stimuli in early larval stages. Our data are consistent with the hypothesis that JH is a key component of the developmental determination of queen-like characters. Finally, we propose a conceptual model of caste differentiation in A. mellifera based on gene-regulatory networks. PMID:17577409
F--Ray: A new algorithm for efficient transport of ionizing radiation
NASA Astrophysics Data System (ADS)
Mao, Yi; Zhang, J.; Wandelt, B. D.; Shapiro, P. R.; Iliev, I. T.
2014-04-01
We present a new algorithm for the 3D transport of ionizing radiation, called F
NASA Astrophysics Data System (ADS)
Loftus, K.; Saar, S. H.
2017-12-01
NOAA's Space Weather Prediction Center publishes the current definitive public soft X-ray flare catalog, derived using data from the X-ray Sensor (XRS) on the Geostationary Operational Environmental Satellites (GOES) series. However, this flare list has shortcomings for use in scientific analysis. Its detection algorithm has drawbacks (missing smaller flux events and poorly characterizing complex ones), and its event timing is imprecise (peak and end times are frequently marked incorrectly, and hence peak fluxes are underestimated). It also lacks explicit and regular spatial location data. We present a new database, "The Where of the Flare" catalog, which improves upon the precision of NOAA's current version, with more consistent and accurate spatial locations, timings, and peak fluxes. Our catalog also offers several new parameters per flare (e.g. background flux, integrated flux). We use data from the GOES Solar X-ray Imager (SXI) for spatial flare locating. Our detection algorithm is more sensitive to smaller flux events close to the background level and more precisely marks flare start/peak/end times so that integrated flux can be accurately calculated. It also decomposes complex events (with multiple overlapping flares) by constituent peaks. The catalog dates from the operation of the first SXI instrument in 2003 until the present. We give an overview of the detection algorithm's design, review the catalog's features, and discuss preliminary statistical analyses of light curve morphology, complex event decomposition, and integrated flux distribution. The Where of the Flare catalog will be useful in studying X-ray flare statistics and correlating X-ray flare properties with other observations. This work was supported by Contract #8100002705 from Lockheed-Martin to SAO in support of the science of NASA's IRIS mission.
NASA Astrophysics Data System (ADS)
Humphries, T.; Winn, J.; Faridani, A.
2017-08-01
Recent work in CT image reconstruction has seen increasing interest in the use of total variation (TV) and related penalties to regularize problems involving reconstruction from undersampled or incomplete data. Superiorization is a recently proposed heuristic which provides an automatic procedure to ‘superiorize’ an iterative image reconstruction algorithm with respect to a chosen objective function, such as TV. Under certain conditions, the superiorized algorithm is guaranteed to find a solution that is as satisfactory as any found by the original algorithm with respect to satisfying the constraints of the problem; this solution is also expected to be superior with respect to the chosen objective. Most work on superiorization has used reconstruction algorithms which assume a linear measurement model, which in the case of CT corresponds to data generated from a monoenergetic x-ray beam. Many CT systems generate x-rays from a polyenergetic spectrum, however, in which the measured data represent an integral of object attenuation over all energies in the spectrum. This inconsistency with the linear model produces the well-known beam hardening artifacts, which impair analysis of CT images. In this work we superiorize an iterative algorithm for reconstruction from polyenergetic data, using both TV and an anisotropic TV (ATV) penalty. We apply the superiorized algorithm in numerical phantom experiments modeling both sparse-view and limited-angle scenarios. In our experiments, the superiorized algorithm successfully finds solutions which are as constraints-compatible as those found by the original algorithm, with significantly reduced TV and ATV values. The superiorized algorithm thus produces images with greatly reduced sparse-view and limited angle artifacts, which are also largely free of the beam hardening artifacts that would be present if a superiorized version of a monoenergetic algorithm were used.
NASA Astrophysics Data System (ADS)
Lee, Hae-Jeong; Soles, Christopher L.; Liu, Da-Wei; Bauer, Barry J.; Lin, Eric K.; Wu, Wen-li; Grill, Alfred
2004-03-01
Three different types of porous low-k dielectric films, with similar dielectric constants, are characterized using x-ray porosimetry (XRP). XRP is used to extract critical structural information, such as the average density, wall density, porosity, and pore size distribution. The materials include a plasma-enhanced-chemical-vapor-deposited carbon-doped oxide film composed of Si, C, O, and H (SiCOH) and two spin cast silsesquioxane type films—methylsilsesquioxane with a polymeric porogen (porous MSQ) and hydrogensilsesquioxane with a high boiling point solvent (porous HSQ). The porous SiCOH film displays the smallest pore sizes, while porous HSQ film has both the highest density wall material and porosity. The porous MSQ film exhibits a broad range of pores with the largest average pore size. We demonstrate that the average pore size obtained by the well-established method of neutron scattering and x-ray reflectivity is in good agreement with the XRP results.
NASA Astrophysics Data System (ADS)
Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.
2016-04-01
Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puthirath, Anand B.; Varma, Sreekanth J.; Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in
2016-04-18
Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra canmore » be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.« less
NASA Astrophysics Data System (ADS)
Kim, Seung Il; Lim, Jin Ik; Jung, Youngmee; Mun, Cho Hay; Kim, Ji Heung; Kim, Soo Hyun
2013-07-01
Hydrophobicity-enhanced poly(L-lactide-co-ɛ-caprolactone) (PLCL) (50:50) films were cast by using the solvent-nonsolvent casting method. PLCL (50:50) was synthesized by the well-known random copolymerization process and confirmed by 1H NMR analysis. The molecular weight of the synthesized PLCL was measured by gel permeation chromatography (GPC). Number-average (Mn), weight-average (Mw) molecular weights and polydispersity (Mw/Mn) were 7 × 104, 1.2 × 105, and 1.7, respectively. PLCL films were cast in vacuum condition with various nonsolvents and nonsolvent ratios. Tetrahydrofuran (THF) was used as the solvent and three different alcohols were used as the nonsolvent: methanol, ethanol, and isopropyl alcohol (IPA). Surface hydrophobicity was confirmed by water contact angle. The water contact angle was increased from 81° ± 2° to 107° ± 2°. Water contact angle was influenced by surface porosity and topography. The prepared film surfaces were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The change of crystalline property was characterized by X-ray diffraction (XRD). Platelet adhesion tests on the modified PLCL film surfaces were evaluated by platelet-rich plasma (PRP). The modified film surface exhibited enhanced hydrophobicity and reduced platelet adhesion ratio depending on the surface topography. One of the candidate products proposed as a potential blood compatible material showed a markedly reduced platelet adhesion property.