Science.gov

Sample records for ray diffusion models

  1. A model of the diffuse galactic gamma ray emission

    NASA Technical Reports Server (NTRS)

    Sreekumar, Parameswaran

    1990-01-01

    The galaxy was observed to be a source of high energy gamma rays as shown by the two successful satellite experiments, SAS-2 and COS-B. It is generally understood that these diffuse gamma rays result from interactions between energetic cosmic rays and interstellar gas. This work makes use of the most recent data on the distribution of atomic and molecular hydrogen in the galaxy along with new estimates of gamma ray production functions to model the diffuse galactic gamma ray emission. The model allows various spatial distributions for cosmic rays in the Galaxy including non-axisymmetric ones. In the light of the expected data from EGRET (Energetic Gamma-Ray Experiment Telescope), an improved model of cosmic ray-matter-gamma ray interaction will provide new insights into the distribution of cosmic rays and the strength of its coupling to matter.

  2. Cosmic ray anisotropy in fractional differential models of anomalous diffusion

    SciTech Connect

    Uchaikin, V. V.

    2013-06-15

    The problem of galactic cosmic ray anisotropy is considered in two versions of the fractional differential model for anomalous diffusion. The simplest problem of cosmic ray propagation from a point instantaneous source in an unbounded medium is used as an example to show that the transition from the standard diffusion model to the Lagutin-Uchaikin fractional differential model (with characteristic exponent {alpha} = 3/5 and a finite velocity of free particle motion), which gives rise to a knee in the energy spectrum at 10{sup 6} GeV, increases the anisotropy coefficient only by 20%, while the anisotropy coefficient in the Lagutin-Tyumentsev model (with exponents {alpha} = 0.3 and {beta} = 0.8, a long stay of particles in traps, and an infinite velocity of their jumps) is close to one. This is because the parameters of the Lagutin-Tyumentsev model have been chosen improperly.

  3. Cosmic ray diffusion: Detailed investigation of a recent model

    SciTech Connect

    Lerche, Ian; Tautz, R. C.

    2011-08-15

    A recently proposed model [A. Shalchi, Astrophys. J. 720, L127 (2010)] of perpendicular cosmic ray scattering is investigated in detail, with special emphasis to the relevant diffusion coefficients. Solution of a pair of critical equations, as well as a fundamental integral needed to describe the particle transport, are represented via a mathematically correct expansion procedure, thus modifying the previously available approximations. It is hoped that these significant improvements will aid in allowing a clearer understanding of precisely what the model is capable of evaluating.

  4. Diffuse Galactic Continuum Gamma Rays. A Model Compatible with EGRET Data and Cosmic-ray Measurements

    NASA Technical Reports Server (NTRS)

    Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf

    2004-01-01

    We present a study of the compatibility of some current models of the diffuse Galactic continuum gamma-rays with EGRET data. A set of regions sampling the whole sky is chosen to provide a comprehensive range of tests. The range of EGRET data used is extended to 100 GeV. The models are computed with our GALPROP cosmic-ray propagation and gamma-ray production code. We confirm that the "conventional model" based on the locally observed electron and nucleon spectra is inadequate, for all sky regions. A conventional model plus hard sources in the inner Galaxy is also inadequate, since this cannot explain the GeV excess away from the Galactic plane. Models with a hard electron injection spectrum are inconsistent with the local spectrum even considering the expected fluctuations; they are also inconsistent with the EGRET data above 10 GeV. We present a new model which fits the spectrum in all sky regions adequately. Secondary antiproton data were used to fix the Galactic average proton spectrum, while the electron spectrum is adjusted using the spectrum of diffuse emission it- self. The derived electron and proton spectra are compatible with those measured locally considering fluctuations due to energy losses, propagation, or possibly de- tails of Galactic structure. This model requires a much less dramatic variation in the electron spectrum than models with a hard electron injection spectrum, and moreover it fits the y-ray spectrum better and to the highest EGRET energies. It gives a good representation of the latitude distribution of the y-ray emission from the plane to the poles, and of the longitude distribution. We show that secondary positrons and electrons make an essential contribution to Galactic diffuse y-ray emission.

  5. The Diffuse Galactic Gamma-Ray Emission Model for GLAST LAT

    SciTech Connect

    Porter, T.A.; Digel, S.W.; Grenier, I.A.; Moskalenko, I.V.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2007-06-13

    Diffuse emission from the Milky Way dominates the gamma-ray sky. About 80% of the high-energy luminosity of the Milky Way comes from processes in the interstellar medium. The Galactic diffuse emission traces interactions of energetic particles, primarily protons and electrons, with the interstellar gas and radiation field, thus delivering information about cosmic-ray spectra and interstellar mass in distant locations. Additionally, the Galactic diffuse emission is the celestial foreground for the study of gamma-ray point sources and the extragalactic diffuse gamma-ray emission. We will report on the latest developments in the modeling of the Galactic diffuse emission, which will be used for the Gamma Ray Large Area Space Telescope (GLAST) investigations.

  6. Measuring and modeling diffuse scattering in protein X-ray crystallography

    PubMed Central

    Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana; Brewster, Aaron S.; Sauter, Nicholas K.; Wall, Michael E.

    2016-01-01

    X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practices for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation–libration–screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. These results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering. PMID:27035972

  7. Measuring and modeling diffuse scattering in protein X-ray crystallography

    DOE PAGES

    Van Benschoten, Andrew H.; Liu, Lin; Gonzalez, Ana; Brewster, Aaron S.; Sauter, Nicholas K.; Fraser, James S.; Wall, Michael E.

    2016-03-28

    X-ray diffraction has the potential to provide rich information about the structural dynamics of macromolecules. To realize this potential, both Bragg scattering, which is currently used to derive macromolecular structures, and diffuse scattering, which reports on correlations in charge density variations, must be measured. Until now, measurement of diffuse scattering from protein crystals has been scarce because of the extra effort of collecting diffuse data. Here, we present 3D measurements of diffuse intensity collected from crystals of the enzymes cyclophilin A and trypsin. The measurements were obtained from the same X-ray diffraction images as the Bragg data, using best practicesmore » for standard data collection. To model the underlying dynamics in a practical way that could be used during structure refinement, we tested translation–libration–screw (TLS), liquid-like motions (LLM), and coarse-grained normal-modes (NM) models of protein motions. The LLM model provides a global picture of motions and was refined against the diffuse data, whereas the TLS and NM models provide more detailed and distinct descriptions of atom displacements, and only used information from the Bragg data. Whereas different TLS groupings yielded similar Bragg intensities, they yielded different diffuse intensities, none of which agreed well with the data. In contrast, both the LLM and NM models agreed substantially with the diffuse data. In conclusion, these results demonstrate a realistic path to increase the number of diffuse datasets available to the wider biosciences community and indicate that dynamics-inspired NM structural models can simultaneously agree with both Bragg and diffuse scattering.« less

  8. Comparison of the effects of two models for perpendicular diffusion on cosmic-ray latitudinal gradients

    NASA Astrophysics Data System (ADS)

    Minnie, J.; Burger, R. A.; Parhi, S.; Matthaeus, W. H.; Bieber, J. W.

    We compare the effects of two different models for perpendicular diffusion on the latitudinal gradients of galactic cosmic ray protons during solar minimum conditions. These two models correspond to the newly developed non-linear guiding center theory [Matthaeus, W.H., Qin, G., Bieber, J.W., Zank, G.P. Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys. J. Lett., 590 (1), L53 L56, 2003] and the theory based on a velocity correlation function approach [Bieber, J.W., Matthaeus, W.H. Perpendicular diffusion and drift at intermediate cosmic-ray energies. Astrophys. J., 485 (2) 655 659, 1997]. In this ab initio study a steady-state two-dimensional numerical modulation model is used which incorporates a state-of-the-art turbulence model. We show that the non-linear guiding center theory predicts a mean free path that has a rigidity dependence that better accounts for the latitudinal gradients measured by Ulysses during its first fast latitude scan in 1994/1995.

  9. Modeling of asteroid surfaces and interiors using ray optics with diffuse scattering

    NASA Astrophysics Data System (ADS)

    Virkki, A.; Muinonen, K.; Penttilä, A.

    2014-07-01

    We simulate electromagnetic scattering from a realistic model of an asteroid using an algorithm of ray optics with Fresnel reflection and refraction as well as diffuse scattering [1]. The application of the study is to simulate radar scattering, that is, scattering from centimeter-sized structures, and as a result, study the radar properties of realistic media in terms of structure and material. The results show the circular-polarization ratios and radar albedos of the asteroid models for scatterers from a sub-wavelength scale to a scale of few times the wavelength. We use two kinds of structures: the first is a uniform, internal diffuse medium inside a host body, and the second is an external layer on the surface of a host body. The host body is spherical and it has a diameter of 30 times the wavelength, and the external layer has thickness from a few wavelengths up to about 10 wavelengths. We study both spheres and aggregates of spheres of different sizes as constituents of the diffuse medium, and thus, connect our previous results (e.g., [2]) to a more realistic model for asteroids. As for materials, we mimic rocks and vacuum inclusions in powdered silicate or basaltic materials and a layer of rocks on a rocky host body.

  10. Meeting Review: Diffuse X-Ray Scattering to Model Protein Motions

    PubMed Central

    Wall, Michael E.; Adams, Paul D.; Fraser, James S.; Sautter, Nicholas K.

    2014-01-01

    Problems in biology increasingly need models of protein flexibility to understand and control protein function. At the same time, as they improve, crystallographic methods are marching closer to the limits of what can be learned from Bragg data in isolation. It is thus inevitable that mainstream protein crystallography will turn to diffuse scattering to model protein motions and improve crystallographic models. The time is ripe to make it happen. PMID:24507780

  11. Cosmic Ray Diffusion Tensor Throughout the Heliosphere

    NASA Astrophysics Data System (ADS)

    Pei, C.; Bieber, J. W.; Breech, B.; Burger, R. A.; Clem, J.; Matthaeus, W. H.

    2008-12-01

    We calculate the cosmic ray diffusion tensor based on a recently developed model of magnetohydrodynamic (MHD) turbulence in the expanding solar wind [Breech et al., 2008.]. Parameters of this MHD model are tuned by using published observations from Helios, Voyager 2, and Ulysses. We present solutions of two turbulence parameter sets and derive the characteristics of the cosmic ray diffusion tensor for each. We determine the parallel diffusion coefficient of the cosmic ray following the method presented in Bieber et al. [1995]. We use the nonlinear guiding center (NLGC) theory to obtain the perpendicular diffusion coefficient of the cosmic ray [Matthaeus et al. 2003]. We find that (1) the radial mean free path decreases from 1 AU to 20 AU for both turbulence scenarios; (2) after 40 AU the radial mean free path is nearly constant; (3) the radial mean free path is dominated by the parallel component before 20 AU, after which the perpendicular component becomes important; (4) the rigidity P dependence of the parallel component of the diffusion tensor is proportional to P.404 for one turbulence scenario and P.374 for the other at 1 AU from 0.1 GVto 10 GV, but in the outer heliosphere its dependence becomes stronger above 4 GV; (5) the rigidity P dependence of the perpendicular component of the diffusion tensor is very weak. Supported by NASA Heliophysics Guest Investigator grant NNX07AH73G and by NASA Heliophysics Theory grant NNX08AI47G.

  12. Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    This paper presents an introduction to the astrophysics of cosmic rays and diffuse gamma-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models: the excesses in Galactic diffuse gamma-ray emission, secondary antiprotons and positrons, and the flatter than expected gradient of cosmic rays in the Galaxy. These also involve the dark matter, a challenge to modern physics, through its indirect searches in cosmic rays. Though the final solutions are yet to be found, I discuss some ideas and results obtained mostly with the numerical propagation model GALPROP. A fleet of spacecraft and balloon experiments targeting these specific issues is set to lift off in a few years, imparting a feeling of optimism that a new era of exciting discoveries is just around the corner. A complete and comprehensive discussion of all the recent results is not attempted here due to the space limitations.

  13. Reverse and Forward Shock X-Ray Emission in an Evolutionary Model of Supernova Remnants Undergoing Efficient Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Lee, Shiu-Hang; Patnaude, Daniel J.; Ellison, Donald C.; Nagataki, Shigehiro; Slane, Patrick O.

    2014-08-01

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  14. Reverse and forward shock X-ray emission in an evolutionary model of supernova remnants undergoing efficient diffusive shock acceleration

    SciTech Connect

    Lee, Shiu-Hang; Patnaude, Daniel J.; Slane, Patrick O.; Ellison, Donald C.; Nagataki, Shigehiro E-mail: shiu-hang.lee@riken.jp E-mail: slane@cfa.harvard.edu E-mail: don_ellison@ncsu.edu

    2014-08-20

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  15. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  16. Diffuse gamma-ray emission modeling near the Galactic Center and the 3 GeV excess

    NASA Astrophysics Data System (ADS)

    Albert, Andrea; Maleshev, Dmitry; Franckowiak, Anna; Tibaldo, Luigi; Fermi-LAT Collaboration

    2016-03-01

    Several groups have reported excess emission in gamma rays peaking around 3 GeV relative to expectations from conventional models for the interstellar emission in the Galactic Center (GC). We study the uncertainty of the excess emission in Pass 8 Fermi-LAT data due to modeling of the various emission components in that direction. In particular, we quantify the uncertainties on the excess by refitting with several GALPROP models of Galactic diffuse emission, an alternative distribution of gas along the line of sight based on starlight extinction data, a model of the Fermi bubbles at low latitudes, and including templates for additional sources of cosmic-ray electrons near the GC. In all models that we have tested the excess emission remains significant. The origin of the excess is currently uncertain. To test the robustness of a dark-matter interpretation, we perform fits in controls regions along the Galactic Plane. The uncertainties from our fits in control regions have a similar relative size as the excess in the GC. Therefore a non-dark-matter explanation cannot be ruled out and we consequently set limits on the dark matter annihilation cross section.

  17. Updating applied diffusion models

    SciTech Connect

    Weil, J.C.

    1985-11-01

    Most diffusion models currently used in air quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Society organized a workshop to help improve the basis of such models, their physics and hopefuly their performance. Reviews and recommendations were made on models in three areas: diffusion in the convective boundary layer (CBL), diffusion in the stabe boundary layer (SBL), and model uncertainty.

  18. THE INTERACTION OF COSMIC RAYS WITH DIFFUSE CLOUDS

    SciTech Connect

    Everett, John E.; Zweibel, Ellen G.

    2011-10-01

    We study the change in cosmic-ray pressure, the change in cosmic-ray density, and the level of cosmic-ray-induced heating via Alfven-wave damping when cosmic rays move from a hot ionized plasma to a cool cloud embedded in that plasma. The general analysis method outlined here can apply to diffuse clouds in either the ionized interstellar medium or in galactic winds. We introduce a general-purpose model of cosmic-ray diffusion building upon the hydrodynamic approximation for cosmic rays (from McKenzie and Voelk and Breitschwerdt and collaborators). Our improved method self-consistently derives the cosmic-ray flux and diffusivity under the assumption that the streaming instability is the dominant mechanism for setting the cosmic-ray flux and diffusion. We find that, as expected, cosmic rays do not couple to gas within cool clouds (cosmic rays exert no forces inside of cool clouds), that the cosmic-ray density does not increase within clouds (it may decrease slightly in general, and decrease by an order of magnitude in some cases), and that cosmic-ray heating (via Alfven-wave damping and not collisional effects as for {approx}10 MeV cosmic rays) is only important under the conditions of relatively strong (10 {mu}G) magnetic fields or high cosmic-ray pressure ({approx}10{sup -11} erg cm{sup -3}).

  19. Updating applied diffusion models

    SciTech Connect

    Weil, J.C.

    1985-01-01

    Most diffusion models currently used in air-quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Society organized a workshop to help improve the basis of such models, their physics and hopefully their performance. Reviews and recommendations were made on models in three areas: diffusion in the convective boundary layer (CBL), diffusion in the stable boundary layer (SBL), and model uncertainty. Progress has been made in all areas, but it is most significant and ready for application to practical models in the case of the CBL. This has resulted from a clear understanding of the vertical structure and diffusion in the CBL, as demonstrated by laboratory experiments, numerical simulations, and field observations. Understanding of turbulence structure and diffusion in the SBL is less complete and not yet ready for general use in applications.

  20. THE FERMI BUBBLES. II. THE POTENTIAL ROLES OF VISCOSITY AND COSMIC-RAY DIFFUSION IN JET MODELS

    SciTech Connect

    Guo Fulai; Mathews, William G.; Oh, S. Peng

    2012-09-10

    The origin of the Fermi bubbles recently detected by the Fermi Gamma-ray Space Telescope in the inner Galaxy is mysterious. In the companion paper Guo and Mathews (Paper I), we use hydrodynamic simulations to show that they could be produced by a recent powerful active galactic nucleus (AGN) jet event. Here, we further explore this scenario to study the potential roles of shear viscosity and cosmic-ray (CR) diffusion on the morphology and CR distribution of the bubbles. We show that even a relatively low level of viscosity ({mu}{sub visc} {approx}> 3 g cm{sup -1} s{sup -1}, or {approx}0.1%-1% of Braginskii viscosity in this context) could effectively suppress the development of Kelvin-Helmholtz instabilities at the bubble surface, resulting in smooth bubble edges as observed. Furthermore, viscosity reduces circulating motions within the bubbles, which would otherwise mix the CR-carrying jet backflow near bubble edges with the bubble interior. Thus viscosity naturally produces an edge-favored CR distribution, an important ingredient to produce the observed flat gamma-ray surface brightness distribution. Generically, such a CR distribution often produces a limb-brightened gamma-ray intensity distribution. However, we show that by incorporating CR diffusion that is strongly suppressed across the bubble surface (as inferred from sharp bubble edges) but is close to canonical values in the bubble interior, we obtain a reasonably flat gamma-ray intensity profile. The similarity of the resulting CR bubble with the observed Fermi bubbles strengthens our previous result in Paper I that the Fermi bubbles were produced by a recent AGN jet event. Studies of the nearby Fermi bubbles may provide a unique opportunity to study the potential roles of plasma viscosity and CR diffusion on the evolution of AGN jets and bubbles.

  1. The Fermi Bubbles. II. The Potential Roles of Viscosity and Cosmic-Ray Diffusion in Jet Models

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.; Dobler, Gregory; Oh, S. Peng

    2012-09-01

    The origin of the Fermi bubbles recently detected by the Fermi Gamma-ray Space Telescope in the inner Galaxy is mysterious. In the companion paper Guo & Mathews (Paper I), we use hydrodynamic simulations to show that they could be produced by a recent powerful active galactic nucleus (AGN) jet event. Here, we further explore this scenario to study the potential roles of shear viscosity and cosmic-ray (CR) diffusion on the morphology and CR distribution of the bubbles. We show that even a relatively low level of viscosity (μvisc >~ 3 g cm-1 s-1, or ~0.1%-1% of Braginskii viscosity in this context) could effectively suppress the development of Kelvin-Helmholtz instabilities at the bubble surface, resulting in smooth bubble edges as observed. Furthermore, viscosity reduces circulating motions within the bubbles, which would otherwise mix the CR-carrying jet backflow near bubble edges with the bubble interior. Thus viscosity naturally produces an edge-favored CR distribution, an important ingredient to produce the observed flat gamma-ray surface brightness distribution. Generically, such a CR distribution often produces a limb-brightened gamma-ray intensity distribution. However, we show that by incorporating CR diffusion that is strongly suppressed across the bubble surface (as inferred from sharp bubble edges) but is close to canonical values in the bubble interior, we obtain a reasonably flat gamma-ray intensity profile. The similarity of the resulting CR bubble with the observed Fermi bubbles strengthens our previous result in Paper I that the Fermi bubbles were produced by a recent AGN jet event. Studies of the nearby Fermi bubbles may provide a unique opportunity to study the potential roles of plasma viscosity and CR diffusion on the evolution of AGN jets and bubbles.

  2. Diffuse Gamma Rays Galactic and Extragalactic Diffuse Emission

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Reimer, Olaf

    2004-01-01

    Diffuse gamma rays consist of several components: truly diffuse emission from the interstellar medium, the extragalactic background, whose origin is not firmly established yet, and the contribution from unresolved and faint Galactic point sources. One approach to unravel these components is to study the diffuse emission from the interstellar medium, which traces the interactions of high energy particles with interstellar gas and radiation fields. Because of its origin such emission is potentially able to reveal much about the sources and propagation of cosmic rays. The extragalactic background, if reliably determined, can be used in cosmological and blazar studies. Studying the derived average spectrum of faint Galactic sources may be able to give a clue to the nature of the emitting objects.

  3. STS-54 Diffuse X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Louis Kaluzienski, Program Scientist, Wilton T. Sanders, Principal Investigator, and Chris Dunker, Diffuse X-Ray Spectrometer (DXS) Mission Manager, each give an overview of the DXS, including the purpose of the DXS, a brief description of x-ray astronomy, the scientific objectives of the DXS, and information on the STS-54 Endeavour mission, in which the DXS is part of the payload. The men then answer questions from the press.

  4. Diffusion-convection function of cosmic rays

    NASA Technical Reports Server (NTRS)

    Zhang, G.; Yang, G.

    1985-01-01

    The fundamental properties and some numerical results of the solution of the diffusion equation of an impulsive cosmic-ray point source in an uniform, unbounded and spherically symmetrical moving medium is presented. The diffusion-convection(D-C) function is an elementary composite function of the solution of the D-C equation for the particles injected impulsively from a diffusive point source into the medium. It is the analytic solution derived by the dimensional method for the propagation equation of solar cosmic rays in the heliosphere, i.e. the interplanetary space. Because of the introduction of convection effect of solar wind, a nonhomogeneous term appears in the propagation equation, it is difficult to express its solution in terms of the ordinary special functions. The research made so far has led to a solution containing only the first order approximation of the convection effect.

  5. Global diffusion of cosmic rays in random magnetic fields

    NASA Astrophysics Data System (ADS)

    Snodin, A. P.; Shukurov, A.; Sarson, G. R.; Bushby, P. J.; Rodrigues, L. F. S.

    2016-04-01

    The propagation of charged particles, including cosmic rays, in a partially ordered magnetic field is characterized by a diffusion tensor whose components depend on the particle's Larmor radius RL and the degree of order in the magnetic field. Most studies of the particle diffusion presuppose a scale separation between the mean and random magnetic fields (e.g. there being a pronounced minimum in the magnetic power spectrum at intermediate scales). Scale separation is often a good approximation in laboratory plasmas, but not in most astrophysical environments such as the interstellar medium (ISM). Modern simulations of the ISM have numerical resolution of the order of 1 pc, so the Larmor radius of the cosmic rays that dominate in energy density is at least 106 times smaller than the resolved scales. Large-scale simulations of cosmic ray propagation in the ISM thus rely on oversimplified forms of the diffusion tensor. We take the first steps towards a more realistic description of cosmic ray diffusion for such simulations, obtaining direct estimates of the diffusion tensor from test particle simulations in random magnetic fields (with the Larmor radius scale being fully resolved), for a range of particle energies corresponding to 10-2 ≲ RL/lc ≲ 103, where lc is the magnetic correlation length. We obtain explicit expressions for the cosmic ray diffusion tensor for RL/lc ≪ 1, that might be used in a sub-grid model of cosmic ray diffusion. The diffusion coefficients obtained are closely connected with existing transport theories that include the random walk of magnetic lines.

  6. Diffusing Diffusivity: A Model for Anomalous, yet Brownian, Diffusion

    NASA Astrophysics Data System (ADS)

    Chubynsky, Mykyta V.; Slater, Gary W.

    2014-08-01

    Wang et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 15160 (2009)] have found that in several systems the linear time dependence of the mean-square displacement (MSD) of diffusing colloidal particles, typical of normal diffusion, is accompanied by a non-Gaussian displacement distribution G(x ,t), with roughly exponential tails at short times, a situation they termed "anomalous yet Brownian" diffusion. The diversity of systems in which this is observed calls for a generic model. We present such a model where there is diffusivity memory but no direction memory in the particle trajectory, and we show that it leads to both a linear MSD and a non-Gaussian G(x ,t) at short times. In our model, the diffusivity is undergoing a (perhaps biased) random walk, hence the expression "diffusing diffusivity". G(x ,t) is predicted to be exactly exponential at short times if the distribution of diffusivities is itself exponential, but an exponential remains a good fit for a variety of diffusivity distributions. Moreover, our generic model can be modified to produce subdiffusion.

  7. The soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Burrows, D. N.; Sanders, W. T.; Kraushaar, W. L.

    1982-01-01

    Maps of the diffuse X-ray background intensity covering essentially the entire sky with approx. 7 deg spatial resolution are presented for seven energy bands. The data were obtained on a series of ten sounding rocket flights conducted over a seven-year period. The different nature of the spatial distributions in different bands implies at least three distinct origins for the diffuse X-rays, none of which is well-understood. At energies or approx. 2000 eV, an isotropic and presumably extraglalactic 500 and 1000 eV, an origin which is at least partially galactic seems called for. At energies 284 eV, the observed intensity is anticorrelated with neutral hydrogen column density, but we find it unlikely that this anticorrelation is simply due to absorption of an extragalactic or halo source.

  8. Hydromagnetic waves and cosmic ray diffusion theory

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Voelk, H. J.

    1975-01-01

    Pitch angle diffusion of cosmic rays in hydromagnetic wave fields is considered strictly within the quasilinear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since in this approximation also the Landau resonance does not lead to particle reflections a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well known difficulties of quasilinear scattering theory for cosmic rays near 90 degrees pitch angle.

  9. A diffuse soft X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Mccammon, D.

    1981-01-01

    A design for a diffuse X-ray spectrometer utilizing Bragg reflection is described. The geometry has a very high throughput for a given physical size and allows simultaneous observation at all wavelengths within its range. Spectral resolving power is about 35 to 50. A similar unit equipped with thallium acid pthallate crystals will cover the 11 - 24 A-range with about half this throughput and twice the resolving power.

  10. Galactic diffuse gamma rays from galactic plane

    NASA Astrophysics Data System (ADS)

    Tateyama, N.; Nishimura, J.

    2001-08-01

    The dominant part of the diffuse gamma rays from the Galactic plane, with energy greater than 1TeV, has been thought as due to the inverse Compton scattering of the interstellar photons with the high-energy cosmic electrons. In these energy regions, the diffuse gamma-ray observation gives us unique infor-mation on the energy spectrum of the high-energy electrons in the interstellar space, since we cannot observe those electrons directly. This provides us information on the cosmicray source, production mechanism and propagation in the Galaxy. We discuss the implication of our results by comparing with the work of Porter and Protheroe, and also compare with the data observed by the most recent extensive air showers. It is also pointed out that the patchy structure of gammaray distribution will appear at high-energy side, if we observe the distribution with a higher angular resolution of a few arc degrees. This patchy structure will become clear beyond 10TeV of IC gamma rays, where the number of contributing sources of parent decrease and the diffusion distance of the electrons become smaller.

  11. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  12. On the cosmic ray diffusion in a violent interstellar medium

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Toptygin, I. N.

    1985-08-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  13. Random diffusion model.

    PubMed

    Mazenko, Gene F

    2008-09-01

    We study the random diffusion model. This is a continuum model for a conserved scalar density field varphi driven by diffusive dynamics. The interesting feature of the dynamics is that the bare diffusion coefficient D is density dependent. In the simplest case, D=D[over ]+D_{1}deltavarphi , where D[over ] is the constant average diffusion constant. In the case where the driving effective Hamiltonian is quadratic, the model can be treated using perturbation theory in terms of the single nonlinear coupling D1 . We develop perturbation theory to fourth order in D1 . The are two ways of analyzing this perturbation theory. In one approach, developed by Kawasaki, at one-loop order one finds mode-coupling theory with an ergodic-nonergodic transition. An alternative more direct interpretation at one-loop order leads to a slowing down as the nonlinear coupling increases. Eventually one hits a critical coupling where the time decay becomes algebraic. Near this critical coupling a weak peak develops at a wave number well above the peak at q=0 associated with the conservation law. The width of this peak in Fourier space decreases with time and can be identified with a characteristic kinetic length which grows with a power law in time. For stronger coupling the system becomes metastable and then unstable. At two-loop order it is shown that the ergodic-nonergodic transition is not supported. It is demonstrated that the critical properties of the direct approach survive, going to higher order in perturbation theory.

  14. Diffuse continuum gamma rays from the Galaxy observed by COMPTEL

    NASA Technical Reports Server (NTRS)

    Strong, A. W.; Bennett, K.; Bloemen, H.; Diehl, R.; Hermsen, W.; Morris, D.; Schonfelder, V.; Stacy, J. G.; De Vries, C.; Varendorff, M.

    1994-01-01

    The diffuse Galactic continuum gamma-ray emission has been studied using the full Sky Survey from COMPTEL on the Compton Observatory CGRO. The diffuse emission appears to be visible in the whole 0.75-30 MeV range covered by the instrument, although a considerable contribution from unresolved point sources cannot be excluded. A correlation analysis using HI and CO surveys of the Galaxy is used to derive the Galactic emissivity spectrum, and this is consistent with a smooth continuation to the spectrum at higher energies derived by a similar analysis of COS-B data. The apparent conversion factor from integrated CO temperature to molecular hydrogen column density can also be determined from the correlation analysis. The value obtained is consistent with results from COS-B and other non-gamma-ray methods. Calculations of the emissivity spectrum from bremsstrahlung from a cosmic-ray electron spectrum based on propagation models are compared with the observations.

  15. Diffuse Galactic gamma rays from shock-accelerated cosmic rays.

    PubMed

    Dermer, Charles D

    2012-08-31

    A shock-accelerated particle flux is proportional to p(-s), where p is the particle momentum, follows from simple theoretical considerations of cosmic-ray acceleration at nonrelativistic shocks followed by rigidity-dependent escape into the Galactic halo. A flux of shock-accelerated cosmic-ray protons with s≈2.8 provides an adequate fit to the Fermi Large Area Telescope γ-ray emission spectra of high-latitude and molecular cloud gas when uncertainties in nuclear production models are considered. A break in the spectrum of cosmic-ray protons claimed by Neronov, Semikoz, and Taylor [Phys. Rev. Lett. 108, 051105 (2012)] when fitting the γ-ray spectra of high-latitude molecular clouds is a consequence of using a cosmic-ray proton flux described by a power law in kinetic energy.

  16. Diffuse X-Ray Emission in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Tyler, Krystal; Quillen, A. C.; LaPage, Amanda; Rieke, George H.

    2004-07-01

    We compare the soft diffuse X-ray emission from Chandra images of 12 nearby intermediate-inclination spiral galaxies to the morphology seen in Hα, molecular gas, and mid-infrared emission. We find that diffuse X-ray emission is often located along spiral arms in the outer parts of spiral galaxies but tends to be distributed in a more nearly radially symmetric morphology in the center. The X-ray morphology in the spiral arms matches that seen in the mid-infrared or Hα and thus implies that the X-ray emission is associated with recent active star formation. In the spiral arms there is a good correlation between the level of diffuse X-ray emission and that in the mid-infrared in different regions. The correlation between X-ray and mid-IR flux in the galaxy centers is less strong. We also find that the central X-ray emission tends to be more luminous in galaxies with brighter bulges, suggesting that more than one process is contributing to the level of central diffuse X-ray emission. We see no strong evidence for X-ray emission trailing the location of high-mass star formation in spiral arms. However, population synthesis models predict a high mechanical energy output rate from supernovae for a time period that is about 10 times longer than the lifetime of massive ionizing stars, conflicting with the narrow appearance of the arms in X-rays. The fraction of supernova energy that goes into heating the interstellar medium must depend on environment and is probably higher near sites of active star formation. The X-ray estimated emission measures suggest that the volume filling factors and scale heights are low in the outer parts of these galaxies but higher in the galaxy centers. The differences between the X-ray properties and morphology in the centers and outer parts of these galaxies suggest that galactic fountains operate in outer galaxy disks but that winds are primarily driven from galaxy centers.

  17. Pinpointing the knee of cosmic rays with diffuse PeV γ-rays and neutrinos

    SciTech Connect

    Guo, Y. Q.; Hu, H. B.; Yuan, Q.; Tian, Z.; Gao, X. J.

    2014-11-01

    The origin of the knee in the cosmic ray spectrum remains to be an unsolved fundamental problem. There are various kinds of models that predict different break positions and the compositions of the knee. In this work, we suggest the use of diffuse γ-rays and neutrinos as probes to test these models. Based on several typical types of composition models, the diffuse γ-ray and neutrino spectra are calculated and show distinctive cutoff behaviors at energies from tens of TeV to multi-PeV. The expected flux will be observable by the newly upgraded Tibet-ASγ+MD (muon detector) experiment as well as more sensitive future projects, such as LHAASO and HiSCORE. By comparing the neutrino spectrum with the recent observations by the IceCube experiment, we find that the diffuse neutrinos from interactions between the cosmic rays and the interstellar medium may not be responsible to the majority of the IceCube events. Future measurements of the neutrinos may be able to identify the Galactic diffuse component and shed further light on the problem of the knee of cosmic rays.

  18. Diffuse γ-ray emission from galactic pulsars

    SciTech Connect

    Calore, F.; Di Mauro, M.; Donato, F. E-mail: mattia.dimauro@to.infn.it

    2014-11-20

    Millisecond pulsars (MSPs) are old fast-spinning neutron stars that represent the second most abundant source population discovered by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi). As guaranteed γ-ray emitters, they might contribute non-negligibly to the diffuse emission measured at high latitudes by Fermi-LAT (i.e., the Isotropic Diffuse γ-Ray Background (IDGRB)), which is believed to arise from the superposition of several components of galactic and extragalactic origin. Additionally, γ-ray sources also contribute to the anisotropy of the IDGRB measured on small scales by Fermi-LAT. In this manuscript we aim to assess the contribution of the unresolved counterpart of the detected MSPs population to the IDGRB and the maximal fraction of the measured anisotropy produced by this source class. To this end, we model the MSPs' spatial distribution in the Galaxy and the γ-ray emission parameters by considering observational constraints coming from the Australia Telescope National Facility pulsar catalog and the Second Fermi-LAT Catalog of γ-ray pulsars. By simulating a large number of MSP populations through a Monte Carlo simulation, we compute the average diffuse emission and the anisotropy 1σ upper limit. We find that the emission from unresolved MSPs at 2 GeV, where the peak of the spectrum is located, is at most 0.9% of the measured IDGRB above 10° in latitude. The 1σ upper limit on the angular power for unresolved MSP sources turns out to be about a factor of 60 smaller than Fermi-LAT measurements above 30°. Our results indicate that this galactic source class represents a negligible contributor to the high-latitude γ-ray sky and confirm that most of the intensity and geometrical properties of the measured diffuse emission are imputable to other extragalactic source classes (e.g., blazars, misaligned active galactic nuclei, or star-forming galaxies). Nevertheless, because MSPs are more concentrated toward the

  19. The B/C and Sub-iron/Iron Cosmic Ray Ratios—Further Evidence in Favor of the Spiral-Arm Diffusion Model

    NASA Astrophysics Data System (ADS)

    Benyamin, David; Nakar, Ehud; Piran, Tsvi; Shaviv, Nir J.

    2016-07-01

    The boron to carbon (B/C) and sub-Fe/Fe ratios provide an important clue on cosmic ray (CR) propagation within the Galaxy. These ratios estimate the grammage that the CRs traverse as they propagate from their sources to Earth. Attempts to explain these ratios within the standard CR propagation models require ad hoc modifications and even with those these models necessitate inconsistent grammages to explain both ratios. As an alternative, physically motivated model, we have proposed that CRs originate preferably within the galactic spiral arms. CR propagation from dynamic spiral arms has important imprints on various secondary to primary ratios, such as the B/C ratio and the positron fraction. We use our spiral-arm diffusion model with the spallation network extended up to nickel to calculate the sub-Fe/Fe ratio. We show that without any additional parameters the spiral-arm model consistently explains both ratios with the same grammage, providing further evidence in favor of this model.

  20. Interplanetary diffusion coefficients for cosmic rays

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.; Stone, E. C.; Vogt, R. E.

    1974-01-01

    Information on the cosmic-ray diffusion coefficient, kappa, derived from near-earth observations of the solar modulation of galactic electron fluxes and from the near-earth power spectra of the interplanetary magnetic field, has been used to study the heliocentric radial dependence of kappa, and to derive limits on the spatial extent of the solar modulation region. Representing kappa, as a separable function of radius r and rigidity, and assumming kappa(r) proportional to r to the n-th power, we can place a limit on the power law exponent, n not greater than 1.2. The distance of the modulation boundary is a function of n, and, e.g., for n = 0, falls into the range of 6-25 AU.

  1. p, He, and C to Fe cosmic-ray primary fluxes in diffusion models. Source and transport signatures on fluxes and ratios

    NASA Astrophysics Data System (ADS)

    Putze, A.; Maurin, D.; Donato, F.

    2011-02-01

    Context. The source spectrum of cosmic rays is not well determined by diffusive shock acceleration models. The propagated fluxes of proton, helium, and heavier primary cosmic-ray species (up to Fe) are a means to indirectly access it. But how robust are the constraints, and how degenerate are the source and transport parameters? Aims: We check the compatibility of the primary fluxes with the transport parameters derived from the B/C analysis, but also ask whether they add further constraints. We study whether the spectral shapes of these fluxes and their ratios are mostly driven by source or propagation effects. We then derive the source parameters (slope, abundance, and low-energy shape). Methods: Simple analytical formulae are used to address the issue of degeneracies between source/transport parameters, and to understand the shape of the p/He and C/O to Fe/O data. The full analysis relies on the USINE propagation package, the MINUIT minimisation routines (χ2 analysis) and a Markov Chain Monte Carlo (MCMC) technique. Results: Proton data are well described in the simplest model defined by a power-law source spectrum and plain diffusion. They can also be accommodated by models with, e.g., convection and/or reacceleration. There is no need for breaks in the source spectral indices below ~1 TeV/n. Fits to the primary fluxes alone do not provide physical constraints on the transport parameters. If we leave the source spectrum free, parametrised by the form dQ/dE = q βη_S R-α, and fix the diffusion coefficient K(R) = K_0βη_T Rδ so as to reproduce the B/C ratio, the MCMC analysis constrains the source spectral index α to be in the range 2.2-2.5 for all primary species up to Fe, regardless of the value of the diffusion slope δ. The values of the parameter ηS describing the low-energy shape of the source spectrum are degenerate with the parameter ηT describing the low-energy shape of the diffusion coefficient: we find ηS - ηT ≈ 0 for p and He data, but

  2. Fractal model of anomalous diffusion.

    PubMed

    Gmachowski, Lech

    2015-12-01

    An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.

  3. Discovery of Diffuse Hard X-ray Emission Around Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Ishikawa, K.; Ohashi, T.; Terada, N.; Miyoshi, Y.; Uchiyama, Y.

    2009-09-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to 6 x 3 arcmin with the 1-5 keV X-ray luminosity of 3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts and the bright spot seemed to move according to the Io's motion. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. We hence examined three mechanisms: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon related to Io.

  4. Multispecies diffusion models: A study of uranyl species diffusion

    SciTech Connect

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-14

    Rigorous numerical description of multi-species diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication for imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multi-species diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multi-species diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multi-species U(VI) diffusion under steady-state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that a fully coupled diffusion model can be well approximated by a component-based diffusion model, which considers difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be rigorously enforced, if necessary, by adding an artificial kinetic reaction term induced by the charge separation. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from US Department of Energy's Hanford 300A where intragrain diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that has been described using a semi-empirical, multi-rate model

  5. Advective and diffusive cosmic ray transport in galactic haloes

    NASA Astrophysics Data System (ADS)

    Heesen, Volker; Dettmar, Ralf-Jürgen; Krause, Marita; Beck, Rainer; Stein, Yelena

    2016-05-01

    We present 1D cosmic ray transport models, numerically solving equations of pure advection and diffusion for the electrons and calculating synchrotron emission spectra. We find that for exponential halo magnetic field distributions advection leads to approximately exponential radio continuum intensity profiles, whereas diffusion leads to profiles that can be better approximated by a Gaussian function. Accordingly, the vertical radio spectral profiles for advection are approximately linear, whereas for diffusion they are of `parabolic' shape. We compare our models with deep Australia Telescope Compact Array observations of two edge-on galaxies, NGC 7090 and 7462, at λλ 22 and 6 cm. Our result is that the cosmic ray transport in NGC 7090 is advection dominated with V=150^{+80}_{-30} km s^{-1}, and that the one in NGC 7462 is diffusion dominated with D=3.0± 1.0 × 10^{28}E_GeV^{0.5} cm^2 s^{-1}. NGC 7090 has both a thin and thick radio disc with respective magnetic field scale heights of hB1 = 0.8 ± 0.1 kpc and hB2 = 4.7 ± 1.0 kpc. NGC 7462 has only a thick radio disc with hB2 = 3.8 ± 1.0 kpc. In both galaxies, the magnetic field scale heights are significantly smaller than what estimates from energy equipartition would suggest. A non-negligible fraction of cosmic ray electrons can escape from NGC 7090, so that this galaxy is not an electron calorimeter.

  6. Response to ''Comment on 'Cosmic ray diffusion: Detailed investigation of a recent model''' [Phys. Plasmas 18, 114701 (2011)

    SciTech Connect

    Lerche, Ian; Tautz, R. C.

    2011-11-15

    Recently [Phys. Plasmas 18, 082305 (2011)], the otherwise successful unified non-linear transport (UNLT) theory was critically examined. In a comment [Phys. Plasmas 18, 114701 (2011)], it was argued that the deviation from the original UNLT theory is marginal. Here, it is emphasized that the main point was to investigate the basic mathematical properties of the UNLT formulation by showing model approaches rather than deriving complete solutions.

  7. Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering

    SciTech Connect

    Trigo, M.; Chen, J.; Vishwanath, V.H.; Sheu, Y.M.; Graber, T.; Henning, R.; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.

    2011-03-03

    We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.

  8. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A

  9. SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION

    SciTech Connect

    Ahlers, Markus; Mertsch, Philipp

    2015-12-10

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.

  10. THE CHANDRA CARINA COMPLEX PROJECT: DECIPHERING THE ENIGMA OF CARINA'S DIFFUSE X-RAY EMISSION

    SciTech Connect

    Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Chu, You-Hua; Gruendl, Robert A.; Gagne, Marc; Hamaguchi, Kenji; Montmerle, Thierry; Naze, Yael; Oey, M. S.; Park, Sangwook; Petre, Robert; Pittard, Julian M.

    2011-05-01

    We present a 1.42 deg{sup 2} mosaic of diffuse X-ray emission in the Great Nebula in Carina from the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer camera. After removing >14,000 X-ray point sources from the field, we smooth the remaining unresolved emission, tessellate it into segments of similar apparent surface brightness, and perform X-ray spectral fitting on those tessellates to infer the intrinsic properties of the X-ray-emitting plasma. By modeling faint resolved point sources, we estimate the contribution to the extended X-ray emission from unresolved point sources and show that the vast majority of Carina's unresolved X-ray emission is truly diffuse. Line-like correlated residuals in the X-ray spectral fits suggest that substantial X-ray emission is generated by charge exchange at the interfaces between Carina's hot, rarefied plasma and its many cold neutral pillars, ridges, and clumps.

  11. Diffuse γ-ray emission from unresolved BL Lac objects

    SciTech Connect

    Di Mauro, M.; Donato, F.; Lamanna, G.; Sanchez, D. A.

    2014-05-10

    Blazars, active galactic nuclei with a jet pointing toward the Earth, represent the most abundant class of high-energy extragalactic γ-ray sources. The subset of blazars known as BL Lac objects is on average closer to Earth (i.e., younger) and characterized by harder spectra at high energy than the whole sample. The fraction of BL Lacs that is too dim to be detected and resolved by current γ-ray telescopes is therefore expected to contribute to the high-energy isotropic diffuse γ-ray background (IGRB). The IGRB has been recently measured over a wide energy range by the Large Area Telescope (LAT) on board the Gamma-ray Space Telescope (Fermi). We present a new prediction of the diffuse γ-ray flux due to the unresolved BL Lac blazar population. The model is built upon the spectral energy distribution and the luminosity function derived from the fraction of BL Lacs detected (and spectrally characterized) in the γ-ray energy range. We focus our attention on the O(100) GeV energy range, predicting the emission up to the TeV scale and taking into account the absorption on the extragalactic background light. In order to better shape the BL Lac spectral energy distribution, we combine the Fermi-LAT data with Imaging Atmospheric Cerenkov Telescope measurements of the most energetic sources. Our analysis is carried on separately for low- and intermediate-synchrotron-peaked BL Lacs on the one hand and high-synchrotron-peaked BL Lacs on the other hand: we find in fact statistically different features for the two. The diffuse emission from the sum of both BL Lac classes increases from about 10% of the measured IGRB at 100 MeV to ∼100% of the data level at 100 GeV. At energies greater than 100 GeV, our predictions naturally explain the IGRB data, accommodating their softening with increasing energy. Uncertainties are estimated to be within of a factor of two of the best-fit flux up to 500 GeV.

  12. Diffuse gamm-ray Emission: Lessons and Perspectives

    SciTech Connect

    Moskalenko, Igor V.; Strong, Andrew W.; /Garching, Max Planck Inst., MPE

    2007-04-25

    The Galactic diffuse emission is potentially able to reveal much about the sources and propagation of cosmic rays (CR), their spectra and intensities in distant locations. It can possibly unveil WIMP dark matter (DM) through its annihilation signatures. The extragalactic background may provide vital information about the early stages of the universe, neutralino annihilation, and unresolved sources (blazars) and their cosmological evolution. The g-ray instrument EGRET on the CGRO contributed much to the exploration of the Galactic diffuse emission. The new NASA Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in 2007; study of the diffuse g-ray emission is one of the priority goals. We describe current understanding of the diffuse emission and its potential for future discoveries.

  13. FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS

    SciTech Connect

    Thoudam, Satyendra

    2013-11-20

    Recently, the Fermi Space Telescope discovered two large γ-ray emission regions, the so-called Fermi bubbles, that extend up to ∼50° above and below the Galactic center (GC). The γ-ray emission from the bubbles is found to follow a hard spectrum with no significant spatial variation in intensity and spectral shape. The origin of the emission is still not clearly understood. Suggested explanations include the injection of cosmic-ray (CR) nuclei from the GC by high-speed Galactic winds, electron acceleration by multiple shocks, and stochastic electron acceleration inside the bubbles. In this Letter, it is proposed that the γ-rays may be the result of diffusive injection of Galactic CR protons during their propagation through the Galaxy. Considering that the bubbles are slowly expanding, and CRs undergo much slower diffusion inside the bubbles than in the average Galaxy and at the same time suffer losses due to adiabatic expansion and inelastic collisions with the bubble plasma, this model can explain the observed intensity profile, the emission spectrum and the measured luminosity without invoking any additional particle production processes, unlike other existing models.

  14. Diffuse synchrotron emission from galactic cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Di Bernardo, G.; Grasso, D.; Evoli, C.; Gaggero, D.

    2015-09-01

    Synchrotron diffuse radiation (SDR) emission is one of the major Galactic components, in the 100 MHz up to 100 GHz frequency range. Its spectrum and sky map provide valuable measure of the galactic cosmic ray electrons (GCRE) in the relevant energy range, as well as of the strength and structure of the Galactic magnetic fields (GMF), both regular and random ones. This emission is an astrophysical sky foreground for the study of the Cosmic Microwave Background (CMB), and the extragalactic microwave measurements, and it needs to be modelled as better as possible. In this regard, in order to get an accurate description of the SDR in the Galaxy, we use - for the first time in this context - 3-dimensional GCRE models obtained by running the DRAGON code. This allows us to account for a realistic spiral arm pattern of the source distribution, demanded to get a self-consistent treatment of all relevant energy losses influencing the final synchrotron spectrum.

  15. Fermi large area telescope measurements of the diffuse gamma-ray emission at intermediate galactic latitudes.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dereli, H; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stecker, F W; Striani, E; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-12-18

    The diffuse galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission greater, > or approximately equal to 1 GeV relative to diffuse galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called "EGRET GeV excess"). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10 degrees < or = |b| < or = 20 degrees. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess. PMID:20366246

  16. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  17. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Dereli, H.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; di Bernardo, G.; Dormody, M.; Do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Edmonds, Y.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gaggero, D.; Gargano, F.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuehn, F.; Kuss, M.; Lande, J.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sellerholm, A.; Sgrò, C.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Stecker, F. W.; Striani, E.; Strickman, M. S.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    The diffuse galactic γ-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess γ-ray emission ≳1GeV relative to diffuse galactic γ-ray emission models consistent with directly measured CR spectra (the so-called “EGRET GeV excess”). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse γ-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10°≤|b|≤20°. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic γ-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  18. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    DOE PAGES

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-07-28

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore » equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less

  19. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    PubMed Central

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-01-01

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophos­phodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis. PMID:26249347

  20. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    SciTech Connect

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-07-28

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier's equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.

  1. Predicting X-ray diffuse scattering from translation-libration-screw structural ensembles.

    PubMed

    Van Benschoten, Andrew H; Afonine, Pavel V; Terwilliger, Thomas C; Wall, Michael E; Jackson, Colin J; Sauter, Nicholas K; Adams, Paul D; Urzhumtsev, Alexandre; Fraser, James S

    2015-08-01

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier's equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation-libration-screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.

  2. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    SciTech Connect

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-07-28

    A method of simulating X-ray diffuse scattering from multi-model PDB files is presented. Despite similar agreement with Bragg data, different translation–libration–screw refinement strategies produce unique diffuse intensity patterns. Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls-as-xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.

  3. Small area silicon diffused junction x-ray detectors

    SciTech Connect

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm/sup 2/ and a thickness of 100 ..mu..m. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150/sup 0/K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs.

  4. Cosmic Rays, Interstellar Gas and Diffuse Gamma-ray Emission

    NASA Astrophysics Data System (ADS)

    Grenier, Isabelle

    2016-07-01

    Cosmic rays smoothly permeate the interstellar medium. The gamma radiation they spawn along their journey has received much attention lately to follow the evolution of the cosmic-ray flux and spectrum in the solar neighbourhood, a few hundred parsecs beyond the Voyager measurements, and further out, on kiloparsec scales across the Galactic disc and above the disc into the halo. Beyond heating the interstellar gas and initiating its chemical enrichment, cosmic rays also serve to trace the total gas in its different forms and to reveal the gas mass in the dark interface between the atomic and molecular phases. Fermi LAT and TeV observations have also enabled the study of the youth of cosmic rays in the turbulent environment of massive star clusters. They have disclosed how little we know about the impact of stellar-wind driven turbulence on the cosmic-ray distribution emerging from the parent region. In this lively context, I will review recent results and discuss open questions on the dynamic interplay between cosmic rays and their interstellar environment.

  5. Diffuse X-ray scattering from tiny sample volumes

    SciTech Connect

    Ice, Gene E.; Barabash, Rozaliya I.; Liu, Wenjun

    2010-07-19

    The emergence of intense synchrotron X-ray sources, efficient focusing optics and high-performance X-ray sensitive area detectors allows for measurements of diffuse scattering from cubic micron-scale sample volumes. Here we present an experiment that illustrates methods for studying the local structure and defect content of tiny sample volumes. In the experiment, an X-ray microbeam illuminating about {approx}5 {micro}m{sup 3} of a Ni-based superalloy single crystal, is used to collect Laue patterns and reciprocal space volume maps around fundamental and a superstructure reflections. This measurement illustrates how diffuse reciprocal-space distributions can be collected with good spatial and momentum-transfer resolution from a tiny real-space sample volume. This example demonstrates that emerging diffuse scattering techniques can provide fundamentally new information about crystallographic organization and defect content over many length scales.

  6. Cosmic-ray diffusion coefficient in interplanetary space.

    NASA Technical Reports Server (NTRS)

    Gleeson, L. J.; Urch, I. H.

    1972-01-01

    The authors of three recent papers reporting cosmic-ray electron differential intensities near the earth during 1966 and 1968 in the rigidity range above 500 MV have concluded that the observations are not compatible with a diffusion coefficient that can be written as a product of a rigidity-dependent part and a part that is a function of heliocentric distance. It is shown in this paper that, with an interstellar electron spectrum and a near-earth spectrum given, a diffusion coefficient of the above form can always be determinedand the conclusion noted above cannot be sustained. Diffusion coefficients appropriate to the observations are given.

  7. Expectations for high energy diffuse galactic neutrinos for different cosmic ray distributions

    NASA Astrophysics Data System (ADS)

    Pagliaroli, Giulia; Evoli, Carmelo; Villante, Francesco Lorenzo

    2016-11-01

    The interaction of cosmic rays with the gas contained in our Galaxy is a guaranteed source of diffuse high energy neutrinos. We provide expectations for this component by considering different assumptions for the cosmic ray distribution in the Galaxy which are intended to cover the large uncertainty in cosmic ray propagation models. We calculate the angular dependence of the diffuse galactic neutrino flux and the corresponding rate of High Energy Starting Events in IceCube by including the effect of detector angular resolution. Moreover we discuss the possibility to discriminate the galactic component from an isotropic astrophysical flux. We show that a statistically significant excess of events from the galactic plane in present IceCube data would disfavour models in which the cosmic ray density is uniform, thus bringing relevant information on the cosmic ray radial distribution.

  8. Resolving the Origin of the Diffuse Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Foster, Adam R.; Edgar, Ricard J.; Brickhouse, Nancy S.; Sanders, Wilton T.

    2012-01-01

    In January 1993, the Diffuse X-ray Spectrometer (DXS) measured the first high-resolution spectrum of the diffuse soft X-ray background between 44-80A. A line-dominated spectrum characteristic of a 10(exp 6)K collisionally ionized plasma' was expected but while the observed spectrum was clearly line-dominated, no model would fit. Then in 2003 the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) launched and observed the diffuse extreme-ultraviolet (EUV) spectrum between 90- 265A. Although many emission lines were again expected; only Fe IX at 171.1A was detected. The discovery of X-rays from comets led to the realization that heavy ions (Z=6-28) in the solar wind will emit soft X-rays as the ions interact via charge exchange with neutral atoms in the heliosphere and geocorona. Using a new model for solar wind charge exchange (SWCX) emission, we show that the diffuse soft X-ray background can be understood as a combination of emission from charge exchange onto the slow and fast solar wind together with a more distant and diffuse hot (10(exp 6)K) plasma.

  9. Diffuse γ-ray emission from misaligned active galactic nuclei

    SciTech Connect

    Di Mauro, M.; Donato, F.; Calore, F.; Ajello, M.; Latronico, L.

    2014-01-10

    Active galactic nuclei (AGNs) with jets seen at small viewing angles are the most luminous and abundant objects in the γ-ray sky. AGNs with jets misaligned along the line of sight appear fainter in the sky but are more numerous than the brighter blazars. We calculate the diffuse γ-ray emission due to the population of misaligned AGNs (MAGNs) unresolved by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). A correlation between the γ-ray luminosity and the radio-core luminosity is established and demonstrated to be physical by statistical tests, as well as compatible with upper limits based on Fermi-LAT data for a large sample of radio-loud MAGNs. We constrain the derived γ-ray luminosity function by means of the source-count distribution of the radio galaxies detected by the Fermi-LAT. We finally calculate the diffuse γ-ray flux due to the whole MAGN population. Our results demonstrate that MAGNs can contribute from 10% up to nearly the entire measured isotropic gamma-ray background. We evaluate a theoretical uncertainty on the flux of almost an order of magnitude.

  10. The Gamma-ray galactic diffuse radiation and Cerenkov telescopes

    SciTech Connect

    Chardonnet, P. |; Salati, P. ||; Silk, J.; Grenier, I.; Smoot, G.

    1995-12-01

    By using the PYTHIA version of the Lund Monte Carlo program, we study the photon yield of proton-proton collisions in the energy range between 10 GeV and 1 TeV. The resulting photon spectrum turns out to scale roughly with incident energy. Then, by folding the energy spectrum of cosmic-ray protons with the distribution of HI and CO, the Galactic diffuse emission of {gamma}-rays above 100 GeV is mapped. Prospects for observing that diffuse radiation with atmospheric Cerenkov telescopes are discussed. Present instruments are able to detect the {gamma}-ray glow of the Galactic center. The latter will be mapped by the next generation of telescopes if their energy threshold is decreased. However, a detailed survey of the Galactic ridge will be a real challenge, even in the long term. The MILAGRO project seems more appropriate. Finally, we investigate the {gamma}-ray emission from weakly interacting massive particles clustering at the Galactic center. It has been speculated that those species are a major component of the halo dark matter. We show that their {gamma}-ray signal is swamped in the Galactic diffuse radiation and cannot be observed at TeV energies. {copyright} {ital 1995 The American Astronomical Society.}

  11. Study of Diffuse X-ray Emission in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1997-01-01

    This grant supported our analysis of ROSAT x-ray data on globular clusters. Although the grant title referred to our original ROSAT proposal (cycle 1) to study diffuse soft x-ray emission in three globulars (for which time was only granted in that original observing cycle for one cluster, 47 Tuc), the grant has also been maintained through several renewals and funding supplements to support our later ROSAT observations of point sources in globulars. The primary emphasis has been on the study of the dim sources, or low liuminosity globular cluster x-ray sources, which we had originally discovered with the Einstein Observatory and for which ROSAT provided the logical followup. In this Final Report, we summarize the Scientific Objectives of this investigation of both diffuse emission and dim sources in globular clusters and the Results Achieved; and finally the Papers Published.

  12. SPECTRA OF COSMIC RAY ELECTRONS AND DIFFUSE GAMMA RAYS WITH THE CONSTRAINTS OF AMS-02 AND HESS DATA

    SciTech Connect

    Chen, Ding; Jin, Hong-Bo; Huang, Jing

    2015-10-01

    Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injection indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746–2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.

  13. Spectra of Cosmic Ray Electrons and Diffuse Gamma Rays with the Constraints of AMS-02 and HESS Data

    NASA Astrophysics Data System (ADS)

    Chen, Ding; Huang, Jing; Jin, Hong-Bo

    2015-10-01

    Recently, AMS-02 reported their results of cosmic ray (CR) observations. In addition to the AMS-02 data, we add HESS data to estimate the spectra of CR electrons and the diffuse gamma rays above TeV. In the conventional diffusion model, a global analysis is performed on the spectral features of CR electrons and the diffuse gamma rays by the GALRPOP package. The results show that the spectrum structure of the primary component of CR electrons cannot be fully reproduced by a simple power law and that the relevant break is around 100 GeV. At the 99% confidence level (C.L.) the injection indices above the break decrease from 2.54 to 2.35, but the ones below the break are only in the range of 2.746–2.751. The spectrum of CR electrons does not need to add TeV cutoff to also match the features of the HESS data. Based on the difference between the fluxes of CR electrons and their primary components, the predicted excess of CR positrons is consistent with the interpretation that these positrons originate from a pulsar or dark matter. In the analysis of the Galactic diffuse gamma rays with the indirect constraint of AMS-02 and HESS data, it is found that the fluxes of Galactic diffuse gamma rays are consistent with the GeV data of the Fermi-Large Area Telescope (LAT) in the high-latitude regions. The results indicate that inverse Compton scattering is the dominant component in the range of hundreds of GeV to tens of TeV, respectively from the high-latitude regions to the low ones, and in all of the regions of the Galaxy the flux of diffuse gamma rays is less than that of CR electrons at the energy scale of 20 TeV.

  14. Diffuse cosmic gamma rays: Present status of theory and observation

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1972-01-01

    Positive diffuse gamma ray flux measurements now exist for energies up to the 100 MeV range. The totality of the observations in the 0.001 to 100 MeV range follow an E to the minus 2nd power trend in the differential isotropic photon spectrum but significant features appear. Possible theoretical interpretations of these features are discussed. New results on the diffuse flux from the galaxy substantiate the pion-decay origin hypothesis for gamma radiation above 100 MeV.

  15. A relation between cosmic-ray fluctuations, gradient, and diffusion coefficient

    NASA Technical Reports Server (NTRS)

    Owens, A. J.; Jokipii, J. R.

    1974-01-01

    The motion of charged particles in a stochastic magnetic field is considered via a generalized quasi-linear expansion of Liouville's equation. The result is an equation relating cosmic-ray scintillations to particle gradients and to magnetic-field fluctuations (or diffusion coefficient). The resulting theory may be regarded as an example of a fluctuation-dissipation phenomenon, in which the diffusion coefficient plays the role of the dissipative parameter. The resonant interaction between particles and the random interplanetary magnetic field is considered explicitly, and it is shown that observed scintillations of high-energy (about 1 GeV) cosmic rays may be reasonably explained by the model.

  16. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    SciTech Connect

    Tavakoli, Maryam; Evoli, Carmelo; Cholis, Ilias; Ullio, Piero E-mail: cholis@fnal.gov E-mail: ullio@sissa.it

    2014-01-01

    Recent advances in γ-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating γ-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse γ-ray emission. Our models are cross-checked to both the available CR and γ-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse γ-ray flux towards different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived γ-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ∼ 10 GeV dark matter annihilating dominantly to hadrons is more strongly constrained by γ-ray observations towards the inner parts of the Galaxy and influenced the most by assumptions of the gas distribution; while TeV scale DM annihilating dominantly to leptons has its tightest constraints from observations towards the galactic center avoiding the galactic disk plane, with the main astrophysical uncertainty being the radiation field energy density. In addition, we present a method of deriving constraints on the dark matter distribution profile from the diffuse γ-ray spectra. These results critically depend on the assumed mass of the dark matter particles and the type of its end annihilation products.

  17. A soft X-ray spectrometer for diffuse cosmic sources

    NASA Technical Reports Server (NTRS)

    Borken, R. J.; Kraushaar, W. L.

    1976-01-01

    The design of a Bragg crystal spectrometer for the diffuse soft X-ray background is described. The instrument has no moving parts; a 6 degree x 20 degree FWHM field of view; resolution in the range 20-100; and spans wavelength ranges 44-80 A or 13-23 A when lead stearate or KAP crystals are used. If placed on a small spacecraft, integration times of approximately 1000 s will be required to detect the existence of the stronger lines expected in the X-ray background.

  18. Hydromagnetic waves and cosmic-ray diffusion theory

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Voelk, H. J.

    1975-01-01

    Pitch-angle (and energy) diffusion of cosmic rays in hydromagnetic wave fields is considered. The treatment remains strictly within the quasi-linear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch-angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since the Landau resonance in this approximation also does not lead to particle reflections, a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well-known difficulties of quasi-linear scattering theory for cosmic rays near 90 deg pitch angle.

  19. Diffuse X-Ray Emission in the Milky Way

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2011-01-01

    Our understanding of the diffuse X-ray emission from the Milky Way has evolved. extensively with time from when it was first observed in the 1960's, and its origin is still the subject of debate as much now as ever. This presentation will provide an overview of that evolution, the various emission components, emission mechanisms, an assessment of the current state of the field, and implications for eROSITA.

  20. Diffuse X-ray Emission from M101

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.; Pence, W. D.; Mukai, K.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The total 0.45-2.0 keV luminosity of M101 is 3.1 x 10(exp 39) ergs/s, of which 2.2 x 10(exp 39) ergs/s is due to diffuse emission. Of the diffuse emission, no more than 6% can be due to unresolved point sources such as X-ray binaries, and approx. 11% is due to dwarf stars. The diffuse emission traces the spiral arms and is roughly correlated with the H alpha and FUV (far ultraviolet) emission. The radial distribution closely follows the optical profile. The bulk of the diffuse emission is characterized by a two thermal component spectrum with kT = 0.20,0.75 keV, and the ratios of the emission measures of the two components is roughly constant as a function of both radius and surface brightness. The softer component has a sufficiently large covering factor that the bulk of the emission is likely extra-planar. We find no evidence of an extended axisymmetric X-ray halo, suggesting that any such halo has a strength much smaller than current predictions.

  1. Diffusion in silicate melts: III. Empirical models for multicomponent diffusion

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Richter, Frank M.; Chamberlin, Laurinda

    1997-12-01

    Empirical models for multicomponent diffusion in an isotropic fluid were derived by splitting the component's dispersion velocity into two parts: (a) an intrinsic velocity which is proportional to each component's electrochemical potential gradient and independent of reference frame and (b) a net interaction velocity which is both model and reference frame dependent. Simple molecules (e.g., M pO q) were chosen as endmember components. The interaction velocity is assumed to be either the same for each component (leading to a common relaxation velocity U) or proportional to a common interaction force ( F). U or F is constrained by requiring no local buildup in either volume or charge. The most general form of the model-derived diffusion matrix [ D] can be written as a product of a model-dependent kinetic matrix [ L] and a model independent thermodynamic matrix [ G], [ D] = [ L] · [ G]. The elements of [ G] are functions of derivatives of chemical potential with respect to concentration. The elements of [ L] are functions of concentration and partial molar volume of the endmember components, Cio and Vio, and self diffusivity Di, and charge number zi of individual diffusing species. When component n is taken as the dependent variable they can be written in a common form L ij = D jδ ij + C io[V noD n - V joD j)A i + (p nz nD n - p jz jD j)B i] where the functional forms of the scaling factors Ai and Bi depend on the model considered. The off-diagonal element Lij ( i ≠ j) is directly proportional to the concentration of component i, and thus negligible when i is a dilute component. The salient feature of kinetic interaction or relaxation is to slow down larger (volume or charge) and faster diffusing components and to speed up smaller (volume or charge) and slower moving species, in order to prevent local volume or charge buildup. Empirical models for multicomponent diffusion were tested in the ternary system CaOAl 2O 3SiO 2 at 1500°C and 1 GPa over a large

  2. COSMIC-RAY DIFFUSION IN A SECTORED MAGNETIC FIELD IN THE DISTANT HELIOSHEATH

    SciTech Connect

    Florinski, V.; Alouani-Bibi, F.; Guo, X.; Kota, J.

    2012-07-20

    Very high intensities of galactic cosmic rays measured by Voyager 1 in the heliosheath appear to be incompatible with the presence of a modulation 'wall' near the heliopause produced by a pile up of the heliospheric magnetic field. We propose that the modulation wall is a structure permeable to cosmic rays as a result of a sectored magnetic field topology compressed by plasma slowdown on approach to the heliopause and stretched to high latitudes by latitudinal flows in the heliosheath. The tightly folded warped current sheet permits efficient cosmic-ray transport in the radial direction via a drift-like mechanism. We show that when stochastic variations in the sector widths are taken into account, particle transport becomes predominantly diffusive both along and across the magnetic sectors. Using a test-particle model for cosmic rays in the heliosheath we investigate the dependence of the diffusion coefficients on the properties of the sector structure and on particle energy.

  3. Fluxes of diffuse gamma rays and neutrinos from cosmic-ray interactions with the circumgalactic gas

    NASA Astrophysics Data System (ADS)

    Kalashev, Oleg; Troitsky, Sergey

    2016-09-01

    The Milky Way is surrounded by a gravitationally bound gas corona extending up to the Galaxy's virial radius. Interactions of cosmic-ray particles with this gas give rise to energetic secondary gamma rays and neutrinos. We present a quantitative analysis of the neutrino and gamma-ray fluxes from the corona of the Milky Way together with a combined contribution of coronae of other galaxies. The high-energy neutrino flux is insufficient to explain the IceCube results, while the contribution to the FERMI-LAT diffuse gamma-ray flux is not negligible.

  4. Theoretical Modelling of the Diffuse Emission of (gamma)-rays From Extreme Regions of Star Formation: The Case of Arp 220

    SciTech Connect

    Torres, D F

    2004-07-09

    Our current understanding of ultraluminous infrared galaxies suggest that they are recent galaxy mergers in which much of the gas in the former spiral disks, particularly that located at distances less than 5 kpc from each of the pre-merger nuclei, has fallen into a common center, triggering a huge starburst phenomenon. This large nuclear concentration of molecular gas has been detected by many groups, and estimates of molecular mass and density have been made. Not surprisingly, these estimates were found to be orders of magnitude larger than the corresponding values found in our Galaxy. In this paper, a self-consistent model of the high energy emission of the super-starburst galaxy Arp 220 is presented. The model also provides an estimate of the radio emission from each of the components of the central region of the galaxy (western and eastern extreme starbursts, and molecular disk). The predicted radio spectrum is found as a result of the synchrotron and free-free emission, and absorption, of the primary and secondary steady population of electrons and positrons. The latter is output of charged pion decay and knock-on leptonic production, subject to a full set of losses in the interstellar medium. The resulting radio spectrum is in agreement with sub-arcsec radio observations, what allows to estimate the magnetic field. In addition, the FIR emission is modeled with dust emissivity, and the computed FIR photon density is used as a target for inverse Compton process as well as to give account of losses in the {gamma}-ray scape. Bremsstrahlung emission and neutral pion decay are also computed, and the {gamma}-ray spectrum is finally predicted. Future possible observations with GLAST, and the ground based Cherenkov telescopes are discussed.

  5. A method to analyze the diffuse gamma-ray emission with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, Markus; Johannesson, Gueolaugur; Digel, Seth; Moskalenko, Igor V.; Reimer, Olaf; Porter, Troy; Strong, Andrew

    2008-12-24

    The Fermi Gamma-Ray Space Telescope with its main instrument the LAT is the most sensitive {gamma}-ray telescope in the energy region between 30 MeV and 100 GeV. One of the prime scientific goals of this mission is the measurement and interpretation of the diffuse Galactic and extragalactic {gamma}-ray emission. While not limited by photon statistics, this analysis presents several challenges: Instrumental response functions, residual background from cosmic rays as well as resolved and unresolved foreground {gamma}-ray sources have to be taken carefully into account in the interpretation of the data. Detailed modeling of the diffuse {gamma}-ray emission is being performed and will form the basis of the investigations. We present the analysis approach to be applied to the Fermi LAT data, namely the modeling of the diffuse emission components and the background contributions, followed by an all-sky maximum-likelihood fitting procedure. We also report on the performance of this method evaluated in tests on simulated Fermi LAT and real EGRET data.

  6. Cosmic Rays, Magnetic Fields and Diffuse Emissions: Combining Observations from Radio to Gamma Rays

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    With the advent of WMAP, Planck, and Fermi-LAT telescopes the diffuse emission from the Milky Way has received renewed attention. Observations of the different components of the diffuse emission reveal information on Cosmic Rays (CRs), magnetic fields (B-fields) and the interstellar medium. CRs interact with the interstellar medium and the B-fields in the Milky Way, producing diffuse emission from radio to gamma rays. The fundamental problem is that CRs, B-fields, and the interstellar medium are not precisely known. In fact, despite intensive studies, the B-field intensity and topology, and CR spectra and distribution throughout the Galaxy are still uncertain. As a consequence unequivocally disentangling and describing the diffuse components simultaneously using a single wavelength domain is impossible. Our approach to disentangling and describing the diffuse emission components is to simultaneously consider the diffuse emission in multiple frequency domains. We propose to exploit the entire database of the present radio surveys, microwave observations (WMAP and Planck), X-ray observations (INTEGRAL) and gamma-ray observations (COMPTEL and Fermi-LAT) in order to analyze their diffuse emission in a combined multi-wavelength approach. We will jointly infer information on the spectra and distribution of CRs in the Galaxy, and on Galactic B-fields, with unprecedented accuracy. Finally we will be able to describe the baseline Galactic diffuse emissions and characterize Milky Way structures and their emission mechanisms, which have attracted the attention of the scientific community recently. This project is innovative and essential for maximizing the scientific return from the presently available data in a multidisciplinary view and uses novel approaches. The results will benefit NASA-related science generally and the return from the named missions specifically.

  7. Crystal defect studies using x-ray diffuse scattering

    SciTech Connect

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  8. Consequences of using nonlinear particle trajectories to compute spatial diffusion coefficients. [for cosmic ray propagation in interstellar and interplanetary space

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.

    1977-01-01

    In a study of cosmic ray propagation in interstellar and interplanetary space, a perturbed orbit resonant scattering theory for pitch angle diffusion in a slab model of magnetostatic turbulence is slightly generalized and used to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field. This diffusion coefficient has been useful for describing the solar modulation of the galactic cosmic rays, and for explaining the diffusive phase in solar flares in which the initial anisotropy of the particle distribution decays to isotropy.

  9. Resolving the origin of the diffuse soft X-ray background

    SciTech Connect

    Smith, Randall K.; Foster, Adam R.; Edgar, Richard J.; Brickhouse, Nancy S.

    2014-05-20

    The ubiquitous diffuse soft (1/4 keV) X-ray background was one of the earliest discoveries of X-ray astronomy. At least some of the emission may arise from charge exchange between solar wind ions and neutral atoms in the heliosphere, but no detailed models have been fit to the available data. Here, we report on a new model for charge exchange in the solar wind, which, when combined with a diffuse hot plasma component, filling the Local Cavity provides a good fit to the only available high-resolution soft X-ray and extreme ultraviolet spectra using plausible parameters for the solar wind. The implied hot plasma component is in pressure equilibrium with the local cloud that surrounds the solar system, creating for the first time a self-consistent picture of the local interstellar medium.

  10. X-Ray Investigation of the Diffuse Emission around Plausible γ-Ray Emitting Pulsar Wind Nebulae in Kookaburra Region

    NASA Astrophysics Data System (ADS)

    Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki

    2012-05-01

    We report on the results from Suzaku X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV γ-ray sources HESS J1418-609 and HESS J1420-607. The Suzaku observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of σX = 1farcm66 and σX = 1farcm49, respectively. The peaks of the diffuse X-ray emission are located within the γ-ray excess maps obtained by H.E.S.S. and the offsets from the γ-ray peaks are 2farcm8 for PSR J1420-6048 and 4farcm5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with Γ = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimated as 3 μG and 2.5 μG, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.

  11. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  12. Gamma-ray observations of Ophiuchus with EGRET: The diffuse emission and point sources

    NASA Technical Reports Server (NTRS)

    Hunter, S. D.; Digel, S. W.; De Geus, E. J.; Kanbach, G.

    1994-01-01

    Observations of the Ophiuchus region made with the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) during the first 2 1/2 years of operation show the diffuse emission from the interstellar gas in Ophiuchus as well as variable emission from two point sources. The gamma-ray emission is modeled in terms of cosmic-ray interactions with atomic and molecular hydrogen in Ophiuchus and with low-energy photons along the line of sight. The model also includes the flux from the two point sources and an isotropic diffuse contribution. The cosmic-ray density is assumed to be uniform. The derived ratio of molecular hydrogen column density to integrated CO intensity is (1.1 +/- 0.2) x 10(exp 20) H-mols/sq cm (K km/s)(exp -1). At the sensitivity and resolution of the gamma-ray data, no variation of this ratio over the modeled region is discernible, nor are any regions of enhanced cosmic-ray density apparent. The model was fitted to seven narrow energy bands to obtain the energy depedence of the gamma-ray production function and the spectra of the point sources. The derived production function is in good agreement with theoretical calculations and the local cosmic-ray electron and proton spectra. The positions of the point sources were determined from maximum likelihood analysis of the gamma-ray emission observed in excess of the diffuse model. We identify one point source with the quasar PKS 1622-253, which has an average flux, E greater than 100 MeV, of (2.5 +/- 0.5) x 10(exp -7) photons/sq cm/s and photon spectral index -1.9 +/- 0.3. The other source, denoted GRO J1631-27, has not yet been identified at other wavelengths. Its average flux, E greater than 100 MeV, is (1.1 +/- 0.4) x 10(exp -7) photons/sq cm/s; however, its spectral index is poorly determined. The spectral index and intensity of the isotropic contribution to the model agree well with the extragalactic diffuse emission derived from the SAS 2 data.

  13. Celestial diffuse gamma-ray emission observed by SAS-2 and its interpretation

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Hartman, R. C.; Thompson, D. J.; Gelman, H.; Ozel, M.; Tumer, T.

    1977-01-01

    A clearly established diffuse celestial gamma-ray component was seen by SAS-2 above 35 MeV, after examining several regions of the sky at different latitudes, including the north celestial pole. For energies above 100 MeV the gamma ray results are consistent with an equation of the form I(b)=C1+C2/sin b with the second term being dominant, suggesting that the radiation above 100 MeV comes largely from the local regions of the galactic disk. Between 35 and 100 MeV, a similar equation is also a reasonable representation of the data, but here the two terms are comparable, with the first, or isotropic term, actually being the larger one. In addition to indicating that the diffuse radiation is partially galactic, these results imply a steepness for the energy spectrum of the diffuse isotropic component which places significant constraints on possible theoretical models of this radiation.

  14. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  15. DISCOVERY OF DIFFUSE HARD X-RAY EMISSION AROUND JUPITER WITH SUZAKU

    SciTech Connect

    Ezoe, Y.; Ishikawa, K.; Ohashi, T.; Miyoshi, Y.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2010-02-01

    We report the discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter in a deep 160 ks Suzaku X-ray Imaging Spectrometer data. The emission is distributed over {approx}16 x 8 Jovian radius and spatially associated with the radiation belts and the Io Plasma Torus (IPT). It shows a flat power-law spectrum with a photon index of 1.4 {+-} 0.2 with the 1-5 keV X-ray luminosity of (3.3 {+-} 0.5)x10{sup 15} erg s{sup -1}. We discussed its origin and concluded that it seems to be truly diffuse, although a possibility of multiple background point sources cannot be completely rejected with a limited angular resolution. If it is diffuse, the flat continuum indicates that X-rays arise by the nonthermal electrons in the radiation belts and/or the IPT. The synchrotron and bremsstrahlung models can be rejected from the necessary electron energy and X-ray spectral shape, respectively. The inverse-Compton scattering off solar photons by ultra-relativistic (several tens MeV) electrons can explain the energy and the spectrum but the necessary electron density is {approx}>10 times larger than the value estimated from the empirical model of Jovian charge particles.

  16. The Diffuse Gamma-Ray Background from Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    Lien, Amy; Fields, Brian D.

    2012-01-01

    The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae, extending earlier work which only included core-collapse supernovae. We consider Type Ia events in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both supernova types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays: total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies.

  17. SAS-2 galactic gamma-ray results. 1: Diffuse emission

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Bignami, G. F.; Lamb, R. C.; Oegelman, H.; Oezel, M. E.; Tuemer, T.

    1977-01-01

    Continuing analysis of the data from the SAS-2 high energy gamma ray experiment has produced an improved picture of the sky at photon energies above 35 MeV. On a large scale, the diffuse emission from the galactic plane is the dominant feature observed by SAS-2. This galactic plane emission is most intense between galactic longitudes 310 deg and 45 deg, corresponding to a region within 7 kpc of the galactic center. Within the high-intensity region, SAS-2 observes peaks around galactic longitudes 315, 330, 345, 0, and 35 deg. These peaks appear to be correlated with galactic features and components such as molecular hydrogen, atomic hydrogen, magnetic fields, cosmic-ray concentrations, and photon fields.

  18. Problems in measuring diffuse X-ray scattering

    SciTech Connect

    Welberry, T. Richard; Goossens, Darren J.; Heerdegen, Aidan P.; Lee, Peter L.

    2005-01-01

    Abstract

    Problems encountered in making measurements of diffuse X-ray scattering are discussed. These generally arise from the need to measure very weak scattering in the presence of very strong scattering (Bragg peaks) using multi-detectors of various kinds. The problems are not confined to synchrotron experiments but may even occur using a tube source in the home laboratory. Specific details are given of experiments using 80.725 keV X-rays and a mar345 Image Plate detector on the 1-ID beamline of XOR at the Advanced Photon Source. In these a severe ‘blooming’ artefact which occurred around some strong Bragg peaks was traced to fluorescence from a steel mounting plate in the detector when strong Bragg peaks were incident. Algorithms developed to remove these artefacts from the data are described.

  19. Computational modeling of diffusion in the cerebellum.

    PubMed

    Marinov, Toma M; Santamaria, Fidel

    2014-01-01

    Diffusion is a major transport mechanism in living organisms. In the cerebellum, diffusion is responsible for the propagation of molecular signaling involved in synaptic plasticity and metabolism, both intracellularly and extracellularly. In this chapter, we present an overview of the cerebellar structure and function. We then discuss the types of diffusion processes present in the cerebellum and their biological importance. We particularly emphasize the differences between extracellular and intracellular diffusion and the presence of tortuosity and anomalous diffusion in different parts of the cerebellar cortex. We provide a mathematical introduction to diffusion and a conceptual overview of various computational modeling techniques. We discuss their scope and their limit of application. Although our focus is the cerebellum, we have aimed at presenting the biological and mathematical foundations as general as possible to be applicable to any other area in biology in which diffusion is of importance.

  20. Methods for calculating X-ray diffuse scattering from a crystalline medium with spheroidal quantum dots

    SciTech Connect

    Punegov, V. I. Sivkov, D. V.

    2015-03-15

    Two independent approaches to calculate the angular distribution of X-ray diffusion scattering from a crystalline medium with spheroidal quantum dots (QDs) have been proposed. The first method is based on the analytical solution involving the multipole expansion of elastic strain fields beyond QDs. The second approach is based on calculations of atomic displacements near QDs by the Green’s function method. An analysis of the diffuse scattering intensity distribution in the reciprocal space within these two approaches shows that both methods yield similar results for the chosen models of QD spatial distribution.

  1. Random diffusion model with structure corrections

    NASA Astrophysics Data System (ADS)

    McCowan, David D.; Mazenko, Gene F.

    2010-05-01

    The random diffusion model is a continuum model for a conserved scalar density field ϕ driven by diffusive dynamics where the bare diffusion coefficient is density dependent. We generalize the model from one with a sharp wave-number cutoff to one with a more natural large wave-number cutoff. We investigate whether the features seen previously—namely, a slowing down of the system and the development of a prepeak in the dynamic structure factor at a wave number below the first structure peak—survive in this model. A method for extracting information about a hidden prepeak in experimental data is presented.

  2. Connectionist and diffusion models of reaction time.

    PubMed

    Ratcliff, R; Van Zandt, T; McKoon, G

    1999-04-01

    Two connectionist frameworks, GRAIN (J. L. McClelland, 1993) and brain-state-in-a-box (J. A. Anderson, 1991), and R. Ratcliff's (1978) diffusion model were evaluated using data from a signal detection task. Dependent variables included response probabilities, reaction times for correct and error responses, and shapes of reaction-time distributions. The diffusion model accounted for all aspects of the data, including error reaction times that had previously been a problem for all response-time models. The connectionist models accounted for many aspects of the data adequately, but each failed to a greater or lesser degree in important ways except for one model that was similar to the diffusion model. The findings advance the development of the diffusion model and show that the long tradition of reaction-time research and theory is a fertile domain for development and testing of connectionist assumptions about how decisions are generated over time.

  3. An ab initio approach to the anisotropic perpendicular diffusion of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Nicholas; Richardson, John; Burger, Renier

    2016-07-01

    The assumption that cosmic-ray diffusion perpendicular to the background magnetic field is anisotropic has been made in many numerical modulation studies. This was done in order to reproduce spacecraft observations of, for example, lower than expected latitude gradients of galactic protons. This assumption is usually justified in terms of observations of non-axisymmetric turbulent magnetic fluctuations, but is often implemented in a completely ad hoc manner. This study implements anisotropic perpendicular diffusion coefficients in an ab initio cosmic ray modulation model in a self-consistent manner, employing perpendicular mean free path expressions derived for the case where transverse magnetic fluctuations are non-axisymmetric. Voyager magnetic field observations are analysed to ascertain the nature of this non-axisymmetry, and modulation model solutions for various assumptions as to the spatial dependence of this non-axisymmetry, also taking into account the Voyager observations, are presented.

  4. ANALYSIS OF MAGNETOROTATIONAL INSTABILITY WITH THE EFFECT OF COSMIC-RAY DIFFUSION

    SciTech Connect

    Kuwabara, Takuhito; Ko, Chung-Ming E-mail: cmko@astro.ncu.edu.tw

    2015-01-10

    We present the results obtained from the linear stability analysis and 2.5 dimensional magnetohydrodynamic (MHD) simulations of magnetorotational instability (MRI), including the effects of cosmic rays (CRs). We took into account the CR diffusion along the magnetic field but neglected the cross-field-line diffusion. Two models are considered in this paper: the shearing box model and differentially rotating cylinder model. We studied how MRI is affected by the initial CR pressure (i.e., energy) distribution. In the shearing box model, the initial state is uniform distribution. Linear analysis shows that the growth rate of MRI does not depend on the value of the CR diffusion coefficient. In the differentially rotating cylinder model, the initial state is a constant angular momentum polytropic disk threaded by a weak uniform vertical magnetic field. Linear analysis shows that the growth rate of MRI becomes larger if the CR diffusion coefficient is larger. Both results are confirmed by MHD simulations. The MHD simulation results show that the outward movement of matter by the growth of MRI is not impeded by the CR pressure gradient, and the centrifugal force that acts on the concentrated matter becomes larger. Consequently, the growth rate of MRI is increased. On the other hand, if the initial CR pressure is uniform, then the growth rate of the MRI barely depends on the value of the CR diffusion coefficient.

  5. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  6. Detailed numerical investigation of the Bohm limit in cosmic ray diffusion theory

    SciTech Connect

    Hussein, M.; Shalchi, A. E-mail: andreasm4@yahoo.com

    2014-04-10

    A standard model in cosmic ray diffusion theory is the so-called Bohm limit in which the particle mean free path is assumed to be equal to the Larmor radius. This type of diffusion is often employed to model the propagation and acceleration of energetic particles. However, recent analytical and numerical work has shown that standard Bohm diffusion is not realistic. In the present paper, we perform test-particle simulations to explore particle diffusion in the strong turbulence limit in which the wave field is much stronger than the mean magnetic field. We show that there is indeed a lower limit of the particle mean free path along the mean field. In this limit, the mean free path is directly proportional to the unperturbed Larmor radius like in the traditional Bohm limit, but it is reduced by the factor δB/B {sub 0} where B {sub 0} is the mean field and δB the turbulent field. Although we focus on parallel diffusion, we also explore diffusion across the mean field in the strong turbulence limit.

  7. Diffuse galactic gamma rays at intermediate and high latitudes. I. Constraints on the ISM properties

    SciTech Connect

    Cholis, Ilias; Tavakoli, Maryam; Evoli, Carmelo; Ullio, Piero; Maccione, Luca E-mail: tavakoli@sissa.it E-mail: luca.maccione@lmu.de

    2012-05-01

    We study the high latitude (|b| > 10°) diffuse γ-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on atomic (HI) and molecular hydrogen (H2) gas distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and γ-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at high rigidity in CR protons and helium spectra, recently observed by PAMELA and their impact on γ-rays.

  8. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  9. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  10. DIFFUSE X-RAY EMISSION IN GLOBULAR CLUSTER CORES

    SciTech Connect

    Hui, C. Y.; Cheng, K. S.; Taam, Ronald E.

    2009-08-01

    The unresolved X-ray emission in the cores of 10 globular clusters hosting millisecond pulsars is investigated. Subtraction of the known resolved point sources leads to detectable levels of unresolved emission in the core region of M28, NGC 6440, M62, and NGC 6752. The X-ray luminosities in the 0.3-8 keV energy band of this emission component were found to lie in the range {approx}1.5 x 10{sup 31}erg s{sup -1} (NGC 6752) to {approx}2.2 x 10{sup 32} erg s{sup -1} (M28). The lowest limiting luminosity for X-ray source detections amongst these four clusters was 1.1 x 10{sup 30} erg s{sup -1} for NGC 6752. The spectrum of the unresolved emission can be fit equally well by a power law, a thermal bremsstrahlung model, a blackbody plus power law, or a thermal bremsstrahlung model plus blackbody component. The unresolved emission is considered to arise from the cumulative contribution of active binaries, cataclysmic variables, and faint millisecond pulsars with their associated pulsar wind nebulae. In examining the available X-ray data, no evidence for any pulsar wind nebular emission in globular clusters is found. It is shown that the X-ray luminosity contribution of a faint source population based on an extrapolation of the luminosity function of detected point sources is compatible with the unresolved X-ray emission in the cores of NGC 6440 and NGC 6752. Adopting the same slope for the luminosity function for M62 as for NGC 6440 and NGC 6752 leads to a similar result for M62. For M28, the contribution from faint sources in the core can attain a level comparable with the observed value if a steeper slope is adopted. The characteristics on the faint source population as constrained by the properties of the unresolved X-ray emission are briefly discussed.

  11. Active galaxies and the diffuse gamma-ray background

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Protheroe, R. J.

    1983-01-01

    Active galaxies are shown to account for the observed gamma ray background radiation if a steepening of the spectra above about 100 keV is present. An analytical model is discussed in which protons undergo Fermi acceleration at a shock in a spherical accretion flow onto a massive black hole. Relativistic protons with power law spectra, nuclear interactions producing gamma rays from neutal pion decay and electrons from pion-mu meson-electron decay, with a power law spectrum above several hundred MeV, synchrotron and inverse Compton losses steepening the electron spectrum, a photon spectrum close to the pion gamma spectrum and a high-energy gamma ray spectrum steepened by photon-photon pair production interactions with X rays are covered in the model. Comparisons are made with HEAO 2 data on active galaxies, which have estimated luminosities and radii consistent with the compactness necessary for producing the steepening predicted by the model. The active galaxies spectra would be described by a spherical accretion-shock model.

  12. Modeling diffusion in foamed polymer nanocomposites.

    PubMed

    Ippalapalli, Sandeep; Ranaprathapan, A Dileep; Singh, Sachchida N; Harikrishnan, G

    2013-04-15

    Two-way multicomponent diffusion processes in polymeric nanocomposite foams, where the condensed phase is nanoscopically reinforced with impermeable fillers, are investigated. The diffusion process involves simultaneous outward permeation of the components of the dispersed gas phase and inward diffusion of atmospheric air. The transient variation in thermal conductivity of foam is used as the macroscopic property to track the compositional variations of the dispersed gases due to the diffusion process. In the continuum approach adopted, the unsteady-state diffusion process is combined with tortuosity theory. The simulations conducted at ambient temperature reveal distinct regimes of diffusion processes in the nanocomposite foams owing to the reduction in the gas-transport rate induced by nanofillers. Simulations at a higher temperature are also conducted and the predictions are compared with experimentally determined thermal conductivities under accelerated diffusion conditions for polyurethane foams reinforced with clay nanoplatelets of varying individual lamellar dimensions. Intermittent measurements of foam thermal conductivity are performed while the accelerated diffusion proceeded. The predictions under accelerated diffusion conditions show good agreement with experimentally measured thermal conductivities for nanocomposite foams reinforced with low and medium aspect-ratios fillers. The model shows higher deviations for foams with fillers that have a high aspect ratio.

  13. Diffuse Hard X-Ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e ±) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e ± at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e ± created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e ± produced between the interactions between 10 and 100 TeV γ-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R <= 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e ±. We compare these models to extant radio and GeV and TeV γ-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including

  14. Diffuse X-ray emission from the Dumbbell Nebula?

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kwitter, Karen B.; Kaler, James B.

    1993-01-01

    We have analyzed ROSAT Position Sensitive Proportional Counter pointed observations of the Dumbbell Nebula and find that the previously reported 'extended' X-ray emission is an instrumental electronic ghost image at the softest energy band. At slightly higher energy bands, the image of the Dumbbell is not very different from that of the white dwarf HZ43. We conclude that the X-ray emission of the Dumbbell Nebula comes from its central star. A blackbody model is fitted to the spectrum and the best-fit temperature of not greater than 136,000 +/- 10,000 K is in excellent agreement with the Zanstra temperatures.

  15. Metal ions diffusion through polymeric matrices: A total reflection X-ray fluorescence study

    NASA Astrophysics Data System (ADS)

    Boeykens, S.; Caracciolo, N.; D'Angelo, M. V.; Vázquez, C.

    2006-11-01

    This work proposes the use of X-ray fluorescence with total reflection geometry to explore the metal ions transport in aqueous hydrophilic polymer solutions. It is centered in the study of polymer concentration influence on ion diffusion. This subject is relevant to various and diverse applications, such as drug controlled release, microbiologic corrosion protection and enhanced oil recovery. It is anticipated that diffusion is influenced by various factors in these systems, including those specific to the diffusing species, such as charge, shape, molecular size, and those related to the structural complexity of the matrix as well as any specific interaction between the diffusing species and the matrix. The diffusion of nitrate salts of Ba and Mn (same charge, different hydrodynamic radii) through water-swollen polymeric solutions and gels in the 0.01% to 1% concentration ranges was investigated. The measurements of the metal concentration were performed by TXRF analysis using the scattered radiation by the sample as internal standard. Results are discussed according to different physical models for solute diffusion in polymeric solutions.

  16. The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data

    SciTech Connect

    Abdo, A. A.

    2011-08-19

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called 'extra-galactic' diffuse {gamma}-ray emission (EGB). This component of the diffuse {gamma}-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modelling of the bright foreground diffuse Galactic {gamma}-ray emission (DGE), the detected LAT sources and the solar {gamma}-ray emission. We find the spectrum of the EGB is consistent with a power law with differential spectral index {gamma} = 2.41 {+-} 0.05 and intensity, I(> 100 MeV) = (1.03 {+-} 0.17) x 10{sup -5} cm{sup -2} s{sup -1} sr{sup -1}, where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  17. The blazar gamma-ray luminosity function and the diffuse extragalactic gamma-ray background

    NASA Technical Reports Server (NTRS)

    Salamon, M. H.; Stecker, F. W.

    1994-01-01

    We have used the data from the new EGRET catalog on 'grazars' (blazers which are observed to be high-energy gamma-ray sources), together with radio data, to construct a new relation between radio and gamma-ray luminosity for these sources. Using this relation to construct a grazar gamma-ray luminosity function, we then calculate the contribution of unresolved grazars to the cosmic gamma-ray background radiation. We derive the energy spectrum of this background component above 100 MeV and the angular fluctuations in this background implied by our model.

  18. Stochastic models for surface diffusion of molecules

    SciTech Connect

    Shea, Patrick Kreuzer, Hans Jürgen

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  19. The Diffuse Soft X-ray Background: Trials and Tribulations

    NASA Astrophysics Data System (ADS)

    Ulmer, Melville P.

    2013-01-01

    I joined the University of Wisconsin-Madison sounding rocket group at its inception. It was an exciting time, as nobody knew what the X-ray sky looked like. Our group focused on the soft X-ray background, and built proportional counters with super thin (2 micron thick) windows. As the inter gas pressure of the counters was about 1 atmosphere, it was no mean feat to get payload to launch without the window bursting. On top of that we built all our own software from space solutions to unfolding the spectral data. For we did it then as now: Our computer code modeled the detector response and then folded various spectral shapes through the response and compared the results with the raw data. As far as interpretation goes, here are examples of how one can get things wrong: The Berkeley group published a paper of the soft X-ray background that disagreed with ours. Why? It turned out they had **assumed** the galactic plane was completely opaque to soft X-ray and hence corrected for detector background that way. It turns out that the ISM emits in soft X-rays! Another example was the faux pas of the Calgary group. They didn’t properly shield their detector from the sounding rocket telemetry. Thus they got an enormous signal, which to our amusement some (ambulance chaser) theoreticians tried to explain! So back then as now, mistakes were made, but at least we all knew how our X-ray systems worked from soup (the detectors) to nuts (the data analysis code) where as toady “anybody” with a good idea but only a vague inkling of how detectors, mirrors and software work, can be an X-ray astronomer. On the one hand, this has made the field accessible to all, and on the other, errors in interpretation can be made as the X-ray telescope user can fall prey to running black box software. Furthermore with so much funding going into supporting observers, there is little left to make the necessary technology advances or keep the core expertise in place to even to stay even with

  20. Understanding Limitations in the Determination of the Diffuse Galactic Gamma-ray Emission

    SciTech Connect

    Moskalenko, Igor V.; Digel, S.W.; Porter, T.A.; Reimer, O.; Strong, A.W.; /Garching, Max Planck Inst., MPE

    2006-10-03

    We discuss uncertainties and possible sources of errors associated with the determination of the diffuse Galactic {gamma}-ray emission using the EGRET data. Most of the issues will be relevant also in the GLAST era. The focus here is on issues that impact evaluation of dark matter annihilation signals against the diffuse {gamma}-ray emission of the Milky Way.

  1. Flux-mediated diffuse mismatch model

    NASA Astrophysics Data System (ADS)

    Loh, G. C.; Tay, B. K.; Teo, E. H. T.

    2010-09-01

    The diffuse mismatch model (DMM) is modified to account for the effect of thermal flux on phonon transmission at interfaces. This new model, the flux-mediated diffuse mismatch model (FMDMM) takes a slightly different approach in its formulation, and does not employ the principle of detailed balance. Two competing processes—an increase in the flux coefficient, and a decrease in the rest of the transmission term, may result in either a rise or fall in thermal boundary resistance when thermal flux is increased. This might partially explain the large disparities between experimental, theoretical, and simulated results of thermal boundary resistance.

  2. EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6

    NASA Technical Reports Server (NTRS)

    Digel, S. W.; Aprile, E.; Hunter, S. D.; Mukherjee, R.; Xu, F.

    1999-01-01

    We present a study of the high-energy diffuse emission observed toward Orion by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The total exposure by EGRET in this region has increased by more than a factor of two since a previous study. A simple model for the diffuse emission adequately fits the data; no significant point sources are detected in the region studied (1 = 195 deg to 220 deg and b = -25 deg to -10 deg) in either the composite dataset or in two separate groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion is found to be (1.65 +/- 0.11) x 10(exp -26)/s.sr for E > 100 MeV, and the differential emissivity is well-described as a combination of contributions from cosmic-ray electrons and protons with approximately the local density. The molecular mass calibrating ratio is N(H2)/W(sub CO) = (1.35 +/- 0.15) x 10(exp 20)/sq cm.(K.km/s).

  3. Analysis and interpretation of diffuse x-ray emission using data from the Einstein satellite

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    An ambitious program to create a powerful and accessible archive of the HEAO-2 Imaging Proportional Counter (IPC) database was outlined. The scientific utility of that database for studies of diffuse x ray emissions was explored. Technical and scientific accomplishments are reviewed. Three papers were presented which have major new scientific findings relevant to the global structure of the interstellar medium and the origin of the cosmic x ray background. An all-sky map of diffuse x ray emission was constructed.

  4. Diffuse Galactic gamma-ray emission with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Fukui, Y.; H. E. S. S. Collaboration

    2014-12-01

    Diffuse γ -ray emission is the most prominent observable signature of celestial cosmic-ray interactions at high energies. While already being investigated at GeV energies over several decades, assessments of diffuse γ -ray emission at TeV energies remain sparse. After completion of the systematic survey of the inner Galaxy, the H.E.S.S. experiment is in a prime position to observe large-scale diffuse emission at TeV energies. Data of the H.E.S.S. Galactic Plane Survey are investigated in regions off known γ -ray sources. Corresponding γ -ray flux measurements were made over an extensive grid of celestial locations. Longitudinal and latitudinal profiles of the observed γ -ray fluxes show characteristic excess emission not attributable to known γ -ray sources. For the first time large-scale γ -ray emission along the Galactic plane using imaging atmospheric Cherenkov telescopes has been observed. While the background subtraction technique limits the ability to recover modest variation on the scale of the H.E.S.S. field of view or larger, which is characteristic of the inverse Compton scatter-induced Galactic diffuse emission, contributions of neutral pion decay as well as emission from unresolved γ -ray sources can be recovered in the observed signal to a large fraction. Calculations show that the minimum γ -ray emission from π0 decay represents a significant contribution to the total signal. This detection is interpreted as a mix of diffuse Galactic γ -ray emission and unresolved sources.

  5. Mathematical modeling of molecular diffusion through mucus

    PubMed Central

    Cu, Yen; Saltzman, W. Mark

    2008-01-01

    The rate of molecular transport through the mucus gel can be an important determinant of efficacy for therapeutic agents delivered by oral, intranasal, intravaginal/rectal, and intraocular routes. Transport through mucus can be described by mathematical models based on principles of physical chemistry and known characteristics of the mucus gel, its constituents, and of the drug itself. In this paper, we review mathematical models of molecular diffusion in mucus, as well as the techniques commonly used to measure diffusion of solutes in the mucus gel, mucus gel mimics, and mucosal epithelia. PMID:19135488

  6. Configurational diffusion of asphaltenes in fresh and aged catalysts extrudates. [Mathematical configurational diffusion model

    SciTech Connect

    Guin, J.A.; Tarrer, A.R.

    1992-01-01

    The objective of this research is to determine the relationship between the size and shape of coal and petroleum macromolecules and their diffusion rates i.e., effective diffusivities, in catalyst pore structures. That is, how do the effective intrapore diffusivities depend on molecule configuration and pore geometry. This quarter we made a more comprehensive literature survey concerning configurational diffusion in porous catalysts or catalyst supports. A detailed literature review is reported. Also, a mathematical configurational diffusion model was developed. By using this model, the effective diffusivity for model compounds diffusing in porous media and a linear adsorption constant can be determined by fitting experimental data.

  7. DETECTION OF DIFFUSE X-RAY EMISSION FROM PLANETARY NEBULAE WITH NEBULAR O VI

    SciTech Connect

    Ruiz, N.; Guerrero, M. A.; Jacob, R.; Schoenberner, D.; Steffen, M.

    2013-04-10

    The presence of O VI ions can be indicative of plasma temperatures of a few Multiplication-Sign 10{sup 5} K that are expected in heat conduction layers between the hot shocked stellar wind gas at several 10{sup 6} K and the cooler (10{sup 4} K) nebular gas of planetary nebulae (PNe). We have used FUSE observations of PNe to search for nebular O VI emission or absorption as a diagnostic of the conduction layer to ensure the presence of hot interior gas. Three PNe showing nebular O VI, namely IC 418, NGC 2392, and NGC 6826, have been selected for Chandra observations and diffuse X-ray emission is indeed detected in each of these PNe. Among the three, NGC 2392 has peculiarly high diffuse X-ray luminosity and plasma temperature compared with those expected from its stellar wind's mechanical luminosity and terminal velocity. The limited effects of heat conduction on the plasma temperature of a hot bubble at the low terminal velocity of the stellar wind of NGC 2392 may partially account for its high plasma temperature, but the high X-ray luminosity needs to be powered by processes other than the observed stellar wind, probably the presence of an unseen binary companion of the central star of the PN (CSPN) of NGC 2392. We have compiled relevant information on the X-ray, stellar, and nebular properties of PNe with a bubble morphology and found that the expectations of bubble models including heat conduction compare favorably with the present X-ray observations of hot bubbles around H-rich CSPNe, but have notable discrepancies for those around H-poor [WR] CSPNe. We note that PNe with more massive central stars can produce hotter plasma and higher X-ray surface brightness inside central hot bubbles.

  8. Gamma-ray spectroscopy: The diffuse galactic glow

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.

    1991-01-01

    The goal of this project is the development of a numerical code that provides statistical models of the sky distribution of gamma-ray lines due to the production of radioactive isotopes by ongoing Galactic nucleosynthesis. We are particularly interested in quasi-steady emission from novae, supernovae, and stellar winds, but continuum radiation and transient sources must also be considered. We have made significant progress during the first half period of this project and expect the timely completion of a code that can be applied to Oriented Scintillation Spectrometer Experiment (OSSE) Galactic plane survey data.

  9. MODIS Solar Diffuser: Modelled and Actual Performance

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.

  10. Radio emission and nonlinear diffusive shock acceleration of cosmic rays in the supernova SN 1993J

    NASA Astrophysics Data System (ADS)

    Tatischeff, V.

    2009-05-01

    Aims: The extensive observations of the supernova SN 1993J at radio wavelengths make this object a unique target for the study of particle acceleration in a supernova shock. Methods: To describe the radio synchrotron emission we use a model that couples a semianalytic description of nonlinear diffusive shock acceleration with self-similar solutions for the hydrodynamics of the supernova expansion. The synchrotron emission, which is assumed to be produced by relativistic electrons propagating in the postshock plasma, is worked out from radiative transfer calculations that include the process of synchrotron self-absorption. The model is applied to explain the morphology of the radio emission deduced from high-resolution VLBI imaging observations and the measured time evolution of the total flux density at six frequencies. Results: Both the light curves and the morphology of the radio emission indicate that the magnetic field was strongly amplified in the blast wave region shortly after the explosion, possibly via the nonresonant regime of the cosmic-ray streaming instability operating in the shock precursor. The amplified magnetic field immediately upstream from the subshock is determined to be Bu ≈ 50 (t/1 { day})-1 G. The turbulent magnetic field was not damped behind the shock but carried along by the plasma flow in the downstream region. Cosmic-ray protons were efficiently produced by diffusive shock acceleration at the blast wave. We find that during the first 8.5 years after the explosion, about 19% of the total energy processed by the forward shock was converted to cosmic-ray energy. However, the shock remained weakly modified by the cosmic-ray pressure. The high magnetic field amplification implies that protons were rapidly accelerated to energies well above 1015 eV. The results obtained for this supernova support the scenario that massive stars exploding into their former stellar wind are a major source of Galactic cosmic-rays of energies above 1015 eV. We

  11. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    SciTech Connect

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  12. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    DOE PAGES

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculationsmore » of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.« less

  13. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    PubMed Central

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-01-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. Decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. We conclude that diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions. PMID:25453071

  14. THE INTEGRATED DIFFUSE X-RAY EMISSION OF THE CARINA NEBULA COMPARED TO OTHER MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Townsley, Leisa K.; Broos, Patrick S.; Chu, You-Hua; Gruendl, Robert A.; Oey, M. S.; Pittard, Julian M.

    2011-05-01

    The Chandra Carina Complex Project (CCCP) has shown that the Carina Nebula displays bright, spatially-complex soft diffuse X-ray emission. Here, we 'sum up' the CCCP diffuse emission work by comparing the global morphology and spectrum of Carina's diffuse X-ray emission to other famous sites of massive star formation with pronounced diffuse X-ray emission: M17, NGC 3576, NGC 3603, and 30 Doradus. All spectral models require at least two diffuse thermal plasma components to achieve adequate spectral fits, a softer component with kT = 0.2-0.6 keV and a harder component with kT = 0.5-0.9 keV. In several cases these hot plasmas appear to be in a state of non-equilibrium ionization that may indicate recent and current strong shocks. A cavity north of the embedded giant H II region NGC 3576 is the only region studied here that exhibits hard diffuse X-ray emission; this emission appears to be nonthermal and is likely due to a recent cavity supernova, as evidenced by a previously-known pulsar and a newly-discovered pulsar wind nebula also seen in this cavity. All of these targets exhibit X-ray emission lines that are not well modeled by variable-abundance thermal plasmas and that might be attributed to charge exchange at the shock between the hot, tenuous, X-ray-emitting plasma and cold, dense molecular material; this is likely evidence for dust destruction at the many hot/cold interfaces that characterize massive star-forming regions.

  15. The diffuse gamma-ray flux associated with sub-PEV/PEV neutrinos from starburst galaxies

    SciTech Connect

    Chang, Xiao-Chuan; Wang, Xiang-Yu

    2014-10-01

    One attractive scenario for the excess of sub-PeV/PeV neutrinos recently reported by IceCube is that they are produced by cosmic rays in starburst galaxies colliding with the dense interstellar medium. These proton-proton (pp) collisions also produce high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background. We calculate the diffuse gamma-ray flux with a semi-analytic approach and consider that the very high energy gamma rays will be absorbed in the galaxies and converted into electron-positron pairs, which then lose almost all of their energy through synchrotron radiation in the strong magnetic fields in the starburst region. Since the synchrotron emission goes into energies below GeV, this synchrotron loss reduces the diffuse high-energy gamma-ray flux by a factor of about two, thus leaving more room for other sources to contribute to the gamma-ray background. For an E{sub ν}{sup −2} neutrino spectrum, we find that the diffuse gamma-ray flux contributes about 20% of the observed diffuse gamma-ray background in the 100 GeV range. However, for a steeper neutrino spectrum, this synchrotron loss effect is less important, since the energy fraction in absorbed gamma rays becomes lower.

  16. Properties of the Diffuse X-ray Background toward MBM20 with Suzaku

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Galeazzi, M.; Koutroumpa, D.; Smith, R.; Lallement, R.

    2009-12-01

    We used Suzaku observations of the molecular cloud MBM20 and a low neutral hydrogen column density region nearby to separate and characterize the foreground and background diffuse X-ray emission. A comparison with a previous observation of the same regions with XMM-Newton indicates a significant change in the foreground flux which is attributed to Solar Wind Charge eXchange (SWCX). The data have also been compared with previous results from similar "shadow" experiments and with a SWCX model to characterize its O VII and O VIII emission.

  17. PROPERTIES OF THE DIFFUSE X-RAY BACKGROUND TOWARD MBM20 WITH SUZAKU

    SciTech Connect

    Gupta, A.; Galeazzi, M.; Koutroumpa, D.; Lallement, R.

    2009-12-10

    We used Suzaku observations of the molecular cloud MBM20 and a low neutral hydrogen column density region nearby to separate and characterize the foreground and background diffuse X-ray emission. A comparison with a previous observation of the same regions with XMM-Newton indicates a significant change in the foreground flux which is attributed to Solar Wind Charge eXchange (SWCX). The data have also been compared with previous results from similar 'shadow' experiments and with a SWCX model to characterize its O VII and O VIII emission.

  18. CHANDRA DETECTION OF A NEW DIFFUSE X-RAY COMPONENT FROM THE GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    Wu, E. M. H.; Cheng, K. S.; Hui, C. Y.; Kong, A. K. H.; Tam, P. H. T.; Dogiel, V. A.

    2014-06-20

    In re-analyzing the archival Chandra data of the globular cluster 47 Tucanae, we have detected a new diffuse X-ray emission feature within the half-mass radius of the cluster. The spectrum of the diffuse emission can be described by a power-law model plus a plasma component with photon index Γ ∼ 1.0 and plasma temperature kT ∼ 0.2 keV. While the thermal component is apparently uniform, the non-thermal contribution falls off exponentially from the core. The observed properties could possibly be explained in the context of multiple shocks resulting from the collisions among the stellar wind in the cluster and the inverse Compton scattering between the pulsar wind and the relic photons.

  19. Modelling Diffusion of a Personalized Learning Framework

    ERIC Educational Resources Information Center

    Karmeshu; Raman, Raghu; Nedungadi, Prema

    2012-01-01

    A new modelling approach for diffusion of personalized learning as an educational process innovation in social group comprising adopter-teachers is proposed. An empirical analysis regarding the perception of 261 adopter-teachers from 18 schools in India about a particular personalized learning framework has been made. Based on this analysis,…

  20. Generalized Drift-Diffusion Model In Semiconductors

    SciTech Connect

    Mesbah, S.; Bendib-Kalache, K.; Bendib, A.

    2008-09-23

    A new drift-diffusion model is proposed based on the computation of the stationary nonlocal current density. The semi classical Boltzmann equation is solved keeping all the anisotropies of the distribution function with the use of the continued fractions. The conductivity is calculated in the linear approximation and for arbitrary collision frequency with respect to Kv{sub t} where K{sup -1} is the characteristic length scale of the system and V{sub t} is the thermal velocity. The nonlocal conductivity can be used to close the generalized drift-diffusion equations valid for arbitrary collisionality.

  1. Diffuse pionic gamma-ray emission from large-scale structures in the Fermi era

    SciTech Connect

    Dobardžić, A.; Prodanović, T. E-mail: prodanvc@df.uns.ac.rs

    2014-02-20

    For more than a decade now, the complete origin of the diffuse gamma-ray emission background (EGRB) has been unknown. Major components like unresolved star-forming galaxies (making ≲ 50% of the EGRB) and blazars (≲ 23%), have failed to explain the entire background observed by Fermi. Another, though subdominant, contribution is expected to come from the process of large-scale structure formation. The growth of structures is accompanied by accretion and merger shocks, which would, with at least some magnetic field present, give rise to a population of structure-formation cosmic rays (SFCRs). Though expected, this cosmic-ray population is still hypothetical and only very weak limits have been placed to their contribution to the EGRB. The most promising insight into SFCRs was expected to come from Fermi-LAT observations of clusters of galaxies, however, only upper limits and no detection have been placed. Here, we build a model of gamma-ray emission from large-scale accretion shocks implementing a source evolution calibrated with the Fermi-LAT cluster observation limits. Though our limits to the SFCR gamma-ray emission are weak (above the observed EGRB) in some cases, in others, some of our models can provide a good fit to the observed EGRB. More importantly, we show that these large-scale shocks could still give an important contribution to the EGRB, especially at high energies. Future detections of cluster gamma-ray emission would help place tighter constraints on our models and give us a better insight into large-scale shocks forming around them.

  2. Modeling Demic and Cultural Diffusion: An Introduction.

    PubMed

    Fort, Joaquim; Crema, Enrico R; Madella, Marco

    2015-07-01

    Identifying the processes by which human cultures spread across different populations is one of the most topical objectives shared among different fields of study. Seminal works have analyzed a variety of data and attempted to determine whether empirically observed patterns are the result of demic and/or cultural diffusion. This special issue collects articles exploring several themes (from modes of cultural transmission to drivers of dispersal mechanisms) and contexts (from the Neolithic in Europe to the spread of computer programming languages), which offer new insights that will augment the theoretical and empirical basis for the study of demic and cultural diffusion. In this introduction we outline the state of art in the modeling of these processes, briefly discuss the pros and cons of two of the most commonly used frameworks (equation-based models and agent-based models), and summarize the significance of each article in this special issue.

  3. Modeling Demic and Cultural Diffusion: An Introduction.

    PubMed

    Fort, Joaquim; Crema, Enrico R; Madella, Marco

    2015-07-01

    Identifying the processes by which human cultures spread across different populations is one of the most topical objectives shared among different fields of study. Seminal works have analyzed a variety of data and attempted to determine whether empirically observed patterns are the result of demic and/or cultural diffusion. This special issue collects articles exploring several themes (from modes of cultural transmission to drivers of dispersal mechanisms) and contexts (from the Neolithic in Europe to the spread of computer programming languages), which offer new insights that will augment the theoretical and empirical basis for the study of demic and cultural diffusion. In this introduction we outline the state of art in the modeling of these processes, briefly discuss the pros and cons of two of the most commonly used frameworks (equation-based models and agent-based models), and summarize the significance of each article in this special issue. PMID:26932566

  4. The evolution of planetary nebulae. V. The diffuse X-ray emission

    NASA Astrophysics Data System (ADS)

    Steffen, M.; Schönberner, D.; Warmuth, A.

    2008-10-01

    Context: Observations with space-borne X-ray telescopes revealed the existence of soft, diffuse X-ray emission from the inner regions of planetary nebulae. Although the existing images support the idea that this emission arises from the hot shocked central-star wind which fills the inner cavity of a planetary nebula, existing models have difficulties to explain the observations consistently. Aims: We investigate how the inclusion of thermal conduction changes the physical parameters of the hot shocked wind gas and the amount of X-ray emission predicted by time-dependent hydrodynamical models of planetary nebulae with central stars of normal, hydrogen-rich surface composition. Methods: We upgraded our 1D hydrodynamics code NEBEL by to account for energy transfer due to heat conduction, which is of importance at the interface separating the hot shocked wind gas (“hot bubble”) from the much cooler nebular material. With this new version of NEBEL we recomputed a selection of our already existing hydrodynamical sequences and obtained synthetic X-ray spectra for representative models along the evolutionary tracks by means of the freely available CHIANTI package. Results: Heat conduction leads to lower temperatures and higher densities within a bubble and brings the physical properties of the X-ray emitting domain into close agreement with the values derived from observations. The amount of X-rays emitted during the course of evolution depends on the energy dumped into the bubble by the fast stellar wind, on the efficiency of “evaporating” cool nebular gas via heat conduction, and on the bubble's expansion rate. We find from our models that the X-ray luminosity of a planetary nebula increases during its evolution across the HR diagram until stellar luminosity and wind power decline. Depending on the central-star mass and the evolutionary phase, our models predict X-ray [ 0.45-2.5 keV] luminosities between 10-8 and 10-4 of the stellar bolometric luminosities, in

  5. Relativistic diffusion processes and random walk models

    SciTech Connect

    Dunkel, Joern; Talkner, Peter; Haenggi, Peter

    2007-02-15

    The nonrelativistic standard model for a continuous, one-parameter diffusion process in position space is the Wiener process. As is well known, the Gaussian transition probability density function (PDF) of this process is in conflict with special relativity, as it permits particles to propagate faster than the speed of light. A frequently considered alternative is provided by the telegraph equation, whose solutions avoid superluminal propagation speeds but suffer from singular (noncontinuous) diffusion fronts on the light cone, which are unlikely to exist for massive particles. It is therefore advisable to explore other alternatives as well. In this paper, a generalized Wiener process is proposed that is continuous, avoids superluminal propagation, and reduces to the standard Wiener process in the nonrelativistic limit. The corresponding relativistic diffusion propagator is obtained directly from the nonrelativistic Wiener propagator, by rewriting the latter in terms of an integral over actions. The resulting relativistic process is non-Markovian, in accordance with the known fact that nontrivial continuous, relativistic Markov processes in position space cannot exist. Hence, the proposed process defines a consistent relativistic diffusion model for massive particles and provides a viable alternative to the solutions of the telegraph equation.

  6. Analytic modeling of a spray diffusion flame

    NASA Technical Reports Server (NTRS)

    Harsha, P. T.; Edelman, R. B.

    1984-01-01

    A detailed model for a spray diffusion flame is described. The model is based on the boundary layer form of the equations of motion, with droplet transport accounted for using a discretized droplet size distribution function. Interphase transport of mass and energy are accounted for, with a flame-sheet model used to describe the combustion process on a droplet scale. Near dynamic equilibrium is assumed for the description of droplet transport; droplets can diffuse relative to the gas phase. Gas-phase mixing is accounted for using a two-equation turbulence model; buoyancy effects are included, with a temperature fluctuation equation used to account for buoyancy effects on turbulence structure. Thermal radiation from gas-phase CO2 and H2O is included. Gas-phase chemical kinetics are modeled using a 20-reaction, 10-species version of the advanced quasi-global chemical kinetics formulation. Results are compared with data for a vaporizing Freon spray and a pentane spray flame. It is shown that the computational approach provides a reasonably valid picture of the overall development of a spray diffusion flame, and, furthermore, provides a useful tool for the parametric examination of the spray combustion process.

  7. Modeling diffuse pollution with a distributed approach.

    PubMed

    León, L F; Soulis, E D; Kouwen, N; Farquhar, G J

    2002-01-01

    The transferability of parameters for non-point source pollution models to other watersheds, especially those in remote areas without enough data for calibration, is a major problem in diffuse pollution modeling. A water quality component was developed for WATFLOOD (a flood forecast hydrological model) to deal with sediment and nutrient transport. The model uses a distributed group response unit approach for water quantity and quality modeling. Runoff, sediment yield and soluble nutrient concentrations are calculated separately for each land cover class, weighted by area and then routed downstream. The distributed approach for the water quality model for diffuse pollution in agricultural watersheds is described in this paper. Integrating the model with data extracted using GIS technology (Geographical Information Systems) for a local watershed, the model is calibrated for the hydrologic response and validated for the water quality component. With the connection to GIS and the group response unit approach used in this paper, model portability increases substantially, which will improve non-point source modeling at the watershed scale level.

  8. Improved cosmic-ray injection models and the Galactic Center gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Carlson, Eric; Linden, Tim; Profumo, Stefano

    2016-09-01

    Fermi-LAT observations of the Milky Way Galactic Center (GC) have revealed a spherically symmetric excess of GeV γ rays extending to at least 10° from the dynamical center of the Galaxy. A critical uncertainty in extracting the intensity, spectrum, and morphology of this excess concerns the accuracy of astrophysical diffuse γ -ray emission models near the GC. Recently, it has been noted that many diffuse emission models utilize a cosmic-ray injection rate far below that predicted based on the observed star-formation rate in the Central Molecular Zone. In this study, we add a cosmic-ray injection component which nonlinearly traces the Galactic H2 density determined in three dimensions, and find that the associated γ -ray emission is degenerate with many properties of the GC γ -ray excess. Specifically, in models that utilize a large sideband (4 0 ° ×4 0 ° surrounding the GC) to normalize the best-fitting diffuse emission models, the intensity of the GC excess decreases by approximately a factor of 2, and the morphology of the excess becomes less peaked and less spherically symmetric. In models which utilize a smaller region of interest (1 5 ° ×1 5 ° ) the addition of an excess template instead suppresses the intensity of the best-fit astrophysical diffuse emission, and the GC excess is rather resilient to changes in the details of the astrophysical diffuse modeling. In both analyses, the addition of a GC excess template still provides a statistically significant improvement to the overall fit to the γ -ray data. We also implement advective winds at the GC, and find that the Fermi-LAT data strongly prefer outflows of order several hundred km/s, whose role is to efficiently advect low-energy cosmic rays from the inner-few kpc of the Galaxy. Finally, we perform numerous tests of our diffuse emission models, and conclude that they provide a significant improvement in the physical modeling of the multiwavelength nonthermal emission from the GC region.

  9. Computer simulation of the velocity diffusion of cosmic rays

    NASA Technical Reports Server (NTRS)

    Kaiser, T. B.; Birmingham, T. J.; Jones, F. C.

    1977-01-01

    Monte Carlo simulation experiments were performed in order to study the velocity diffusion of charged particles in a static turbulent magnetic field. By following orbits of particles moving in a large ensemble of random magnetic field realizations with suitable chosen statistical properties, a pitch-angle diffusion coefficient is derived. Results are presented for a variety of particle rigidities and rms random field strengths and compared with the predictions of standard quasi-linear theory and the nonlinear partially averaged field theory.

  10. A Diffuse Interface Model with Immiscibility Preservation

    PubMed Central

    Tiwari, Arpit; Freund, Jonathan B.; Pantano, Carlos

    2013-01-01

    A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results. PMID:24058207

  11. Anomalous diffusion in generalized Dykhne model

    SciTech Connect

    Dvoretskaya, O. A.; Kondratenko, P. S. Matveev, L. V.

    2010-01-15

    Contaminant transport is investigated in the generalized Dykhne model differing from the original Dykhne model by the presence of advection in the high-permeability medium. An analysis is presented of transport regimes and concentration tail behavior in the high-permeability medium. It is found that the transport regimes include anomalous ones: subdiffusion and quasi-diffusion. A difference is revealed between longitudinal and transverse transport. Regime change over time leads to multiple-regime long-distance asymptotic behavior of concentration distributions. An analogy is drawn between the problems examined here and transport through comb structures.

  12. Theoretical uncertainties in extracting cosmic-ray diffusion parameters: the boron-to-carbon ratio

    NASA Astrophysics Data System (ADS)

    Genolini, Yoann

    2016-05-01

    PAMELA and, more recently, AMS-02, are ushering us into a new era of greatly reduced statistical uncertainties in experimental measurements of cosmic ray fluxes. In particular, new determinations of traditional diagnostic tools such as the boron to carbon ratio (B/C) are expected to significantly reduce errors on cosmic-ray diffusion parameters, with important implications for astroparticle physics, ranging from inferring primary source spectra to indirect dark matter searches. It is timely to stress, however, that the conclusions inferred crucially depend on the framework in which the data are interpreted as well as on some nuclear input parameters. We aim at assessing the theoretical uncertainties affecting the outcome, with models as simple as possible while still retaining the key dependences. We compare different semi-analytical, two-zone model descriptions of cosmic ray transport in the Galaxy: infinite slab(lD), cylindrical symmetry (2D) with homogeneous sources, cylindrical symmetry (2D) with inhomogeneous source distribution. We tested for the effect of a primary source contamination in the boron flux by parametrically altering its flux. We also tested for nuclear cross-section uncertainties.

  13. Propagation of cosmic-ray nuclei in a diffusing galaxy with convective halo and thin matter disk

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Lee, M. A.; Gupta, M.

    1992-01-01

    A diffusion model for cosmic-ray propagation in the galaxy that includes the effects of convection in the halo is presented. Calculations are made for 13 primary and secondary nuclei with rigidities between 1 and 1000 GV using interaction loss rates, secondary production rates, and radioactive decay on the basis of recent new cross-section measurements. It is found that, in order to fit the rather weak radial dependence of cosmic-ray protons derived from gamma-ray data, the radial profile of the cosmic-ray sources must also have a weak radial dependence. It is suggested that convection perpendicular to the disk of the Milky Way Galaxy may not be important even at rigidities less than a few GV. The obtained limits on halo thicknesses are consistent with what can be determined for the distribution of cosmic-ray electrons in the halo based on the distribution of radio synchrotron emission in this and other galaxies.

  14. Distributed Energy Resources Market Diffusion Model

    SciTech Connect

    Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

    2006-06-16

    Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase

  15. Status and future of high energy diffuse gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1983-01-01

    There are two distinctly different high energy diffuse gamma-ray components, one well correlated with broad galactic features and the other apparently isotropic and presumably extragalactic. The observed diffuse galactic high energy gamma radiation is generally thought to be produced in interactions between the cosmic rays and the interstellar matter and photons. It should then ultimately be possible to obtain from the diffuse galactic emission a detailed picture of the galactic cosmic-ray distribution, a high contrast view of the general structure of the galaxy, and further insight into molecular clouds. Two of the candidates for the explanation of the extragalactic diffuse radiation are the sum of emission from active galaxies and matter-antimatter annihilation. A major advancement in the study of the properties of both galactic and extragalactic gamma radiation should occur over the next decade.

  16. Diffusion through thin membranes: Modeling across scales

    NASA Astrophysics Data System (ADS)

    Aho, Vesa; Mattila, Keijo; Kühn, Thomas; Kekäläinen, Pekka; Pulkkinen, Otto; Minussi, Roberta Brondani; Vihinen-Ranta, Maija; Timonen, Jussi

    2016-04-01

    From macroscopic to microscopic scales it is demonstrated that diffusion through membranes can be modeled using specific boundary conditions across them. The membranes are here considered thin in comparison to the overall size of the system. In a macroscopic scale the membrane is introduced as a transmission boundary condition, which enables an effective modeling of systems that involve multiple scales. In a mesoscopic scale, a numerical lattice-Boltzmann scheme with a partial-bounceback condition at the membrane is proposed and analyzed. It is shown that this mesoscopic approach provides a consistent approximation of the transmission boundary condition. Furthermore, analysis of the mesoscopic scheme gives rise to an expression for the permeability of a thin membrane as a function of a mesoscopic transmission parameter. In a microscopic model, the mean waiting time for a passage of a particle through the membrane is in accordance with this permeability. Numerical results computed with the mesoscopic scheme are then compared successfully with analytical solutions derived in a macroscopic scale, and the membrane model introduced here is used to simulate diffusive transport between the cell nucleus and cytoplasm through the nuclear envelope in a realistic cell model based on fluorescence microscopy data. By comparing the simulated fluorophore transport to the experimental one, we determine the permeability of the nuclear envelope of HeLa cells to enhanced yellow fluorescent protein.

  17. SLOW DIFFUSION OF COSMIC RAYS AROUND A SUPERNOVA REMNANT

    SciTech Connect

    Fujita, Yutaka; Ohira, Yutaka; Takahara, Fumio

    2010-04-01

    We study the escape of cosmic-ray protons accelerated at a supernova remnant (SNR). We are interested in their propagation in the interstellar medium (ISM) after they leave the shock neighborhood where they are accelerated, but when they are still near the SNR with their energy density higher than that in the average ISM. Using Monte Carlo simulations, we found that the cosmic rays with energies of {approx}< TeV excite Alfven waves around the SNR on a scale of the SNR itself if the ISM is highly ionized. Thus, even if the cosmic rays can leave the shock, scattering by the waves prevents them from moving further away from the SNR. The cosmic rays form a slowly expanding cosmic-ray bubble, and they spend a long time around the SNR. This means that the cosmic rays cannot actually escape from the SNR until a fairly late stage of the SNR evolution. This is consistent with some results of Fermi and H.E.S.S. observations.

  18. Diffuse X-ray emission from the superbubbles N70 and N185 in the Large Magellanic Cloud

    SciTech Connect

    Reyes-Iturbide, J.; Rodríguez-González, A.; Velázquez, P. F.; Rosado, M.; Sánchez-Cruces, M.; Ambrocio-Cruz, P.

    2014-11-01

    We present a study of the diffuse X-ray emission from superbubbles (SBs) N70 (DEM L301) and N185 (DEM L25) located in the Large Magellanic Cloud, based on data from the XMM-Newton Satellite. We obtained spectra and images of these objects in the soft X-ray energy band. These X-ray spectra were fitted by a thermal plasma model, with temperatures of 2.6×10{sup 6} K and 2.3×10{sup 6} K, for N70 and N185, respectively. For N70, images show that X-ray emission comes from the inner regions of the SB when we compare the distribution of the X-ray and the optical emission, while for N185, the X-ray emission is partially confined by the optical shell. We suggest that the observed X-ray emission is caused by shock-heated gas, inside of the optical shells. We also obtained X-ray luminosities which exceed the values predicted by the standard analytical model. This fact shows that, in addition to the winds of the interior stars, it is necessary to consider another ingredient in the description, such as a supernova explosion, as has been proposed in previous numerical models.

  19. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  20. Diffuse Interface Model for Microstructure Evolution

    NASA Astrophysics Data System (ADS)

    Nestler, Britta

    A phase-field model for a general class of multi-phase metallic alloys is proposed which describes both, multi-phase solidification phenomena as well as polycrystalline grain structures. The model serves as a computational method to simulate the motion and kinetics of multiple phase boundaries and enables the visualization of the diffusion processes and of the phase transitions in multi-phase systems. Numerical simulations are presented which illustrate the capability of the phase-field model to recover a variety of complex experimental growth structures. In particular, the phase-field model can be used to simulate microstructure evolutions in eutectic, peritectic and monotectic alloys. In addition, polycrystalline grain structures with effects such as wetting, grain growth, symmetry properties of adjacent triple junctions in thin film samples and stability criteria at multiple junctions are described by phase-field simulations.

  1. Diffuse emission of high-energy neutrinos from gamma-ray burst fireballs

    SciTech Connect

    Tamborra, Irene; Ando, Shin'ichiro E-mail: s.ando@uva.nl

    2015-09-01

    Gamma-ray bursts (GRBs) have been suggested as possible sources of the high-energy neutrino flux recently detected by the IceCube telescope. We revisit the fireball emission model and elaborate an analytical prescription to estimate the high-energy neutrino prompt emission from pion and kaon decays, assuming that the leading mechanism for the neutrino production is lepto-hadronic. To this purpose, we include hadronic, radiative and adiabatic cooling effects and discuss their relevance for long- (including high- and low-luminosity) and short-duration GRBs. The expected diffuse neutrino background is derived, by requiring that the GRB high-energy neutrino counterparts follow up-to-date gamma-ray luminosity functions and redshift evolutions of the long and short GRBs. Although dedicated stacking searches have been unsuccessful up to now, we find that GRBs could contribute up to a few % to the observed IceCube high-energy neutrino flux for sub-PeV energies, assuming that the latter has a diffuse origin. Gamma-ray bursts, especially low-luminosity ones, could however be the main sources of the IceCube high-energy neutrino flux in the PeV range. While high-luminosity and low-luminosity GRBs have comparable intensities, the contribution from the short-duration component is significantly smaller. Our findings confirm the most-recent IceCube results on the GRB searches and suggest that larger exposure is mandatory to detect high-energy neutrinos from high-luminosity GRBs in the near future.

  2. A high resolution spectrum of the diffuse soft X-ray background

    NASA Astrophysics Data System (ADS)

    Crowder, S. Gwynne

    Galactic contributions to the diffuse X-ray background were believed to largely come from thermal emission of hot gas and models of the Galactic neighborhood within ˜ 100 pc reflected this belief. However, recent observations led to the realization that emission from charge exchange within the Solar System might produce comparable intensities to that of thermal emission. A high resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV was obtained for a ˜ 1 sr region of the sky centered at l = 90°, b = +60° in May 2008 using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum can be used to separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced about a factor of four by contamination that occurred early in the flight, limiting the significance of the results. The observed ratio of helium-like O VII forbidden plus intercombination to resonance lines is 1.2 +/- 1.2 at 90% confidence. This indicates that at least 67% of the emission is thermal. On the other hand, the observed ratio of C VI Lygamma to Lyalpha is 0.3+0.3-0.2 , requiring at least a 33% contribution from charge exchange. In addition to these astrophysical results, I present experimental improvements from the addition of a gold coating to the detector array substrate which greatly reduces extraneous signals and from the use of silicon support meshes which improves blocking filter robustness. I also detail a new optimal filtering analysis technique that preserves spectral resolution and live time in the presence of pulse overlap.

  3. CONSTRAINING THE EMISSIVITY OF ULTRAHIGH ENERGY COSMIC RAYS IN THE DISTANT UNIVERSE WITH THE DIFFUSE GAMMA-RAY EMISSION

    SciTech Connect

    Wang Xiangyu; Liu Ruoyu; Aharonian, Felix

    2011-08-01

    Ultrahigh cosmic rays (UHECRs) with energies {approx}> 10{sup 19} eV emitted at cosmological distances will be attenuated by cosmic microwave and infrared background radiation through photohadronic processes. Lower energy extragalactic cosmic rays ({approx}10{sup 18}-10{sup 19} eV) can only travel a linear distance smaller than {approx}Gpc in a Hubble time due to the diffusion if the extragalactic magnetic fields are as strong as nano-Gauss. These prevent us from directly observing most of the UHECRs in the universe, and thus the observed UHECR intensity reflects only the emissivity in the nearby universe within hundreds of Mpc. However, UHECRs in the distant universe, through interactions with the cosmic background photons, produce UHE electrons and gamma rays that in turn initiate electromagnetic cascades on cosmic background photons. This secondary cascade radiation forms part of the extragalactic diffuse GeV-TeV gamma-ray radiation and, unlike the original UHECRs, is observable. Motivated by new measurements of extragalactic diffuse gamma-ray background radiation by Fermi/Large Area Telescope, we obtained upper limit placed on the UHECR emissivity in the distant universe by requiring that the cascade radiation they produce not exceed the observed levels. By comparison with the gamma-ray emissivity of candidate UHECR sources (such as gamma-ray bursts (GRBs) and active galactic nuclei) at high redshifts, we find that the obtained upper limit for a flat proton spectrum is {approx_equal} 10{sup 1.5} times larger than the gamma-ray emissivity in GRBs and {approx_equal} 10 times smaller than the gamma-ray emissivity in BL Lac objects. In the case of iron nuclei composition, the derived upper limit of UHECR emissivity is a factor of 3-5 times higher. Robust upper limit on the cosmogenic neutrino flux is further obtained, which is marginally reachable by the Icecube detector and the next-generation detector JEM-EUSO.

  4. OBSERVATION OF DIFFUSE COSMIC AND ATMOSPHERIC GAMMA RAYS AT BALLOON ALTITUDES WITH AN ELECTRON-TRACKING COMPTON CAMERA

    SciTech Connect

    Takada, Atsushi; Nonaka, Naoki; Kubo, Hidetoshi; Nishimura, Hironobu; Ueno, Kazuki; Hattori, Kaori; Kabuki, Shigeto; Kurosawa, Shunsuke; Miuchi, Kentaro; Nagayoshi, Tsutomu; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Takeda, Atsushi; Tanimori, Toru; Mizuta, Eiichi

    2011-05-20

    We observed diffuse cosmic and atmospheric gamma rays at balloon altitudes with the Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I (SMILE-I) as the first step toward a future all-sky survey with a high sensitivity. SMILE-I employed an electron-tracking Compton camera comprised of a gaseous electron tracker as a Compton-scattering target and a scintillation camera as an absorber. The balloon carrying the SMILE-I detector was launched from the Sanriku Balloon Center of the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency on 2006 September 1, and the flight lasted for 6.8 hr, including level flight for 4.1 hr at an altitude of 32-35 km. During the level flight, we successfully detected 420 downward gamma rays between 100 keV and 1 MeV at zenith angles below 60 deg. To obtain the flux of diffuse cosmic gamma rays, we first simulated their scattering in the atmosphere using Geant4, and for gamma rays detected at an atmospheric depth of 7.0 g cm{sup -2} we found that 50% and 21% of the gamma rays at energies of 150 keV and 1 MeV, respectively, were scattered in the atmosphere prior to reaching the detector. Moreover, by using Geant4 simulations and the QinetiQ atmospheric radiation model, we estimated that the detected events consisted of diffuse cosmic and atmospheric gamma rays (79%), secondary photons produced in the instrument through the interaction between cosmic rays and materials surrounding the detector (19%), and other particles (2%). The obtained growth curve was comparable to Ling's model, and the fluxes of diffuse cosmic and atmospheric gamma rays were consistent with the results of previous experiments. The expected detection sensitivity of a future SMILE experiment measuring gamma rays between 150 keV and 20 MeV was estimated from our SMILE-I results and was found to be 10 times better than that of other experiments at around 1 MeV.

  5. Observation of Diffuse Cosmic and Atmospheric Gamma Rays at Balloon Altitudes with an Electron-tracking Compton Camera

    NASA Astrophysics Data System (ADS)

    Takada, Atsushi; Kubo, Hidetoshi; Nishimura, Hironobu; Ueno, Kazuki; Hattori, Kaori; Kabuki, Shigeto; Kurosawa, Shunsuke; Miuchi, Kentaro; Mizuta, Eiichi; Nagayoshi, Tsutomu; Nonaka, Naoki; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki; Takeda, Atsushi; Tanimori, Toru

    2011-05-01

    We observed diffuse cosmic and atmospheric gamma rays at balloon altitudes with the Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I (SMILE-I) as the first step toward a future all-sky survey with a high sensitivity. SMILE-I employed an electron-tracking Compton camera comprised of a gaseous electron tracker as a Compton-scattering target and a scintillation camera as an absorber. The balloon carrying the SMILE-I detector was launched from the Sanriku Balloon Center of the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency on 2006 September 1, and the flight lasted for 6.8 hr, including level flight for 4.1 hr at an altitude of 32-35 km. During the level flight, we successfully detected 420 downward gamma rays between 100 keV and 1 MeV at zenith angles below 60°. To obtain the flux of diffuse cosmic gamma rays, we first simulated their scattering in the atmosphere using Geant4, and for gamma rays detected at an atmospheric depth of 7.0 g cm-2 we found that 50% and 21% of the gamma rays at energies of 150 keV and 1 MeV, respectively, were scattered in the atmosphere prior to reaching the detector. Moreover, by using Geant4 simulations and the QinetiQ atmospheric radiation model, we estimated that the detected events consisted of diffuse cosmic and atmospheric gamma rays (79%), secondary photons produced in the instrument through the interaction between cosmic rays and materials surrounding the detector (19%), and other particles (2%). The obtained growth curve was comparable to Ling's model, and the fluxes of diffuse cosmic and atmospheric gamma rays were consistent with the results of previous experiments. The expected detection sensitivity of a future SMILE experiment measuring gamma rays between 150 keV and 20 MeV was estimated from our SMILE-I results and was found to be 10 times better than that of other experiments at around 1 MeV.

  6. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  7. Local structure of Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot}2H{sub 2}O by the modeling of X-ray diffuse scattering - from average-structure to microdomain model

    SciTech Connect

    Komornicka, Dorota; Wolcyrz, Marek; Pietraszko, Adam

    2012-08-15

    Local structure of dirubidium tetralithium tris(selenate(VI)) dihydrate - Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot} 2H{sub 2}O has been determined basing on the modeling of X-ray diffuse scattering. The origin of observed structured diffuse streaks is SeO{sub 4} tetrahedra switching between two alternative positions in two quasi-planar layers existing in each unit cell and formation of domains with specific SeO{sub 4} tetrahedra configuration locally fulfilling condition for C-centering in the 2a Multiplication-Sign 2b Multiplication-Sign c superstructure cell. The local structure solution is characterized by a uniform distribution of rather large domains (ca. thousand of unit cells) in two layers, but also monodomains can be taken into account. Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming two-string ribbons. Inside the ribbons SeO{sub 4} and LiO{sub 4} tetrahedra share the oxygen corners, whereas ribbons are bound to each other by a net of hydrogen bonds and fastened by corner sharing SeO{sub 4} tetrahedra of the neighboring layers. - Graphical abstract: Experimental sections of the reciprocal space showing diffraction effects observed for RLSO. Bragg spots are visible on sections with integer indices (1 kl section - on the left), streaks - on sections with fractional ones (1.5 kl section - on the right). At the center: resulting local structure of the A package modeled as a microdomain: two-string ribbons of ordered oxygen-corners-sharing SeO{sub 4} and LiO{sub 4} terahedra extended along ab-diagonal are seen; ribbons are bound by hydrogen bonds (shown in pink); the multiplied 2a Multiplication-Sign 2b unit cell is shown. Highlights: Black-Right-Pointing-Pointer X-ray diffuse scattering in RLSO was registered and modeled. Black-Right-Pointing-Pointer The origin of diffuse streaks is SeO{sub 4} tetrahedra switching in two structure layers. Black-Right-Pointing-Pointer The local structure is characterized by a uniform

  8. Effects of Latitudinally Dependent Solar Wind Speed on Diffusion Coefficients of Cosmic Rays in the Presence of Adiabatic Focusing

    NASA Astrophysics Data System (ADS)

    He, H.-Q.; Schlickeiser, R.

    2015-02-01

    The solar wind is observed to display high speeds in high heliolatitude coronal holes and low speeds near the ecliptic plane. The heliospheric magnetic field associated with the solar wind plays a very important role in the transport and modulation of charged energetic particles, including galactic cosmic rays (GCRs) and solar energetic particles (SEPs), in the three-dimensional heliosphere. In previous studies, a constant solar wind speed, which is independent of heliolatitude, was assumed and commonly used in modulation modeling of cosmic rays. In this work, we investigate the realistic latitudinally dependent solar wind speed and utilize the theoretical models in hyperbolic and piecewise polynomial forms to explore the important effects on the heliospheric magnetic field and the diffusion coefficients (parallel, perpendicular, and drift scale) of cosmic rays in the presence of adiabatic focusing. Comparisons of the diffusion coefficients derived from standard Parker field and modified magnetic fields are presented. Since the structures and properties of different solar wind sources (coronal streamer belt, polar coronal hole, and transition region between them) differ from each other in essence, we suggest that the latitudinally dependent solar wind speed and the corresponding heliospheric magnetic field and diffusion coefficients with adiabatic focusing should be employed in the global modeling studies of GCRs and SEPs in the heliosphere.

  9. Robust identification of isotropic diffuse gamma rays from galactic dark matter.

    PubMed

    Siegal-Gaskins, Jennifer M; Pavlidou, Vasiliki

    2009-06-19

    Dark matter annihilation in Galactic substructure will produce diffuse gamma-ray emission of remarkably constant intensity across the sky, making it difficult to disentangle this Galactic dark matter signal from the extragalactic gamma-ray background. We show that if Galactic dark matter contributes a modest fraction of the measured emission in an energy range accessible to the Fermi Gamma-ray Space Telescope, the energy dependence of the angular power spectrum of the total measured emission could be used to confidently identify gamma rays from Galactic dark matter substructure.

  10. On the diffuse soft X-ray emission from the nuclear region of M51

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Ren; Mao, Shu-De

    2015-12-01

    We present an analysis of the diffuse soft X-ray emission from the nuclear region of M51 combining both XMM-Newton RGS and Chandra data. Most of the RGS spectrum of M51 can be fitted with a thermal model with a temperature of ∼ 0.5 keV except for the O VII triplet, which is forbidden-line dominated. The Fe L-shell lines peak around the southern cloud, where the O VIII and N VII Lyα lines also peak. In contrast, the peak of the O VII forbidden line is about 10″ offset from that of the other lines, indicating that it is from a spatially distinct component. The spatial distribution of the O VII triplet mapped by the Chandra data shows that most of the O VII triplet flux is located at faint regions near edges, instead of the southern cloud where other lines peak. This distribution of the O VII triplet is inconsistent with the photoionization model. Other mechanisms that could produce the anomalous O VII triplet, including a recombining plasma and charge exchange X-ray emission, are discussed.

  11. Modeling realistic breast lesions using diffusion limited aggregation

    NASA Astrophysics Data System (ADS)

    Rashidnasab, Alaleh; Elangovan, Premkumar; Dance, David R.; Young, Kenneth C.; Diaz, Oliver; Wells, Kevin

    2012-03-01

    Synthesizing the appearance of malignant masses and inserting these into digital mammograms can be used as part of a wider framework for investigating the radiological detection task in X-ray mammography. However, the randomness associated with cell division within cancerous masses and the associated complex morphology challenges the realism of the modeling process. In this paper, Diffusion Limited Aggregation (DLA), a type of fractal growth process is proposed and utilized for modeling breast lesions. Masses of different sizes, shapes and densities were grown by controlling DLA growth parameters either prior to growth, or dynamically updating these during growth. A validation study was conducted by presenting 30 real and 30 simulated masses in a random order to a team of radiologists. The results from the validation study suggest that the observers found it difficult to differentiate between the real and simulated lesions.

  12. Extended source model for diffusive coupling.

    PubMed

    González-Ochoa, Héctor O; Flores-Moreno, Roberto; Reyes, Luz M; Femat, Ricardo

    2016-01-01

    Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources.

  13. Extended source model for diffusive coupling.

    PubMed

    González-Ochoa, Héctor O; Flores-Moreno, Roberto; Reyes, Luz M; Femat, Ricardo

    2016-01-01

    Motivated by the prevailing approach to diffusion coupling phenomena which considers point-like diffusing sources, we derived an analogous expression for the concentration rate of change of diffusively coupled extended containers. The proposed equation, together with expressions based on solutions to the diffusion equation, is intended to be applied to the numerical solution of systems exclusively composed of ordinary differential equations, however is able to account for effects due the finite size of the coupled sources. PMID:26802012

  14. Suzaku Observations of the Diffuse X-Ray Emission across the Fermi Bubbles' Edges

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Tahara, M.; Totani, T.; Sofue, Y.; Stawarz, Ł.; Takahashi, Y.; Takeuchi, Y.; Tsunemi, H.; Kimura, M.; Takei, Y.; Cheung, C. C.; Inoue, Y.; Nakamori, T.

    2013-12-01

    We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ~= 20 ks pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubble. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ~= 0.1 keV) from the Local Bubble, absorbed kT ~= 0.3 keV thermal emission related to the NPS and/or Galactic halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ~= 50% toward the inner regions of the northeast bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear whether the NPS originates from a nearby supernova remnant or is related to previous activity within or around the Galactic center, our Suzaku observations provide evidence that suggests the latter scenario. In the latter framework, the presence of a large amount of neutral matter absorbing the X-ray emission as well as the existence of the kT ~= 0.3 keV gas can be naturally interpreted as a weak shock driven by the bubbles' expansion in the surrounding medium, with velocity v exp ~ 300 km s-1 (corresponding to shock Mach number {M} \\simeq 1.5), compressing the GH gas to form the NPS feature. We also derived an upper limit for any non-thermal X-ray emission component associated with the bubbles and demonstrate that, in agreement with the aforementioned findings, the non-thermal pressure and energy estimated from a one-zone leptonic model of its broadband spectrum, are in rough equilibrium with that of the surrounding thermal plasma.

  15. Suzaku observations of the diffuse X-ray emission across the Fermi bubbles' edges

    SciTech Connect

    Kataoka, J.; Tahara, M.; Takahashi, Y.; Takeuchi, Y.; Totani, T.; Sofue, Y.; Stawarz, Ł.; Kimura, M.; Takei, Y.; Tsunemi, H.; Cheung, C. C.; Inoue, Y.; Nakamori, T.

    2013-12-10

    We present Suzaku X-ray observations along two edge regions of the Fermi Bubbles, with eight ≅ 20 ks pointings across the northern part of the North Polar Spur (NPS) surrounding the north bubble and six across the southernmost edge of the south bubble. After removing compact X-ray features, diffuse X-ray emission is clearly detected and is well reproduced by a three-component spectral model consisting of unabsorbed thermal emission (temperature kT ≅ 0.1 keV) from the Local Bubble, absorbed kT ≅ 0.3 keV thermal emission related to the NPS and/or Galactic halo (GH), and a power-law component at a level consistent with the cosmic X-ray background. The emission measure (EM) of the 0.3 keV plasma decreases by ≅ 50% toward the inner regions of the northeast bubble, with no accompanying temperature change. However, such a jump in the EM is not clearly seen in the south bubble data. While it is unclear whether the NPS originates from a nearby supernova remnant or is related to previous activity within or around the Galactic center, our Suzaku observations provide evidence that suggests the latter scenario. In the latter framework, the presence of a large amount of neutral matter absorbing the X-ray emission as well as the existence of the kT ≅ 0.3 keV gas can be naturally interpreted as a weak shock driven by the bubbles' expansion in the surrounding medium, with velocity v {sub exp} ∼ 300 km s{sup –1} (corresponding to shock Mach number M≃1.5), compressing the GH gas to form the NPS feature. We also derived an upper limit for any non-thermal X-ray emission component associated with the bubbles and demonstrate that, in agreement with the aforementioned findings, the non-thermal pressure and energy estimated from a one-zone leptonic model of its broadband spectrum, are in rough equilibrium with that of the surrounding thermal plasma.

  16. Use of X-ray absorption imaging to examine heterogeneous diffusion in fractured crystalline rocks.

    PubMed

    Altman, Susan J; Uchida, Masahiro; Tidwell, Vincent C; Boney, Craig M; Chambers, Bryan P

    2004-03-01

    Heterogeneous diffusion in different regions of a fractured granodiorite from Japan has been observed and measured through the use of X-ray absorption imaging. These regions include gouge-filled fractures, recrystallized fracture-filling material and hydrothermally altered matrix. With the X-ray absorption imaging technique, porosity, relative concentration, and relative mass of an iodine tracer were imaged in two dimensions with a sub-millimeter pixel size. Because portions of the samples analyzed have relatively low porosity values, imaging errors can potentially impact the results. For this reason, efforts were made to better understand and quantify this error. Based on the X-ray data, pore diffusion coefficients (Dp) for the different regions were estimated assuming a single diffusion rate and a lognormal multirate distribution of Dp. Results show Dp for the gouge-filled fractures are over an order of magnitude greater than those of the recrystallized fracture-filling material, which in turn is approximately two times greater than those for the altered matrix. The recrystallized fracture-filling material was found to exhibit the greatest degree of variability. The results of these experiments also provide evidence that diffusion from advective zones in fractures through the gouge-filled fractures and recrystallized fracture-filling material could increase the pore space available for matrix diffusion. This evidence is important for understanding the performance of potential nuclear waste repositories in crystalline rocks as diffusion is thought to be an important retardation mechanism for radionuclides.

  17. Recommendation Based on Trust Diffusion Model

    PubMed Central

    Li, Li

    2014-01-01

    Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, and F Measure. PMID:25009827

  18. A Void Diffusion Model of Granular Flow

    NASA Astrophysics Data System (ADS)

    Rudra, Jayanta; Vieth, Paul

    2009-03-01

    In an earlier paper^1 we derived a nonlinear diffusion equation to describe the dynamics in granular flow based on a Diffusion Void Model (DVM). The equation was successfully used to describe the flow of a homogeneous granular material through the hole of a container under gravity. It also properly described similar flow in the presence of a flat horizontal barrier placed above the hole. Recently, however, we have found out that the above nonlinear equation does not lead to correct static equilibrium. For example, the stability of the free surface of a granular aggregate cannot be described by the equation. The equation also fails to describe, say, how an unstable vertical column of a granular material will change to a stable λ-shaped pile at the angle of repose. In this paper work we derive an equation using an appropriate current density of voids that can explain all the observed dynamical characteristics of a simple granular state. ^1Jayanta K. Rudra and D. C. Hong, Phys. Rev. E47, R1459(1993).

  19. Recommendation based on trust diffusion model.

    PubMed

    Yuan, Jinfeng; Li, Li

    2014-01-01

    Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, and F Measure.

  20. Circumnutation modeled by reaction-diffusion equations

    SciTech Connect

    Lubkin, S.R.

    1992-01-01

    In studies of biological oscillators, plants are only rarely examined. The authors study a common sub-diurnal oscillation of plants, called circumnutation. Based on experimental evidence that the oscillations consist of a turgor wave traveling around a growing plant part, circumnutation is modeled by a nonlinear reaction-diffusion system with cylindrical geometry. Because of its simplicity, and because biological oscillations are so common, an oscillatory [lambda]-[omega] reaction-diffusion system is chosen for the model. The authors study behavior of traveling waves in [lambda]-[omega] systems. The authors show the existence of Hopf bifurcations and the stability of the limit cycles born at the Hopf bifurcation for some parameter values. Using a Lindstedt-type perturbation scheme, the authors construct periodic solutions of the [lambda]-[omega] system near a Hopf bifurcation and show that the periodic solutions superimposed on the original traveling wave have the effect of altering its overall frequency and amplitude. Circumnutating plants generally display a strong directional preference to their oscillations, which is species-dependent. Circumnutation is modeled by a [lambda]-[omega] system on an annulus of variable width, which does not possess reflection symmetry about any axis. The annulus represents a region of high potassium concentration in the cross-section of the stem. The asymmetry of the annulus represents the anatomical asymmetry of the plant. Traveling waves are constructed on this variable-width annulus by a perturbation scheme, and perturbing the width of the annulus alters the amplitude and frequency of traveling waves on the domain by a small (order [epsilon][sup 2]) amount. The speed, frequency, and stability are unaffected by the direction of travel of the wave on the annulus. This indicates that the [lambda]-[omega] system on a variable-width domain cannot account for directional preferences of traveling waves in biological systems.

  1. a Diffusivity Model for Gas Diffusion in Dry Porous Media Composed of Converging-Diverging Capillaries

    NASA Astrophysics Data System (ADS)

    Wang, Shifang; Wu, Tao; Deng, Yongju; Zheng, Qiusha; Zheng, Qian

    2016-08-01

    Gas diffusion in dry porous media has been a hot topic in several areas of technology for many years. In this paper, a diffusivity model for gas diffusion in dry porous media is developed based on fractal theory and Fick’s law, which incorporates the effects of converging-diverging pores and tortuous characteristics of capillaries as well as Knudsen diffusion. The effective gas diffusivity model is expressed as a function of the fluctuation amplitude of the capillary cross-section size variations, the porosity, the pore area fractal dimension and the tortuosity fractal dimension. The results show that the relative diffusivity decreases with the increase of the fluctuation amplitude and increases with the increase of pore area fractal dimension. To verify the validity of the present model, the relative diffusivity from the proposed fractal model is compared with the existing experimental data as well as two available models of Bruggeman and Shou. Our proposed diffusivity model with pore converging-diverging effect included is in good agreement with reported experimental data.

  2. a Diffusivity Model for Gas Diffusion in Dry Porous Media Composed of Converging-Diverging Capillaries

    NASA Astrophysics Data System (ADS)

    Wang, Shifang; Wu, Tao; Deng, Yongju; Zheng, Qiusha; Zheng, Qian

    2016-08-01

    Gas diffusion in dry porous media has been a hot topic in several areas of technology for many years. In this paper, a diffusivity model for gas diffusion in dry porous media is developed based on fractal theory and Fick’s law, which incorporates the effects of converging-diverging pores and tortuous characteristics of capillaries as well as Knudsen diffusion. The effective gas diffusivity model is expressed as a function of the fluctuation amplitude of the capillary cross-section size variations, the porosity, the pore area fractal dimension and the tortuosity fractal dimension. The results show that the relative diffusivity decreases with the increase of the fluctuation amplitude and increases with the increase of pore area fractal dimension. To verify the validity of the present model, the relative diffusivity from the proposed fractal model is compared with the existing experimental data as well as two available models of Bruggeman and Shou. Our proposed diffusivity model with pore converging-diverging effect included is in good agreement with reported experimental data.

  3. COSMIC RAY MODULATION BEYOND THE HELIOPAUSE: A HYBRID MODELING APPROACH

    SciTech Connect

    Strauss, R. D.; Potgieter, M. S.; Ferreira, S. E. S.; Fichtner, H.; Scherer, K.

    2013-03-01

    Results from a newly developed hybrid cosmic ray (CR) modulation model are presented. In this approach, the transport of CRs is computed by incorporating the plasma flow from a magnetohydrodynamic model for the heliospheric environment, resulting in representative CR transport. The model is applied to the modulation of CRs beyond the heliopause (HP) and we show that (1) CR modulation persists beyond the HP, so it is unlikely that the Voyager spacecraft will measure the pristine local interstellar spectra of galactic CRs when crossing the HP. (2) CR modulation in the outer heliosheath could maintain solar-cycle-related changes. (3) The modulation of CRs in the outer heliosheath is primarily determined by the ratio of perpendicular to parallel diffusion, so that the value of the individual diffusion coefficients cannot be determined uniquely using this approach. (4) CRs can efficiently diffuse between the nose and tail regions of the heliosphere.

  4. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  5. Modeling of hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Isaac, K. M.

    1988-01-01

    Work performed during the first six months of the project duration for NASA Grant (NAG-1-861) is reported. An analytical and computational study of opposed jet diffusion flame for the purpose of understanding the effects of contaminants in the reactants and thermal diffusion of light species on extinction and reignition of diffusion flames is in progress. The methodologies attempted so far are described.

  6. A ray tracing model for leaf bidirectional scattering studies

    NASA Technical Reports Server (NTRS)

    Brakke, T. W.; Smith, J. A.

    1987-01-01

    A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.

  7. Modeling of hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Isaac, K. M.

    1989-01-01

    An analytical and computational study of opposed jet diffusion flame for the purpose of understanding the effects of contaminants in the reactants and thermal diffusion of light species on extinction and reignition of diffusion flames is in progress. The methodologies that have been attempted so far are described. Results using a simple, one-step reaction for the hydrogen-air counterflow diffusion flame are presented. These results show the correct trends in the profiles of chemical species and temperature. The extinction limit can be clearly seen in the plot of temperature vs. Damkohler number.

  8. Effects of particle drift on cosmic ray transport. II - Analytical solution to the modulation problem with no latitudinal diffusion

    NASA Technical Reports Server (NTRS)

    Isenberg, P. A.; Jokipii, J. R.

    1978-01-01

    An analytical solution to a model of the modulation of galactic cosmic rays in the presence of particle drifts is presented and discussed. The solution assumes an energy-independent radial diffusion coefficient proportional to distance and no latitudinal diffusion, and includes energy-independent particle drift velocities similar to those expected in a Parker spiral magnetic field with an equatorial current sheet. The solutions clearly demonstrate the large effects of drifts on the modulated cosmic-ray intensity. For values of the radial diffusion coefficient and particle drift velocity which are plausible for 1-GV-rigidity protons, the logarithmic radial gradient in the inner solar system is reduced by more than a factor of 5 over the value calculated in the absence of drifts. It is found that even for much smaller values of particle drift velocity and radial diffusion coefficient, such as might be expected for protons with energies of the order of 10 MeV, the effects of the drifts can be substantial.

  9. Effects of Spatially Heterogeneous Porosity on Matrix-Diffusion as Investigated by X ray Absorption Imaging

    SciTech Connect

    Boney, C.; Christian-Frear, T.; Meigs, L.C.; Tidwell, V.C.

    1998-10-20

    Laboratory experiments were performed to investigate the effects of spatial variation in porosity on matrix-diffusion processes. Four centimeter-scale slabs of Culebra dolomite taken from the Waste Isolation Pilot Plant site were used in the tests. Experiments involved the simple diffusion of iodine into a single edge of each rock slab while X ray absorption imaging was used to measure the resulting two-dmensional solute concentration field as a function of time. X ray imaging was also used to quantify the two-dimensional porosity field of each rock slab. Image analysis provided a unique opportunity to both visuake and quantifj the effects of the spatially variable porosi~ on matrixdMusion. Four key results were obtained. First, significant variation in rates of diffusion were realized over the relatively small length (centimeter) and time scales (months) investigated. Second, clear evidence of diffusion preferentially following zones of relatively higher porosity was noted. Third, rate of difhion was found to vary as tracer diffused into the rock slabs encountering changing porosity conditions. Fourth, strong correlation between porosi~ and the calculated diffusion coefficients was found. In fact, the nature of the correlation can be related to the geometry, position, and orientation of the heterogeneous porosity features populating each rock slab.

  10. Ray-tracing optical modeling of negative dysphotopsia

    NASA Astrophysics Data System (ADS)

    Hong, Xin; Liu, Yueai; Karakelle, Mutlu; Masket, Samuel; Fram, Nicole R.

    2011-12-01

    Negative dysphotopsia is a relatively common photic phenomenon that may occur after implantation of an intraocular lens. The etiology of negative dysphotopsia is not fully understood. In this investigation, optical modeling was developed using nonsequential-component Zemax ray-tracing technology to simulate photic phenomena experienced by the human eye. The simulation investigated the effects of pupil size, capsulorrhexis size, and bag diffusiveness. Results demonstrated the optical basis of negative dysphotopsia. We found that photic structures were mainly influenced by critical factors such as the capsulorrhexis size and the optical diffusiveness of the capsular bag. The simulations suggested the hypothesis that the anterior capsulorrhexis interacting with intraocular lens could induce negative dysphotopsia.

  11. Dark Matter implications of the Fermi-LAT measurement of anisotropies in the diffuse gamma-ray background: Status report

    NASA Astrophysics Data System (ADS)

    Fornasa, Mattia; Zavala, Jesus; Sánchez-Conde, Miguel A.; Prada, Francisco; Vogelsberger, Mark

    2012-11-01

    For the first time, the Fermi-LAT measured the angular power spectrum (APS) of anisotropies in the diffuse gamma-ray background. The data is found to be broadly compatible with a model with contributions from the point sources in the 1-yr catalog, the galactic diffuse background, and the extragalactic isotropic emission; however, deviations are present at both large and small angular scales. In this study, we complement the model with a contribution from Dark Matter (DM) whose distribution is modeled exploiting the results of the most recent N-body simulations, considering the contribution of extragalactic halos and subhalos (from Millennium-II) and of galactic substructures (from Aquarius). With the use of the Fermi Science Tools, these simulations serve as templates to produce mock gamma-ray count maps for DM gamma-ray emission, both in the case of an annihilating and a decaying DM candidate. The APS will then be computed and compared with the Fermi-LAT results to derive constraints on the DM particle physics properties. The possible systematic due to an imperfect model of the galactic foreground is also studied and taken into account properly. The present paper reports on the status of the project.

  12. Bayesian Analysis of Cosmic Ray Propagation: Evidence against Homogeneous Diffusion

    NASA Astrophysics Data System (ADS)

    Jóhannesson, G.; Ruiz de Austri, R.; Vincent, A. C.; Moskalenko, I. V.; Orlando, E.; Porter, T. A.; Strong, A. W.; Trotta, R.; Feroz, F.; Graff, P.; Hobson, M. P.

    2016-06-01

    We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, \\bar{p}, and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p,\\bar{p}, and He data are significantly different from those that fit light elements, including the B/C and 10Be/9Be secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.

  13. A diffusion model of a neuron and neural nets.

    PubMed

    Dabrowski, L

    1993-01-01

    In the paper a diffusion model of a neuron is treated. A new, less restrictive than usually, condition of applicability of a diffusion model is presented. As a result the point-process-to-point-process model of a neuron is obtained, which produces an output signal of the same kind as the accepted input signals.

  14. Some Problems in Using Diffusion Models for New Products

    ERIC Educational Resources Information Center

    Bernhardt, Irwin; Mackenzie, Kenneth D.

    1972-01-01

    Analyzes some of the problems involved in using diffusion models to formulate marketing strategies for introducing new products. Six models, which remove some of the theoretical and methodological restrictions inherent in current models of the adoption and diffusion process, are presented. (Author/JH)

  15. Reflection thermal diffuse x-ray scattering for quantitative determination of phonon dispersion relations

    SciTech Connect

    Mei, A. B.; Hellman, O.; Schlepuetz, C. M.; Rockett, A.; Chiang, T. -C.; Hultman, L.; Petrov, I.; Greene, J. E.

    2015-11-03

    Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities cv (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found to be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities cv (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10-4 eV/atom K at 100 K to 1.4 x 10-4 eV/atom K at 200 K and 1.9 x 10-4 eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values cp (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲ θc where θc is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲ 10 nm.

  16. Reflection thermal diffuse x-ray scattering for quantitative determination of phonon dispersion relations

    DOE PAGES

    Mei, A. B.; Hellman, O.; Schlepuetz, C. M.; Rockett, A.; Chiang, T. -C.; Hultman, L.; Petrov, I.; Greene, J. E.

    2015-11-03

    Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities cv (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found tomore » be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities cv (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10-4 eV/atom K at 100 K to 1.4 x 10-4 eV/atom K at 200 K and 1.9 x 10-4 eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values cp (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲ θc where θc is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲ 10 nm.« less

  17. Sedimentary radioactive tracers and diffusive models.

    PubMed

    Carroll, J; Lerche, I

    2010-08-01

    This paper examines the underlying assumptions and consequences of applying a steady-state equation to sediment profiles of radioactive tracers in order to deconvolute sedimentation from bioturbation processes modelled as a diffusive type process. Several factors follow immediately from this investigation: (i) if the observed radioactive concentration increases with depth over any finite depth range then the proposed steady-state, constant flux equation is not applicable. Any increase in radioactive concentration with depth implies a negative mixing coefficient which is a physical impossibility; (ii) when the radioactive concentration systematically decreases with increasing sedimentary depth then solutions to the steady-state conservation equation exist only when either the constant solid state flux to the sediment surface is small enough so that a positive mixing coefficient results or when the mixing coefficient is small enough so that a positive flux results. If the radioactive concentration, porosity and/or density of the solid phase are such that the proposed equation is inappropriate (because no physically acceptable solution exists) then one must abandon the proposed steady-state equation. Further: if the flux of solid sediment to the sediment surface varies with time then, of course, a steady-state conservation equation is also inappropriate. Simple examples illustrate that the assumption of steady-state restricts the applicability of this modelling approach to a relatively small sub-set of expected situations in the real world.

  18. Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum

    SciTech Connect

    Abazajian, Kevork N.; Agrawal, Prateek; Chacko, Zackaria; Kilic, Can E-mail: apr@umd.edu E-mail: kilic@physics.rutgers.edu

    2010-11-01

    We examine the constraints on final state radiation from Weakly Interacting Massive Particle (WIMP) dark matter candidates annihilating into various standard model final states, as imposed by the measurement of the isotropic diffuse gamma-ray background by the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope. The expected isotropic diffuse signal from dark matter annihilation has contributions from the local Milky Way (MW) as well as from extragalactic dark matter. The signal from the MW is very insensitive to the adopted dark matter profile of the halos, and dominates the signal from extragalactic halos, which is sensitive to the low mass cut-off of the halo mass function. We adopt a conservative model for both the low halo mass survival cut-off and the substructure boost factor of the Galactic and extragalactic components, and only consider the primary final state radiation. This provides robust constraints which reach the thermal production cross-section for low mass WIMPs annihilating into hadronic modes. We also reanalyze limits from HESS observations of the Galactic Ridge region using a conservative model for the dark matter halo profile. When combined with the HESS constraint, the isotropic diffuse spectrum rules out all interpretations of the PAMELA positron excess based on dark matter annihilation into two lepton final states. Annihilation into four leptons through new intermediate states, although constrained by the data, is not excluded.

  19. Antideuteron fluxes from dark matter annihilation in diffusion models

    SciTech Connect

    Donato, F.; Fornengo, N.; Maurin, D.

    2008-08-15

    Antideuterons are among the most promising galactic cosmic-ray-related targets for dark matter indirect detection. Currently only upper limits exist on the flux, but the development of new experiments, such as GAPS and AMS-02, provides exciting perspectives for a positive measurement in the near future. In this paper, we present a novel and updated calculation of both the secondary and primary d fluxes. We employ a two-zone diffusion model which successfully reproduces cosmic-ray nuclear data and the observed antiproton flux. We review the nuclear and astrophysical uncertainties and provide an up to date secondary (i.e. background) antideuteron flux. The primary (i.e. signal) contribution is calculated for generic weakly interactive massive particles (WIMPs) annihilating in the galactic halo: we explicitly consider and quantify the various sources of uncertainty in the theoretical evaluations. Propagation uncertainties, as is the case of antiprotons, are sizeable. Nevertheless, antideuterons offer an exciting target for indirect dark matter detection for low and intermediate mass WIMP dark matter. We then show the reaching capabilities of the future experiments for neutralino dark matter in a variety of supersymmetric models.

  20. Models to assess perfume diffusion from skin.

    PubMed

    Schwarzenbach, R; Bertschi, L

    2001-04-01

    Temperature, fragrance concentration on the skin and power of ventilation have been determined as crucial parameters in fragrance diffusion from skin. A tool has been developed to simulate perfume diffusion from skin over time, allowing headspace analysis and fragrance profile assessments in a highly reproducible way.

  1. Spatial and spectral features of soft diffuse X ray background seen by the Einstein observatory

    NASA Technical Reports Server (NTRS)

    Micela, G.; Harnden, F. R.; Rosner, R., Jr.; Sciortino, S.; Vaiana, G. S.

    1989-01-01

    A survey of the diffuse soft X-ray background as seen directly by the Einstein Observatory Imaging Proportional Counter (IPC) is presented. A source free region of the detector 1 by 1 degree field is used. The background in the 0.16 to 3.5 keV spectral region is viewed. The data covers roughly 5 percent of the sky, with some bias in coverage towards the galactic plane. The moderate energy resolution of the IPC enables the characterization and the production of maps of the background as a function of energy within the Einstein passband. The results are compared with previous observations of the diffuse X-ray background. The implications for galactic structure and for the soft component of the extragalactic X-ray background are discussed.

  2. Anisotropies of ultrahigh energy cosmic ray nuclei diffusing from extragalactic sources

    NASA Astrophysics Data System (ADS)

    Harari, Diego; Mollerach, Silvia; Roulet, Esteban

    2015-09-01

    We obtain the dipolar anisotropies in the arrival directions of ultrahigh energy cosmic ray nuclei diffusing from nearby extragalactic sources. We consider mixed-composition scenarios in which different cosmic ray nuclei are accelerated up to the same maximum rigidity, so that E ray diffusion in extragalactic turbulent fields as well as the effects of photodisintegrations and other energy losses. Dipolar anisotropies at the level of 5% to 10% at energies ˜10 EeV are predicted for plausible values of the source density and magnetic fields.

  3. An Ion Diffusion Model in Semi-Permeable Clay Materials

    SciTech Connect

    Liu, Chongxuan

    2007-08-01

    Ion diffusion in semi-impermeable clay materials dynamically interacts with electrostatic fields (or diffuse double layers) associated with clay particles. Current theory of ion transport in porous media containing fixed charges on solid materials, however, cannot explicitly account for the dynamic interactions. Here we proposed a model by coupling electrodynamics and nonequilibrium thermodynamics to describe ion diffusion in the clay materials. The developed model was validated by comparing the calculated and measured apparent ion diffusion coefficients in clay materials as a function of ionic strength, which affects the overlap extent of the electrostatic double layers associated with adjacent clay particles. The model shows that ion diffusion in clay materials is a complex function of factors including surface charge density, tortuosity, porosity, chemico-osmotic coefficient, and ion self-diffusivity. At transitional states, ion diffusive fluxes are dynamically related to the electrostatic fields, which shrink or expand as ion diffusion. At steady states, the electrostatic fields are time-invariant and ion diffusive fluxes conform to flux and concentration gradient relationships; and apparent diffusivity can be expressed by the ion diffusivity in bulk electrolytes corrected by a tortuosity factor and concentration gradient variations at the interfaces between clay materials and bulk solutions.

  4. Diffusion model of the non-stoichiometric uranium dioxide

    SciTech Connect

    Moore, Emily; Guéneau, Christine; Crocombette, Jean-Paul

    2013-07-15

    Uranium dioxide (UO{sub 2}), which is used in light water reactors, exhibits a large range of non-stoichiometry over a wide temperature scale up to 2000 K. Understanding diffusion behavior of uranium oxides under such conditions is essential to ensure safe reactor operation. The current understanding of diffusion properties is largely limited by the stoichiometric deviations inherent to the fuel. The present DICTRA-based model considers diffusion across non-stoichiometric ranges described by experimentally available data. A vacancy and interstitial model of diffusion is applied to the U–O system as a function of its defect structure derived from CALPHAD-type thermodynamic descriptions. Oxygen and uranium self and tracer diffusion coefficients are assessed for the construction of a mobility database. Chemical diffusion coefficients of oxygen are derived with respect to the Darken relation and migration energies of defects are evaluated as a function of stoichiometric deviation. - Graphical abstract: Complete description of Oxygen–Uranium diffusion as a function of composition at various temperatures according to the developed Dictra model. - Highlights: • Assessment of a uranium–oxygen diffusion model with Dictra. • Complete description of U–O diffusion over wide temperature and composition range. • Oxygen model includes terms for interstitial and vacancy migration. • Interaction terms between defects help describe non-stoichiometric domain of UO{sub 2±x}. • Uranium model is separated into mobility terms for the cationic species.

  5. Modeling diffusion in miscible polymer blend films.

    PubMed

    Indrakanti, Ananth; Ramesh, Narayan; Duda, J Larry; Kumar, Sanat K

    2004-07-01

    Recent experiments designed to probe polymer transport in the bulk and in the vicinity of surfaces have examined the interdiffusion of multilayer sandwiches of isotopically labeled polymers. The measured time dependent concentration profiles normal to the surface are typically fit to Fick's law, with a single fitting parameter, the mutual binary diffusion coefficient (MBDC). The resulting MBDCs are found to vary over a broad range of film thicknesses and time, with the time dependence being viewed as a unique signature of the reptation mechanism of long chain motion, and the thickness dependence being attributed to the slowing down of chain dynamics near surfaces. Since the experiments are conducted at finite concentration, the MBDC, which is a product of the bare mobility and the concentration derivative of the chemical potential, could be dominated by the time and thickness dependence of this second term (which is ignored in Fick's law). To quantify this conjecture we consider the more rigorous Cahn formulation of the diffusion problem in terms of chemical potential gradients. We use square gradient theory to evaluate chemical potentials, and fit the resulting time dependent concentration profiles to the analytical solution of Fick's law. By thus mimicking the experimental analysis we find that the apparent MBDCs vary with time as t(-1/2) at short times, in good agreement with existing experiments. We show that this time dependence reflects the system's desire to minimize concentration gradients, a fact ignored in Fick's law. Since these arguments make no reference to the mechanism of chain motion, we argue that the time dependence of MBDC derived from interdiffusion experiments does not provide unequivocal support for the reptation mechanism of long chain transport. The MBDC values, which also vary with the degree of confinement, are predicted to increase with decreasing thickness for model parameters corresponding to experimental systems. In contrast, since the

  6. Radon diffusion through multilayer earthen covers: models and simulations

    SciTech Connect

    Mayer, D.W.; Oster, C.A.; Nelson, R.W.; Gee, G.W.

    1981-09-01

    A capability to model and analyze the fundamental interactions that influence the diffusion of radon gas through uranium mill tailings and cover systems has been investigated. The purpose of this study is to develop the theoretical basis for modeling radon diffusion and to develop an understanding of the fundamental interactions that influence radon diffusion. This study develops the theoretical basis for modeling radon diffusion in one, two and three dimensions. The theory has been incorporated into three computer models that are used to analyze several tailings and cover configurations. This report contains a discussion of the theoretical basis for modeling radon diffusion, a discussion of the computer models used to analyze uranium mill tailings and multilayered cover systems, and presents the results that have been obtained.

  7. A social diffusion model with an application on election simulation.

    PubMed

    Lou, Jing-Kai; Wang, Fu-Min; Tsai, Chin-Hua; Hung, San-Chuan; Kung, Perng-Hwa; Lin, Shou-De; Chen, Kuan-Ta; Lei, Chin-Laung

    2014-01-01

    Issues about opinion diffusion have been studied for decades. It has so far no empirical approach to model the interflow and formation of crowd's opinion in elections due to two reasons. First, unlike the spread of information or flu, individuals have their intrinsic attitudes to election candidates in advance. Second, opinions are generally simply assumed as single values in most diffusion models. However, in this case, an opinion should represent preference toward multiple candidates. Previously done models thus may not intuitively interpret such scenario. This work is to design a diffusion model which is capable of managing the aforementioned scenario. To demonstrate the usefulness of our model, we simulate the diffusion on the network built based on a publicly available bibliography dataset. We compare the proposed model with other well-known models such as independent cascade. It turns out that our model consistently outperforms other models. We additionally investigate electoral issues with our model simulator.

  8. A Social Diffusion Model with an Application on Election Simulation

    PubMed Central

    Wang, Fu-Min; Hung, San-Chuan; Kung, Perng-Hwa; Lin, Shou-De

    2014-01-01

    Issues about opinion diffusion have been studied for decades. It has so far no empirical approach to model the interflow and formation of crowd's opinion in elections due to two reasons. First, unlike the spread of information or flu, individuals have their intrinsic attitudes to election candidates in advance. Second, opinions are generally simply assumed as single values in most diffusion models. However, in this case, an opinion should represent preference toward multiple candidates. Previously done models thus may not intuitively interpret such scenario. This work is to design a diffusion model which is capable of managing the aforementioned scenario. To demonstrate the usefulness of our model, we simulate the diffusion on the network built based on a publicly available bibliography dataset. We compare the proposed model with other well-known models such as independent cascade. It turns out that our model consistently outperforms other models. We additionally investigate electoral issues with our model simulator. PMID:24995351

  9. EGRET Diffuse Gamma Ray Maps Between 30 MeV and 10 GeV

    NASA Technical Reports Server (NTRS)

    Cillis, A, N.; Hartman, R. C.

    2004-01-01

    This paper presents all-sky maps of diffuse gamma radiation in various energy ranges between 30 MeV and 10 GeV, based on data collected by the EGRET instrument on the Compton Gamma Ray Observatory. Although the maps can be used for a variety of applications. the immediate goal is the generation of diffuse gamma-ray maps which can be used as a diffuse background/foreground for point source analysis of the data to be obtained from new high-energy gamma-ray missions like GLAST and AGILE. To generate the diffuse gamma maps from the raw EGRET maps, the point sources in the Third EGRET Catalog were subtracted out using the appropriate point spread function for each energy range. After that, smoothing was performed to minimize the effects of photon statistical noise. A smoothing length of 1 deg vas used for the Galactic plane maps. For the all-sky maps, a procedure was used which resulted in a smoothing length roughly equivalent to 4 deg. The result of this work is 16 maps of different energy intervals for absolute value of b < or equal to 20 deg, and 32 all-sky maps, 16 in equatorial coordinates (J2000) and 16 in Galactic coordinates.

  10. EGRET Diffuse Gamma Ray Maps Between 30 MeV and 10 GeV

    NASA Technical Reports Server (NTRS)

    Cillis, A. N.; Hartman, R. C.

    2004-01-01

    This paper presents all-sky maps of diffuse gamma radiation in various energy ranges between 30 MeV and 10 GeV, based on data collected by the EGRET instrument on the Compton Gamma Ray Observatory. Although the maps can be used for a variety of applications, the immediate goal is the generation of diffuse gamma-ray maps which can be used as a diffuse background/foreground for point source analysis of the data to be obtained from new high-energy gamma-ray missions like GLAST and AGILE. To generate the diffuse gamma maps from the raw EGRET maps, the point sources in the Third EGRET Catalog were subtracted out using the appropriate point spread function for each energy range. After that, smoothing was performed to minimize the effects of photon statistical noise. A smoothing length of 1deg was used for the Galactic plane maps. For the all-sky maps, a procedure was used which resulted in a smoothing length roughly equivalent to 4deg. The result of this work is 16 maps of different energy intervals for [b]less than or equal to 20deg, and 32 all-sky maps, 16 in equatorial coordinates (J2000) and 16 in Galactic coordinates.

  11. Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin

    2010-03-01

    Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.

  12. Some Problems in Using Diffusion Models for New Products.

    ERIC Educational Resources Information Center

    Bernhardt, Irwin; Mackenzie, Kenneth D.

    This paper analyzes some of the problems of using diffusion models to formulate marketing strategies for new products. Though future work in this area appears justified, many unresolved problems limit its application. There is no theory for adoption and diffusion processes; such a theory is outlined in this paper. The present models are too…

  13. Parameter Variability and Distributional Assumptions in the Diffusion Model

    ERIC Educational Resources Information Center

    Ratcliff, Roger

    2013-01-01

    If the diffusion model (Ratcliff & McKoon, 2008) is to account for the relative speeds of correct responses and errors, it is necessary that the components of processing identified by the model vary across the trials of a task. In standard applications, the rate at which information is accumulated by the diffusion process is assumed to be normally…

  14. A Comparison of Competing Models of the News Diffusion Process.

    ERIC Educational Resources Information Center

    Mayer, Michael E.; And Others

    1990-01-01

    Investigates the diffusion of information about the space shuttle Challenger explosion by comparing loglinear models of the diffusion process. Finds that the most parsimonious model with adequate goodness of fit was a linear one in which a person's location affected how the information was heard, which in turn affected when the information was…

  15. X-Ray Analysis of Point Sources and Diffuse Gas in Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Broming, Emma J.; Fuse, C.

    2010-01-01

    In an effort to determine the evolutionary state of Hickson Compact Groups (HCGs), we have performed an analysis of the sixteen HCGs in the Chandra X-Ray Observatory archives. HCGs are dense galactic systems, interacting on short time scales, which are ideal for studying galaxy mergers and interactions. We have analyzed both the diffuse gas emission of the compact groups as well as their associated individual point source populations. The total X-ray gas and total point source luminosities were used to determine the group's state of evolution. It was expected that the point source activity would allow for a clear-cut separation between compact groups in different evolutionary states. The sample groups were sorted into three evolutionary categories. Type-A groups are young systems, displaying a group dominated by spiral galaxies, active star formation, and little intragroup X-ray gas. Type-B groups are characterized by an intermediate X-ray point source population, an increased activity and interaction between group members, and intermediate diffuse gas component. HCG 97 is an example of a type-B system. It contains an intragroup gas medium, and eleven associated point sources. As the system further evolves, we expect to find a greater number of point sources. Type-C systems display an advanced stage of interaction between members, an extensive luminous point source population and a large diffuse gas reservoir. HCG 92, Stephan's Quintet, is the archetypical type-C system; it contains a large intragroup gas halo and twenty-six associated point sources. The archival HCGs investigated display a positive correlation between total point source luminosity and total diffuse gas luminosity. The results suggest X-ray point sources can be used to evaluate the evolutionary state of a group. Further research will probe the connection between fully coalesced compact groups and isolated elliptical galaxies.

  16. THEORETICAL EXPLANATION OF THE COSMIC-RAY PERPENDICULAR DIFFUSION COEFFICIENT IN THE NEARBY STARBURST GALAXY NGC 253

    SciTech Connect

    Buffie, K.; Shalchi, A.; Heesen, V. E-mail: v.heesen@soton.ac.uk

    2013-02-10

    Diffusion coefficients are usually used to describe the propagation of cosmic rays through the universe. Whereas such transport parameters can be obtained from experiments in the solar system, it is difficult to determine diffusion coefficients in the Milky Way or in external galaxies. Recently, a value for the perpendicular diffusion coefficient in the nearby starburst galaxy NGC 253 has been proposed. In the present paper, we reproduce this value theoretically by using an advanced analytical theory for perpendicular diffusion.

  17. Discovery of Diffuse Hard X-Ray Emission from the Vicinity of PSR J1648-4611 with Suzaku

    NASA Astrophysics Data System (ADS)

    Sakai, Michito; Matsumoto, Hironori; Haba, Yoshito; Kanou, Yasufumi; Miyamoto, Youhei

    2013-06-01

    We observed the pulsar PSR J1648-4611 with Suzaku. Two X-ray sources, Suzaku J1648-4610 (Src A) and Suzaku J1648-4615 (Src B), were found in the field of view. Src A is coincident with the pulsar PSR J1648-4611, which was also detected by the Fermi Gamma-ray Space Telescope. A hard-band image indicates that Src A is spatially extended. We found point sources in the vicinity of Src A by using a Chandra image of the same region, but the point sources have soft X-ray emission, and cannot explain the hard X-ray emission of Src A. The hard-band spectrum of Src A can be reproduced by a power-law model with a photon index of 2.0+0.9-0.7. The X-ray flux in the 2-10 keV band is 1.4 × 10-13 erg cm-2 s-1. The diffuse emission suggests a pulsar wind nebula around PSR J1648&"8211;4611, but the luminosity of Src A is much larger than that expected from the spin-down luminosity of the pulsar. Parts of the very-high-energy γ-ray emission of HESS J1646-458 may be powered by this pulsar wind nebula driven by PSR J1648-4611. Src B has soft emission, and its X-ray spectrum can be described by a power-law model with a photon index of 3.0+1.4-0.8. The X-ray flux in the 0.4-10 keV band is 6.4 × 10-14 erg s-1 cm-2. No counterpart for Src B has been found in the literature.

  18. A memory diffusion model for molecular anisotropic diffusion in siliceous β-zeolite.

    PubMed

    Ji, Xiangfei; An, Zhuanzhuan; Yang, Xiaofeng

    2016-01-01

    A memory diffusion model of molecules on β-zeolite is proposed. In the model, molecular diffusion in β-zeolites is treated as jumping from one adsorption site to its neighbors and the jumping probability is a compound probability which includes that provided by the transitional state theory as well as that derived from the information about which direction the target molecule comes from. The proposed approach reveals that the diffusivities along two crystal axes on β-zeolite are correlated. The model is tested by molecular dynamics simulations on diffusion of benzene and other simple molecules in β-zeolites. The results show that the molecules with larger diameters fit the prediction much better and that the "memory effects" are important in all cases.

  19. Dynamic hysteresis modeling including skin effect using diffusion equation model

    NASA Astrophysics Data System (ADS)

    Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader

    2016-07-01

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  20. Diffusive Acceleration of Cosmic-Ray Particles in Quasi-Parallel Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Jones, T. W.

    1994-05-01

    The diffusion-convection equation has been solved numerically in order to study the injection and acceleration of cosmic-ray particles at quasi-parallel shocks. Our previous numerical code has been improved to include realistic momentum-dependent diffusion coefficient. The particle distribution function is solved in the grid whose size is chosen in a momentum-dependent way, so that a fixed number of zones are contained in a diffusion length. Injection of the suprathermal particles is approximated through the diffusive scattering process itself, that is, the diffusion and acceleration of the thermal particles near the Maxwellian tail across the shock front. We show how the acceleration process is dependent on the details of the injection, the momentum-dependent diffusion, and the escaping high energy particles. The simulated particle spectrum from our calculation will be compared with that of a Monte-Carlo simulation of the particle acceleration at earth's bow shock by Ellison, Mobius and Paschmann (1990). Support for this work at the University of Minnesota is provided through the NSF, NASA and the University of Minnesota Supercomputer Institute. HK is supported in part by the Korea Research Foundation through the Brain Pool Program. { References: Ellison, D. C., Mobius, E., & Paschmann, G. 1990, Ap. J., 352, 376. }

  1. Radio galaxies dominate the high-energy diffuse gamma-ray background

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-01

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes, radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2+25.4-9.4% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.

  2. Radio galaxies dominate the high-energy diffuse gamma-ray background

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-01

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes, radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2+25.4‑9.4% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.

  3. Radio galaxies dominate the high-energy diffuse gamma-ray background

    DOE PAGES

    Hooper, Dan; Linden, Tim; Lopez, Alejandro

    2016-08-09

    It has been suggested that unresolved radio galaxies and radio quasars (sometimes referred to as misaligned active galactic nuclei) could be responsible for a significant fraction of the observed diffuse gamma-ray background. In this study, we use the latest data from the Fermi Gamma-Ray Space Telescope to characterize the gamma-ray emission from a sample of 51 radio galaxies. In addition to those sources that had previously been detected using Fermi data, we report here the first statistically significant detection of gamma-ray emission from the radio galaxies 3C 212, 3C 411, and B3 0309+411B. Combining this information with the radio fluxes,more » radio luminosity function, and redshift distribution of this source class, we find that radio galaxies dominate the diffuse gamma-ray background, generating 77.2(+25.4)(-9.4)% of this emission at energies above ~1 GeV . We discuss the implications of this result and point out that it provides support for scenarios in which IceCube's high-energy astrophysical neutrinos also originate from the same population of radio galaxies.« less

  4. Cosmic X-ray Physics: Sounding rocket investigations of the diffuse X-ray background, including instrument development

    NASA Astrophysics Data System (ADS)

    McCammon, Dan

    We propose an investigation to improve our understanding of the Galactic diffuse X-ray background. The ultimate purpose of this is to determine the role of hot phases of the interstellar medium in mediating stellar feedback in star formation, in transport of metals, and in determining the structure and evolution of the Galaxy. It directly addresses SMD's astrophysics goal No. 2, to explore the origin and evolution of the galaxies, stars and planets that make up our universe. This work will involve a flight of an existing payload with small modifications in Woomera, South Australia, to observe the Galactic soft X-ray bulge and attempt to determine its nature and emission mechanisms. This flight should also either confirm or put strict upper limits on the "sterile neutrino" model for the 3.5 keV signal observed near the Galactic Center by XMM-Newton. Our investigation includes the development of thermal detectors with superconducting transition edge thermometers capable of 1-2 eV FWHM energy resolution in the 100-400 eV range with the intent of obtaining a scientifically useful spectrum on a sounding rocket flight of the emission from one million degree gas in this energy range. This will require a total area of 1-2 square centimeters for the detector array. To enable routine testing of such detectors in the lab and for necessary in-flight gain and resolution monitoring, we are trying to develop a pulsed-UV laser calibration source. In collaboration with Goddard Space Flight Center, we are investigating the practicality of waveguide-below-cutoff filters to provide the necessary attenuation of infrared radiation for these detectors while still allowing good x-ray transmission below 150 eV. The detectors, calibration source, filters, optimal high-rate pulse analysis and flight experience with the detector readouts are all relevant to future NASA major missions. The detectors we're working on for a low-energy sounding rocket flight would be an excellent match to what is

  5. A Numerical Assessment of Cosmic-Ray Energy Diffusion through Turbulent Media

    NASA Astrophysics Data System (ADS)

    Fatuzzo, M.; Melia, F.

    2014-04-01

    How and where cosmic rays are produced, and how they diffuse through various turbulent media, represent fundamental problems in astrophysics with far-reaching implications, both in terms of our theoretical understanding of high-energy processes in the Milky Way and beyond, and the successful interpretation of space-based and ground based GeV and TeV observations. For example, recent and ongoing detections, e.g., by Fermi (in space) and HESS (in Namibia), of γ-rays produced in regions of dense molecular gas hold important clues for both processes. In this paper, we carry out a comprehensive numerical investigation of relativistic particle acceleration and transport through turbulent magnetized environments in order to derive broadly useful scaling laws for the energy diffusion coefficients.

  6. A numerical assessment of cosmic-ray energy diffusion through turbulent media

    SciTech Connect

    Fatuzzo, M.; Melia, F. E-mail: fmelia@email.arizona.edu

    2014-04-01

    How and where cosmic rays are produced, and how they diffuse through various turbulent media, represent fundamental problems in astrophysics with far-reaching implications, both in terms of our theoretical understanding of high-energy processes in the Milky Way and beyond, and the successful interpretation of space-based and ground based GeV and TeV observations. For example, recent and ongoing detections, e.g., by Fermi (in space) and HESS (in Namibia), of γ-rays produced in regions of dense molecular gas hold important clues for both processes. In this paper, we carry out a comprehensive numerical investigation of relativistic particle acceleration and transport through turbulent magnetized environments in order to derive broadly useful scaling laws for the energy diffusion coefficients.

  7. Diffusion of cosmic rays at EeV energies in inhomogeneous extragalactic magnetic fields

    SciTech Connect

    Batista, Rafael Alves; Sigl, Günter E-mail: guenter.sigl@desy.de

    2014-11-01

    Ultra-high energy cosmic rays can propagate diffusively in cosmic magnetic fields. When their propagation time is comparable to the age of the universe, a suppression in the flux relative to the case in the absence of magnetic fields will occur. In this work we find an approximate parametrization for this suppression for energies below ∼ Z EeV using several magnetic field distributions obtained from cosmological simulations of the magnetized cosmic web. We assume that the magnetic fields have a Kolmogorov power spectrum with the field strengths distributed according to these simulations. We show that, if magnetic fields are coupled to the matter distribution, low field strengths will fill most of the volume, making the suppression milder compared to the case of a constant magnetic field with strength equal to the mean value of this distribution. We also derive upper limits for this suppression to occur for some models of extragalactic magnetic fields, as a function of the coherence length of these fields.

  8. Gas-diffusion-layer structural properties under compression via X-ray tomography

    NASA Astrophysics Data System (ADS)

    Zenyuk, Iryna V.; Parkinson, Dilworth Y.; Connolly, Liam G.; Weber, Adam Z.

    2016-10-01

    There is a need to understand the structure properties of gas-diffusion layers (GDLs) in order to optimize their performance in various electrochemical devices. This information is important for mathematical modelers, experimentalists, and designers. In this article, a comprehensive study of a large set of commercially available GDLs' porosity, tortuosity, and pore-size distribution (PSD) under varying compression is presented in a single study using X-ray computed tomography (CT), which allows for a noninvasive measurement. Porosities and PSDs are directly obtained from reconstructed stacks of images, whereas tortuosity is computed with a finite-element simulation. Bimodal PSDs due to the presence of binder are observed for most of the GDLs, approaching unimodal distributions at high compressions. Sample to sample variability is conducted to show that morphological properties hold across various locations. Tortuosity values are the lowest for MRC and Freudenberg, highest for TGP, and in-between for SGL papers. The exponents for the MRC and Freudenberg tortuosity demonstrate a very small dependence on compression because the shapes of the pores are spherical indicating minimal heterogeneity. From the representative-elementary-volume studies it is shown that domains of 1 × 1 mm in-plane and full thickness in through-plane directions accurately represent GDL properties.

  9. The Diffuse EUV and X-Ray Background as a Probe of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Lieu, Richard

    2001-01-01

    We have used the Deep Survey telescope of the Extreme Ultraviolet Explorer to investigate shadows in the diffuse EUV/soft X-ray background that are cast by clouds in the interstellar medium. We confirm the existence of a shadow previously reported and provide evidence for two new shadows. We used IRAS data to identify the clouds producing these shadows and to determine their optical depth to EUV radiation. The EUV-absorbing clouds are optically thick in the EUV, and all EUV emission detected in the direction of these shadows must be produced from material in front of the clouds. We obtained new optical data to determine the distance to these clouds. We use a new differential cloud technique to obtain the pressure of the interstellar medium. These results do not depend on any zero-level calibration of the data. Our results provide evidence that the pressure of the hot interstellar gas is the same in three different directions in the local interstellar medium and is at least 8 times higher than that derived for the Local Cloud surrounding our Sun. This provides new evidence for large thermal pressure imbalances in the local ISM and directly contradicts the basic assumption of thermal pressure equilibrium used in almost all present models of the interstellar medium.

  10. Sodium Chloride Diffusion during Muscle Salting Evidenced by Energy-Dispersive X-ray Spectroscopy Imaging.

    PubMed

    Filgueras, Rénata; Peyrin, Frédéric; Vénien, Annie; Hénot, Jean Marc; Astruc, Thierry

    2016-01-27

    To better understand the relationship between the muscle structure and NaCl transfers in meat, we used energy-dispersive X-ray spectroscopy (EDS) coupled with scanning electron microscopy (SEM) to analyze brined and dry-salted rat muscles. The muscles were freeze-dried to avoid the delocalization of soluble ions that happens in regular dehydration through a graded series of ethanol. Na and Cl maps were superimposed on SEM images to combine the muscle structure and NaCl diffusion. Brining causes rapid diffusion of NaCl through the tissue. Most brine diffuses in a linear front from the muscle surface, but a small proportion enters through the perimysium network. The muscle area penetrated by brine shows heterogeneous patterns of NaCl retention, with some connective tissue islets containing more NaCl than other parts of perimysium. NaCl penetration is considerably slower after dry salting than after brining.

  11. Diffusion-driven precipitate growth and ripening of oxygen precipitates in boron doped silicon by dynamical x-ray diffraction

    SciTech Connect

    Will, J. Gröschel, A.; Bergmann, C.; Magerl, A.; Spiecker, E.

    2014-03-28

    X-ray Pendellösung fringes from three silicon single crystals measured at 900 °C are analyzed with respect to density and size of oxygen precipitates within a diffusion-driven growth model and compared with TEM investigations. It appears that boron doped (p+) material shows a higher precipitate density and a higher strain than moderately (p-) boron crystals. In-situ diffraction reveals a diffusion-driven precipitate growth followed by a second growth regime in both materials. An interpretation of the second growth regime in terms of Ostwald ripening yields surface energy values (around 70 erg/cm{sup 2}) similar to published data. Further, an increased nucleation rate by a factor of ∼13 is found in the p+ sample as compared to a p- sample at a nucleation temperature of 450 °C.

  12. Calculating model of light transmission efficiency of diffusers attached to a lighting cavity.

    PubMed

    Sun, Ching-Cherng; Chien, Wei-Ting; Moreno, Ivan; Hsieh, Chih-To; Lin, Mo-Cha; Hsiao, Shu-Li; Lee, Xuan-Hao

    2010-03-15

    A lighting cavity is a reflecting box with light sources inside. Its exit side is covered with a diffuser plate to mix and distribute light, which addresses a key issue of luminaires, display backlights, and other illumination systems. We derive a simple but precise formula for the optical efficiency of diffuser plates attached to a light cavity. We overcome the complexity of the scattering theory and the difficulty of the multiple calculations involved, by carrying out the calculation with a single ray of light that statistically represents all the scattered rays. We constructed and tested several optical cavities using light-emitting diodes, bulk-scattering diffusers, white scatter sheets, and silver coatings. All measurements are in good agreement with predictions from our optical model.

  13. Anisotropies in the Diffuse Gamma-Ray Background Measured by the Fermi LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; McEnery, J. E.; Troja, E.

    2012-01-01

    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi LAT at Galactic latitudes absolute value of b > 30 deg in four energy bins spanning 1 to 50 GeV. At multipoles l >= 155, corresponding to angular scales approx < 2 deg, angular power above the photon noise level is detected at > 99.99% CL in the 1-2 GeV, 2- 5 GeV, and 5- 10 GeV energy bins, and at > 99% CL at 10-50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles l >= 155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C(sub p) / (I)(exp 2) = 9.05 +/- 0.84 x 10(exp -6) sr, while the energy dependence of C(sub p) is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Gamma (sub s) = 2.40 +/- 0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background.

  14. A diffusivity model for predicting VOC diffusion in porous building materials based on fractal theory.

    PubMed

    Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping

    2015-12-15

    Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. PMID:26291782

  15. A computational kinetic model of diffusion for molecular systems.

    PubMed

    Teo, Ivan; Schulten, Klaus

    2013-09-28

    Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.

  16. INTRAGROUP AND GALAXY-LINKED DIFFUSE X-RAY EMISSION IN HICKSON COMPACT GROUPS

    SciTech Connect

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Hornschemeier, Ann E.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Konstantopoulos, Iraklis S.; Johnson, Kelsey E.; Zabludoff, Ann I.

    2013-02-15

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L{sub X} -T relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L{sub X} -{sigma} relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L{sub X} increases with decreasing group H I to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on H I morphology whereby systems with intragroup H I indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L{sub X} of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.

  17. Intragroup and Galaxy-linked Diffuse X-ray Emission In Hickson Compact Groups

    NASA Technical Reports Server (NTRS)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Mulchaey, John S.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Cardiff, Ann; Johnson, Kelsey E.; Konstantopoulos, Iraklis, S.; Zabludoff, Ann I.

    2013-01-01

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L(sub X-Tau) relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L(sub X-sigma) relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L(sub X) increases with decreasing group Hi to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on Hi morphology whereby systems with intragroup Hi indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L(sub X) of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.

  18. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  19. Updated Computational Model of Cosmic Rays Near Earth

    NASA Technical Reports Server (NTRS)

    ONeill, Patrick M.

    2006-01-01

    An updated computational model of the galactic-cosmic-ray (GCR) environment in the vicinity of the Earth, Earth s Moon, and Mars has been developed, and updated software has been developed to implement the updated model. This model accounts for solar modulation of the cosmic-ray contribution for each element from hydrogen through iron by computationally propagating the local interplanetary spectrum of each element through the heliosphere. The propagation is effected by solving the Fokker-Planck diffusion, convection, energy-loss boundary-value problem. The Advanced Composition Explorer NASA satellite has provided new data on GCR energy spectra. These new data were used to update the original model and greatly improve the accuracy of prediction of interplanetary GCR.

  20. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  1. Comparison of Turbulent Thermal Diffusivity and Scalar Variance Models

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.

    2016-01-01

    This paper will include a detailed comparison of heat transfer models that rely upon the thermal diffusivity. The goals are to inform users of the development history of the various models and the resulting differences in model formulations, as well as to evaluate the models on a variety of validation cases so that users might better understand which models are more broadly applicable.

  2. Model calculations for diffuse molecular clouds. [interstellar hydrogen cloud model

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Langer, W. D.

    1974-01-01

    A steady state isobaric cloud model is developed. The pressure, thermal, electrical, and chemical balance equations are solved simultaneously with a simple one dimensional approximation to the equation of radiative transfer appropriate to diffuse clouds. Cooling is mainly by CII fine structure transitions, and a variety of heating mechanisms are considered. Particular attention is given to the abundance variation of H2. Inhomogeneous density distributions are obtained because of the attenuation of the interstellar UV field and the conversion from atomic to molecular hyrodgen. The effects of changing the model parameters are described and the applicability of the model to OAO-3 observations is discussed. Good qualitative agreement with the fractional H2 abundance determinations has been obtained. The observed kinetic temperatures near 80 K can also be achieved by grain photoelectron heating. The problem of the electron density is solved taking special account of the various hydrogen ions as well as heavier ones.

  3. Nonequilibrium drift-diffusion model for organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Felekidis, Nikolaos; Melianas, Armantas; Kemerink, Martijn

    2016-07-01

    Two prevailing formalisms are currently used to model charge transport in organic semiconductor devices. Drift-diffusion calculations, on the one hand, are time effective but assume local thermodynamic equilibrium, which is not always realistic. Kinetic Monte Carlo models, on the other hand, do not require this assumption but are computationally expensive. Here, we present a nonequilibrium drift-diffusion model that bridges this gap by fusing the established multiple trap and release formalism with the drift-diffusion transport equation. For a prototypical photovoltaic system the model is shown to quantitatively describe, with a single set of parameters, experiments probing (1) temperature-dependent steady-state charge transport—space-charge limited currents, and (2) time-resolved charge transport and relaxation of nonequilibrated photocreated charges. Moreover, the outputs of the developed kinetic drift-diffusion model are an order of magnitude, or more, faster to compute and in good agreement with kinetic Monte Carlo calculations.

  4. What can the diffusion model tell us about prospective memory?

    PubMed

    Horn, Sebastian S; Bayen, Ute J; Smith, Rebekah E

    2011-03-01

    Cognitive process models, such as Ratcliff's (1978) diffusion model, are useful tools for examining cost or interference effects in event-based prospective memory (PM). The diffusion model includes several parameters that provide insight into how and why ongoing-task performance may be affected by a PM task and is ideally suited to analyse performance because both reaction time and accuracy are taken into account. Separate analyses of these measures can easily yield misleading interpretations in cases of speed-accuracy trade-offs. The diffusion model allows us to measure possible criterion shifts and is thus an important methodological improvement over standard analyses. Performance in an ongoing lexical-decision task was analysed with the diffusion model. The results suggest that criterion shifts play an important role when a PM task is added, but do not fully explain the cost effect on reaction time. PMID:21443332

  5. Is NGC 3199 the Third Wolf-Rayet Nebula with Diffuse X-ray emission?

    NASA Astrophysics Data System (ADS)

    Toala, J. a.

    2013-10-01

    X-ray emission from Wolf-Rayet (WR) nebulae is thought to be produced by the powerful winds from their central stars slamming into the circumstellar medium. Only 4 WR nebulae have been observed with the latest generation of X-ray satellites: S 308 (WR6), RCW58 (WR40), NGC6888 (WR136), and the nebula of WR16, but only S 308 and NGC6888 have been detected. ROSAT observations toward the WR nebula NGC3199 hinted at the presence of soft X-ray emission associated with this nebula, but the low angular resolution does not allow us to disentangle the different contributions to this emission. We request a 40 ks XMM-Newton EPIC-pn observation to help us study the distribution of the diffuse hot gas within the WR nebula NGC3199 around WR18.

  6. Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering

    DOE PAGES

    Zhu, Diling; Robert, Aymeric; Henighan, Tom; Lemke, Henrik T.; Chollet, Matthieu; Glownia, J. Mike; Reis, David A.; Trigo, Mariano

    2015-08-10

    We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with a momentum resolution of 0.01 nm-1 using 10-keV x rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principal symmetry directions. The phonon dispersion was reconstructed with less than 3 h of measurement time, during which neither the x-ray energy, the sample orientation, nor the detector positionmore » were scanned. In conclusion, these results demonstrate how time-domain measurements can complement conventional frequency domain inelastic-scattering techniques.« less

  7. Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering

    SciTech Connect

    Zhu, Diling; Robert, Aymeric; Lemke, Henrik T.; Trigo, Mariano

    2015-08-10

    We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with a momentum resolution of 0.01 nm-1 using 10-keV x rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principal symmetry directions. The phonon dispersion was reconstructed with less than 3 h of measurement time, during which neither the x-ray energy, the sample orientation, nor the detector position were scanned. In conclusion, these results demonstrate how time-domain measurements can complement conventional frequency domain inelastic-scattering techniques.

  8. Modeling Intragranular Diffusion in Low-Connectivity Granular Media

    SciTech Connect

    Ewing, Robert G.; Liu, Chongxuan; Hu, Qinhong

    2012-03-20

    Diffusive exchange of solutes between bulk water in an aquifer and water in the intragranular pores of the solid phase remains confusing after decades of study. In a previous paper, we reviewed some of the explanations, and suggested that the disparities between observation and theory were largely due to low connectivity of the intragranular pores. Low connectivity indicates that a useful conceptual framework is percolation theory, which guided our analysis. The present study was initiated to improve the finite difference (FD) model presented in the previous paper, and to test that new model rigorously against new random walk (RW) simulations of diffusion in low-connectivity porous spheres starting from non-equilibrium. The new FD model calculates diffusion separately in the infinite cluster and the finite clusters, and closely matches the new, more complex RW results. The percolation-theory based description of the new model is fairly simple, and can readily be incorporated into existing FD models. The simulations showed that the combination of low intragranular pore connectivity, and out-diffusion initiated at diffusive non-equilibrium, can produce diffusive behavior that appears as if the solute had undergone slow sorption, even in the absence of any sorption process. This mechanism may help explain some hitherto confusing aspects of intragranular diffusion.

  9. Diffusion models for Jupiter's radiation belt

    NASA Technical Reports Server (NTRS)

    Jacques, S. A.; Davis, L., Jr.

    1972-01-01

    Solutions are given for the diffusion of trapped particles in a planetary magnetic field in which the first and second adiabatic invariants are preserved but the third is not, using as boundary conditions a fixed density at the outer boundary (the magnetopause) and a zero density at an inner boundary (the planetary surface). Losses to an orbiting natural satellite are included and an approximate evaluation is made of the effects of the synchrotron radiation on the energy of relativistic electrons. Choosing parameters appropriate to Jupiter, the electrons required to produce the observed synchrotron radiation are explained. If a speculative mechanism in which the diffusion is driven by ionospheric wind is the true explanation of the electrons producing the synchrotron emission it can be concluded that Jupiter's inner magnetosphere is occupied by an energetic proton flux that would be a serious hazard to spacecraft.

  10. Prediction of the diffuse neutrino flux from cosmic ray interactions near supernova remnants

    NASA Astrophysics Data System (ADS)

    Mandelartz, Matthias; Becker Tjus, Julia

    2015-05-01

    In this paper, we present high-energy neutrino spectra from 21 Galactic supernova remnants (SNRs), derived from gamma-ray measurements in the GeV-TeV range. We find that only the strongest sources, i.e. G40.5-0.5 in the north and Vela Junior in the south could be detected as single point sources by IceCube or KM3NeT, respectively. For the first time, it is also possible to derive a diffuse signal by applying the observed correlation between gamma-ray emission and radio signal. Radio data from 234 supernova remnants listed in Green's catalog are used to show that the total diffuse neutrino flux is approximately a factor of 2.5 higher compared to the sources that are resolved so far. We show that the signal at above 10 TeV energies can actually become comparable to the diffuse neutrino flux component from interactions in the interstellar medium. Recently, the IceCube collaboration announced the detection of a first diffuse signal of astrophysical high-energy neutrinos. Directional information cannot unambiguously reveal the nature of the sources at this point due to low statistics. A number of events come from close to the Galactic center and one of the main questions is whether at least a part of the signal can be of Galactic nature. In this paper, we show that the diffuse flux from well-resolved SNRs is at least a factor of 20 below the observed flux.

  11. The diffuse γ ray from cosmic ray interactions in the Galaxy.

    NASA Astrophysics Data System (ADS)

    Chardonnet, P.

    The author discusses the γ production from nuclear interactions of cosmic ray particles on the interstellar gas in the standard framework of particle physics by using the LUND Monte Carlo. He evaluates this background in the energy range between 1 GeV and 10 TeV with the known map of interstellar gas. In this way, it is possible to predict the number of photons received by a typical Cerenkov detector. It is shown that the galactic background could be seen by this kind of telescope.

  12. Addition of Diffusion Model to MELCOR and Comparison with Data

    SciTech Connect

    Brad Merrill; Richard Moore; Chang Oh

    2004-06-01

    A chemical diffusion model was incorporated into the thermal-hydraulics package of the MELCOR Severe Accident code (Reference 1) for analyzing air ingress events for a very high temperature gas-cooled reactor.

  13. THE FERMI BUBBLES: SUPERSONIC ACTIVE GALACTIC NUCLEUS JETS WITH ANISOTROPIC COSMIC-RAY DIFFUSION

    SciTech Connect

    Yang, H.-Y. K.; Ruszkowski, M.; Ricker, P. M.; Zweibel, E.; Lee, D.

    2012-12-20

    The Fermi Gamma-Ray Space Telescope reveals two large bubbles in the Galaxy, which extend nearly symmetrically {approx}50 Degree-Sign above and below the Galactic center. Using three-dimensional (3D) magnetohydrodynamic simulations that self-consistently include the dynamical interaction between cosmic rays (CRs) and thermal gas and anisotropic CR diffusion along the magnetic field lines, we show that the key characteristics of the observed gamma-ray bubbles and the spatially correlated X-ray features in the ROSAT 1.5 keV map can be successfully reproduced by recent jet activity from the central active galactic nucleus. We find that after taking into account the projection of the 3D bubbles onto the sky the physical heights of the bubbles can be much smaller than previously thought, greatly reducing the formation time of the bubbles to about a Myr. This relatively small bubble age is needed to reconcile the simulations with the upper limit of bubble ages estimated from the cooling time of high-energy electrons. No additional physical mechanisms are required to suppress large-scale hydrodynamic instabilities because the evolution time is too short for them to develop. The simulated CR bubbles are edge-brightened, which is consistent with the observed projected flat surface brightness distribution. Furthermore, we demonstrate that the sharp edges of the observed bubbles can be due to anisotropic CR diffusion along magnetic field lines that drape around the bubbles during their supersonic expansion, with suppressed perpendicular diffusion across the bubble surface. Possible causes of the slight bends of the Fermi bubbles to the west are also discussed.

  14. Modelling oxygen self-diffusion in UO2 under pressure

    DOE PAGES

    Cooper, Michael William D.; Grimes, R. W.; Fitzpatrick, M. E.; Chroneos, A.

    2015-10-22

    Access to values for oxygen self-diffusion over a range of temperatures and pressures in UO2 is important to nuclear fuel applications. Here, elastic and expansivity data are used in the framework of a thermodynamic model, the cBΩ model, to derive the oxygen self-diffusion coefficient in UO2 over a range of pressures (0–10 GPa) and temperatures (300–1900 K). Furthermore, the significant reduction in oxygen self-diffusion as a function of increasing hydrostatic pressure, and the associated increase in activation energy, is identified.

  15. A model for diffusive systems: Beyond the Arrhenius mechanism

    NASA Astrophysics Data System (ADS)

    Rosa, A. C. P.; Vaveliuk, Pablo; Mundim, Kleber C.; Moret, M. A.

    2016-05-01

    Diffusivity in supercooled liquids was observed to exhibit a non-Arrhenius behavior near the glass-transition temperature. This process, which occurs where the activation energy depends on the temperature, suggests the possibility of a metastable equilibrium. This peculiar phenomenon cannot be explained using the usual Markovian stochastic models. Based on a non-linear Fokker-Planck equation, we propose a diffusion coefficient that is proportional to the supercooled-liquid concentration. The proposed model allows us to explain the anomalous behavior of the diffusivity robustly. We demonstrate that this new approach is consistent with experimental patterns. Besides, it could be applied to non-Arrhenius chemical kinetics.

  16. Diffusion in pulsar wind nebulae: an investigation using magnetohydrodynamic and particle transport models

    NASA Astrophysics Data System (ADS)

    Porth, O.; Vorster, M. J.; Lyutikov, M.; Engelbrecht, N. E.

    2016-08-01

    We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional magnetohydrodynamic (MHD) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity, and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti model but the Porth et al. model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of particles, with average Péclet number close to unity, indicating that both advection and diffusion play an important role in particle transport. We find that the diffusive transport coefficient of the order of ˜ 2 × 1027(Ls/0.42 Ly) cm2 s- 1 (Ls is the size of the termination shock) is independent of energy up to extreme particle Lorentz factors of γp ˜ 1010.

  17. A revisit of gamma-ray luminosity function and contribution to the extragalactic diffuse gamma-ray background for Fermi FSRQs

    NASA Astrophysics Data System (ADS)

    Zeng, Houdun; Yan, Dahai; Zhang, Li

    2013-05-01

    A clean sample of flat-spectrum radio quasars (FSRQs) has been provided by Fermi Large Area Telescope (LAT) in two years of operation. Based on this sample, we reconstruct the gamma-ray luminosity function (GLF) in the framework of the luminosity-dependent density evolution (LDDE) model, and obtain the best-fitting GLF by comparing the distributions of observed redshifts, luminosities, indexes and source counts with the predicted distribution of the GLF through the Markov Chain Monte Carlo (MCMC) method which constrains the model parameters in an efficient way. Using the best-fitting GLF, we estimate the contribution of Fermi-undetected FSRQs to the extragalactic diffuse gamma-ray background (EGRB), and find that the contribution of unresolved FSRQs to the EGRB is 10.1 ± 4.7 per cent in the 0.1-100 GeV band. We also study the influence of different bins of redshifts, luminosities and spectral indices on the contribution to EGRB from the unresolved FSRQs, and find that the contributions of unresolved FSRQs in the redshift range of z = 0.0-2.0 and in the gamma-ray luminosity range of 1044-1048 erg s-1 are ˜90 per cent, respectively.

  18. The diffusion and telegraph equations in diagenetic modeling

    SciTech Connect

    Boudreau, B.P. )

    1989-08-01

    This paper considers the practical aspects of differentiating between the solutions of the Diffusion and Telegraph Equations when they are used to model molecular diffusion in sediment pore waters and the diffusive bioturbation of solids. If molecular diffusion is the only transport mechanism in pore water, then the results from a simple random-walk model coupled to the hydrodynamic or kinetic theories of diffusion indicate that the solute profiles predicted by these two equations differ measurably only for periods up to 10{sup {minus}10} s after the introduction of a transient and for spatial scales less than 10{sup {minus}6} cm. In addition, the distinct propagating front predicted by the Telegraph Equation moves so fast and is so attenuated as to be unmeasurable. In this situation, the Telegraph Equation offers no practical advantage over the Diffusion Equation for the description of diagenetic pore water profiles. These findings also hold when advection due to burial and chemical reaction are included in the model. The time scales associated with bioturbation of solids are sufficiently long compared to normal sampling times that the profiles of some transients, both in deep-sea and near-shore sediments, should exhibit behavior characteristic of the Telegraph Equation if mixing is diffusive (local).

  19. Amphiphile diffusion in model membrane systems studied by pulsed NMR.

    PubMed

    Lindblom, G; Wennerström, H

    1977-01-01

    The translational diffusion of the amphiphilic molecules in a number of lyotropic liquid crystalline phases has been measured with the pulsed NMR pulsed magnetic field gradient method. The amphiphiles studied were soaps, monoglycerids and lecithins. Measurements were performed both for oriented lamellar and for cubic phases. The order of magnitude of the diffusion coefficients was found to be the same as in neat liquids of analogous compounds. It was also found that the difussion coefficient depend markedly on the amphiphile end group in a way that parallels the area per polar head group as determined in X-ray studies. When corrections for geometrical factors has been made the diffusion rate is approximately equal in cubic and lamellar phases containing the same amphiphile.

  20. Angular Signatures of Dark Matter in the Diffuse Gamma Ray Spectrum

    SciTech Connect

    Hooper, Dan; Serpico, Pasquale D.; /Fermilab

    2007-02-01

    Dark matter annihilating in our Galaxy's halo and elsewhere in the universe is expected to generate a diffuse flux of gamma rays, potentially observable with next generation satellite-based experiments, such as GLAST. In this article, we study the signatures of dark matter in the angular distribution of this radiation. Pertaining to the extragalactic contribution, we discuss the effect of the motion of the solar system with respect to the cosmological rest frame, and anisotropies due to the structure of our local universe. For the gamma ray flux from dark matter in our own Galactic halo, we discuss the effects of the offset position of the solar system, the Compton-Getting effect, the asphericity of the Milky Way halo, and the signatures of nearby substructure. We explore the prospects for the detection of these features by the GLAST satellite and find that, if {approx} 10% or more of the diffuse gamma ray background observed by EGRET is the result of dark matter annihilations, then GLAST should be sensitive to anisotropies down to the 0.1% level. Such precision would be sufficient to detect many, if not all, of the signatures discussed in this paper.

  1. A New Determination of the Extragalactic Diffuse X-Ray Background from EGRET Data

    NASA Technical Reports Server (NTRS)

    Strong, Andrew W.; Moskalenko, Igor V.; Reimer, Olaf

    2004-01-01

    We use the GALPROP model for cosmic-ray propagation to obtain a new estimate of the Galactic component of gamma rays, and show that away from the Galactic plane it gives an accurate prediction of the observed EGRET intensities in the energy range 30 MeV - 50 GeV. On this basis we re-evaluate the extragalactic gamma-ray background. We find that for some energies previous work underestimated the Galactic contribution at high latitudes and hence overestimated the background. Our new background spectrum shows a positive curvature similar to that expected for models of the extragalactic emission based on the blazar population.

  2. A simplified ab initio cosmic-ray modulation model: construction and predictive capabilities

    NASA Astrophysics Data System (ADS)

    Moloto, Katlego; Burger, Renier; Engelbrecht, Nicholas

    2016-07-01

    A simplified ab initio approach is followed to model cosmic-ray modulation using a steady-state three-dimensional stochastic solver of the Parker transport equation. Standard diffusion coefficients based on Quasilinear Theory (QLT) and Nonlinear Guiding Center Theory (NLGC) are used. The spatial dependence of turbulence quantities required as input for the drift- and diffusion coefficients, follow from parametric fits to results from a turbulence transport model. Effective values are used for the solar wind speed, magnetic field magnitude and tilt angle in the modulation model. The unusually high cosmic-ray intensities observed during the 2009 solar minimum follow naturally from the current model for most of the energies considered. This demonstrates that changes in turbulence contribute significantly to than usual cosmic-ray intensities during the 2009 solar minimum. We also discuss and illustrate how this model can be used to predict future cosmic-ray intensities, and comment on the reliability of such predictions.

  3. Indirect Dark Matter Searches Versus Cosmic Ray Transport Model Uncertainties

    NASA Astrophysics Data System (ADS)

    Gebauer, I.

    2010-12-01

    The assumption of isotropic diffusion has led to successful models for CR transport, capable of explaining the locally observed CR spectra, as well as the diffuse Galactic gamma rays up to 1 GeV. These models currently form the basis for many indirect DM searches. Galactic winds with speeds of more than 100 km/s have been observed by ROSAT. Such wind speeds are incompatible with isotropic diffusion. Here, a transport model for Galactic CRs compatible with the wind velocities observed by ROSAT is presented. In such a model the contribution of antiprotons and positrons from Dark Matter annihilation to the local fluxes of CRs is reduced by a factor of {\\cal O}(10). We compare the model to the INTEGRAL observations of a large bulge/disk ratio, the WMAP haze and the EGRET excess, all of which have been interpreted in the context of Dark Matter annihilation (DMA) and comment on the DMA interpretation of the PAMELA and ATIC/PPB-BETS results.

  4. Cosmic X-ray Physics: A Suborbital Investigation of the Diffuse X-ray Background Including Instrumentation Development

    NASA Astrophysics Data System (ADS)

    McCammon, Dan

    We propose an investigation to improve our understanding of the Galactic diffuse X-ray background. The ultimate purpose of this is to determine the role of hot phases of the interstellar medium in mediating stellar feedback in star formation, in transport of metals, and in determining the structure and evolution of the Galaxy. This work will involve a flight of an existing payload with small modifications in Woomera, South Australia, to observe the Galactic soft X-ray bulge and attempt to determine its nature and emission mechanisms. It will also involve the development of detectors capable of 1-2 eV FWHM energy resolution in the 100-400 eV range with the intent of obtaining a scientifically useful spectrum on a sounding rocket flight of the emission from one million degree gas in this energy range. This will require a total area of 1-2 cm^2 for the detector array. With the collaboration and advice of microwave experts at the Goddard Space Flight Center, we will fabricate and test waveguide-below-cutoff filters to provide the necessary attenuation of infrared radiation for these detectors while still allowing relatively good x- ray transmission below 300 eV. The detectors, filters, and flight experience with the detector readouts are all relevant to future NASA major missions. The filters would be particularly valuable in allowing thermal detectors (microcalorimeters) similar to those used here in the X-ray range to be applied to the EUV and vacuum ultraviolet, where they offer large potential gains over existing detectors. These investigations will provide the primary training for our graduate students, and will involve a substantial number of undergraduates.

  5. Scaling in the Diffusion Limited Aggregation Model

    NASA Astrophysics Data System (ADS)

    Menshutin, Anton

    2012-01-01

    We present a self-consistent picture of diffusion limited aggregation (DLA) growth based on the assumption that the probability density P(r,N) for the next particle to be attached within the distance r to the center of the cluster is expressible in the scale-invariant form P[r/Rdep(N)]. It follows from this assumption that there is no multiscaling issue in DLA and there is only a single fractal dimension D for all length scales. We check our assumption self-consistently by calculating the particle-density distribution with a measured P(r/Rdep) function on an ensemble with 1000 clusters of 5×107 particles each. We also show that a nontrivial multiscaling function D(x) can be obtained only when small clusters (N<10000) are used to calculate D(x). Hence, multiscaling is a finite-size effect and is not intrinsic to DLA.

  6. Diffuse Gamma-Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.; Paglione, Timothy A. D.; Marscher, Alan P.; Jackson, James M.

    1995-01-01

    The starburst galaxy NGC 253 was observed with the Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory (CGRO) satellite. We obtain a 2 sigma upper limit to the gamma-ray emission above 100 MeV of 8 x 10(exp -8) photons/sq cm/s. Because of their large gas column densities and supernova rates, nearby starburst galaxies were predicted to have gamma-ray fluxes detectable by EGRET. Our nondetection of gamma-rays from NGC 253 motivates us to reexamine in detail the premise of supernova acceleration of cosmic rays and the effect of enhanced cloud densities, photon densities, and magnetic fields on the high-energy spectra of galaxies. By modeling the expected gamma-ray and synchrotron spectra from NGC 253, we find that up to 20% of the energy from supernovae is transferred to cosmic rays in the starburst, which is consistent with supernova acceleration models. Our calculations match the EGRET and radio data well with a supernova rate of 0.08/yr, a magnetic field B greater than or approximately equal to 5 x 10(exp -5) G, a density n approximately 300/cu cm, a photon density U(sub ph) approximately 200 eV/cu cm, and an escape timescale tau(sub o) less than or approximately equal to 10 Myr.

  7. Diffusive feed of reactants and Hopf bifurcations in an oscillatory reaction-diffusion model

    NASA Astrophysics Data System (ADS)

    von Haeften, B.; Izús, G. G.

    1999-01-01

    We study an oscillatory chemical model (the "Brusselator") with the aim of analyzing the effect of a controlled diffusive feed of reactants in the appearance of chemical oscillations. The reflectivities of the boundary, which adjust the external fluxes, act as control parameters capable to alter the attractive basin of the thermodynamic branch, leading to oscillatory behavior.

  8. Innovation Diffusion Model in Higher Education: Case Study of E-Learning Diffusion

    ERIC Educational Resources Information Center

    Buc, Sanjana; Divjak, Blaženka

    2015-01-01

    The diffusion of innovation (DOI) is critical for any organization and especially nowadays for higher education institutions (HEIs) in the light of vast pressure of emerging educational technologies as well as of the demand of economy and society. DOI takes into account the initial and the implementation phase. The conceptual model of DOI in…

  9. A NUMERICAL STUDY OF DIFFUSIVE COSMIC-RAY TRANSPORT WITH ADIABATIC FOCUSING

    SciTech Connect

    Litvinenko, Yuri E.; Noble, P. L.

    2013-03-01

    Focused particle transport in a nonuniform large-scale magnetic field is investigated numerically in the case of isotropic pitch-angle scattering. Evolving particle density profiles and distribution moments are computed from solutions of a system of stochastic differential equations, equivalent to the original Fokker-Planck equation for the particle distribution. Conflicting analytical predictions for the transport coefficients in the diffusion limit, independently calculated by Beeck and Wibberenz and Shalchi, are compared with the numerical results. The reasons for the discrepancies among the analytical and numerical treatments, as well as the general limitations of the diffusion model, are discussed. The telegraph equation, derived in a higher-order expansion of the particle distribution function, is shown to describe the particle transport much more accurately than the diffusion model, especially ahead of a moving density pulse.

  10. SOLVING THE TWO-DIMENSIONAL DIFFUSION FLOW MODEL.

    USGS Publications Warehouse

    Hromadka, T.V.; Lai, Chintu

    1985-01-01

    A simplification of the two-dimensional (2-D) continuity and momentum equations is the diffusion equation. To investigate its capability, the numerical model using the diffusion approach is applied to a hypothetical failure problem of a regional water reservoir. The model is based on an explicit, integrated finite-difference scheme, and the floodplain is simulated by a popular home computer which supports 64K FORTRAN. Though simple, the 2-D model can simulate some interesting flooding effects that a 1-D full dynamic model cannot.

  11. Update on Advection-Diffusion Purge Flow Model

    NASA Technical Reports Server (NTRS)

    Brieda, Lubos

    2015-01-01

    Gaseous purge is commonly used in sensitive spacecraft optical or electronic instruments to prevent infiltration of contaminants and/or water vapor. Typically, purge is sized using simplistic zero-dimensional models that do not take into account instrument geometry, surface effects, and the dependence of diffusive flux on the concentration gradient. For this reason, an axisymmetric computational fluid dynamics (CFD) simulation was recently developed to model contaminant infiltration and removal by purge. The solver uses a combined Navier-Stokes and Advection-Diffusion approach. In this talk, we report on updates in the model, namely inclusion of a particulate transport model.

  12. The relativistic feedback discharge model of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  13. Analysis of XMM-Newton Data from Extended Sources and the Diffuse X-Ray Background

    NASA Technical Reports Server (NTRS)

    Snowden, Steven

    2011-01-01

    Reduction of X-ray data from extended objects and the diffuse background is a complicated process that requires attention to the details of the instrumental response as well as an understanding of the multiple background components. We present methods and software that we have developed to reduce data from XMM-Newton EPIC imaging observations for both the MOS and PN instruments. The software has now been included in the Science Analysis System (SAS) package available through the XMM-Newton Science Operations Center (SOC).

  14. X-ray diffuse scattering measurements of nucleation dynamics at femtosecond resolution.

    PubMed

    Lindenberg, A M; Engemann, S; Gaffney, K J; Sokolowski-Tinten, K; Larsson, J; Hillyard, P B; Reis, D A; Fritz, D M; Arthur, J; Akre, R A; George, M J; Deb, A; Bucksbaum, P H; Hajdu, J; Meyer, D A; Nicoul, M; Blome, C; Tschentscher, Th; Cavalieri, A L; Falcone, R W; Lee, S H; Pahl, R; Rudati, J; Fuoss, P H; Nelson, A J; Krejcik, P; Siddons, D P; Lorazo, P; Hastings, J B

    2008-04-01

    Femtosecond time-resolved small and wide angle x-ray diffuse scattering techniques are applied to investigate the ultrafast nucleation processes that occur during the ablation process in semiconducting materials. Following intense optical excitation, a transient liquid state of high compressibility characterized by large-amplitude density fluctuations is observed and the buildup of these fluctuations is measured in real time. Small-angle scattering measurements reveal snapshots of the spontaneous nucleation of nanoscale voids within a metastable liquid and support theoretical predictions of the ablation process.

  15. Ultrafast laser-induced melting and ablation studied by time-resolved diffuse X-ray scattering

    NASA Astrophysics Data System (ADS)

    Nicoul, M.; Quirin, F.; Lindenberg, A. M.; Barty, A.; Fritz, D. M.; Zhu, D.; Lemke, H.; Chollet, M.; Reis, D. A.; Chen, J.; Ghimire, S.; Trigo, M.; Fuchs, M.; Gaffney, K. J.; Larsson, J.; Becker, T.; Meyer, S.; Payer, T.; Heringdorf, F. Meyer zu; Horn von Hoegen, M.; Jerman, M.; Sokolowski-Tinten, K.

    2013-03-01

    Time-resolved diffuse X-ray scattering with 50 fs, 9.5 keV X-ray pulses from the Linear Coherent Light Source was used to study the structural dynamics in materials undergoing rapid melting and ablation after fs laser excitation.

  16. Second launch of the Diffuse X-ray emission from the Local Galaxy (DXL) mission

    NASA Astrophysics Data System (ADS)

    Mohan Sapkota, Dhaka

    2016-04-01

    The Diffuse X-ray emission from the Local Galaxy (DXL) is a sounding rocket mission to study the Solar Wind Charge Exchange (SWCX) and Local Hot Bubble (LHB) X-ray emission. After a successful launch of December 2012, DXL’s capabilities were expanded by using two additional proportional counters and three unique filters for the launch of December 2015. Employing Be-, B- and C-based plastic filters, DXL mission re-scanned the Helium Focusing Cone for better spectral and positional information (to address the IBEX controversy). In this paper, we will review the upgraded mission hardware and performance, while sharing some preliminary results from the latest observation.Submitted for the DXL Collaboration

  17. Characterizing time dependent anomalous diffusion process: A survey on fractional derivative and nonlinear models

    NASA Astrophysics Data System (ADS)

    Wei, Song; Chen, Wen; Hon, Y. C.

    2016-11-01

    This paper investigates the temporal effects in the modeling of flows through porous media and particles transport. Studies will be made among the time fractional diffusion model and two classical nonlinear diffusion models. The effects of the parameters upon the mentioned models have been studied. By simulating the sub-diffusion processes and comparing the numerical results of these models under different boundary conditions, we can conclude that the time fractional diffusion model is more suitable for simulating the sub-diffusion with steady diffusion rate; whereas the nonlinear models are more appropriate for depicting the sub-diffusion under changing diffusion rate.

  18. Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie

    2011-01-01

    Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  19. Cosmic ray knee and diffuse {gamma}, e{sup +} and p-bar fluxes from collisions of cosmic rays with dark matter

    SciTech Connect

    Masip, Manuel; Mastromatteo, Iacopo E-mail: iacopomas@infis.univ.trieste.it

    2008-12-15

    In models with extra dimensions the fundamental scale of gravity M{sub D} could be of the order of TeV. In that case the interaction cross section between a cosmic proton of energy E and a dark matter particle {chi} will grow fast with E for center-of-mass energies {radical}(2m{sub {chi}}E) above M{sub D}, and it could reach 1 mbarn at E Almost-Equal-To 10{sup 9} GeV. We show that these gravity-mediated processes would break the proton and produce a diffuse flux of particles/antiparticles, while boosting {chi} with a fraction of the initial proton energy. We find that the expected cross sections and dark matter densities are not enough to produce an observable asymmetry in the flux of the most energetic (extragalactic) cosmic rays. However, we propose that unsuppressed TeV interactions may be the origin of the knee observed in the spectrum of galactic cosmic rays. The knee would appear at the energy threshold for the interaction of dark matter particles with cosmic protons trapped in the galaxy by Micro-Sign G magnetic fields, and it would imply a well-defined flux of secondary antiparticles and TeV gamma rays.

  20. A Differential Absorption/Emission Analysis of the Galactic Central Diffuse X-ray Enhancement

    NASA Astrophysics Data System (ADS)

    Yao, Yangsen; Wang, Q.

    2007-05-01

    The soft X-ray background shows a general enhancement toward the inner region of the Galaxy. But whether this enhancement is a local feature (e.g., a superbubble within a distance of 200 pc or a phenomenon related to energetic outflows from the Galactic center/bulge remains unclear. Here we report a comparative X-ray emission and absorption study of diffuse hot gas along the sight lines toward 3C 273 and Mrk 421, on and off the enhancement, but at similar Galactic latitudes. The diffuse 3/4-keV emission intensity, as estimated from the ROSAT All Sky Survey, is about three times higher toward 3C 273 than toward Mrk 421. Based on archival Chandra grating observations of these two AGNs, we detect z 0 X-ray absorption lines (e.g., OVII Kalpha, Kbeta, and OVIII Kalpha transitions) and find that the mean hot gas thermal and kinematic properties along the two sight lines are significantly different. By subtracting the background contribution, as determined along the Mrk 421 sight line, we isolate the net X-ray absorption and emission produced by the hot gas associated with the enhancement in the direction of 3C 273. From a joint analysis of these differential data sets, we obtain the temperature, dispersion velocity, and hydrogen column density as 2.0E6 K, 200 km/s, and 2E19 cm^{-2}, respectively, assuming that the gas is approximately isothermal, solar in metal abundances, and in collisional ionization equilibrium. We also constrain the effective extent of the gas to be 3.4 kpc, strongly suggesting that the enhancement most likely represents a Galactic central phenomenon.

  1. The Galactic Central Diffuse X-Ray Enhancement: A Differential Absorption/Emission Analysis

    NASA Astrophysics Data System (ADS)

    Yao, Yangsen; Wang, Q. Daniel

    2007-09-01

    The soft X-ray background shows a general enhancement toward the inner region of the Galaxy. But whether this enhancement is a local feature (e.g., a superbubble within a distance of <~200 pc) and/or a phenomenon related to energetic outflows from the Galactic center/bulge remains unclear. Here we report a comparative X-ray emission and absorption study of diffuse hot gas along the sight lines toward 3C 273 and Mrk 421, on and off the enhancement, but at similar Galactic latitudes. The diffuse 3/4 keV emission intensity, as estimated from the ROSAT All Sky Survey, is about 3 times higher toward 3C 273 than toward Mrk 421. Based on archival Chandra grating observations of these two AGNs, we detect X-ray absorption lines (e.g., O VII Kα, Kβ, and O VIII Kα transitions at z~0) and find that the mean hot gas thermal and kinematic properties along the two sight lines are significantly different. By subtracting the foreground and background contribution, as determined along the Mrk 421 sight line, we isolate the net X-ray absorption and emission produced by the hot gas associated with the enhancement in the direction of 3C 273. From a joint analysis of these differential data sets, we obtain the temperature, dispersion velocity, and hydrogen column density as 2.0(1.6,2.3)×106 K, 216(104, 480) km s-1, and 2.2(1.4,4.1)×1019 cm-2, respectively (90% confidence intervals), assuming that the gas is approximately isothermal, solar in metal abundances, and equilibrium in collisional ionization. We also constrain the effective line-of-sight extent of the gas to be 3.4(1.0, 10.1) kpc, strongly suggesting that the enhancement most likely represents a Galactic central phenomenon.

  2. Diffusion tensor imaging of diffuse axonal injury in a rat brain trauma model.

    PubMed

    van de Looij, Yohan; Mauconduit, Franck; Beaumont, Marine; Valable, Samuel; Farion, Régine; Francony, Gilles; Payen, Jean-François; Lahrech, Hana

    2012-01-01

    Diffusion tensor imaging (DTI) was used to study traumatic brain injury. The impact-acceleration trauma model was used in rats. Here, in addition to diffusivities (mean, axial and radial), fractional anisotropy (FA) was used, in particular, as a parameter to characterize the cerebral tissue early after trauma. DTI was implemented at 7 T using fast spiral k-space sampling and the twice-refocused spin echo radiofrequency sequence for eddy current minimization. The method was carefully validated on different phantom measurements. DTI of a trauma group (n = 5), as well as a sham group (n = 5), was performed at different time points during 6 h following traumatic brain injury. Two cerebral regions, the cortex and corpus callosum, were analyzed carefully. A significant decrease in diffusivity in the trauma group versus the sham group was observed, suggesting the predominance of cellular edema in both cerebral regions. No significant FA change was detected in the cortex. In the corpus callosum of the trauma group, the FA indices were significantly lower. A net discontinuity in fiber reconstructions in the corpus callosum was observed by fiber tracking using DTI. Histological analysis using Hoechst, myelin basic protein and Bielschowsky staining showed fiber disorganization in the corpus callosum in the brains of the trauma group. On the basis of our histology results and the characteristics of the impact-acceleration model responsible for the presence of diffuse axonal injury, the detection of low FA caused by a drastic reduction in axial diffusivity and the presence of fiber disconnections of the DTI track in the corpus callosum were considered to be related to the presence of diffuse axonal injury. PMID:21618304

  3. Comptonization of diffuse ambient radiation by a relativistic jet: The source of gamma rays from blazars?

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rees, Martin J.

    1994-01-01

    Recent Energy Gamma Ray Experiment Telescope (EGRET) observations of blazars have revealed strong, variable gamma-ray fluxes with no signatures of gamma-ray absorption by pair production. This radiation probably originates from the inner parts of relativistic jets which are aimed nearly toward us. On sub-parsec scales, the jet will be pervaded by radiation from the broad-line region, as well as by photons from the central continuum source (some of which will be scattered by thermal plasma). In a frame moving with the relativistic outflow, the energy of this ambient radiation would be enhanced. This radiation would be Comptonized by both cold and relativistic electrons in the jet, yielding (in the observer's frame) a collimated beam of X-rays and gamma rays. On the assumption that this process dominates self-Comptonization of synchrotron radiation, we develop a self-consistent model for variable gamma-ray emission, involving a single population of relativistic electrons accelerated by a disturbance in the jet. The spectral break between the X-ray and gamma-ray band, observed in 3C 279 and deduced for other blazars, results from inefficient radiative cooling of lower energy electrons. The existence of such a break strongly favors a model involving Comptonization of an external radiation field over a synchrotron self-Compton model. We derive constraints on such model parameters as the location and speed of the source, its dimensions and internal physical parameters, the maximum photon energies produced in the source, and the density and distribution of ambient radiation. Finally, we discuss how observations might discriminate between our model and alternative ones invoking Comptonization of ambient radiation.

  4. Future Japanese X-ray TES Calorimeter Satellite: DIOS (Diffuse Intergalactic Oxygen Surveyor)

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Miyazaki, N.; Kuwabara, K.; Kuromaru, G.; Suzuki, S.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Sakai, K.; Nagayoshi, K.; Yamamoto, R.; Hayashi, T.; Muramatsu, H.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Nakamichi, R.; Bandai, A.; Yuasa, T.; Ota, N.

    2016-08-01

    We present the latest update and progress on the future Japanese X-ray satellite mission Diffuse Intergalactic Oxygen Surveyor (DIOS). DIOS is proposed to JAXA as a small satellite mission, and would be launched with an Epsilon rocket. DIOS would carry on the legacy of ASTRO-H, which carries semiconductor-based microcalorimeters and is scheduled to be launched in 2016, in high-resolution X-ray spectroscopy. A 400-pixel array of transition-edge sensors (TESs) would be employed, so DIOS would also provide valuable lessons for the next ESA X-ray mission ATHENA on TES operation and cryogen-free cooling in space. We have been sophisticating the entire design of the satellite to meet the requirement for the Epsilon payload for the next call. The primary goal of the mission is to search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy by detecting redshifted emission lines from OVII and OVIII ions. The results would have significant impacts on our understanding of the nature of "dark baryons," their total amount and spatial distribution, as well as their evolution over cosmological timescales.

  5. Doppler Boosted Diffusive Shock Acceleration as an Explanation for the Crab Nebula Gamma-Ray Flares

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Dermer, C. D.

    2013-01-01

    The remarkable observations of intense flares of ~GeV gamma-rays from the Crab Nebula in 2009 and 2010 have raised many difficult questions for high-energy astrophysics. There is a consensus that the gamma rays probably represent synchrotron emission from highly relativistic electrons, but the implied energy budget raises severe constraints on the required acceleration mechanism, because at the electron energies implied by the gamma-ray observations, the synchrotron loss timescale is comparable to the gyration timescale in the magnetic field. We explore a hybrid scenario in which the electrons experience diffusive shock acceleration, which raises their energies to within about a factor of ten of the energy required to produce the observed synchrotron gamma-ray emission. The radiating electrons are envisioned to be entrained in a mildly relativistic flow downstream from the oblique shock, and the associated Doppler boost shifts the radiation into the observed range. Variability in the downstream flow causes the Doppler beamed radiation to point towards Earth during the observed flares. This mechanism may help to explain the energetics, spectrum and duration of the flares, as well as their rarity.

  6. Scaling in the diffusion limited aggregation model.

    PubMed

    Menshutin, Anton

    2012-01-01

    We present a self-consistent picture of diffusion limited aggregation (DLA) growth based on the assumption that the probability density P(r,N) for the next particle to be attached within the distance r to the center of the cluster is expressible in the scale-invariant form P[r/R{dep}(N)]. It follows from this assumption that there is no multiscaling issue in DLA and there is only a single fractal dimension D for all length scales. We check our assumption self-consistently by calculating the particle-density distribution with a measured P(r/R{dep}) function on an ensemble with 1000 clusters of 5×10{7} particles each. We also show that a nontrivial multiscaling function D(x) can be obtained only when small clusters (N<10 000) are used to calculate D(x). Hence, multiscaling is a finite-size effect and is not intrinsic to DLA. PMID:22304265

  7. A model for restricted diffusion in complex fluids

    NASA Astrophysics Data System (ADS)

    de Bruyn, John; Wylie, Jonathan

    2014-03-01

    We use a model originally due to Tanner to study the diffusion of tracer particles in complex fluids both analytically and through Monte-Carlo simulations. The model consists of regions through which the particles diffuse freely, separated by membranes with a specified low permeability. The mean squared displacement of the particles calculated from the model agrees well with experimental data on the diffusion of particles in a concentrated colloidal suspension when the membrane permeability is used as an adjustable parameter. Data on a micro-phase-separated polymer system can be well modeled by considering two populations of particles constrained by membranes with different permeabilites. Supported by the Hong Kong Research Grants Council and the Natural Sciences and Engineering Research Council of Canada.

  8. A Novel Restricted Diffusion Model of Evoked Dopamine

    PubMed Central

    2015-01-01

    In vivo fast-scan cyclic voltammetry provides high-fidelity recordings of electrically evoked dopamine release in the rat striatum. The evoked responses are suitable targets for numerical modeling because the frequency and duration of the stimulus are exactly known. Responses recorded in the dorsal and ventral striatum of the rat do not bear out the predictions of a numerical model that assumes the presence of a diffusion gap interposed between the recording electrode and nearby dopamine terminals. Recent findings, however, suggest that dopamine may be subject to restricted diffusion processes in brain extracellular space. A numerical model cast to account for restricted diffusion produces excellent agreement between simulated and observed responses recorded under a broad range of anatomical, stimulus, and pharmacological conditions. The numerical model requires four, and in some cases only three, adjustable parameters and produces meaningful kinetic parameter values. PMID:24983330

  9. Cohabitation reaction-diffusion model for virus focal infections

    NASA Astrophysics Data System (ADS)

    Amor, Daniel R.; Fort, Joaquim

    2014-12-01

    The propagation of virus infection fronts has been typically modeled using a set of classical (noncohabitation) reaction-diffusion equations for interacting species. However, for some single-species systems it has been recently shown that noncohabitation reaction-diffusion equations may lead to unrealistic descriptions. We argue that previous virus infection models also have this limitation, because they assume that a virion can simultaneously reproduce inside a cell and diffuse away from it. For this reason, we build a several-species cohabitation model that does not have this limitation. Furthermore, we perform a sensitivity analysis for the most relevant parameters of the model, and we compare the predicted infection speed with observed data for two different strains of the T7 virus.

  10. Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02

    NASA Astrophysics Data System (ADS)

    Jin, Chao; Guo, Yi-Qing; Hu, Hong-Bo

    2016-01-01

    The precise spectra of Cosmic Ray (CR) electrons and positrons have been published by the measurement of AMS-02. It is reasonable to regard the difference between the electron and positron spectra (ΔΦ = Φe- -Φe+) as being dominated by primary electrons. The resulting electron spectrum shows no sign of spectral softening above 20 GeV, which is in contrast with the prediction of the standard model of CR propagation. In this work, we generalize the analytic one-dimensional two-halo model of diffusion to a three-dimensional realistic calculation by implementing spatial variant diffusion coefficients in the DRAGON package. As a result, we can reproduce the spectral hardening of protons observed by several experiments, and predict an excess of high energy primary electrons which agrees with the measurement reasonably well. Unlike the break spectrum obtained for protons, the model calculation predicts a smooth electron excess and thus slightly over-predicts the flux from tens of GeV to 100 GeV. To understand this issue, further experimental and theoretical studies are necessary. Supported by Natural Sciences Foundation of China (11135010)

  11. Magnetic diffusion effects on the ultra-high energy cosmic ray spectrum and composition

    SciTech Connect

    Mollerach, Silvia; Roulet, Esteban E-mail: roulet@cab.cnea.gov.ar

    2013-10-01

    We discuss the effects of diffusion of high energy cosmic rays in turbulent extra-galactic magnetic fields. We find an approximate expression for the low energy suppression of the spectrum of the different mass components (with charge Z) in the case in which this suppression happens at energies below ∼ Z EeV, so that energy losses are dominated by the adiabatic ones. The low energy suppression appears when cosmic rays from the closest sources take a time comparable to the age of the Universe to reach the Earth. This occurs for energies E < Z EeV (B/nG)√(l{sub c}/Mpc)(d{sub s}/70Mpc) in terms of the magnetic field RMS strength B, its coherence length l{sub c} and the typical separation between sources d{sub s}. We apply this to scenarios in which the sources produce a mixed composition and have a relatively low maximum rigidity (E{sub max} ∼ (2–10)Z EeV), finding that diffusion has a significant effect on the resulting spectrum, the average mass and on its spread, in particular reducing this last one. For reasonable values of B and l{sub c} these effects can help to reproduce the composition trends observed by the Auger Collaboration for source spectra compatible with Fermi acceleration.

  12. Oxygen diffusivity in silicon derived from dynamical X-ray diffraction

    SciTech Connect

    Will, J.; Groeschel, A.; Bergmann, C.; Steinrueck, H.-G.; Magerl, A.; Kot, D.; Schubert, M. A.; Kissinger, G.

    2013-02-21

    Thickness dependent Pendelloesung oscillations are highly sensitive to strain fields from defects in a host crystal. Based on this, we present a novel technique to measure the precipitation kinetics of oxygen in silicon already at its early stage of clustering at high temperatures. At 900 Degree-Sign C, precipitates with a radius smaller than 4 nm and with a density of 1 {+-} 0.5 Multiplication-Sign 10{sup 13} 1/cm{sup 3} were observed. The technique was calibrated by complementary scanning transmission electron microscope and energy dispersive X-ray measurements in the range of normal diffusivity yielding a diffusion constant of 1.7 {+-} 0.1 Multiplication-Sign 10{sup -12}cm{sup 2}/s, which is close to the literature value of 2.074 Multiplication-Sign 10{sup -12}cm{sup 2}/s. The measurements have been made with the characteristic K{sub {alpha}1}-line of a high voltage tungsten X-ray tube at 59.31 keV, which provides the opportunity to illuminate through complex sample environments like high temperature scattering furnaces.

  13. Diffusive transport within dentinal tubules: an X-ray microtomographic study.

    PubMed

    Kawabata, Masako; Hector, Mark P; Davis, Graham R; Parkinson, Charles R; Rees, Gareth D; Anderson, Paul

    2008-08-01

    The hydrodynamic theory of dentine hypersensitivity proposes that external stimuli cause dentinal fluid movement within dentinal tubules thereby triggering mechanosensitive nerves and eliciting a pain response. The aim of this study was to employ X-ray microtomography (XMT) to monitor diffusion of caesium acetate through dentine to investigate the extent to which transport occurs within the primary tubules compared to that through branched microtubules believed to run perpendicular to the direction of the primary dentinal tubules. 2.0-mm thick coronal dentine disks masked to leave half of the upper surface exposed were imaged by XMT, initially in water, which was then replaced with an aqueous solution of 0.50 mol l(-1) caesium acetate. Further XMT images were acquired after 1 and 6 days immersion. The XMT images were used to measure the change in the X-ray linear attenuation coefficient resulting from caesium acetate ingress into dentine. There was clearly considerable ingress of caesium acetate into the dentine lying below the exposed surface, but considerably less beneath the sealed surface, suggesting that diffusive transport occurs predominantly in the direction of the primary dentinal tubules, with no significant lateral transport. Primary tubules are clearly the dominant transmission route for triggering the mechanosensitive nerves present at the dentine-pulp interface, and for delivery of nerve desensitising agents. PMID:18485329

  14. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV

    SciTech Connect

    Ackermann, M.; Buehler, R.; Ajello, M.; Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Atwood, W. B.; Baldini, L.; Bellazzini, R.; Ballet, J.; Bastieri, D.; Buson, S.; Bechtol, K.; Bissaldi, E.; Brandt, T. J.; Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS Bruel, P. E-mail: bechtol@kicp.uchicago.edu [Laboratoire Leprince-Ringuet, École Polytechnique, CNRS and others

    2015-01-20

    The γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 ± 0.6) × 10{sup –6} cm{sup –2} s{sup –1} sr{sup –1} above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.

  15. Langevin equation with fluctuating diffusivity: A two-state model.

    PubMed

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool. PMID:27575079

  16. Langevin equation with fluctuating diffusivity: A two-state model

    NASA Astrophysics Data System (ADS)

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.

  17. A combinatorial model of malware diffusion via bluetooth connections.

    PubMed

    Merler, Stefano; Jurman, Giuseppe

    2013-01-01

    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression. PMID:23555677

  18. An Urban Diffusion Simulation Model for Carbon Monoxide

    ERIC Educational Resources Information Center

    Johnson, W. B.; And Others

    1973-01-01

    A relatively simple Gaussian-type diffusion simulation model for calculating urban carbon (CO) concentrations as a function of local meteorology and the distribution of traffic is described. The model can be used in two ways: in the synoptic mode and in the climatological mode. (Author/BL)

  19. A combinatorial model of malware diffusion via bluetooth connections.

    PubMed

    Merler, Stefano; Jurman, Giuseppe

    2013-01-01

    We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.

  20. A Diffusion Model Account of the Lexical Decision Task

    ERIC Educational Resources Information Center

    Ratcliff, Roger; Gomez, Pablo; McKoon, Gail

    2004-01-01

    The diffusion model for 2-choice decisions (R. Ratcliff, 1978) was applied to data from lexical decision experiments in which word frequency, proportion of high- versus low-frequency words, and type of nonword were manipulated. The model gave a good account of all of the dependent variables--accuracy, correct and error response times, and their…

  1. Modeling Copper Diffusion in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Guo, Da; Vasileska, Dragica; Ringhofer, Christain

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately

  2. Modelling of monovacancy diffusion in W over wide temperature range

    SciTech Connect

    Bukonte, L. Ahlgren, T.; Heinola, K.

    2014-03-28

    The diffusion of monovacancies in tungsten is studied computationally over a wide temperature range from 1300 K until the melting point of the material. Our modelling is based on Molecular Dynamics technique and Density Functional Theory. The monovacancy migration barriers are calculated using nudged elastic band method for nearest and next-nearest neighbour monovacancy jumps. The diffusion pre-exponential factor for monovacancy diffusion is found to be two to three orders of magnitude higher than commonly used in computational studies, resulting in attempt frequency of the order 10{sup 15} Hz. Multiple nearest neighbour jumps of monovacancy are found to play an important role in the contribution to the total diffusion coefficient, especially at temperatures above 2/3 of T{sub m}, resulting in an upward curvature of the Arrhenius diagram. The probabilities for different nearest neighbour jumps for monovacancy in W are calculated at different temperatures.

  3. A three-dimensional spin-diffusion model for micromagnetics

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

    2015-10-01

    We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation.

  4. A three-dimensional spin-diffusion model for micromagnetics

    PubMed Central

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter

    2015-01-01

    We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796

  5. Numerical modelling of swirling diffusive flames

    NASA Astrophysics Data System (ADS)

    Parra-Santos, Teresa; Perez, Ruben; Szasz, Robert Z.; Gutkowski, Artur N.; Castro, Francisco

    2016-03-01

    Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.

  6. Modelling on cavitation in a diffuser with vortex generator

    NASA Astrophysics Data System (ADS)

    Jablonská, J.

    2013-04-01

    Based on cavitation modelling in Laval nozzle results and experience, problem with the diffuser with vortex generator was defined. The problem describes unsteady multiphase flow of water. Different cavitation models were used when modelling in Fluent, flow condition is inlet and pressure condition is outlet. Boundary conditions were specified by Energy Institute, Victor Kaplan's Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology. Numerical modelling is compared with experiment.

  7. A diffuse interface Lox/hydrogen transcritical flame model

    NASA Astrophysics Data System (ADS)

    Gaillard, Pierre; Giovangigli, Vincent; Matuszewski, Lionel

    2016-05-01

    We present a diffuse-interface all-pressure flame model that transitions smoothly between subcritical and supercritical conditions. The model involves a non-equilibrium liquid/gas diffuse interface of van der Waals/Korteweg type embedded into a non-ideal multicomponent reactive fluid. The multicomponent transport fluxes are evaluated in their thermodynamic form in order to avoid singularities at thermodynamic mechanical stability limits. The model also takes into account condensing liquid water in order to avoid thermodynamic chemical instabilities. The resulting equations are used to investigate the interface between cold dense and hot light oxygen as well as the structure of diffusion flames between cold dense oxygen and gaseous-like hydrogen at all pressures, either subcritical or supercritical.

  8. Diffusion Models for the Doping of Semiconductor Crystals.

    NASA Astrophysics Data System (ADS)

    Hearne, M. T.

    Available from UMI in association with The British Library. Requires signed TDF. Discrete models, based on the physics of diffusion at the atomic level, are presented in the form of difference equations, thus providing explicit numerical techniques for evaluating concentration profiles. Models are developed for three diffusion mechanisms. All three of the models are used to study diffusion of dopant in semiconductor crystals during growth by the Czochralski technique. This study is motivated by previously published experimental data which showed dopant concentration profiles for grown gallium arsenide crystals. For these results the distribution of dopant, in this case chromium, was found to deviate significantly from the concentration profile which would be expected if no diffusion of dopant is assumed to take place. Four problems are modelled in one dimension. The first model to be developed is equivalent to Fick's first law of diffusion (the standard diffusion equation). Computed results are obtained for a given set of values of parameters, and the sensitivity of the model to variation of a number of these parameters is investigated. A more sophisticated model is then developed for which the dopant is assumed to diffuse substitutionally. The effect of the vacancy concentration is considered in a more rigorous manner than for the preceding model, and self-diffusion is taken into account. The corresponding partial differential equations are derived, although these are highly non-linear, and cannot be solved for the Czochralski growth problem. Results are again presented demonstrating the effect of varying certain parameters. For the third model, dopant is assumed to diffuse interstitially with effectively infinite diffusivity. Most of the dopant is, however, assumed to exist in the form of substitutionals which are "created" by interstitials occupying lattices. This model is applied, in one dimension, to two problems. The first application is not to Czochralski

  9. Hierarchical set of models to estimate soil thermal diffusivity

    NASA Astrophysics Data System (ADS)

    Arkhangelskaya, Tatiana; Lukyashchenko, Ksenia

    2016-04-01

    Soil thermal properties significantly affect the land-atmosphere heat exchange rates. Intra-soil heat fluxes depend both on temperature gradients and soil thermal conductivity. Soil temperature changes due to energy fluxes are determined by soil specific heat. Thermal diffusivity is equal to thermal conductivity divided by volumetric specific heat and reflects both the soil ability to transfer heat and its ability to change temperature when heat is supplied or withdrawn. The higher soil thermal diffusivity is, the thicker is the soil/ground layer in which diurnal and seasonal temperature fluctuations are registered and the smaller are the temperature fluctuations at the soil surface. Thermal diffusivity vs. moisture dependencies for loams, sands and clays of the East European Plain were obtained using the unsteady-state method. Thermal diffusivity of different soils differed greatly, and for a given soil it could vary by 2, 3 or even 5 times depending on soil moisture. The shapes of thermal diffusivity vs. moisture dependencies were different: peak curves were typical for sandy soils and sigmoid curves were typical for loamy and especially for compacted soils. The lowest thermal diffusivities and the smallest range of their variability with soil moisture were obtained for clays with high humus content. Hierarchical set of models will be presented, allowing an estimate of soil thermal diffusivity from available data on soil texture, moisture, bulk density and organic carbon. When developing these models the first step was to parameterize the experimental thermal diffusivity vs. moisture dependencies with a 4-parameter function; the next step was to obtain regression formulas to estimate the function parameters from available data on basic soil properties; the last step was to evaluate the accuracy of suggested models using independent data on soil thermal diffusivity. The simplest models were based on soil bulk density and organic carbon data and provided different

  10. Groundwater transport modeling with nonlinear sorption and intraparticle diffusion

    NASA Astrophysics Data System (ADS)

    Singh, Anshuman; Allen-King, Richelle M.; Rabideau, Alan J.

    2014-08-01

    Despite recent advances in the mechanistic understanding of sorption in groundwater systems, most contaminant transport models provide limited support for nonideal sorption processes such as nonlinear isotherms and/or diffusion-limited sorption. However, recent developments in the conceptualization of "dual mode" sorption for hydrophobic organic contaminants have provided more realistic and mechanistically sound alternatives to the commonly used Langmuir and Freundlich models. To support the inclusion of both nonlinear and diffusion-limited sorption processes in groundwater transport models, this paper presents two numerical algorithms based on the split operator approach. For the nonlinear equilibrium scenario, the commonly used two-step split operator algorithm has been modified to provide a more robust treatment of complex multi-parameter isotherms such as the Polanyi-partitioning model. For diffusion-limited sorption, a flexible three step split-operator procedure is presented to simulate intraparticle diffusion in multiple spherical particles with different sizes and nonlinear isotherms. Numerical experiments confirmed the accuracy of both algorithms for several candidate isotherms. However, the primary advantages of the algorithms are: (1) flexibility to accommodate any isotherm equation including "dual mode" and similar expressions, and (2) ease of adapting existing grid-based transport models of any dimensionality to include nonlinear sorption and/or intraparticle diffusion. Comparisons are developed for one-dimensional transport scenarios with different isotherms and particle configurations. Illustrative results highlight (1) the potential influence of isotherm model selection on solute transport predictions, and (2) the combined effects of intraparticle diffusion and nonlinear sorption on the plume transport and flushing for both single-particle and multi-particle scenarios.

  11. Starburst Galaxies: Hard X-ray spectra and contribution to the diffuse background

    NASA Technical Reports Server (NTRS)

    Gruber, Duane E.

    1993-01-01

    During the period of this grant two main tasks were performed: a determination of a selection criterion for starburst galaxies most likely to emit X-rays, and performance of a pilot study of the X-ray emission from nine such systems. Starburst galaxies may be expected to emit flat-spectrum X-ray at energies above 10 keV resulting from the various remnants of the short-lived massive stars which characterize the starburst. The investigation to determine the optimum sample resulted in a change from an X-ray selected (HEAO-2) sample to infrared selection based on the IRAS catalogue. A much broader sample thereby available for study, and selection could be limited to only the nearest objects and still obtain a reasonably large sample. A sample of 99 of the brightest infrared starburst galaxies was settled on for the X-ray survey. For a set of practical size, this was then reduced to a subset of 53, based on luminosity and nearness. X-ray emission from these objects was individually measured from the UCSD HEAO-1 all-sky survey in four energy bands between 13 keV to 160 keV. This data base consists of about 20 optical disk volumes. Net significance for the result was roughly two sigma, and a very hard spectral shape is indicated for the net spectrum of the surveyed galaxies. With the possibility of detection of the class, it was then felt worthwhile to examine fluxes from these sources in other archival data. This was performed with the HEAO-1 A2 data and the HEAO-2 (EINSTEIN) main archive and slew survey. Positive results were also obtained for the sample, but again at weak significance. With three independent measures of weak X-ray fluxes from nearby starburst galaxies, we wrote a letter to the Astrophysical Journal (enclosed) discussing these results and their likely significance, in particular, for the contribution to the cosmic diffuse x-ray background, perhaps as much as 25 percent.

  12. Lattice Boltzmann model for nonlinear convection-diffusion equations.

    PubMed

    Shi, Baochang; Guo, Zhaoli

    2009-01-01

    A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear Schrödinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation time. Detailed simulations of these equations are performed, and it is found that the numerical results agree well with the analytical solutions and the numerical solutions reported in previous studies.

  13. Progenitor model of cosmic ray knee

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Bhadra, Arunava

    2016-01-01

    The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved yet. Here it is proposed that the steepening of the spectrum beyond the knee may be a consequence of the mass distribution of the progenitor of the cosmic ray source. The proposed speculative model can account for all the major observed features of cosmic rays without invoking any fine tuning to match flux or spectra at any energy point. The prediction of the proposed model regarding the primary composition scenario beyond the knee is quite different from most of the prevailing models of the knee, and thereby can be discriminated from precise experimental measurement of the primary composition.

  14. A multiple mapping conditioning model for differential diffusion

    NASA Astrophysics Data System (ADS)

    Dialameh, L.; Cleary, M. J.; Klimenko, A. Y.

    2014-02-01

    This work introduces modeling of differential diffusion within the multiple mapping conditioning (MMC) turbulent mixing and combustion framework. The effect of differential diffusion on scalar variance decay is analyzed and, following a number of publications, is found to scale as Re-1/2. The ability to model the differential decay rates is the most important aim of practical differential diffusion models, and here this is achieved in MMC by introducing what is called the side-stepping method. The approach is practical and, as it does not involve an increase in the number of MMC reference variables, economical. In addition we also investigate the modeling of a more refined and difficult to reproduce differential diffusion effect - the loss of correlation between the different scalars. For this we develop an alternative MMC model with two reference variables but which also makes use of the side-stepping method. The new models are successfully validated against DNS results available in literature for homogenous, isotropic two scalar mixing.

  15. Coupled chemical and diffusion model for compacted bentonite

    SciTech Connect

    Olin, M.; Lehikoinen, J.; Muurinen, A.

    1995-12-31

    A chemical equilibrium model has been developed for ion-exchange and to a limited extent for other reactions, such as precipitation or dissolution of calcite or gypsum, in compacted bentonite water systems. The model was successfully applied to some bentonite experiments, especially as far as monovalent ions were concerned. The fitted log-binding constants for the exchange of sodium for potassium, magnesium, and calcium were 0.27, 1.50, and 2.10, respectively. In addition, a coupled chemical and diffusion model has been developed to take account of diffusion in pore water, surface diffusion and ion-exchange.d the model was applied to the same experiments as the chemical equilibrium model, and its validation was found partly successful. The above values for binding constants were used also in the coupled model. The apparent (both for anions and cations) and surface diffusion (only for cations) constants yielding the best agreement between calculated and experimental data were 3.0 {times} 10{sup {minus}11} m{sup 2}/s and 6.0 {times} 10{sup {minus}12} m{sup 2}/s, respectively. These values are questionable, however, as experimental results good enough for fitting are currently not available.

  16. Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities

    SciTech Connect

    Bykov, Andrei M.; Osipov, Sergei M.; Ellison, Donald C.; Vladimirov, Andrey E. E-mail: osm2004@mail.ru E-mail: avenovo@gmail.com

    2014-07-10

    We present a nonlinear Monte Carlo model of efficient diffusive shock acceleration where the magnetic turbulence responsible for particle diffusion is calculated self-consistently from the resonant cosmic-ray (CR) streaming instability, together with non-resonant short- and long-wavelength CR-current-driven instabilities. We include the backpressure from CRs interacting with the strongly amplified magnetic turbulence which decelerates and heats the super-Alfvénic flow in the extended shock precursor. Uniquely, in our plane-parallel, steady-state, multi-scale model, the full range of particles, from thermal (∼eV) injected at the viscous subshock to the escape of the highest energy CRs (∼PeV) from the shock precursor, are calculated consistently with the shock structure, precursor heating, magnetic field amplification, and scattering center drift relative to the background plasma. In addition, we show how the cascade of turbulence to shorter wavelengths influences the total shock compression, the downstream proton temperature, the magnetic fluctuation spectra, and accelerated particle spectra. A parameter survey is included where we vary shock parameters, the mode of magnetic turbulence generation, and turbulence cascading. From our survey results, we obtain scaling relations for the maximum particle momentum and amplified magnetic field as functions of shock speed, ambient density, and shock size.

  17. Models of geochemical systems from mixture theory: diffusion

    SciTech Connect

    Kirwan, A.D. Jr; Kump, L.R.

    1987-05-01

    The problem of diffusion of a geochemical component in a natural environment is investigated from the standpoint of mixture theory. The approach here differs from previous diffusion studies in that both the conservation of mass and momentum for the component is considered. This approach avoids parameterizing the diffusive flux in the mass equation by Fick's law. It is shown that when the momentum equation is included with the mass equation, the linear approximation for the space-time distribution of a solute in a binary system is the telegraph equation, well known from electrodynamics. This contrasts with the diffusion equation, which relies on introducing the Fick's law assumption into the conservation of mass equation for the solute. Solutions for both the diffusion and telegraph equation models are obtained and compared for the case of migration of a minor component into the sea bed when the sediment-water interface concentration is a prescribed function of time. Although the stationary, steady state solutions of the telegraph and diffusion equations are identical, the former has a transient solution in which fluctuations propagate at finite speed. The Fickian assumption, in contrast, requires an infinite speed of propagation.

  18. Suzaku Observation of Diffuse X-ray Emission from the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Petre, Robert; Matsumoti, Hironori; Tsujimoto, Masahiro; Holt, Stephan S.; Ezoe, Yuichiro; Ozawa, Hideki; Tsuboi, Yohko; Soong, Yang; Kitamoto, Shunji; Sekiguchi, Akiko; Kokubun, Motohide

    2007-01-01

    We studied extended X-ray emission from the Carina Nebula taken with the Suzaku CCD camera XIS on 2005 Aug. 29. The X-ray morphology, plasma temperature and absorption to the plasma are consistent with the earlier Einstein results. The Suzaku spectra newly revealed emission lines from various spices including oxygen, but not from nitrogen. This result restricts the N/O ratio significantly low, compared with evolved massive stellar winds, suggesting that the diffuse emission is originated in an old supernova remnant or a super shell produced by multiple supernova remnants. The X-ray spectra from the north and south of eta Car showed distinct differences between 0.3-2 keV. The south spectrum shows strong L-shell lines of iron ions and K-shell lines of silicon ions, while the north spectrum shows them weak in intensity. This means that silicon and iron abundances are a factor of 2-4 higher in the south region than in the north region. The abundance variation may be produced by an SNR ejecta, or relate to the dust formation around the star forming core.

  19. Determination of late-time Gamma-Ray (60Co) sensitivity of single diffusion Lot 2N2222A transistors.

    SciTech Connect

    DePriest, Kendall Russell; Kajder, Karen C.; Peters, Curtis D.

    2008-08-01

    Sandia National Laboratories (SNL) has embarked on a program to develop a methodology to use damage relations techniques (alternative experimental facilities, modeling, and simulation) to understand the time-dependent effects in transistors (and integrated circuits) caused by neutron irradiations in the Sandia Pulse Reactor-III (SPR-III) facility. The development of these damage equivalence techniques is necessary since SPR-III was shutdown in late 2006. As part of this effort, the late time {gamma}-ray sensitivity of a single diffusion lot of 2N2222A transistors has been characterized using one of the {sup 60}Co irradiation cells at the SNL Gamma Irradiation Facility (GIF). This report summarizes the results of the experiments performed at the GIF.

  20. A Mathematical Model of Diffusion-Limited Gas Bubble Dynamics in Tissue with Varying Diffusion Region Thickness

    NASA Technical Reports Server (NTRS)

    Srinivasan, R. Srini; Gerth, Wayne A.; Powell, Michael R.; Paloski, William H. (Technical Monitor)

    2000-01-01

    A three-region mathematical model of gas bubble dynamics has been shown suitable for describing diffusion-limited dynamics of more than one bubble in a given volume of extravascular tissue. The model is based on the dynamics of gas exchange between a bubble and a well-stirred tissue region through an intervening unperfused diffusion region previously assumed to have constant thickness and uniform gas diffusivity. As a result, the gas content of the diffusion region remains constant as the volume of the region increases with bubble growth, causing dissolved gas in the region to violate Henry's law. Earlier work also neglected the relationship between the varying diffusion region volume and the fixed total tissue volume, because only cases in which the diffusion region volume is a small fraction of the overall tissue volume were considered. We herein extend the three-region model to correct these theoretical inconsistencies by allowing both the thickness and gas content of the diffusion region to vary during bubble evolution. A postulated difference in gas diffusivity between an infinitesimally thin layer at the bubble surface and the remainder of the diffusion region leads to variation in diffusion region gas content and thickness during bubble growth and resolution. This variable thickness, differential diffusivity (VTDD) model can yield bubble lifetimes considerably longer than those yielded by earlier three-region models for given model and decompression parameters, and meets a need for theoretically consistent but relatively simple bubble dynamics models for use in studies of decompression sickness (DCS) in human subjects, Keywords: decompression sickness, gas diffusion in tissue, diffusivity

  1. MESOI: an interactive Lagrangian trajectory puff diffusion model

    SciTech Connect

    Ramsdell, J.V.; Athey, G.F.

    1981-12-01

    MESOI is an interactive Lagrangian trajectory puff diffusion model based on an earlier model by Start and Wendell at the Air Resources Laboratory Field Office at Idaho Falls, Idaho. Puff trajectories are determined using spatially and temporally varying wind fields. Diffusion in the puffs is computed as a function of distance traveled and atmospheric stability. Exposures are computed at nodes of a 31 by 31 grid. There is also provision for interpolation of short term exposures at off-grid locations. This report discusses: the theoretical bases of the model, the numerical approach used in the model, and the sensitivity and accuracy of the model. It contains a description of the computer program and a listing of the code. MESOI is written in FORTRAN. A companion report (Athey, Allwine and Ramsdell, 1981) contains a user's guide to MESOI and documents utility programs that maintain the data files needed by the model.

  2. Direct Observations of Rapid Diffusion of Cu in Au Thin Films using In-Situ X-ray Diffraction

    SciTech Connect

    Elmer, J W; Palmer, T A; Specht, E D

    2005-11-28

    In-situ x-ray diffraction was performed while annealing thin-film Au/Cu binary diffusion couples to directly observe diffusion at elevated temperatures. The temperature dependence of the interdiffusion coefficient was determined from isothermal measurements at 700 C, 800 C, and 900 C, where Cu and Au form a disordered continuous face centered cubic solid solution. Large differences in the lattice parameters of Au and Cu allowed the initial diffraction peaks to be easily identified, and later tracked as they merged into one diffraction peak with increased diffusion time. Initial diffusion kinetics were studied by measuring the time required for the Cu to diffuse through the Au thin film of known thickness. The activation energy for interdiffusion was measured to be 65.4 kJ/mole during this initial stage, which is approximately 0.4x that for bulk diffusion and 0.8x that for grain boundary diffusion. The low activation energy is attributed to the high density of columnar grain boundaries combined with other defects in the sputter deposited thin film coatings. As interdiffusion continues, the two layers homogenize with an activation energy of 111 kJ/mole during the latter stages of diffusion. This higher activation energy falls between the reported values for grain boundary and bulk diffusion, and may be related to grain growth occurring at these temperatures which accounts for the decreasing importance of grain boundaries on diffusion.

  3. Nonlinear diffusion model for Rayleigh-Taylor mixing.

    PubMed

    Boffetta, G; De Lillo, F; Musacchio, S

    2010-01-22

    The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusivity models for the mean temperature profile. It is found that a nonlinear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows us to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.

  4. Coherent X-ray and laser spectroscopy measurements of diffusion in concentrated alpha-crystallin solutions

    NASA Astrophysics Data System (ADS)

    Karunaratne, V. N. C.

    The mammalian eye lens is composed of a concentrated solution of water soluble proteins called crystallins. Alpha-crystallin, the most abundant protein found in the lens, plays a crucial role in maintaining lens transparency and lens accommodation. However, alpha-crystallins along with other ocular proteins suffer from irreversible processes such as oxidation. One cause of oxidation is radiation-induced radical formation which alters the inter-molecular interactions, thereby degrading the normal function of ocular proteins. The main goal of this thesis is to quantify molecular scale dynamics of concentrated solutions of alpha-crystallins using coherent X-rays and visible laser light. I believe a detailed analysis of the dynamics pertaining to alpha-crystallin will provide the foundation to understand molecular scale mechanisms that lead to conditions like cataract and presbyopia. I explore the dynamics of concentrated alpha-crystallin solutions by measuring diffusive motion over a range of length scales using Dynamic light scattering (DLS) and X-ray photon correlation spectroscopy (XPCS). To a certain extent, the dynamical properties of crystallins obtained in this manner are consistent with established theories in colloidal physics. However, there are some deviations, which I will address in this thesis. In terms of X-ray data, I employed a new, efficient photon correlation technique to obtain the best possible signal, furthermore this technique is embedded in a stand-alone software program that has the ability to provide real time results, quickly and efficiently with the help of high performance computing resources available at Northern Illinois University (NIU). The technique has potential to be used by the coherent X-ray spectroscopy community in the future. In addition, by using X-ray scattering data, I probe potential modifications and or damage effects on alpha-crystallins due to radiation exposure. The damage analysis methodology described in this thesis

  5. Analytical Solutions of a Fractional Diffusion-advection Equation for Solar Cosmic-Ray Transport

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-12-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  6. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    SciTech Connect

    Litvinenko, Yuri E.; Effenberger, Frederic

    2014-12-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  7. Computer modelling of nanoscale diffusion phenomena at epitaxial interfaces

    NASA Astrophysics Data System (ADS)

    Michailov, M.; Ranguelov, B.

    2014-05-01

    The present study outlines an important area in the application of computer modelling to interface phenomena. Being relevant to the fundamental physical problem of competing atomic interactions in systems with reduced dimensionality, these phenomena attract special academic attention. On the other hand, from a technological point of view, detailed knowledge of the fine atomic structure of surfaces and interfaces correlates with a large number of practical problems in materials science. Typical examples are formation of nanoscale surface patterns, two-dimensional superlattices, atomic intermixing at an epitaxial interface, atomic transport phenomena, structure and stability of quantum wires on surfaces. We discuss here a variety of diffusion mechanisms that control surface-confined atomic exchange, formation of alloyed atomic stripes and islands, relaxation of pure and alloyed atomic terraces, diffusion of clusters and their stability in an external field. The computational model refines important details of diffusion of adatoms and clusters accounting for the energy barriers at specific atomic sites: smooth domains, terraces, steps and kinks. The diffusion kinetics, integrity and decomposition of atomic islands in an external field are considered in detail and assigned to specific energy regions depending on the cluster stability in mass transport processes. The presented ensemble of diffusion scenarios opens a way for nanoscale surface design towards regular atomic interface patterns with exotic physical features.

  8. A technique for estimating one-dimensional diffusion coefficients in low-permeability sedimentary rock using X-ray radiography: comparison with through-diffusion measurements.

    PubMed

    Cavé, Lisa; Al, Tom; Xiang, Yan; Vilks, Peter

    2009-01-01

    The measurement of diffusive properties of low-permeability rocks is of interest to the nuclear power industry, which is considering the option of deep geologic repositories for management of radioactive waste. We present a simple, non-destructive, constant source in-diffusion method for estimating one-dimensional pore diffusion coefficients (D(p)) in geologic materials based on X-ray radiography. Changes in X-ray absorption coefficient (Deltamicro) are used to quantify changes in relative concentration (C/C(0)) of an X-ray attenuating iodide tracer as the tracer solution diffuses through the rock pores. Estimated values of D(p) are then obtained by fitting an analytical solution to the measured concentration profiles over time. Measurements on samples before and after saturation with iodide can also be used to determine iodide-accessible porosity (phi(I)). To evaluate the radiography method, results were compared with traditional steady-state through-diffusion measurements on two rock types: shale and limestone. Values of D(p) of (4.8+/-2.5)x10(-11) m(2).s(-1) (mean+/-standard deviation) were measured for samples of Queenston Formation shale and (2.6+/-1.0)x10(-11) m(2).s(-1) for samples of Cobourg Formation limestone using the radiography method. The range of results for each rock type agree well with D(p) values of (4.6+/-2.0)x10(-11) m(2).s(-1) for shale and (3.5+/-1.8)x10(-11) m(2).s(-1) for limestone, calculated from through-diffusion experiments on adjacent rock samples. Low porosity (0.01 to 0.03) and heterogeneous distribution of porosity in the Cobourg Formation may be responsible for the slightly poorer agreement between radiography and through-diffusion results for limestones. Mean values of phi(I) for shales (0.060) and limestones (0.028) were close to mean porosity measurements made on bulk samples by the independent water loss technique (0.062 and 0.020 for shales and limestones, respectively). Radiography measurements offer the advantage of time

  9. GIS-BASED 1-D DIFFUSIVE WAVE OVERLAND FLOW MODEL

    SciTech Connect

    KALYANAPU, ALFRED; MCPHERSON, TIMOTHY N.; BURIAN, STEVEN J.

    2007-01-17

    This paper presents a GIS-based 1-d distributed overland flow model and summarizes an application to simulate a flood event. The model estimates infiltration using the Green-Ampt approach and routes excess rainfall using the 1-d diffusive wave approximation. The model was designed to use readily available topographic, soils, and land use/land cover data and rainfall predictions from a meteorological model. An assessment of model performance was performed for a small catchment and a large watershed, both in urban environments. Simulated runoff hydrographs were compared to observations for a selected set of validation events. Results confirmed the model provides reasonable predictions in a short period of time.

  10. Turing instability in reaction-diffusion models on complex networks

    NASA Astrophysics Data System (ADS)

    Ide, Yusuke; Izuhara, Hirofumi; Machida, Takuya

    2016-09-01

    In this paper, the Turing instability in reaction-diffusion models defined on complex networks is studied. Here, we focus on three types of models which generate complex networks, i.e. the Erdős-Rényi, the Watts-Strogatz, and the threshold network models. From analysis of the Laplacian matrices of graphs generated by these models, we numerically reveal that stable and unstable regions of a homogeneous steady state on the parameter space of two diffusion coefficients completely differ, depending on the network architecture. In addition, we theoretically discuss the stable and unstable regions in the cases of regular enhanced ring lattices which include regular circles, and networks generated by the threshold network model when the number of vertices is large enough.

  11. X-ray irradiated model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Madej, J.; Różańska, A.

    2000-04-01

    We present equations and details of the computer code for precise calculation of LTE model atmospheres which are illuminated by an external radiation field. Both radiative and hydrostatic equilibrium, and coherent Thomson electron scattering have been assumed. Radiation field at each frequency and depth level is computed with the method of variable Eddington factors. The code is fully suitable for the study of mutual illumination effects in close binaries. We have subsequently computed few sets of model stellar atmospheres of Teff = 1.8x 104 K, and log g = 4.0 (B3 V type star), consisting of hydrogen and helium in solar proportion, and iron of number abundance NFe / N_H = 3.7 x 10-5. We assume, that the atmosphere is illuminated by isotropic X-rays of diluted thermal spectral distribution with temperature Trad =108 K. In case of iron-rich models external X-rays cause heating of the uppermost layers up to 4 x 106 K. Such a choice of Teff and Trad differing by 4 orders of magnitude is relevant to the supposed conditions on some rings of the accretion disk in active galactic nuclei (AGN), illuminated by an X-ray source. Our code qualitatively reproduces the structure of an atmosphere and its spectrum for wavelengths ranging from infrared to X-rays. Outgoing spectra clearly exhibit all three components: spectrum of B star, external X-ray blackbody spectrum partly backscattered by the model atmosphere, and radiation from the uppermost layers, heated to very high temperatures. The latter shows He I and He II Lyman opacity jumps, and numerous b-f jumps of highly ionized iron, all of them in emission. We demonstrate that in all atmospheres of our paper the external illumination by X-rays reduces the H I Lyman jump. This is in agreement with observations of AGNs spectra.

  12. Mathematical modeling of clearing liquid drop diffusion after intradermal injection

    NASA Astrophysics Data System (ADS)

    Stolnitz, Mikhail M.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.

    2007-05-01

    The mathematical model of clearing agent diffusion after intradermal injection has been developed. Skin was presented as multilayer medium, but one layer with proper boundary conditions is considered. Analytical solution of the boundary problem for small and large time intervals is obtained.

  13. Modeling development of inhibition zones in an agar diffusion bioassay

    PubMed Central

    Chandrasekar, Vaishnavi; Knabel, Stephen J; Anantheswaran, Ramaswamy C

    2015-01-01

    A two-temperature agar diffusion bioassay is commonly used to quantify the concentration of nisin using Micrococcus luteus as the indicator microorganism. A finite element computational model based on Fick's second law of diffusion was used to predict the radius of the inhibition zone in this diffusion bioassay. The model developed was used to calculate nisin concentration profiles as a function of time and position within the agar. The minimum inhibitory concentration (MIC) of nisin against M. luteus was determined experimentally. The critical time (Tc) for growth of M. luteus within the agar diffusion bioassay was experimentally determined using incubation studies with nisin. The radius of the inhibition zone was predicted from the computational model as the location where the predicted nisin concentration at Tc was equal to MIC. The MIC was experimentally determined to be 0.156 μg mL−1, and Tc was determined to be 7 h. Good agreement (R2 = 0.984) was obtained between model-predicted and experimentally determined inhibition zone radii. PMID:26405525

  14. Decomposing Task-Switching Costs with the Diffusion Model

    ERIC Educational Resources Information Center

    Schmitz, Florian; Voss, Andreas

    2012-01-01

    In four experiments, task-switching processes were investigated with variants of the alternating runs paradigm and the explicit cueing paradigm. The classical diffusion model for binary decisions (Ratcliff, 1978) was used to dissociate different components of task-switching costs. Findings can be reconciled with the view that task-switching…

  15. A simple reaction-rate model for turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.

    1975-01-01

    A simple reaction rate model is proposed for turbulent diffusion flames in which the reaction rate is proportional to the turbulence mixing rate. The reaction rate is also dependent on the mean mass fraction and the mean square fluctuation of mass fraction of each reactant. Calculations are compared with experimental data and are generally successful in predicting the measured quantities.

  16. Reaction Diffusion Modeling of Calcium Dynamics with Realistic ER Geometry

    PubMed Central

    Means, Shawn; Smith, Alexander J.; Shepherd, Jason; Shadid, John; Fowler, John; Wojcikiewicz, Richard J. H.; Mazel, Tomas; Smith, Gregory D.; Wilson, Bridget S.

    2006-01-01

    We describe a finite-element model of mast cell calcium dynamics that incorporates the endoplasmic reticulum's complex geometry. The model is built upon a three-dimensional reconstruction of the endoplasmic reticulum (ER) from an electron tomographic tilt series. Tetrahedral meshes provide volumetric representations of the ER lumen, ER membrane, cytoplasm, and plasma membrane. The reaction-diffusion model simultaneously tracks changes in cytoplasmic and ER intraluminal calcium concentrations and includes luminal and cytoplasmic protein buffers. Transport fluxes via PMCA, SERCA, ER leakage, and Type II IP3 receptors are also represented. Unique features of the model include stochastic behavior of IP3 receptor calcium channels and comparisons of channel open times when diffusely distributed or aggregated in clusters on the ER surface. Simulations show that IP3R channels in close proximity modulate activity of their neighbors through local Ca2+ feedback effects. Cytoplasmic calcium levels rise higher, and ER luminal calcium concentrations drop lower, after IP3-mediated release from receptors in the diffuse configuration. Simulation results also suggest that the buffering capacity of the ER, and not restricted diffusion, is the predominant factor influencing average luminal calcium concentrations. PMID:16617072

  17. Modeling development of inhibition zones in an agar diffusion bioassay.

    PubMed

    Chandrasekar, Vaishnavi; Knabel, Stephen J; Anantheswaran, Ramaswamy C

    2015-09-01

    A two-temperature agar diffusion bioassay is commonly used to quantify the concentration of nisin using Micrococcus luteus as the indicator microorganism. A finite element computational model based on Fick's second law of diffusion was used to predict the radius of the inhibition zone in this diffusion bioassay. The model developed was used to calculate nisin concentration profiles as a function of time and position within the agar. The minimum inhibitory concentration (MIC) of nisin against M. luteus was determined experimentally. The critical time (T c) for growth of M. luteus within the agar diffusion bioassay was experimentally determined using incubation studies with nisin. The radius of the inhibition zone was predicted from the computational model as the location where the predicted nisin concentration at T c was equal to MIC. The MIC was experimentally determined to be 0.156 μg mL(-1), and T c was determined to be 7 h. Good agreement (R (2) = 0.984) was obtained between model-predicted and experimentally determined inhibition zone radii.

  18. A Mixed-Culture Biofilm Model with Cross-Diffusion.

    PubMed

    Rahman, Kazi A; Sudarsan, Rangarajan; Eberl, Hermann J

    2015-11-01

    We propose a deterministic continuum model for mixed-culture biofilms. A crucial aspect is that movement of one species is affected by the presence of the other. This leads to a degenerate cross-diffusion system that generalizes an earlier single-species biofilm model. Two derivations of this new model are given. One, like cellular automata biofilm models, starts from a discrete in space lattice differential equation where the spatial interaction is described by microscopic rules. The other one starts from the same continuous mass balances that are the basis of other deterministic biofilm models, but it gives up a simplifying assumption of these models that has recently been criticized as being too restrictive in terms of ecological structure. We show that both model derivations lead to the same PDE model, if corresponding closure assumptions are introduced. To investigate the role of cross-diffusion, we conduct numerical simulations of three biofilm systems: competition, allelopathy and a mixed system formed by an aerobic and an anaerobic species. In all cases, we find that accounting for cross-diffusion affects local distribution of biomass, but it does not affect overall lumped quantities such as the total amount of biomass in the system. PMID:26582360

  19. A Mixed-Culture Biofilm Model with Cross-Diffusion.

    PubMed

    Rahman, Kazi A; Sudarsan, Rangarajan; Eberl, Hermann J

    2015-11-01

    We propose a deterministic continuum model for mixed-culture biofilms. A crucial aspect is that movement of one species is affected by the presence of the other. This leads to a degenerate cross-diffusion system that generalizes an earlier single-species biofilm model. Two derivations of this new model are given. One, like cellular automata biofilm models, starts from a discrete in space lattice differential equation where the spatial interaction is described by microscopic rules. The other one starts from the same continuous mass balances that are the basis of other deterministic biofilm models, but it gives up a simplifying assumption of these models that has recently been criticized as being too restrictive in terms of ecological structure. We show that both model derivations lead to the same PDE model, if corresponding closure assumptions are introduced. To investigate the role of cross-diffusion, we conduct numerical simulations of three biofilm systems: competition, allelopathy and a mixed system formed by an aerobic and an anaerobic species. In all cases, we find that accounting for cross-diffusion affects local distribution of biomass, but it does not affect overall lumped quantities such as the total amount of biomass in the system.

  20. User's Manual for the APRAC-1A Urban Diffusion Model Computer Program.

    ERIC Educational Resources Information Center

    Mancuso, R. L.; And Others

    The APRAC-1A diffusion model was developed as a versatile and practical model for computing the concentrations of pollutants at any point within a city. The model calculates pollutant contributions from diffusion on various scales, including: extra-urban diffusion, mainly from sources in upwind cities; intra-urban diffusion from freeway, arterial,…

  1. Diffusion of cosmic rays in a multiphase interstellar medium swept-up by a supernova remnant blast wave

    NASA Astrophysics Data System (ADS)

    Roh, Soonyoung; Inutsuka, Shu-ichiro; Inoue, Tsuyoshi

    2016-01-01

    Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic interstellar medium. Although we find the possibility of a superdiffusive process (travel distance ∝ t0.75) in our simulations, its effect on CR diffusion at the length scale of the turbulence in the SNR is limited.

  2. Modeling the diffusion of phosphorus in silicon in 3-D

    SciTech Connect

    Baker, K.R.

    1994-12-31

    The use of matrix preconditioning in semiconductor process simulation is examined. The simplified nonlinear single-species model for the diffusion of phosphorus into silicon is considered. The experimental three-dimensional simulator, PEPPER3, which uses finite differences and the numerical method of lines to implement the reaction-diffusion equation is modified to allow NSPCG to be called to solve the linear system in the inner Newton loop. Use of NSPCG allowed various accelerators such as Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) to be used in conjunction with preconditioners such as Richardson, Jacobi, and Incomplete Cholesky.

  3. Reaction-diffusion modelling of bacterial colony patterns

    NASA Astrophysics Data System (ADS)

    Mimura, Masayasu; Sakaguchi, Hideo; Matsushita, Mitsugu

    2000-07-01

    It is well known from experiments that bacterial species Bacillus subtilis exhibit various colony patterns. These are essentially classified into five types in the morphological diagram, depending on the substrate softness and nutrient concentration. (A) diffusion-limited aggregation-like; (B) Eden-like; (C) concentric ring-like; (D) disk-like; and (E) dense branching morphology-like. There arises the naive question of whether the diversity of colony patterns observed in experiments is caused by different effects or governed by the same underlying principles. Our research has led us to propose reaction-diffusion models to describe the morphological diversity of colony patterns except for Eden-like ones.

  4. Structural disorder in the decagonal Al-Co-Ni. I. Patterson analysis of diffuse x-ray scattering data

    SciTech Connect

    Kobas, Miroslav; Weber, Thomas; Steurer, Walter

    2005-06-01

    The three-dimensional (3D) difference Patterson (autocorrelation) function of a disordered quasicrystal (Edagawa phase) has been analyzed. 3D diffuse x-ray diffraction data were collected in situ at 300, 1070, and 1120 K. A method, the punch-and-fill technique, has been developed for separating diffuse scattering and Bragg reflections. Its potential and limits are discussed in detail. The different Patterson maps are interpreted in terms of intercluster correlations as a function of temperature. Both at high and low temperatures, the clusters decorate the vertices of the same quasiperiodic covering. At low temperatures, for the disordered part of the structure, short-range intercluster correlations are present, whereas at higher temperatures, medium-range intercluster correlations are formed. This indicates disorder mainly inside clusters at low temperatures, whereas at higher temperatures disorder takes place inside larger superclusters. Qualitatively, the Patterson maps may be interpreted by intercluster correlations mainly inside pentagonal superclusters below 1120 K, and inside the larger decagonal superclusters at 1120 K. The results of our diffraction study are published in two parts. Part I focuses on the 3D Patterson analysis based on experimental data, Part II reports modeling of structural disorder in decagonal Al-Co-Ni.

  5. An implicit scheme for solving the anisotropic diffusion of heat and cosmic rays in the RAMSES code

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Commerçon, Benoît

    2016-01-01

    Astrophysical plasmas are subject to a tight connection between magnetic fields and the diffusion of particles, which leads to an anisotropic transport of energy. Under the fluid assumption, this effect can be reduced to an advection-diffusion equation, thereby augmenting the equations of magnetohydrodynamics. We introduce a new method for solving the anisotropic diffusion equation using an implicit finite-volume method with adaptive mesh refinement and adaptive time-stepping in the ramses code. We apply this numerical solver to the diffusion of cosmic ray energy and diffusion of heat carried by electrons, which couple to the ion temperature. We test this new implementation against several numerical experiments and apply it to a simple supernova explosion with a uniform magnetic field.

  6. A Diffusion Model Account of the Lexical Decision Task

    PubMed Central

    Ratcliff, Roger; Gomez, Pablo; McKoon, Gail

    2005-01-01

    The diffusion model for 2-choice decisions (R. Ratcliff, 1978) was applied to data from lexical decision experiments in which word frequency, proportion of high- versus low-frequency words, and type of nonword were manipulated. The model gave a good account of all of the dependent variables—accuracy, correct and error response times, and their distributions—and provided a description of how the component processes involved in the lexical decision task were affected by experimental variables. All of the variables investigated affected the rate at which information was accumulated from the stimuli—called drift rate in the model. The different drift rates observed for the various classes of stimuli can all be explained by a 2-dimensional signal-detection representation of stimulus information. The authors discuss how this representation and the diffusion model’s decision process might be integrated with current models of lexical access. PMID:14756592

  7. Continuum modeling of diffusion and dispersion in dense granular flows

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Stone, Howard A.

    2014-03-01

    Continuum modeling of granular flows remains a challenge of modern statistical physics. Granular materials do not perform Brownian motion, yet diffusion and shear dispersion can be observed in such systems when agitation causes inelastic collisions between particles. In a number of canonical flow regimes (e.g., in a rotating container or down an incline), granular materials can behave like fluids. We formulate and solve the granular counterparts to two basic fluid mechanics problems: diffusion of a pulse and shear dispersion of a pulse for dense granular materials in rapid flow. We provide a theory to account for the concentration-dependent diffusivity of bidisperse granular mixtures, and we give an asymptotic argument for the self-similar behavior of such a diffusion process for which an exact self-similar analytical solution does not exist. For shear dispersion, we show that the effective dispersivity of the depth-averaged concentration of the dispersing powder varies as the Péclet number squared, as in classical Taylor-Aris dispersion of molecular solutes. The calculation is extended to generic shear profiles, showing a significant enhancement for convex profiles due to the shear-rate dependence of the diffusivity of granular materials. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1234500.

  8. Continuum modeling of diffusion and dispersion in dense granular flows

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Stone, Howard A.

    2014-11-01

    Continuum modeling of granular flows remains a challenge of modern statistical physics. Granular materials do not perform Brownian motion, yet diffusion and shear dispersion can be observed in such systems when agitation causes inelastic collisions between particles. In a number of canonical flow regimes (e.g., in a rotating container or down an incline), granular materials can behave like fluids. We formulate and solve the granular counterparts to two basic fluid mechanics problems: diffusion of a pulse and shear dispersion of a pulse for dense granular materials in rapid flow. We provide a theory to account for the concentration-dependent diffusivity of bidisperse granular mixtures, and we give an asymptotic argument for the self-similar behavior of such a diffusion process for which an exact self-similar analytical solution does not exist. For shear dispersion, we show that the effective dispersivity of the depth-averaged concentration of the dispersing powder varies as the Péclet number squared, as in classical Taylor-Aris dispersion of molecular solutes. The calculation is extended to generic shear profiles, showing a significant enhancement for convex profiles due to the shear-rate dependence of the diffusivity of granular materials. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1234500.

  9. Modeling and quality assessment of halftoning by error diffusion.

    PubMed

    Kite, T D; Evans, B L; Bovik, A C

    2000-01-01

    Digital halftoning quantizes a graylevel image to one bit per pixel. Halftoning by error diffusion reduces local quantization error by filtering the quantization error in a feedback loop. In this paper, we linearize error diffusion algorithms by modeling the quantizer as a linear gain plus additive noise. We confirm the accuracy of the linear model in three independent ways. Using the linear model, we quantify the two primary effects of error diffusion: edge sharpening and noise shaping. For each effect, we develop an objective measure of its impact on the subjective quality of the halftone. Edge sharpening is proportional to the linear gain, and we give a formula to estimate the gain from a given error filter. In quantifying the noise, we modify the input image to compensate for the sharpening distortion and apply a perceptually weighted signal-to-noise ratio to the residual of the halftone and modified input image. We compute the correlation between the residual and the original image to show when the residual can be considered signal independent. We also compute a tonality measure similar to total harmonic distortion. We use the proposed measures for edge sharpening, noise shaping, and tonality to evaluate the quality of error diffusion algorithms. PMID:18255461

  10. Predicting vulnerability to sleep deprivation using diffusion model parameters.

    PubMed

    Patanaik, Amiya; Zagorodnov, Vitali; Kwoh, Chee Keong; Chee, Michael W L

    2014-10-01

    We used diffusion modelling to predict vulnerability to decline in psychomotor vigilance task (PVT) performance following a night of total sleep deprivation (SD). A total of 135 healthy young adults (69 women, age = 21.9 ± 1.7 years) participated in several within-subject cross-over design studies that incorporated the PVT. Participants were classified as vulnerable (lower tertile) or non-vulnerable (upper tertile) according to their change in lapse rate [lapse = reaction time (RT) ≥ 500 ms] between the evening before (ESD) and the morning after SD. RT data were fitted using Ratcliff's diffusion model. Although both groups showed significant change in RT during SD, there was no significant group difference in RT during the ESD session. In contrast, during ESD, the mean diffusion drift of vulnerable subjects was significantly lower than for non-vulnerable subjects. Mean drift and non-decision times were both adversely affected by sleep deprivation. Both mean drift and non-decision time showed significant state × vulnerability interaction. Diffusion modelling appears to have promise in predicting vulnerability to vigilance decline induced by a night of total sleep deprivation.

  11. Fitting degradation of shoreline scarps by a nonlinear diffusion model

    USGS Publications Warehouse

    Andrews, D.J.; Buckna, R.C.

    1987-01-01

    The diffusion model of degradation of topographic features is a promising means by which vertical offsets on Holocene faults might be dated. In order to calibrate the method, we have examined present-day profiles of wave-cut shoreline scarps of late Pleistocene lakes Bonneville and Lahontan. A table is included that allows easy application of the model to scarps with simple initial shape. -from Authors

  12. Cosmic Ray Transport with Magnetic Focusing and the ``Telegraph'' model

    NASA Astrophysics Data System (ADS)

    Sagdeev, Roald; Malkov, Mikhail

    2015-11-01

    Cosmic rays (CR), scattered by MHD waves, must propagate diffusively. However, because some of the particles diffuse unrealistically fast, an alternative CR transport model based on the ``telegraph'' equation was put forward. Though, its derivations often lack rigor and transparency leading to inconsistent results. We apply the Chapman-Enskog method to the CR transport. No ``telegraph'' ∂2 f / ∂t2 term emerges in a proper t >> 1 asymptotic expansion. Nevertheless, this term may be converted from the ∂4 f / ∂z4 term of that expansion. However, both the telegraph and hyperdiffusive terms are important only for a short relaxation period associated with the initial CR anisotropy/inhomogeneity. Then, the system evolves diffusively in both cases. The term conversion is possible only after this relaxation period. During this period, the telegraph solution is argued to be unphysical. Unlike the hyperdiffusion correction, it is not uniformly valid and introduces implausible singular components to the solution. These dominate the solution during the relaxation period. Because they are shown not to be inherent in the underlying scattering problem, the telegraph term is involuntarily acquired in an asymptotic reduction. Supported by NASA ATP-program under the grant NNX14AH36G.

  13. Numerical Model for Cosmic Rays Species Production and Propagation in the Galaxy

    NASA Technical Reports Server (NTRS)

    Farahat, Ashraf; Zhang, Ming; Rassoul, Hamid; Connell, J. J.

    2005-01-01

    In recent years, considerable progress has been made in studying the propagation and origin of cosmic rays, as new and more accurate data have become available. Many models have been developed to study cosmic ray interactions and propagation showed flexibility in resembling various astrophysical conditions and good agreement with observational data. However, some astrophysical problems cannot be addressed using these models, such as the stochastic nature of the cosmic rays source, small-scale structures and inhomogeneities in the interstellar gas that can affect radioactive secondary abundance in cosmic rays. We have developed a new model and a corresponding computer code that can address some of these limitations. The model depends on the expansion of the backward stochastic solution of the general diffusion transport equation (Zhang 1999) starting from an observer position to solve a group of diffusion transport equations each of which represents a particular element or isotope of cosmic ray nuclei. In this paper we are focusing on key abundance ratios such as B/C, sub-Fe/Fe, (10)Be/(9)Be, (26)Al/(27)Al, (36)Cl/(37)Cl and (54)Mn/(55)Mn, which all have well established cross sections, to evaluate our model. The effect of inhomogeneity in the interstellar medium is investigated. The contribution of certain cosmic ray nuclei to the production of other nuclei is addressed. The contribution of various galactic locations to the production of cosmic ray nuclei observed at solar system is also investigated.

  14. X-ray diffraction study of defects in zinc-diffusion-doped silicon

    SciTech Connect

    Privezentsev, V. V.

    2013-12-15

    Samples of CZ n-Si〈Zn〉(111) are prepared by high-temperature zinc-diffusion annealing followed by quenching and are studied by X-ray diffraction. The silicon contains an initial phosphorus impurity and zinc-compensating admixture at concentrations N{sub P} = 1.5 × 10{sup 14} cm{sup −3} and N{sub Zn} = 1 × 10{sup 14} cm{sup −3}; i.e., the relation N{sub P}/2 < N{sub Zn} < N{sub P} is fulfilled. Microdefects are studied by double- and triple-crystal X-ray diffraction in the dispersion free modes (n, −n) and (n, −n, +n). The samples are found to contain microdefects with two characteristic sizes (average sizes of about 1 μm and 70 nm). The interplanar distance in the near-surface layer with a thickness of 0.1 μm is smaller than this parameter in the remaining matrix, the difference being equal to d{sub 0} Δd/d{sub 0} ≈ 2 × 10{sup −5}. This layer contains mainly vacancy-type microdefects. The angle between the reflecting planes and the local surface relief is Δψ = (7 ± 1) arcmin.

  15. The diffuse soft X-ray background as seen with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.

    1991-01-01

    A systematic survey of the diffuse soft X-ray background as seen directly with the Einstein Observatory is presented. With the aid of 1633 selected 1 x 1 deg fields of view obtained by the IPC to provide about 5-percent sky coverage, with some bias toward the Galactic plane, the background in the 0.16-3.5 keV spectral region was spatially resolved on this angular scale. Maps of the background are characterized and produced at different energies within the Einstein passband. It is confirmed that the Galactic ridge is not present at energies below 0.33 keV and it is demonstrated that the appearance of the ridge above this energy is not due to hard Galactic sources with a flux above 10 exp -13 ergs/sq cm/s. A southern Galactic region is identified, with l between 80 and 180 deg and b less than -5 deg, where the mean background intensity has the lowest value and is homogeneous within better than 9 percent. The implications of these results for the Galactic structure and for the nature of the extragalactic X-ray background are discussed.

  16. Diffuse gamma-ray constraints on dark matter revisited I: the impact of subhalos

    SciTech Connect

    Blanchet, Steve; Lavalle, Julien E-mail: lavalle@in2p3.fr

    2012-11-01

    We make a detailed analysis of the indirect diffuse gamma-ray signals from dark matter annihilation in the Galaxy. We include the prompt emission, as well as the emission from inverse Compton scattering whenever the annihilation products contain light leptons. We consider both the contribution from the smooth dark matter halo and that from substructures. The main parameters for the latter are the mass function index and the minimal subhalo mass. We use recent results from N-body simulations to set the most reasonable range of parameters, and find that the signal can be boosted by a factor ranging from 2 to 15 towards the Galactic poles, slightly more towards the Galactic anticenter, with an important dependence on the subhalo mass index. This uncertainty is however much less than that of the extragalactic signal studied in the literature. We derive upper bounds on the dark matter annihilation cross section using the isotropic gamma-ray emission measured by Fermi-LAT, for two directions in the sky, the Galactic anticenter and the Galactic pole(s). The former represents the lowest irreducible signal from dark matter annihilation, and the latter is robust as the astrophysical background, dominated by the hadronic contribution, is rather well established in that direction. Finally, we show how the knowledge of the minimal subhalo mass, which formally depends on the dark matter particle interactions with normal matter, can be used to derive the mass function index.

  17. A color gradient in the soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Schmitt, J. H. M. M.; Edwards, B. C.

    1990-01-01

    It is shown that the deviations of the soft X-ray diffuse background B band to C band intensity ratio from a constant value can be described as a simple dipole-like variation across the sky. In terms of the observed Wisconsin B/C band intensity ratio, the mean value is 0.355, the dipole magnitude is 0.106, and the positive dipole axis points toward l = 168.7 deg, b = 11.2 deg, almost in the galactic anticenter direction. This gradient in the spectral hardness can be due to several causes; the simplest is a temperature gradient in the X-ray emitting plasma of the local cavity from about 10 exp 6.2 K toward the galactic center to about 10 exp 5.9 K in the anticenter direction. While the physical origin of such a temperature gradient is uncertain, the alignment of the dipole with the higher temperature (and absorbed) Loop I region may be significant.

  18. A Diffusion Model for Two-sided Service Systems

    NASA Astrophysics Data System (ADS)

    Homma, Koichi; Yano, Koujin; Funabashi, Motohisa

    A diffusion model is proposed for two-sided service systems. ‘Two-sided’ refers to the existence of an economic network effect between two different and interrelated groups, e.g., card holders and merchants in an electronic money service. The service benefit for a member of one side depends on the number and quality of the members on the other side. A mathematical model by J. H. Rohlfs explains the network (or bandwagon) effect of communications services. In Rohlfs' model, only the users' group exists and the model is one-sided. This paper extends Rohlfs' model to a two-sided model. We propose, first, a micro model that explains individual behavior in regard to service subscription of both sides and a computational method that drives the proposed model. Second, we develop macro models with two diffusion-rate variables by simplifying the micro model. As a case study, we apply the models to an electronic money service and discuss the simulation results and actual statistics.

  19. AN AB INITIO MODEL FOR COSMIC-RAY MODULATION

    SciTech Connect

    Engelbrecht, N. E.; Burger, R. A.

    2013-07-20

    A proper understanding of the effects of turbulence on the diffusion and drift of cosmic rays (CRs) is of vital importance for a better understanding of CR modulation in the heliosphere. This study presents an ab initio model for CR modulation, incorporating for the first time the results yielded by a two-component turbulence transport model. This model is solved for solar minimum heliospheric conditions, utilizing boundary values chosen so that model results are in reasonable agreement with spacecraft observations of turbulence quantities in the solar ecliptic plane and along the out-of-ecliptic trajectory of the Ulysses spacecraft. These results are employed as inputs for modeled slab and two-dimensional (2D) turbulence energy spectra. The modeled 2D spectrum is chosen based on physical considerations, with a drop-off at the very lowest wavenumbers. There currently exist no models or observations for the wavenumber where this drop-off occurs, and it is considered to be the only free parameter in this study. The modeled spectra are used as inputs for parallel mean free path expressions based on those derived from quasi-linear theory and perpendicular mean free paths from extended nonlinear guiding center theory. Furthermore, the effects of turbulence on CR drifts are modeled in a self-consistent way, also employing a recently developed model for wavy current sheet drift. The resulting diffusion and drift coefficients are applied to the study of galactic CR protons and antiprotons using a 3D, steady-state CR modulation code, and sample solutions in fair to good agreement with multiple spacecraft observations are presented.

  20. Modeling hydrogen diffusion for solar cell passivation and process optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Yi

    A diffusion model for hydrogen (H) in crystalline silicon was established which takes into account the charged state conversion, junction field, mobile traps, and complex formation and dissociation at dopant and trap sites. Carrier exchange among the various charged species is a "fast" process compared to the diffusion process. A numerical method was developed to solve the densities of various charged species from the Poisson's equation that involves shallow-level dopants and one "negative U" impurity, e.g., H. Time domain implicit method was adopted in finite difference scheme to solve the fully coupled equations. Limiting versions of the model were applied to the problems that are of interest to photovoltaics. Simplified trap-limited model was used to describe the low temperature diffusion profiles, assuming process-induced traps, a constant bulk trap level, and trapping/detrapping mechanisms. The results of the simulation agreed with those obtained from experiments. The best fit yielded a low surface free H concentration, Cs, (˜10 14 cm-3) from high temperature extrapolated diffusivity value. In the case of ion beam hydrogenation, mobile traps needed to be considered. PAS analysis showed the existence of vacancy-type defects in implanted Si substrates. Simulation of hydrogen diffusion in p-n junction was first attempted in this work. The order of magnitude of Cs (˜10 14 cm-3) was confirmed. Simulation results showed that the preferred charged state of H is H- (H +) in n- (p-) side of the junction. The accumulation of H- (H+) species on n+ (p+) side of the n+-p (p+-n) junction was observed, which could retard the diffusion in junction. The diffusion of hydrogen through heavily doped region in a junction is trap-limited. Several popular hydrogenation techniques were evaluated by means of modeling and experimental observations. In particular, PECVD followed by RTP hydrogenation was found to be two-step process: PECVD deposition serves as a predeposition step of H

  1. Modelling the cosmic ray electron propagation in M 51

    NASA Astrophysics Data System (ADS)

    Mulcahy, D. D.; Fletcher, A.; Beck, R.; Mitra, D.; Scaife, A. M. M.

    2016-08-01

    Context. Cosmic ray electrons (CREs) are a crucial part of the interstellar medium and are observed via synchrotron emission. While much modelling has been carried out on the CRE distribution and propagation of the Milky Way, little has been done on normal external star-forming galaxies. Recent spectral data from a new generation of radio telescopes enable us to find more robust estimations of the CRE propagation. Aims: To model the synchrotron spectral index of M 51 using the diffusion energy-loss equation and to compare the model results with the observed spectral index determined from recent low-frequency observations with LOFAR. Methods: We solve the time-dependent diffusion energy-loss equation for CREs in M 51. This is the first time that this model for CRE propagation has been solved for a realistic distribution of CRE sources, which we derive from the observed star formation rate, in an external galaxy. The radial variation of the synchrotron spectral index and scale-length produced by the model are compared to recent LOFAR and older VLA observational data and also to new observations of M 51 at 325 MHz obtained with the GMRT. Results: We find that propagation of CREs by diffusion alone is sufficient to reproduce the observed spectral index distribution in M 51. An isotropic diffusion coefficient with a value of 6.6 ± 0.2 × 1028 cm2 s-1 is found to fit best and is similar to what is seen in the Milky Way. We estimate an escape time of 11 Myr from the central galaxy to 88 Myr in the extended disk. It is found that an energy dependence of the diffusion coefficient is not important for CRE energies in the range 0.01 GeV-3 GeV. We are able to reproduce the dependence of the observed synchrotron scale-lengths on frequency, with l ∝ ν- 1 / 4 in the outer disk and l ∝ ν- 1 / 8 in the inner disk. The reduced 325 MHz image as a FITS file is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  2. Extended model of the channel diffusivity in the rutile structure

    NASA Astrophysics Data System (ADS)

    Ruebenbauer, K.; Wdowik, U. D.; Kwater, M.; Kowalik, J. T.

    1996-11-01

    A model describing the diffusivity of a highly diluted and randomly distributed substitutional cationic impurity via the open and almost empty <001> channels in the rutile structure has been developed recently. The above model is based upon the assumption that the insignificant fraction of the impurities resides in the channels. An extended model is developed that allows for a significant fraction of the impurities to stay within channels, and it is used to evaluate emission Mössbauer spectra originating from the diffusing impurities embedded in single-crystalline samples. Final results are shown for the 14.4-keV Mössbauer line in 57Co(Fe). It is shown that spectral line positions depend upon the wave-vector transfer to the system, and that the data are sensitive to the fraction of both parent and daughter impurities residing in the channels.

  3. Numerical modelling and image reconstruction in diffuse optical tomography

    PubMed Central

    Dehghani, Hamid; Srinivasan, Subhadra; Pogue, Brian W.; Gibson, Adam

    2009-01-01

    The development of diffuse optical tomography as a functional imaging modality has relied largely on the use of model-based image reconstruction. The recovery of optical parameters from boundary measurements of light propagation within tissue is inherently a difficult one, because the problem is nonlinear, ill-posed and ill-conditioned. Additionally, although the measured near-infrared signals of light transmission through tissue provide high imaging contrast, the reconstructed images suffer from poor spatial resolution due to the diffuse propagation of light in biological tissue. The application of model-based image reconstruction is reviewed in this paper, together with a numerical modelling approach to light propagation in tissue as well as generalized image reconstruction using boundary data. A comprehensive review and details of the basis for using spatial and structural prior information are also discussed, whereby the use of spectral and dual-modality systems can improve contrast and spatial resolution. PMID:19581256

  4. Infrasound ray tracing models for real events

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Applbaum, David; Price, Colin; Ben Horin, Yochai

    2015-04-01

    Infrasound ray tracing models for real events C. Price1, G. Averbuch1, D. Applbaum1, Y. Ben Horin2 (1) Department of Geosciences, Tel Aviv University, Israel (2) Soreq Nuclear Research Center, Yavne, Israel Ray tracing models for infrasound propagation require two atmospheric parameters: the speed of sound profile and the wind profile. The usage of global atmospheric models for the speed of sound and wind profiles raises a fundamental question: can these models provide accurate results for modeling real events that have been detected by the infrasound arrays? Moreover, can these models provide accurate results for events that occurred during extreme weather conditions? We use 2D and 3D ray tracing models based on a modified Hamiltonian for a moving medium. Radiosonde measurements enable us to update the first 20 km of both speed of sound and wind profiles. The 2009 and 2011 Sayarim calibration experiments in Israel served us as a test for the models. In order to answer the question regarding the accuracy of the model during extreme weather conditions, we simulate infrasound sprite signals that were detected by the infrasound array in Mt. Meron, Israel. The results from modeling the Sayarim experiment provided us sufficient insight to conclude that ray tracing modeling can provide accurate results for real events that occurred during fair weather conditions. We conclude that the time delay in the model of the 2009 experiment is due to lack of accuracy in the wind and speed of sound profiles. Perturbed profiles provide accurate results. Earlier arrivals in 2011 are a result of the assumption that the earth is flat (no topography) and the use of local radiosonde measurements for the entire model. Using local radiosonde measurements only for part of the model and neglecting them on other parts prevents the early arrivals. We were able to determine which sprite is the one that got detected in the infrasound array as well as providing a height range for the sprite

  5. Assessment of a Molecular Diffusion Model in MELCOR

    SciTech Connect

    Chang OH; Richard Moore

    2005-06-01

    The MELCOR (version 1.8.5) [1] computer code with INEEL revisions is being improved for the analysis of very high temperature gas-cooled reactors [2]. Following a loss-of-coolant accident, flow through the reactor vessel may initially stagnate due to a non-uniform concentration of helium and air. However, molecular diffusion will eventually result in a uniform concentration of air and helium. The differences in fluid temperatures within the reactor vessel will then result in the establishment of a natural circulation flow that can supply significant amounts of air to the reactor core. The heat released by the resulting oxidation of graphite in the reactor core has the potential to increase the peak fuel temperature. In order to analyze the effects of oxidation on the response of the reactor during accidents, a molecular diffusion model was added to MELCOR. The model is based on Fick's Second Law for spatially uniform pressure and temperature. This paper describes equimolal counter diffusion experiments in a two bulb diffusion cell and the results of the assessment calculations.

  6. A GENERALIZED MODEL OF NONLINEAR DIFFUSIVE SHOCK ACCELERATION COUPLED TO AN EVOLVING SUPERNOVA REMNANT

    SciTech Connect

    Lee, Shiu-Hang; Nagataki, Shigehiro; Ellison, Donald C. E-mail: nagataki@yukawa.kyoto-u.ac.jp

    2012-05-10

    To better model the efficient production of cosmic rays (CRs) in supernova remnants (SNRs) with the associated coupling between CR production and SNR dynamics, we have generalized an existing cr-hydro-NEI code to include the following processes: (1) an explicit calculation of the upstream precursor structure including the position-dependent flow speed, density, temperature, and magnetic field strength; (2) a momentum- and space-dependent CR diffusion coefficient; (3) an explicit calculation of magnetic field amplification; (4) calculation of the maximum CR momentum using the amplified magnetic field; (5) a finite Alfven speed for the particle scattering centers; and (6) the ability to accelerate a superthermal seed population of CRs, as well as the ambient thermal plasma. While a great deal of work has been done modeling SNRs, most work has concentrated on either the continuum emission from relativistic electrons or ions or the thermal emission from the shock heated plasma. Our generalized code combines these elements and describes the interplay between CR production and SNR evolution, including the nonlinear coupling of efficient diffusive shock acceleration, based mainly on the work of P. Blasi and coworkers, and a non-equilibrium ionization (NEI) calculation of thermal X-ray line emission. We believe that our generalized model will provide a consistent modeling platform for SNRs, including those interacting with molecular clouds, and improve the interpretation of current and future observations, including the high-quality spectra expected from Astro-H. SNR RX J1713.7-3946 is modeled as an example.

  7. An ab initio model for the modulation of galactic cosmic-ray electrons

    SciTech Connect

    Engelbrecht, N. E.; Burger, R. A.

    2013-12-20

    The modulation of galactic cosmic-ray electrons is studied using an ab initio three-dimensional steady state cosmic-ray modulation code in which the effects of turbulence on both the diffusion and drift of these cosmic-rays are treated as self-consistently as possible. A significant refinement is that a recent two-component turbulence transport model is used. This model yields results in reasonable agreement with observations of turbulence quantities throughout the heliosphere. The sensitivity of computed galactic electron intensities to choices of various turbulence parameters pertaining to the dissipation range of the slab turbulence spectrum, and to the choice of model of dynamical turbulence, is demonstrated using diffusion coefficients derived from the quasi-linear and extended nonlinear guiding center theories. Computed electron intensities and latitude gradients are also compared with spacecraft observations.

  8. Characterization and modeling of thermal diffusion and aggregation in nanofluids.

    SciTech Connect

    Gharagozloo, Patricia E.; Goodson, Kenneth E.

    2010-05-01

    Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.

  9. Chromium oxide as a metal diffusion barrier layer: An x-ray absorption fine structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ahamad Mohiddon, Md.; Lakshun Naidu, K.; Ghanashyam Krishna, M.; Dalba, G.; Ahmed, S. I.; Rocca, F.

    2014-01-01

    The interaction at the interface between chromium and amorphous Silicon (a-Si) films in the presence of a sandwich layer of chromium oxide is investigated using X-ray absorption fine structure (XAFS) spectroscopy. The oxidized interface was created, in situ, prior to the deposition of a 400 nm tick a-Si layer over a 50 nm tick Cr layer. The entire stack of substrate/metallic Cr/Cr2O3/a-Si was then annealed at temperatures from 300 up to 700 °C. Analysis of the near edge and extended regions of each XAFS spectrum shows that only a small fraction of Cr is able to diffuse through the oxide layer up to 500 °C, while the remaining fraction is buried under the oxide layer in the form of metallic Cr. At higher temperatures, diffusion through the oxide layer is enhanced and the diffused metallic Cr reacts with a-Si to form CrSi2. At 700 °C, the film contains Cr2O3 and CrSi2 without evidence of unreacted metallic Cr. The activation energy and diffusion coefficient of Cr are quantitatively determined in the two temperature regions, one where the oxide acts as diffusion barrier and another where it is transparent to Cr diffusion. It is thus demonstrated that chromium oxide can be used as a diffusion barrier to prevent metal diffusion into a-Si.

  10. Modeling Gamma-Ray Burst X-Ray Flares Within the Internal Shock Model

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda; Zhang, Bing

    2009-12-01

    X-ray afterglow light curves have been collected for over 400 Swift gamma-ray bursts (GRBs) with nearly half of them having X-ray flares superimposed on the regular afterglow decay. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge, and spread, producing prompt emission and X-ray flares. We pay special attention to the time history of central engine activity, internal shocks, and observed flares, but do not calculate the shock dynamics and radiation processes in detail. Using the empirical Ep -E iso (Amati) relation with an assumed Band function spectrum for each collision and an empirical flare temporal profile, we calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary central engine activity and compare the model results with the observational data. We show that the observed X-ray flare phenomenology can be explained within the internal shock model. The number, width, and occurring time of flares are then used to diagnose the central engine activity, putting constraints on the energy, ejection time, width, and number of ejected shells. We find that the observed X-ray flare time history generally reflects the time history of the central engine, which reactivates multiple times after the prompt emission phase with progressively reduced energy. The same shell model predicts an external shock X-ray afterglow component, which has a shallow decay phase due to the initial pile-up of shells onto the blast wave. However, the predicted X-ray afterglow is too bright as compared with the observed flux level, unless epsilon e is

  11. Performance of turbulence models for transonic flows in a diffuser

    NASA Astrophysics Data System (ADS)

    Liu, Yangwei; Wu, Jianuo; Lu, Lipeng

    2016-09-01

    Eight turbulence models frequently used in aerodynamics have been employed in the detailed numerical investigations for transonic flows in the Sajben diffuser, to assess the predictive capabilities of the turbulence models for shock wave/turbulent boundary layer interactions (SWTBLI) in internal flows. The eight turbulence models include: the Spalart-Allmaras model, the standard k - 𝜀 model, the RNG k - 𝜀 model, the realizable k - 𝜀 model, the standard k - ω model, the SST k - ω model, the v2¯ - f model and the Reynolds stress model. The performance of the different turbulence models adopted has been systematically assessed by comparing the numerical results with the available experimental data. The comparisons show that the predictive performance becomes worse as the shock wave becomes stronger. The v2¯ - f model and the SST k - ω model perform much better than other models, and the SST k - ω model predicts a little better than the v2¯ - f model for pressure on walls and velocity profile, whereas the v2¯ - f model predicts a little better than the SST k - ω model for separation location, reattachment location and separation length for strong shock case.

  12. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High-energy Emission from the Inner 2°×1° of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Roberts, D. A.; Cotton, W.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and γ-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of ~GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner ~300 × 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate ~1-10 × 10-15 s-1, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10-6-10-5, large-scale magnetic field 10-20 μG, the density of diffuse and dense molecular gas ~100 and ~103 cm-3 over 300 pc and 50 pc path lengths, and the variability of Fe I Kα 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV γ-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  13. Thermomechanics of damageable materials under diffusion: modelling and analysis

    NASA Astrophysics Data System (ADS)

    Roubíček, Tomáš; Tomassetti, Giuseppe

    2015-12-01

    We propose a thermodynamically consistent general-purpose model describing diffusion of a solute or a fluid in a solid undergoing possible phase transformations and damage, beside possible visco-inelastic processes. Also heat generation/consumption/transfer is considered. Damage is modelled as rate-independent. The applications include metal-hydrogen systems with metal/hydride phase transformation, poroelastic rocks, structural and ferro/para-magnetic phase transformation, water and heat transport in concrete, and if diffusion is neglected, plasticity with damage and viscoelasticity, etc. For the ensuing system of partial differential equations and inclusions, we prove existence of solutions by a carefully devised semi-implicit approximation scheme of the fractional-step type.

  14. Chaotic map models of soot fluctuations in turbulent diffusion flames

    SciTech Connect

    Mukerji, S.; McDonough, J.M.; Menguec, M.P.; Manickavasagam, S.; Chung, S.

    1998-10-01

    In this paper, the authors introduce a methodology to characterize time-dependent soot volume fraction fluctuations in turbulent diffusion flames via chaotic maps. The approach is based on the hypothesis that fluctuations of properties in turbulent flames are deterministic in nature, rather than statistical. The objective is to develop models of these fluctuations to be used in comprehensive algorithms to study the nature of turbulent flames and the interaction of turbulence with radiation. To this end the authors measured the time series of soot scattering coefficient in an ethylene diffusion flame from light scattering experiments and fit these data to linear combinations of chaotic maps of the unit interval. Both time series and power spectra can be modeled with reasonable accuracy in this way.

  15. Model-free simulation approach to molecular diffusion tensors.

    PubMed

    Chevrot, Guillaume; Hinsen, Konrad; Kneller, Gerald R

    2013-10-21

    In the present work, we propose a simple model-free approach for the computation of molecular diffusion tensors from molecular dynamics trajectories. The method uses a rigid body trajectory of the molecule under consideration, which is constructed a posteriori by an accumulation of quaternion-based superposition fits of consecutive conformations. From the rigid body trajectory, we compute the translational and angular velocities of the molecule and by integration of the latter also the corresponding angular trajectory. All quantities can be referred to the laboratory frame and a molecule-fixed frame. The 6 × 6 diffusion tensor is computed from the asymptotic slope of the tensorial mean square displacement and, for comparison, also from the Kubo integral of the velocity correlation tensor. The method is illustrated for two simple model systems - a water molecule and a lysozyme molecule in bulk water. We give estimations of the statistical accuracy of the calculations. PMID:24160503

  16. Model-free simulation approach to molecular diffusion tensors

    NASA Astrophysics Data System (ADS)

    Chevrot, Guillaume; Hinsen, Konrad; Kneller, Gerald R.

    2013-10-01

    In the present work, we propose a simple model-free approach for the computation of molecular diffusion tensors from molecular dynamics trajectories. The method uses a rigid body trajectory of the molecule under consideration, which is constructed a posteriori by an accumulation of quaternion-based superposition fits of consecutive conformations. From the rigid body trajectory, we compute the translational and angular velocities of the molecule and by integration of the latter also the corresponding angular trajectory. All quantities can be referred to the laboratory frame and a molecule-fixed frame. The 6 × 6 diffusion tensor is computed from the asymptotic slope of the tensorial mean square displacement and, for comparison, also from the Kubo integral of the velocity correlation tensor. The method is illustrated for two simple model systems - a water molecule and a lysozyme molecule in bulk water. We give estimations of the statistical accuracy of the calculations.

  17. A surface diffusion model for Dip Pen Nanolithography line writing

    NASA Astrophysics Data System (ADS)

    Saha, Sourabh K.; Culpepper, Martin L.

    2010-06-01

    Dip Pen Nanolithography is a direct write process that creates nanoscale dots and lines. Models typically predict dot and line size via assumption of constant ink flow rate from tip to substrate. This is appropriate for dot writing. It is however well-known, though models rarely reflect, that the ink flow rate depends upon writing speed during line writing. Herein, we explain the physical phenomenon that governs line writing and use this to model tip-substrate diffusion in line writing. We accurately predict (i) the increase in flow rate with writing speed and (ii) line width within 12.5%.

  18. Forecasting Diffusion of Technology by using Bass Model

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hoi; Shin, Young-Geun; Park, Sang-Sung; Jang, Dong-Sik

    2009-08-01

    Generally, researching method of technology forecasting has been depended on intuition of expert until now. So there were many defects like consuming much time and money and so on. In this paper, we forecast diffusion of technology by using Bass model that is one of the quantitative analysis methods. We applied this model at technology market. And for input data of experiment, we use patent data that is representing each technology in technology market. We expect this research will be suggest new possibility that patent data can be applied in Bass model.

  19. Consistent flamelet modeling of differential molecular diffusion for turbulent non-premixed flames

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng

    2016-03-01

    Treating differential molecular diffusion correctly and accurately remains as a great challenge to the modeling of turbulent non-premixed combustion. The aim of this paper is to develop consistent modeling strategies for differential molecular diffusion in flamelet models. Two types of differential molecular diffusion models are introduced, linear differential diffusion models and nonlinear differential diffusion models. A multi-component turbulent mixing layer problem is analyzed in detail to gain insights into differential molecular diffusion and its characteristics, particularly the dependence of differential molecular diffusion on the Reynolds number and the Lewis number. These characteristics are then used to validate the differential molecular diffusion models. Finally, the new models are applied to the modeling of a series of laboratory-scale turbulent non-premixed jet flames with different Reynolds number (Sandia Flames B, C, and D) to further assess the models' performance.

  20. Extending the Diffuse Layer Model of Surface Acidity Constant Behavior: IV. Diffuse Layer Charge/Potential Relationships

    EPA Science Inventory

    Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...

  1. Molecular Diffusive Motion in a Monolayer of a Model Lubricant

    NASA Astrophysics Data System (ADS)

    Diama, A.; Criswell, L.; Mo, H.; Taub, H.; Herwig, K. W.; Hansen, F. Y.; Volkmann, U. G.; Dimeo, R.; Neumann, D.

    2003-03-01

    Squalane (C_30H_62), a branched alkane of intermediate length consisting of a tetracosane backbone (n-C_24H_50 or C24) and six symmetrically placed methyl sidegroups, is frequently taken as a model lubricant. We have conducted quasielastic neutron scattering (QNS) experiments to investigate the diffusive motion on different time scales in a squalane monolayer adsorbed on the (0001) surfaces of an exfoliated graphite substrate. Unlike tetracosane, high-energy resolution spectra (time scale ˜0.1 - 4 ns) at temperatures of 215 K and 230 K show the energy width of the QNS to have a maximum near Q = 1.2 ÅThis nonmonotonic Q dependence suggests a more complicated diffusive motion than the simple rotation about the long molecular axis believed to occur in a C24 monolayer at this temperature. Lower-energy-resolution spectra (time scale ˜4 - 40 ps) show evidence of two types of diffusive motion whose rates have opposite temperature dependences. The rate of the faster motion decreases as the monolayer is heated, and we speculate that it is due to hindered rotation of the methyl groups. The rate of the slower motion increases with temperature and may involve both uniaxial rotation and translational diffusion. Our experimental results will be compared with molecular dynamics simulations.

  2. Modeling diffusive transport with a fractional derivative without singular kernel

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.; López-López, M. G.; Alvarado-Martínez, V. M.; Reyes-Reyes, J.; Adam-Medina, M.

    2016-04-01

    In this paper we present an alternative representation of the diffusion equation and the diffusion-advection equation using the fractional calculus approach, the spatial-time derivatives are approximated using the fractional definition recently introduced by Caputo and Fabrizio in the range β , γ ∈(0 ; 2 ] for the space and time domain respectively. In this representation two auxiliary parameters σx and σt are introduced, these parameters related to equation results in a fractal space-time geometry provide an entire new family of solutions for the diffusion processes. The numerical results showed different behaviors when compared with classical model solutions. In the range β , γ ∈(0 ; 1) , the concentration exhibits the non-Markovian Lévy flights and the subdiffusion phenomena; when β = γ = 1 the classical case is recovered; when β , γ ∈(1 ; 2 ] the concentration exhibits the Markovian Lévy flights and the superdiffusion phenomena; finally when β = γ = 2 the concentration is anomalous dispersive and we found ballistic diffusion.

  3. Reaction-diffusion processes and metapopulation models on duplex networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Du, Fang; Yu, Li; Chen, Guanrong

    2013-03-01

    Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant in transferring different kinds of particles. However, in many self-organized systems, different particles may have their own private channels to keep their purities. Such division of links often significantly influences the underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps β→α and α+β→2β, on duplex networks where links are classified into two groups: α and β links used to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity is independent of the network topology if there is no correlation between the degree sequences of the two subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of different types of diffusion links.

  4. PROPERTIES OF NEARBY STARBURST GALAXIES BASED ON THEIR DIFFUSE GAMMA-RAY EMISSION

    SciTech Connect

    Paglione, Timothy A. D.; Abrahams, Ryan D.

    2012-08-20

    The physical relationship between the far-infrared and radio fluxes of star-forming galaxies has yet to be definitively determined. The favored interpretation, the 'calorimeter model', requires that supernova generated cosmic-ray (CR) electrons cool rapidly via synchrotron radiation. However, this cooling should steepen their radio spectra beyond what is observed, and so enhanced ionization losses at low energies from high gas densities are also required. Further, evaluating the minimum energy magnetic field strength with the traditional scaling of the synchrotron flux may underestimate the true value in massive starbursts if their magnetic energy density is comparable to the hydrostatic pressure of their disks. Gamma-ray spectra of starburst galaxies, combined with radio data, provide a less ambiguous estimate of these physical properties in starburst nuclei. While the radio flux is most sensitive to the magnetic field, the GeV gamma-ray spectrum normalization depends primarily on gas density. To this end, spectra above 100 MeV were constructed for two nearby starburst galaxies, NGC 253 and M82, using Fermi data. Their nuclear radio and far-infrared spectra from the literature are compared to new models of the steady-state CR distributions expected from starburst galaxies. Models with high magnetic fields, favoring galaxy calorimetry, are overall better fits to the observations. These solutions also imply relatively high densities and CR ionization rates, consistent with molecular cloud studies.

  5. Spatial Fluctuations in the Diffuse Cosmic X-Ray Background. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shafer, R. A.

    1983-01-01

    The bright, essentially isotropic, X-ray sky flux above 2 keV yields information on the universe at large distances. However, a definitive understanding of the origin of the flux is lacking. Some fraction of the total flux is contributed by active galactic nuclei and clusters of galaxies, but less than one percent of the total is contributed by the or approximately 3 keV band resolved sources, which is the band where the sky flux is directly observed. Parametric models of AGN (quasar) luminosity function evolution are examined. Most constraints are by the total sky flux. The acceptability of particular models hinges on assumptions currently not directly testable. The comparison with the Einstein Observatory 1 to keV low flux source counts is hampered by spectral uncertainties. A tentative measurement of a large scale dipole anisotropy is consistent with the velocity and direction derived from the dipole in the microwave background. The impact of the X-ray anisotropy limits for other scales on studies of large-scale structure in the universe is sketched. Models of the origins of the X-ray sky flux are reviewed, and future observational programs outlined.

  6. Diffuse interface modeling of a radial vapor bubble collapse

    NASA Astrophysics Data System (ADS)

    Magaletti, Francesco; Marino, Luca; Massimo Casciola, Carlo

    2015-12-01

    A diffuse interface model is exploited to study in details the dynamics of a cavitation vapor bubble, by including phase change, transition to supercritical conditions, shock wave propagation and thermal conduction. The numerical experiments show that the actual dynamic is a sequence of collapses and rebounds demonstrating the importance of nonequilibrium phase changes. In particular the transition to supercritical conditions avoids the full condensation and leads to shockwave emission after the collapse and to successive bubble rebound.

  7. Modeling of Diffusion in Liquid Ge and Its Alloys

    NASA Technical Reports Server (NTRS)

    Stroud, David G.

    1998-01-01

    This report summarizes progress made on NASA Grant NAG3-1437, Modeling of diffusion in Liquid Ge and Its Alloys, which was in effect from January 15, 1993 through July 10, 1997. It briefly describes the purpose of the grant, and the work accomplished in simulations and other studies of thermophysical properties of liquid semiconductors and related materials. A list of publications completed with the support of the grant is also given.

  8. Pricing turbo warrants under mixed-exponential jump diffusion model

    NASA Astrophysics Data System (ADS)

    Yu, Jianfeng; Xu, Weidong

    2016-06-01

    Turbo warrant is a special type of barrier options in which the rebate is calculated as another exotic option. In this paper, using Laplace transforms we obtain the valuation of turbo warrant under the mixed-exponential jump diffusion model, which is able to approximate any jump size distribution. The numerical Laplace inversion examples verify that the analytical solutions are accurate. The results of simulation confirm the argument that jump risk should not be ignored in the valuation of turbo warrants.

  9. Turbulent Pitch-angle Scattering and Diffusive Transport of Hard X-Ray-producing Electrons in Flaring Coronal Loops

    NASA Astrophysics Data System (ADS)

    Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole

    2014-01-01

    Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path λ associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that λ ~ (108-109) cm for ~30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.

  10. Turbulent pitch-angle scattering and diffusive transport of hard X-ray-producing electrons in flaring coronal loops

    SciTech Connect

    Kontar, Eduard P.; Bian, Nicolas H.; Emslie, A. Gordon; Vilmer, Nicole E-mail: emslieg@wku.edu

    2014-01-10

    Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model, in which electrons stream along the loop while losing their energy through collisions with the ambient plasma; additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and other observations that suggest that high-energy electrons are confined to the coronal region of the source, we consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E) depending directly on the mean free path λ associated with the non-collisional scattering mechanism. Comparing the predictions of the model with observations, we find that λ ∼ (10{sup 8}-10{sup 9}) cm for ∼30 keV, less than the length of a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.

  11. Lattice Boltzmann model for the convection-diffusion equation.

    PubMed

    Chai, Zhenhua; Zhao, T S

    2013-06-01

    We propose a lattice Boltzmann (LB) model for the convection-diffusion equation (CDE) and show that the CDE can be recovered correctly from the model by the Chapman-Enskog analysis. The most striking feature of the present LB model is that it enables the collision process to be implemented locally, making it possible to retain the advantage of the lattice Boltzmann method in the study of the heat and mass transfer in complex geometries. A local scheme for computing the heat and mass fluxes is then proposed to replace conventional nonlocal finite-difference schemes. We further validate the present model and the local scheme for computing the flux against analytical solutions to several classical problems, and we show that both the model for the CDE and the computational scheme for the flux have a second-order convergence rate in space. It is also demonstrated the present model is more accurate than existing LB models for the CDE.

  12. The distribution of cosmic-ray ionization rates in diffuse molecular clouds as probed by H3+.

    PubMed

    Indriolo, Nick

    2012-11-13

    Owing to its simple chemistry, H(3)(+) is widely regarded as the most reliable tracer of the cosmic-ray ionization rate in diffuse interstellar clouds. At present, H(3)(+) observations have been made in over 50 sight lines that probe the diffuse interstellar medium (ISM) throughout the Galaxy. This small survey presents the opportunity to investigate the distribution of cosmic-ray ionization rates in the ISM, as well as any correlations between the ionization rate and line-of-sight properties. Some of the highest inferred ionization rates are about 25 times larger than the lowest upper limits, suggesting variations in the underlying low-energy cosmic-ray flux across the Galaxy. Most likely, such variations are caused predominantly by the distance between an observed cloud and the nearest site of particle acceleration.

  13. An epidemic model of rumor diffusion in online social networks

    NASA Astrophysics Data System (ADS)

    Cheng, Jun-Jun; Liu, Yun; Shen, Bo; Yuan, Wei-Guo

    2013-01-01

    So far, in some standard rumor spreading models, the transition probability from ignorants to spreaders is always treated as a constant. However, from a practical perspective, the case that individual whether or not be infected by the neighbor spreader greatly depends on the trustiness of ties between them. In order to solve this problem, we introduce a stochastic epidemic model of the rumor diffusion, in which the infectious probability is defined as a function of the strength of ties. Moreover, we investigate numerically the behavior of the model on a real scale-free social site with the exponent γ = 2.2. We verify that the strength of ties plays a critical role in the rumor diffusion process. Specially, selecting weak ties preferentially cannot make rumor spread faster and wider, but the efficiency of diffusion will be greatly affected after removing them. Another significant finding is that the maximum number of spreaders max( S) is very sensitive to the immune probability μ and the decay probability v. We show that a smaller μ or v leads to a larger spreading of the rumor, and their relationships can be described as the function ln(max( S)) = Av + B, in which the intercept B and the slope A can be fitted perfectly as power-law functions of μ. Our findings may offer some useful insights, helping guide the application in practice and reduce the damage brought by the rumor.

  14. Reaction-diffusion processes and metapopulation models in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Colizza, Vittoria; Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2007-04-01

    Dynamical reaction-diffusion processes and metapopulation models are standard modelling approaches for a wide array of phenomena in which local quantities-such as density, potentials and particles-diffuse and interact according to the physical laws. Here, we study the behaviour of the basic reaction-diffusion process (given by the reaction steps B-->A and B+A-->2B) defined on networks with heterogeneous topology and no limit on the nodes' occupation number. We investigate the effect of network topology on the basic properties of the system's phase diagram and find that the network heterogeneity sustains the reaction activity even in the limit of a vanishing density of particles, eventually suppressing the critical point in density-driven phase transitions, whereas phase transition and critical points independent of the particle density are not altered by topological fluctuations. This work lays out a theoretical and computational microscopic framework for the study of a wide range of realistic metapopulation and agent-based models that include the complex features of real-world networks.

  15. Impact Acceleration Model of Diffuse Traumatic Brain Injury.

    PubMed

    Hellewell, Sarah C; Ziebell, Jenna M; Lifshitz, Jonathan; Morganti-Kossmann, M Cristina

    2016-01-01

    The impact acceleration (I/A) model of traumatic brain injury (TBI) was developed to reliably induce diffuse traumatic axonal injury in rats in the absence of skull fractures and parenchymal focal lesions. This model replicates a pathophysiology that is commonly observed in humans with diffuse axonal injury (DAI) caused by acceleration-deceleration forces. Such injuries are typical consequences of motor vehicle accidents and falls, which do not necessarily require a direct impact to the closed skull. There are several desirable characteristics of the I/A model, including the extensive axonal injury produced in the absence of a focal contusion, the suitability for secondary insult modeling, and the adaptability for mild/moderate injury through alteration of height and/or weight. Furthermore, the trauma device is inexpensive and readily manufactured in any laboratory, and the induction of injury is rapid (~45 min per animal from weighing to post-injury recovery) allowing multiple animal experiments per day. In this chapter, we describe in detail the methodology and materials required to produce the rat model of I/A in the laboratory. We also review current adaptations to the model to alter injury severity, discuss frequent complications and technical issues encountered using this model, and provide recommendations to ensure technically sound injury induction. PMID:27604723

  16. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    SciTech Connect

    M. WILLIAMS

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  17. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    SciTech Connect

    Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

    2008-07-02

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

  18. Simultaneous estimation of model parameters and diffuse pollution sources for river water quality modeling.

    PubMed

    Jun, K S; Kang, J W; Lee, K S

    2007-01-01

    Diffuse pollution sources along a stream reach are very difficult to both monitor and estimate. In this paper, a systematic method using an optimal estimation algorithm is presented for simultaneous estimation of diffuse pollution and model parameters in a stream water quality model. It was applied with the QUAL2E model to the South Han River in South Korea for optimal estimation of kinetic constants and diffuse loads along the river. Initial calibration results for kinetic constants selected from a sensitivity analysis reveal that diffuse source inputs for nitrogen and phosphorus are essential to satisfy the system mass balance. Diffuse loads for total nitrogen and total phosphorus were estimated by solving the expanded inverse problem. Comparison of kinetic constants estimated simultaneously with diffuse sources to those estimated without diffuse loads, suggests that diffuse sources must be included in the optimization not only for its own estimation but also for adequate estimation of the model parameters. Application of the optimization method to river water quality modeling is discussed in terms of the sensitivity coefficient matrix structure.

  19. Non-linear diffusion of cosmic rays escaping from supernova remnants - I. The effect of neutrals

    NASA Astrophysics Data System (ADS)

    Nava, L.; Gabici, S.; Marcowith, A.; Morlino, G.; Ptuskin, V. S.

    2016-10-01

    Supernova remnants are believed to be the main sources of galactic cosmic rays (CR). Within this framework, particles are accelerated at supernova remnant shocks and then released in the interstellar medium. The mechanism through which CRs are released and the way in which they propagate still remain open issues. The main difficulty is the high non-linearity of the problem: CRs themselves excite the magnetic turbulence that confines them close to their sources. We solve numerically the coupled differential equations describing the evolution in space and time of the escaping particles and of the waves generated through the CR streaming instability. The warm ionized and warm neutral phases of the interstellar medium are considered. These phases occupy the largest fraction of the disc volume, where most supernovae explode, and are characterized by the significant presence of neutral particles. The friction between those neutrals and ions results in a very effective wave damping mechanism. It is found that streaming instability affects the propagation of CRs even in the presence of ion-neutral friction. The diffusion coefficient can be suppressed by more than a factor of ˜2 over a region of few tens of pc around the remnant. The suppression increases for smaller distances. The propagation of ≈10 GeV particles is affected for several tens of kiloyears after escape, while ≈1 TeV particles are affected for few kiloyears. This might have a great impact on the interpretation of gamma-ray observations of molecular clouds located in the vicinity of supernova remnants.

  20. X-RAY AND GAMMA-RAY POLARIZATION IN LEPTONIC AND HADRONIC JET MODELS OF BLAZARS

    SciTech Connect

    Zhang, H.; Boettcher, M.

    2013-09-01

    We present a theoretical analysis of the expected X-ray and {gamma}-ray polarization signatures resulting from synchrotron self-Compton emission in leptonic models compared to the polarization signatures from proton synchrotron and cascade synchrotron emission in hadronic models for blazars. Source parameters resulting from detailed spectral-energy-distribution modeling are used to calculate photon-energy-dependent upper limits on the degree of polarization, assuming a perfectly organized mono-directional magnetic field. In low-synchrotron-peaked blazars, hadronic models exhibit substantially higher maximum degrees of X-ray and gamma-ray polarization than leptonic models, which may be within reach of existing X-ray and {gamma}-ray polarimeters. In high-synchrotron-peaked blazars (with electron-synchrotron-dominated X-ray emission), leptonic and hadronic models predict the same degree of X-ray polarization but substantially higher maximum {gamma}-ray polarization in hadronic models than leptonic ones. These predictions are particularly relevant in view of the new generation of balloon-borne X-ray polarimeters (and possibly GEMS, if revived), and the ability of Fermi-LAT to measure {gamma}-ray polarization at <200 MeV. We suggest observational strategies combining optical, X-ray, and {gamma}-ray polarimetry to determine the degree of ordering of the magnetic field and to distinguish between leptonic and hadronic high-energy emissions.

  1. X-Ray Spectroscopy of diffuse Galactic Interstellar Matter with Chandra

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Paerels, Frits

    One of the expectations with the advent of the High Energy Transmission Grating (HETG) spectrometer onboard the Chandra X-ray Observatory was to measure precise photoelectric edges of major cosmic elements such as O, Ne, Mg, Si, S, Ar, Ca, and Fe. Early studies revealed complex absorption structures around the O K, Fe L, and Ne K edges which were identified with absorption from the various phases of the interstellar medium and which could place limits on ionization fractions in these phases. The dust content in interstellar matter as well as, for example, the fraction of how much oxygen is locked into dust are issues of importance and here resolved X-ray edges can determine significant limits. I will review predictions made by cross-sections and depletion factors and compare with current observations specifically with respect to silicon absorption in the interstellar medium. Dust grain models and in conjunction with laboratory measurements are now used to improve current interstellar X-ray absorption models.

  2. Reaction-diffusion models of within-feather pigmentation patterning.

    PubMed

    Prum, Richard O; Williamson, Scott

    2002-04-22

    Feathers are complex, branched keratin structures that exhibit a diversity of pigmentation patterns. Feather pigments are transferred into developing feather keratinocytes from pigment cells that migrate into the tubular feather germ from the dermis. Within-feather pigment patterns are determined by differential pigmentation of keratinocytes within independent barb ridges during feather development. Little is known about the molecular mechanisms that determine which keratinocytes receive pigment. We apply reaction-diffusion models to the growth of within-feather pigment patterns based on a realistic model of feather growth. These models accurately simulate the growth of a diversity of the within-feather pigmentation patterns found in real feathers, including a central patch, a 'hollow' central patch, concentric central patches, bars, chevrons, a central circular spot, rows of paired spots, and arrays of offset dots. The models can also simulate the complex transitions between distinct pigmentation patterns among feathers observed in real avian plumages, including transitions from bars to chevrons, bars to paired dots, and bars to arrays of dots. The congruence between the developmental dynamics of the simulated and observed feather patterns indicates that the reaction-diffusion models provide a realistic and accurate description of the determination of pigment pattern within avian feather follicles. The models support the hypothesis that within-feather pigmentation patterning is determined by antagonistic interactions among molecular expression gradients within the tubular follicle and feather germ.

  3. A Temporal Model of Technology Diffusion into Small Firms in Wales.

    ERIC Educational Resources Information Center

    Thomas, Brychan; Packham, Gary; Miller, Chris

    2001-01-01

    Discusses technology diffusion through formal and informal networks. Develops a model that includes channels and mechanisms involved in transferring technology into innovative small businesses. The model depicts influences that increase or slow the rate of diffusion. (SK)

  4. Super-resolution image reconstruction using diffuse source models.

    PubMed

    Ellis, Michael A; Viola, Francesco; Walker, William F

    2010-06-01

    Image reconstruction is central to many scientific fields, from medical ultrasound and sonar to computed tomography and computer vision. Although lenses play a critical reconstruction role in these fields, digital sensors enable more sophisticated computational approaches. A variety of computational methods have thus been developed, with the common goal of increasing contrast and resolution to extract the greatest possible information from raw data. This paper describes a new image reconstruction method named the Diffuse Time-domain Optimized Near-field Estimator (dTONE). dTONE represents each hypothetical target in the system model as a diffuse region of targets rather than a single discrete target, which more accurately represents the experimental data that arise from signal sources in continuous space, with no additional computational requirements at the time of image reconstruction. Simulation and experimental ultrasound images of animal tissues show that dTONE achieves image resolution and contrast far superior to those of conventional image reconstruction methods. We also demonstrate the increased robustness of the diffuse target model to major sources of image degradation through the addition of electronic noise, phase aberration and magnitude aberration to ultrasound simulations. Using experimental ultrasound data from a tissue-mimicking phantom containing a 3-mm-diameter anechoic cyst, the conventionally reconstructed image has a cystic contrast of -6.3 dB, whereas the dTONE image has a cystic contrast of -14.4 dB.

  5. Measurements and modeling of explosive vapor diffusion in snow

    NASA Astrophysics Data System (ADS)

    Albert, Mary R.; Cragin, James H.; Leggett, Daniel C.

    2000-08-01

    The detection of buried mines is important to both for humanitarian and military strategic de-mining both at home and abroad, and recent efforts in chemical detection show promise for definitive identification of buried miens. The impact of weather has a large effect on the fate and transport of the explosives vapor that these systems sense. In many areas of military conflict, and at Army military training grounds in cold regions, winter weather affects military operations for many months of the year. In cold regions, the presence of freezing ground or a snow cover may provide increased temporary storage of the explosive, potentially leading to opportunities for more optimal sensing conditions later. This paper discusses the result of a controlled laboratory experiment to investigate explosives diffusion through snow, quantitative microscopy measurements of snow microstructure including specific surface, and verifications of our transport model using this data. In experiments measuring 1,3-DNB, 2,4-DNT and 2,4,6-TNT we determined an effective diffusion coefficient of 1.5 X 10-6 cm2/s from measurements through isothermal sieved snow with equivalent sphere radius of 0.11 mm. Adsorption is a major factor in diffusive transport of these explosives through snow. The data was used to verify our finite element mole of explosives transport. Measurements and model results show close agreement.

  6. Gamma-Ray Burst Progenitors: Merger Model

    NASA Astrophysics Data System (ADS)

    Ruffert, Maximilian

    2002-04-01

    The mergers of neutron stars and black holes remain a viable model for gamma-ray burst central engines, at least for the class of short bursts: their time scales, occurrence rates and energy output seem to be consistent with observations. We will present results of our latest simulations showing how the orbit of a neutron star around a black hole shrinks due to gravitational radiation, how the neutron star's matter gets accreted by the black hole, and how the tidal forces of the black hole finally shred the neutron star into a thick disk. In this process, huge amounts of energy are radiated away by gravitational waves and by neutrinos emitted from the hot disk. The neutrino luminosities are so large that an appreciable fraction (some few percent!) of neutrinos annihilate with antineutrinos creating the clean fireball necessary to power gamma-ray bursts.

  7. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.; Carroll, Susan A.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  8. Determination of diffusion profiles in altered wellbore cement using X-ray computed tomography methods.

    PubMed

    Mason, Harris E; Walsh, Stuart D C; DuFrane, Wyatt L; Carroll, Susan A

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining "effective linear activity coefficients" (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment. PMID:24869420

  9. Affinity based information diffusion model in social networks

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Xie, Yun; Hu, Haibo; Chen, Zhigao

    2014-12-01

    There is a widespread intuitive sense that people prefer participating in spreading the information in which they are interested. The affinity of people with information disseminated can affect the information propagation in social networks. In this paper, we propose an information diffusion model incorporating the mechanism of affinity of people with information which considers the fitness of affinity values of people with affinity threshold of the information. We find that the final size of information diffusion is affected by affinity threshold of the information, average degree of the network and the probability of people's losing their interest in the information. We also explore the effects of other factors on information spreading by numerical simulations and find that the probabilities of people's questioning and confirming the information can affect the propagation speed, but not the final scope.

  10. Time Fractional Diffusion Equations and Analytical Solvable Models

    NASA Astrophysics Data System (ADS)

    Bakalis, Evangelos; Zerbetto, Francesco

    2016-08-01

    The anomalous diffusion of a particle that moves in complex environments is analytically studied by means of the time fractional diffusion equation. The influence on the dynamics of a random moving particle caused by a uniform external field is taken into account. We extract analytical solutions in terms either of the Mittag-Leffler functions or of the M- Wright function for the probability distribution, for the velocity autocorrelation function as well as for the mean and the mean square displacement. Discussion of the applicability of the model to real systems is made in order to provide new insight of the medium from the analysis of the motion of a particle embedded in it.

  11. Observed Limits on Charge Exchange Contributions to the Diffuse X-Ray Background

    NASA Technical Reports Server (NTRS)

    Crowder, S. G.; Barger, K. A.; Brandl, D. E.; Eckart, M. E.; Galeazzi, M.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Pfendner, C. G.; Porter, F. S.; Rocks, L.; Szymkowiak, A. E.; Teplin, I. M.

    2012-01-01

    We present a high-resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV for an approximately 1 sr region of the sky centered at l = 90 degrees b = +60 degrees using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum s observed line ratios help separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced by about a factor of four from contamination that occurred early in the flight, limiting the significance of the results. The observed centroid of helium-like O VII is 568 (sup +2 (sub -3) eV at 90% confidence. Since the centroid expected for thermal emission is 568.4 eV and for charge exchange is 564.2 eV, thermal emission appears to dominate for this line complex. The dominance of thermal emission is consistent with much of the high-latitude O VII emission originating in 2-3 x 10(exp 6) K gas in the Galactic halo. On the other hand, the observed ratio of C VI Lygamma to Lyalpha is 0.3 plus or minus 0.2. The expected ratios are 0.04 for thermal emission and 0.24 for charge exchange, indicating that charge exchange must contribute strongly to this line and therefore potentially to the rest of the ROSAT R12 band usually associated with 10(sup 6) K emission from the Local Hot Bubble. The limited statistics of this experiment and systematic uncertainties due to the contamination require only greater than 32% thermal emission for O VII and greater than 20% from charge exchange for C VI at the 90% confidence level. An experimental gold coating on the silicon substrate of the array greatly reduced extraneous signals induced on nearby pixels from cosmic rays passing through the substrate, reducing the triggered event rate by a factor of 15 from a previous flight of the instrument.

  12. A mathematical model of diffusion-limited gas bubble dynamics in tissue with varying diffusion region thickness.

    PubMed

    Srinivasan, R S; Gerth, W A; Powell, M R

    2000-10-01

    The three-region model of gas bubble dynamics consists of a bubble and a well-stirred tissue region with an intervening unperfused diffusion region previously assumed to have constant thickness and uniform gas diffusivity. As a result, the diffusion region gas content remains unchanged as its volume increases with bubble growth, causing dissolved gas in the region to violate Henry's law. Earlier work also neglected the relationship between the varying diffusion region volume and the fixed total tissue volume. The present work corrects these theoretical inconsistencies by postulating a difference in gas diffusivity between an infinitesimally thin layer at the bubble surface and the remainder of the diffusion region, thus allowing both thickness and gas content of the diffusion region to vary during bubble evolution. The corrected model can yield bubble lifetimes considerably longer than those yielded by earlier three-region models, and meets a need for theoretically consistent but relatively simple bubble dynamics models for use in studies of decompression sickness (DCS) in human subjects.

  13. A Discrete Model to Study Reaction-Diffusion-Mechanics Systems

    PubMed Central

    Weise, Louis D.; Nash, Martyn P.; Panfilov, Alexander V.

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects. PMID:21804911

  14. A discrete model to study reaction-diffusion-mechanics systems.

    PubMed

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  15. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  16. Subgrid models for mass and thermal diffusion in turbulent mixing

    NASA Astrophysics Data System (ADS)

    Lim, H.; Yu, Y.; Glimm, J.; Li, X.-L.; Sharp, D. H.

    2010-12-01

    We propose a new method for the large eddy simulation (LES) of turbulent mixing flows. The method yields convergent probability distribution functions (PDFs) for temperature and concentration and a chemical reaction rate when applied to reshocked Richtmyer-Meshkov (RM) unstable flows. Because such a mesh convergence is an unusual and perhaps original capability for LES of RM flows, we review previous validation studies of the principal components of the algorithm. The components are (i) a front tracking code, FronTier, to control numerical mass diffusion and (ii) dynamic subgrid scale (SGS) models to compensate for unresolved scales in the LES. We also review the relevant code comparison studies. We compare our results to a simple model based on 1D diffusion, taking place in the geometry defined statistically by the interface (the 50% isoconcentration surface between the two fluids). Several conclusions important to physics could be drawn from our study. We model chemical reactions with no closure approximations beyond those in the LES of the fluid variables itself, and as with dynamic SGS models, these closures contain no adjustable parameters. The chemical reaction rate is specified by the joint PDF for temperature and concentration. We observe a bimodal distribution for the PDF and we observe significant dependence on fluid transport parameters.

  17. A multiphase solute diffusion model for dendritic alloy solidification

    SciTech Connect

    Wang, C.Y.; Beckermann, C.

    1993-12-01

    A solute diffusion model, aimed at predicting microstructure formation in metal castings, is proposed for dendritic solidification of alloys. The model accounts for the different length scales existing in a dendritic structure. This is accomplished by utilizing a multiphase approach, in which not only the various physical phases but also phases associated with different length scales are considered separately. The macroscopic conservation equations are derived for each phase using the volume averaging technique, with constitutive relations developed for the interfacial transfer terms. It is shown that the multiphase model can rigorously incorporate the growth of dendrite tips and coarsening of dendrite arms. In addition, the distinction of different length scales enables the inclusion of realistic descriptions of the dendrite topology and relations to key metallurgical parameters. Another novel aspect of the model is that a single set of conservation equations for solute diffusion is developed for both equiaxed and columnar dendritic solidification. Finally, illustrative calculations for equiaxed, columnar, and mixed columnar-equiaxed solidification are carried out to provide quantitative comparisons with previous studies, and a variety of fundamental phenomena such as recalescence, dendrite tip undercooling, and columnar-to-equiaxed transition (CET) are predicted.

  18. A Reaction-Diffusion Model of Cholinergic Retinal Waves

    PubMed Central

    Lansdell, Benjamin; Ford, Kevin; Kutz, J. Nathan

    2014-01-01

    Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh) manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs), whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability. PMID:25474327

  19. Dense-gas dispersion advection-diffusion model

    SciTech Connect

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments.

  20. Anomalous diffusion in neutral evolution of model proteins

    NASA Astrophysics Data System (ADS)

    Nelson, Erik D.; Grishin, Nick V.

    2015-06-01

    Protein evolution is frequently explored using minimalist polymer models, however, little attention has been given to the problem of structural drift, or diffusion. Here, we study neutral evolution of small protein motifs using an off-lattice heteropolymer model in which individual monomers interact as low-resolution amino acids. In contrast to most earlier models, both the length and folded structure of the polymers are permitted to change. To describe structural change, we compute the mean-square distance (MSD) between monomers in homologous folds separated by n neutral mutations. We find that structural change is episodic, and, averaged over lineages (for example, those extending from a single sequence), exhibits a power-law dependence on n . We show that this exponent depends on the alignment method used, and we analyze the distribution of waiting times between neutral mutations. The latter are more disperse than for models required to maintain a specific fold, but exhibit a similar power-law tail.

  1. Modeling diffusion and reaction in soils: 9. The Buckingham-Burdine-Campbell equation for gas diffusivity in undisturbed soil

    SciTech Connect

    Moldrup, P.; Olesen, T.; Yamaguchi, T.; Schjoenning, P.; Rolston, D.E.

    1999-08-01

    Accurate description of gas diffusivity (ratio of gas diffusion coefficients in soil and free air, D{sub s}/D{sub 0}) in undisturbed soils is a prerequisite for predicting in situ transport and fate of volatile organic chemicals and greenhouse gases. Reference point gas diffusivities (R{sub p}) in completely dry soil were estimated for 20 undisturbed soils by assuming a power function relation between gas diffusivity and air-filled porosity ({epsilon}). Among the classical gas diffusivity models, the Buckingham (1904) expression, equal to the soil total porosity squared, best described R{sub p}. Inasmuch, as their previous works implied a soil-type dependency of D{sub s}/D{sub 0}({epsilon}) in undisturbed soils, the Buckingham R{sub p} expression was inserted in two soil-type-dependent D{sub s}/D{sub 0}({epsilon}) models. One D{sub s}/D{sub 0}({epsilon}) model is a function of pore-size distribution (the Campbell water retention parameter used in a modified Burdine capillary tube model), and the other is a calibrated, empirical function of soil texture (silt + sand fraction). Both the Buckingham-Burdine-Campbell (BBC) and the Buckingham/soil texture-based D{sub s}/D{sub 0}({epsilon}) models described well the observed soil type effects on gas diffusivity and gave improved predictions compared with soil type independent models when tested against an independent data set for six undisturbed surface soils. This study emphasizes that simple but soil-type-dependent power function D{sub s}/D{sub 0}({epsilon}) models can adequately describe and predict gas diffusivity in undisturbed soil. The authors recommend the new BBC model as basis for modeling gas transport and reactions in undisturbed soil systems.

  2. Modeling Diffusion Induced Stresses for Lithium-Ion Battery Materials

    NASA Astrophysics Data System (ADS)

    Chiu Huang, Cheng-Kai

    Advancing lithium-ion battery technology is of paramount importance for satisfying the energy storage needs in the U.S., especially for the application in the electric vehicle industry. To provide a better acceleration for electric vehicles, a fast and repeatable discharging rate is required. However, particle fractures and capacity loss have been reported under high current rate (C-rate) during charging/discharging and after a period of cycling. During charging and discharging, lithium ions extract from and intercalate into electrode materials accompanied with the volume change and phase transition between Li-rich phase and Li-poor phase. It is suggested that the diffusion-induced-stress is one of the main reasons causing capacity loss due to the mechanical degradation of electrode particles. Therefore, there is a fundamental need to provide a mechanistic understanding by considering the structure-mechanics-property interactions in lithium-ion battery materials. Among many cathode materials, the olivine-based lithium-iron-phosphate (LiFePO4) with an orthorhombic crystal structure is one of the promising cathode materials for the application in electric vehicles. In this research we first use a multiphysic approach to investigate the stress evolution, especially on the phase boundary during lithiation in single LiFePO4 particles. A diffusion-controlled finite element model accompanied with the experimentally observed phase boundary propagation is developed via a finite element package, ANSYS, in which lithium ion concentration-dependent anisotropic material properties and volume misfits are incorporated. The stress components on the phase boundary are used to explain the Mode I, Mode II, and Mode III fracture propensities in LiFePO4 particles. The elastic strain energy evolution is also discussed to explain why a layer-by-layer lithium insertion mechanism (i.e. first-order phase transformation) is energetically preferred. Another importation issue is how current

  3. Diffusion ellipsoids of anisotropic porous rocks calculated by X-ray computed tomography-based random walk simulations

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Kamiya, Susumu; Nakano, Tsukasa

    2008-12-01

    Water molecules and contaminants migrate in water-saturated porous strata by diffusion in systems with small Péclet numbers. Natural porous rocks possess the anisotropy for diffusive transport along the percolated pore space. An X-ray computed tomography (CT) based approach is presented to quickly characterize anisotropic diffusion in porous rocks. High-resolution three-dimensional (3-D) pore images were obtained for a pumice and three sandstones by microfocus X-ray CT and synchrotron microtomography systems. The cluster-labeling process was applied to each image set to extract the 3-D image of a single percolated pore cluster through which diffusing species can migrate a long distance. The nonsorbing lattice random walk simulation was performed on the percolated pore cluster to obtain the mean square displacement. The self-diffusion coefficient along each direction in the 3-D space was calculated by taking the time derivative of the mean square displacement projected on the corresponding direction. A diffusion ellipsoid (i.e., polar representation of the direction-dependent normalized self-diffusivity) with three orthogonal principal axes was obtained for each rock sample. The 3-D two-point autocorrelation was also calculated for the percolated pore cluster of each rock sample to estimate the pore diameter anisotropy. The autocorrelation ellipsoids obtained by the ellipsoid fitting to the high correlation zone were prolate or oblate in shape, presumably depending on the eruption-induced deformation of magma and regional stress during sandstone diagenesis. The pore network anisotropy was estimated by calculating the diffusion ellipsoid for uniaxially elongated or compressed rock images. The degree and direction of the geological deformation of the samples estimated by the pore diameter anisotropy analysis agreed well with those estimated by the pore network anisotropy analysis. We found that the direction of the geological deformation coincided with the direction

  4. Parametric Pattern Selection in a Reaction-Diffusion Model

    PubMed Central

    Stich, Michael; Ghoshal, Gourab; Pérez-Mercader, Juan

    2013-01-01

    We compare spot patterns generated by Turing mechanisms with those generated by replication cascades, in a model one-dimensional reaction-diffusion system. We determine the stability region of spot solutions in parameter space as a function of a natural control parameter (feed-rate) where degenerate patterns with different numbers of spots coexist for a fixed feed-rate. While it is possible to generate identical patterns via both mechanisms, we show that replication cascades lead to a wider choice of pattern profiles that can be selected through a tuning of the feed-rate, exploiting hysteresis and directionality effects of the different pattern pathways. PMID:24204813

  5. Reading and a diffusion model analysis of reaction time.

    PubMed

    Naples, Adam; Katz, Leonard; Grigorenko, Elena L

    2012-01-01

    Processing speed is associated with reading performance. However, the literature is not clear either on the definition of processing speed or on why and how it contributes to reading performance. In this study we demonstrated that processing speed, as measured by reaction time, is not a unitary construct. Using the diffusion model of two-choice reaction time, we assessed processing speed in a series of same-different reaction time tasks for letter and number strings. We demonstrated that the association between reaction time and reading performance is driven by processing speed for reading-related information, but not motor or sensory encoding speed.

  6. Reading and a Diffusion Model Analysis of Reaction Time

    PubMed Central

    Naples, Adam; Katz, Leonard; Grigorenko, Elena L.

    2012-01-01

    Processing speed is associated with reading performance. However, the literature is not clear either on the definition of processing speed or on why and how it contributes to reading performance. In this study we demonstrated that processing speed, as measured by reaction time, is not a unitary construct. Using the diffusion model of two-choice reaction time, we assessed processing speed in a series of same-different reaction time tasks for letter and number strings. We demonstrated that the association between reaction time and reading performance is driven by processing speed for reading-related information, but not motor or sensory encoding speed. PMID:22612543

  7. A study of hydrogen diffusion flames using PDF turbulence model

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    The application of probability density function (pdf) turbulence models is addressed in this work. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional CFD flow solver with the Monte Carlo simulation of the pdf evolution equation has been developed. The algorithm has been validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames has been carried out using this algorithm. Numerical results compared favorably with experimental data. The computuations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.

  8. A study of hydrogen diffusion flames using PDF turbulence model

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1991-01-01

    The application of probability density function (pdf) turbulence models is addressed. For the purpose of accurate prediction of turbulent combustion, an algorithm that combines a conventional computational fluid dynamic (CFD) flow solver with the Monte Carlo simulation of the pdf evolution equation was developed. The algorithm was validated using experimental data for a heated turbulent plane jet. The study of H2-F2 diffusion flames was carried out using this algorithm. Numerical results compared favorably with experimental data. The computations show that the flame center shifts as the equivalence ratio changes, and that for the same equivalence ratio, similarity solutions for flames exist.

  9. Structural origin of the x-ray diffuse scattering in (CH3)4NCdCl3 and related compounds

    NASA Astrophysics Data System (ADS)

    Paściak, Marek; Wołcyrz, Marek; Pietraszko, Adam

    2008-07-01

    The local structure of (CH3)4NCdCl3 (TMCC) has been determined by a configurational-bias reverse Monte Carlo method applied to x-ray diffuse scattering data. The following two phases have been analyzed and refined: phase I at 293 K, P63/m space group, a=9.139(1)Å , and c=6.723(1)Å ; and phase I' at 410 K, P63/mmc space group, a=9.235(1)Å , and c=6.742(1)Å . A model dividing the CdCl6 octahedral chains into elementary blocks has been implemented in order to take into account the coupling between the orientation of the (CH3)4N molecules and the local deformations of the octahedral chains. The resulting structures contain subchains of CdCl6 octahedra that are shifted longitudinally away from their average positions. The subchain lengths can be described by a Poisson-like distribution with an average length of roughly six unit cells. X-ray diffuse scattering effects observed on the hk0 plane require the existence of transverse subchain displacements. An additional correlation between the transverse and longitudinal shifts of the subchains was needed in order to explain the weak modulation effects and diffuse streaks observed on the planes perpendicular to c∗ .

  10. SHIR competitive information diffusion model for online social media

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Diao, Su-Meng; Zhu, Yi-Xiang; Liu, Qing

    2016-11-01

    In online social media, opinion divergences and differentiations generally exist as a result of individuals' extensive participation and personalization. In this paper, a Susceptible-Hesitated-Infected-Removed (SHIR) model is proposed to study the dynamics of competitive dual information diffusion. The proposed model extends the classical SIR model by adding hesitators as a neutralized state of dual information competition. It is both hesitators and stable spreaders that facilitate information dissemination. Researching on the impacts of diffusion parameters, it is found that the final density of stiflers increases monotonically as infection rate increases and removal rate decreases. And the advantage information with larger stable transition rate takes control of whole influence of dual information. The density of disadvantage information spreaders slightly grows with the increase of its stable transition rate, while whole spreaders of dual information and the relaxation time remain almost unchanged. Moreover, simulations imply that the final result of competition is closely related to the ratio of stable transition rates of dual information. If the stable transition rates of dual information are nearly the same, a slightly reduction of the smaller one brings out a significant disadvantage in its propagation coverage. Additionally, the relationship of the ratio of final stiflers versus the ratio of stable transition rates presents power characteristic.

  11. A chaotic model for advertising diffusion problem with competition

    NASA Astrophysics Data System (ADS)

    Ip, W. H.; Yung, K. L.; Wang, Dingwei

    2012-08-01

    In this article, the author extends Dawid and Feichtinger's chaotic advertising diffusion model into the duopoly case. A computer simulation system is used to test this enhanced model. Based on the analysis of simulation results, it is found that the best advertising strategy in duopoly is to increase the advertising investment to reach the best Win-Win situation where the oscillation of market portion will not occur. In order to effectively arrive at the best situation, we define a synthetic index and two thresholds. An estimation method for the parameters of the index and thresholds is proposed in this research. We can reach the Win-Win situation by simply selecting the control parameters to make the synthetic index close to the threshold of min-oscillation state. The numerical example and computational results indicated that the proposed chaotic model is useful to describe and analyse advertising diffusion process in duopoly, it is an efficient tool for the selection and optimisation of advertising strategy.

  12. Diffuse X-Ray Emission in Three Poor Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Dahlem, M.; Thiering, I.

    2000-02-01

    We report on ROSAT PSPC soft X-ray observations of three poor clusters of galaxies at distances above 100 Mpc (cz>8000 km s-1). In all three cases the emission is centered on the dominant member of the cluster, i.e., NGC 4104, NGC 6269, and NGC 6329, respectively. X-ray emission was detected out to radii of 400-600 kpc. The bolometric X-ray luminosities range from 2.6 to 8.6x1042 ergs s-1. The soft X-ray emission characteristics and the physical properties deduced from our observations of all three poor clusters resemble those of downscaled rich clusters. In each case, the soft X-ray spectrum is well represented by a thermal model with kT~=1.1-1.3 keV and near-solar metallicity in the center, increasing to kT~=1.4-1.6 keV toward the outer boundaries while the metallicity, Z, decreases to about 0.1 solar. Equally good fits can be achieved if the metallicity is left at the solar value and an additional gas component with kT~=0.5 keV is introduced. The central electron densities in all three poor clusters studied here are enhanced with respect to a King profile by factors of 2-6. This, together with the results of the spectral fits, can be interpreted as either indicating the presence of cooling flows or of a two-phase medium in the central areas. The spatial electron density distribution in the outer regions of each cluster can be fitted by King profiles with core radii of 17-60 kpc and exponents of β=0.38-0.44. Using the derived radial temperature and density distributions, the total gravitating mass is obtained. We derive Mtot=3.7+/-0.7x1013 Msolar within a radius of 300 kpc for each of the three systems, as opposed to 1014-1015 Msolar for rich clusters. We find that the LX versus kT relation found by A. C. Edge and G. C. Stewart (1991) for rich clusters of galaxies scales into the domain of poor clusters and groups of galaxies. The spectral fits of the central regions show that none of the first-ranking galaxies of the three poor clusters hosts a Seyfert 1 active

  13. The impact of hardpans and cemented layers on oxygen diffusivity in mining waste heaps: diffusion experiments and modelling studies.

    PubMed

    Kohfahl, Claus; Graupner, Torsten; Fetzer, Christian; Holzbecher, Ekkehard; Pekdeger, Asaf

    2011-08-01

    This study reports column tests and modelling results to assess the impact of hardpans and cemented layers on oxygen supply in mine waste sediments. The analysed sediment samples were obtained from a low-sulphide and low-carbonate polymetallic mine waste tailings impoundment located in the Freiberg mining district in Germany. The three samples were characterised by different degrees and types of cementation. After physical and mineralogical properties of the samples had been determined, breakthrough curves of oxygen were measured in column studies at different degrees of water saturation, and the diffusivities were assessed using a numerical modelling approach. Results demonstrate that cemented layers and hardpans in undisturbed sediments associated with fine-grained material operate as preferential pathways for diffusive gas transport during rewetting, leading to higher oxygen diffusivities compared to disturbed sediments. Under air-dry conditions, the disturbed samples show higher diffusivities than the undisturbed sample, indicating clogging of the porosity by precipitation of secondary minerals such as trivalent Fe oxyhydroxides acting as a barrier and thereby decreasing the diffusivity of the undisturbed sample. In contrast to sediments without cementation, diffusion experiments of sediments with cemented layers used in this study yield similar tortuosities in spite of their different grain size distributions, pointing to the important role of these heterogeneities for gas diffusion.

  14. Application of cosmic-ray shock theories to the Cygnus Loop - An alternative model

    NASA Technical Reports Server (NTRS)

    Boulares, Ahmed; Cox, Donald P.

    1988-01-01

    Steady state cosmic-ray shock models are investigated here in the light of observations of the Cygnus Loop supernova remnant. The predicted downstream temperature is derived for each model. The Cygnus Loop data and the application of the models to them, including wave dissipation, are presented. Heating rate and ionization fraction structures are provided along with an estimate of the cosmic-ray diffusion coefficient. It is found that the model of Voelk, Drury, and McKenzie (1984), in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of the Cygnus Loop shocks. The model is used to deduce upstream densities and shock velocities and, compared to the usual pure gas shock interpretation, it is found that lower densities and approximately three times higher velocities are required.

  15. The dynamical signature of the ISM in soft X-rays. I. Diffuse soft X-rays from galaxies

    NASA Astrophysics Data System (ADS)

    Breitschwerdt, Dieter; Schmutzler, Thomas

    1999-07-01

    We present the first dynamically and thermally self-consistent calculations of fast adiabatically expanding gas flows from the Galactic disk into the halo. It is shown that in a hot plasma (T >= 10(6) K) with a high overpressure with respect to the ambient medium, the dynamical time scale is much shorter than the intrinsic time scales (e.g. for recombination, collisional excitation and ionization etc.). Therefore dynamical models that use collisional ionization equilibrium (CIE) cooling functions for the evolution of the plasma are in general not correct. In particular, the emission spectra obtained from non-equilibrium calculations are radically different. We describe a method to obtain self-consistent solutions using an iterative procedure. It is demonstrated that soft X-ray background emission between 0.3 and 1.5 keV can be well explained by a superposition of line emission and delayed recombination of an initially hot plasma streaming away from the Galactic disk (outflow and/or winds). In addition to these local winds we also present calculations on global winds from spiral galaxies, which originate from a hot and quiescent galactic corona. We also emphasize that it is dangerous to derive plasma temperatures merely from line ratios of ionized species, such as N v/O vi, unless the dynamical and thermal history of the plasma is known.

  16. Diffusion of Ag into organic semiconducting materials: a combined analytical study using transmission electron microscopy and X-ray reflectivity.

    PubMed

    Fladischer, Stefanie; Neuhold, Alfred; Kraker, Elke; Haber, Thomas; Lamprecht, Bernhard; Salzmann, Ingo; Resel, Roland; Grogger, Werner

    2012-10-24

    This study shows that the morphology of organic/metal interfaces strongly depends on process parameters and the involved materials. The interface between organic n-type blocking layer materials and the top Ag cathode within an organic photodiode was investigated. Ag was deposited on either amorphous tris-8-hydroxyquinolinato-aluminum (Alq(3)) or crystalline 4,7-diphenyl-1,10-phenanthroline (Bphen) using different deposition techniques such as electron beam deposition, ion beam sputtering, and vacuum thermal evaporation at various deposition rates. The interfaces were studied by transmission electron microscopy and X-ray reflectivity. It was found that Bphen does not show any Ag diffusion no matter which deposition technique was used, whereas the Ag diffusion into Alq(3) depends on the deposition technique and the deposition rate. The highest amount of Ag diffusion into Alq(3) occurred by using thermal vacuum deposition at low deposition rates.

  17. Diffusion of Ag into organic semiconducting materials: a combined analytical study using transmission electron microscopy and X-ray reflectivity.

    PubMed

    Fladischer, Stefanie; Neuhold, Alfred; Kraker, Elke; Haber, Thomas; Lamprecht, Bernhard; Salzmann, Ingo; Resel, Roland; Grogger, Werner

    2012-10-24

    This study shows that the morphology of organic/metal interfaces strongly depends on process parameters and the involved materials. The interface between organic n-type blocking layer materials and the top Ag cathode within an organic photodiode was investigated. Ag was deposited on either amorphous tris-8-hydroxyquinolinato-aluminum (Alq(3)) or crystalline 4,7-diphenyl-1,10-phenanthroline (Bphen) using different deposition techniques such as electron beam deposition, ion beam sputtering, and vacuum thermal evaporation at various deposition rates. The interfaces were studied by transmission electron microscopy and X-ray reflectivity. It was found that Bphen does not show any Ag diffusion no matter which deposition technique was used, whereas the Ag diffusion into Alq(3) depends on the deposition technique and the deposition rate. The highest amount of Ag diffusion into Alq(3) occurred by using thermal vacuum deposition at low deposition rates. PMID:23027799

  18. Modeling galactic cosmic rays at lunar orbit

    NASA Astrophysics Data System (ADS)

    Huang, Chia-Lin; Spence, Harlan; Kress, Brian; Shepherd, Simon

    High-energy particles such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs) have sufficient kinetic energy to produce undesirable biological effects in astronauts as well as environmental effects on spacecraft electronic systems. In low Earth orbit, such radiation effects are minimized owing to the strong geomagnetic cutoff from Earth's internal magnetic field. However, the risks increase at higher altitudes wherever shielding magnetic fields are weak, including at lunar orbit. In order to prepare for future robotic and human exploration on the Moon, characterizing the lunar radiation environment is essential. Because GCRs and SEPs are charged particles with large gyroradii, their trajectories are governed by magnetic fields present on large size scales. For example, at lunar orbit, both the external interplanetary magnetic field and Earth's internally complex magnetosphere could alter the energetic particle flux. We combine an empirical magnetic field model of Earth's magnetosphere with a fullyrelativistic charged particle trajectory code to model the access of GCRs and SEPs to the lunar surface. We follow ions with energies above 10 MeV/nucleon starting from an isotropic spatial distribution in interplanetary space and calculate particle flux in the different regions of the solar wind-magnetosphere system through which the Moon orbits. Finally, we determine the extent of magnetospheric shielding at the Moon as a function of incident particle energy and lunar position. These simulation results will eventually be compared to data from NASA's Lunar Reconnaissance Orbiter "Cosmic Ray Telescope for the Effects of Radiation" instrument after its launch in late 2008.

  19. Measuring plant available phosphorus using diffusive gradients in thin films and x-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Rothwell, Shane; Surridge, Ben; Dodd, Ian; Quinton, John; Zhang, Hao

    2015-04-01

    Global concerns of phosphorus (P) deficiency limiting crop yields, and finite supplies of mineral P reserves, suggest a need to maximise P use efficiency in agriculture. To accurately predict the availability of soil P to crops, and subsequent P fertiliser recommendations, soil P tests must determine only the P that will be accessed and utilised by a crop. However, there is growing doubt regarding the ability of current extraction techniques (water, bicarbonate, resin) to accurately determine plant-available P across a range of soils. Indeed, the most widely-used test (Olsen P) across all soil types was only designed for alkaline soils and therefore it is inappropriate as a national standard soil test. Thus, there is an urgent need to develop a standard approach to measuring P availability applicable across a range of soil types. Diffusive Gradients in Thin Films (DGT) may be a more accurate technique for measuring the P available to plants than P measured using current extraction techniques because the measurement responds to both soil solution P and the P rapidly resupplied from the solid phase. However, elution by acid extraction of P retained within the resin gel of a DGT device, followed by analysis via inductively coupled plasma-based techniques, typically results in a delay of several days between DGT deployment and reporting of P concentrations. This is currently a significant constraint on the adoption of DGT to determine plant-available P in agricultural soils. Our research seeks to develop a novel combination of two existing techniques, DGT with portable x-ray fluorescence spectrometry (pXRF) to achieve rapid, non-destructive analysis of P within a DGT device, thus significantly reducing the length of time between DGT deployment and the final determination of plant-available P in agricultural soils. We aim to develop DGT-pXRF as a robust routine analytical procedure suitable for analysis of plant available P in a wide range of agricultural soil types.

  20. Modeling the Determinants Influencing the Diffusion of Mobile Internet

    NASA Astrophysics Data System (ADS)

    Alwahaishi, Saleh; Snášel, Václav

    2013-04-01

    Understanding individual acceptance and use of Information and Communication Technology (ICT) is one of the most mature streams of information systems research. In Information Technology and Information System research, numerous theories are used to understand users' adoption of new technologies. Various models were developed including the Innovation Diffusion Theory, Theory of Reasoned Action, Theory of Planned Behavior, Technology Acceptance Model, and recently, the Unified Theory of Acceptance and Use of Technology. This research composes a new hybrid theoretical framework to identify the factors affecting the acceptance and use of Mobile Internet -as an ICT application- in a consumer context. The proposed model incorporates eight constructs: Performance Expectancy (PE), Effort Expectancy (EE), Facilitating Conditions (FC), Social Influences (SI), Perceived Value (PV), Perceived Playfulness (PP), Attention Focus (AF), and Behavioral intention (BI). Individual differences-namely, age, gender, education, income, and experience are moderating the effects of these constructs on behavioral intention and technology use.

  1. A polarizable continuum model for molecules at spherical diffuse interfaces

    NASA Astrophysics Data System (ADS)

    Di Remigio, Roberto; Mozgawa, Krzysztof; Cao, Hui; Weijo, Ville; Frediani, Luca

    2016-03-01

    We present an extension of the Polarizable Continuum Model (PCM) to simulate solvent effects at diffuse interfaces with spherical symmetry, such as nanodroplets and micelles. We derive the form of the Green's function for a spatially varying dielectric permittivity with spherical symmetry and exploit the integral equation formalism of the PCM for general dielectric environments to recast the solvation problem into a continuum solvation framework. This allows the investigation of the solvation of ions and molecules in nonuniform dielectric environments, such as liquid droplets, micelles or membranes, while maintaining the computationally appealing characteristics of continuum solvation models. We describe in detail our implementation, both for the calculation of the Green's function and for its subsequent use in the PCM electrostatic problem. The model is then applied on a few test systems, mainly to analyze the effect of interface curvature on solvation energetics.

  2. A polarizable continuum model for molecules at spherical diffuse interfaces.

    PubMed

    Di Remigio, Roberto; Mozgawa, Krzysztof; Cao, Hui; Weijo, Ville; Frediani, Luca

    2016-03-28

    We present an extension of the Polarizable Continuum Model (PCM) to simulate solvent effects at diffuse interfaces with spherical symmetry, such as nanodroplets and micelles. We derive the form of the Green's function for a spatially varying dielectric permittivity with spherical symmetry and exploit the integral equation formalism of the PCM for general dielectric environments to recast the solvation problem into a continuum solvation framework. This allows the investigation of the solvation of ions and molecules in nonuniform dielectric environments, such as liquid droplets, micelles or membranes, while maintaining the computationally appealing characteristics of continuum solvation models. We describe in detail our implementation, both for the calculation of the Green's function and for its subsequent use in the PCM electrostatic problem. The model is then applied on a few test systems, mainly to analyze the effect of interface curvature on solvation energetics. PMID:27036423

  3. Soot oxidation and agglomeration modeling in a microgravity diffusion flame

    SciTech Connect

    Ezekoye, O.A.; Zhang, Z.

    1997-07-01

    The global evolution of a microgravity diffusion flame is detailed. Gas species evolution is computed using a reduced finite rate chemical mechanism. Soot evolution is computed using various combinations of existing soot mechanisms. Radiative transfer is coupled to the soot and gas phase chemistry processes using a P1 spherical harmonics radiation model. The soot agglomeration model was examined to note the dependence of soot growth and oxidation processes on soot surface area predictions. For limiting cases where agglomeration was excluded from the soot evolution model, soot primary particle sizes and number concentrations were calculated, and the number of primary particles per aggregate was inferred. These computations are compared with experimental results for microgravity and nonbuoyant flame conditions.

  4. Element sensitive X-ray micro tomography for determination of the metal diffusion in teeth with amalgam fillings

    NASA Astrophysics Data System (ADS)

    Masschaele, B.; Baechler, S.; Cauwels, P.; Cloetens, P.; Dierick, M.; Jolie, J.; Mondelaers, W.

    2001-06-01

    Element sensitive X-ray tomography has been applied to detect the metal diffusion from the amalgam tooth filling into the tooth. By performing tomographies with energies above and below the K-edges of the various metals of the amalgam, it is possible to determine their distribution. Here presented are the results of measurements at ID15 and ID19 of the ESRF. To improve the sensitivity of our measurements a method for contrast enhancement for projections was developed.

  5. Multiwavelength analysis of the Lyman-α emitting galaxy Haro 2: relation between the diffuse Lyman-α and soft X-ray emissions

    NASA Astrophysics Data System (ADS)

    Otí-Floranes, H.; Mas-Hesse, J. M.; Jiménez-Bailón, E.; Schaerer, D.; Hayes, M.; Östlin, G.; Atek, H.; Kunth, D.

    2012-10-01

    Context. Lyman-α emission is commonly used as star formation tracer in cosmological studies. Nevertheless, resonant scattering strongly affects the resulting luminosity, leading to variable and unpredictable escape fractions in different objects. Aims: To understand how the Lyα escape fraction depends on the properties of the star-forming regions, we need high spatial resolution multiwavelength studies of nearby Lyα emitters, like Haro 2. Methods: We study the Lyα emission of Haro 2 in connection with the properties of the young stellar population, the characteristics of the interstellar medium, the distribution and intensity of the Balmer emission lines and the properties of the X-ray emission. We have used HST-STIS spectral images along the major and minor axes of Haro 2 to characterize the Lyα emission, as well as FOC UV, WFPC-2 optical and NICMOS near infrared broadband-filter images to analyze the properties of the stellar population. WFPC-2 Hα image and ground-based spectroscopy allow us to study the Balmer emission lines. Finally, Chandra/ACIS X-ray images provide resolved distribution of the X-ray emission at various energy bands. The observational data are analyzed by comparison with the predictions from evolutionary synthesis models to constrain the properties of the star formation episode. Results: The UV, Hα and far infrared luminosities of the Haro 2 nuclear starburst are well reproduced assuming a young stellar population with ages ~3.5-5.0 Myr, affected by differential intestellar extinctions. A significant fraction of the stars are completely obscured in the UV, being identifiable only indirectly by their contribution to the ionization of the gas and to the far infrared emission. The diffuse soft X-ray emission extending over the whole source is attributed to gas heated by the mechanical energy released by the starburst. A compact hard X-ray emission (likely an UltraLuminous X-ray source) has been identified in a star-forming condensation to

  6. Modeling diffusion-induced stress in nanowire electrode structures

    NASA Astrophysics Data System (ADS)

    Deshpande, Rutooj; Cheng, Yang-Tse; Verbrugge, Mark W.

    There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, a large volume change on the order of a few to several hundred percent, can occur. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the active electrode materials. Our work is aimed at developing a mathematical model relating surface energy with diffusion-induced stresses in nanowire electrodes. With decreasing size of the electrode, the ratio of surface area to volume increases. Thus, surface energy and surface stress can play an important role in mitigating DISs in nanostructured electrodes. In this work, we establish relationships between the surface energy, surface stress, and the magnitude of DISs in nanowires. We find that DISs, especially the tensile stresses, can decrease significantly due to the surface effects. Our model also establishes a relationship between stress and the nanowire radius. We show that, with decreasing size, the electrode material will be less prone to mechanical degradation, leading to an increase in the life of lithium ion batteries, provided other phenomena are unaffected by increased surface area (e.g., chemical degradation reactions). Also we show that, in the case of nanostructures, surface strain energy is significant in magnitude comparing with bulk strain energy. A mathematical tool to calculate total strain energy is developed that can be used to compare strain energy with the fracture energy of that material in electrode system.

  7. Thermonuclear model for x-ray transients

    SciTech Connect

    Wallace, R.K.; Woosley, S.E.; Weaver, T.A.

    1982-01-01

    The thermonuclear evolution of a 1.41 M sub solar neutron star accreting both solar and metal-deficient mixtures of hydrogen, helium, and heavy elements at rates ranging from about 10/sup -11/ to 10/sup -10/ M sub solar per year is examined using a one-dimensional numerical model. The metal deficient compositions may result either from placement of the neutron star in a binary system with a Population II red giant or from gravitational settling of heavy ions in the accreted material. For such accretion rates and metallicities, hydrogen burning, mediated by the ..beta..-limited CNO cycle, is stable and leads to the accumulation of a thick helium layer with mass 10/sup 23/ to 10/sup 25/ g and temperature 0.7 less than or equal to T/sub 8/ less than or equal to 1.2. Helium ignition occurs under extremely degenerate circumstances and is catastrophically violent. In the lower t helium shells this runaway is propagated as a convective deflagration, for the thicker layers a detonation front is set up which steepens into a strong relativistic shock wave in the neutron star envelope. In all models greatly super-Eddington luminosities in the outer layers of the neutron star lead to a sustained epoch of radiatively driven mass loss. Observationally, such models may correspond to rapid x-ray transients. The hopeless prospect for constructing a one-dimensional model for ..gamma..-ray bursts without magnetic field confinement is discussed and uncertainties pointed out in the strong screening correction for helium burning reaction.

  8. Tomographic x-ray guided three-dimensional diffuse optical imaging of osteoarthritis in the finger joints: a clinical study

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Jiang, Huizhu; Zhang, Qizhi; Sobel, Eric S.; Jiang, Huabei

    2009-02-01

    To investigate the typical optical findings that can be used to characterize osteoarthritis, the distal interphalangeal finger joints from 40 subjects including 22 patients and 18 healthy controllers were examined clinically and scanned by a novel hybrid imaging system. The hybrid imaging platform integrated a C-arm based x-ray tomosynthetic system with a multi-channel optic-fiber based diffuse optical imaging system. Optical images were recovered qualitatively and quantitatively based on a regularization-based reconstruction algorithm that can incorporate the fine structural maps obtained from x-ray as a priori spatial information into diffuse optical tomography reconstruction procedures. Our findings suggest statistically significant differences between healthy and osteoarthritis finger joints. X-ray guided diffuse optical imaging may not only detect radiologic features supporting the development of an inflammatory disorder but may also help discriminate specific optical features that differ between osteoarthritic and healthy joints. These quantitative optical features are also potentially important for a better understanding of inflammatory arthritis in humans.

  9. Assessment of galactic cosmic ray models

    NASA Astrophysics Data System (ADS)

    Mrigakshi, Alankrita Isha; Matthiä, Daniel; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F.

    2012-08-01

    Among several factors involved in the development of a manned space mission concept, the astronauts' health is a major concern that needs to be considered carefully. Galactic cosmic rays (GCRs), which mainly consist of high-energetic nuclei ranging from hydrogen to iron and beyond, pose a major radiation health risk in long-term space missions. It is therefore required to assess the radiation exposure of astronauts in order to estimate their radiation risks. This can be done either by performing direct measurements or by making computer based simulations from which the dose can be derived. A necessary prerequisite for an accurate estimation of the exposure using simulations is a reliable description of the GCR spectra. The aim of this work is to compare GCR models and to test their applicability for the exposure assessment of astronauts. To achieve this, commonly used models capable of describing both light and heavy GCR particle spectra were evaluated by investigating the model spectra for various particles over several decades. The updated Badhwar-O'Neill model published in the year 2010, CREME2009 which uses the International Standard model for GCR, CREME96 and the Burger-Usoskin model were examined. Hydrogen, helium, oxygen and iron nuclei spectra calculated by the different models are compared with measurements from various high-altitude balloon and space-borne experiments. During certain epochs in the last decade, there are large discrepancies between the GCR energy spectra described by the models and the measurements. All the models exhibit weaknesses in describing the increased GCR flux that was observed in 2009-2010.

  10. Innovation Diffusion: A Deterministic Model of Space-Time Integration with Physical Analog

    ERIC Educational Resources Information Center

    Haynes, Kingsley E.; And Others

    1977-01-01

    Extends a fundamental temporal diffusion model to integrate space and time dimensions of innovation diffusion. Compares analogous developments in the physical sciences and argues that the proposed model may help link the concepts of catalysts in physical science diffusion processes to the role of change agents in social science systems. (Author/JG)

  11. A Microscopic Multiphase Diffusion Model of Viable Epidermis Permeability

    PubMed Central

    Nitsche, Johannes M.; Kasting, Gerald B.

    2013-01-01

    A microscopic model of passive transverse mass transport of small solutes in the viable epidermal layer of human skin is formulated on the basis of a hexagonal array of cells (i.e., keratinocytes) bounded by 4-nm-thick, anisotropic lipid bilayers and separated by 1-μm layers of extracellular fluid. Gap junctions and tight junctions with adjustable permeabilities are included to modulate the transport of solutes with low membrane permeabilities. Two keratinocyte aspect ratios are considered to represent basal and spinous cells (longer) and granular cells (more flattened). The diffusion problem is solved in a unit cell using a coordinate system conforming to the hexagonal cross section, and an efficient two-dimensional treatment is applied to describe transport in both the cell membranes and intercellular spaces, given their thinness. Results are presented in terms of an effective diffusion coefficient, D¯epi, and partition coefficient, K¯epi/w, for a homogenized representation of the microtransport problem. Representative calculations are carried out for three small solutes—water, L-glucose, and hydrocortisone—covering a wide range of membrane permeability. The effective transport parameters and their microscopic interpretation can be employed within the context of existing three-layer models of skin transport to provide more realistic estimates of the epidermal concentrations of topically applied solutes. PMID:23708370

  12. Diffusion dynamics in the disordered Bose Hubbard model

    NASA Astrophysics Data System (ADS)

    Wadleigh, Laura; Russ, Philip; Demarco, Brian

    2016-05-01

    We explore the dynamics of diffusion for out-of-equilibrium superfluid, Mott insulator, and Bose glass states using an atomic realization of the disordered Bose Hubbard (DBH) model. Dynamics in strongly correlated systems, especially far from equilibrium, are not well understood. The introduction of disorder further complicates these systems. We realize the DBH model--which has been central to our understanding of quantum phase transitions in disordered systems--using ultracold Rubidium-87 atoms trapped in a cubic disordered optical lattice. By tightly focusing a beam into the center of the gas, we create a hole in the atomic density profile. We achieve Mott insulator, superfluid, or Bose glass states by varying the interaction and disorder strength, and measure the time evolution of the density profile after removing the central barrier. This allows us to infer diffusion rates from the velocities at the edge of the hole and to look for signatures of superfluid puddles in the Bose glass state. We acknowledge funding from NSF Grant PHY 15-05468, NSF Grant DGE-1144245, and ARO Grant W911NF-12-1-0462.

  13. The Approximate Number System Acuity Redefined: A Diffusion Model Approach

    PubMed Central

    Park, Joonkoo; Starns, Jeffrey J.

    2015-01-01

    While all humans are capable of non-verbally representing numerical quantity using so-called the approximate number system (ANS), there exist considerable individual differences in its acuity. For example, in a non-symbolic number comparison task, some people find it easy to discriminate brief presentations of 14 dots from 16 dots while others do not. Quantifying individual ANS acuity from such a task has become an essential practice in the field, as individual differences in such a primitive number sense is thought to provide insights into individual differences in learned symbolic math abilities. However, the dominant method of characterizing ANS acuity—computing the Weber fraction (w)—only utilizes the accuracy data while ignoring response times (RT). Here, we offer a novel approach of quantifying ANS acuity by using the diffusion model, which accounts both accuracy and RT distributions. Specifically, the drift rate in the diffusion model, which indexes the quality of the stimulus information, is used to capture the precision of the internal quantity representation. Analysis of behavioral data shows that w is contaminated by speed-accuracy tradeoff, making it problematic as a measure of ANS acuity, while drift rate provides a measure more independent from speed-accuracy criterion settings. Furthermore, drift rate is a better predictor of symbolic math ability than w, suggesting a practical utility of the measure. These findings demonstrate critical limitations of the use of w and suggest clear advantages of using drift rate as a measure of primitive numerical competence. PMID:26733929

  14. A microscopic multiphase diffusion model of viable epidermis permeability.

    PubMed

    Nitsche, Johannes M; Kasting, Gerald B

    2013-05-21

    A microscopic model of passive transverse mass transport of small solutes in the viable epidermal layer of human skin is formulated on the basis of a hexagonal array of cells (i.e., keratinocytes) bounded by 4-nm-thick, anisotropic lipid bilayers and separated by 1-μm layers of extracellular fluid. Gap junctions and tight junctions with adjustable permeabilities are included to modulate the transport of solutes with low membrane permeabilities. Two keratinocyte aspect ratios are considered to represent basal and spinous cells (longer) and granular cells (more flattened). The diffusion problem is solved in a unit cell using a coordinate system conforming to the hexagonal cross section, and an efficient two-dimensional treatment is applied to describe transport in both the cell membranes and intercellular spaces, given their thinness. Results are presented in terms of an effective diffusion coefficient, D¯(epi), and partition coefficient, K¯(epi/w), for a homogenized representation of the microtransport problem. Representative calculations are carried out for three small solutes-water, L-glucose, and hydrocortisone-covering a wide range of membrane permeability. The effective transport parameters and their microscopic interpretation can be employed within the context of existing three-layer models of skin transport to provide more realistic estimates of the epidermal concentrations of topically applied solutes.

  15. Galactic Diffuse Emissions

    SciTech Connect

    Digel, Seth W.; /SLAC

    2007-10-25

    Interactions of cosmic rays with interstellar nucleons and photons make the Milky Way a bright, diffuse source of high-energy {gamma}-rays. Observationally, the results from EGRET, COMPTEL, and OSSE have now been extended to higher energies by ground-based experiments, with detections of diffuse emission in the Galactic center reported by H.E.S.S. in the range above 100 GeV and of diffuse emission in Cygnus by MILAGRO in the TeV range. In the range above 100 keV, INTEGRAL SPI has found that diffuse emission remains after point sources are accounted for. I will summarize current knowledge of diffuse {gamma}-ray emission from the Milky Way and review some open issues related to the diffuse emission -- some old, like the distribution of cosmic-ray sources and the origin of the 'excess' of GeV emission observed by EGRET, and some recently recognized, like the amount and distribution of molecular hydrogen not traced by CO emission -- and anticipate some of the advances that will be possible with the Large Area Telescope on GLAST. We plan to develop an accurate physical model for the diffuse emission, which will be useful for detecting and accurately characterizing emission from Galactic point sources as well as any Galactic diffuse emission from exotic processes, and for studying the unresolved extragalactic emission.

  16. Comparison of Turbulent Thermal Diffusivity and Scalar Variance Models

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.

    2016-01-01

    In this study, several variable turbulent Prandtl number formulations are examined for boundary layers, pipe flow, and axisymmetric jets. The model formulations include simple algebraic relations between the thermal diffusivity and turbulent viscosity as well as more complex models that solve transport equations for the thermal variance and its dissipation rate. Results are compared with available data for wall heat transfer and profile measurements of mean temperature, the root-mean-square (RMS) fluctuating temperature, turbulent heat flux and turbulent Prandtl number. For wall-bounded problems, the algebraic models are found to best predict the rise in turbulent Prandtl number near the wall as well as the log-layer temperature profile, while the thermal variance models provide a good representation of the RMS temperature fluctuations. In jet flows, the algebraic models provide no benefit over a constant turbulent Prandtl number approach. Application of the thermal variance models finds that some significantly overpredict the temperature variance in the plume and most underpredict the thermal growth rate of the jet. The models yield very similar fluctuating temperature intensities in jets from straight pipes and smooth contraction nozzles, in contrast to data that indicate the latter should have noticeably higher values. For the particular low subsonic heated jet cases examined, changes in the turbulent Prandtl number had no effect on the centerline velocity decay.

  17. Pre-Clinical Models of Diffuse Intrinsic Pontine Glioma

    PubMed Central

    Misuraca, Katherine L.; Cordero, Francisco J.; Becher, Oren J.

    2015-01-01

    Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises in the brainstem of children predominantly between the ages of 6 and 8. Its intricate morphology and involvement of normal pons tissue precludes surgical resection, and the standard of care today remains fractionated radiation alone. In the past 30 years, there have been no significant advances made in the treatment of DIPG. This is largely because we lack good models of DIPG and therefore have little biological basis for treatment. In recent years, however, due to increased biopsy and acquisition of autopsy specimens, research is beginning to unravel the genetic and epigenetic drivers of DIPG. Insight gleaned from these studies has led to improvements in approaches to both model these tumors in the lab and to potentially treat them in the clinic. This review will detail the initial strides toward modeling DIPG in animals, which included allograft and xenograft rodent models using non-DIPG glioma cells. Important advances in the field came with the development of in vitro cell and in vivo xenograft models derived directly from autopsy material of DIPG patients or from human embryonic stem cells. Finally, we will summarize the progress made in the development of genetically engineered mouse models of DIPG. Cooperation of studies incorporating all of these modeling systems to both investigate the unique mechanisms of gliomagenesis in the brainstem and to test potential novel therapeutic agents in a preclinical setting will result in improvement in treatments for DIPG patients. PMID:26258075

  18. Molecular Modeling of Diffusion on a Crystalline PETN Surface

    SciTech Connect

    Lin, P; Khare, R; Gee, R H; Weeks, B L

    2007-07-13

    Surface diffusion on a PETN crystal was investigated by treating the surface diffusion as an activated process in the formalism of transition state theory. In particular, surface diffusion on the (110) and (101) facets, as well as diffusion between these facets, were considered. We successfully obtained the potential energy barriers required for PETN surface diffusion. Our results show that the (110) surface is more thermally active than the (101) surface and PETN molecules mainly diffuses from the (110) to (101) facet. These results are in good agreement with experimental observations and previous simulations.

  19. NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy

    NASA Astrophysics Data System (ADS)

    Yolcu, Cem; Memiç, Muhammet; Şimşek, Kadir; Westin, Carl-Fredrik; Özarslan, Evren

    2016-05-01

    We study the influence of diffusion on NMR experiments when the molecules undergo random motion under the influence of a force field and place special emphasis on parabolic (Hookean) potentials. To this end, the problem is studied using path integral methods. Explicit relationships are derived for commonly employed gradient waveforms involving pulsed and oscillating gradients. The Bloch-Torrey equation, describing the temporal evolution of magnetization, is modified by incorporating potentials. A general solution to this equation is obtained for the case of parabolic potential by adopting the multiple correlation function (MCF) formalism, which has been used in the past to quantify the effects of restricted diffusion. Both analytical and MCF results were found to be in agreement with random walk simulations. A multidimensional formulation of the problem is introduced that leads to a new characterization of diffusion anisotropy. Unlike the case of traditional methods that employ a diffusion tensor, anisotropy originates from the tensorial force constant, and bulk diffusivity is retained in the formulation. Our findings suggest that some features of the NMR signal that have traditionally been attributed to restricted diffusion are accommodated by the Hookean model. Under certain conditions, the formalism can be envisioned to provide a viable approximation to the mathematically more challenging restricted diffusion problems.

  20. NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy.

    PubMed

    Yolcu, Cem; Memiç, Muhammet; Şimşek, Kadir; Westin, Carl-Fredrik; Özarslan, Evren

    2016-05-01

    We study the influence of diffusion on NMR experiments when the molecules undergo random motion under the influence of a force field and place special emphasis on parabolic (Hookean) potentials. To this end, the problem is studied using path integral methods. Explicit relationships are derived for commonly employed gradient waveforms involving pulsed and oscillating gradients. The Bloch-Torrey equation, describing the temporal evolution of magnetization, is modified by incorporating potentials. A general solution to this equation is obtained for the case of parabolic potential by adopting the multiple correlation function (MCF) formalism, which has been used in the past to quantify the effects of restricted diffusion. Both analytical and MCF results were found to be in agreement with random walk simulations. A multidimensional formulation of the problem is introduced that leads to a new characterization of diffusion anisotropy. Unlike the case of traditional methods that employ a diffusion tensor, anisotropy originates from the tensorial force constant, and bulk diffusivity is retained in the formulation. Our findings suggest that some features of the NMR signal that have traditionally been attributed to restricted diffusion are accommodated by the Hookean model. Under certain conditions, the formalism can be envisioned to provide a viable approximation to the mathematically more challenging restricted diffusion problems. PMID:27300946

  1. A Lattice Boltzmann Model for Oscillating Reaction-Diffusion

    NASA Astrophysics Data System (ADS)

    Rodríguez-Romo, Suemi; Ibañez-Orozco, Oscar; Sosa-Herrera, Antonio

    2016-07-01

    A computational algorithm based on the lattice Boltzmann method (LBM) is proposed to model reaction-diffusion systems. In this paper, we focus on how nonlinear chemical oscillators like Belousov-Zhabotinsky (BZ) and the chlorite-iodide-malonic acid (CIMA) reactions can be modeled by LBM and provide with new insight into the nature and applications of oscillating reactions. We use Gaussian pulse initial concentrations of sulfuric acid in different places of a bidimensional reactor and nondiffusive boundary walls. We clearly show how these systems evolve to a chaotic attractor and produce specific pattern images that are portrayed in the reactions trajectory to the corresponding chaotic attractor and can be used in robotic control.

  2. On Modeling Viral Diffusion in Heterogeneous Wireless Networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai-Nam; Shinoda, Yoichi

    Smart phones and computers now are able to co-work in a wireless environment where malware can propagate. Although many investigations have modeled the spread of malware, little has been done to take into account different characteristics of items to see how they affect disease diffusion in an ad hoc network. We have therefore developed a novel framework, consisting of two models, which consider diversity of objects as well as interactions between their different classes. Our framework is able to produce a huge result space thus makes it appropriate to describe many viral proliferating scenarios. Additionally, we have developed a formula to calculate the possible average number of newly infected devices in the considered system. An important contribution of our work is the comprehension of item diversity, which states that a mixture of device types causes a bigger malware spread as the number of device types in the network increases.

  3. Effective Diffusion Coefficient and Controlling Process of P Diffusion in Si Based on the Pair Diffusion Models of Vacancy and Interstitial Mechanisms

    NASA Astrophysics Data System (ADS)

    Yoshida, Masayuki; Morooka, Masami; Takahashi, Manabu; Tomokage, Hajime

    2000-05-01

    Based on the pair diffusion models of vacancy and interstitial (V and I) mechanisms, the V and I components of effective P diffusion coefficient, DP^+,Veff and DP^+,Ieff, and the controlling process of P diffusion in Si are obtained. Assuming that the I mechanism is dominant, not only the I- concentration, CI^-, but also its gradient, d CI^-/d λ , is effective on DP^+,Ieff at high CP^+. DP^+,Ieff is large at d CI^-/d λ <0 and small at d CI^-/d λ >0. P+ and I- are generated by the dissociation of P-I pair. When excess I- thus generated is removed, d CI^-/d λ <0 is obtained. d CI^-/d λ <0 is also obtained by the decrease in quasi self-interstitial formation energy. Several diffusion models simulate the P diffusion profile well under an inert atmosphere. Applying the controlling process to them, the reason why they simulate the P profile well is investigated. Because all of them simulate the P profile well, it is difficult to conclude which model is correct. It is suggested that it is possible to conclude which model is correct from the P profile under oxidation at CP^+s >1× 1020 cm-3 (s: surface).

  4. The Diffusion Model Is Not a Deterministic Growth Model: Comment on Jones and Dzhafarov (2014)

    PubMed Central

    Smith, Philip L.; Ratcliff, Roger; McKoon, Gail

    2015-01-01

    Jones and Dzhafarov (2014) claim that several current models of speeded decision making in cognitive tasks, including the diffusion model, can be viewed as special cases of other general models or model classes. The general models can be made to match any set of response time (RT) distribution and accuracy data exactly by a suitable choice of parameters and so are unfalsifiable. The implication of their claim is that models like the diffusion model are empirically testable only by artificially restricting them to exclude unfalsifiable instances of the general model. We show that Jones and Dzhafarov’s argument depends on enlarging the class of “diffusion” models to include models in which there is little or no diffusion. The unfalsifiable models are deterministic or near-deterministic growth models, from which the effects of within-trial variability have been removed or in which they are constrained to be negligible. These models attribute most or all of the variability in RT and accuracy to across-trial variability in the rate of evidence growth, which is permitted to be distributed arbitrarily and to vary freely across experimental conditions. In contrast, in the standard diffusion model, within-trial variability in evidence is the primary determinant of variability in RT. Across-trial variability, which determines the relative speed of correct responses and errors, is theoretically and empirically constrained. Jones and Dzhafarov’s attempt to include the diffusion model in a class of models that also includes deterministic growth models misrepresents and trivializes it and conveys a misleading picture of cognitive decision-making research. PMID:25347314

  5. The escape model for Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.

    2015-08-01

    The escape model explains the cosmic ray (CR) knee by energy-dependent CR leakage from the Milky Way, with an excellent fit to all existing data. We test this model calculating the trajectories of individual CRs in the Galactic magnetic field. We find that the CR escape time τesc(E) exhibits a knee-like structure around E/Z = few × 1015 eV for small coherence lengths and strengths of the turbulent magnetic field. The resulting intensities for different groups of nuclei are consistent with the ones determined by KASCADE and KASCADE-Grande, using simple power-laws as injection spectra. The transition from Galactic to extragalactic CRs happens in this model at low energies and is terminated below ≈ 3 × 1018 eV. The intermediate energy region up to the ankle is populated by CRs accelerated in starburst galaxies. This model provides a good fit to ln(A) data, while the estimated CR dipole anisotropy is close to, or below, upper limits in the energy range 1017 - 1018 eV. The phase of the dipole is expected to change between 1 × 1017 and 3 × 1018 eV.

  6. Modeling Periodic Impulsive Effects on Online TV Series Diffusion

    PubMed Central

    Fang, Qiwen; Wang, Xi

    2016-01-01

    Background Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. Methods We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. Results We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. Conclusion To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount

  7. Validation of pore network simulations of ex-situ water distributions in a gas diffusion layer of proton exchange membrane fuel cells with X-ray tomographic images

    NASA Astrophysics Data System (ADS)

    Agaesse, Tristan; Lamibrac, Adrien; Büchi, Felix N.; Pauchet, Joel; Prat, Marc

    2016-11-01

    Understanding and modeling two-phase flows in the gas diffusion layer (GDL) of proton exchange membrane fuel cells are important in order to improve fuel cells performance. They are scientifically challenging because of the peculiarities of GDLs microstructures. In the present work, simulations on a pore network model are compared to X-ray tomographic images of water distributions during an ex-situ water invasion experiment. A method based on watershed segmentation was developed to extract a pore network from the 3D segmented image of the dry GDL. Pore network modeling and a full morphology model were then used to perform two-phase simulations and compared to the experimental data. The results show good agreement between experimental and simulated microscopic water distributions. Pore network extraction parameters were also benchmarked using the experimental data and results from full morphology simulations.

  8. Emission model of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Liang, E. P.

    1983-01-01

    The emission mechanisms of cosmic gamma-ray bursts are reviewed. In particular, the thermal synchrotron model is discussed as the most viable mechanism for the majority of the continuum emission. Within this framework various information about the source region can be extracted. The picture that emerges is that of a hot (kT = .2 - 1.0 sq mc), thin sheet of dense pair-dominated plasma emitting via cyclo-synchrotron radiation in a strong magnetic field (B approximately one-hundred billion to one trillion gauss). Speculations on the origin and structure of this sheet are attempted. The problem of high-energy photons above pair production threshold escaping from the source is also considered.

  9. An intravoxel oriented flow model for diffusion-weighted imaging of the kidney.

    PubMed

    Hilbert, Fabian; Bock, Maximilian; Neubauer, Henning; Veldhoen, Simon; Wech, Tobias; Bley, Thorsten Alexander; Köstler, Herbert

    2016-10-01

    By combining intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI) we introduce a new diffusion model called intravoxel oriented flow (IVOF) that accounts for anisotropy of diffusion and the flow-related signal. An IVOF model using a simplified apparent flow fraction tensor (IVOFf ) is applied to diffusion-weighted imaging of human kidneys. The kidneys of 13 healthy volunteers were examined on a 3 T scanner. Diffusion-weighted images were acquired with six b values between 0 and 800 s/mm(2) and 30 diffusion directions. Diffusivity and flow fraction were calculated for different diffusion models. The Akaike information criterion was used to compare the model fit of the proposed IVOFf model to IVIM and DTI. In the majority of voxels the proposed IVOFf model with a simplified apparent flow fraction tensor performs better than IVIM and DTI. Mean diffusivity is significantly higher in DTI compared with models that account for the flow-related signal. The fractional anisotropy of diffusion is significantly reduced when flow fraction is considered to be anisotropic. Anisotropy of the apparent flow fraction tensor is significantly higher in the renal medulla than in the cortex region. The IVOFf model describes diffusion-weighted data in the human kidney more accurately than IVIM or DTI. The apparent flow fraction in the kidney proved to be anisotropic. PMID:27488570

  10. Modeling X-ray emission around galaxies

    SciTech Connect

    Anderson, Michael E.; Bregman, Joel N.

    2014-04-10

    Extended X-ray emission can be studied by spatial surface brightness measurements or by spectral analysis, but the two methods can disagree at low intensity levels. Here we present an improved method for spatial analysis that can be extended to include spectral information simultaneously. We construct a model for the entire image in a given energy band and generate a likelihood function to compare the model to the data. A critical goal is disentangling vignetted and unvignetted backgrounds through their different spatial distributions. Employing either maximum likelihood or Markov Chain Monte Carlo, we can derive probability distributions for the source and background parameters together, or we can fit and subtract the background, leaving the description of the source non-parametric. We calibrate this method against a variety of simulated images, and apply it to Chandra observations of the hot gaseous halo around the elliptical galaxy NGC 720. We follow the emission below a tenth of the background and infer a hot gas mass within 35 kpc of 4-5 × 10{sup 9} M {sub ☉}, with some indication that the profile continues to at least 50 kpc and that it steepens. We derive stronger constraints on the surface brightness profile than previous studies that employed the spectral method, and we show that the density profiles inferred from these studies are in conflict with the observed surface brightness profile. Contrary to a previous claim, we find that the X-ray halo does not contain the full complement of missing baryons within the virial radius.

  11. Modelling interactions between soil evolution and diffusive surface processes

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike; Johnson, Michelle; Gloor, Emanual

    2014-05-01

    Bioturbation, combined with settlement under gravity, generates profiles of bulk density, porosity and hydraulic conductivity (Ksat). Rates of bioturbation are linked to rates of diffusive downslope sediment transport (creep) and rates can be compared via the increase in OSL ages of soil aggregate grains with depth. Some primary porosity is also produced by weathering of rock to saprolite, often with little reduction in bulk density but some dilation of joints. Downward percolation of rain water near the surface is controlled by the diffusion-induced decrease in porosity and Ksat, driving lateral subsurface flow in the zone of fluctuating water table, and leaving progressively less water for downward percolation. As the depth to the weathering front is varied, progressively less water is therefore available for weathering, producing the observed decrease in weathering rate with increasing soil depth. These processes are modelled by repeatedly applying a stochastic realisation of daily rainfalls for an area until the annual hydrological cycle stabilises, providing the average partition of rainfall into its components of evapotranspiration, lateral flow and downward percolation, with depth in the soil. The average hydrology is then applied to drive evolution of the weathering profile over longer time spans.

  12. Magnetic field diffusion modeling of a small enclosed firing system

    SciTech Connect

    Warne, L.K.; Merewether, K.O.

    1996-01-01

    Intense magnetic fields exist in the immediate vicinity of a lightning strike (and near power lines). Conducting barriers increase the rise time (and thus decrease the rise rate) interior to the barrier, but typically do not prevent penetration of the magnetic field, since the lightning current fall time may be larger than the barrier diffusion time. Thus, substantial energy is present in the interior field, although the degradation of rise rate makes it more difficult to couple into electrical circuits. This report assesses the threat posed by the diffusive magnetic field to interior components and wire loops (where voltages are induced). Analytical and numerical bounding analyses are carried out on a pill box shaped conducting barrier to develop estimates for the worst case magnetic field threats inside the system. Worst case induced voltages and energies are estimated and compared with threshold charge voltages and energies on the output capacitor of the system. Variability of these quantities with respect to design parameters are indicated. The interior magnetic field and induced voltage estimates given in this report can be used as excitations for more detailed interior and component models.

  13. Analytical model of diffuse reflectance spectrum of skin tissue

    SciTech Connect

    Lisenko, S A; Kugeiko, M M; Firago, V A; Sobchuk, A N

    2014-01-31

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions. (biophotonics)

  14. Analytical model of diffuse reflectance spectrum of skin tissue

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.

    2014-01-01

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.

  15. Postural control model interpretation of stabilogram diffusion analysis

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2000-01-01

    Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.

  16. BF{sub 3} PIII modeling: Implantation, amorphisation and diffusion

    SciTech Connect

    Essa, Z.; Cristiano, F.; Spiegel, Y.; Boulenc, P.; Qiu, Y.; Quillec, M.; Taleb, N.; Burenkov, A.; Hackenberg, M.; Bedel-Pereira, E.; Mortet, V.; Torregrosa, Frank; Tavernier, C.

    2012-11-06

    In the race for highly doped ultra-shallow junctions (USJs) in complementary metal oxide semi-conductor (CMOS) technologies, plasma immersion ion implantation (PIII) is a promising alternative to traditional beamline implantation. Currently, no commercial technology computer aided design (TCAD) process simulator allows modeling the complete USJ fabrication process by PIII, including as-implanted dopant profiles, damage formation, dopant diffusion and activation. In this work, a full simulation of a p-type BF{sub 3} PIII USJ has been carried out. In order to investigate the various physical phenomena mentioned above, process conditions included a high energy/high dose case (10 kV, 5 Multiplication-Sign 10{sup 15} cm{sup -2}), specifically designed to increase damage formation, as well as more technology relevant implant conditions (0.5 kV) for comparison. All implanted samples were annealed at different temperatures and times. As implanted profiles for both boron and fluorine in BF{sub 3} implants were modeled and compared to Secondary Ion Mass Spectrometry (SIMS) measurements. Amorphous/crystalline (a/c) interface depths were measured by transmission electron microscopy (TEM) and successfully simulated. Diffused profiles simulations agreed with SIMS data at low thermal budgets. A boron peak behind the a/c interface was observed in all annealed SIMS profiles for the 10 kV case, indicating boron trapping from EOR defects in this region even after high thermal budgets. TEM measurements on the annealed samples showed an end of range (EOR) defects survival behind the a/c interface, including large dislocation loops (DLs) lying on (001) plane parallel to the surface. In the last part of this work, activation simulations were compared to Hall measurements and confirmed the need to develop a (001) large BICs model.

  17. A seed-diffusion model for tropical tree diversity patterns

    NASA Astrophysics Data System (ADS)

    Derzsi, A.; Néda, Z.

    2012-10-01

    Diversity patterns of tree species in a tropical forest community are approached by a simple lattice model and investigated by Monte Carlo simulations using a backtracking method. Our spatially explicit neutral model is based on a simple statistical physics process, namely the diffusion of seeds. The model has three parameters: the speciation rate, the size of the meta-community in which the studied tree-community is embedded, and the average surviving time of the seeds. By extensive computer simulations we aim towards the reproduction of relevant statistical measures derived from the experimental data of the Barro Colorado Island tree census in 1995. The first two parameters of the model are fixed to known values, characteristic of the studied community, thus obtaining a model with only one freely adjustable parameter. As a result of this, the average number of species in the considered territory, the relative species abundance distribution, the species-area relationship and the spatial auto-correlation function of the individuals in abundant species are simultaneously fitted with only one parameter which is the average surviving time of the seeds.

  18. Reactor-Diffusion Models For Cartilage Pattern Formation

    NASA Astrophysics Data System (ADS)

    Glimm, Tilmann; Hentschel, H. G. E.

    2004-03-01

    In the early stages of the development of the embryonic chick limb, the sites of future skeletal elements are marked by a prepattern formed by condensations of precartilage cells. A number of different theories have been proposed as to what mechanism determines the characteristic size, shape and number of these condensations. Nevertheless, there is still little definite knowledge on this question. In this talk, we present a model of the limb based on recent experiments and additional hypotheses. In this model, it is a ``reactor-diffusion'' mechanism which gives rise to precartilage condensation. The model consists of a system of nonlinear partial differential equations which govern the spatiotemporal distribution of various types of mesenchymal cells and relevant biomolecules. These biomolecules include Fibroblast growth factors (FGFs), transforming growth factor-betas (TGF-βs), the extracellular matrix protein Fibronectin, as well as a laterally-acting inhibitor. We present the results of numerical simulations for the system of PDEs. Also addressed are preliminary results on how this PDE model can be tied in with more biologically realistic cellular automata based models.

  19. A reaction-diffusion model of human brain development.

    PubMed

    Lefèvre, Julien; Mangin, Jean-François

    2010-04-01

    Cortical folding exhibits both reproducibility and variability in the geometry and topology of its patterns. These two properties are obviously the result of the brain development that goes through local cellular and molecular interactions which have important consequences on the global shape of the cortex. Hypotheses to explain the convoluted aspect of the brain are still intensively debated and do not focus necessarily on the variability of folds. Here we propose a phenomenological model based on reaction-diffusion mechanisms involving Turing morphogens that are responsible for the differential growth of two types of areas, sulci (bottom of folds) and gyri (top of folds). We use a finite element approach of our model that is able to compute the evolution of morphogens on any kind of surface and to deform it through an iterative process. Our model mimics the progressive folding of the cortical surface along foetal development. Moreover it reveals patterns of reproducibility when we look at several realizations of the model from a noisy initial condition. However this reproducibility must be tempered by the fact that a same fold engendered by the model can have different topological properties, in one or several parts. These two results on the reproducibility and variability of the model echo the sulcal roots theory that postulates the existence of anatomical entities around which the folding organizes itself. These sulcal roots would correspond to initial conditions in our model. Last but not least, the parameters of our model are able to produce different kinds of patterns that can be linked to developmental pathologies such as polymicrogyria and lissencephaly. The main significance of our model is that it proposes a first approach to the issue of reproducibility and variability of the cortical folding. PMID:20421989

  20. A dedicated compression device for high resolution X-ray tomography of compressed gas diffusion layers

    SciTech Connect

    Tötzke, C.; Manke, I.; Banhart, J.; Gaiselmann, G.; Schmidt, V.; Bohner, J.; Müller, B. R.; Kupsch, A.; Hentschel, M. P.; Lehnert, W.

    2015-04-15

    We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.

  1. Assessment of non-Gaussian diffusion with singly and doubly stretched biexponential models of diffusion-weighted MRI (DWI) signal attenuation in prostate tissue.

    PubMed

    Hall, Matt G; Bongers, Andre; Sved, Paul; Watson, Geoffrey; Bourne, Roger M

    2015-04-01

    Non-Gaussian diffusion dynamics was investigated in the two distinct water populations identified by a biexponential model of diffusion in prostate tissue. Diffusion-weighted MRI (DWI) signal attenuation was measured ex vivo in two formalin-fixed prostates at 9.4 T with diffusion times Δ = 10, 20 and 40 ms, and b values in the range 0.017-8.2 ms/µm(2) . A conventional biexponential model was compared with models in which either the lower diffusivity component or both of the components of the biexponential were stretched. Models were compared using Akaike's Information Criterion (AIC) and a leave-one-out (LOO) test of model prediction accuracy. The doubly stretched (SS) model had the highest LOO prediction accuracy and lowest AIC (highest information content) in the majority of voxels at Δ = 10 and 20 ms. The lower diffusivity stretching factor (α2 ) of the SS model was consistently lower (range ~0.3-0.9) than the higher diffusivity stretching factor (α1 , range ~0.7-1.1), indicating a high degree of diffusion heterogeneity in the lower diffusivity environment, and nearly Gaussian diffusion in the higher diffusivity environment. Stretched biexponential models demonstrate that, in prostate tissue, the two distinct water populations identified by the simple biexponential model individually exhibit non-Gaussian diffusion dynamics.

  2. NuSTAR Hard X-Ray Survey of the Galactic Center Region I: Hard X-Ray Morphology and Spectroscopy of the Diffuse Emission

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A.; Alexander, David M.; Baganoff, Frederick K.; Barret, Didier; Barrière, Nicolas; Boggs, Steven E.; Canipe, Alicia M.; Christensen, Finn E.; Craig, William W.; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E.; Luu, Vy; Madsen, Kristen K.; Mao, Peter H.; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J.; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ˜ 1.3-2.3 up to ˜50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (˜1023 cm-2), primary X-ray spectra (power-laws with Γ ˜ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to LX ≳ 1038 erg s-1. Above ˜20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95-0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses MWD ˜ 0.9 M⊙. Spectral energy distribution analysis suggests that G359.95-0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745-290, strongly favoring a leptonic origin of the GC TeV emission.

  3. The small ice cap instability in diffusive climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.

    1984-01-01

    Simple climate models which invoke diffusive heat transport and ice cap albedo feedback have equilibrium solutions with no stable ice cap smaller than a radius of about 20 deg on a great circle. Attention is presently given to a solution of this phenomenon which is physically appealing. The ice-free solution has a thermal minimum, and if the minimum temperature is just above the critical value for ice formation, then the artificial addition of a patch of ice leads to a widespread depression of the temperature below the critical freezing temperature. A second stable solution will then exist whose spatial extent is determined by the range of the influence function of a point sink of heat, due to the albedo shift in the patch.

  4. Energy efficient engine diffuser/combustor model technology

    NASA Technical Reports Server (NTRS)

    Gardner, W.

    1980-01-01

    A full scale, full annular diffuser/combustor model test rig was tested to investigate how configurational changes affect pressure loss and flow separation characteristics. The rig was characterized by five major modules: inlet; prediffuser; strut; simulated combustor; and full combustor. The prediffuser featured a short, curved wall dump design. Performance goals included: (1) a separation-free prediffuser flow field; (2) total pressure loss limited to 3.0 percent in the prediffuser and shrouds; and (3) an overall section pressure loss of 5.5 percent P sub T3 at the design airflow distribution. The results indicated that the prediffuser configurations operate well within the program goals for pressure loss and demonstrate separation free operation over a wide range of inlet conditions.

  5. Stochastic fire-diffuse-fire model with realistic cluster dynamics

    NASA Astrophysics Data System (ADS)

    Calabrese, Ana; Fraiman, Daniel; Zysman, Daniel; Ponce Dawson, Silvina

    2010-09-01

    Living organisms use waves that propagate through excitable media to transport information. Ca2+ waves are a paradigmatic example of this type of processes. A large hierarchy of Ca2+ signals that range from localized release events to global waves has been observed in Xenopus laevis oocytes. In these cells, Ca2+ release occurs trough inositol 1,4,5-trisphosphate receptors (IP3Rs) which are organized in clusters of channels located on the membrane of the endoplasmic reticulum. In this article we construct a stochastic model for a cluster of IP3R ’s that replicates the experimental observations reported in [D. Fraiman , Biophys. J. 90, 3897 (2006)10.1529/biophysj.105.075911]. We then couple this phenomenological cluster model with a reaction-diffusion equation, so as to have a discrete stochastic model for calcium dynamics. The model we propose describes the transition regimes between isolated release and steadily propagating waves as the IP3 concentration is increased.

  6. A reaction-diffusion model of cytosolic hydrogen peroxide.

    PubMed

    Lim, Joseph B; Langford, Troy F; Huang, Beijing K; Deen, William M; Sikes, Hadley D

    2016-01-01

    As a signaling molecule in mammalian cells, hydrogen peroxide (H2O2) determines the thiol/disulfide oxidation state of several key proteins in the cytosol. Localization is a key concept in redox signaling; the concentrations of signaling molecules within the cell are expected to vary in time and in space in manner that is essential for function. However, as a simplification, all theoretical studies of intracellular hydrogen peroxide and many experimental studies to date have treated the cytosol as a well-mixed compartment. In this work, we incorporate our previously reported reduced kinetic model of the network of reactions that metabolize hydrogen peroxide in the cytosol into a model that explicitly treats diffusion along with reaction. We modeled a bolus addition experiment, solved the model analytically, and used the resulting equations to quantify the spatiotemporal variations in intracellular H2O2 that result from this kind of perturbation to the extracellular H2O2 concentration. We predict that micromolar bolus additions of H2O2 to suspensions of HeLa cells (0.8 × 10(9)cells/l) result in increases in the intracellular concentration that are localized near the membrane. These findings challenge the assumption that intracellular concentrations of H2O2 are increased uniformly throughout the cell during bolus addition experiments and provide a theoretical basis for differing phenotypic responses of cells to intracellular versus extracellular perturbations to H2O2 levels.

  7. The Defect Diffusion Model of Glass-Forming Liquids

    NASA Astrophysics Data System (ADS)

    Fontanella, John; Bendler, John; Wintersgill, Mary; Shlesinger, Michael

    2013-03-01

    The defect diffusion model (DDM) provides an explanation of many properties of glass-forming liquids. For example, it has been used to interpret dielectric relaxation (alpha and beta relaxations and the boson peak), viscosity, ionic conductivity, (including the effects of temperature and pressure) positron annihilation lifetime spectroscopy data, the physical basis of fragility, scaling, the ratio of the apparent isochoric activation energy to the isobaric activation enthalpy and its relationship to monomer volume, and correlation lengths. In the model, the glass transition, Tg, occurs because of rigidity percolation. In addition the transition at TB (or TLL) is associated with mobility percolation. In the simplest form of the DDM, a supercooled liquid contains mobile single defects (MSDs) and immobile, clustered single defects (ICSDs). Consequently, dynamic heterogeneity is a natural feature of the model. If the glass transition did not intervene, all MSDs would disappear at a critical temperature Tc. In the present talk, the model will be used to comment on the change of heat capacity, thermal expansion coefficient and compressibility at Tg. Work supported in part by the Office of Naval Research

  8. A diffuse interface model of grain boundary faceting

    NASA Astrophysics Data System (ADS)

    Abdeljawad, F.; Medlin, D. L.; Zimmerman, J. A.; Hattar, K.; Foiles, S. M.

    2016-06-01

    Interfaces, free or internal, greatly influence the physical properties and stability of materials microstructures. Of particular interest are the processes that occur due to anisotropic interfacial properties. In the case of grain boundaries (GBs) in metals, several experimental observations revealed that an initially flat GB may facet into hill-and-valley structures with well defined planes and corners/edges connecting them. Herein, we present a diffuse interface model that is capable of accounting for strongly anisotropic GB properties and capturing the formation of hill-and-valley morphologies. The hallmark of our approach is the ability to independently examine the various factors affecting GB faceting and subsequent facet coarsening. More specifically, our formulation incorporates higher order expansions to account for the excess energy due to facet junctions and their non-local interactions. As a demonstration of the modeling capability, we consider the Σ5 <001 > tilt GB in body-centered-cubic iron, where faceting along the {210} and {310} planes was experimentally observed. Atomistic calculations were utilized to determine the inclination-dependent GB energy, which was then used as an input in our model. Linear stability analysis and simulation results highlight the role of junction energy and associated non-local interactions on the resulting facet length scales. Broadly speaking, our modeling approach provides a general framework to examine the microstructural stability of polycrystalline systems with highly anisotropic GBs.

  9. Anomalous diffusion in neutral evolution of model proteins.

    PubMed

    Nelson, Erik D; Grishin, Nick V

    2015-06-01

    Protein evolution is frequently explored using minimalist polymer models, however, little attention has been given to the problem of structural drift, or diffusion. Here, we study neutral evolution of small protein motifs using an off-lattice heteropolymer model in which individual monomers interact as low-resolution amino acids. In contrast to most earlier models, both the length and folded structure of the polymers are permitted to change. To describe structural change, we compute the mean-square distance (MSD) between monomers in homologous folds separated by n neutral mutations. We find that structural change is episodic, and, averaged over lineages (for example, those extending from a single sequence), exhibits a power-law dependence on n. We show that this exponent depends on the alignment method used, and we analyze the distribution of waiting times between neutral mutations. The latter are more disperse than for models required to maintain a specific fold, but exhibit a similar power-law tail. PMID:26172648

  10. The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen

    NASA Astrophysics Data System (ADS)

    Arcodia, R.; Campana, S.; Salvaterra, R.

    2016-05-01

    We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.

  11. Multiple-to-dominant path collapse of linked-flux model for diffusion-limited nucleation

    NASA Astrophysics Data System (ADS)

    Lau, Y. H.; Wu, D. T.

    2013-01-01

    While capable of estimating diffusion-limited nucleation rates, Kelton's linked-flux model has no simple solution. To increase the model's usability, we simplify the model by retaining only the dominant nucleation path to obtain a series solution. The solution agrees well with the Kelton's model's predictions of the nucleation rate, and thus provides a simple estimate of diffusion-limited nucleation rates.

  12. Modelling thermal radiation in buoyant turbulent diffusion flames

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  13. On self-consistent ray-tracing and Fokker--Planck modeling of the hard x-ray emission during lower-hybrid current drive in tokamaks

    SciTech Connect

    Bizarro, J.P.; Peysson, Y.; Bonoli, P.T.; Carrasco, J.; de Wit, T.D.; Fuchs, V.; Hoang, G.T.; Litaudon, X.; Moreau, D.; Pocheau, C.; Shkarofsky, I.P. )

    1993-09-01

    A detailed investigation is presented on the ability of combined ray-tracing and Fokker--Planck calculations to predict the hard x-ray (HXR) emission during lower-hybrid (LH) current drive in tokamaks when toroidally induced ray stochasticity is important. A large number of rays is used and the electron distribution function is obtained by self-consistently iterating the appropriate power deposition and Fokker--Planck calculations. It is shown that effects due to radial diffusion of suprathermal electrons and to radiation scattering by the inner wall can be significant. The experimentally observed features of the HXR emission are fairly well predicted, thus confirming that combined ray-tracing and Fokker--Planck codes are capable of correctly modeling the physics of LH current drive in tokamaks.

  14. NASA/MSFC multilayer diffusion models and computer programs, version 5

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bjorklund, J. R.

    1975-01-01

    The transport and diffusion models and algorithms developed for use by NASA in predicting concentrations and dosages downwind from normal and abnormal launches of rocket vehicles are described along with the associated computer programs for use in performing the calculations. Topics discussed include: the mathematical specifications and procedures used in the Preprocessor Program to calculate rocket exhaust cloud rise, cloud dimensions, and other input parameters to the transport and diffusion models; the revised mathematical specifications for the Multilayer Diffusion Models; users' instructions for implementing the Preprocessor and Multilayer Diffusion Models Programs; and worked example problems illustrating the use of the models and computer programs.

  15. Protein folding dynamics: the diffusion-collision model and experimental data.

    PubMed Central

    Karplus, M.; Weaver, D. L.

    1994-01-01

    The diffusion-collision model of protein folding is assessed. A description is given of the qualitative aspects and quantitative results of the diffusion-collision model and their relation to available experimental data. We consider alternative mechanisms for folding and point out their relationship to the diffusion-collision model. We show that the diffusion-collision model is supported by a growing body of experimental and theoretical evidence, and we outline future directions for developing the model and its applications. PMID:8003983

  16. Deep observation of the NGC 1275 region with MAGIC: search of diffuse γ-ray emission from cosmic rays in the Perseus cluster

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carmona, E.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Delgado Mendez, C.; Di Pierro, F.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Lorenz, E.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vazquez Acosta, M.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; Pfrommer, C.; Pinzke, A.; Zandanel, F.

    2016-05-01

    Clusters of galaxies are expected to be reservoirs of cosmic rays (CRs) that should produce diffuse γ-ray emission due to their hadronic interactions with the intra-cluster medium. The nearby Perseus cool-core cluster, identified as the most promising target to search for such an emission, has been observed with the MAGIC telescopes at very-high energies (VHE, E ≳ 100 GeV) for a total of 253 h from 2009 to 2014. The active nuclei of NGC 1275, the central dominant galaxy of the cluster, and IC 310, lying at about 0.6° from the centre, have been detected as point-like VHE γ-ray emitters during the first phase of this campaign. We report an updated measurement of the NGC 1275 spectrum, which is described well by a power law with a photon index Γ = 3.6 ± 0.2stat ± 0.2syst between 90 GeV and 1200 GeV. We do not detect any diffuse γ-ray emission from the cluster and so set stringent constraints on its CR population. To bracket the uncertainties over the CR spatial and spectral distributions, we adopt different spatial templates and power-law spectral indexes α. For α = 2.2, the CR-to-thermal pressure within the cluster virial radius is constrained to be ≲ 1-2%, except if CRs can propagate out of the cluster core, generating a flatter radial distribution and releasing the CR-to-thermal pressure constraint to ≲ 20%. Assuming that the observed radio mini-halo of Perseus is generated by secondary electrons from CR hadronic interactions, we can derive lower limits on the central magnetic field, B0, that depend on the CR distribution. For α = 2.2, B0 ≳ 5-8 μG, which is below the ~25 μG inferred from Faraday rotation measurements, whereas for α ≲ 2.1, the hadronic interpretation of the diffuse radio emission contrasts with our γ-ray flux upper limits independently of the magnetic field strength.

  17. DIFFUSE EMISSION MEASUREMENT WITH THE SPECTROMETER ON INTEGRAL AS AN INDIRECT PROBE OF COSMIC-RAY ELECTRONS AND POSITRONS

    SciTech Connect

    Bouchet, Laurent; Jourdain, Elisabeth; Roques, Jean-Pierre; Strong, Andrew W.; Porter, Troy A.; Moskalenko, Igor V.

    2011-09-20

    Significant advances have been made in the understanding of the diffuse Galactic hard X-ray continuum emission using data from the INTEGRAL observatory. The diffuse hard power-law component seen with the SPectrometer on INTEGRAL (SPI) has been identified with inverse-Compton emission from relativistic (GeV) electrons on the cosmic microwave background and Galactic interstellar radiation field. In the present analysis, SPI data from 2003 to 2009, with a total exposure time of {approx}10{sup 8} s, are used to derive the Galactic ridge hard X-ray spatial distribution and spectrum between 20 keV and 2.4 MeV. Both are consistent with predictions from the GALPROP code. The good agreement between measured and predicted emission from keV to GeV energies suggests that the correct production mechanisms have been identified. We discuss the potential of the SPI data to provide an indirect probe of the interstellar cosmic-ray electron distribution, in particular for energies below a few GeV.

  18. Photodynamic therapy: computer modeling of diffusion and reaction phenomena

    NASA Astrophysics Data System (ADS)

    Hampton, James A.; Mahama, Patricia A.; Fournier, Ronald L.; Henning, Jeffery P.

    1996-04-01

    We have developed a transient, one-dimensional mathematical model for the reaction and diffusion phenomena that occurs during photodynamic therapy (PDT). This model is referred to as the PDTmodem program. The model is solved by the Crank-Nicholson finite difference technique and can be used to predict the fates of important molecular species within the intercapillary tissue undergoing PDT. The following factors govern molecular oxygen consumption and singlet oxygen generation within a tumor: (1) photosensitizer concentration; (2) fluence rate; and (3) intercapillary spacing. In an effort to maximize direct tumor cell killing, the model allows educated decisions to be made to insure the uniform generation and exposure of singlet oxygen to tumor cells across the intercapillary space. Based on predictions made by the model, we have determined that the singlet oxygen concentration profile within the intercapillary space is controlled by the product of the drug concentration, and light fluence rate. The model predicts that at high levels of this product, within seconds singlet oxygen generation is limited to a small core of cells immediately surrounding the capillary. The remainder of the tumor tissue in the intercapillary space is anoxic and protected from the generation and toxic effects of singlet oxygen. However, at lower values of this product, the PDT-induced anoxic regions are not observed. An important finding is that an optimal value of this product can be defined that maintains the singlet oxygen concentration throughout the intercapillary space at a near constant level. Direct tumor cell killing is therefore postulated to depend on the singlet oxygen exposure, defined as the product of the uniform singlet oxygen concentration and the time of exposure, and not on the total light dose.

  19. Collective Diffusion Model for Ion Conduction through Microscopic Channels

    PubMed Central

    Liu, Yingting; Zhu, Fangqiang

    2013-01-01

    Ion conduction through microscopic channels is of central importance in both biology and nanotechnology. To better understand the current-voltage (I-V) dependence of ion channels, here we describe and prove a collective diffusion model that quantitatively relates the spontaneous ion permeation at equilibrium to the stationary ionic fluxes driven by small voltages. The model makes it possible to determine the channel conductance in the linear I-V range from equilibrium simulations without the application of a voltage. To validate the theory, we perform molecular-dynamics simulations on two channels—a conical-shaped nanopore and the transmembrane pore of an α-hemolysin—under both equilibrium and nonequilibrium conditions. The simulations reveal substantial couplings between the motions of cations and anions, which are effectively captured by the collective coordinate in the model. Although the two channels exhibit very different linear ranges in the I-V curves, in both cases the channel conductance at small voltages is in reasonable agreement with the prediction from the equilibrium simulation. The simulations also suggest that channel charges, rather than geometric asymmetry, play a more prominent role in current rectification. PMID:23442858

  20. Reaction–diffusion model of hair-bundle morphogenesis

    PubMed Central

    Jacobo, Adrian; Hudspeth, A. J.

    2014-01-01

    The hair bundle, an apical specialization of the hair cell composed of several rows of regularly organized stereocilia and a kinocilium, is essential for mechanotransduction in the ear. Its precise organization allows the hair bundle to convert mechanical stimuli to electrical signals; mutations that alter the bundle’s morphology often cause deafness. However, little is known about the proteins involved in the process of morphogenesis and how the structure of the bundle arises through interactions between these molecules. We present a mathematical model based on simple reaction–diffusion mechanisms that can reproduce the shape and organization of the hair bundle. This model suggests that the boundary of the cell and the kinocilium act as signaling centers that establish the bundle’s shape. The interaction of two proteins forms a hexagonal Turing pattern—a periodic modulation of the concentrations of the morphogens, sustained by local activation and long-range inhibition of the reactants—that sets a blueprint for the location of the stereocilia. Finally we use this model to predict how different alterations to the system might impact the shape and organization of the hair bundle. PMID:25313064