Summary of Cosmic Ray Spectrum and Composition Below 1018 eV
NASA Astrophysics Data System (ADS)
Chiavassa, Andrea
In this contribution I will review the main results recently obtained in the study of the cosmic ray spectrum and composition below 1018 eV. The interest in this range is growing being related to the search of the knee of the iron component of cosmic ray and to the study of the transition between galactic and extra-galactic primaries. The all particle spectrum measured in this energy range is more structured than previously thought, showing some faint features: a hardening slightly above 1016 eV and a steepening below 1017 eV. The studies of the primary chemical composition are quickly evolving towards the measurements of the primary spectra of different mass groups: light and heavy primaries. A steepening of the heavy primary spectrum and a hardening of the light ones has been claimed. I will review these measurements and I will try to discuss the main sources of systematic errors still affecting them.
Differences in the spectra of cosmic ray nuclear species below approximately 5 GeV/nuc
NASA Technical Reports Server (NTRS)
Webber, W. R.; Lezniak, J. A.; Kish, J.
1974-01-01
Extension of previous measurements made at high energies, which show clear evidence for energy-dependent changes in cosmic ray composition, to lower energies. The new data point to the fact that these spectral differences extend over the entire energy band from a few hundred MeV/nucleon to several tens of GeV/nucleon. The details of these composition variations are examined by studying in a systematic way the variations of the ratios of secondary to primary and different groups of primary cosmic ray nuclei.
Galactic cosmic ray composition
NASA Technical Reports Server (NTRS)
Meyer, J. P.
1986-01-01
An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.
Evidence for a mixed mass composition at the 'ankle' in the cosmic-ray spectrum
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Younk, P.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration
2016-11-01
We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the 'ankle' at lg (E /eV) = 18.5- 19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavored as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.
Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum
Aab, Alexander
2016-09-28
Here, we report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' atmore » $$\\lg(E/{\\rm eV})=18.5-19.0$$ differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass $A > 4$. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.« less
Cosmic Ray Studies with IceCube
NASA Astrophysics Data System (ADS)
Gonzalez, Javier
In this contribution we will give an overview of the cosmic ray studies conducted within the IceCube collaboration. The IceCube detector in the geographical south pole can be used to measure various characteristics of the extensive air showers induced by high energy cosmic rays. With IceTop, the surface component of the detector, we detect the electromagnetic and muon components of the air showers, while with the deep detector we detect the high energy muons. We have measured the energy spectrum of cosmic ray primaries in the range between 1.58PeV and 1.26 EeV. A combined analysis of the high energy muon bundles in the ice and the air shower footprint in IceTop provides a measure of primary composition. We will also discuss how the sensitivity to low energy muons in the air showers has the potential to produce additional measures of primary composition.
NASA Technical Reports Server (NTRS)
Wu, S. T.
2000-01-01
The cosmic ray division participation in the cooperative agreement was activated in the second year. The scientific goals will be analysis of cosmic ray data from the Japanese-American Cooperative Emulsion Experiments (JACEE). Measurements of primary cosmic rays in the JACEE emulsion chambers will be made to derive for each detected particle the deposited energy in the chamber and the primary charge (atomic number). The data will be corrected to the primary flux above the atmosphere, and the composition and energy spectra will be derived. The spectra of the individual elements will be interpreted in context with the supernova shock and other models of cosmic ray acceleration. Additional information is contained in the original extended abstract.
Cosmic-Ray Source Composition Determined from ACE
NASA Technical Reports Server (NTRS)
Wiedenbeck, M.
2000-01-01
The cosmic rays arriving at Earth comprise a mix of material produced by stellar sources and ejected into the interstellar medium (primary cosmic rays) and particles produced by fragmentation of heavier nuclei during transport through the Galaxy.
Multiply charged particles of the primary cosmic rays with energies greater than about 2 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenko, I.P.; Grigorov, N.L.; Shestoperov, V.IA.
1986-08-01
Data on the energy spectra and charge composition of primary cosmic ray particles with energies greater than about 2 TeV are analyzed. The equipment on the Kosmos 1543 satellite used to obtain the data is described. Protons and alpha particles are detected, and the nuclei are separated into H, M, VH, and alpha groups. It is determined that the charge compositions of the primary nuclei with z greater than about 2 at energies greater than about 2 TeV compare well with data obtained at energies greater than about 1-10 GeV/nucleon. 8 references.
Elemental composition of normal primary tooth enamel analyzed with XRMA and SIMS.
Sabel, Nina; Dietz, Wolfram; Lundgren, Ted; Nietzsche, Sandor; Odelius, Hans; Rythén, Marianne; Rizell, Sara; Robertson, Agneta; Norén, Jörgen G; Klingberg, Gunilla
2009-01-01
There is an interest to analyze the chemical composition of enamel in teeth from patients with different developmental disorders or syndromes and evaluate possible differences compared to normal composition. For this purpose, it is essential to have reference material. The aim of this study was to, by means of X-ray micro analyses (XRMA) and secondary ion mass spectrometry (SIMS), present concentration gradients for C, O, P and Ca and F, Na, Mg, Cl, K and Sr in normal enamel of primary teeth from healthy individuals. 36 exfoliated primary teeth from 36 healthy children were collected, sectioned, and analyzed in the enamel and dentin with X-ray micro analyses for the content of C, O, P and Ca and F, Na MgCl, K and Sr. This study has supplied reference data for C, O, P and Ca in enamel in primary teeth from healthy subjects. No statistically significant differences in the elemental composition were found between incisors and molars.The ratio Ca/P is in concordance with other studies. Some elements have shown statistically significant differences between different levels of measurement. These results may be used as reference values for research on the chemical composition of enamel and dentin in primary teeth from patients with different conditions and/or syndromes.
NASA Technical Reports Server (NTRS)
Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.
1985-01-01
The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV.
Geochemical studies of rocks from North Ray Crater, Apollo 16
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Salpas, P. A.
1982-01-01
The samples included in the study were all collected as individual specimens from Station 11 near the rim of North Ray Crater. Samples were selected to cover the entire range of rock types from anorthosites to subophitic impact melts, giving particular attention to the feldspathic breccias which predominate at the site. The chemical composition of North Ray Crater rocks is discussed along with the compositional variations among North Ray Crater samples, and the relationships between North Ray Crater and other Apollo 16 stations. It is pointed out that the primary objective in sampling the Apollo 16 site was to characterize materials from the Cayley Plains and Descartes Highlands.
A Geant Study of the Scintillating Optical Fiber (SOFCAL) Cosmic Ray Detector
NASA Technical Reports Server (NTRS)
Munroe, Ray B., Jr.
1998-01-01
Recent energy measurements by balloon-borne passive emulsion chambers indicate that the flux ratios of protons to helium nuclei and of protons to all heavy nuclei decrease as the primary cosmic ray energy per nucleon increases above approx. 200 GeV/n, and suggest a "break" in the proton spectrum between 200 GeV and 5 TeV. However, these passive emulsion chambers are limited to a lower energy threshold of approx. 5 TeV/n, and cannot fully explore this energy regime. Because cosmic ray flux and composition details may be significant to acceleration models, a hybrid detector system called the Scintillating Optical Fiber Calorimeter (SOFCAL) has been designed and flown. SOFCAL incorporates both conventional passive emulsion chambers and an active calorimeter utilizing scintillating plastic fibers as detectors. These complementary types of detectors allow the balloon-borne SOFCAL experiment to measure the proton and helium spectra from approx. 400 GeV/n to approx. 20 TeV. The fundamental purpose of this study is to use the GEANT simulation package to model the hadronic and electromagnetic shower evolution of cosmic rays incident on the SOFCAL detector. This allows the interpretation of SOFCAL data in terms of charges and primary energies of cosmic rays, thus allowing the determinations of cosmic ray flux and composition as functions of primary energy.
NASA Astrophysics Data System (ADS)
Supanitsky, A. D.; Etchegoyen, A.; Melo, D.; Sanchez, F.
2015-08-01
At present there are still several open questions about the origin of the ultra high energy cosmic rays. However, great progress in this area has been made in recent years due to the data collected by the present generation of ground based detectors like the Pierre Auger Observatory and Telescope Array. In particular, it is believed that the study of the composition of the cosmic rays as a function of energy can play a fundamental role for the understanding of the origin of the cosmic rays. The observatories belonging to this generation are composed of arrays of surface detectors and fluorescence telescopes. The duty cycle of the fluorescence telescopes is ∼10% in contrast with the ∼100% of the surface detectors. Therefore, the energy calibration of the events observed by the surface detectors is performed by using a calibration curve obtained from a set of high quality events observed in coincidence by both types of detectors. The advantage of this method is that the reconstructed energy of the events observed by the surface detectors becomes almost independent of simulations of the showers because just a small part of the reconstructed energy (the missing energy), obtained from the fluorescence telescopes, comes from simulations. However, the calibration curve obtained in this way depends on the composition of the cosmic rays, which can introduce biases in composition analyses when parameters with a strong dependence on primary energy are considered. In this work we develop an analytical method to study these effects. We consider AMIGA (Auger Muons and Infill for the Ground Array), the low energy extension of the Pierre Auger Observatory corresponding to the surface detectors, to illustrate the use of the method. In particular, we study the biases introduced by an energy calibration dependent on composition on the determination of the mean value of the number of muons, at a given distance to the showers axis, which is one of the parameters most sensitive to primary mass and has an almost linear dependence with primary energy.
Cosmic ray spectrum and composition from three years of IceTop and IceCube
NASA Astrophysics Data System (ADS)
Rawlins, K.;
2016-05-01
IceTop is the surface component of the IceCube Observatory, composed of frozen water tanks at the top of IceCube’s strings. Data from this detector can be analyzed in different ways with the goal of measuring cosmic ray spectrum and composition. The shower size S125 from IceTop alone can be used as a proxy for primary energy, and unfolded into an all-particle spectrum. In addition, S125 from the surface can be combined with high-energy muon energy loss information from the deep IceCube detector for those air showers which pass through both. Using these coincident events in a complementary analysis, both the spectrum and mass composition of primary cosmic rays can be extracted in parallel using a neural network. Both of these analyses have been performed on three years of IceTop and IceCube data. Both all-particle spectra as well as individual spectra for elemental groups are presented.
Measurement of the cosmic ray spectrum and chemical composition in the 1015-1018 eV energy range
NASA Astrophysics Data System (ADS)
Chiavassa, Andrea
2018-01-01
Cosmic ray in the 1015-1018 eV energy range can only be detected with ground based experiments, sampling Extensive Air Showers (EAS) particles. The interest in this energetic interval is related to the search of the knee of the iron component of cosmic ray and to the study of the transition between galactic and extra-galactic primaries. The energy and mass calibration of these arrays can only be performed with complete EAS simulations as no sources are available for an absolute calibration. The systematic error on the energy assignment can be estimated around 30 ± 10%. The all particle spectrum measured in this energy range is more structured than previously thought, showing some faint features: a hardening slightly above 1016 eV and a steepening below 1017 eV. The studies of the primary chemical composition are quickly evolving towards the measurements of the primary spectra of different mass groups: up to now we are able to separate (on a event by event basis) light and heavy primaries. Above the knee a steepening of the heavy primary spectrum and a hardening of the light ones have been detected.
NASA Technical Reports Server (NTRS)
Metzger, A. E.; Parker, R. H.; Arnold, J. R.; Reedy, R. C.; Trombka, J. I.
1975-01-01
A knowledge of the composition of planets, satellites, and asteroids is of primary importance in understanding the formation and evolution of the solar system. Gamma-ray spectroscopy is capable of measuring the composition of meter-depth surface material from orbit around any body possessing little or no atmosphere. Measurement sensitivity is determined by detector efficiency and resolution, counting time, and the background flux while the effective spatial resolution depends upon the field-of-view and counting time together with the regional contrast in composition. The advantages of using germanium as a detector of gamma rays in space are illustrated experimentally and a compact instrument cooled by passive thermal radiation is described. Calculations of the expected sensitivity of this instrument at the Moon and Mars show that at least a dozen elements will be detected, twice the number which have been isolated in the Apollo gamma-ray data.
NASA Astrophysics Data System (ADS)
Banerjee, D.; Gasnault, O.
2008-07-01
The primary aim of the high-energy X-ray spectrometer (HEX) experiment on the Chandrayaan-1 mission to the Moon is to characterize the movement of volatiles on the lunar surface through the detection of the 46.5 keV line from 210Pb, a decay product of 222Rn. An important consideration for design and operation of HEX is to estimate the continuum background signal expected from the lunar surface, as well as its dependence on solar activity and lunar composition. We have developed a Monte Carlo code utilizing Geant4 for simulating the interaction of cosmic rays in the lunar regolith, and we estimated the variation in the continuum background in the energy region of interest for various lunar compositions. Dependence of the continuum background on solar activity was also evaluated considering ferroan anorthositic (FAN) composition. Our results suggest the viability of inferring lithologic characteristics of planetary surfaces based on a study of low-energy gamma ray emission.
Impact of muon detection thresholds on the separability of primary cosmic rays
NASA Astrophysics Data System (ADS)
Müller, S.; Engel, R.; Pierog, T.; Roth, M.
2018-01-01
Knowledge of the mass composition of cosmic rays in the transition region of galactic to extragalactic cosmic rays is needed to discriminate different astrophysical models on their origin, acceleration, and propagation. An important observable to separate different mass groups of cosmic rays is the number of muons in extensive air showers. We performed a CORSIKA simulation study to analyze the impact of the detection threshold of muons on the separation quality of different primary cosmic rays in the energy region of the ankle. Using only the number of muons as the composition-sensitive observable, we find a clear dependence of the separation power on the detection threshold for ideal measurements. Although the number of detected muons increases when lowering the threshold, the discrimination power is reduced. If statistical fluctuations for muon detectors of limited size are taken into account, the threshold dependence remains qualitatively the same for small distances to the shower core but is reduced for large core distances. We interpret the impact of the detection threshold of muons on the composition sensitivity in terms of a change of the correlation of the number of muons nμ with the shower maximum Xmax as function of the muon energy as a result of the underlying hadronic interactions and the shower geometry. We further investigate the role of muons produced in a shower by photon-air interactions and conclude that, in addition to the effect of the nμ -Xmax correlation, the separability of primaries is reduced as a consequence of the presence of more muons from photonuclear reactions in proton than in iron showers.
Cosmic Ray Observation at Mount Chacaltaya for beyond the Knee Region
NASA Astrophysics Data System (ADS)
Tsunesada, Y.; Kakimoto, F.; Furuhata, F.; Matsumoto, H.; Sugawara, T.; Wakamatsu, H.; Gotoh, E.; Nakatani, H.; Nishi, K.; Tajima, N.; Yamada, Y.; Shimoda, S.; Yoshii, H.; Kaneko, T.; Ogio, S.; Matsubara, Y.; Kadota, K.; Tokuno, H.; Mizumoto, Y.; Shirasaki, Y.; Toyoda, Y.; Burgoa, O.; Flores, V.; Miranda, P.; Salinas, J.; Velarde, A.
We have installed a new air shower array at Mount Chacaltaya (5,200m above sea level) to observe primary cosmic rays with energies greater than 1015 eV. In our previous experiments, we measured energy spectrum and nuclear composition of primary cosmic rays around the knee region. Above all, we obtained the cosmic ray composition with three independent techniques, namely from the equi-intensity cuts, the arrival time distributions of Cherenkov lights associated with air showers, and the lateral distributions of Cherenkov photons around the shower axis. All the results from these experiments are in agreement and show that the average mass of cosmic ray nuclei increases with energies below and above the knee, and dominated by heavier nuclei as iron at 1016 eV. This result is consistent with the confinement and rigidity dependent acceleration models, and suggests that the cosmic ray origins are supernova remnants of massive population as Wolf-Rayet stars. It is of quite interest whether the mass of cosmic ray nuclei continues to increase with energies, or decreases by contributions of lighter components expected from the extra-galactic cosmic ray models. In this paper, we describe the characteristics of the new array and preliminary results from the first observation.
Composition of primary cosmic rays near the knee
NASA Technical Reports Server (NTRS)
Acharya, B. S.; Rao, M. V. S.; Sivaprasad, K.; Sreekantan, B. V.
1985-01-01
The size dependence of high energy muons and the size spectrum obtained in the air shower experiment suggest that the mean mass of cosmic rays remains nearly constant at approx 15 up to 5 x 1000,000 GeV and becomes one beyond. The composition model in which nuclei are removed spectrum steepens at 6.7 x 10 power GeV due to leakage from the galaxy, which explains the data which are consistent with data from other experiments.
NASA Technical Reports Server (NTRS)
1985-01-01
The ratio of intensity of energetic hadrons, having no visible accompaniment, to the total flux of hadrons of the same energy at 4380m above sea level is given. The ratio is much more than expected for scaling model with proton primaries. This result could not be explained by complex chemical composition of primary cosmic ray and indicates the scaling violation in fragmentation region.
NASA Technical Reports Server (NTRS)
Muraki, Y.
1985-01-01
Based on the air shower data, the chemical composition of the primary cosmic rays in the energy range 10 to the 15th power - 10 to the 17th power eV was obtained. The method is based on a well known N sub e-N sub mu and N sub e-N sub gamma. The simulation is calibrated by the CERN SPS pp collider results.
NASA Technical Reports Server (NTRS)
Cheung, T.; Mackeown, P. K.
1985-01-01
Estimation of the relative intensities of protons and heavy nuclei in primary cosmic rays in the energy region 10 to the 15th power approx. 10 to the 17th power eV, was done by a systematic comparison between all available observed data on various parameters of extensive air showers (EAS) and the results of simulation. The interaction model used is an extrapolation of scaling violation indicated by recent pp collider results. A composition consisting of various percentages of Fe in an otherwise pure proton beam was assumed. Greatest overall consistency between the data and the simulation is found when the Fe fraction is in the region of 25%.
Cosmic ray spectrum, composition, and anisotropy measured with IceCube
NASA Astrophysics Data System (ADS)
Tamburro, Alessio
2014-04-01
Analysis of cosmic ray surface data collected with the IceTop array of Cherenkov detectors at the South Pole provides an accurate measurement of the cosmic ray spectrum and its features in the "knee" region up to energies of about 1 EeV. IceTop is part of the IceCube Observatory that includes a deep-ice cubic kilometer detector that registers signals of penetrating muons and other particles. Surface and in-ice signals detected in coincidence provide clear insights into the nuclear composition of cosmic rays. IceCube already measured an increase of the average primary mass as a function of energy. We present preliminary results on both IceTop-only and coincident events analysis. Furthermore, we review the recent measurement of the cosmic ray anisotropy with IceCube.
Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwabara, H.; Mori, Y.; Kitagawa, Y.
2013-08-28
Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.
Use of graphite epoxy composites in the Solar-A Soft X-Ray Telescope
NASA Technical Reports Server (NTRS)
Jurcevich, B. K.; Bruner, M. E.
1990-01-01
This paper describes the use of composite materials in the Soft X-Ray Telescope (SXT). One of the primary structural members of the telescope is a graphite epoxy metering tube. The metering tube maintains the structural stability of the telescope during launch as well as the focal length through various environmental conditions. The graphite epoxy metering tube is designed to have a negative coefficient of thermal expansion to compensate for the positive expansion of titanium structural supports. The focus is maintained to + or - 0.001 inch by matching the CTE of the composite tube to the remaining structural elements.
NASA Technical Reports Server (NTRS)
Price, R. D.
1974-01-01
A detailed study of the charge composition of primary cosmic radiation for about 5000 charged nuclei from neon to iron with energies greater than 1.16 GeV/nucleon is presented. Values are obtained after corrections were made for detector dependences, atmospheric attenuation, and solar modulation. New values of 38.5, 32.4, 23.7, and 16.8 g/sq cm for the attenuation mean free paths in air for the same charge groups are presented.
The mass composition of ultra-high energy cosmic rays with the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Martraire, D.
2014-12-01
Ultra-high energy cosmic rays are the most energetic particles known in nature. The Pierre Auger Observatory was built to study these amazing particles to determine their origin. The study of their mass composition can help to constrain the models concerning their origins and their production mechanisms in the astrophysical sources. To this aim, several methods have been developed to infer the composition using the Auger surface detector array data. The main difficulty is to isolate the muonic component in the signal measured by the surface detector. We present the results of the composition parameters derived from the ground level component and compare them to the predictions for different nuclear masses of the primary particles and hadronic interaction models.
Correlation of high energy muons with primary composition in extensive air shower
NASA Technical Reports Server (NTRS)
Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.
1985-01-01
An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.
Measurement of the TeV atmospheric muon charge ratio with the full OPERA data set
NASA Astrophysics Data System (ADS)
Mauri, N.; OPERA Collaboration
2016-04-01
The OPERA detector, designed to search for νμ →ντ oscillations in direct appearance mode, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. Given the large rock depth and the detector's wide acceptance, the apparatus was used to measure the atmospheric muon charge ratio in the TeV energy region. The muon charge ratio, defined as the number of positive over negative charged muons, provides an understanding of the mechanism of multiparticle production in the atmosphere in kinematic regions not accessible to accelerators, as well as information on the primary cosmic ray composition. We present the results obtained with the full statistics collected by OPERA from 2008 to 2012. The combination of two data sets with opposite magnet polarities allows minimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region are obtained.
Primary cosmic ray spectra in the range 20-60 GeV/n
NASA Technical Reports Server (NTRS)
Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fuki, M.; Fountain, W. F.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.;
1985-01-01
Energy spectra for primary cosmic rays C-Fe above 20 GeV/n were measured on a balloon flight from Greenville S.C. in June 1982 with a hybrid electronic counter-emulsion chamber experiment. Fluxes above the atmosphere appear in general agreement with previously published values. The heavy events included in this data will be used along with the JACEE passive chamber data to provide a heavy composition direct measurement from 10 to the 12th power to approximately 10 to the 15th power eV total energy.
The primary cosmic ray mass composition at energies above 10(14) eV
NASA Technical Reports Server (NTRS)
Gawin, J.; Wdowczyk, J.; Kempa, J.
1985-01-01
It is shown in this paper that the experimental data on extensive air showers at the energy interval 10 to the 15th power - 10 to the 17th power eV seems to be described best if it is assumed that the Galactic cosmic rays are described by some sort of a two component picture. The first component is of a mixed composition similar to that at lower energies and the second is dominated by protons. Overall spectrum starts to be enriched in protons at energies about 10 to the 15th power eV bu the effective mass of the primaries remains constant up to energies around 10 to the 16th power eV. That results from the fact that composition gradually changes from multi-component to mixture of protons and heavies. That picture receives also some sort of support from recent observations of relatively high number of nergetic protons in JACEE and Concorde experiments.
Quantitative radiographic analysis of fiber reinforced polymer composites.
Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A
2001-01-01
X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.
A measurement of the cosmic ray spectrum and composition at the knee
NASA Astrophysics Data System (ADS)
Fowler, J. W.; Fortson, L. F.; Jui, C. C. H.; Kieda, D. B.; Ong, R. A.; Pryke, C. L.; Sommers, P.
2001-03-01
The energy spectrum and primary composition of cosmic rays with energy between 3×10 14 and 3×10 16 eV have been studied using the CASA-BLANCA detector. CASA consisted of 957 surface scintillation stations; BLANCA consisted of 144 angle-integrating Cherenkov light detectors located at the same site. CASA measured the charged particle distribution of air showers, while BLANCA measured the lateral distribution of Cherenkov light. The data are interpreted using the predictions of the CORSIKA air shower simulation coupled with four different hadronic interaction codes. The differential flux of cosmic rays measured by BLANCA exhibits a knee in the range of 2-3 PeV with a width of approximately 0.5 decades in primary energy. The power law indices of the differential flux below and above the knee are -2.72±0.02 and -2.95±0.02, respectively. We present our data both as a mean depth of shower maximum and as a mean nuclear mass. A multi-component fit using four elemental species suggests the same composition trends exhibited by the mean quantities, and also indicates that QGSJET and VENUS are the preferred hadronic interaction models. We find that an initially mixed composition turns lighter between 1 and 3 PeV, and then becomes heavier with increasing energies above 3 PeV.
NASA Astrophysics Data System (ADS)
Aglietta, M.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Castagnoli, C.; Castellina, A.; Chiavassa, A.; Cini, G.; D'Ettorre Piazzoli, B.; di Sciascio, G.; Fulgione, W.; Galeotti, P.; Ghia, P. L.; Iacovacci, M.; Mannocchi, G.; Morello, C.; Navarra, G.; Saavedra, O.; Stamerra, A.; Trinchero, G. C.; Valchierotti, S.; Vallania, P.; Vernetto, S.; Vigorito, C.; Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.
2004-03-01
The cosmic ray primary composition in the energy range between 1015 and 1016 eV, i.e., around the ``knee'' of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a.s.l., 105 m2 collecting area) and the MACRO underground detector (963 m a.s.l., 3100 m w.e. of minimum rock overburden, 920 m2 effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (Ne) measured by EAS-TOP and the muon number (Nμ) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30°. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual Nμ-Ne studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the knee itself resulting from the steepening of the spectrum of a primary light component (p, He) of Δγ=0.7+/-0.4 at E0~4×1015 eV. The result confirms the ones reported from the observation of the low energy muons at the surface (typically in the GeV energy range), showing that the conclusions do not depend on the production region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET) provides consistent composition results from data related to secondaries produced in a rapidity region exceeding the central one. Such an evolution of the composition in the knee region supports the ``standard'' galactic acceleration/propagation models that imply rigidity dependent breaks of the different components, and therefore breaks occurring at lower energies in the spectra of the light nuclei.
Can EMMA solve the puzzle of the knee?
NASA Astrophysics Data System (ADS)
Kalliokoski, T.; Bezrukov, L.; Enqvist, T.; Fynbo, H.; Inzhechik, L.; Jones, P.; Joutsenvaara, J.; Karjalainen, J.; Kuusiniemi, P.; Loo, K.; Lubsandorzhiev, B.; Petkov, V.; Räihä, T.; Sarkamo, J.; Slupecki, M.; Trzaska, W. H.; Virkajärvi, A.
2011-04-01
The knee is a change in the slope of the cosmic ray spectrum at approximate energy of 3 PeV. There are multiple competing models for the knee giving conflicting predictions about this change for different masses of the primary particle. Accurate mass measurements of cosmic rays spectra around 3 PeV would be able to exclude some of these models. Cosmic-ray experiment EMMA uses a new method for studying the composition of cosmic rays at the knee area. It is able to determine the multiplicity, the lateral distribution, and the arrival direction of incoming muons produced early in the shower evolution on an event-by-event basis and deduce from these measurements the mass and the energy of the primary particle. EMMA is situated at the depth of 75 m in the Pyhäsalmi mine, Finland. This rock overburden, which corresponds to 210 m of water equivalent, gives EMMA a cut-off energy of 50 GeV for vertical muons. Since the simulations using different air-shower models give similar predictions for the lateral distribution of these high energy muons, we are confident that EMMA should yield a reliable and an air-shower model independent data on the composition of cosmic rays around the knee region.
ERIC Educational Resources Information Center
Company, Joe; Ball, Stephen
2010-01-01
The primary purpose of this study was to investigate the accuracy of the DF50 (ImpediMed Ltd, Eight Mile Plains, Queensland, Australia) bioelectrical impedance analysis device using dual-energy x-ray absorptiometry as the criterion in two groups: endurance athletes and power athletes. The secondary purpose was to develop accurate body fat…
The cosmic ray spectrum and composition measured by KASCADE-Grande between 1016 eV and 1018 eV
NASA Astrophysics Data System (ADS)
Bertaina, M.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2014-11-01
The shape and composition of the primary spectrum of cosmic rays are key elements to understand the origin, acceleration and propagation of the Galactic cosmic rays. Besides the well known knee and ankle features, the recent results of KASCADE-Grande indicate that the measured energy spectrum exhibits also a less pronounced but still clear deviation from a single power law between the knee and the ankle, with a spectral hardening at 2 × 1016 eV and a steepening at 1017 eV. The average mass composition gets heavier after the knee till 1017 eV where a bending of the heavy component is observed. An indication of a hardening of the light component just above 1017 eV has been measured as well. In this paper the major results obtained so far by the KASCADE-Grande experiment are reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.
The primary goal of this project is to evaluate x-ray spectra generated within a scanning electron microscope (SEM) to determine elemental composition of small samples. This will be accomplished by performing Monte Carlo simulations of the electron and photon interactions in the sample and in the x-ray detector. The elemental inventories will be determined by an inverse process that progressively reduces the difference between the measured and simulated x-ray spectra by iteratively adjusting composition and geometric variables in the computational model. The intended benefit of this work will be to develop a method to perform quantitative analysis on substandard samplesmore » (heterogeneous phases, rough surfaces, small sizes, etc.) without involving standard elemental samples or empirical matrix corrections (i.e., true standardless quantitative analysis).« less
Studies of the cosmic ray spectrum and large scale anisotropies with the KASCADE-Grande experiment
NASA Astrophysics Data System (ADS)
Chiavassa, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Cossavella, F.; Curcio, C.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2014-08-01
KASCADE-Grande is an air shower observatory devoted to the detection of cosmic rays in the 1016 - 1018eV energy range. For each event the arrival direction, the total number of charged particles (Nch) and the total number of muons (Nμ), at detection level (i.e. 110 m a.s.l.), are measured. The detection of these observarbles, with high accuracy, allows the study of the primary spectrum, chemical composition and large scale anisotropies, that are the relevant informations to investigate the astrophysics of cosmic rays in this energy range. These studies are of main importance to deeply investigate the change of slope of the primary spectrum detected at ~ 4 × 1015 eV, also known as the knee, and to search for the transition from galactic to extra-galactic cosmic rays.
On the halo events observed by Mount Fuji and Mount Kanbala Emulsion Chamber Experiments
NASA Technical Reports Server (NTRS)
Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.
1985-01-01
The intensity of big gamma-ray families associated by halo is obtained from Mt. Fuji experiment (650 g/sq.cm. atmospheric depth) and Mt. Kanbala experiment (515 g/sq.cm.). The results are compared with Monte Carlo calculation based on several assumptions on interaction mechanisms and the primary cosmic ray composition. The results suggest more than 3 times lower proton abundance among primaries than that of 10 to the 12th to 10 to the 13th eV region within the framework of quasi-scaling model of multiple production.
NASA Technical Reports Server (NTRS)
Goodman, J. A.; Gupta, S. C.; Freudenreich, H. T.; Sivaprasad, K.; Tonwar, S. C.; Yodh, G. B.; Ellsworth, R. W.; Goodman, M. C.; Bogert, M. C.; Burnstein, R.
1985-01-01
The distribution of muons near shower cores was studied at sea level at Fermilab using the E594 neutrino detector to sample the muon with E testing 3 GeV. These data are compared with detailed Monte Carlo simulations to derive conclusions about the composition of cosmic rays near the bend in the all particle spectrum. Monte Carlo simulations generating extensive air showers (EAS) with primary energy in excess of 50 TeV are described. Each shower record contains details of the electron lateral distribution and the muon and hadron lateral distributions as a function of energy, at the observation level of 100g/cm. The number of detected electrons and muons in each case was determined by a Poisson fluctuation of the number incident. The resultant predicted distribution of muons, electrons, the rate events are compared to those observed. Preliminary results on the rate favor a heavy primary dominated cosmic ray spectrum in energy range 50 to 1000 TeV.
NASA Astrophysics Data System (ADS)
Puchkov, V. S.; Pyatovsky, S. E.
2018-03-01
The phenomenon of gamma-ray families featuring halos that is observed in an experiment with x-ray emulsion chambers (XREC) in the Pamir experiment and in other XREC experiments is explained. The experimental properties of halos are analyzed via a comparison with the results of their simulation. It is shown that gamma-ray families featuring halos are predominantly produced (more than 96% of them) by protons and heliumnuclei. This makes it possible to employ the experimental properties of halos to estimate the fraction of protons and helium nuclei in the mass composition of primary cosmic radiation.
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga-Velazquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Garino, F.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schroder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2013-02-01
KASCADE-Grande is an air-shower observatory devoted to the study of cosmic rays with energies in the range 1016 - 1018 eV. In KASCADE-Grande, different detector systems allow independent measurements of the number of muons (Nμ) and charged particles (Nch) of air showers, which are the basis for several energy and composition studies of cosmic rays. In this contribution, a composition analysis using the shower size ratio lgNμ/lgNch, corrected for attenuation in the atmosphere, is described. Using QGSJET II-based simulations of different primaries, it is shown that an energy independent cut on the shower ratio can be chosen in order to separate the cosmic ray events into light and heavy mass groups. The analysis is applied to the KASCADE-Grande data. The energy spectra derived from the analysis are presented.
Cosmic Ray Propagation through the Magnetic Fields of the Galaxy with Extended Halo
NASA Technical Reports Server (NTRS)
Zhang, Ming
2005-01-01
In this project we perform theoretical studies of 3-dimensional cosmic ray propagation in magnetic field configurations of the Galaxy with an extended halo. We employ our newly developed Markov stochastic process methods to solve the diffusive cosmic ray transport equation. We seek to understand observations of cosmic ray spectra, composition under the constraints of the observations of diffuse gamma ray and radio emission from the Galaxy. The model parameters are directly are related to properties of our Galaxy, such as the size of the Galactic halo, particle transport in Galactic magnetic fields, distribution of interstellar gas, primary cosmic ray source distribution and their confinement in the Galaxy. The core of this investigation is the development of software for cosmic ray propagation models with the Markov stochastic process approach. Values of important model parameters for the halo diffusion model are examined in comparison with observations of cosmic ray spectra, composition and the diffuse gamma-ray background. This report summarizes our achievement in the grant period at the Florida Institute of Technology. Work at the co-investigator's institution, the University of New Hampshire, under a companion grant, will be covered in detail by a separate report.
Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D; Carlo, F
2003-05-01
In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.
Gamma-ray astronomy with a large muon detector in the ARGO-YBJ experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Sciascio, G.; Di Girolamo, T.; Megna, R.
2005-02-21
The ARGO-YBJ experiment, currently under construction at the YangBaJing Laboratory (Tibet, P.R. China, 4300 m a.s.l.), could be upgraded with a large ({approx} 2500 m2) muon detector both to extend the sensitivity to {gamma}-ray sources to energies greater than {approx} 20 TeV and to perform a cosmic ray primary composition study. In this paper we present an evaluation of the rejection power for proton-induced showers achievable with the upgraded ARGO-YBJ detector. Minimum detectable {gamma}-ray fluxes are calculated for different experimental setups.
Surface analysis of anodized aluminum clamps from NASA-LDEF satellite
NASA Technical Reports Server (NTRS)
Grammer, H. L.; Wightman, J. P.; Young, Philip R.
1992-01-01
Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.
NASA Astrophysics Data System (ADS)
KASCADE-Grande Collaboration; Cantoni, E.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blüumer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
The KASCADE-Grande experiment operates at Karlsruhe Institute of Technology (KIT) in Germany. It's aim is the study of the primary cosmic radiation, through Extensive Air Shower detection, in the range 1016 - 1018 eV. In this contribution, KASCADE-Grande recent results will be shown, especially drawing the attention on the measurement of the cosmic ray energy spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collica, Laura
The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyondmore » the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.« less
A likelihood method for measuring the ultrahigh energy cosmic ray composition
NASA Astrophysics Data System (ADS)
High Resolution Fly'S Eye Collaboration; Abu-Zayyad, T.; Amman, J. F.; Archbold, G. C.; Belov, K.; Blake, S. A.; Belz, J. W.; Benzvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Connolly, B. M.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Rodriguez, D.; Sasaki, M.; Schnetzer, S.; Seman, M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.
2006-08-01
Air fluorescence detectors traditionally determine the dominant chemical composition of the ultrahigh energy cosmic ray flux by comparing the averaged slant depth of the shower maximum, Xmax, as a function of energy to the slant depths expected for various hypothesized primaries. In this paper, we present a method to make a direct measurement of the expected mean number of protons and iron by comparing the shapes of the expected Xmax distributions to the distribution for data. The advantages of this method includes the use of information of the full distribution and its ability to calculate a flux for various cosmic ray compositions. The same method can be expanded to marginalize uncertainties due to choice of spectra, hadronic models and atmospheric parameters. We demonstrate the technique with independent simulated data samples from a parent sample of protons and iron. We accurately predict the number of protons and iron in the parent sample and show that the uncertainties are meaningful.
Research in cosmic and gamma ray astrophysics
NASA Technical Reports Server (NTRS)
Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.
1992-01-01
Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.
NASA Technical Reports Server (NTRS)
Smith, R. J.; Horgan, B.; Rampe, E.; Dehouck, E.; Morris, R. V.
2017-01-01
X-ray diffraction (XRD) amorphous phases have been found as major components (approx.15-60 wt%) of all rock and soil samples measured by the CheMin XRD instrument in Gale Crater, Mars. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., allophane) phases. Amorphous phases form in abundance during surface weathering on Earth. Yet, these materials are poorly characterized, and it is not certain how properties like composition and structure change with formation environment. The presence of poorly crystalline phases can be inferred from XRD patterns by the appearance of a low angle rise (< or approx.10deg 2(theta)) or broad peaks in the background at low to moderate 2(theta) angles (amorphous humps). CheMin mineral abundances combined with bulk chemical composition measurements from the Alpha Particle X-ray Spectrometer (APXS) have been used to estimate the abundance and composition of the XRD amorphous materials in soil and rock samples on Mars. Here we apply a similar approach to a diverse suite of terrestrial samples - modern soils, glacial sediments, and paleosols - in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of X-ray amorphous phases.
NASA Astrophysics Data System (ADS)
Mocchiutti, E.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.
2003-07-01
We report a measurement of the composition and spectra of both the primary and secondary cosmic ray particles at different depths in the atmosphere. The data were collected by the balloon-b orne experiment CAPRICE98 during the ascent of the payload on 28 May 1998 from Fort Sumner, New Mexico. The identification of various kinds of particles, such as, protons, deuterons, helium nuclei, electrons and positrons was possible in various energy ranges depending on the kind of particle and the particle background at different residual atmosphere. These measurements, together with the atmospheric muon spectra, will allow fine-tuning of models used in air shower simulations.
NASA Astrophysics Data System (ADS)
Bertaina, M.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2012-11-01
The KASCADE-Grande experiment, located at Karlsruhe Institute of Technology (Germany) is a multi-component extensive air-shower experiment devoted to the study of cosmic rays and their interactions at primary energies 1014-1018 eV. Main goals of the experiment are the measurement of the all-particle energy spectrum and mass composition in the 1016-1018 eV range by sampling charged (Nch) and muon (Nμ) components of the air shower. The method to derive the energy spectrum and its uncertainties, as well as the implications of the obtained result, is discussed. An overview of the analyses performed by KASCADE-Grande to derive the mass composition of the measured high-energy comic rays is presented as well.
Telescope Array measurement of UHECR composition from stereoscopic fluorescence detection
NASA Astrophysics Data System (ADS)
Stroman, Thomas; Bergman, Douglas; Abu Zayyad, Tareq
2014-03-01
The chemical composition of ultra-high-energy cosmic rays (UHECRs) is an important constraint on models of UHECR production and propagation, and must be determined experimentally. A UHECR-induced extensive air shower's longitudinal development is dictated by the energy per nucleon of the primary particle. The observed distribution of atmospheric slant depths (Xmax) is therefore sensitive to the composition, facilitating measurement of the relative abundances of ``light'' (proton-like) and ``heavy'' (iron-like) primary UHECR particles. The Telescope Array (TA) experiment, the northern hemisphere's largest UHECR detector, includes three fluorescence detector (FD) stations that record the longitudinal development of the extensive air showers produced by UHECR arrivals. ``Stereo'' observation of individual showers by multiple FDs tightly constrains the trajectory reconstruction, allowing a precise measurement of Xmax as well as energy. We will present the stereo TA data from six years of operation and progress toward a measurement of chemical composition.
Ultrastructure of selected struvite-containing urinary calculi from cats.
Neumann, R D; Ruby, A L; Ling, G V; Schiffman, P S; Johnson, D L
1996-01-01
To elucidate the ultrastructural details of struvite-containing urinary calculi from cats. Specimens studied were inclusive of the range of textures visible during preliminary analysis by use of a stereoscopic dissecting microscope. Textural types, which were used to infer crystal growth conditions, were differentiated with regard to crystal habit, crystal size, growth orientation, and primary porosity. Thirty specimens were selected from a collection of approximately 1,600 feline urinary calculi: 20 of these were composed entirely of struvite, and 10 consisted of struvite and calcium phosphate (apatite). Qualitative and quantitative analyses of specimens included use of plain and polarized light microscopy, x-ray diffractometry, scanning electron microscopy with backscattered electron imagery, x-ray fluorescence scans, and electron probe microanalysis. Four textural types were recognized among struvite calculi, whereas 2 textural types of struvite-apatite calculi were described. The presence of minute, well interconnected primary pores in struvite-containing urinary calculi from cats is an important feature, which may promote possible interaction of calculi with changes in urine composition. Primary porosity, which can facilitate interaction between the calculus and changing urine composition, may explain the efficacy of dietary or medicinal manipulations to promote the dissolution of struvite-containing uroliths from this species.
NASA Astrophysics Data System (ADS)
Monkhoev, R. D.; Budnev, N. M.; Chiavassa, A.; Dyachok, A. N.; Gafarov, A. R.; Gress, O. A.; Gress, T. I.; Grishin, O. G.; Ivanova, A. L.; Kalmykov, N. N.; Kazarina, Yu. A.; Korosteleva, E. E.; Kozhin, V. A.; Kuzmichev, L. A.; Lenok, V. V.; Lubsandorzhiev, B. K.; Lubsandorzhiev, N. B.; Mirgazov, R. R.; Mirzoyan, R.; Osipova, E. A.; Pakhorukov, A. L.; Panasyuk, M. I.; Pankov, L. V.; Poleschuk, V. A.; Popova, E. G.; Postnikov, E. B.; Prosin, V. V.; Ptuskin, V. S.; Pushnin, A. A.; Samoliga, V. S.; Semeney, Y. A.; Sveshnikova, L. G.; Silaev, A. A.; Silaev, A. A., Jr.; Skurikhin, A. V.; Sulakov, V. P.; Tabolenko, V. A.; Voronin, D. M.; Fedorov, O. L.; Spiering, C.; Zagorodnikov, A. V.; Zhurov, D. P.; Zurbanov, V. L.
2017-06-01
The investigation of energy spectrum and mass composition of primary cosmic rays in the energy range 1016-1018 eV and the search for diffuse cosmic gamma rays are of the great interest for understanding mechanisms and nature of high-energy particle sources, the problem of great importance in modern astrophysics. Tunka-Grande scintillator array is a part of the experimental complex TAIGA (Tunka Advanced Instrument for Cosmic Ray and Gamma Astronomy) which is located in the Tunka Valley, about 50 km from Lake Baikal. The purpose of this array is the study of diffuse gamma rays and cosmic rays of ultra-high energies by detecting extensive air showers. We describe the design, specifications of the read-out, data acquisition (DAQ) and control systems of the array.
Muon groups and primary composition at 10 to the 13th power to 10 to the 15th power eV
NASA Technical Reports Server (NTRS)
Budko, E. V.; Chudakov, A. E.; Dogujaev, V. A.; Mihelev, A. R.; Padey, V. A.; Petkov, V. A.; Striganov, P. S.; Suvorova, O. V.; Voevodsky, A. V.
1985-01-01
The data on muon groups observed at Baksan underground scintillation telescope is analyzed. In this analysis we compare the experimental data with calulations, based on a superposition model in order to obtain the effective atomic number of primary cosmic rays in the energy range 10 to the 13th power to 10 to the 15th power eV.
NASA Astrophysics Data System (ADS)
Mishev, A. L.; Velinov, P. I. Y.
2014-12-01
In the last few years an essential progress in development of physical models for cosmic ray induced ionization in the atmosphere is achieved. The majority of these models are full target, i.e. based on Monte Carlo simulation of an electromagnetic-muon-nucleon cascade in the atmosphere. Basically, the contribution of proton nuclei is highlighted, i.e. the contribution of primary cosmic ray α-particles and heavy nuclei to the atmospheric ionization is neglected or scaled to protons. The development of cosmic ray induced atmospheric cascade is sensitive to the energy and mass of the primary cosmic ray particle. The largest uncertainties in Monte Carlo simulations of a cascade in the Earth atmosphere are due to assumed hadron interaction models, the so-called hadron generators. In the work presented here we compare the ionization yield functions Y for primary cosmic ray nuclei, such as α-particles, Oxygen and Iron nuclei, assuming different hadron interaction models. The computations are fulfilled with the CORSIKA 6.9 code using GHEISHA 2002, FLUKA 2011, UrQMD hadron generators for energy below 80 GeV/nucleon and QGSJET II for energy above 80 GeV/nucleon. The observed difference between hadron generators is widely discussed. The influence of different atmospheric parametrizations, namely US standard atmosphere, US standard atmosphere winter and summer profiles on ion production rate is studied. Assuming realistic primary cosmic ray mass composition, the ion production rate is obtained at several rigidity cut-offs - from 1 GV (high latitudes) to 15 GV (equatorial latitudes) using various hadron generators. The computations are compared with experimental data. A conclusion concerning the consistency of the hadron generators is stated.
Anisotropy in the Arrival Directions of Ultrahigh-Energy Cosmic Rays
NASA Astrophysics Data System (ADS)
Villaseñor, Luis
2017-06-01
In this article we illustrate, in an interactive way, the analysis and visualization of anisotropy properties in the arrival directions of ultrahigh-energy cosmic rays detected by the Telescope Array and the Pierre Auger experiments by using data released by both collaborations. We describe the use of several programs that we have written in Python and Julia languages for this purpose. We also discuss the potential sources and analyse the effect of correcting the arrival directions to take into account the deflections of the cosmic rays by the magnetic field of our galaxy for one specific model of the galactic magnetic field under several assumptions about the composition of the primary cosmic rays.
Measurement of the Muon Content of Air Showers with IceTop
NASA Astrophysics Data System (ADS)
Gonzalez, JG;
2016-05-01
IceTop, the surface component of the IceCube detector, has measured the energy spectrum of cosmic ray primaries in the range between 1.6 PeV and 1.3 EeV. IceTop can also be used to measure the average density of GeV muons in the shower front at large radial distances (> 300 m) from the shower axis. Wei present the measurement of the muon lateral distribution function for primary cosmic rays with energies between 1.6 PeV and about 0.1 EeV, and compare it to proton and iron simulations. We also discuss how this information can be exploited in the reconstruction of single air shower events. By combining the information on the muon component with that of the electromagnetic component of the air shower, we expect to reduce systematic uncertainties in the inferred mass composition of cosmic rays arising from theoretical uncertainties in hadronic interaction models.
Richman, Julie D.; Livi, Kenneth J.T.; Geyh, Alison S.
2011-01-01
Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was −0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected. PMID:21625364
Richman, Julie D; Livi, Kenneth J T; Geyh, Alison S
2011-06-01
Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was -0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected.
Medical imaging scintillators from glass-ceramics using mixed rare-earth halides
NASA Astrophysics Data System (ADS)
Beckert, M. Brooke; Gallego, Sabrina; Ding, Yong; Elder, Eric; Nadler, Jason H.
2016-10-01
Recent years have seen greater interest in developing new luminescent materials to replace scintillator panels currently used in medical X-ray imaging systems. The primary areas targeted for improvement are cost and image resolution. Cost reduction is somewhat straightforward in that less expensive raw materials and processing methods will yield a less expensive product. The path to improving image resolution is more complex because it depends on several properties of the scintillator material including density, transparency, and composition, among others. The present study focused on improving image resolution using composite materials, known as glass-ceramics that contain nanoscale scintillating crystallites formed within a transparent host glass matrix. The small size of the particles and in-situ precipitation from the host glass are key to maintaining transparency of the composite scintillator, which ensures that a majority of the light produced from absorbed X-rays can actually be used to create an image of the patient. Because light output is the dominating property that determines the image resolution achievable with a given scintillator, it was used as the primary metric to evaluate performance of the glass-ceramics relative to current scintillators. Several glass compositions were formulated and then heat treated in a step known as "ceramization" to grow the scintillating nanocrystals, whose light output was measured in response to a 65 kV X-ray source. Performance was found to depend heavily on the thermal history of the glass and glass-ceramic, and so additional studies are required to more precisely determine optimal process temperatures. Of the compositions investigated, an alumino-borosilicate host glass containing 56mol% scintillating rare-earth halides (BaF2, GdF3, GdBr3, TbF3) produced the highest recorded light output at nearly 80% of the value recorded using a commercially-available GOS:Tb panel as a reference.
Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae
NASA Technical Reports Server (NTRS)
Hamaguchi, Kenji; Corcoran, Michael F.
2012-01-01
X-ray emission from the massive stellar binary system, Eta Carinae, drops strongly around periastron passage; the event is called the X-ray minimum. We launched a focused observing campaign in early 2009 to understand the mechanism of causing the X-ray minimum. During the campaign, hard X-ray emission (<10 keV) from Eta Carinae declined as in the previous minimum, though it recovered a month earlier. Extremely hard X-ray emission between 15-25 keV, closely monitored for the first time with the Suzaku HXD/PIN, decreased similarly to the hard X-rays, but it reached minimum only after hard X-ray emission from the star had already began to recover. This indicates that the X-ray minimum is produced by two composite mechanisms: the thick primary wind first obscured the hard, 2-10 keV thermal X-ray emission from the wind-wind collision (WWC) plasma; the WWC activity then decays as the two stars reach periastron.
Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2002-01-01
Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.
An MCNP-based model of a medical linear accelerator x-ray photon beam.
Ajaj, F A; Ghassal, N M
2003-09-01
The major components in the x-ray photon beam path of the treatment head of the VARIAN Clinac 2300 EX medical linear accelerator were modeled and simulated using the Monte Carlo N-Particle radiation transport computer code (MCNP). Simulated components include x-ray target, primary conical collimator, x-ray beam flattening filter and secondary collimators. X-ray photon energy spectra and angular distributions were calculated using the model. The x-ray beam emerging from the secondary collimators were scored by considering the total x-ray spectra from the target as the source of x-rays at the target position. The depth dose distribution and dose profiles at different depths and field sizes have been calculated at a nominal operating potential of 6 MV and found to be within acceptable limits. It is concluded that accurate specification of the component dimensions, composition and nominal accelerating potential gives a good assessment of the x-ray energy spectra.
Much NICER Monitoring of the X-ray Spectrum of Eta Carinae
NASA Astrophysics Data System (ADS)
Corcoran, Michael Francis; Hamaguchi, Kenji; Drake, Stephen; Pasham, Dheeraj; Gendreau, Keith C.; Arzoumanian, Zaven
2018-01-01
Eta Carinae is the most massive and luminous stellar system within 3 kpc. It is a known binary system with an orbital period of 5.52 years in which bright, thermal, X-ray emission is produced by a strong shock driven by the collisions of the wind of the visible primary star with the thin, fast wind of an otherwise unseen companion. Variations of the X-ray spectrum are produced by intrinsic changes in the density of the hot shocked gas and by intervening changes in wind absorption as the two stars revolve in a long-period, highly eccentric orbit. Previous X-ray monitoring studies since 1996 have detailed these variations, but have been either restricted to the E>3 keV band or have been affected by optical loading which limited measurement of X-ray absorption changes which can be used to determine the overlying density profile of the primary's wind around the orbit. The Neutron Star Interior Composition Explorer (NICER) is an excellent general-purpose observatory for X-ray astronomy, and in particular, its soft response and large effective area facilitate monitoring of X-ray spectral variations for bright sources like Eta Car without any bias due to photon pileup. We present the first observations of the X-ray spectrum of Eta Car obtained by NICER, and discuss limits on changes in column density, emission measure and temperature we derive from the NICER spectra.
NASA Astrophysics Data System (ADS)
de Souza, V.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2009-04-01
KASCADE-Grande is a multi-component detector located at Karlsruhe, Germany. It was optimized to measure cosmic ray air showers with energies between 5×1016 and 1018 eV. Its capabilities are based on the use of several techniques to measure the electromagnetic and muon components of the shower in an independent way which allows a direct comparison to hadronic interaction models and a good estimation of the primary cosmic ray composition. In this paper, we present the status of the experiment, an update of the data analysis and the latest results.
NASA Technical Reports Server (NTRS)
Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.
1985-01-01
Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Koushik; Balog, Eva Rose M.; Sista, Prakash
We report a method for creating hybrid organic-inorganic “nanoflowers” using calcium or copper ions as the inorganic component and a recombinantly expressed elastin-like polypeptide (ELP) as the organic component. Polypeptides provide binding sites for the dynamic coordination with metal ions, and then such noncovalent complexes become nucleation sites for primary crystals of metal phosphates. We have shown that the interaction between the stimuli-responsive ELP and Ca{sup 2+} or Cu{sup 2+}, in the presence of phosphate, leads to the growth of micrometer-sized particles featuring nanoscale patterns shaped like flower petals. The morphology of these flower-like composite structures is dependent upon themore » temperature of growth and has been characterized by scanning electron microscopy. The composition of nanoflowers has also been analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The temperature-dependent morphologies of these hybrid nanostructures, which arise from the controllable phase transition of ELPs, hold potential for morphological control of biomaterials in emerging applications such as tissue engineering and biocatalysis.« less
NASA Technical Reports Server (NTRS)
Lloyd-Evans, J.
1985-01-01
The discovery of primary ultrahigh energy (UHE) gamma-rays has spawned plans for a new generation of air shower experiments with unprecedented directional resolution. Such accuracy permits observation of a cosmic ray shadow due to the solar disc. Particle trajectory simulations through models of the large scale solar magnetic field were performed. The shadow is apparent above 10 to the 15th power eV for all cosmic ray charges /Z/ 26; at lower energies, trajectories close to the Sun are bent sufficiently for this shadow to be lost. The onset of the shadow is rigidity dependent, and occurs at an energy per nucleus of approx. Z x 10 to the 13th power eV. The possibility of determining the average mass composition near 10 to the 14th power eV from 1 year's observation at a mountain altitude array is investigated.
NASA Astrophysics Data System (ADS)
Li, Xiaojuan; Jin, Bo; Huang, Jingwen; Zhang, Qingchun; Peng, Rufang; Chu, Shijin
2018-06-01
In this study, novel ternary Fe2O3/ZnO/ZnFe2O4 (ZFO) composites were successfully prepared through a simple hydrothermal reaction with subsequent thermal treatment. The as-prepared products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) measurement, and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation indicated that the ZFO composites calcined at 500 °C has the best photocatalytic activity (the photocatalytic degradation efficiency can reach up to 95.7% within 60 min) and can maintain a stable photocatalytic degradation efficiency for at least three cycles. In addition, the photocatalytic activity of ZFO composites toward dye decomposition follows the order cationic Rh B > anionic methyl orange. Finally, using different scavengers, superoxide and hydroxyl radicals were identified as the primary active species during the degradation reaction of Rh B.
NASA Technical Reports Server (NTRS)
Takahashi, Yoshiyuki; Gregory, John C.; Tominaga, Taka; Dong, Bei Lei
1997-01-01
The research developed the fundamental techniques of the emulsion chamber methods that permit measurements of the composition and energy spectra of cosmic rays at energies ranging from 1 GeV/n to over 1,000 TeV/n. The research program consisted of exploring new principles and techniques in measuring very high energy cosmic nuclei with large-area emulsion chambers for high statistics experiments. These tasks have been accomplished and their use was essential in successful analysis of the balloon-borne emulsion chamber experiments up to 10(exp 14) eV. It also provided the fundamental technologies for designing large-area detectors that are aimed at measuring the composition at above 1015 eV region. The latter is now partially succeeded by a NASA Mission Concept, Advanced Cosmic Composition Experiments on the Space Station (ACCESS). The cosmic ray group at the University of Alabama in Huntsville has performed technological R & D as well as contributing to the Japanese-American-Emulsion-Chamber-Experiments (JACEE) Collaboration with the regular data analysis. While primary research support for other institutions' efforts in the JACEE experiments came from NSF and DOE, primary support for the University of Alabama in Huntsville was this contract. Supplemental tasks to standardize the data base and hardware upgrades (automatized microscope) had this institutions cooperation. Investigation of new techniques in this program consisted of development of a fast calorimetry, magnetic/scattering selection of high momentum tracks for a pairmeter, and high statistics momentum measurements for low energy nuclei (E < 1 TeV/n). The highest energy calorimetry and a pairmeter have been considered as strawman instruments by the GOAL (Galactic Origin and Acceleration Limit) proposal of the NASA Cosmic Ray Working Group for long- duration balloon flights. We accomplished the objectives of the GOAL program with three circumpolar, Antarctic JACEE balloon flights during 1992 - 1994.
Mehnati, Parinaz; Arash, Mehran; Akhlaghi, Parisa
2018-01-01
The article aims at constructing protective composite shields for breasts in chest computed tomography and investigating the effects of applying these new bismuth composites on dose and image quality. Polyurethane and silicon with 5% of bismuth were fabricated as a protective shield. At first, their efficiency in attenuating the X-ray beam was investigated by calculating the total attenuation coefficients at diagnostic energy range. Then, a physical chest phantom was scanned without and with these shields at tube voltage of 120 kVp, and image parameters together with dose values were studied. The results showed that these two shields have great effects on attenuating the X-ray beam, especially for lower energies (<40 kV), and in average, the attenuation coefficients of bismuth-polyurethane composite are higher in this energy range. The maximum relative differences between the average Hounsfield units (HUs) and noises of images without and with shield for both composites in 13 regions of interest were 4.5% and 15.7%, respectively. Moreover, primary investigation confirmed the ability of both shields (especially polyurethane-bismuth composite) in dose reduction. Comparing these two composites regarding the amount of dose reduction, the changes in HU and noise, and attenuation coefficients in diagnostic energy range, it seems that polyurethane composite is more useful for dose reduction, especially for higher tube voltages. PMID:29628636
Estimation of composition of cosmic rays with E sub zero approximately equals 10(17) - 10(18) eV
NASA Technical Reports Server (NTRS)
Glushkov, A. V.; Efimov, N. N.; Efremov, N. N.; Makarov, I. T.; Pravdin, M. I.; Dedenko, L. I.
1985-01-01
Fluctuations of the shower maximum depth obtained from analysis of electron and muon fluctuations and the extensive air showers (EAS) Cerenkov light on the Yakutsk array data and data of other arrays are considered. On the basis of these the estimation of composition of primaries with E sub 0 = 5.10 to the 17th power eV is received. Estimation of gamma-quanta flux with E sub 0 10 to the 17th power eV is given on the poor-muon showers.
Towards a cosmic-ray mass-composition study at Tunka Radio Extension
NASA Astrophysics Data System (ADS)
Kostunin, D.; Bezyazeekov, P. A.; Budnev, N. M.; Fedorov, O.; Gress, O. A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Korosteleva, E. E.; Krömer, O.; Kungel, V.; Kuzmichev, L. A.; Lubsandorzhiev, N.; Mirgazov, R. R.; Monkhoev, R.; Osipova, E. A.; Pakhorukov, A.; Pankov, L.; Prosin, V. V.; Rubtsov, G. I.; Schröder, F. G.; Wischnewski, R.; Zagorodnikov, A.
2017-03-01
The Tunka Radio Extension (Tunka-Rex) is a radio detector at the TAIGA facility located in Siberia nearby the southern tip of Lake Baikal. Tunka-Rex measures air-showers induced by high-energy cosmic rays, in particular, the lateral distribution of the radio pulses. The depth of the air-shower maximum, statistically depends on the mass of the primary particle, is determined from the slope of the lateral distribution function (LDF). Using a model-independent approach, we have studied possible features of the one-dimensional slope method and tried to find improvements for the reconstruction of primary mass. To study the systematic uncertainties given by different primary particles, we have performed simulations using the CONEX and CoREAS software packages of the recently released CORSIKA v7.5 including the modern high-energy hadronic models QGSJet-II.04 and EPOS-LHC. The simulations have shown that the largest systematic uncertainty in the energy deposit is due to the unknown primary particle. Finally, we studied the relation between the polarization and the asymmetry of the LDF.
Cosmic Ray Energetics and Mass (CREAM)
NASA Technical Reports Server (NTRS)
Coutu, Stephane
2005-01-01
The CREAM instrument was flown on a Long Duration Balloon in Antarctica in December 2004 and January 2005, achieving a flight duration record of nearly 42 days. It detected and recorded cosmic ray primary particles ranging in type from hydrogen to iron nuclei and in energy from 1 TeV to several hundred TeV. With the data collected we will have the world's best measurement of the energy spectra and mass composition of nuclei in the primary cosmic ray flux at these energies, close to the astrophysical knee . The instrument utilized a thin calorimeter, a transition radiation detector and a timing charge detector, which also provided time-of-flight information. The responsibilities of our group have been with the timing charge detector (TCD), and with the data acquisition electronics and ground station support equipment. The TCD utilized fast scintillators to measure the charge of the primary cosmic ray before any interactions could take place within the calorimeter. The data acquisition electronics handled the output of the various detectors, in a fashion fully integrated with the payload bus. A space-qualified flight computer controlled the acquisition, and was used for preliminary trigger information processing and decision making. Ground support equipment was used to monitor the health of the payload, acquire and archive the data transmitted to the ground, and to provide real-time control of the instrument in flight.
Composition and oxidation state of sulfur in atmospheric particulate matter
NASA Astrophysics Data System (ADS)
Longo, Amelia F.; Vine, David J.; King, Laura E.; Oakes, Michelle; Weber, Rodney J.; Huey, Lewis Gregory; Russell, Armistead G.; Ingall, Ellery D.
2016-10-01
The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS) and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm) analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.
Telescope Array UHECR composition measurement via stereoscopic fluorescence observation
NASA Astrophysics Data System (ADS)
Stroman, Thomas; Bergman, Douglas; Telescope Array Collaboration
2016-03-01
When entering Earth's atmosphere at ultra-high energies, cosmic rays (UHECRs) produce extensive air showers whose longitudinal development is influenced by the incident primary particle's mass. Each longitudinal shower profile reaches its maximum particle count at an atmospheric slant depth Xmax, and the distributions of observed Xmax values can be compared to those predicted by detailed simulations of the air-shower physics and the detector; accurately simulated compositions that most closely resemble that found in nature will produce the best agreement between predicted and observed Xmax distributions. This is the basis of composition measurement at the Telescope Array experiment, the largest and most sensitive UHECR detector in the northern hemisphere. At the perimeter of a large surface-detector array are three fluorescence telescope stations, whose overlapping apertures enable high-precision reconstruction of Xmax from stereoscopic observation of air-shower longitudinal profiles. We present the distribution of Xmax observed during eight years of operation, and from comparisons with several simulated combinations of composition and high-energy hadronic physics, we show that a low primary mass is favored at E >10 18 . 2 eV.
The Need for Direct High-Energy Cosmic-Ray Measurements
NASA Technical Reports Server (NTRS)
Jones, Frank C.; Streitmatter, Robert
2004-01-01
Measuring the chemical composition of the cosmic rays in the energy region of greater than or equal to 10(exp 12)eV would be highly useful in settling several nagging questions concerning the propagation of cosmic rays in the galaxy. In particular an accurate measurement of secondary to primary ratios such as Boron to Carbon would gibe clear evidence as to whether the propagation of cosmic rays is determined by a diffusion coefficient that varies with the particle's energy as E(sup 0.5) or E(sup 0.3). This would go a long ways in helping us to understand the anistropy (or lack thereof) of the highest energy cosmic rays and the power requirements for producing those particles at approximately equal to 10(exp 18) eV which are believed to be highest energy particles produced in the Galaxy. This would be only one of the benefits of a mission such as ACCESS to perform direct particle measurements on very high energy cosmic rays.
NASA Technical Reports Server (NTRS)
Derrickson, J. H.; Parnell, T. A.; Watts, J. W.; Gregory, J. C.
1985-01-01
The study of the cosmic ray abundances beyond 20 GeV/n provides additional information on the propagation and containment of the cosmic rays in the galaxy. Since the average amount of interstellar material traversed by cosmic rays decreases as its energy increases, the source composition undergoes less distortion in this higher energy region. However, data over a wide energy range is necessary to study propagation parameters. Some measurements of some of the primary cosmic ray abundance ratios at both low (near 2 GeV/n) and high (above 20 GeV/n) energy are given and compared to the predictions of the leaky box mode. In particular, the integrated values (above 23.7 GeV/n) for the more abundant cosmic ray elements in the interval C through Fe and the differential flux for carbon, oxygen, and the Ne, Mg, Si group are presented. Limited statistics prevented the inclusion of the odd Z elements.
NASA Astrophysics Data System (ADS)
Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.
2017-12-01
The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several millisecond pulsars without moving parts.
A model of primary and scattered photon fluence for mammographic x-ray image quantification
NASA Astrophysics Data System (ADS)
Tromans, Christopher E.; Cocker, Mary R.; Brady, Michael, Sir
2012-10-01
We present an efficient method to calculate the primary and scattered x-ray photon fluence component of a mammographic image. This can be used for a range of clinically important purposes, including estimation of breast density, personalized image display, and quantitative mammogram analysis. The method is based on models of: the x-ray tube; the digital detector; and a novel ray tracer which models the diverging beam emanating from the focal spot. The tube model includes consideration of the anode heel effect, and empirical corrections for wear and manufacturing tolerances. The detector model is empirical, being based on a family of transfer functions that cover the range of beam qualities and compressed breast thicknesses which are encountered clinically. The scatter estimation utilizes optimal information sampling and interpolation (to yield a clinical usable computation time) of scatter calculated using fundamental physics relations. A scatter kernel arising around each primary ray is calculated, and these are summed by superposition to form the scatter image. Beam quality, spatial position in the field (in particular that arising at the air-boundary due to the depletion of scatter contribution from the surroundings), and the possible presence of a grid, are considered, as is tissue composition using an iterative refinement procedure. We present numerous validation results that use a purpose designed tissue equivalent step wedge phantom. The average differences between actual acquisitions and modelled pixel intensities observed across the adipose to fibroglandular attenuation range vary between 5% and 7%, depending on beam quality and, for a single beam quality are 2.09% and 3.36% respectively with and without a grid.
Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period
NASA Technical Reports Server (NTRS)
Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.;
2013-01-01
We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 <= Z <= 28 in the energy range approx. 50-550 MeV / nucleon. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.
Cosmogenic nuclides in the Martian surface: Constraints for sample recovery and transport
NASA Technical Reports Server (NTRS)
Englert, Peter A. J.
1988-01-01
Stable and radioactive cosmogenic nuclides and radiation damage effects such as cosmic ray tracks can provide information on the surface history of Mars. A recent overview on developments in cosmogenic nuclide research for historical studies of predominantly extraterrestrial materials was published previously. The information content of cosmogenic nuclides and radiation damage effects produced in the Martian surface is based on the different ways of interaction of the primary galactic and solar cosmic radiation (GCR, SCR) and the secondary particle cascade. Generally the kind and extent of interactions as seen in the products depend on the following factors: (1) composition, energy and intensity of the primary SCR and GCR; (2) composition, energy and intensity of the GCR-induced cascade of secondary particles; (3) the target geometry, i.e., the spatial parameters of Martian surface features with respect to the primary radiation source; (4) the target chemistry, i.e., the chemical composition of the Martian surface at the sampling location down to the minor element level or lower; and (5) duration of the exposure. These factors are not independent of each other and have a major influence on sample taking strategies and techniques.
Jones, B J; Reynolds, A J; Richardson, M; Sears, V G
2010-09-01
Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide can be suspended in a surfactant and used in the form of a powder suspension. Commercially available products, whilst having nominally similar composition, show varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. X-ray fluorescence (XRF), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and laser particle sizing of the fingerprint powders show TiO(2) particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material, with traces of sodium and sulphur. Such aluminosilicates are commonly used as anti-caking agents and to aid adhesion or functionality of some fingerprint powders; however, the morphology, thickness, coverage and composition of the aluminosilicates are the primary differences between the white powder formulations and could be related to variation in the efficacy of print development. Copyright © 2009 Forensic Science Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Zas, Enrique
2018-01-01
The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth's crust. It covers a large field of view between -85° and 60° declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Liu, Yinong; Huan, Yong
The concept of transformation-induced plasticity effect is introduced in this work to improve the plasticity of brittle intermetallic compound Ti3Sn, which is a potent high damping material. This concept is achieved in an in situ NiTi/Ti3Sn composite. The composite is composed of primary Ti3Sn phase and (NiTi + Ti3Sn) eutectic structure formed via hypereutectic solidification. The composite exhibits a high damping capacity of 0.075 (indexed by tan δ), a high ultimate compressive strength of 1350 MPa, and a large plasticity of 27.5%. In situ synchrotron high-energy X-ray diffraction measurements revealed clear evidence of the stress-induced martensitic transformation (B2 → B19)more » of the NiTi component during deformation. The strength of the composite mainly stems from the Ti3Sn, whereas the NiTi component is responsible for the excellent plasticity of the composite.« less
NASA Astrophysics Data System (ADS)
Derradji, Mehdi; Zegaoui, Abdeldjalil; Xu, Yi-Le; Wang, An-ran; Dayo, Abdul Qadeer; Wang, Jun; Liu, Wen-bin; Liu, Yu-Guang; Khiari, Karim
2018-04-01
The phthalonitrile resins have claimed the leading place in the field of high performance polymers thanks to their combination of outstanding properties. The present work explores for the first time the gamma rays radiation resistance and shielding efficiency of the phthalonitrile resins and its related tungsten-reinforced nanocomposites. The primary goal of this research is to define the basic behavior of the phthalonitrile resins under highly ionizing gamma rays. The obtained results confirmed that the neat phthalonitrile resins can resist absorbed doses as high as 200 kGy. Meanwhile, the remarkable shielding efficiency of the phthalonitrile polymers was confirmed to be easily improved by preparing lead-free nanocomposites. In fact, the gamma rays screening ratio reached the exceptional value of 42% for the nanocomposites of 50 wt% of nano-tungsten loading. Thus, this study confirms that the remarkable performances of the phthalonitrile resins are not limited to the thermal and mechanical properties and can be extended to the gamma rays radiation and shielding resistances.
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga, J. C.; Badea, A. F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2010-08-01
KASCADE-Grande is the enlargement of the KASCADE extensive air shower detector, realized to expand the cosmic ray studies from the previous 10 14-10 17 eV primary energy range to 10 18 eV. This is performed by extending the area covered by the KASCADE electromagnetic array from 200×200 to 700×700 m 2 by means of 37 scintillator detector stations of 10 m 2 area each. This new array is named Grande and provides measurements of the all-charged particle component of extensive air showers ( Nch), while the original KASCADE array particularly provides information on the muon content (Nμ). Additional dense compact detector set-ups being sensitive to energetic hadrons and muons are used for data consistency checks and calibration purposes. The performance of the Grande array and its integration into the entire experimental complex is discussed. It is demonstrated that the overall observable resolutions are adequate to meet the physical requirements of the measurements, i.e. primary energy spectrum and elemental composition studies in the primary cosmic ray energy range of 10 16-10 18 eV.
Elemental GCR Observations during the 2009-2010 Solar Minimum Period
NASA Technical Reports Server (NTRS)
Lave, K. A.; Israel, M. H.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.;
2013-01-01
Using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer (ACE), we present new measurements of the galactic cosmic ray (GCR) elemental composition and energy spectra for the species B through Ni in the energy range approx. 50-550 MeV/nucleon during the record setting 2009-2010 solar minimum period. These data are compared with our observations from the 1997-1998 solar minimum period, when solar modulation in the heliosphere was somewhat higher. For these species, we find that the intensities during the 2009-2010 solar minimum were approx. 20% higher than those in the previous solar minimum, and in fact were the highest GCR intensities recorded during the space age. Relative abundances for these species during the two solar minimum periods differed by small but statistically significant amounts, which are attributed to the combination of spectral shape differences between primary and secondary GCRs in the interstellar medium and differences between the levels of solar modulation in the two solar minima. We also present the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe for both solar minimum periods, and demonstrate that these ratios are reasonably well fit by a simple "leaky-box" galactic transport model that is combined with a spherically symmetric solar modulation model.
XAFS imaging of Tsukuba gabbroic rocks: area analysis of chemical composition and local structure.
Mizusawa, Mari; Sakurai, Kenji
2004-03-01
Gabbroic rocks were collected at Mount Tsukuba in Japan, and their XAFS images were studied using a projection-type X-ray fluorescence (XRF) microscope, which is a powerful new tool recently developed for extremely rapid imaging. The instrument employs a grazing-incidence arrangement in order that primary X-rays illuminate the whole sample surface, as well as parallel-beam optics and an extremely close geometry in order to detect XRF by a high-performance X-ray CCD system with 1024 x 1024 pixels. The XRF image indicated that black amphibole and white feldspar, both of which are typical mineral textures of the rock, contain iron. The origin has been suggested to be several small yellowish-brown minerals contained there. The XAFS imaging has been carried out by repeating the exposure of XRF images during the energy scan of the primary X-rays. It has been found that the structure is qualitatively close to that of olivine, and the main differences found in both areas can be explained as a difference in iron and magnesium concentration, i.e. the mixed ratio of forsterite (Mg(2)SiO(4)) and fayalite (Fe(2)SiO(4)). The feasibility of the present XAFS imaging method has been demonstrated for realistic inhomogeneous minerals.
Chemistry of Martian Soils from the Mars Exploration Rover APXS Instruments
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Gellert, R.; Yen, A.
2007-01-01
The martian surface is covered with debris formed by several mechanisms and mobilized by various processes. Volcanism, impact, physical weathering and chemical alteration combine to produce particles of sizes from dust to boulders composed of primary mineral and rock fragments, partially altered primary materials, alteration minerals and shock-modified materials from all of these. Impacts and volcanism produce localized deposits. Winds transport roughly sand-sized material over intermediate distances, while periodic dust storms deposit a global dust layer of the finest fraction. The compositions of clastic sediments can be used to evaluate regional differences in crustal composition and/or weathering processes. Here we examine the growing body of chemical data on soils in Gusev crater and Meridiani Planum returned by the Alpha Particle X-ray Spectrometer (APXS) instruments on the rovers Spirit (MERA) and Opportunity (MERB), following on earlier results based on smaller data sets [1-4].
Energy release properties of amorphous boron and boron-based propellant primary combustion products
NASA Astrophysics Data System (ADS)
Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu
2015-07-01
The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.
NASA Astrophysics Data System (ADS)
Ivanov, A. A.
2013-02-01
One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test—the Wilcoxon signed-rank routine—which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.
Soft X-ray results from the Wisconsin experiment on OSO-8
NASA Technical Reports Server (NTRS)
Bunner, A. N.
1978-01-01
Design features and capabilities of a soft X-ray instrument aboard OSO 8 are discussed, and results are presented for observations of AM Her, Her X-1, and Eta Car. The observations of AM Her indicate that: (1) the spectrum is composite, with a very steep or very-low-temperature component plus a rather flat or very-high-temperature component; (2) the relative phase of soft X-ray minimum and optical V-band primary minimum has remained stable over the interval between 1975 'high-state' observations and 1976 'low-state' observations; and (3) the times of soft X-ray minima and hard X-ray maxima coincide, to within the accuracy of the observations. For Her X-1, soft X-ray turn-on is found to lag behind hard X-ray turn-on by no more than 3 hr. It is suggested that little or no absorption of the soft X-ray component occurs during the on state by cool gas within the Her X-1 system. A strong source with a spectrum peaked between 0.4 and 1.5 keV has been detected which is consistent with a point source at the position of Eta Car.
Accelerated x-ray scatter projection imaging using multiple continuously moving pencil beams
NASA Astrophysics Data System (ADS)
Dydula, Christopher; Belev, George; Johns, Paul C.
2017-03-01
Coherent x-ray scatter varies with angle and photon energy in a manner dependent on the chemical composition of the scattering material, even for amorphous materials. Therefore, images generated from scattered photons can have much higher contrast than conventional projection radiographs. We are developing a scatter projection imaging prototype at the BioMedical Imaging and Therapy (BMIT) facility of the Canadian Light Source (CLS) synchrotron in Saskatoon, Canada. The best images are obtained using step-and-shoot scanning with a single pencil beam and area detector to capture sequentially the scatter pattern for each primary beam location on the sample. Primary x-ray transmission is recorded simultaneously using photodiodes. The technological challenge is to acquire the scatter data in a reasonable time. Using multiple pencil beams producing partially-overlapping scatter patterns reduces acquisition time but increases complexity due to the need for a disentangling algorithm to extract the data. Continuous sample motion, rather than step-and-shoot, also reduces acquisition time at the expense of introducing motion blur. With a five-beam (33.2 keV, 3.5 mm2 beam area) continuous sample motion configuration, a rectangular array of 12 x 100 pixels with 1 mm sampling width has been acquired in 0.4 minutes (3000 pixels per minute). The acquisition speed is 38 times the speed for single beam step-and-shoot. A system model has been developed to calculate detected scatter patterns given the material composition of the object to be imaged. Our prototype development, image acquisition of a plastic phantom and modelling are described.
The muon content of EAS as a function of primary energy
NASA Technical Reports Server (NTRS)
Blake, P. R.; Nash, W. F.; Saich, M. S.; Sephton, A. J.
1985-01-01
The muon content of extensive air showers (EAS) was measured over the wide primary energy range 10 to the 16th power to 10 to the 20th power eV. It is reported that the relative muon content of EAS decreases smoothly over the energy range 10 to the 17th power to 10 to the 19th power eV and concluded that the primary cosmic ray flux has a constant mass composition over this range. It is also reported that an apparent significant change in the power index occurs below 10 to the 17th power eV rho sub c (250 m) sup 0.78. Such a change indicates a significant change in primary mass composition in this range. The earlier conclusions concerning EAS of energy 10 to the 17th power eV are confirmed. Analysis of data in the 10 to the 16th power - 10 to the 17th power eV range revealed a previously overlooked selection bias in the data set. The full analysis of the complete data set in the energy range 10 to the 16th power - 10 to the 17th power ev with the selection bias eliminated is presented.
Vanthanouvong, V; Kozlova, I; Johannesson, M; Nääs, E; Nordvall, S L; Dragomir, A; Roomans, G M
2006-04-01
The ionic composition of the airway surface liquid (ASL) in healthy individuals and in patients with cystic fibrosis (CF) has been debated. Ion transport properties of the upper airway epithelium are similar to those of the lower airways and it is easier to collect nasal ASL from the nose. ASL was collected with ion exchange beads, and the elemental composition of nasal fluid was determined by X-ray microanalysis in healthy subjects, CF patients, CF heterozygotes, patients with rhinitis, and with primary ciliary dyskinesia (PCD). In healthy subjects, the ionic concentrations were approximately isotonic. In CF patients, CF heterozygotes, rhinitis, and PCD patients, [Na] and [Cl] were significantly higher compared when compared with those in controls. [K] was significantly higher in CF and PCD patients compared with that in controls. Severely affected CF patients had higher ionic concentrations in their nasal ASL than in patients with mild or moderate symptoms. Female CF patients had higher levels of Na, Cl, and K than male patients. As higher salt concentrations in the ASL are also found in other patients with airway diseases involving chronic inflammation, it appears likely that inflammation-induced epithelial damage is important in determining the ionic composition of the ASL. Copyright (c) 2006 Wiley-Liss, Inc.
Body composition in untreated adult patients with Laron syndrome (primary GH insensitivity).
Laron, Zvi; Ginsberg, Shira; Lilos, Pearl; Arbiv, Mira; Vaisman, Nahum
2006-07-01
To quantify body adiposity and its distribution in untreated adult patients with Laron syndrome (LS; primary GH insensitivity) caused by molecular defects of the GH receptor gene or postreceptor pathways and characterized by dwarfism, obesity, insulin resistance and hyperlipidaemia. Eleven LS patients (seven females and four males) aged 28-53 years were studied. Seven healthy males and six healthy females served as controls. Body composition of the total body trunk, upper and lower extremities was determined using dual-energy X-ray absorptiometry (DEXA). Statistical analysis using an analysis of variance (anova) and Mann-Whitney nonparametric methods was performed separately in males and females. Percentage body fat in the LS patients was much higher (P < 0.01) than that in the control population and the female LS patients were significantly more obese (59% total body fat) than the male patients (39% total body fat) (P < 0.002). It was also evident that in these types of patients with markedly increased body fat and decreased muscle and bone mass, body mass index (BMI) does not accurately reflect the body composition. Lifelong congenital IGF-I deficiency leads to extreme adiposity.
Hadron-rich cosmic-ray families detected by emulsion chamber.
NASA Astrophysics Data System (ADS)
Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.
1995-11-01
Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.
The search of the anisotropy of the primary cosmic radiation by the difference method
NASA Astrophysics Data System (ADS)
Pavlyuchenko, Victor; Martirosov, Romen; Nikolskaya, Natalia; Erlykin, Anatoly
2017-06-01
On the basis of experimental data obtained in the knee energy region with the GAMMA array an anomaly has been found in the mass composition of primary cosmic rays coming from the region of the VELA cluster. We used an original difference method which has high sensitivity, stability against accidental experimental errors and the possibility to separate anomalies connected with the laboratory coordinate system from anomalies observed in the celestial coordinates. The multiple scattering of the charged particles in the galactic magnetic fields makes it possible to study regions of the sky outside the direct visibility of the array.
The longitudinal development of muons in cosmic ray air showers at energies 10(15) - 10(17) eV
NASA Technical Reports Server (NTRS)
1985-01-01
The relationship between longitudinal development of muons and conventional equi-intensity cuts is carefully investigated. The development of muons in Extensive Air Showers (EAS) has been calculated using simulation with a scaling violation model at the highest energies and mixed primary composition. Profiles of equi-intensity cuts expected at observation altitudes of 550, 690 and 930/sq cm can fit the observed data very well.
Mass content of ultrahigh-energy cosmic rays within different time periods
NASA Astrophysics Data System (ADS)
Glushkov, A. V.
2014-03-01
Estimates obtained for the average atomic number
Emulsion chamber observations and interpretation (HE 3)
NASA Technical Reports Server (NTRS)
Shibata, M.
1986-01-01
Experimental results from Emulsion Chamber (EC) experiments at mountain altitudes or at higher levels using flying carriers are examined. The physical interest in this field is concentrated on the strong interaction at the very high energy region exceeding the accelerator energy, also on the primary cosmic ray intensity and its chemical composition. Those experiments which observed cosmic ray secondaries gave information on high energy interaction characteristics through the analyses of secondary spectra, gamma-hadron families and C-jets (direct observation of the particle production occuring at the carbon target). Problems of scaling violation in fragmentation region, interaction cross section, transverse momentum of produced secondaries, and some peculiar features of exotic events are discussed.
Signal Attenuation Curve for Different Surface Detector Arrays
NASA Astrophysics Data System (ADS)
Vicha, J.; Travnicek, P.; Nosek, D.; Ebr, J.
2014-06-01
Modern cosmic ray experiments consisting of large array of particle detectors measure the signals of electromagnetic or muon components or their combination. The correction for an amount of atmosphere passed is applied to the surface detector signal before its conversion to the shower energy. Either Monte Carlo based approach assuming certain composition of primaries or indirect estimation using real data and assuming isotropy of arrival directions can be used. Toy surface arrays of different sensitivities to electromagnetic and muon components are assumed in MC simulations to study effects imposed on attenuation curves for varying composition or possible high energy anisotropy. The possible sensitivity of the attenuation curve to the mass composition is also tested for different array types focusing on a future apparatus that can separate muon and electromagnetic component signals.
Results on the energy dependence of cosmic-ray charge composition
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.; Ormes, J. F.
1973-01-01
Results of measurements by a balloon-borne ionization spectrometer of the energy dependence of high-energy cosmic-ray charge composition. The results presented are greatly improved over those obtained earlier by Ormes et al. (1971) by the use of a multidimensional charge analysis with more efficient background rejection, and a more accurate energy determination. Complex couplings between the charge, energy, and trajectory information were taken into account and are discussed. The spectra of individual elements up to oxygen and of groups of nuclei up through iron were measured up to almost 100 GeV per nucleon. The energy spectrum of the secondary nuclei, B + N, is found to be steeper than that of the primary nuclei, C + O, in agreement with Smith et al. (1973). The most dramatic finding is that the spectrum of the iron nuclei is flatter than that of the carbon and oxygen nuclei by 0.57 plus or minus 0.14 of a power.
AugerPrime: the upgrade of the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Sarazin, Frederic; Pierre Auger Collaboration Collaboration
2017-01-01
The nature and origin of ultra-high energy cosmic-rays (UHECRs) remain largely a mystery despite a wealth of new information obtained in recent years at the Pierre Auger Observatory and elsewhere. Mass composition studies performed at Auger appear to challenge the historical view that the UHECR primaries (at least for energies greater than 1019 eV) are all protons, and the observation of a GZK-like flux suppression in the cosmic-ray spectrum is counterbalanced by the absence of point source observations and the relatively weak anisotropy of the UHECR sky. In order to resolve this apparent contradiction, the Pierre Auger collaboration is embarking in an upgrade of the Observatory (``AugerPrime'') with the goal of extending the mass composition measurements beyond the observed flux suppression. In this presentation, the science case for the upgrade and its technical realization will be described and discussed especially with regards to the existence of GZK photons and neutrinos. NSF PHY-1506486.
NASA Astrophysics Data System (ADS)
Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei
2015-05-01
The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.
Elemental composition, isotopes, electrons and positrons in cosmic rays
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.
1979-01-01
Papers presented at the 16th International Cosmic Ray Conference, Kyoto, Japan, dealing with the composition of cosmic rays are reviewed. Particular interest is given to data having bearing on nucleosynthesis sites, supernovae, gamma-process, comparison with solar system composition, multiplicity of sources, and the energy dependence of composition.
NASA Astrophysics Data System (ADS)
Yushkov, A.; Risse, M.; Werner, M.; Krieg, J.
2016-12-01
We present a method to determine the proton-to-helium ratio in cosmic rays at ultra-high energies. It makes use of the exponential slope, Λ, of the tail of the Xmax distribution measured by an air shower experiment. The method is quite robust with respect to uncertainties from modeling hadronic interactions and to systematic errors on Xmax and energy, and to the possible presence of primary nuclei heavier than helium. Obtaining the proton-to-helium ratio with air shower experiments would be a remarkable achievement. To quantify the applicability of a particular mass-sensitive variable for mass composition analysis despite hadronic uncertainties we introduce as a metric the 'analysis indicator' and find an improved performance of the Λ method compared to other variables currently used in the literature. The fraction of events in the tail of the Xmax distribution can provide additional information on the presence of nuclei heavier than helium in the primary beam.
Effective radiation reduction in Space Station and missions beyond the magnetosphere
NASA Technical Reports Server (NTRS)
Jordan, Thomas M.; Stassinopoulos, E. G.
1989-01-01
This paper investigates the efficiency of low- and high-atomic number materials used as protective shields against biologically effective radiation in doses equivalent to those expected in low-earth-orbit and interplanetary manned missions. Results are presented on calculations for single-material shields from polyethylene, water, Be, Al, Fe, and Ta and multilayer shelds made from the combinations of any two or any three of these materials, for both LEO and interplanetary conditions. It is shown that, whereas for protons and Galactic cosmic rays the ordering of shield materials has a negligible effect, for electrons and secondary bremsstrahlung, both the order and the composition are important parameters. It was found that low-atomic-number materials are most effective shields against protons and galactic cosmic rays, and are most effective in decreasing bremsstrahlung production, while high-atomic-number shields are the best attenuators of both primary electrons (if the dose is dominated by primary electrons) and secondary bremsstrahlung (if this is produced).
NICER observations of highly magnetized neutron stars: Initial results
NASA Astrophysics Data System (ADS)
Enoto, Teruaki; Arzoumanian, Zaven; Gendreau, Keith C.; Nynka, Melania; Kaspi, Victoria; Harding, Alice; Guver, Tolga; Lewandowska, Natalia; Majid, Walid; Ho, Wynn C. G.; NICER Team
2018-01-01
The Neutron star Interior Composition Explorer (NICER) was launched on June 3, 2017, and attached to the International Space Station. The large effective area of NICER in soft X-rays makes it a powerful tool not only for its primary science objective (diagnostics of the nuclear equation state) but also for studying neutron stars of various classes. As one of the NICER science working groups, the Magnetars and Magnetospheres (M&M) team coordinates monitoring and target of opportunity (ToO) observations of magnetized neutron stars, including magnetars, high-B pulsars, X-ray dim isolated neutron stars, and young rotation-powered pulsars. The M&M working group has performed simultaneous X-ray and radio observations of the Crab and Vela pulsars, ToO observations of the active anomalous X-ray pulsar 4U 0142+61, and a monitoring campaign for the transient magnetar SGR 0501+4516. Here we summarize the current status and initial results of the M&M group.
Sextant X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Winternitz, Luke M.; Hassouneh, Munther A.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wolff, Michael T.; Kerr, Matthew; Wood, Kent S.;
2018-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. SEXTANT will be a first demonstration of in-space, autonomous, X-ray pulsar navigation (XNAV). Navigating using millisecond X-ray pulsars which could provide a GPS-like navigation capability available throughout our Solar System and beyond. NICER is a NASA Astrophysics Explorer Mission of Opportunity to the International Space Station that was launched and installed in June of 2017. During NICER's nominal 18-month base mission, SEXTANT will perform a number of experiments to demonstrate XNAV and advance the technology on a number of fronts. In this work, we review the SEXTANT, its goals, and present early results from SEXTANT experiments conducted in the first six months of operation. With these results, SEXTANT has made significant progress toward meeting its primary and secondary mission goals. We also describe the SEXTANT flight operations, calibration activities, and initial results.
Composition of primary cosmic rays at energies 10(15) to approximately 10(16) eV
NASA Technical Reports Server (NTRS)
Amenomori, M.; Konishi, E.; Hotta, N.; Mizutani, K.; Kasahara, K.; Kobayashi, T.; Mikumo, E.; Sato, K.; Yuda, T.; Mito, I.
1985-01-01
The sigma epsilon gamma spectrum in 1 approx. 5 x 1000 TV observed at Mt. Fuji suggests that the flux of primary protons 10 to the 15 approx 10th eV is lower by a factor of 2 approx. 3 than a simple extrapolation from lower energies; the integral proton spectrum tends to be steeper than around to the power V and the spectral index tends to be steeper than Epsilon to the -17th power around 10 to the 14th power eV and the spectral index becomes approx. 2.0 around 10 to the 15th power eV. If the total flux of primary particles has no steepening up to approx 10 to the 15th power eV, than the fraction of primary protons to the total flux should be approx 20% in contrast to approx 45% at lower energies.
NASA Astrophysics Data System (ADS)
Quan, Ying; Liu, Qinfu; Zhang, Shilong; Zhang, Shuai
2018-07-01
The structures of cryptocrystalline graphite (CG) and carbon black (CB) have been analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), organic elemental analysis (OEA), X-ray diffraction (XRD), RAMAN and high-resolution transmission electron microscopy (HRTEM). These results indicate that CG has the same elemental composition as CB, with carbon being the major element present. SL sample (CG with low graphitization degree) and CB exhibit similar microcrystalline structures. CG was shown to contain a layered graphitic structure that was significantly different to the primary spherical particles present in CB. It is proposed that these CG sheets may potentially be reduced and delaminated to afford multilayer graphene structures with improved material properties.
NASA Astrophysics Data System (ADS)
Gaté, F.; Revenu, B.; García-Fernández, D.; Marin, V.; Dallier, R.; Escudié, A.; Martin, L.
2018-03-01
The composition of ultra-high energy cosmic rays is still poorly known and constitutes a very important topic in the field of high-energy astrophysics. Detection of ultra-high energy cosmic rays is carried out via the extensive air showers they create after interacting with the atmosphere constituents. The secondary electrons and positrons within the showers emit a detectable electric field in the kHz-GHz range. It is possible to use this radio signal for the estimation of the atmospheric depth of maximal development of the showers Xmax , with a good accuracy and a duty cycle close to 100%. This value of Xmax is strongly correlated to the nature of the primary cosmic ray that initiated the shower. We show in this paper the importance of using a realistic atmospheric model in order to correct for systematic errors that can prevent a correct and unbiased estimation of Xmax.
THE CENTAURUS A ULTRAHIGH-ENERGY COSMIC-RAY EXCESS AND THE LOCAL EXTRAGALACTIC MAGNETIC FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yueksel, Hasan; Kronberg, Philipp P.; Stanev, Todor
2012-10-10
The ultrahigh-energy cosmic-ray (UHECR) anisotropies discovered by the Pierre Auger Observatory provide the potential to finally address both the particle origins and properties of the nearby extragalactic magnetic field (EGMF). We examine the implications of the excess of {approx}10{sup 20} eV events around the nearby radio galaxy Centaurus A. We find that, if Cen A is the source of these cosmic rays, the angular distribution of events constrains the EGMF strength within several Mpc of the Milky Way to {approx}> 20 nG for an assumed primary proton composition. Our conclusions suggest that either the observed excess is a statistical anomalymore » or the local EGMF is stronger than conventionally thought. We discuss several implications, including UHECR scattering from more distant sources, time delays from transient sources, and the possibility of using magnetic lensing signatures to attain tighter constraints.« less
Determination of low-Z elements in individual environmental particles using windowless EPMA.
Ro, C U; Osán, J; Van Grieken, R
1999-04-15
The determination of low-Z elements such as carbon, nitrogen, and oxygen in atmospheric aerosol particles is of interest in studying environmental pollution. Conventional electron probe microanalysis technique has a limitation for the determination of the low-Z elements, mainly because the Be window in an energy-dispersive X-ray (EDX) detector hinders the detection of characteristic X-rays from light elements. The feasibility of low-Z element determination in individual particles using a windowless EDX detector is investigated. To develop a method capable of identifying chemical species of individual particles, both the matrix and the geometric effects of particles have to be evaluated. X-rays of low-Z elements generated by an electron beam are so soft that important matrix effects, mostly due to X-ray absorption, exist even within particles in the micrometer size range. Also, the observed radiation, especially that of light elements, experiences different extents of absorption, depending on the shape and size of the particles. Monte Carlo calculation is applied to explain the variation of observed X-ray intensities according to the geometric and chemical compositional variation of individual particles, at different primary electron beam energies. A comparison is carried out between simulated and experimental data, collected for standard individual particles with chemical compositions as generally observed in marine and continental aerosols. Despite the many fundamental problematic analytical factors involved in the observation of X-rays from low-Z elements, the Monte Carlo calculation proves to be quite reliable to evaluate those matrix and geometric effects. Practical aspects of the Monte Carlo calculation for the determination of light elements in individual particles are also considered.
On the characteristics of emulsion chamber family events produced in low heights
NASA Technical Reports Server (NTRS)
Jing, G.; Jing, C.; Zhu, Q.; Ding, L.
1985-01-01
The uncertainty of the primary cosmic ray composition at 10 to the 14th power -10 to the 16th power eV is well known to make the study of the nuclear interaction mechanism more difficult. Experimentally considering, if one can identify effectively the family events which are produced in low heights, then an event sample induced by primary protons might be able to be separated. It is undoubtedly very meaningful. In this paper an attempt is made to simulate the family events under the condition of mountain emulsion chamber experiments with a reasonable model. The aim is to search for the dependence of some experimentally observable quantities to the interaction height.
Elemental composition and energy spectra of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.
1988-01-01
A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.
Silica nanoparticles produced by DC arc plasma from a solid raw materials
NASA Astrophysics Data System (ADS)
Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.
2017-05-01
Plasma synthesis of SiO2 nanoparticles in experimental atmospheric pressure plasma reactor on the basis of DC arc plasma generator was presented in this paper. Solid high-silica raw materials such as diatomite from Kamyshlovskoye deposit in Russia, quartzite from Chupinskoye deposit in Russia and milled window glass were used. The obtained nanoparticles were characterized based on their morphology, chemical composition and size distribution. Scanning electron microscopy, laser diffractometry, nitrogen absorption (Brunauer-Emmett-Teller method), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the synthesized products. The obtained silica nanoparticles are agglomerated, have spherical shape and primary diameters between 10-300 nm. All samples of synthesized nanopowders were compared with commercial nanopowders.
A particle astrophysics magnet facility: ASTROMAG
NASA Technical Reports Server (NTRS)
Ormes, Jonathan F. (Editor); Israel, Martin H. (Editor); Mewaldt, Richard A. (Editor); Wiedenbeck, Mark E. (Editor)
1988-01-01
The primary scientific objectives of ASTROMAG are to: examine cosmological models by searching for antimatter and dark matter candidates; study the origin and evolution of matter in the galaxy by direct sampling of galactic matter; and study the origin and acceleration of the relativistic particle plasma in the galaxy and its effects on the dynamics and evolution of the galaxy. These general scientific objectives will be met by ASTROMAG with particle detection instruments designed to make the following observations: search, for anti-nuclei of helium and heavier element; measure the spectra of anti-protons and positrons; measure the isotopic composition of cosmic ray nuclei at energies of several GeV/amu; and measure the energy spectra of cosmic ray nuclei to very high energies.
From The Pierre Auger Observatory to AugerPrime
NASA Astrophysics Data System (ADS)
Parra, Alejandra; Martínez Bravo, Oscar; Pierre Auger Collaboration
2017-06-01
In the present work we report the principal motivation and reasons for the new stage of the Pierre Auger Observatory, AugerPrime. This upgrade has as its principal goal to clarify the origin of the highest energy cosmic rays through improvement in studies of the mass composition. To accomplished this goal, AugerPrime will use air shower universality, which states that extensive air showers can be completely described by three parameters: the primary energy E 0, the atmospheric shower depth of maximum X max, and the number of muons, Nμ . The Auger Collaboration has planned to complement its surface array (SD), based on water-Cherenkov detectors (WCD) with scintillator detectors, calls SSD (Scintillator Surface Detector). These will be placed at the top of each WCD station. The SSD will allow a shower to shower analysis, instead of the statistical analysis that the Observatory has previously done, to determine the mass composition of the primary particle by the electromagnetic to muonic ratio.
Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence Behind Shielding
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Saganti, Premkumar B.; Hu, Xiao-Dong; Kim, Myung-Hee Y.; Cleghorn, Timothy F.; Wilson, John W.; Tripathi, Ram K.; Zeitlin, Cary J.
2003-01-01
For over 25 years, NASA has supported the development of space radiation transport models for shielding applications. The NASA space radiation transport model now predicts dose and dose equivalent in Earth and Mars orbit to an accuracy of plus or minus 20%. However, because larger errors may occur in particle fluence predictions, there is interest in further assessments and improvements in NASA's space radiation transport model. In this paper, we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR) and the isotopic dependence of nuclear fragmentation cross-sections on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. Using NASA's quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, we study the effect of the isotopic dependence of the primary GCR composition and secondary nuclei on shielding calculations. The QMSFRG is shown to accurately describe the iso-spin dependence of nuclear fragmentation. The principal finding of this study is that large errors (plus or minus 100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotope grid (approximately 170 ions) to ones that use a reduced isotope grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (less than 20%) occur in the elemental-fluence spectra. Because a complete isotope grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.
The first X-ray diffraction measurements on Mars.
Bish, David; Blake, David; Vaniman, David; Sarrazin, Philippe; Bristow, Thomas; Achilles, Cherie; Dera, Przemyslaw; Chipera, Steve; Crisp, Joy; Downs, R T; Farmer, Jack; Gailhanou, Marc; Ming, Doug; Morookian, John Michael; Morris, Richard; Morrison, Shaunna; Rampe, Elizabeth; Treiman, Allan; Yen, Albert
2014-11-01
The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector. CheMin uses onboard standards for XRD and XRF calibration, and beryl:quartz mixtures constitute the primary XRD standards. Four samples have been analysed by CheMin, namely a soil sample, two samples drilled from mudstones and a sample drilled from a sandstone. Rietveld and full-pattern analysis of the XRD data reveal a complex mineralogy, with contributions from parent igneous rocks, amorphous components and several minerals relating to aqueous alteration. In particular, the mudstone samples all contain one or more phyllosilicates consistent with alteration in liquid water. In addition to quantitative mineralogy, Rietveld refinements also provide unit-cell parameters for the major phases, which can be used to infer the chemical compositions of individual minerals and, by difference, the composition of the amorphous component.
NASA Astrophysics Data System (ADS)
Peplowski, Patrick N.; Wilson, Jack T.; Beck, Andrew W.; Burks, Morgan; Goldsten, John O.; Lawrence, David J.
2018-01-01
Gamma-ray spectroscopy investigations characterize the chemical composition of planetary surfaces by measuring element-characteristic gamma rays with energies of ∼100 keV to ∼9 MeV. Over this energy range, the mean free path of a gamma ray varies from about 1 to 25 cm, therefore gamma-ray measurements sample subsurface composition. Many elements emit gamma rays at multiple, often widely spaced energies, so gamma-ray measurements can in principle also be used to identify depth-dependent variations in subsurface composition. We report results from laboratory measurements and radiation transport modeling designed to demonstrate this capability. The laboratory measurements verified the presence of depth-dependent gamma-ray signatures, and were then used to benchmark radiation transport simulations that were used to model realistic Mars-like scenarios. The models indicate that compositionally distinct subsurface deposits, buried to depths of ∼80 cm (125 g/cm2), can be identified using gamma-ray measurements. Going beyond identification to characterization (burial depth, relative composition of the layers) of the deposits requires knowledge of the vertical and horizontal variability in the water content of the near-surface surface materials, the local Galactic Cosmic Ray environment (magnitude and energy distribution), the depth-dependent neutron flux, gamma-ray production cross sections, and knowledge of the composition and column density of the atmosphere. The results of our experiments and models provided a basis for examining the utility of using orbiter- and lander-based gamma-ray measurements to identify subsurface deposits on Mars.
Nondestructive inspection of bonded composite doublers for aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, D.; Moore, D.; Walkington, P.
1996-12-31
One major thrust in FAA`s National Aging Aircraft Research Program is to foster new technologies in civil aircraft maintenance. Recent DOD and other government developments in using bonded composite doublers on metal structures support the need for validation of such doubler applications on US certificated airplanes. In this study, a specific composite application was chosen on an L-1011 aircraft. Primary inspection requirements for these doublers include identifying disbonds between composite laminate and aluminum parent material, and delaminations in the composite laminate. Surveillance of cracks or corrosion in the parent aluminum material beneath the double is also a concern. No singlemore » NDI method can inspect for every flaw type, therefore we need to know NDI capabilities and limitations. This paper reports on a series of NDI tests conducted on laboratory test structures and on a fuselage section from a retired L-1011. Application of ultrasonics, x-ray, and eddy current to composite doublers and results from test specimens loaded to provide a changing flaw profile, are presented in this paper. Development of appropriate inspection calibration standards are also discussed.« less
Primary proton and helium spectra around the knee observed by the Tibet air-shower experiment
NASA Astrophysics Data System (ADS)
Jing, Huang; Tibet ASγ Collaboration
A hybrid experiment was carried out to study the cosmic-ray primary composition in the 'knee' energy region. The experimental set-up consists of the Tibet-II air shower array( AS ), the emulsion chamber ( EC ) and the burst detector ( BD ) which are operated simulteneously and provides us information on the primary species. The experiment was carried out at Yangbajing (4,300 m a.s.l., 606 g/cm2) in Tibet during the period from 1996 through 1999. We have already reported the primary proton flux around the knee region based on the simulation code COSMOS. In this paper, we present the primary proton and helium spectra around the knee region. We also extensively examine the simulation codes COSMOS ad-hoc and CORSIKA with interaction models of QGSJET01, DPMJET 2.55, SIBYLL 2.1, VENUS 4.125, HDPM, and NEXUS 2. Based on these calculations, we briefly discuss on the systematic errors involved in our experimental results due to the Monte Carlo simulation.
Calculation of intensity of high energy muon groups observed deep underground
NASA Technical Reports Server (NTRS)
Vavilov, Y. N.; Dedenko, L. G.
1985-01-01
The intensity of narrow muon groups observed in Kolar Gold Field (KGF) at the depth of 3375 m.w.e. was calculated in terms of quark-gluon strings model for high energy hadron - air nuclei interactions by the method of direct modeling of nuclear cascade in the air and muon propagation in the ground for normal primary cosmic ray composition. The calculated intensity has been found to be approx. 10 to the 4 times less than one observed experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenomori, M.; Bi, X. J.; Ding, L. K.
2008-05-10
We present an updated all-particle energy spectrum of primary cosmic rays in a wide range from 10{sup 14} to 10{sup 17} eV using 5.5 x 10{sup 7} events collected from 2000 November through 2004 October by the Tibet-III air-shower array located 4300 m above sea level (an atmospheric depth of 606 g cm{sup -2}). The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. This work uses increased statistics and new simulation calculations for the analysis. We discuss our extensive Monte Carlo calculations and the model dependencies involved in the final result, assuming interaction modelsmore » QGSJET01c and SIBYLL2.1, and heavy dominant (HD) and proton dominant (PD) primary composition models. Pure proton and pure iron primary models are also examined as extreme cases. A detector simulation was also performed to improve our accuracy in determining the size of the air showers and the energy of the primary particle. We confirmed that the all-particle energy spectra obtained under various plausible model parameters are not significantly different from each other, which was the expected result given the characteristics of the experiment at high altitude, where the air showers of the primary energy around the knee reach near-maximum development, with their features dominated by electromagnetic components, leading to a weak dependence on the interaction model or the primary mass. This is the highest statistical and the best systematics-controlled measurement covering the widest energy range around the knee energy region.« less
Determination and study of the cosmic-ray composition above 100 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinnis, G.; Haines, T.J.; Hoffman, C.M.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new technique using ground-based measurements to determine the cosmic-ray composition at energies around 10{sup 15} eV (the knee in the cosmic-ray spectrum). Cosmic rays are high-energy nuclei that continuously bombard the earth. Though cosmic rays were first detected in the 1870s it wasn`t until 1915 that their cosmic origin was established. At present, the authors still do not know the source of cosmic rays. At energies above 50 TeVmore » (1 TeV = 1 trillion electron-volts) they do not know the composition of the cosmic rays. At about 5 PeV (1PeV = 10{sup 15} eV) the cosmic ray spectrum steepens. Knowledge of the composition above and below this point can help determine the origin of cosmic rays.« less
Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul
2018-03-25
Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.
The petrochemistry of Jake_M: a martian mugearite.
Stolper, E M; Baker, M B; Newcombe, M E; Schmidt, M E; Treiman, A H; Cousin, A; Dyar, M D; Fisk, M R; Gellert, R; King, P L; Leshin, L; Maurice, S; McLennan, S M; Minitti, M E; Perrett, G; Rowland, S; Sautter, V; Wiens, R C
2013-09-27
"Jake_M," the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes).
Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants.
Sharma, Smriti; Soni, Vivek P; Bellare, Jayesh R
2009-07-01
A novel bioactive porous apatite-wollastonite/chitosan composite coating was prepared by electrophoretic deposition. The influence of synthesis parameters like pH of suspension and current density was studied and optimized. X-ray diffraction confirmed crystalline phase of apatite-wollastonite in powder as well as composite coating with coat crystallinity of 65%. Scanning electron microscope showed that the porosity had interconnections with good homogeneity between the phases. The addition of chitosan increased the adhesive strength of the composite coating. Young's modulus of the coating was found to be 9.23 GPa. One of our key findings was sheet-like apatite growth unlike ball-like growth found in bioceramics. Role of chitosan was studied in apatite growth mechanism in simulated body fluid. In presence of chitosan, dense negatively charged surface with homogenous nucleation was the primary factor for sheet-like evolution of apatite layer. The results suggest that incorporation of chitosan with apatite-wollastonite in composite coating could provide excellent in vitro bioactivity with enhanced mechanical properties.
UHECR mass composition measurement at Telescope Array via stereoscopic observation
NASA Astrophysics Data System (ADS)
Stroman, Thomas; Telescope Array Collaboration
2015-04-01
The masses of primary ultra-high-energy cosmic-ray (UHECR) nuclei cannot be measured directly on an individual basis, but constraints on the chemical composition can be inferred from the distributions of observable properties. The atmospheric slant depth at which a UHECR-induced extensive air shower reaches its maximum number of particles, Xmax, is particularly sensitive to the mass of the incident nucleus, occurring earlier in the shower's longitudinal development for heavier nuclei at a given energy. The Telescope Array in west-central Utah, the northern hemisphere's largest UHECR detector, is equipped for accurate Xmax and energy measurements via stereoscopic fluorescence observation. Using data from seven years of operation, we will present Xmax distributions at several energies E >10 18 . 2eV , and compare them to distributions predicted by detailed detector simulations under an assortment of assumed UHECR compositions and high-energy hadronic interaction models.
Computed tomography (CT) as a nondestructive test method used for composite helicopter components
NASA Astrophysics Data System (ADS)
Oster, Reinhold
1991-09-01
The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK 117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g., the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.
Computed Tomography (CT) as a nondestructive test method used for composite helicopter components
NASA Astrophysics Data System (ADS)
Oster, Reinhold
The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g. the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Silva, A. H. Cruz; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Ismail, A. Haj; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; de los Heros, C. Pérez; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Saba, S. M.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van Eijndhoven, N.; van der Drift, D.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.
2013-02-01
The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above ˜1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory.
Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites
NASA Astrophysics Data System (ADS)
Sahasrabudhe, Himanshu; Bandyopadhyay, Amit
2016-03-01
Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.
Microstructure and mineral composition of dental enamel of permanent and deciduous teeth.
De Menezes Oliveira, Maria Angélica Hueb; Torres, Carolina Paes; Gomes-Silva, Jaciara Miranda; Chinelatti, Michelle Alexandra; De Menezes, Fernando Carlos Hueb; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina
2010-05-01
This study evaluated and compared in vitro the microstructure and mineral composition of permanent and deciduous teeth's dental enamel. Sound third molars (n = 12) and second primary molars (n = 12) were selected and randomly assigned to the following groups, according to the analysis method performed (n = 4): Scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Energy dispersive X-ray spectrometer (EDS). Qualitative and quantitative comparisons of the dental enamel were done. The microscopic findings were analyzed statistically by a nonparametric test (Kruskal-Wallis). The measurements of the prisms number and thickness were done in SEM photomicrographs. The relative amounts of calcium (Ca) and phosphorus (P) were determined by EDS investigation. Chemical phases present in both types of teeth were observed by the XRD analysis. The mean thickness measurements observed in the deciduous teeth enamel was 1.14 mm and in the permanent teeth enamel was 2.58 mm. The mean rod head diameter in deciduous teeth was statistically similar to that of permanent teeth enamel, and a slightly decrease from the outer enamel surface to the region next to the enamel-dentine junction was assessed. The numerical density of enamel rods was higher in the deciduous teeth, mainly near EDJ, that showed statistically significant difference. The percentage of Ca and P was higher in the permanent teeth enamel. The primary enamel structure showed a lower level of Ca and P, thinner thickness and higher numerical density of rods. (c) 2009 Wiley-Liss, Inc.
All-Particle Cosmic Ray Energy Spectrum Measured with 26 Icetop Stations
NASA Technical Reports Server (NTRS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.;
2013-01-01
We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, thesurface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysiswere taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 square kilometers.The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenithangle ranges between 0 and 46. Because of the isotropy of cosmic rays in this energy range the spectrafrom all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under differentassumptions on the primary mass composition. Good agreement of spectra in the three zenithangle ranges was found for the assumption of pure proton and a simple two-component model. Forzenith angles theta less than 30 deg., where the mass dependence is smallest, the knee in the cosmic ray energy spectrumwas observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indicationof a flattening of the spectrum above 22 PeV was observed.
Röntgen spheres around active stars
NASA Astrophysics Data System (ADS)
Locci, Daniele; Cecchi-Pestellini, Cesare; Micela, Giuseppina; Ciaravella, Angela; Aresu, Giambattista
2018-01-01
X-rays are an important ingredient of the radiation environment of a variety of stars of different spectral types and age. We have modelled the X-ray transfer and energy deposition into a gas with solar composition, through an accurate description of the electron cascade following the history of the primary photoelectron energy deposition. We test and validate this description studying the possible formation of regions in which X-rays are the major ionization channel. Such regions, called Röntgen spheres may have considerable importance in the chemical and physical evolution of the gas embedding the emitting star. Around massive stars the concept of Röntgen sphere appears to be of limited use, as the formation of extended volumes with relevant levels of ionization is efficient just in a narrow range of gas volume densities. In clouds embedding low-mass pre-main-sequence stars significant volumes of gas are affected by ionization levels exceeding largely the cosmic-ray background ionization. In clusters arising in regions of vigorous star formation X-rays create an ionization network pervading densely the interstellar medium, and providing a natural feedback mechanism, which may affect planet and star formation processes.
Contributions of Organic Sources to Atmospheric Aerosol Particle Concentrations and Growth
NASA Astrophysics Data System (ADS)
Russell, L. M.
2017-12-01
Organic molecules are important contributors to aerosol particle mass and number concentrations through primary emissions as well as secondary growth in the atmosphere. New techniques for measuring organic aerosol components in atmospheric particles have improved measurements of this contribution in the last 20 years, including Scanning Transmission X-ray Microscopy Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS), Fourier Transform Infrared spectroscopy (FTIR), and High-Resolution Aerosol Mass Spectrometry (AMS). STXM-NEXAFS individual aerosol particle composition illustrated the variety of morphology of organic components in marine aerosols, the inherent relationships between organic composition and shape, and the links between atmospheric aerosol composition and particles produced in smog chambers. This type of single particle microscopy has also added to size distribution measurements by providing evidence of how surface-controlled and bulk-controlled processes contribute to the growth of particles in the atmosphere. FTIR analysis of organic functional groups are sufficient to distinguish combustion, marine, and terrestrial organic particle sources and to show that each of those types of sources has a surprisingly similar organic functional group composition over four different oceans and four different continents. Augmenting the limited sampling of these off-line techniques with side-by-side inter-comparisons to online AMS provides complementary composition information and consistent quantitative attribution to sources (despite some clear method differences). Single-particle AMS techniques using light scattering and event trigger modes have now also characterized the types of particles found in urban, marine, and ship emission aerosols. Most recently, by combining with off-line techniques, single particle composition measurements have separated and quantified the contributions of organic, sulfate and salt components from ocean biogenic and sea spray emissions to particles, addressing the persistent question of the sources of cloud condensation nuclei in clean marine conditions.
NASA Technical Reports Server (NTRS)
Shelfer, T. D.; Morris, Richard V.; Nguyen, T.; Agresti, D. G.; Wills, E. L.
1994-01-01
We have developed a four-detector research-grade backscatter Moessbauer spectrometer (BaMS) instrument with low resolution x-ray fluorescence analysis (XRF) capability. A flight-qualified instrument based on this design would be suitable for use on missions to the surfaces of solid solar-system objects (Moon, Mars, asteroids, etc.). Target specifications for the flight instrument are as follows: mass less than 500 g; volumes less than 300 cu cm; and power less than 2 W. The BaMS/XRF instrument would provide data on the oxidation state of iron and its distribution among iron-bearing mineralogies and elemental composition information. This data is a primary concern for the characterization of extraterrestrial surface materials.
Combined use of infrared and hard X-ray microprobes for spectroscopy-based neuroanatomy
NASA Astrophysics Data System (ADS)
Surowka, A. D.; Ziomber, A.; Czyzycki, M.; Migliori, A.; Pieklo, L.; Kasper, K.; Szczerbowska-Boruchowska, M.
2018-05-01
Understanding the pathological triggers that affect the structural and physiological integrity of biochemical milieu of neurons is crucial to extend our knowledge on brain disorders, that are in many circumstances hardly treatable. Over recently, by using sophisticated hyperspectral micro-imaging modalities, it has been placed within our reach to get an insight into high fidelity histological details along with corresponding biochemical information in a label-free fashion, without using any additional chemical fixatives. However, in order to push forwards extensive application of these methods in the clinical arena, it is viable to make further iterations in novel data analysis protocols in order to boost their sensitivity. Therefore, in our study we proposed a new combined approach utilizing both benchtop Fourier transform infrared (FTIR) and synchrotron X-ray fluorescence (SR-XRF) micro-spectroscopies coupled with multivariate data clustering using the K-means algorithm for combined molecular and elemental micro-imaging, so that these complimentary analytical tools could be used for delineating between various brain structures based on their biochemical composition. By utilizing mid-IR transmission FTIR experiments, the biochemical composition in terms of lipids, proteins and phosphodiesters became accessible. In turn, the SR-XRF experiment was carried out at the advanced IAEA X-ray spectrometry station at Elettra Sincrotrone Trieste. By measuring in vacuum and by using the primary exciting X-ray beam, monochromatized to 10.5 keV, we took advantage of accessing the characteristic X-ray lines of a variety of elements ranging from carbon to zinc. Herein, we can report that the developed methodology has high specificity for label-free discriminating between lipid- and protein-rich brain tissue areas.
Engine materials characterization and damage monitoring by using x ray technologies
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1993-01-01
X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results from one-, three-, five-, and eight-ply ceramic composite specimens show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber-matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. In situ film radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction-bonded silicon nitride matrix. It is concluded that pretest, in situ, and post-test x ray imaging can provide greater understanding of ceramic matrix composite mechanical behavior.
Cosmic-ray antimatter - A primary origin hypothesis
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Protheroe, R. J.; Kazanas, D.
1983-01-01
The present investigation is concerned with the possibility that the observed cosmic-ray protons are of primary extragalactic origin, taking into account the significance of the current antiproton data. Attention is given to questions regarding primary antiprotons, antihelium fluxes, and the propagation of extragalactic cosmic rays. It is concluded that the primary origin hypothesis should be considered as a serious alternative explanation for the cosmic-ray antiproton fluxes. Such extragalactic primary origin can be considered in the context of a baryon symmetric domain cosmology. The fluxes and propagation characteristics suggested are found to be in rough agreement with the present antiproton data.
Observation of high-energy gamma-rays with the AMS-02 electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
Morescalchi, L.
2017-05-01
The Alpha Magnetic Spectrometer (AMS-02) is a multipurpose astroparticle physics detector installed on the International Space Station (ISS). Since more than 5 years it is measuring with an unprecedented accuracy flux and composition of primary cosmic rays, searching for primordial anti-matter and probing the nature of dark matter. Despite the fact that AMS-02 has been primarily designed as a charged-particle spectrometer, it can also perform precision observations of γ -rays from a few GeV to beyond one TeV. The key sub-detector used for the photon identification is a lead-scintillating fibers sampling calorimeter (ECAL). Its high granularity allows to reconstruct the direction of the incoming photon with a resolution better than 1 degree. The 3D shower image reconstructed by the calorimeter together with the absence of hits along the reconstructed photon direction allow to reach a very good signal over background ratio. This experimental technique offers the unusual possibility to reconstruct a sky map of the very high-energy photon sources.
Lead, platinum and other heavy elements in the primary cosmic radiation: HEAO-3 results
NASA Technical Reports Server (NTRS)
Waddington, C. J.; Binns, W. R.; Brewster, N. R.; Fixsen, D. J.; Garrard, T. L.; Israel, M. H.; Klarmann, J.; Newport, B. J.; Stone, E. C.
1986-01-01
An observation of the abundances of cosmic-ray lead and platinum-group nuclei using data from the HEAO-3 Heavy Nuclei Experiment (HNE) which consisted of ion chambers mounted on both sides of a plastic Cherenkov counter (Binns et al., 1981) is reported. Further analysis with more stringent selections, inclusion of additional data, and a calibration at the LBL Bevalac, have allowed the determination of the abundance ratio of lead and the platinum group of elements for particles that had a cutoff rigidity R(c) 5 GV. The observed ratio for Pb/Pt is distinctly lower than that predicted by any of the standard models for cosmic ray sources. It is possible that the difference is not an indication that the cosmic ray source composition is greatly different from that of the solar system, but rather that there is less Pb in the solar system and in the r-process than is assumed in the standard models.
KASCADE-Grande observation of features in the cosmic ray spectrum between knee and ankle
NASA Astrophysics Data System (ADS)
Haungs, A.; Apel, W. D.; Arteaga-Velazquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schroder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2013-02-01
The detection of high-energy cosmic rays above a few hundred TeV is realized by the observation of extensive air-showers. By using the multi-detector setup of KASCADE-Grande, and here in particular the detectors of the large Grande array, the energy spectrum and the elemental composition of high-energy cosmic rays in the energy range from 10 PeV to 1 EeV are investigated. The estimation of energy and mass of the high-energy primary particles is based on the combined analysis of the total number of charged particles and the total number of muons measured by the detector arrays of Grande and KASCADE, respectively. The latest analysis results have shown that in the all-particle spectrum two features are present: a hardening of the spectrum at energies around 20 PeV and a steepening, i.e. a knee-like structure, at 80-90 PeV. The latter one was found to be due to a decrease of flux of the heavy mass component.
Primary Cosmic-Ray Spectra in the Knee Region
NASA Astrophysics Data System (ADS)
Ter-Antonyan, Samvel V.; Biermann, P. L.
2003-07-01
Using EAS inverse approach and KASCADE EAS data the primary energy spectra for different primary nuclei at energies 1015 - 1017 eV are obtained in the framework of multi-comp onent model of primary cosmic ray origin and QGSJET and SIBYLL interaction models. The rigidity-dep endent behavior of spectra is the same for two interaction models. The extrap olation of the obtained primary spectra in a 1017 - 1018 eV energy range displays a presence of the extragalactic component of primary cosmic rays.
Cosmic ray energy spectrum around the knee obtained by the Tibet Experiment and future prospects
NASA Astrophysics Data System (ADS)
Katayose, Yusaku
The measurement of the energy spectrum and the chemical composition of cosmic rays at the 'Knee' energy region have been made in the Tibet-AS experiment since 1990. The 1st phase of the Tibet hybrid experiment(1996-1999) consisted of Tibet II air-shower array(AS), Emulsion Chamber(EC) and burst detector(BD). The EC was used to detect high energy-gamma-families of the energy greater than 20 TeV at the core of ASs of which more than 80% are induced by light nuclei like protons or helium. Due to the high spatial resolution of the EC, proton and helium events were separated from others and we obtained the energy spectrum of each of them using 177 family events. We also obtained all-particle energy spectrum of primary cosmic rays in a wide range from 1014 eV to 1017 eV by the Tibet-III air-shower array. The size spectrum exhibits a sharp knee at a corresponding primary energy around 4 PeV. These results strongly indicated that the fraction of the light component to the all particle spectrum is decreasing around the knee.The observation of the AS core has been continued with upgraded Tibet III array and burst detectors without using X-ray films, which still works as the selector for the air showers induced by light component (pHe). This second phase experiment shows that the dominance of the heavy elements at the knee reported by the first phase experiment is confirmed with higher statistics by one order.Our results suggest that the main component at the knee is heavy elements (heavier than helium) because of the low intensities of observed proton and helium fluxes, whose summed flux are less than 30% of all particles. A new air-shower-core detector(YAC) will be added to the Tibet AS array to explicitly measure the heavy elements around the knee and beyond. In this paper, the results of composition study with the Tibet experiment are summarized and the prospects for the next phase experiment are described.
Ionizing Organic Compound Based Nanocomposites for Efficient Gamma-Ray Sensor
NASA Technical Reports Server (NTRS)
Singh, N. B.; Dayal, Vishall; Su, Ching-Hua; Arnold, Bradley; Choa, Fow-Sen; Kabandana, Monia G. K.; House, David
2017-01-01
Thin film and nanocrystalline materials of oxides have been very attractive choice as low cost option for gamma-ray detection and have shown great promise. Our studies on pure oxide films indicated that thickness and microstructure have pronounced effect on sensitivity. Since the interaction of gamma-ray with composites involves all three interaction processes; photoelectric effect, Compton scattering, and pair production, composites containing ionic organics have better chance for enhancing sensitivity. In the composites of ionizing organics oxidation effect of unusual oxides changes much faster and hence increases the sensitivity of radiation. In this study, we have used nickel oxide and titanium oxide in ionic organics to develop composite materials for low energy gamma-ray sensing. We prepared composites containing ethylene carbonate and evaluated the effect of commercial Cs-137 radiation source by studying current-voltage relationship at several frequencies. Radiated samples showed higher resistivity compared to as prepared composites.
Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan
2011-01-01
Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756
Newbury, Dale E; Ritchie, Nicholas W M
2011-01-01
The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.
Measurement of the TeV atmospheric muon charge ratio with the complete OPERA data set
NASA Astrophysics Data System (ADS)
Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Giacomelli, G.; Göllnitz, C.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, M.; Gustavino, C.; Hagner, C.; Hara, T.; Hollnagel, A.; Hosseini, B.; Ishida, H.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kawada, J.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Lenkeit, J.; Ljubicic, A.; Longhin, A.; Loverre, P.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Mikado, S.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Okateva, N.; Olshevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Rokujo, H.; Roganova, T.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Shakiryanova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zemskova, S.; Zghiche, A.
2014-07-01
The OPERA detector, designed to search for oscillations in the CNGS beam, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. For the analysis here presented, the detector was used to measure the atmospheric muon charge ratio in the TeV region. OPERA collected charge-separated cosmic ray data between 2008 and 2012. More than 3 million atmospheric muon events were detected and reconstructed, among which about 110000 multiple muon bundles. The charge ratio was measured separately for single and for multiple muon events. The analysis exploited the inversion of the magnet polarity which was performed on purpose during the 2012 Run. The combination of the two data sets with opposite magnet polarities allowed minimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Data were fitted to obtain relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region. In the surface energy range 1-20 TeV investigated by OPERA, is well described by a parametric model including only pion and kaon contributions to the muon flux, showing no significant contribution of the prompt component. The energy independence supports the validity of Feynman scaling in the fragmentation region up to TeV/nucleon primary energy.
NASA Astrophysics Data System (ADS)
Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni
2011-06-01
The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.
Characterization of terahertz waves on foreign materials of composite materials
NASA Astrophysics Data System (ADS)
Im, Kwang-Hee; Kim, Sun-Kyu; Chiou, Chien-Ping; Jung, Jong-An
2018-04-01
Carbon-fiber reinforced plastics (CFRP) are widely utilized due to their comparatively high performance in engineering structures. It is well understood that a nondestructive technique would be very beneficial. A new terahertz radiation has been recognized for its importance in technological applications. Recently, T-ray (terahertz ray) advances in technology and instrumentation have provided a probing field on the electromagnetic spectrum. In carbon composites, the penetration characterization of T-ray waves was fundamentally investigated in order to measure the painting thickness. Also, another study dealt with THz scan images of honeycomb sandwich composite panels using a refractive index (n), an absorption coefficient (α), the electrical conductivity of glass fiber embedded epoxy matrix composites, and carbon fiber reinforced plastics (CFRP) skin. For experiments, a method of detecting FRP composites with impact damage is presented, which utilizes aluminum wires intertwined with woven carbon fibers as they are inserted into the surface of the CFRP honeycomb sandwich panels. Intensive characterization of T-ray for the nondestructive evaluation (NDE) of carbon composite reinforced plastics (CFRP) composites is discussed in relation to the E-field influence with CFRP composite laminates.
Zhang, Kun; Tang, Wenhui; Fu, Kunkun
2018-01-16
Carbon fiber-reinforced polymer (CFRP) composites have been increasingly used in spacecraft applications. Spacecraft may encounter highenergy-density X-ray radiation in outer space that can cause severe damage. To protect spacecraft from such unexpected damage, it is essential to predict the dynamic behavior of CFRP composites under X-ray radiation. In this study, we developed an in-house three-dimensional explicit finite element (FEM) code to investigate the dynamic responses of CFRP composite under X-ray radiation for the first time, by incorporating a modified PUFF equation-of-state. First, the blow-off impulse (BOI) momentum of an aluminum panel was predicted by our FEM code and compared with an existing radiation experiment. Then, the FEM code was utilized to determine the dynamic behavior of a CFRP composite under various radiation conditions. It was found that the numerical result was comparable with the experimental one. Furthermore, the CFRP composite was more effective than the aluminum panel in reducing radiation-induced pressure and BOI momentum. The numerical results also revealed that a 1 keV X-ray led to vaporization of surface materials and a high-magnitude compressive stress wave, whereas a low-magnitude stress wave was generated with no surface vaporization when a 3 keV X-ray was applied.
Zhang, Kun; Tang, Wenhui; Fu, Kunkun
2018-01-01
Carbon fiber-reinforced polymer (CFRP) composites have been increasingly used in spacecraft applications. Spacecraft may encounter highenergy-density X-ray radiation in outer space that can cause severe damage. To protect spacecraft from such unexpected damage, it is essential to predict the dynamic behavior of CFRP composites under X-ray radiation. In this study, we developed an in-house three-dimensional explicit finite element (FEM) code to investigate the dynamic responses of CFRP composite under X-ray radiation for the first time, by incorporating a modified PUFF equation-of-state. First, the blow-off impulse (BOI) momentum of an aluminum panel was predicted by our FEM code and compared with an existing radiation experiment. Then, the FEM code was utilized to determine the dynamic behavior of a CFRP composite under various radiation conditions. It was found that the numerical result was comparable with the experimental one. Furthermore, the CFRP composite was more effective than the aluminum panel in reducing radiation-induced pressure and BOI momentum. The numerical results also revealed that a 1 keV X-ray led to vaporization of surface materials and a high-magnitude compressive stress wave, whereas a low-magnitude stress wave was generated with no surface vaporization when a 3 keV X-ray was applied. PMID:29337891
2006-11-01
NON DESTRUCTIVE 3D X-RAY IMAGING OF NANO STRUCTURES & COMPOSITES AT SUB-30 NM RESOLUTION, WITH A NOVEL LAB BASED X- RAY MICROSCOPE S H Lau...article we describe a 3D x-ray microscope based on a laboratory x-ray source operating at 2.7, 5.4 or 8.0 keV hard x-ray energies. X-ray computed...tomography (XCT) is used to obtain detailed 3D structural information inside optically opaque materials with sub-30 nm resolution. Applications include
Adam, J.
2016-01-19
ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. Here, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. Our analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more thanmore » 100 reconstructed muons and corresponding to a muon areal density rho(mu) > 5.9 m(-2). Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10(16) eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. Furthermore, the development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.« less
Open issues in hadronic interactions for air showers
NASA Astrophysics Data System (ADS)
Pierog, Tanguy
2017-06-01
In detailed air shower simulations, the uncertainty in the prediction of shower observables for different primary particles and energies is currently dominated by differences between hadronic interaction models. With the results of the first run of the LHC, the difference between post-LHC model predictions has been reduced to the same level as experimental uncertainties of cosmic ray experiments. At the same time new types of air shower observables, like the muon production depth, have been measured, adding new constraints on hadronic models. Currently no model is able to consistently reproduce all mass composition measurements possible within the Pierre Auger Observatory for instance. Comparing the different models, and with LHC and cosmic ray data, we will show that the remaining open issues in hadronic interactions in air shower development are now in the pion-air interactions and in nuclear effects.
A large area cosmic muon detector located at Ohya stone mine
NASA Technical Reports Server (NTRS)
Nii, N.; Mizutani, K.; Aoki, T.; Kitamura, T.; Mitsui, K.; Matsuno, S.; Muraki, Y.; Ohashi, Y.; Okada, A.; Kamiya, Y.
1985-01-01
The chemical composition of the primary cosmic rays between 10 to the 15th power eV and 10 to the 18th power eV were determined by a Large Area Cosmic Muon Detector located at Ohya stone mine. The experimental aims of Ohya project are; (1) search for the ultra high-energy gamma-rays; (2) search for the GUT monopole created by Big Bang; and (3) search for the muon bundle. A large number of muon chambers were installed at the shallow underground near Nikko (approx. 100 Km north of Tokyo, situated at Ohya-town, Utsunomiya-city). At the surface of the mine, very fast 100 channel scintillation counters were equipped in order to measure the direction of air showers. These air shower arrays were operated at the same time, together with the underground muon chamber.
EAS Cerenkov measurements of the composition of the cosmic ray flux around 10 to the 16th power eV
NASA Technical Reports Server (NTRS)
Dawson, B. R.; Prescott, J. R.; Clay, R. W.
1985-01-01
Information can be obtained about the nature of a primary cosmic ray by looking at the way in which an extensive air shower (EAS) develops in the atmosphere. Heavy nuclei give rise to showers that develop high in the atmosphere and the depth of maximum development is subjected to much smaller fluctuations than is the case for showers originating from protons. This development is followed by optical methods based on the observations of Cerenkov light or fluorescence light. The Cerenkov observations have two complementary techniques: measurement of the time profile of the Cerenkov pulse with resolution of a few nanoseconds and measurement of the lateral distribution of the Cerenkov light. In each case the measured quantities must be related to some characteristic development parameters.
Performance of a Borehole X-ray Fluorescence Spectrometer for Planetary Exploration
NASA Technical Reports Server (NTRS)
Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; Willard-Schmoe, Ella
2008-01-01
We have designed and constructed a borehole X-ray Fluorescence Spectrometer (XRFS) as part of the Mars Subsurface Access program [1]. It can be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary requirements and performance metrics for the instrument are to obtain parts-per-million (ppm) lower limits of detection over a wide range of elements in the periodic table (Magnesium to Lead). Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight ppm for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.
NASA Technical Reports Server (NTRS)
Lheureux, J.; Fan, C. Y.; Mainardi, R.; Gloeckler, G.
1974-01-01
A 6500 sq cm-ster cosmic-ray detector consisting of 12 gas counter trays sandwiched between two large-area circular scintillation counters was flown from Palestine, Texas in November 1972 to study the composition of primary particles greater than 1.5 GeV/nucleon in the charge range from 3 to 30. For each analyzed event, the particle trajectory was recorded, using four 20-wire proportional counter trays. Also recorded were the energy loss in each of the solid counters and the dE/dx losses in each of the 12 gas counters. The large dynamic range of the detector is established by operating six of the gas counters in the ionization mode. A description of the instrument and some preliminary results are given.
NASA Technical Reports Server (NTRS)
Lheureux, J.; Fan, C. Y.; Gloeckler, G.; Mainardi, R.
1973-01-01
A 6500 sq cm-ster cosmic ray detector consisting of twelve gas counter trays sandwiched between two large area circular scintillation counters was flown from Palestine, Texas in November of 1972 to study the composition of primary particles 1.5 GeV/nucleon in the charge range 3 to 30. For each analyzed event, a recording was made of (1) the particle trajectory using four 20 wire proportional counter trays, (2) the energy loss in each of the solid counters, and (3) the dE/dx losses in each of the twelve gas counters. The large dynamic range of the detector is established by operating six of the gas counters in the ionization mode. A description of the instrument and some preliminary results are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina Bueno, Laura
Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (10 18 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problemmore » related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry out a thorough revision of the original analysis with the aim of understanding the different contributions to the total bias and resolution when building MPDs on an event-by-event basis. We focus on an alternative way to build MPDs by considering average MPDs for ensembles of air-showers, with the aim of enlarging the range of applicability of this kind of analysis. Finally, we analyze how different improvements in the Surface Detector electronics and its internal configuration affect the resolution of the MPD. We conclude by summarizing the main results and discussing potential ways to improve MPD-based mass composition studies.« less
NASA Astrophysics Data System (ADS)
Shapiro, M. M.
2001-08-01
Two models of cosmic-ray genesis are compared: (a) the author s red-dwarf hypothesis requiring the injection of seed particles from coronal mass ejections (CME) prior to shock acceleration, and (b) the direct acceleration of thermal ions and of grains in the ISM, proposed by Meyer, Drury and Ellison. Both models agree that shocks in the expanding envelopes of supernova remnants are principally responsible for acceleration to cosmic-ray energies. Both are designed to overcome the mismatch between the source composition of the Galactic cosmic rays (GCR) and the composition of the thermal ISM gas. Model (a) utilizes the prolific emissions of energetic particles from active dMe and dKe stars via their CME as the agents of seed-particle injection into the ISM. The composition of these seed particles is governed by the FIP (first-ionization potential) selection mechanism that operates for both Galactic cosmic rays and solar energetic particles. Hence it is consistent with the cosmic-ray source composition. Model (b) relies on the sputtering and acceleration of grains in the ISM (along with acceleration of thermal ions) to provide the known source composition. This model considers the FIP ordering of GCR abundances as purely coincidental, and it attributes the relative source abundances to selection according to volatility. Recent cosmic-ray observations in favor of each model are cited.
NASA Astrophysics Data System (ADS)
Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying
2018-03-01
Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.
Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi
2015-11-01
Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).
Relative Composition and Energy Spectra of Light Nuclei in Cosmic Rays: Results from AMS-01
NASA Astrophysics Data System (ADS)
Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Azzarello, P.; Basile, M.; Barao, F.; Barreira, G.; Bartoloni, A.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Béné, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bindi, V.; Boella, G.; Boschini, M.; Bourquin, M.; Bruni, G.; Buénerd, M.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cernuda, I.; Chang, Y. H.; Chen, H. F.; Chen, H. S.; Chen, Z. G.; Chernoplekov, N. A.; Chiueh, T. H.; Choi, Y. Y.; Cindolo, F.; Commichau, V.; Contin, A.; Cortina-Gil, E.; Crespo, D.; Cristinziani, M.; Dai, T. S.; dela Guia, C.; Delgado, C.; Di Falco, S.; Djambazov, L.; D'Antone, I.; Dong, Z. R.; Duranti, M.; Engelberg, J.; Eppling, F. J.; Eronen, T.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P. H.; Flügge, G.; Fouque, N.; Galaktionov, Y.; Gervasi, M.; Giovacchini, F.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W. Q.; Haino, S.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Hungerford, W.; Ionica, M.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kim, D. H.; Kim, G. N.; Kim, K. S.; Kirn, T.; Klimentov, A.; Kossakowski, R.; Kounine, A.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lechanoine-Leluc, C.; Lee, M. W.; Lee, S. C.; Levi, G.; Lin, C. H.; Liu, H. T.; Lu, G.; Lu, Y. S.; Lübelsmeyer, K.; Luckey, D.; Lustermann, W.; Maña, C.; Margotti, A.; Mayet, F.; McNeil, R. R.; Menichelli, M.; Mihul, A.; Mujunen, A.; Oliva, A.; Palmonari, F.; Park, H. B.; Park, W. H.; Pauluzzi, M.; Pauss, F.; Pereira, R.; Perrin, E.; Pevsner, A.; Pilo, F.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Pohl, M.; Produit, N.; Quadrani, L.; Rancoita, P. G.; Rapin, D.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J. P.; Riihonen, E.; Ritakari, J.; Ro, S.; Roeser, U.; Sagdeev, R.; Santos, D.; Sartorelli, G.; Sbarra, C.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shin, J. W.; Shoumilov, E.; Shoutko, V.; Siedenburg, T.; Siedling, R.; Son, D.; Song, T.; Spada, F. R.; Spinella, F.; Steuer, M.; Sun, G. S.; Suter, H.; Tang, X. W.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Tornikoski, M.; Torsti, J.; Trümper, J.; Ulbricht, J.; Urpo, S.; Valtonen, E.; Vandenhirtz, J.; Velikhov, E.; Verlaat, B.; Vetlitsky, I.; Vezzu, F.; Vialle, J. P.; Viertel, G.; Vité, D.; Von Gunten, H.; Waldmeier Wicki, S.; Wallraff, W.; Wang, J. Z.; Wiik, K.; Williams, C.; Wu, S. X.; Xia, P. C.; Xu, S.; Xu, Z. Z.; Yan, J. L.; Yan, L. G.; Yang, C. G.; Yang, J.; Yang, M.; Ye, S. W.; Zhang, H. Y.; Zhang, Z. P.; Zhao, D. X.; Zhou, F.; Zhou, Y.; Zhu, G. Y.; Zhu, W. Z.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zuccon, P.
2010-11-01
Measurement of the chemical and isotopic composition of cosmic rays is essential for the precise understanding of their propagation in the galaxy. While the model parameters are mainly determined using the B/C ratio, the study of extended sets of ratios can provide stronger constraints on the propagation models. In this paper, the relative abundances of light-nuclei lithium, beryllium, boron, and carbon are presented. The secondary-to-primary ratios Li/C, Be/C, and B/C have been measured in the kinetic energy range 0.35-45 GeV nucleon-1. The isotopic ratio 7Li/6Li is also determined in the magnetic rigidity interval 2.5-6.3 GV. The secondary-to-secondary ratios Li/Be, Li/B, and Be/B are also reported. These measurements are based on the data collected by the Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle flight in 1998 June. Our experimental results are in substantial agreement with other measurements, where they exist. We describe our light-nuclei data with a diffusive-reacceleration model. A 10%-15% overproduction of Be is found in the model predictions and can be attributed to uncertainties in the production cross-section data.
NASA Astrophysics Data System (ADS)
Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.
2018-04-01
NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.
Subsurface In Situ Elemental Composition Measurements with PING
NASA Technical Reports Server (NTRS)
Parsons, Ann; McClanahan, Timothy; Bodnarik, Julia; Evans, Larry; Nowicki, Suzanne; Schweitzer, Jeffrey; Starr, Richard
2013-01-01
This paper describes the Probing In situ with Neutron and Gamma rays (PING) instrument, that can measure the subsurface elemental composition in situ for any rocky body in the solar system without the need for digging into the surface. PING consists of a Pulsed Neutron Generator (PNG), a gamma ray spectrometer and neutron detectors. Subsurface elements are stimulated by high-energy neutrons to emit gamma rays at characteristic energies. This paper will show how the detection of these gamma rays results in a measurement of elemental composition. Examples of the basalt to granite ratios for aluminum and silicon abundance are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tardiff, Mark F.; Runkle, Robert C.; Anderson, K. K.
2006-01-23
The goal of primary radiation monitoring in support of routine screening and emergency response is to detect characteristics in vehicle radiation signatures that indicate the presence of potential threats. Two conceptual approaches to analyzing gamma-ray spectra for threat detection are isotope identification and anomaly detection. While isotope identification is the time-honored method, an emerging technique is anomaly detection that uses benign vehicle gamma ray signatures to define an expectation of the radiation signature for vehicles that do not pose a threat. Newly acquired spectra are then compared to this expectation using statistical criteria that reflect acceptable false alarm rates andmore » probabilities of detection. The gamma-ray spectra analyzed here were collected at a U.S. land Port of Entry (POE) using a NaI-based radiation portal monitor (RPM). The raw data were analyzed to develop a benign vehicle expectation by decimating the original pulse-height channels to 35 energy bins, extracting composite variables via principal components analysis (PCA), and estimating statistically weighted distances from the mean vehicle spectrum with the mahalanobis distance (MD) metric. This paper reviews the methods used to establish the anomaly identification criteria and presents a systematic analysis of the response of the combined PCA and MD algorithm to modeled mono-energetic gamma-ray sources.« less
Dessombz, Arnaud; Nguyen, Christelle; Ea, Hang-Korng; Rouzière, Stephan; Foy, Eddy; Hannouche, Didier; Réguer, Solene; Picca, Frederic-Emmanuel; Thiaudière, Dominique; Lioté, Frédéric; Daudon, Michel; Bazin, Dominique
2013-10-01
We aimed to examine the presence of Zn, a trace element, in osteoarthritis (OA) cartilage and meniscus from patients undergoing total knee joint replacement for primary OA. We mapped Ca(2+) and Zn(2+) at the mesoscopic scale by X-ray fluorescence microanalysis (μX-ray) to determine the spatial distribution of the 2 elements in cartilage, μX-ray absorption near edge structure spectroscopy to identify the Zn species, and μX-ray diffraction to determine the chemical nature of the calcification. Fourier transform infrared spectroscopy was used to determine the chemical composition of cartilage and meniscus. Ca(2+) showed a heterogeneous spatial distribution corresponding to the calcifications within cartilage (or meniscus) or at their surface. At least 2 Zn(2+) species were present: the first may correspond to Zn embedded in protein (different Zn metalloproteins are known to prevent calcification in biological tissues), and the second may be associated with a Zn trap in or at the surface of the calcification. Calcification present in OA cartilage may significantly modify the spatial distribution of Zn; part of the Zn may be trapped in the calcification and may alter the associated biological function of Zn metalloproteins. Copyright © 2013 Elsevier GmbH. All rights reserved.
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.
2013-04-01
We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0° and 46°. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles θ < 30°, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed.
NASA Astrophysics Data System (ADS)
Harbaoui, Imen; Besbes, Hatem; Chafra, Moez
Innovation in the field of nuclear imaging is necessarily followed by a radical change in the detection principle. The gas detector Micromegas (Mesh Micro Structure Gaseous) could be an interesting option, thanks to the stability and robustness of such a detector. Thus, it was necessary to study the implementation of the detector enclosure in composite materials. The focus of the present study was the robustness and gamma rays transparency of a set of composites. The studied composites were reinforced with vegetable fibers (alfa), and synthetic fibers. The mechanical properties of all composites specimen were evaluated by three-point bending test, whereas, gamma ray transparency was evaluated by the exposition of composites specimen to a mono-energetic gamma ray beam emitted by a Technetium 99-m source. Findings revealed that the biocomposite materials using alfa fiber and Polymethyl Methacrylate matrix are very promising as long as they present good robustness and high gamma ray transparency in diagnostic range.
Spallation processes and nuclear interaction products of cosmic rays.
Silberberg, R; Tsao, C H
1990-08-01
Most cosmic-ray nuclei heavier than helium have suffered nuclear collisions in the interstellar gas, with transformation of nuclear composition. The isotopic and elemental composition at the sources has to be inferred from the observed composition near the Earth. The source composition permits tests of current ideas on sites of origin, nucleosynthesis in stars, evolution of stars, the mixing and composition of the interstellar medium and injection processes prior to acceleration. The effects of nuclear spallation, production of radioactive nuclides and the time dependence of their decay provide valuable information on the acceleration and propagation of cosmic rays, their nuclear transformations, and their confinement time in the Galaxy. The formation of spallation products that only decay by electron capture and are relatively long-lived permits an investigation of the nature and density fluctuations (like clouds) of the interstellar medium. Since nuclear collisions yield positrons, antiprotons, gamma rays and neutrinos, we shall discuss these topics briefly.
Cosmic ray signatures of a 2-3 Myr old local supernova
NASA Astrophysics Data System (ADS)
Kachelrieß, M.; Neronov, A.; Semikoz, D. V.
2018-03-01
The supernova explosion which deposited
LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirotani, Kouichi, E-mail: hirotani@tiara.sinica.edu.tw
2013-04-01
We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity ofmore » rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.« less
The Status and Recent Results of the Telescope Array Experiment
NASA Astrophysics Data System (ADS)
Yamazaki, Katsuya
The Telescope Array (TA) is a cosmic ray observatory of the largest aperture in the northern hemisphere, located in a desert in the western part of Utah, U.S.A., to explore the origin of ultrahigh energy cosmic rays, photons, and neutrinos. The TA employs two types of detectors to observe air showers generated by cosmic rays in the atmosphere: the first is a "surface detector (SD)" of scintillation counters to measure shower particles on the ground, and the second is a "fluorescence detector (FD)" of telescopes installed in three stations to observe fluorescence light, caused by air shower particles, from the atmosphere above the SD array. The TA detectors have been in routine operation since May 2008. We measured the energy spectrum of cosmic rays with energy greater than 1018 eV from our first 4-year data. We found a clear suppression of comic ray intensity above 5 × 1019 eV. This feature is consistent with a theoretical prediction that cosmic rays lose energies due to interaction with cosmic microwave background photons during propagation in the intergalactic space. In this talk, We will present the status of the TA experiment and the recent results, including the energy spectrum, study of the primary mass composition, and searches for anisotropies in the arrival directions. We also briefly describe plans for further extensions.
NASA Technical Reports Server (NTRS)
ONeill, P. M.
2007-01-01
Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model.
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Floyd, S.; Ruitberg, A.; Evans, L.; Starr, R.; Metzger, A.; Reedy, R.; Drake, D.; Moss, C.; Edwards, B.
1993-01-01
An important part of the investigation of planetary origin and evolution is the determination of the surface composition of planets, comets, and asteroids. Measurements of discrete line X-ray and gamma ray emissions from condensed bodies in space can be used to obtain both qualitative and quantitative elemental composition information. The Planetary Instrumentation Definition and Development Program (PIDDP) X-Ray/Gamma Ray Team has been established to develop remote sensing and in situ technologies for future planetary exploration missions.
Remote sensing studies of the Dionysius region of the Moon
Giguere, T.A.; Hawke, B.R.; Gaddis, L.R.; Blewett, D.T.; Gillis-Davis, J. J.; Lucey, P.G.; Smith, G.A.; Spudis, P.D.; Taylor, G.J.
2006-01-01
The Dionysius region is located near the western edge of Mare Tranquillitatis and is centered on Dionysius crater, which exhibits a well-developed dark ray system. Proposed origins for these dark rays included impact melt deposits and dark primary ejecta. The region also contains extensive deposits of Cayley-type light plains. Clementine multispectral images and a variety of spacecraft photography were utilized to investigate the composition and origin of geologic units in the Dionysius region. The portions of the dark rays for which spectral and chemical data were obtained are composed of mare debris contaminated with minor amounts of highland material. Both five-point spectra and values of the optical maturity (OMAT) parameter indicate that the dark rays are dominated by mare basalts, not glassy impact melts. The high-albedo rays associated with Dionysius exhibit FeO and TiO2 values that are lower than those of the adjacent dark ray surfaces and OMAT values that indicate that bright ray surfaces are not fully mature. The high-albedo rays are bright largely because of the contrast in albedo between ray material containing highlands-rich ejecta and the adjacent mare-rich surfaces. The mafic debris ejected by Dionysius was derived from a dark, iron-rich unit exposed high on the inner wall of the crater. This layer probably represents a mare deposit that was present at the surface of the preimpact target site. With one possible exception, there is no evidence for buried mare basalts associated with Cayley plains in the region. Copyright 2006 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Von Rosenvinge, T. T.
1993-01-01
The Mass Spectrometer Telescope (MAST) on SAMPEX is designed to provide high resolution measurements of the isotopic composition of energetic nuclei from He to Ni (Z = 2 to 28) over the energy range from about 10 to several hundred MeV/nuc. During large solar flares MAST will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona, while during solar quiet times MAST will study the isotopic composition of galactic cosmic rays. In addition, MAST will measure the isotopic composition of both interplanetary and trapped fluxes of anomalous cosmic rays, believed to be a sample of the nearby interstellar medium.
NASA Technical Reports Server (NTRS)
Aharonian, F. A.; Mamidjanian, E. A.; Nikolsky, S. I.; Tukish, E. I.
1985-01-01
The recently observed primary ultra high energy gamma-rays (UHEGR) testify to the cosmic ray (CR) acceleration in the Galaxy. The available data may be interpreted as gamma-ray production due to photomeson production in CR sources.
NASA Astrophysics Data System (ADS)
Munro, L. E.; Longstaffe, F. J.; White, C. D.
2003-04-01
Stable oxygen isotopic compositions of phosphate from mammal bones are commonly used in palaeoenvironmental reconstructions. However, preservation of the primary bone oxygen isotopic composition is of concern during post-mortem alteration. Particularly in studies of archaeological interest, bone samples are often obtained from contexts where they have been heated, either in middens, or near hearths. Hence, in addition to alteration resulting from natural diagenetic processes, burning may also have contributed to modification of the primary oxygen isotopic signal. Various techniques can be employed to evaluate the degree of preservation of bone during burning. Anthropologists commonly use colour comparisons (Munsell Colour Chart) to assess the temperature of burning. Recrystallization of the carbonated hydroxyapatite, i.e., bioapatite, in bone is more rigorously assessed using X-ray diffraction and infra-red spectroscopy. In this study, freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned, incrementally burned, colour-typed, ground to a standardized grain-size (45<63mm), and analysed using differential thermal analysis (DTA), thermogravimetric analysis (TGA), rotating anode X-ray diffraction (XRD), and Fourier transform infra-red spectroscopy (FTIR). Heating temperatures ranged from 25 to 900^oC, increasing in intervals of 25^oC. Two major stages of weight loss were recorded in the DTA/TGA data, 25-260^oC representing dehydration, and 270-600^oC reflecting incineration of organic matter. The end-product (900^oC) resembled pure hydroxyapatite. XRD patterns of the bioapatite remained virtually unchanged from 25-250^oC, after which peak intensity, sharpness and the XRD crystallinity index (XRD CI) increased from 0.80 at 250^oC to 1.26 at 900^oC. FTIR patterns showed analogous behaviour, demonstrating minimal fluctuations in the FTIR crystallinity index (FTIR CI) from 2.86 at 25^oC to 2.56 at 250^oC, and then an overall increasing trend from 2.54 at 275^oC to a maximum of 4.72 at 825^oC as v4PO4 peak splitting intensified. Initial results show that the δ18O (VSMOW) values of bioapatite phosphate decreased from 15.0 ppm at 300^oC to 10.6 ppm at 750^oC. These data suggest that primary phosphate oxygen isotopic compositions can be significantly altered during burning, even when only modest changes in crystallinity are indicated by XRD or FTIR.
Quantitative determination of mineral composition by powder x-ray diffraction
Pawloski, G.A.
1984-08-10
An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.
Quantitative determination of mineral composition by powder X-ray diffraction
Pawloski, Gayle A.
1986-01-01
An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Sinha, A. S. K.
2018-09-01
Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.
Torres, Carolina Paes; Miranda Gomes-Silva, Jaciara; Menezes-Oliveira, Maria Angélica Hueb; Silva Soares, Luís Eduardo; Palma-Dibb, Regina Guenka; Borsatto, Maria Cristina
2018-05-01
The chemical compositions (organic and inorganic contents) and mechanical behaviors of the dentin of permanent and deciduous teeth were analyzed and compared using X-ray fluorescence spectrometry (µ-EDXRF) Fourier transform Raman spectroscopy (FT-Raman) and a microhardness test (HD). Healthy fresh human primary and permanent molars (n = 10) were selected, The buccal surfaces facing upwards were stabilized in an acrylic plate, flattened, polished, and submitted to the µ-EDXRF, FT-Raman, and HD analysis. The results of the analysis were subjected to ANOVAs and Mann-Whitney U/Student's t multiple comparisons tests. The data showed similar values for the dentin of the primary and permanent teeth in P content, organic content (amide I peak), inorganic content ( PO43- - 430 and 590), and microhardness, Nevertheless, Ca content and Ca/P weight ratio were higher, and the CO32- peak was lower in the dentin of the permanent teeth compared to primary teeth. It be concluded that despite permanent teeth showed more Ca element, both substrates showed similar behavior of chemical and physical properties. © 2018 Wiley Periodicals, Inc.
Centaurus X-3. [early x-ray binary star spectroscopy
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Cowley, A. P.; Crampton, D.; Van Paradus, J.; White, N. E.
1979-01-01
Spectroscopic observations of Krzeminski's star at dispersions 25-60 A/mm are described. The primary is an evolved star of type O6-O8(f) with peculiarities, some of which are attributable to X-ray heating. Broad emission lines at 4640A (N III), 4686 A(He II) and H-alpha show self-absorption and do not originate entirely from the region near the X-ray star. The primary is not highly luminous (bolometric magnitude about -9) and does not show signs of an abnormally strong stellar wind. The X-ray source was 'on' at the time of optical observations. Orbital parameters are presented for the primary, which yield masses of 17 + or - 2 and 1.0 + or - 3 solar masses for the stars. The optical star is undermassive for its luminosity, as are other OB-star X-ray primaries. The rotation is probably synchronized with the orbital motion. The distance to Cen X-3 is estimated to be 10 + or - 1 kpc. Basic data for 12 early-type X-ray primaries are discussed briefly
High power x-ray welding of metal-matrix composites
Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing
1999-01-01
A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.
Phase composition and in vitro bioactivity of porous implants made of bioactive glass S53P4.
Fagerlund, S; Massera, J; Moritz, N; Hupa, L; Hupa, M
2012-07-01
This work studied the influence of sintering temperature on the phase composition, compression strength and in vitro properties of implants made of bioactive glass S53P4. The implants were sintered within the temperature range 600-1000°C. Over the whole temperature range studied, consolidation took place mainly via viscous flow sintering, even though there was partial surface crystallization. The mechanical strength of the implants was low but increased with the sintering temperature, from 0.7 MPa at 635°C to 10 MPa at 1000°C. Changes in the composition of simulated body fluid (SBF), the immersion solution, were evaluated by pH measurements and ion analysis using inductively coupled plasma optical emission spectrometry. The development of a calcium phosphate layer on the implant surfaces was verified using scanning electron microscopy-electron-dispersive X-ray analysis. When immersed in SBF, a calcium phosphate layer formed on all the samples, but the structure of this layer was affected by the surface crystalline phases. Hydroxyapatite formed more readily on amorphous and partially crystalline implants containing both primary Na(2)O·CaO·2SiO(2) and secondary Na(2)Ca(4)(PO(4))(2)SiO(4) crystals than on implants containing only primary crystals. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
CXBN: a blueprint for an improved measurement of the cosmological x-ray background
NASA Astrophysics Data System (ADS)
Simms, Lance M.; Jernigan, J. G.; Malphrus, Benjamin K.; McNeil, Roger; Brown, Kevin Z.; Rose, Tyler G.; Lim, Hyoung S.; Anderson, Steven; Kruth, Jeffrey A.; Doty, John P.; Wampler-Doty, Matthew; Cominsky, Lynn R.; Prasad, Kamal S.; Thomas, Eric T.; Combs, Michael S.; Kroll, Robert T.; Cahall, Benjamin J.; Turba, Tyler T.; Molton, Brandon L.; Powell, Margaret M.; Fitzpatrick, Jonathan F.; Graves, Daniel C.; Gaalema, Stephen D.; Sun, Shunming
2012-10-01
A precise measurement of the Cosmic X-ray Background (CXB) is crucial for constraining models of the evolution and composition of the universe. While several large, expensive satellites have measured the CXB as a secondary mission, there is still disagreement about normalization of its spectrum. The Cosmic X-ray Background NanoSat (CXBN) is a small, low-cost satellite whose primary goal is to measure the CXB over its two-year lifetime. Benefiting from a low instrument-induced background due to its small mass and size, CXBN will use a novel, pixelated Cadmium Zinc Telluride (CZT) detector with energy resolution < 1 keV over the range 1-60 keV to measure the CXBN with unprecedented accuracy. This paper describes CXBN and its science payload, including the GEANT4 model that has been used to predict overall performance and the backgrounds from secondary particles in Low Earth Orbit. It also addresses the strategy for scanning the sky and calibrating the data, and presents the expected results over the two-year mission lifetime.
Latest results and perspectives of the KASCADE-Grande EAS Facility
NASA Astrophysics Data System (ADS)
Haungs, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2012-01-01
KASCADE-Grande is a multi-detector experiment at KIT (Karlsruhe Institute of Technology) in Germany for measuring extensive air showers in the primary energy range of 100 TeV to 1 EeV. This paper does not provide a synopsis of all results of the KASCADE-Grande experiment. Rather it is focused on three aspects of current interests illustrating the advantages of a multi-detector facility. Results on the analysis of individual energy spectra of primary mass groups around the knee obtained by unfolding the shower size measurements of KASCADE with the help of the new hadronic interaction model EPOS and the all-particle energy spectrum at higher energies obtained by Grande measurements will be discussed. As KASCADE-Grande serves also as host of the LOPES radio detection experiment where both experiments measure the same showers, special emphasis will be given in comparing the characteristics and feasibility of both techniques in estimating the main parameters of high-energy primary cosmic rays: energy, composition, and arrival direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu
In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collaboration: ALICE Collaboration
2016-01-01
ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containingmore » more than 100 reconstructed muons and corresponding to a muon areal density ρ{sub μ} > 5.9 m{sup −2}. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10{sup 16} eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.« less
Superbubbles and Local Cosmic Rays
NASA Technical Reports Server (NTRS)
Streitmatter, Robert E.; Jones, Frank C.
2005-01-01
We consider the possibility that distinctive features of the local cosmic ray spectra and composition are influenced by the Solar system being embedded within the cavity of an ancient superbubble. Shifts in the measured cosmic ray composition between 10(exp 11) and 10(exp 20) eV as well as the "knee" and "second knee" may be understood in this picture.
2015-12-01
The research resulted in a composite material that holds a quasi-permanent electric charge and rapidly discharges the electric charge upon X-ray...quasi-permanent electric charge and rapidly discharge the electric charge upon X-ray exposure. The composite material combined the properties of an...9 7. Schematic of Circuit for Recording Sample’s Capacitor Discharge ............... 12 8. Schematic of Circuit for
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Tushita, E-mail: tp3rn@virginia.edu; Peppard, Heather; Williams, Mark B.
2016-04-15
Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscattermore » grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and 8 cm tissue-equivalent block phantom thicknesses, the inclusion of the W-poly grid reduced the SPR by factors of 5, 6, and 5.8, respectively. For the same thicknesses, the copper grid reduced the SPR by factors of 3.9, 4.5, and 4.9. For the 011A phantom, the W-poly grid raised the SDNR of the 70/30 block from 0.8, −0.32, and −0.72 to 0.9, 0.76, and 0.062 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. It raised the SDNR of the 100/0 block from 3.78, 1.95, and 1.0 to 3.79, 3.67, and 3.25 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. Inclusion of the W-poly grid improved the accuracy of image-based μ values for all block compositions. However, smearing of attenuation across slices due to limited angular sampling decreases the sensitivity of voxel values to changing composition compared to theoretical μ values. Conclusions: Under conditions of fixed radiation dose to the breast, use of a 2D focused grid increased contrast, SDNR, and accuracy of estimated attenuation for mass-simulating block compositions in all phantom thicknesses tested, with the degree of improvement depending upon material composition. A 2D antiscatter grid can be usefully incorporated in DBT systems that employ fully isocentric tube-detector rotation.« less
Composite x-ray pinholes for time-resolved microphotography of laser compressed targets.
Attwood, D T; Weinstein, B W; Wuerker, R F
1977-05-01
Composite x-ray pinholes having dichroic properties are presented. These pinholes permit both x-ray imaging and visible alignment with micron accuracy by presenting different apparent apertures in these widely disparate regions of the spectrum. Their use is mandatory in certain applications in which the x-ray detection consists of a limited number of resolvable elements whose use one wishes to maximize. Mating the pinhole camera with an x-ray streaking camera is described, along with experiments which spatially and temporally resolve the implosion of laser irradiated targets.
NASA Astrophysics Data System (ADS)
Sinha, Mangalika; Modi, Mohammed H.
2017-10-01
In-depth compositional analysis of 240 Å thick aluminium oxide thin film has been carried out using soft x-ray reflectivity (SXR) and x-ray photoelectron spectroscopy technique (XPS). The compositional details of the film is estimated by modelling the optical index profile obtained from the SXR measurements over 60-200 Å wavelength region. The SXR measurements are carried out at Indus-1 reflectivity beamline. The method suggests that the principal film region is comprised of Al2O3 and AlOx (x = 1.6) phases whereas the interface region comprised of SiO2 and AlOx (x = 1.6) mixture. The soft x-ray reflectivity technique combined with XPS measurements explains the compositional details of principal layer. Since the interface region cannot be analyzed with the XPS technique in a non-destructive manner in such a case the SXR technique is a powerful tool for nondestructive compositional analysis of interface region.
NASA Astrophysics Data System (ADS)
Lee, Jung-Moo; Kang, Suk-Bong; Yoon, Sang-Chul
1999-07-01
The wear behavior of hypereutectic aluminium-silicon alloy A390 was investigated using a pin-on-disc wear machine under dry sliding conditions. The wear tests were performed within a load range of 10 to 300N at a constant sliding velocity of 0.5 m/sec. The microstructural and compositional changes that took place during wear were characterized by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis (EDXA) system. Based on the metallographic observations the role of the primary silicon particles was suggested. In a low pressure region, primary silicon particles supported the applied load and wear occurred mainly in the matrix. Thus the wear loss did not show much variation with the applied load. In the mid-load range, primary silicon particles did not yet fracture and thus supported the applied load in part. Transition from oxidative to metallic wear occurs mainly in the matrix and the increase of wear loss becomes sharper than that in a low pressure region. In the high pressure region, the fractures of primary silicon Particles occurred and wear loss increased sharply.
Aspects on dental hard tissues in primary teeth from patients with Ehlers-Danlos syndrome.
Klingberg, Gunilla; Hagberg, Catharina; Norén, Jörgen G; Nietzsche, Sandor
2009-07-01
Ehlers-Danlos syndrome (EDS) is a rare hereditary condition affecting connective tissues and dental hard tissues. Primary enamel and dentine from EDS patients were expected to differ from those of healthy subjects regarding morphology and chemical composition. Forty-seven exfoliated primary teeth from 25 patients with EDS were investigated. Morphology was studied using a polarized light microscope, scanning electron microscope, and X-ray microanalysis. Comparisons were made with 36 primary teeth from 36 healthy patients. Morphological analysis of enamel in EDS teeth showed a high frequency of postnatally hypomineralized enamel and postnatally located incremental lines, whereas dentine was normal in all patients. Chemical analysis could not reveal any differences between EDS and control patients except for lower content of C and a higher Ca/P ratio in the enamel in the EDS teeth, indicating porous enamel. Regarding dentine, EDS teeth had a lower content of C, and a higher content of Ca, P, and O. Ratios for Ca/C and Ca/O were also higher compared with controls. There are several aberrations of booth enamel and dentine in primary teeth from patients with EDS. These could explain the occurrence of both more dental caries and tooth fractures in patients with EDS.
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; McClanahan, T.; Namkung, M.; Nowicki, S.; Schweitzer, J.; Starr, R.
2012-01-01
The Probing In situ with Neutrons and Gamma rays (PING) instrument (formerly named PNG-GRAND) [I] experiment is an innovative application of the active neutron-gamma ray technology successfully used in oil field well logging and mineral exploration on Earth over many decades. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA/GSFC) is to bring PING to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Venus, asteroids, comets and the satellites of the outer planets and measure their bulk surface and subsurface elemental composition without the need to drill into the surface. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions. While orbital measurements can map a planet, they have low spatial and elemental sensitivity due to the low surface gamma ray emission rates reSUlting from using cosmic rays as an excitation source, PING overcomes this limitation in situ by incorporating a powerful neutron excitation source that permits significantly higher elemental sensitivity elemental composition measurements. PING combines a 14 MeV deuterium-tritium Pulsed Neutron Generator (PNG) with a gamma ray spectrometer and two neutron detectors to produce a landed instrument that can determine the elemental composition of a planet down to 30 - 50 cm below the planet's surface, The penetrating nature of .5 - 10 MeV gamma rays and 14 MeV neutrons allows such sub-surface composition measurements to be made without the need to drill into or otherwise disturb the planetary surface, thus greatly simplifying the lander design, We are cun'ently testing a PING prototype at a unique outdoor neutron instrumentation test facility at NASA/GSFC that provides two large (1.8 m x 1.8 m x ,9 m) granite and basalt test formations placed outdoors in an empty field, Since an independent trace elemental analysis has been performed on both these Columbia River basalt and Concord Gray granite materials, these large samples present two known standards with which to compare PING's experimentally measured elemental composition results, We will present both gamma ray and neutron experimental results from PING measurements of the granite and basalt test formations in various layering configurations and compare the results to the known composition.
Gasier, Heath G.; Hughes, Linda M.; Young, Colin R.; Richardson, Annely M.
2015-01-01
Background Little is known of the diagnostic accuracy of BMI in classifying obesity in active duty military personnel and those that previously served. Thus, the primary objectives were to determine the relationship between lean and fat mass, and body fat percentage (BF%) with BMI, and assess the agreement between BMI and BF% in defining obesity. Methods Body composition was measured by dual-energy X-ray absorptiometry in 462 males (20–91 years old) who currently or previously served in the U.S. Navy. A BMI of ≥ 30 kg/m2 and a BF% ≥ 25% were used for obesity classification. Results The mean BMI (± SD) and BF% were 28.8 ± 4.1 and 28.9 ± 6.6%, respectively, with BF% increasing with age. Lean mass, fat mass, and BF% were significantly correlated with BMI for all age groups. The exact agreement of obesity defined by BMI and BF% was fair (61%), however, 38% were misclassified by a BMI cut-off of 30 when obesity was defined by BF%. Conclusions From this data we determined that there is a good correlation between body composition and BMI, and fair agreement between BMI and BF% in classifying obesity in a group of current and former U.S. Navy service members. However, as observed in the general population, a significant proportion of individuals with excess fat are misclassified by BMI cutoffs. PMID:26197480
Gasier, Heath G; Hughes, Linda M; Young, Colin R; Richardson, Annely M
2015-01-01
Little is known of the diagnostic accuracy of BMI in classifying obesity in active duty military personnel and those that previously served. Thus, the primary objectives were to determine the relationship between lean and fat mass, and body fat percentage (BF%) with BMI, and assess the agreement between BMI and BF% in defining obesity. Body composition was measured by dual-energy X-ray absorptiometry in 462 males (20-91 years old) who currently or previously served in the U.S. Navy. A BMI of ≥ 30 kg/m2 and a BF% ≥ 25% were used for obesity classification. The mean BMI (± SD) and BF% were 28.8 ± 4.1 and 28.9 ± 6.6%, respectively, with BF% increasing with age. Lean mass, fat mass, and BF% were significantly correlated with BMI for all age groups. The exact agreement of obesity defined by BMI and BF% was fair (61%), however, 38% were misclassified by a BMI cut-off of 30 when obesity was defined by BF%. From this data we determined that there is a good correlation between body composition and BMI, and fair agreement between BMI and BF% in classifying obesity in a group of current and former U.S. Navy service members. However, as observed in the general population, a significant proportion of individuals with excess fat are misclassified by BMI cutoffs.
NASA Astrophysics Data System (ADS)
Bonanno, D.; China, S.; Fraund, M. W.; Pham, D.; Kulkarni, G.; Laskin, A.; Gilles, M. K.; Moffet, R.
2016-12-01
The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed before and after rain events to obtain airborne soil organic particles (ASOP), which are ejected after rain events. The unique composition of the ASOP may affect optical properties and/or hygroscopic properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP), and Aerosol Mass Spectrometry (AMS) from the ARM archive will be correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with hygroscopicity and optical properties. Further investigation of these organic particles will be performed to provide a mixing state parameterization and aid in the advancement of current climate models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.
2015-02-01
We grew CdTe xSe 1-x crystals with nominal Se concentrations of 5%, 7%, and 10% by the vertical Bridgman technique, and evaluated their compositional homogeneity and structural quality at the NSLS’ X-ray fluorescence and white beam X-ray topography beam lines. Both X-ray fluorescence and photoluminescence mapping revealed very high compositional homogeneity of the CdTe xSe 1-x crystals. Here, we noted that those crystals with higher concentrations of Se were more prone to twinning than those with a lower content. The crystals were fairly free from strains and contained low concentrations of sub-grain boundaries and their networks.
Cosmic ray antimatter: Is it primary or secondary?
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Protheroe, R. J.; Kazanas, D.
1981-01-01
The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic ray antiprotons, including the low energy measurement of Buffington, were examined. It is concluded that the cosmic ray antiproton data may be strong evidence for antimatter galaxies and baryon symmetric cosmology. The present antiproton data are consistent with a primary extragalactic component having antiproton/proton approximately equal to .0032 + or - 0.7.
The Development of Atmospheric Cherenkov Detectors at Milagro to Measure Cosmic-Ray Composition
NASA Astrophysics Data System (ADS)
Atkins, Robert; Dingus, Brenda; Benbow, Wystan; Coyne, Don; Kelley, Linda; Williams, David; Goodman, Jordan; Haines, Todd; Hoffman, Cyrus; Samuelson, Frank; Sinnis, Gus; McEnery, Julie; Mohanty, Gora; Stephens, Tom; Stochaj, Steve; Tumer, Tumay; Yodh, Gaurang
2002-04-01
Cosmic-ray composition in the region of the knee is being measured with the array of wide angle Cherenkov telescopes (WACT). WACT consists of six atmospheric Cherenkov telescopes (ACTs) located around the Milagro experiment. WACT is at an atmospheric depth of 750 g/cm^2 and is located 40 miles west of Los Alamos National Lab. WACT measures composition by examining the lateral distribution of Cherenkov light produced by cosmic-ray induced extensive air showers. Simulation and preliminary data analysis from the winter 2001/2002 observing campaign will be presented.
Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop
NASA Astrophysics Data System (ADS)
McNally, Frank
Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work represents an early attempt at understanding the anisotropy through the study of the spectrum and composition. The high-statistics data set reveals more details on the properties of the anisotropy, potentially able to shed light on the various physical processes responsible for the complex angular structure and energy evolution.
Bonef, Bastien; Lopez-Haro, Miguel; Amichi, Lynda; Beeler, Mark; Grenier, Adeline; Robin, Eric; Jouneau, Pierre-Henri; Mollard, Nicolas; Mouton, Isabelle; Monroy, Eva; Bougerol, Catherine
2016-12-01
The enhancement of the performance of advanced nitride-based optoelectronic devices requires the fine tuning of their composition, which has to be determined with a high accuracy and at the nanometer scale. For that purpose, we have evaluated and compared energy dispersive X-ray spectroscopy (EDX) in a scanning transmission electron microscope (STEM) and atom probe tomography (APT) in terms of composition analysis of AlGaN/GaN multilayers. Both techniques give comparable results with a composition accuracy better than 0.6 % even for layers as thin as 3 nm. In case of EDX, we show the relevance of correcting the X-ray absorption by simultaneous determination of the mass thickness and chemical composition at each point of the analysis. Limitations of both techniques are discussed when applied to specimens with different geometries or compositions.
MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating
NASA Technical Reports Server (NTRS)
Shaoo, Naba K.; Shapiro, Alan P.
1998-01-01
The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.
Cosmic ray composition investigations using ICE/ISEE-3
NASA Technical Reports Server (NTRS)
Wiedenbeck, Mark E.
1992-01-01
The analysis of data from the high energy cosmic experiment on ISEE-3 and associated modeling and interpretation activities are discussed. The ISEE-3 payload included two instruments capable of measuring the composition of heavy cosmic rays. The designs of these two instruments incorporated innovations which made it possible, for the first time, to measure isotopic as well as the chemical composition for a wide range of elements. As the result of the demonstrations by these two instruments of the capability to resolve individual cosmic ray isotopes, a new generation of detectors was developed using very similar designs, but having improved reliability and increased sensitive area. The composition measurements which were obtained from the ISEE-3 experiment are summarized.
X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.
Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D
2002-07-01
Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.
Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Parker, F. Raymond
2014-01-01
Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.
2016-07-11
composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3
NASA Technical Reports Server (NTRS)
1974-01-01
An X-ray observation of the Norma-Lupus region, charge and isotope measurements of heavy cosmic ray nuclei and their role in the determination of cosmic ray age, and the possibility of a contribution to primary cosmic ray spectra from pulsars are among the topics covered in papers concerned with some of the results of recent cosmic ray research. Other topics covered include multiple scattering of charged particles in magnetic fields, absorption of primary cosmic rays in the atmosphere, and phase lag effects on cosmic ray modulation during a recent solar cycle. Individual items are announced in this issue.
HZE reactions and data-base development
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Cucinotta, Francis A.; Wilson, John W.
1993-01-01
The primary cosmic rays are dispersed over a large range of linear energy transfer (LET) values and their distribution over LET is a determinant of biological response. This LET distribution is modified by radiation shielding thickness and shield material composition. The current uncertainties in nuclear cross sections will not allow the composition of the shield material to be distinguished in order to minimize biological risk. An overview of the development of quantum mechanical models of heavy ion reactions will be given and computational results compared with experiments. A second approach is the development of phenomenological models from semi-classical considerations. These models provide the current data base in high charge and energy (HZE) shielding studies. They will be compared with available experimental data. The background material for this lecture will be available as a review document of over 30 years of research at Langley but will include new results obtained over the last year.
Himmi, S. Khoirul; Yoshimura, Tsuyoshi; Yanase, Yoshiyuki; Oya, Masao; Torigoe, Toshiyuki; Akada, Masanori; Imadzu, Setsuo
2016-01-01
An X-ray computed-tomographic examination of nest-gallery development from timbers naturally infested by foraging groups of Incisitermes minor colonies was conducted. This study documents the colonization process of I. minor to new timbers and how the isolated groups maintain their nest-gallery system. The results suggested that development of a nest-gallery within a suitable wood item is not random, but shows selection for softer substrate and other adaptations to the different timber environments. Stigmergic coordinations were expressed in dynamic changes of the nest-gallery system; indicated by fortification behavior in sealing and re-opening a tunnel approaching the outer edge of the timber, and accumulating fecal pellets in particular chambers located beneath the timber surface. The study also examines the caste composition of isolated groups to discover how I. minor sustains colonies with and without primary reproductives. PMID:27455332
NASA Astrophysics Data System (ADS)
Wei, Yanni; Luo, Yongguang; Qu, Hongtao; Zou, Juntao; Liang, Shuhua
2017-12-01
In this paper, microstructure evolution and failure analysis of the aluminum-copper interface of cathode conductive heads during their use were studied. The interface morphologies, compositions, conductivity and mechanical properties were investigated and analyzed. Obvious corrosion was found on the surface of the contact interface, which was more prevalent on an Al matrix. The crack increased sharply in the local metallurgical bonding areas on the interface, with the compound volume having no significant change. The phase transformation occurred on the interface during use, which was investigated using the elemental composition and x-ray diffraction pattern. The microhardness near the interface increased accordingly. An obvious electrical conductivity decrease appeared on the Al/Cu interface of the cathode conductive head after use over a specific time interval. Therefore, the deterioration of the microstructures and corrosion are the primary factors that affect the electrical conductivity and effective bonding, which will lead to eventual failure.
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang
2018-02-01
Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.
Describing the observed cosmic neutrinos by interactions of nuclei with matter
NASA Astrophysics Data System (ADS)
Winter, Walter
2014-11-01
IceCube has observed neutrinos that are presumably of extra-Galactic origin. Since specific sources have not yet been identified, we discuss what could be learned from the conceptual point of view. We use a simple model for neutrino production from the interactions between nuclei and matter, and we focus on the description of the spectral shape and flavor composition observed by IceCube. Our main parameters are the spectral index, maximal energy, magnetic field, and composition of the accelerated nuclei. We show that a cutoff at PeV energies can be achieved by soft enough spectra, a cutoff of the primary energy, or strong enough magnetic fields. These options, however, are difficult to reconcile with the hypothesis that these neutrinos originate from the same sources as the ultrahigh-energy cosmic rays. We demonstrate that heavier nuclei accelerated in the sources may be a possible way out if the maximal energy scales appropriately with the mass number of the nuclei. In this scenario, neutrino observations can actually be used to test the ultrahigh-energy cosmic ray acceleration mechanism. We also emphasize the need for a volume upgrade of the IceCube detector for future precision physics, for which the flavor information becomes a statistically meaningful model discriminator as well as a qualitatively new ingredient.
Quantification by SEM-EDS in uncoated non-conducting samples
NASA Astrophysics Data System (ADS)
Galván Josa, V.; Castellano, G.; Bertolino, S. R.
2013-07-01
An approach to perform elemental quantitative analysis in a conventional scanning electron microscope with an energy dispersive spectrometer has been developed for non-conductive samples in which the conductive coating should be avoided. Charge accumulation effects, which basically decrease the energy of the primary beam, were taken into account by means of the Duane-Hunt limit. This value represents the maximum energy of the continuum X-ray spectrum, and is related to the effective energy of the incident electron beam. To validate the results obtained by this procedure, a non-conductive sample of known composition was quantified without conductive coating. Complementarily, changes in the X-ray spectrum due to charge accumulation effects were studied by Monte Carlo simulations, comparing relative characteristic intensities as a function of the incident energy. This methodology is exemplified here to obtain the chemical composition of white and reddish archaeological pigments belonging to the Ambato style of "Aguada" culture (Catamarca, Argentina 500-1100 AD). The results obtained in this work show that the quantification procedure taking into account the Duane-Hunt limit is suitable for this kind of samples. This approach may be recommended for the quantification of samples for which coating is not desirable, such as ancient artwork, forensic or archaeological samples, or when the coating element is also present in the sample.
NASA Astrophysics Data System (ADS)
Bonanno, D.; Fraund, M. W.; Pham, D.; China, S.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.
2017-12-01
The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed to obtain airborne soil organic particles (ASOP), which are believed to be ejected following rain events. The unique composition of the ASOP have been shown to affect optical properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP) from the ARM archive are correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with optical properties.
Applications of primary and secondary inclusion assemblages for zircon petrogenesis and alteration
NASA Astrophysics Data System (ADS)
Bell, E. A.
2017-12-01
Igneous zircon often contains abundant mineral inclusions which represent a mixture of primary phases captured during crystallization in magma and secondary phases formed either during late-stage deuteric alteration of a solidifying pluton, during later metamorphism, or during detrital transport and diagenesis in groundwater. Microstructural examination of zircon from both magmatic and metamorphic rocks reveals varying abundances of clearly secondary phases filling cracks and potentially secondary phases in contact with cracks or in disturbed regions of the host zircon. We used EDS and WDS X-ray spectroscopy to examine crack-isolated, crack-intersecting, and crack-filling phases in zircon from Phanerozoic magmatic rocks (USA, Victoria), several Grenville (Blue Ridge, VA) orthogneisses, and detrital zircons in metasediments from Jack Hills, Mt. Narryer (Western Australia) and the Nuvvuagittuq supracrustal belt (northern Quebec). Orthogneiss and detrital zircon appear to retain primary inclusion compositions away from contact with cracks or disturbed regions of zircon (as distinguished by U-Pb). Characteristic trace element patterns associated with chemical alteration of zircon match well with the apparently dominant secondary phases in metasedimentary detrital zircons and magmatic zircon subjected to deuteric alteration. Additionally, high spatial resolution Pb isotopic analyses of secondary phosphates using the CAMECA ims1290 ion microprobe reveal preservation of multiple generations of metamorphic phosphate, in some cases juxtaposed within a single inclusion on the 5-10 micron scale. Zircon can therefore in many cases preserve the compositions of its primary inclusion cargo through later metamorphism. Zircon can also preserve information about individual hydrothermal or metamorphic events during the grain's residence in the crust.
NASA Technical Reports Server (NTRS)
Chupp, E. L.
1987-01-01
Electrons and ions, over a wide range of energies, are produced in association with solar flares. Solar energetic particles (SEPs), observed in space and near earth, consist of electrons and ions that range in energy from 10 keV to about 100 MeV and from 1 MeV to 20 GeV, respectively. SEPs are directly recorded by charged particle detectors, while X-ray, gamma-ray, and neutron detectors indicate the properties of the accelerated particles (electrons and ions) which have interacted in the solar atmosphere. A major problem of solar physics is to understand the relationship between these two groups of charged particles; in particular whether they are accelerated by the same mechanism. The paper reviews the physics of gamma-rays and neutron production in the solar atmosphere and the method by which properties of the primary charged particles produced in the solar flare can be deduced. Recent observations of energetic photons and neutrons in space and at the earth are used to present a current picture of the properties of impulsively flare accelerated electrons and ions. Some important properties discussed are time scale of production, composition, energy spectra, accelerator geometry. Particular attention is given to energetic particle production in the large flare on June 3, 1982.
The Ultimate Monte Carlo: Studying Cross-Sections With Cosmic Rays
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.
2007-01-01
The high-energy physics community has been discussing for years the need to bring together the three principal disciplines that study hadron cross-section physics - ground-based accelerators, cosmic-ray experiments in space, and air shower research. Only recently have NASA investigators begun discussing the use of space-borne cosmic-ray payloads to bridge the gap between accelerator physics and air shower work using cosmic-ray measurements. The common tool used in these three realms of high-energy hadron physics is the Monte Carlo (MC). Yet the obvious has not been considered - using a single MC for simulating the entire relativistic energy range (GeV to EeV). The task is daunting due to large uncertainties in accelerator, space, and atmospheric cascade measurements. These include inclusive versus exclusive cross-section measurements, primary composition, interaction dynamics, and possible new physics beyond the standard model. However, the discussion of a common tool or ultimate MC might be the very thing that could begin to unify these independent groups into a common purpose. The Offline ALICE concept of a Virtual MC at CERN s Large Hadron Collider (LHC) will be discussed as a rudimentary beginning of this idea, and as a possible forum for carrying it forward in the future as LHC data emerges.
The nature of crater rays - The Copernicus example
NASA Technical Reports Server (NTRS)
Pieters, C. M.; Adams, J. B.; Smith, M. O.; Mouginis-Mark, P. J.; Zisk, S. H.
1985-01-01
It is pointed out that crater rays are filamentous, generally high-albedo features which emanate nearly radially from young impact structures. An investigation has been conducted of the physical and chemical properties of a single lunar ray system for Copernicus crater with the objective to achieve a better understanding of the nature of crater rays, taking into account questions regarding the local or foreign origin of ray material. A combination of data is considered, giving attention to spectral reflectance (for composition), radar (for physical properties), and images (for photogeologic context). The crater Copernicus was selected because of its well-developed ray system, the crater's relative youth, and the compositional contrast between the target material of Copernicus crater and the material on which many rays were emplaced.
Galactic cosmic ray composition and energy spectra
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.
1994-01-01
Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.
The KASCADE-Grande observatory and the composition of very high-energy cosmic rays
NASA Astrophysics Data System (ADS)
Arteaga-Velázquez, J. C.; Apel, W. D.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2015-11-01
KASCADE-Grande is an air-shower observatory devoted to the detection of cosmic rays with energies in the range of 1016 to 1018 eV. This energy region is of particular interest for the cosmic ray astrophysics, since it is the place where some models predict the existence of a transition from galactic to extragalactic origin of cosmic rays and the presence of a break in the flux of its heavy component. The detection of these features requires detailed and simultaneous measurements of the energy and composition of cosmic rays with sufficient statistics. These kinds of studies are possible for the first time in KASCADE-Grande due to the accurate measurements of several air-shower observables, i.e., the number of charged particles, electrons and muons in the shower, using the different detector systems of the observatory. In this contribution, a detailed look into the composition of 1016 — 1018 eV cosmic rays with KASCADE-Grande is presented.
Active Neutron and Gamma Ray Instrumentation for In Situ Planetary Science Applications
NASA Technical Reports Server (NTRS)
Parsons, A.; Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
The Pulsed Neutron Generator-Gamma Ray And Neutron Detectors (PNG-GRAND) experiment is an innovative application of the active neutron-gamma ray technology so successfully used in oil field well logging and mineral exploration on Earth. The objective of our active neutron-gamma ray technology program at NASA Goddard Space Flight Center (NASA-GSFC) is to bring the PNG-GRAND instrument to the point where it can be flown on a variety of surface lander or rover missions to the Moon, Mars, Menus, asteroids, comets and the satellites of the outer planets. Gamma-Ray Spectrometers (GRS) have been incorporated into numerous orbital planetary science missions and, especially its the case of the Mars Odyssey GRS, have contributed detailed maps of the elemental composition over the entire surface of Mars. However, orbital gamma ray measurements have low spatial sensitivity (100's of km) due to their low surface emission rates from cosmic rays and subsequent need to be averaged over large surface areas. PNG-GRAND overcomes this impediment by incorporating a powerful neutron excitation source that permits high sensitivity surface and subsurface measurements of bulk elemental compositions. PNG-GRAND combines a pulsed neutron generator (PNG) with gamma ray and neutron detectors to produce a landed instrument to determine subsurface elemental composition without needing to drill into a planet's surface a great advantage in mission design. We are currently testing PNG-GRAND prototypes at a unique outdoor neutron instrumentation test facility recently constructed at NASA/GSFC that consists of a 2 m x 2 in x 1 m granite structure placed outdoors in an empty field. Because an independent trace elemental analysis has been performed on the material, this granite sample is a known standard with which to compare both Monte Carlo simulations and our experimentally measured elemental composition data. We will present data from operating PNG-GRAND in various experimental configurations on a known sample in a geometry that is identical to that on a planetary surface. We will also illustrate the use of gamma ray timing techniques to improve sensitivity and will compare the material composition results from our experiments to both an independent laboratory elemental composition analysis and MCNPX computer modeling results.
Uncertainties in atmospheric muon-neutrino fluxes arising from cosmic-ray primaries
NASA Astrophysics Data System (ADS)
Evans, Justin; Garcia Gamez, Diego; Porzio, Salvatore Davide; Söldner-Rembold, Stefan; Wren, Steven
2017-01-01
We present an updated calculation of the uncertainties on the atmospheric muon-neutrino flux arising from cosmic-ray primaries. For the first time, we include recent measurements of the cosmic-ray primaries collected since 2005. We apply a statistical technique that allows the determination of correlations between the parameters of the Gaisser, Stanev, Honda, and Lipari primary-flux parametrization and the incorporation of these correlations into the uncertainty on the muon-neutrino flux. We obtain an uncertainty related to the primary cosmic rays of around (5-15)%, depending on energy, which is about a factor of 2 smaller than the previously determined uncertainty. The hadron production uncertainty is added in quadrature to obtain the total uncertainty on the neutrino flux, which is reduced by ≈5 % . To take into account an unexpected hardening of the spectrum of primaries above energies of 100 GeV observed in recent measurements, we propose an alternative parametrization and discuss its impact on the neutrino flux uncertainties.
Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D
2017-05-01
The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Cheng; Meitian, Li; Youshi, Kim; Changsheng, Fan; Shanghai, Wang; Qiuli, Pan; Zhiguo, Liu; Rongwu, Li
2011-02-01
It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.
Cosmic ray antimatter and baryon symmetric cosmology
NASA Technical Reports Server (NTRS)
Stecker, F. W.; Protheroe, R. J.; Kazanas, D.
1982-01-01
The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less
Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn; ...
2015-09-05
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less
Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank
2016-01-01
Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells) are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity. PMID:27327435
Ahmad Agha, Nezha; Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank
2016-01-01
Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells) are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity.
An experiment to study the nuclear component of primary cosmic rays
NASA Technical Reports Server (NTRS)
Paul, J. M.; Verma, S. D.
1971-01-01
An apparatus has been designed and is being fabricated to study the charge composition, fluxes, and energy spectra of light nuclei in the energy region from 1 GeV to 100 GeV. The apparatus essentially consists of an array of a large number of particle detectors operated in coincidence and serving as a charged particle telescope. A mosaic silicon semiconductor detector, a plastic scintillation counter and a lucite Cerenkov detector are used to measure the charges of the incident nuclei. Two one-inch thick CsI detectors are used to study low energy particles. An ionization spectrometer is utilized to measure primary energies in the 1 to 100 GeV energy interval. A gas Cerenkov counter is being designed to distinguish between electrons and protons. It is planned to calibrate the apparatus at an accelerator using particles of known energy.
Quantitative Electron Probe Microanalysis: State of the Art
NASA Technical Reports Server (NTRS)
Carpernter, P. K.
2005-01-01
Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.
Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; ...
2017-02-01
Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch’s membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-lm-thickmore » inserts with 0.4-lm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. In conclusion, the data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch’s membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.« less
Pilgrim, Matthew G; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C; Messinger, Jeffrey D; Read, Russell W; Guidry, Clyde; Curcio, Christine A
2017-02-01
Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.
Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C.; Messinger, Jeffrey D.; Read, Russell W.; Guidry, Clyde; Curcio, Christine A.
2017-01-01
Purpose Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss. PMID:28146236
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio
Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch’s membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Apparently functional primary RPE cells, when cultured on 10-lm-thickmore » inserts with 0.4-lm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. In conclusion, the data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch’s membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.« less
Radiation response of cubic mesoporous silicate and borosilicate thin films
NASA Astrophysics Data System (ADS)
Manzini, Ayelén; Alurralde, Martín; Luca, Vittorio
2018-01-01
The radiation response has been studied of cubic mesoporous silicate and borosilicate thin films having different boron contents prepared using the block copolymer template Brij 58 and the dip coating technique. The degree of pore ordering of the films was analysed using low-angle X-ray diffraction and film thickness measured by X-ray reflectivity. For films calcined at 350 °C, the incorporation of boron resulted in a reproducible oscillatory variation in the d-spacing and intensity of the primary reflection as a function of boron content. A clear peak was observed in the d-spacing at 5-10 mol% boron incorporation. For borosilicate films of a given composition an overall suppression of d-spacing was observed as a function of aging time relative to films that did not contain boron. This was ascribed to a slow condensation process. The films were irradiated in pile with neutrons and with iodine ions at energies of 180 keV and 70 MeV. Neutron irradiation of the silicate thin films for periods up to 30 days and aged for 400 days resulted in little reduction in either d-spacing or intensity of the primary low-angle X-ray reflection indicating that the films retained their mesopore ordering. In contrast borosilicate films for which the B (n, α) reaction was expected to result in enhanced displacement damage showed much larger variations in X-ray parameters. For these films short irradiation times resulted in a reduction of the d-spacing and intensity of the primary reflections considerably beyond that observed through aging. It is concluded that prolonged neutron irradiation and internal α irradiation have only a small, although measurable, impact on mesoporous borosilicate thin films increasing the degree of condensation and increasing unit cell contraction. When these borosilicate films were irradiated with iodine ions, more profound changes occurred. The pore ordering of the films was significantly degraded when low energy ions were used. In some cases the degree of damage was such that no low-angle reflection could be observed. This degradation of pore ordering was confirmed in scanning electron microscopy images of the irradiated films.
Surface characterization of selected LDEF tray clamps
NASA Technical Reports Server (NTRS)
Cromer, T. F.; Grammer, H. L.; Wightman, J. P.; Young, Philip R.; Slemp, Wayne S.
1993-01-01
The surface characterization of chromic acid anodized 6061-T6 aluminum alloy tray clamps has shown differences in surface chemistry depending upon the position on the Long Duration Exposure Facility (LDEF). Water contact angle results showed no changes in wettability of the tray clamps. The overall surface topography of the control, trailing edge(E3) and leading edge(D9) samples was similar. The thickness of the aluminum oxide layer for all samples determined by Auger depth profiling was less than one micron. X-ray photoelectron spectroscopy (XPS) analysis of the tray clamps showed significant differences in the surface composition. Carbon and silicon containing compounds were the primary contaminants detected.
NASA Astrophysics Data System (ADS)
Santillan, J. D.; Boyce, J. W.; Eagle, R.; Martin, T.; Tuetken, T.; Eiler, J.
2010-12-01
The stable isotope compositions of carbonate and phosphate components in fossil teeth and bone are widely used to infer information on paleoclimate and the physiology of extinct organisms. Recently the potential for measuring the body temperatures of extinct vertebrates from analyses of 13C-18O bond ordering in fossil teeth has been demonstrated (Eagle et al. 2010). The interpretation of these isotopic signatures relies on an assessment of the resistance of fossil bioapatite to alteration, as diffusion within, and partial recrystallization, or replacement of the original bioapatite will lead to measured compositions that represent mixtures between primary and secondary phases and/or otherwise inaccurate apparent temperatures. X-ray computed tomography (CT) allows 3-D density maps of teeth to be made at micron-scale resolution. Such density maps have the potential to record textural evidence for alteration, recrystallization, or replacement of enamel. Because it is non-destructive, CT can be used prior to stable isotope analysis to identify potentially problematic samples without consuming or damaging scientifically significant specimens. As a test, we have applied CT to tooth fragments containing both dentin and enamel from Late Jurassic sauropods and a Late Cretaceous theropod that yielded a range of clumped isotope temperatures from anomalously high ˜60oC to physiologically plausible ≤40oC. This range of temperatures suggests partial, high-temperature modification of some specimens, but possible preservation of primary signals in others. Three-dimensional CT volumes generated using General Electric Phoenix|x-ray CT instruments were compared with visible light and back-scattered electron images of the same samples. The tube-detector combination used for the CT study consisted of a 180 kV nanofocus transmission tube coupled with a 127 micron pixel pitch detector ( ˜3-12μ m voxel edges), allowing us to clearly map out alteration zones in high contrast, while reducing edge effects and beam hardening artifacts. CT images of these teeth show a range of replacement textures. One tooth -- thought to be the least altered -- shows only localized positive density anomalies near fractures, while a second -- thought to be highly altered -- contains high-density replacement mineralization. A third tooth -- one suspected of possible partial alteration -- shows a network of rectilinear density anomalies in the enamel similar to 2-D transmitted light and back-scattered electron images. This may represent recrystallization or replacement of the primary bioapatite. Unlike 2-D imaging techniques, 3-D volumes can be used to quickly and easily make quantitative measurements of the volumes of altered and unaltered materials: For example, in the enamel of sample 3, we observe a ratio of high density to low density material of ˜ 3:2.
Underground measurements on secondary cosmic rays
NASA Technical Reports Server (NTRS)
Wilson, C. W.; Fenton, A. G.; Fenton, K. B.
1985-01-01
Measurements made at the Poatina cosmic ray station (41.8 S 149.9 E, 347 m.w.e.) from August 1983 to July 1984 are summarized. The cosmic ray primary particles responsible for events detected at the station have a median primary energy of 1.2 TeV. The motivation for part of this work came from the reported detection of narrow angle anisotropies in the arrival direction of cosmic rays.
NASA Astrophysics Data System (ADS)
Anchordoqui, Luis A.; Barger, Vernon; Weiler, Thomas J.
2018-03-01
We argue that if ultrahigh-energy (E ≳1010GeV) cosmic rays are heavy nuclei (as indicated by existing data), then the pointing of cosmic rays to their nearest extragalactic sources is expected for 1010.6 ≲ E /GeV ≲1011. This is because for a nucleus of charge Ze and baryon number A, the bending of the cosmic ray decreases as Z / E with rising energy, so that pointing to nearby sources becomes possible in this particular energy range. In addition, the maximum energy of acceleration capability of the sources grows linearly in Z, while the energy loss per distance traveled decreases with increasing A. Each of these two points tend to favor heavy nuclei at the highest energies. The traditional bi-dimensional analyses, which simultaneously reproduce Auger data on the spectrum and nuclear composition, may not be capable of incorporating the relative importance of all these phenomena. In this paper we propose a multi-dimensional reconstruction of the individual emission spectra (in E, direction, and cross-correlation with nearby putative sources) to study the hypothesis that primaries are heavy nuclei subject to GZK photo-disintegration, and to determine the nature of the extragalactic sources. More specifically, we propose to combine information on nuclear composition and arrival direction to associate a potential clustering of events with a 3-dimensional position in the sky. Actually, both the source distance and maximum emission energy can be obtained through a multi-parameter likelihood analysis to accommodate the observed nuclear composition of each individual event in the cluster. We show that one can track the level of GZK interactions on an statistical basis by comparing the maximum energy at the source of each cluster. We also show that nucleus-emitting-sources exhibit a cepa stratis structure on Earth which could be pealed off by future space-missions, such as POEMMA. Finally, we demonstrate that metal-rich starburst galaxies are highly-plausible candidate sources, and we use them as an explicit example of our proposed multi-dimensional analysis.
The response of an RC line MWPC to primary cosmic rays. [Multi-Wire Proportional Counter
NASA Technical Reports Server (NTRS)
Gregory, J. C.; Selig, W. J.; Austin, R. W.; Derrickson, J. H.; Parnell, T. A.
1978-01-01
A simple 50 x 50 sq cm MWPC plane was arranged as an RC-line and flown on a balloon flight with the MSFC-UAH Cosmic Ray experiment. Positions of primary cosmic ray tracks in the RC-line were determined by the risetime method and compared with the expected position as indicated by a best line fitted through four planes of the conventional MWPC hodoscope. Mean errors were estimated for sea-level muons, and CNO group and iron group particles. It is believed that the delta-rays accompanying the primaries degraded the position resolution. Measured standard deviations allowing for uncertainty in the true track position are of the order of 1 cm or less in the primary charge region between 7 and 26.
Tanvig, Mette; Vinter, Christina A; Jørgensen, Jan S; Wehberg, Sonja; Ovesen, Per G; Lamont, Ronald F; Beck-Nielsen, Henning; Christesen, Henrik T; Jensen, Dorte M
2014-01-01
In obese women, 1) to assess whether lower gestational weight gain (GWG) during pregnancy in the lifestyle intervention group of a randomized controlled trial (RCT) resulted in differences in offspring anthropometrics and body composition, and 2) to compare offspring outcomes to a reference group of children born to women with a normal Body Mass Index (BMI). The LiPO (Lifestyle in Pregnancy and Offspring) study was an offspring follow-up of a RCT with 360 obese pregnant women with a lifestyle intervention during pregnancy including dietary advice, coaching and exercise. The trial was completed by 301 women who were eligible for follow-up. In addition, to the children from the RCT, a group of children born to women with a normal BMI were included as a reference group. At 2.8 (range 2.5-3.2) years, anthropometrics were measured in 157 children of the RCT mothers and in 97 reference group children with Body Mass Index (BMI) Z-score as a primary outcome. Body composition was estimated by Dual Energy X-ray (DEXA) in 123 successful scans out of 147 (84%). No differences between randomized groups were seen in mean (95% C.I.) BMI Z-score (intervention group 0.06 [-0.17; 0.29] vs. controls -0.18 [-0.43; 0.05]), in the percentage of overweight or obese children (10.9% vs. 6.7%), in other anthropometrics, or in body composition values by DEXA. Outcomes between children from the RCT and the reference group children were not significantly different. The RCT with lifestyle intervention in obese pregnant women did not result in any detectable effect on offspring anthropometrics or body composition by DEXA at 2.8 years of age. This may reflect the limited difference in GWG between intervention and control groups. Offspring of obese mothers from the RCT were comparable to offspring of mothers with a normal BMI.
Geochemistry of Vesta and Ceres: In-flight calibration of Dawn
NASA Astrophysics Data System (ADS)
Prettyman, T. H.; Feldman, W. C.; McSween, H. Y.
2009-04-01
The purpose of the Dawn mission is to investigate processes that contributed to the formation and early evolution of solid bodies in the solar system by exploring Vesta and Ceres, which are the two largest bodies in the main astreroid belt. Because they were formed at different heliocentric distances, Vesta and Ceres incorporated different amounts of water and other volatiles, which strongly influenced their thermal evolution. Vesta, which is thought to be the source of the basaltic, Howardite, Eucrite, and Diogenite (HED) meteorites, is dry and underwent igneous differentiation. In contrast, low-temperature, aqueous processing must have played an important role in the evolution of Ceres, which is rich in water and other volatiles, and may still contain subsurface liquid water. By exploring both Vesta and Ceres, the gradient in the composition of the solar nebula and role of water in planetary evolution can be investigated. The Dawn payload includes redundant framing cameras (FC), a visible and infrared spectrometer (VIR), and a gamma ray and neutron detector (GRaND), which, along with radio science, will measure surface geomorphology, composition, and mineralogy, and provide constraints on the internal structure of Vesta and Ceres. For both Vesta and Ceres, global mapping data will be acquired from circular polar orbits. In low altitude orbits, GRaND will map the elemental composition of Vesta and Ceres to depths less than one meter, including major rock forming elements and light elements (such as H, C, and N), which are the primary constituents of ices. GRaND consists of 21 radiation sensors, which measure the spectrum of neutrons and gamma rays originating from interactions between galactic cosmic rays and the material constituents of the asteroids and, separately, backgrounds from spacecraft materials. GRaND uses a bismuth germanate (BGO) scintillator for gamma ray spectroscopy, which has high efficiency, enabling the measurement of gamma rays up to 10 MeV, including capture gamma rays from Fe and Ti. Below 3 MeV, the BGO sensor works in combination with a 16-element array of CdZnTe semiconductors, which have relatively high resolution, enabling accurate measurement of the densely populated, low energy region of the gamma ray spectrum, which contains gamma rays from radioactive decay (K, Th, and U) and from nuclear reactions (for example, with Mg, Si, and H). Thermal, epithermal, and fast neutrons are measured using a combination of boron-loaded plastic and lithium-loaded glass scintillators. At Vesta, gamma ray and neutron spectroscopy will be used to determine geochemical trends that can be compared with HED data. For example, a scatter plot of the average atomic mass (determined from fast neutrons) and magnesium number can be used to tell the difference between diogenite and eucrite compositions, which are HED end-members. Correlations with MgO (for example, with FeO or SiO2) also strongly differentiate between diogenite and eucrite, and, in combination with optical spectroscopy, can be used to determine whether an olivine-rich mantle is exposed in Vesta's large south polar crater. At Ceres, neutron spectroscopy can be used to determine water abundance and layering (for example, ice may be present in the shallow subsurface at high latitudes), which will provide constraints on recharge and loss mechanisms (for example, emplacement via water volcanism vs. gradual replenishment from a subsurface acquifer). In addition, nuclear spectroscopy can be used to determine the possible presence of CO2 and NH3 ices on the surface of Ceres as well as the composition of non-icy materials, including the hydration state and composition of surface minerals. GRaND was calibrated in the laboratory prior to delivery to the spacecraft. In addition, the response of the instrument to the space radiation environment was measured during Earth-Mars cruise, which followed launch in September of 2007. Because the data were acquired when the energetic particle flux was minimal, the measurements are ideal for determining the background from galactic cosmic rays under conditions that would be ideal for science data acquisition at Vesta and Ceres. In February of 2009, the spacecraft will fly by Mars. At closest approach, the spacecraft will be within 500 km of Mars, providing GRaND with a strong source of planetary neutrons and gamma rays, which will be used to cross-calibrate GRaND against elemental abundance data acquired by the Mars Odyssey Gamma Ray Spectrometer instrument suite. Here, we describe the instrument response model and its application to the analysis of the space radiation background during cruise and cross-calibration against Odyssey data at Mars. The model is applied to determine the expected performance of GRaND at Vesta and Ceres.
Some, Surajit; Sohn, Ji Soo; Kim, Junmoo; Lee, Su-Hyun; Lee, Su Chan; Lee, Jungpyo; Shackery, Iman; Kim, Sang Kyum; Kim, So Hyun; Choi, Nakwon; Cho, Il-Joo; Jung, Hyo-Il; Kang, Shinill; Jun, Seong Chan
2016-01-01
Graphene-composites, capable of inhibiting bacterial growth which is also bio-compatible with human cells have been highly sought after. Here we report for the first time the preparation of new graphene-iodine nano-composites via electrostatic interactions between positively charged graphene derivatives and triiodide anions. The resulting composites were characterized by X-ray photoemission spectroscopy, UV-spectroscopy, Raman spectroscopy and Scanning electron microscopy. The antibacterial potential of these graphene-iodine composites against Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirobilis, Staphylococcus aureus, and E. coli was investigated. In addition, the cytotoxicity of the nanocomposite with human cells [human white blood cells (WBC), HeLa, MDA-MB-231, Fibroblast (primary human keratinocyte) and Keratinocyte (immortalized fibroblast)], was assessed. DGO (Double-oxidizes graphene oxide) was prepared by the additional oxidation of GO (graphene oxide). This generates more oxygen containing functional groups that can readily trap more H+, thus generating a positively charged surface area under highly acidic conditions. This step allowed bonding with a greater number of anionic triiodides and generated the most potent antibacterial agent among graphene-iodine and as-made povidone-iodine (PVP-I) composites also exhibited nontoxic to human cells culture. Thus, these nano-composites can be used to inhibit the growth of various bacterial species. Importantly, they are also very low-cytotoxic to human cells culture. PMID:26843066
Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites
NASA Astrophysics Data System (ADS)
Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja
2016-09-01
Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.
Compounds for neutron radiation detectors and systems thereof
Payne, Stephen A.; Stoeffl, Wolfgang; Zaitseva, Natalia P.; Cherepy, Nerine J.; Carman, Leslie M.
2016-08-30
A composition of matter includes an organic molecule having a composition different than stilbene. The organic molecule is embodied as a crystal, and exhibits: an optical response signature for neutrons; an optical response signature for gamma rays, and performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays. The optical response signature for neutrons is different than the optical response signature for gamma rays.
High Sensitivity, One-Sided X-Ray Inspection System.
1985-07-01
8217. X-Ray Imaging Quantitative NDT One-Sided Inspection Backs cat ter De laminat ions .. Nondestructive Testing (NDT) Rocket Motor Case NDT ’j 20...epoxy composites and other low atomic number materials have been detected. Wall thick nesses up to 7 cm thick have been interrogated. The results show...fiber composite rocket motor pressure vessels, the anticipated backscatter x-ray instrument will offer high sensitivity (contact delaminations have
Lead oxide-decorated graphene oxide/epoxy composite towards X-Ray radiation shielding
NASA Astrophysics Data System (ADS)
Hashemi, Seyyed Alireza; Mousavi, Seyyed Mojtaba; Faghihi, Reza; Arjmand, Mohammad; Sina, Sedigheh; Amani, Ali Mohammad
2018-05-01
In this study, employing modified Hummers method coupled with a multi-stage manufacturing procedure, graphene oxide (GO) decorated with Pb3O4 (GO-Pb3O4) at different weight ratios was synthesized. Thereupon, via the vacuum shock technique, composites holding GO-Pb3O4 at different filler loadings (5 and 10 wt%) and thicknesses (4 and 6 mm) were fabricated. Successful decoration of GO with Pb3O4 was confirmed via FTIR analysis. Moreover, particle size distribution of the produced fillers was examined using particle size analyzer. X-ray attenuation examination revealed that reinforcement of epoxy-based composites with GO-Pb3O4 led to a significant improvement in the overall attenuation rate of X-ray beam. For instance, composites containing 10 wt% GO-Pb3O4 with 6 mm thickness showed 4.06, 4.83 and 3.91 mm equivalent aluminum thickness at 40, 60 and 80 kVp energies, denoting 124.3, 124.6 and 103.6% improvement in the X-ray attenuation rate compared to a sample holding neat epoxy resin, respectively. Simulation results revealed that the effect of GO-Pb3O4 loading on the X-ray shielding performance undermined with increase in the voltage of the applied X-ray beam.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
KASCADE-Grande Review, Recent Results, Future Endeavors
NASA Astrophysics Data System (ADS)
Schoo, S.; Apel, W. D.; Arteaga-Velázquez, J. C.; Beck, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
A detailed knowledge of the energy spectrum and composition of cosmic rays (CRs) is the most important source of information for solving the riddle of the origin of CRs. The KASCADE experiment and its extension KASCADE-Grande have contributed much to the current knowledge about both the spectrum and composition in the energy range from around 1 PeV to 1 EeV. One of the most important results of the KASCADE experiment is the connection of the knee at a few PeV to a decrease in the flux of light primaries. Later, KASCADE-Grande found a knee-like structure also in the spectrum of heavy elements at around 90 PeV and an ankle-like feature in the spectrum of light elements just above 100 PeV. In this contribution a short review of the experiment will be followed by an overview on the current results on spectrum and composition of CRs and a summary of the further activities within the KASCADE-Grande collaboration related to both, data analysis and data publication.
Forming a structure of the CoNiFe alloys by X-ray irradiation
NASA Astrophysics Data System (ADS)
Valko, Natalia; Kasperovich, Andrey; Koltunowicz, Tomasz N.
The experimental data of electrodeposition kinetics researches and structure formation of ternary CoNiFe alloys deposited onto low-carbon steel 08kp in the presence of X-rays are presented. Relations of deposit rate, current efficiencies, element and phase compositions of CoNiFe coatings formed from sulfate baths with respect to cathode current densities (0.5-3A/dm2), electrolyte composition and irradiation were obtained. It is shown that, the CoNiFe coatings deposited by the electrochemical method involving exposure of the X-rays are characterized by more perfect morphology surfaces with less developed surface geometry than reference coatings. The effect of the X-ray irradiation on the electrodeposition of CoNiFe coatings promotes formatting of alloys with increased electropositive component and modified phase composition.
Investigation of Carbon Fiber Architecture in Braided Composites Using X-Ray CT Inspection
NASA Technical Reports Server (NTRS)
Rhoads, Daniel J.; Miller, Sandi G.; Roberts, Gary D.; Rauser, Richard W.; Golovaty, Dmitry; Wilber, J. Patrick; Espanol, Malena I.
2017-01-01
During the fabrication of braided carbon fiber composite materials, process variations occur which affect the fiber architecture. Quantitative measurements of local and global fiber architecture variations are needed to determine the potential effect of process variations on mechanical properties of the cured composite. Although non-destructive inspection via X-ray CT imaging is a promising approach, difficulties in quantitative analysis of the data arise due to the similar densities of the material constituents. In an effort to gain more quantitative information about features related to fiber architecture, methods have been explored to improve the details that can be captured by X-ray CT imaging. Metal-coated fibers and thin veils are used as inserts to extract detailed information about fiber orientations and inter-ply behavior from X-ray CT images.
Stabilisation of Ce-Cu-Fe amorphous alloys by addition of Al
NASA Astrophysics Data System (ADS)
Kelhar, Luka; Ferčič, Jana; Boulet, Pascal; Maček-Kržmanc, Marjeta; Šturm, Sašo; Lamut, Martin; Markoli, Boštjan; Kobe, Spomenka; Dubois, Jean-Marie
2016-10-01
The present work describes the formation of amorphous alloys in the (Al1-xCex)62Cu25Fe13 quaternary system (0 ≤ x ≤ 1). When the amount of Ce falls in the range 0.67 ≤ x ≤ 0.83, the alloys obtained exhibit a completely amorphous structure confirmed by powder X-ray diffraction. Otherwise, at compositions x = 0.5, 0.58, 0.92 and 1, a primary crystalline phase forms together with an amorphous matrix. The crystallisation temperature (Tx) decreases with increasing Ce content, varying from 593 K for x = 0.5-383 K for x = 1. Composition x = 0.75 is considered as the best glass former, exhibiting a large supercooled liquid region of 40 K width that precedes crystallisation. In order to form bulk amorphous alloys, ribbons with this later composition were consolidated into few millimetre thick discs using pulsed electric current sintering at different temperatures, yet preserving the amorphous structure. Meanwhile, increasing temperature above 483 K triggers crystallisation of a primary phase isostructural to AlCe3. Further increase in the temperature up to 573 K yields a higher fraction of the crystalline phase. Testing mechanical properties, using nanoindentation, revealed that both elastic modulus (E) and hardness (H) depend on the Al content, ranging from E = 85.6 ± 3.7 GPa and H = 6.2 ± 0.7 GPa for x = 0.5 down to E = 39.8 ± 1.0 GPa and H = 3.1 ± 0.2 GPa for x = 0.92.
Dawson, John M.
1976-01-01
Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.
An airport cargo inspection system based on X-ray and thermal neutron analysis (TNA).
Ipe, Nisy E; Akery, A; Ryge, P; Brown, D; Liu, F; Thieu, J; James, B
2005-01-01
A cargo inspection system incorporating a high-resolution X-ray imaging system with a material-specific detection system based on Ancore Corporation's patented thermal neutron analysis (TNA) technology can detect bulk quantities of explosives and drugs concealed in trucks or cargo containers. The TNA process utilises a 252Cf neutron source surrounded by a moderator. The neutron interactions with the inspected object result in strong and unique gamma-ray signals from nitrogen, which is a key ingredient in modern high explosives, and from chlorinated drugs. The TNA computer analyses the gamma-ray signals and automatically determines the presence of explosives or drugs. The radiation source terms and shielding design of the facility are described. For the X-ray generator, the primary beam, leakage radiation, and scattered primary and leakage radiation were considered. For the TNA, the primary neutrons and tunnel scattered neutrons as well as the neutron-capture gamma rays were considered.
NASA Astrophysics Data System (ADS)
Chen, Chuan-hui; Bai, Yang; Ye, Xu-chu
2014-12-01
This article focuses on the microstructural evolution and wear behavior of 50wt%WC reinforced Ni-based composites prepared onto 304 stainless steel substrates by vacuum sintering at different sintering temperatures. The microstructure and chemical composition of the coatings were investigated by X-ray diffraction (XRD), differential thermal analysis (DTA), scanning and transmission electron microscopy (SEM and TEM) equipped with energy-dispersive X-ray spectroscopy (EDS). The wear resistance of the coatings was tested by thrust washer testing. The mechanisms of the decomposition, dissolution, and precipitation of primary carbides, and their influences on the wear resistance have been discussed. The results indicate that the coating sintered at 1175°C is composed of fine WC particles, coarse M6C (M=Ni, Fe, Co, etc.) carbides, and discrete borides dispersed in solid solution. Upon increasing the sintering temperature to 1225°C, the microstructure reveals few incompletely dissolved WC particles trapped in larger M6C, Cr-rich lamellar M23C6, and M3C2 in the austenite matrix. M23C6 and M3C2 precipitates are formed in both the γ/M6C grain boundary and the matrix. These large-sized and lamellar brittle phases tend to weaken the wear resistance of the composite coatings. The wear behavior is controlled simultaneously by both abrasive wear and adhesive wear. Among them, abrasive wear plays a major role in the wear process of the coating sintered at 1175°C, while the effect of adhesive wear is predominant in the coating sintered at 1225°C.
Volume imaging NDE and serial sectioning of carbon fiber composites
NASA Astrophysics Data System (ADS)
Hakim, Issa; Schumacher, David; Sundar, Veeraraghavan; Donaldson, Steven; Creuz, Aline; Schneider, Rainer; Keller, Juergen; Browning, Charles; May, Daniel; Ras, Mohamad Abo; Meyendorf, Norbert
2018-04-01
A composite material is a combination of two or more materials with very different mechanical, thermal and electrical properties. The various forms of composite materials, due to their high material properties, are widely used as structural materials in the aviation, space, marine, automobile, and sports industries. However, some defects like voids, delamination, or inhomogeneous fiber distribution that form during the fabricating processes of composites can seriously affect the mechanical properties of the composite material. In this study, several imaging NDE techniques such as: thermography, high frequency eddy current, ultrasonic, x-ray radiography, x-ray laminography, and high resolution x-ray CT were conducted to characterize the microstructure of carbon fiber composites. Then, a 3D analysis was implemented by the destructive technique of serial sectioning for the same sample tested by the NDE methods. To better analyze the results of this work and extract a clear volume image for all features and defects contained in the composite material, an intensive comparison was conducted among hundreds of 3D-NDE and multi serial sections' scan images showing the microstructure variation.
The isotopic composition of cosmic ray calcium
NASA Technical Reports Server (NTRS)
Krombel, K. E.; Wiedenbeck, M. E.
1985-01-01
Data from the high energy cosmic ray experiment on the international sun earth explorer 3 (ISEE-3) spacecraft have been used to study the isotopic composition of cosmic ray calcium at an energy of approx. 260 MeV/amu. The arriving calcium is found to consist of (32 + or - 6)%. A propagation model consistent with both the light and the subiron secondary element abundances was used for the interpretation of the observed calcium composition. The measured 42Ca+43Ca+44Ca abundance is consistent with the calculated secondary production, while the 40Ca abundance implies a source ratio of 40Ca/Fe = (7.0 + or - 1.7)%.
Composition for radiation shielding
Kronberg, J.W.
1994-08-02
A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.
Composition for radiation shielding
Kronberg, James W.
1994-01-01
A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1992-01-01
The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.
Nuclear abundance measurements inside MIR and ISS with Sileye experiments
NASA Astrophysics Data System (ADS)
Casolino, M.
In this work we present measurements of cosmic ray nuclear abundances above 150 MeV/n performed inside Mir space station between 1998 and 2000. Data have been obtained with SilEye-2 detector, a 6 plane silicon strip detector telescope designed to measure environmental radiation and investigate on the Light Flash phenomenon. In standalone mode, SilEye-2 is capable to measure LET distribution spectra and identify nuclear species with energy above 100 MeV/n: a total of 100 sessions comprising more than 1000 hours of observation were perfomed in the years 1998-2000, recording also several Solar Energetic Particle (SEP) events. Cosmic ray abundances inside a spacecraft can differ from the primary component due to interaction with the interposed material of the hull and the instruments. We report on LET measurements and relative abundances from Boron to Iron measured in different regions and at different geomagnetic cutoffs, in solar quiet conditions and during SEP events, showing how the composition varies in these different situations. We also report on preliminary results on cosmic ray measurements inside ISS (27/4/2002 - 4/5/2002) obtained with Sileye-3/Alteino experiment.
Aguilar, M; Ali Cavasonza, L; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeğmez-du Pree, S; Battarbee, M; Battiston, R; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindel, K F; Bindi, V; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Burger, W J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Creus, W; Crispoltoni, M; Cui, Z; Dadzie, K; Dai, Y M; Datta, A; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guo, K H; Haino, S; Han, K C; He, Z H; Heil, M; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jia, Yi; Jinchi, H; Kang, S C; Kanishev, K; Khiali, B; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Kulemzin, A; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, Q; Li, T X; Li, Y; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lordello, V D; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lyu, S S; Machate, F; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mikuni, V M; Mo, D C; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Oliva, A; Orcinha, M; Palermo, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Perrina, C; Phan, H D; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Tacconi, M; Tang, X W; Tang, Z C; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wu, H; Wu, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zannoni, M; Zeissler, S; Zhang, C; Zhang, F; Zhang, J; Zhang, J H; Zhang, S W; Zhang, Z; Zheng, Z M; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P
2018-01-12
We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4×10^{6} nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li/Be flux ratio of 2.0±0.1. The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays.
NASA Astrophysics Data System (ADS)
Aguilar, M.; Ali Cavasonza, L.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Burger, W. J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dadzie, K.; Dai, Y. M.; Datta, A.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jia, Yi; Jinchi, H.; Kang, S. C.; Kanishev, K.; Khiali, B.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Kulemzin, A.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, Q.; Li, T. X.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lyu, S. S.; Machate, F.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palermo, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Perrina, C.; Phan, H. D.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wu, H.; Wu, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zannoni, M.; Zeissler, S.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, J. H.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration
2018-01-01
We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4 ×106 nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li /Be flux ratio of 2.0 ±0.1 . The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays.
Peplowski, Patrick N; Bazell, David; Evans, Larry G; Goldsten, John O; Lawrence, David J; Nittler, Larry R
2015-03-01
A reanalysis of NEAR X-ray/gamma-ray spectrometer (XGRS) data provides robust evidence that the elemental composition of the near-Earth asteroid 433 Eros is consistent with the L and LL ordinary chondrites. These results facilitated the use of the gamma-ray measurements to produce the first in situ measurement of hydrogen concentrations on an asteroid. The measured value, 1100-700+1600 ppm, is consistent with hydrogen concentrations measured in L and LL chondrite meteorite falls. Gamma-ray derived abundances of hydrogen and potassium show no evidence for depletion of volatiles relative to ordinary chondrites, suggesting that the sulfur depletion observed in X-ray data is a surficial effect, consistent with a space-weathering origin. The newfound agreement between the X-ray, gamma-ray, and spectral data suggests that the NEAR landing site, a ponded regolith deposit, has an elemental composition that is indistinguishable from the mean surface. This observation argues against a pond formation process that segregates metals from silicates, and instead suggests that the differences observed in reflectance spectra between the ponds and bulk Eros are due to grain size differences resulting from granular sorting of ponded material.
Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study.
Shard, Alexander G; Havelund, Rasmus; Spencer, Steve J; Gilmore, Ian S; Alexander, Morgan R; Angerer, Tina B; Aoyagi, Satoka; Barnes, Jean-Paul; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D P; Deeks, Christopher; Fletcher, John S; Graham, Daniel J; Heuser, Christian; Lee, Tae Geol; Marie, Camille; Marzec, Mateusz M; Mishra, Gautam; Rading, Derk; Renault, Olivier; Scurr, David J; Shon, Hyun Kyong; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua; Cristaudo, Vanina; Poleunis, Claude
2015-08-20
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.
Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shard, A. G.; Havelund, Rasmus; Spencer, Steve J.
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray Photoelectron Spectroscopy (XPS) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided withmore » the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants’ data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.« less
A broadband study of the emission from the composite supernova remnant MSH 11-62
Slane, Patrick; Hughes, John P.; Temim, Tea; ...
2012-03-30
MSH 11-62 (G291.0-0.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. Our observations suggest a relatively young system expanding into a low-density region. We present a study of MSH 11-62 using observations with the Chandra, XMM -Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We also identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses asmore » particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify γ-ray emission originating from MSH 11-62. Furthermore, with density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the γ-ray emission.« less
A Broadband Study of the Emission from the Composite Supernova Remnant MSH 11-62
NASA Technical Reports Server (NTRS)
Slane, Patrick; Hughes, John P.; Temim, Tea; Rousseau, Romain; Castro, Daniel; Foight, Dillon; Gaensler, B. M.; Funk, Stefan; Lemoine-Goumard, Marianne; Gelfand, Joseph D.;
2012-01-01
MSH 11-62 (G29U)-Q.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. The observations suggest a relatively young system expanding into a low-density region. Here, we present a study of MSH ll-62 using observations with the Chandra, XMM-Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses as particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify gamma-ray emission originating from MSH 11-62. With density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the gamma-ray emission.
Methods of chemical and phase composition analysis of gallstones
NASA Astrophysics Data System (ADS)
Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.
2017-11-01
This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.
Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W
2013-02-01
Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lidong; Zhou, Lu; Ould-Chikh, Samy
Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lidong; Zhou, Lu; Ould-Chikh, Samy
The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annularmore » dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less
NASA Astrophysics Data System (ADS)
Chang, Fei; Jiao, Mingzhi; Xu, Quan; Deng, Baoqing; Hu, Xuefeng
2018-03-01
A series of mesoporous iron-titanium-containing silica Fe-TiO2-SBA15 (FTS) were constructed via a facile one-pot hydrothermal route and subsequently characterized by X-ray diffraction patterns, UV-vis diffuse reflection spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, and X-ray energy dispersion spectroscopy. By analyses, these samples possessed ordered two-dimensional hexagonal mesoporous structures, mainly involving mixed dual-phases of anatase and rutile TiO2, like commercial titania P25. The UV-vis diffuse reflection spectra demonstrated the presence of Fe species that was further confirmed by the X-ray photoelectron spectra and X-ray energy dispersion spectrum. The existence of Fe species in form of Fe3+ cations played an important role on the phase composition and electronic structure of these samples. With structural and morphological merits, these samples exhibited relatively high photocatalytic efficiency toward the degradation of dye methylene blue (MB) and reduction of Cr(VI) under visible-light irradiation, comparing with P25. In addition, among all candidates, the sample with a Fe/Si molar ratio of 0.03 showed the highest catalytic performance under optimal conditions, especially in the coexistence of both MB and Cr(VI), revealing an obviously synergistic effect when the consumption of both contaminants occurred. Finally, a primary catalytic mechanism was speculated on basis of active species capture experiments.
Preliminary results from the heavy ions in space experiment
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Beahm, Lorraine P.; Tylka, Allan J.
1992-01-01
The Heavy Ions In Space (HIIS) experiment has two primary objectives: (1) to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table; and (2) to study heavy ions which arrive at LDEF below the geomagnetic cutoff, either because they are not fully stripped of electrons or because their source is within the magnetosphere. Both of these objectives have practical as well as astrophysical consequences. In particular, the high atomic number of the ultraheavy galactic cosmic rays puts them among the most intensely ionizing particles in Nature. They are therefore capable of upsetting electronic components normally considered immune to such effects. The below cutoff heavy ions are intensely ionizing because of their low velocity. They can be a significant source of microelectronic anomalies in low inclination orbits, where Earth's magnetic field protects satellites from most particles from interplanetary space. The HIIS results will lead to significantly improved estimates of the intensely ionizing radiation environment.
A data distributed parallel algorithm for ray-traced volume rendering
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Painter, James S.; Hansen, Charles D.; Krogh, Michael F.
1993-01-01
This paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image compositing method, along with their implementation and performance on the Connection Machine CM-5, and networked workstations. This algorithm distributes both the data and the computations to individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume data, once distributed, is left intact. The processing nodes perform local ray tracing of their subvolume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Test results on both the CM-5 and a group of networked workstations demonstrate the practicality of our rendering algorithm and compositing method.
Expected gamma-ray emission spectra from the lunar surface as a function of chemical composition
NASA Technical Reports Server (NTRS)
Reedy, R. C.; Arnold, J. R.; Trombka, J. I.
1973-01-01
The gamma rays emitted from the moon or any similar body carry information on the chemical composition of the surface layer. The elements most easily measured are K, U, Th and major elements such as O, Si, Mg, and Fe. The expected fluxes of gamma ray lines were calculated for four lunar compositions and one chondritic chemistry from a consideration of the important emission mechanisms: natural radioactivity, inelastic scatter, neutron capture, and induced radioactivity. The models used for cosmic ray interactions were those of Reedy and Arnold and Lingenfelter. The areal resolution of the experiment was calculated to be around 70 to 140 km under the conditions of the Apollo 15 and 16 experiments. Finally, a method was described for recovering the chemical information from the observed scintillation spectra obtained in these experiments.
Radiation shielding composition
Quapp, William J.; Lessing, Paul A.
2000-12-26
A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.
Radiation shielding composition
Quapp, William J.; Lessing, Paul A.
1998-01-01
A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.
Modal Frequency Detection in Composite Beams Using Fiber Optic Sensors
1997-04-18
Structures 4, 270-280 (1995). [35] Chen-Jung Li and Ray Asok , "Neural Network Representation of Fatigue Damage Dynamics," Smart Materials and Structures 3...37] Roland Ray Kilcher, "Modal Analysis and Impact Damage Assessment of Composite Laminates: an Experimental Study," M.S. thesis, University of
NASA Astrophysics Data System (ADS)
Wang, Bao-guang; Yang, Wen-hui; Gao, Hong-ye; Tian, Wen-huai
2018-05-01
A hypoeutectic 60Te-40Bi alloy in mass percent was designed as a tellurium atom evaporation source instead of pure tellurium for an ultraviolet detection photocathode. The alloy was prepared by slow solidification at about 10-2 K·s-1. The microstructure, crystal structure, chemical composition, and crystallographic orientation of each phase in the as-prepared alloy were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The experimental results suggest that the as-prepared 60Te-40Bi alloy consists of primary Bi2Te3 and eutectic Bi2Te3/Te phases. The primary Bi2Te3 phase has the characteristics of faceted growth. The eutectic Bi2Te3 phase is encased by the eutectic Te phase in the eutectic structure. The purity of the eutectic Te phase reaches 100wt% owing to the slow solidification. In the eutectic phases, the crystallographic orientation relationship between Bi2Te3 and Te is confirmed as {[0001]_{B{i_2}T{e_3}}}//{[1\\bar 21\\bar 3]_{Te}} and the direction of Te phase parallel to {[11\\bar 20]_{B{i_2}T{e_3}}} is deviated by 18° from Te N{(2\\bar 1\\bar 11)_{Te}}.
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1979-01-01
The expected performance of an X-ray detector as an instrument aboard a mission to a comet was evaluated. The functions of the detector are both nondispersive analysis of chemical composition and measurement of mass flow from the comet nucleus. Measurements are to be carried out at a distance from the comet. The approach distances considered are of the order of 1000 km and 100 km. A new type of X-ray detector, a proportional scintillation detector, is considered as an X-ray counter for nondispersive elemental analysis.
Simulation of Energy Response of the ATIC Calorimeter
NASA Technical Reports Server (NTRS)
Batkov, K. E.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Case, G.; Christl, M.; Chang, J.; Fazely, A. R.; Ganel, O.; Granger, D.;
2002-01-01
ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure the cosmic ray composition for elements from hydrogen to iron and their energy spectra from approx.50 GeV to near 100 TeV. It consists of a Si-matrix detector to determine the charge of a CR particle, a scintillator hodoscope for tracking, carbon interaction targets and a fully active BGO calorimeter. ATIC had its first flight from McMurdo, Antarctica from 28/12/2000 to 13/01/2001. The ATIC flight collected approximately 25 million events. For reconstruction of primary spectra from spectra of energy deposits measured in the experiment, correlations between kinetic energy of a primary particle E(sub kin) and energy deposit in the calorimeter E(sub d) should be known. For this purpose, simulations of energy response of the calorimeter on energy spectra of different nuclei were done. The simulations were performed by GEANT-3.21 code with QGSM generator for nucleus - nucleus interactions. The incident flux was taken as isotropic in the ATIC aperture. Primary spectra power-law by momentum were used as inputs according to standard models of cosmic ray acceleration. These spectra become power-law by kinetic energy at E(sub kin) higher than approx.20Mc(sup 2), where M is primary nucleus mass. It should be noted that energy deposit spectra measured by ATIC illustrate similar behavior. Distributions of ratio E(sub kin)/E(sub d) are presented for different energy deposits and for a set of primaries. For power-law regions of energy spectra at E(sub d)> or equal to 20Mc(sup 2) the obtained mean value of E(sub kin)/E(sub d) increases from approx.2.4 for protons to approx.3.1 for iron, while rms/
A simple method of obtaining concentration depth-profiles from X-ray diffraction
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Unnam, J.
1984-01-01
The construction of composition profiles from X-ray intensity bands was investigated. The intensity band-to-composition profile transformation utilizes a solution which can be easily evaluated. The technique can be applied to thin films and thick speciments for which the variation of lattice parameters, linear absorption coefficient, and reflectivity with composition are known. A deconvolution scheme with corrections for the instrumental broadening and ak-alfadoublet is discussed.
Kizevetter, I V; Nasedkina, E A
1975-01-01
The nitrous composition of meat in 19 species of oceanic sharks and 2 species of rays were analyzed. The meat of these fish species was found to be characterized by a comparatively low protein content, whose amino acids composition proved relatively poor of essential amino acids. The meat of sharks and rays is distinguished by a high level of extractives, whose bulk includes urea and trimethylaminoxide.
The composition of secondary amorphous phases under different environmental conditions
NASA Astrophysics Data System (ADS)
Smith, R.; Rampe, E. B.; Horgan, B. H. N.; Dehouck, E.; Morris, R. V.
2017-12-01
X-ray diffraction (XRD) patterns measured by the CheMin instrument on the Mars Science Laboratory Curiosity rover demonstrate that amorphous phases are major components ( 15-60 wt%) of all rock and soil samples in Gale Crater. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., silica, ferrihydrite) phases. Secondary amorphous phases are frequently found as weathering products in soils on Earth, but these materials remain poorly characterized. Here we study a diverse suite of terrestrial samples including: sediments from recently de-glaciated volcanoes (Oregon), modern volcanic soils (Hawaii), and volcanic paleosols (Oregon) in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of amorphous phases. We combine bulk XRD mineralogy with bulk chemical compositions (XRF) to calculate the abundance and bulk composition of the amorphous materials in our samples. We then utilize scanning transmission electron microscopy (STEM) and energy dispersive x-ray spectroscopy (EDS) to study the composition of individual amorphous phases at the micrometer scale. XRD analyses of 8 samples thus far indicate that the abundance of amorphous phases are: modern soils (20-80 %) > paleosols (15-40 %) > glacial samples (15-30 %). Initial calculations suggest that the amorphous components consist primarily of SiO2, Al2O3, TiO2, FeO and Fe2O3, with minor amounts of other oxides (e.g., MgO, CaO, Na2O). Compared to their respective crystalline counterparts, calculations indicate bulk amorphous components enriched in SiO2 for the glacial sample, and depleted in SiO2 for the modern soil and paleosol samples. STEM analyses reveal that the amorphous components consist of a number of different phases. Of the two samples analyzed using STEM thus far, the secondary amorphous phases have compositions with varying ratios of SiO2, Al2O3, TiO2, and Fe-oxides, consistent with mass balance calculation results, but inconsistent with well-known amorphous phase compositions (e.g., allophane, ferrihydrite). These results show that a number of secondary amorphous phases can form within a single soil environment. Continued analysis can help determine whether compositional trends can be linked to environmental factors.
Cosmogenic-nuclide production by primary cosmic-ray protons
NASA Technical Reports Server (NTRS)
Reedy, R. C.
1985-01-01
The production rates of cosmogenic nuclides were calculated for the primary protons in the galactic and solar cosmic rays. At 1 AU, the long-term average fluxes of solar protons usually produce many more atoms of cosmogenic nuclide than the primary protons in the galactic cosmic rays (GCR). Because the particle fluxes inside meteorites and other large objects in space include many secondary neutrons, the production rates and ratios inside large objects are often very different from those by just the primary GCR protons. It is possible to determine if a small object, was small in space or broken from a meteorite. Because heliospherical modulation and other interactions change the GCR particle spectrum, the production of cosmogenic nuclides by the GCR particles outside the heliosphere will be different from that by modulated GCR primaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brownstein, Jeremy Michael; Wisdom, Amy Jordan; Castle, Katherine D.
Carbon ion therapy (CIT) offers several potential advantages for treating cancers compared with X-ray and proton radiotherapy, including increased biological efficacy and more conformal dosimetry. However, CIT potency has not been characterized in primary tumor animal models. Here in this paper, we calculate the relative biological effectiveness (RBE) of carbon ions compared to X-rays in an autochthonous mouse model of soft tissue sarcoma. We used Cre/loxP technology to generate primary sarcomas in KrasLSL-G12D/+; p53fl/fl mice. Primary tumors were irradiated with a single fraction of carbon ions (10 Gy), X-rays (20, 25, or 30 Gy), or observed as controls. The RBEmore » was calculated by determining the dose of X-rays that resulted in similar time to post-treatment tumor volume quintupling and growth rate as 10 Gy carbon ions. The median tumor volume quintupling time and growth rate of sarcomas treated with 10 Gy carbon ions and 30 Gy X-rays were similar: 27.3 days and 28.1 days, and 0.060 mm3/day and 0.059 mm3/day, respectively. Tumors treated with lower doses of X-rays had faster regrowth. Thus, the RBE of carbon ions in this primary tumor model is 3. When isoeffective treatments of carbon ions and X-rays were compared, we observed significant differences in tumor growth kinetics, proliferative indices, and immune infiltrates. We found that carbon ions were three times as potent as X-rays in this aggressive tumor model and identified unanticipated differences in radiation response that may have clinical implications.« less
Brownstein, Jeremy Michael; Wisdom, Amy Jordan; Castle, Katherine D.; ...
2018-02-07
Carbon ion therapy (CIT) offers several potential advantages for treating cancers compared with X-ray and proton radiotherapy, including increased biological efficacy and more conformal dosimetry. However, CIT potency has not been characterized in primary tumor animal models. Here in this paper, we calculate the relative biological effectiveness (RBE) of carbon ions compared to X-rays in an autochthonous mouse model of soft tissue sarcoma. We used Cre/loxP technology to generate primary sarcomas in KrasLSL-G12D/+; p53fl/fl mice. Primary tumors were irradiated with a single fraction of carbon ions (10 Gy), X-rays (20, 25, or 30 Gy), or observed as controls. The RBEmore » was calculated by determining the dose of X-rays that resulted in similar time to post-treatment tumor volume quintupling and growth rate as 10 Gy carbon ions. The median tumor volume quintupling time and growth rate of sarcomas treated with 10 Gy carbon ions and 30 Gy X-rays were similar: 27.3 days and 28.1 days, and 0.060 mm3/day and 0.059 mm3/day, respectively. Tumors treated with lower doses of X-rays had faster regrowth. Thus, the RBE of carbon ions in this primary tumor model is 3. When isoeffective treatments of carbon ions and X-rays were compared, we observed significant differences in tumor growth kinetics, proliferative indices, and immune infiltrates. We found that carbon ions were three times as potent as X-rays in this aggressive tumor model and identified unanticipated differences in radiation response that may have clinical implications.« less
Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.
1974-01-01
Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.
A limit on the diffuse gamma-rays measured with KASCADE-Grande
NASA Astrophysics Data System (ADS)
Kang, D.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Feng, Z.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K. H.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2015-08-01
Using data measured by the KASCADE-Grande air shower array, an upper limit to the flux of ultra-high energy gamma-rays in the primary cosmic-ray flux is determined. KASCADE-Grande measures the electromagnetic and muonic components for individual air showers in the energy range from 10 PeV up to 1 EeV. The analysis is performed by selecting air showers with low muon contents. A preliminary result on the 90% C.L. upper limit to the relative intensity of gamma-ray with respect to cosmic ray primaries is presented and compared with limits reported by other measurements.
Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach
NASA Astrophysics Data System (ADS)
Huang, Huajie; Wang, Xin
2011-08-01
Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material.Graphene nanoplate-MnO2 composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO2 nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. Electronic supplementary information (ESI) available: Fig. S1, AFM image (5 μm × 5 μm) of graphene nanoplate-MnO2 composite obtained at 3 h; Fig. S2, nitrogen adsorption/desorption isotherm of graphene nanoplate-MnO2 composite obtained at 3 h. See DOI: 10.1039/c1nr10229j
Tamaki, Tomoaki; Iwakawa, Mayumi; Ohno, Tatsuya; Imadome, Kaori; Nakawatari, Miyako; Sakai, Minako; Tsujii, Hirohiko; Nakano, Takashi; Imai, Takashi
2009-05-01
To clarify how carbon-ion radiotherapy (C-ion) on primary tumors affects the characteristics of subsequently arising metastatic tumor cells. Mouse squamous cell carcinomas, NR-S1, in synergic C3H/HeMsNrs mice were irradiated with a single dose of 5-50 Gy of C-ion (290 MeV per nucleon, 6-cm spread-out Bragg peak) or gamma-rays ((137)Cs source) as a reference beam. The volume of the primary tumors and the number of metastatic nodules in lung were studied, and histologic analysis and microarray analysis of laser-microdissected tumor cells were also performed. Including 5 Gy of C-ion and 8 Gy of gamma-rays, which did not inhibit the primary tumor growth, all doses used in this study inhibited lung metastasis significantly. Pathologic findings showed no difference among the metastatic tumor nodules in the nonirradiated, C-ion-irradiated, and gamma-ray-irradiated groups. Clustering analysis of expression profiles among metastatic tumors and primary tumors revealed a single cluster consisting of metastatic tumors different from their original primary tumors, indicating that the expression profiles of the metastatic tumor cells were not affected by the local application of C-ion or gamma-ray radiotherapy. We found no difference in the incidence and histology, and only small differences in expression profile, of distant metastasis between local C-ion and gamma-ray radiotherapy. The application of local radiotherapy per se or the type of radiotherapy applied did not influence the transcriptional changes caused by metastasis in tumor cells.
A morphological investigation of soot produced by the detonation of munitions.
Pantea, Dana; Brochu, Sylvie; Thiboutot, Sonia; Ampleman, Guy; Scholz, Günter
2006-10-01
The morphology of three different detonation soot samples along with other common soot materials such as carbon black, diesel soot and chimney soot was studied by elemental and proximate analysis, X-ray diffraction and electron microscopy. The goal of this study was to better define the morphology of the detonation soot in order to better assess the interactions of this type of soot with explosive residues. The detonation soot samples were obtained by the detonation of artillery 155mm projectiles filled with either pure TNT (2,4,6-trinitrotoluene) or composition B, a military explosive based on a mixture of TNT and RDX (trimethylentrinitramine). The carbon content of the soot samples varied considerably depending on the feedstock composition. Detonation soot contains less carbon and more nitrogen than the other carbonaceous samples studied, due to the molecular structure of the energetic materials detonated such as TNT and RDX. The ash concentration was higher for detonation soot samples due to the high metal content coming from the projectiles shell and to the soil contamination which occurred during the detonation. By X-ray diffraction, diamond and graphite were found to be the major crystalline carbon forms in the detonation soot. Two electron microscopy techniques were used in this study to visualise the primary particles and to try to explain the formation mechanism of detonation soot samples.
Dendritic Growth Morphologies in Al-Zn Alloys—Part I: X-ray Tomographic Microscopy
NASA Astrophysics Data System (ADS)
Friedli, Jonathan; Fife, J. L.; di Napoli, P.; Rappaz, M.
2013-12-01
Upon solidification, most metallic alloys form dendritic structures that grow along directions corresponding to low index crystal axes, e.g., directions in fcc aluminum. However, recent findings[1,2] have shown that an increase in the zinc content in Al-Zn alloys continuously changes the dendrite growth direction from to in {100} planes. At intermediate compositions, between 25 wt pct and 55 wt pct Zn, dendrites and textured seaweeds were reported. The reason for this dendrite orientation transition is that this system exhibits a large solubility of zinc, a hexagonal metal, in the primary fcc aluminum phase, thus modifying its weak solid-liquid interfacial energy anisotropy. Owing to the complexity of the phenomenology, there is still no satisfactory theory that predicts all the observed microstructures. The current study is thus aimed at better understanding the formation of these structures. This is provided by the access to their 3D morphologies via synchrotron-based X-ray tomographic microscopy of quenched Bridgman solidified specimens in combination with the determination of the crystal orientation of the dendrites by electron-backscattered diffraction. Most interestingly, all alloys with intermediate compositions were shown to grow as seaweeds, constrained to grow mostly in a (001) symmetry plane, by an alternating growth direction mechanism. Thus, these structures are far from random and are considered less hierarchically ordered than common dendrites.
NASA Astrophysics Data System (ADS)
Das, G. S.; Hazarika, P.; Goswami, U. D.
2018-07-01
We have studied the distribution patterns of lateral density, arrival time and angular position of Cherenkov photons generated in Extensive Air Showers (EASs) initiated by γ-ray, proton and iron primaries incident with various energies and at various zenith angles. This study is the extension of our earlier work [1] to cover a wide energy range of ground based γ-ray astronomy with a wide range of zenith angles (≤40°) of primary particles, as well as the extension to study the angular distribution patterns of Cherenkov photons in EASs. This type of study is important for distinguishing the γ-ray initiated showers from the hadronic showers in the ground based γ-ray astronomy, where Atmospheric Cherenkov Technique (ACT) is being used. Importantly, such study gives an insight on the nature of γ-ray and hadronic showers in general. In this work, the CORSIKA 6.990 simulation code is used for generation of EASs. Similarly to the case of Ref. [1], this study also revealed that, the lateral density and arrival time distributions of Cherenkov photons vary almost in accordance with the functions: ρch(r) =ρ0e-βr and tch(r) =t0eΓ/rλ respectively by taking different values of the parameters of functions for the type, energy and zenith angle of the primary particle. The distribution of Cherenkov photon's angular positions with respect to shower axis shows distinctive features depending on the primary type, its energy and the zenith angle. As a whole this distribution pattern for the iron primary is noticeably different from those for γ-ray and proton primaries. The value of the angular position at which the maximum number of Cherenkov photons are concentrated, increases with increase in energy of vertically incident primary, but for inclined primary it lies within a small value (≤1°) for almost all energies and primary types. No significant difference in the results obtained by using the high energy hadronic interaction models, viz., QGSJETII and EPOS has been observed.
NASA Technical Reports Server (NTRS)
Halama, G.; McAdoo, J.; Liu, H.
1998-01-01
To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.
A Simplified View of the Geochemical Diversity Surrounding Home Plate
NASA Technical Reports Server (NTRS)
Yen, A. S.; Morris, R. V.; Clark, B. C.; Gellert, R.
2008-01-01
The Home Plate feature (Fig. 1) within the Inner Basin of the Columbia Hills consists of layered rocks and has been interpreted as an accumulation of pyroclastic deposits [1]. Samples analyzed by the Alpha Particle X-ray Spectrometer within 25 meters of the eastern margin of Home Plate exhibit a strikingly diverse range of geochemical compositions, including the highest levels of Mg, Si, K, Zn, and Ni measured at Gusev Crater. This wide range of chemical variability across the 40+ samples analyzed on and near Home Plate can be represented by contributions from only six primary components. This reconstruction is not reflected in the M ssbauer mineralogy suggesting that significant alteration of the contributing components has occurred.
1986-04-15
Technical Reports - none IL.. Publications - none 11.g. Honors, Awards - none 11.h. Participants Mr. Asok Ray ; Graduate Student working towards his...Invited Presentation at Topical or Scientific/Technical Society Conferences i) A.K. Ray and V.K. Kinra, "Measurement of Damping in Continuous Fiber...Rawal, J.H. Armstrong, M.S. Misra, A.K. Ray and V.K. Kinra, "Damping Measurements of Gr/Al Composites", to be presented at the symposium on Dynamic
[Study on chemical compositions and crystallinity changes of bamboo treated with gamma rays].
Sun, Feng-Bo; Jiang, Ze-hui; Fei, Ben-hua; Lu, Fang; Yu, Zi-xuan; Chang, Xiang-zhen
2011-07-01
The structures and qualities of main chemical compositions in cell wall of bamboo treated with gamma rays were tested by nuclear magnetic resonance spectrometer (NMR) and X-ray Diffraction (XRD). The result indicated that the bamboo crystallinity increased at the beginning of irradiation process, while the crystallinity reduced when the irradiation dose was raised to about 100 kGy. During the whole irradiation process, hemicellulose degraded, and with the irradiation doses increased the non-phenolic lignin changed to the phenolic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rougelot, Thomas; Burlion, Nicolas, E-mail: nicolas.burlion@polytech-lille.f; Bernard, Dominique
2010-02-15
Chemical shock of cement based materials leads to significant degradation of their physical properties. A typical scenario is a calcium leaching due to water (water with very low pH compared with that of pore fluid). The main objective of this paper is to evaluate the evolution of microstructure induced by leaching of a cementitious composite using synchrotron X-ray micro tomography, mainly from an experimental point of view. In this particular case, it was possible to identify cracking induced by leaching. After a description of the degradation mechanism and the X-ray synchrotron microtomographic analysis, numerical simulations are performed in order tomore » show that cracking is induced by an initial pre-stressing of the composite, coupled with decalcification shrinkage and dramatic decrease in tensile strength during leaching. X-ray microtomography analysis allowed to make evidence of an induced microcracking in cementitious material submitted to leaching.« less
Radiation shielding composition
Quapp, W.J.; Lessing, P.A.
1998-07-28
A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.
The Effects of Surface Roughness on the NEAR XRS Elemental Results: Monte-Carlo Modeling
NASA Technical Reports Server (NTRS)
Lin, Lucy F.; Nittler, Larry R.
2011-01-01
The objective of the NEAR-Shoemaker X-ray Gamma-Ray Spec1roscopy ("XGRS") investigation was to determine the elemental composition of the near-Earth asteroid 433 Eros. The X-ray Spectrometer (XRS) system measured the characteristic fluorescence of six major elements (Mg, Al, Si, S, Ca, Fe) in the 1-10 keV energy range excited by the interaction of solar X-rays with the upper 100 microns of the surface of 433 Eros. Various investigators, using both laboratory experiments and computer simulations have established that X-ray fluorescent line ratios can be influenced by small-scale surface roughness at high incidence or emission angles. The effect on the line ratio is specific to the geometry, excitation spectrum, and composition involved, In general, however, the effect is only substantial for ratios of lines with a significant energy difference between them: Fe/Si and Ca/Si are much more likely to be affected than AI/Si or Mg/Si. We apply a Monte-Carlo code to the specific geometry and spectrum of a major NEAR XRS solar flare observation, using an H chondrite composition as the substrate. The seventeen most abundant elements were included in the composition model, from oxygen to titanium.
Hybrid ray-FDTD model for the simulation of the ultrasonic inspection of CFRP parts
NASA Astrophysics Data System (ADS)
Jezzine, Karim; Ségur, Damien; Ecault, Romain; Dominguez, Nicolas; Calmon, Pierre
2017-02-01
Carbon Fiber Reinforced Polymers (CFRP) are commonly used in structural parts in the aeronautic industry, to reduce the weight of aircraft while maintaining high mechanical performances. Simulation of the ultrasonic inspections of these parts has to face the highly heterogeneous and anisotropic characteristics of these materials. To model the propagation of ultrasound in these composite structures, we propose two complementary approaches. The first one is based on a ray model predicting the propagation of the ultrasound in an anisotropic effective medium obtained from a homogenization of the material. The ray model is designed to deal with possibly curved parts and subsequent continuously varying anisotropic orientations. The second approach is based on the coupling of the ray model, and a finite difference scheme in time domain (FDTD). The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Inspections of flat or curved composite panels, as well as stiffeners can be performed. The models have been implemented in the CIVA software platform and compared to experiments. We also present an application of the simulation to the performance demonstration of the adaptive inspection technique SAUL (Surface Adaptive Ultrasound).
High-energy multiple muons and heavy primary cosmic-rays
NASA Technical Reports Server (NTRS)
Mizutani, K.; Sato, T.; Takahashi, T.; Higashi, S.
1985-01-01
Three-dimensional simulations were carried out on high-energy multiple muons. On the lateral spread, the comparison with the deep underground observations indicates that the primary cosmic rays include heavy nuclei of high content. A method to determine the average mass number of primary particles in the energy around 10 to the 15th power eV is suggested.
Sulfur Isotope Composition of Putative Primary Troilite in Chondrules
NASA Technical Reports Server (NTRS)
Tachibana, Shogo; Huss, Gary R.
2002-01-01
Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asmi, Dwi, E-mail: dwiasmi82@yahoo.com, E-mail: dwi.asmi@fmipa.unila.ac.id; Sulaiman, Ahmad, E-mail: ahmadsulaiman@yahoo.co.id; Oktavia, Irene Lucky, E-mail: ireneluckyo@gmail.com
Effect of 10 wt% amorphous SiO{sub 2} from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO{sub 2} powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations,more » functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO{sub 2} composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO{sub 2}. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.« less
NASA Astrophysics Data System (ADS)
Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne
2016-04-01
Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.
A New Measurement of the Cosmic-Ray Proton and Helium Spectra
NASA Astrophysics Data System (ADS)
Mocchiutti, E.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Boezio, M.; Bonicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchiutti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.; WIZARD/CAPRICE Collaboration
2001-08-01
A new measurement of the primary cosmic ray spectra was performed during the balloon-borne CAPRICE experiment in 1998. This apparatus consists of a magnet spectrometer, with a superconducting magnet and a driftchamber tracking device, a time of flight scintillator system, a silicon-tungsten imaging calorimeter and a gas ring imaging Cherenkov detector. This combination of state-of-the-art detectors provides excellent particle discrimination capabilities, such that detailed investigations of the antiproton, electron/positron, muon and primary components of cosmic rays have been performed. The analysis of the primary proton component is illustrated in this paper.
Commeau, R.F.; Reynolds, Leslie A.; Poag, C.W.
1985-01-01
The composition of agglutinated foraminiferal tests vary remarkably in response to local substrate characteristics, physiochemical properties of the water column and species- dependant selectivity of test components. We have employed a technique that combines a scanning electron microscope with an energy dispersive X-ray spectrometer system to identify major and minor elemental constituents of agglutinated foraminiferal walls. As a sample is bombarded with a beam of high energy electrons, X-rays are generated that are characteristic of the elements present. As a result, X- ray density maps can be produced for each of several elements present in the tests of agglutinated foraminifers.
Cosmic ray interactions with lunar materials - Nature and composition of species formed
NASA Technical Reports Server (NTRS)
Mukherjee, N. R.
1976-01-01
The paper discusses the effect of cosmic-ray proton interactions with lunar material, the nature and composition of the species resulting from these interactions, and the contribution of these species to the lunar atmosphere. It is shown that hydrogen atoms resulting from cosmic-ray proton neutralization escape into the atmosphere mostly as H2, that only a small fraction of the very small amount of OH and H2O produced by cosmic-ray protons escapes into the atmosphere, and that cosmic-ray protons play a very minor role, as compared with solar-wind protons, in producing lunar atmospheric hydrogen and hydrogenated species. It is concluded that the atmospheric contributions of H2, H, OH, and H2O produced by cosmic-ray protons are about three orders of magnitude less than those due to solar-wind protons.
Ultrastructure of selected struvite-containing urinary calculi from dogs.
Domingo-Neumann, R A; Ruby, A L; Ling, G V; Schiffman, P S; Johnson, D L
1996-09-01
To elucidate the ultrastructural details of struvite-containing urinary calculi from dogs. 38 specimens were selected from a collection of approximately 13,000 canine urinary calculi: 18 of these were composed entirely of struvite, and 20 consisted of struvite and calcium phosphate (apatite). Qualitative and quantitative analyses of specimens included use of plain and polarized light microscopy, x-ray diffractometry, scanning electron microscopy with backscattered electron imagery, x-ray fluorescence scans, and electron microprobe analysis. 4 textural types were recognized among struvite calculi, and 4 textural types of struvite-apatite calculi were described. Evidences of calculus dissolution were described from 4 calculi studied. The presence of small, well interconnected primary pores in struvite-containing urinary calculi from dogs appears to be a significant factor in determining the possible interaction of calculi with changes in the urine composition. The progress of dissolution from the calculus surface to the calculus interior appears to be largely affected by the primary porosity originally present between crystals forming the calculus framework. Apatite was observed to be more resistant to dissolution than struvite. The prevalence of fine concentric laminations having low porosity, and the common occurrence of apatite among struvite-containing urinary calculi from dogs may be 2 reasons why the efficacy of dietary and medicinal manipulations in dissolving urinary calculi is greater among cats than it is among dogs.
Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; ...
2015-02-03
Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less
NASA Astrophysics Data System (ADS)
Thuyet-Nguyen, Minh; Hai-Nguyen, Hong; Kim, Won Joo; Kim, Ho Yoon; Kim, Jin-Chun
2017-03-01
Nanomaterials have attracted great attention from chemists, physicists and materials scientists because of their application benefits and special properties. Thermoplastics have been used in many applications such as molding of non-electrical components, conducting, magnetic field and 3D printing. Nanocomposites are known as a material which blends the best properties of components, a high performance material exhibits unusual property combinations and unique design possibilities. In this research, we focused to investigate and report primary results in the synthesis of magnetic nanocomposites based on acrylonitrile butadiene styrene (ABS), which are useful and important thermoplastics. Nickel nanopowder was prepared by electrical explosion of wire in a liquid were used as magnetic component. The composites were prepared by following steps, first the obtained Ni nanopowders were incorporated into the ABS matrix via a solution blending method (drop-casting), and then the solvent was evaporated. The characterizations of obtaining composites were analyzed by field emission scanning electron microscopy, X-Ray Diffraction analysis and vibrating sample magnetometer.
Zeininger, Lukas; He, Maggie; Hobson, Stephen T; Swager, Timothy M
2018-05-25
We report γ-ray dosimeters using carbon nanotubes wrapped with metastable poly(olefin sulfone)s (POSs) that readily depolymerize when exposed to ionizing radiation. New POSs, designed for wrapping single-walled carbon nanotubes (SWCNTs), are synthesized and characterized. The resulting POS-SWCNT composites serve as the active transducer in a novel class of γ-ray dosimeters. In our devices, polymer degradation results in immediate changes in the electronic potential of the POS-SWCNT active layers by decreasing the electron tunneling barriers between individualized tubes and by creating enhanced cofacial π-π electron contacts. By incorporating the SWCNT-POS composites into small resistive device platforms, we establish a rare example of real-time detection and dosimetry of radioactive ionizing radiation using organic-based materials. We show that the sensitivity of our platform closely depends on the intrinsic stability of the polymer matrix, the opacity toward γ-rays, and the dispersion efficiency (i.e., the individualization and isolation of the individual SWCNT charge carriers). Resistance decreases up to 65% after irradiation with a 40 krad dose demonstrates the high sensitivity of this novel class of γ-ray sensors. In addition, the detection mechanism was evaluated using a commercial capacitive device platform. The ease of fabrication and low power consumption of these small and inexpensive sensor platforms combined with appealing sensitivity parameters establishes the potential of the poly(olefin sulfone)-SWCNT composites to serve as a new transduction material in γ-ray sensor applications.
Buitink, S; Corstanje, A; Falcke, H; Hörandel, J R; Huege, T; Nelles, A; Rachen, J P; Rossetto, L; Schellart, P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brouw, W N; Brüggen, M; Butcher, H R; Carbone, D; Ciardi, B; Conway, J E; de Gasperin, F; de Geus, E; Deller, A; Dettmar, R-J; van Diepen, G; Duscha, S; Eislöffel, J; Engels, D; Enriquez, J E; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Grießmeier, J M; Gunst, A W; van Haarlem, M P; Hassall, T E; Heald, G; Hessels, J W T; Hoeft, M; Horneffer, A; Iacobelli, M; Intema, H; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Loose, G M; Maat, P; Mann, G; Markoff, S; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Mulcahy, D D; Munk, H; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pietka, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H J A; Scaife, A M M; Schwarz, D J; Serylak, M; Sluman, J; Smirnov, O; Stappers, B W; Steinmetz, M; Stewart, A; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Toribio, M C; Vermeulen, R; Vocks, C; Vogt, C; van Weeren, R J; Wijers, R A M J; Wijnholds, S J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P; Zensus, J A
2016-03-03
Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.
A new method of determining moisture gradient in wood
Zhiyong Cai
2008-01-01
Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...
The Composition of 433 Eros: A Mineralogical-Chemical Synthesis
NASA Technical Reports Server (NTRS)
McCoy, T. J.; Gaffey, M.; Bell, J. F., III; Boynton, W. V.; Burbine, T. H.; Chapman, C. R.; Cheng, A.; Clark, P. E.; Evans, L. G.; Gorenstein, P.
2001-01-01
We report on an effort with the Near-Infrared Spectrometer/Multi-Spectral Imager (NIS/MSI) and X-ray/Gamma-ray Spectrometer (XGRS) teams to synthesize our data sets to constrain the relationship between Eros and meteorites; the mineralogy, abundances and compositions of Eros; and the processes that formed Eros. Additional information is contained in the original extended abstract.
Indications of proton-dominated cosmic-ray composition above 1.6 EeV.
Abbasi, R U; Abu-Zayyad, T; Al-Seady, M; Allen, M; Amman, J F; Anderson, R J; Archbold, G; Belov, K; Belz, J W; Bergman, D R; Blake, S A; Brusova, O A; Burt, G W; Cannon, C; Cao, Z; Deng, W; Fedorova, Y; Finley, C B; Gray, R C; Hanlon, W F; Hoffman, C M; Holzscheiter, M H; Ivanov, D; Hughes, G; Hüntemeyer, P; Ivanov, D; Jones, B F; Jui, C C H; Kim, K; Kirn, M A; Loh, E C; Liu, J; Lundquist, J P; Maestas, M M; Manago, N; Marek, L J; Martens, K; Matthews, J A J; Matthews, J N; Moore, S A; O'Neill, A; Painter, C A; Perera, L; Reil, K; Riehle, R; Roberts, M; Rodriguez, D; Sasaki, N; Schnetzer, S R; Scott, L M; Sinnis, G; Smith, J D; Sokolsky, P; Song, C; Springer, R W; Stokes, B T; Stratton, S; Thomas, S B; Thomas, J R; Thomson, G B; Tupa, D; Zech, A; Zhang, X
2010-04-23
We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (X(max)), for air shower events collected by the High-Resolution Fly's Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d
XRF Experiment for Elementary Surface Analysis
NASA Astrophysics Data System (ADS)
Köhler, E.; Dreißigacker, A.; Fabel, O.; van Gasselt, S.; Meyer, M.
2014-04-01
The proposed X-Ray Fluorescence Instrument Package (XRF-X and XRF-E) is being designed to quantitatively measure the composition and map the distribution of rock-surface materials in order to support the target area selection process for exploration, sampling, and mining. While energydispersive X-Ray fluorescence (EDX) makes use of Solar X-Rays for excitation to probe materials over arbitrary distances (by XRF-X), electron-beam excitation can be used for proximity measurements (by XRF-E) over short-distance of up to about 10 - 20m. This design is targeted at observing and analyzing surface compositions from orbital platforms and it is in particular applicable to all atmosphereless solidsurface bodies. While the instrument design for observing objects in the outer solar system is challenging due to low count rates, the Moon and objects of the asteroid belt usually receive solar X-ray radiation that allows to integrate a statistically reliable data basis. Asteroids are attractive targets and have been visited using X-ray fluorescence instruments by orbiting spacecraft in the past (Itokawa, Eros). They are wellaccessible objects for determining elemental compositions and assessing potential mineral resources.
Simulations of a Thin Sampling Calorimeter with GEANT/FLUKA
NASA Technical Reports Server (NTRS)
Lee, Jeongin; Watts, John; Howell, Leonard; Rose, M. Franklin (Technical Monitor)
2000-01-01
The Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS) will investigate the origin, composition and acceleration mechanism of cosmic rays by measuring the elemental composition of the cosmic rays up to 10(exp 15) eV. These measurements will be made with a thin ionization calorimeter and a transition radiation detector. This paper reports studies of a thin sampling calorimeter concept for the ACCESS thin ionization calorimeter. For the past year, a Monte Carlo simulation study of a Thin Sampling Calorimeter (TSC) design has been conducted to predict the detector performance and to design the system for achieving the ACCESS scientific objectives. Simulation results show that the detector energy resolution function resembles a Gaussian distribution and the energy resolution of TSC is about 40%. In addition, simulations of the detector's response to an assumed broken power law cosmic ray spectra in the region where the 'knee' of the cosmic ray spectrum occurs have been conducted and clearly show that a thin sampling calorimeter can provide sufficiently accurate estimates of the spectral parameters to meet the science requirements of ACCESS. n
Late Holocene environmental reconstruction of Lake Issyk-Kul (Rep. Kyrgyzstan)
NASA Astrophysics Data System (ADS)
Giralt, Santiago; Hernández, Armand; Sáez, Alberto; José Pueyo, Juan; Cañellas-Boltà, Núria; Margalef, Olga
2010-05-01
Lake Issyk-Kul is an endorheic mountain lake located at 1608 m a.s.l., in the northern Tien Shan ranges, in the Republic of Kyrgyzstan, Central Asia. It has an area of 6236 km2, a length of 180 km, a width of 60 km, and a maximum depth of 668 m making it the fifth deepest lake in the world. The lake is monomictic, brackish (6 g/l), oligotrophic to ultra-oligotrophic (2 - 3.8 ?g/l of phosphorous), and it has high values of dissolved oxygen (6.5 - 7.5 mg/l at the bottom of the lake). In August 2000, a gravity 150 cm long core (C142a, 42°34'312' N - 77°20'030' E) was recovered at 150 m of water depth at the central northern shore of the lake. This core was characterized using X-Ray Fluorescence (XRF) core scanner (measurements every 300 μm), X-Ray Diffraction (XRD) every 3 mm, and elemental (TC and TN) and isotopic composition (δ13C and δ15N) of bulk organic matter every centimeter. The preliminary chronological framework was constructed with 4 AMS 14C dates. Statistical analyses (clusters, Principal Component (PCA) and Redundant (RDA) Analyses) were employed to identify and isolate the environmental forcings that have triggered the input, distribution and deposition of sediments within the lake. The core records the last ca. 4,000 cal. yrs BP and, during this time its primary productivity has steadily increased (higher values of TC and TN). δ13C and δ15N values suggest that the main primary producer are blue-green algae. The last ca. 100 years, the primary productivity has experienced a dramatic increase. Furthermore, PCA on XRF data also highlights that more than the 50% of the total variance is related to changes in primary productivity (the first eigenvector (EV) is tied by the opposition of the terrigenous - organic matter geochemical indicators). This EV shows that the primary productivity oscillated at decadal and centennial frequencies. The main forcing of these primary productivity fluctuations seems to be temperature changes linked to both solar activity (11 years Schwabe cycles) and anthropogenic global warming.
Jing, He; Wang, Xiaofei; Wang, Wei-Ning; Biswas, Pratim
2015-04-01
Corona discharge based techniques are promising approaches for oxidizing elemental mercury (Hg0) in flue gas from coal combustion. In this study, in-situ soft X-rays were coupled to a DC (direct current) corona-based electrostatic precipitator (ESP). The soft X-rays significantly enhanced Hg0 oxidation, due to generation of electrons from photoionization of gas molecules and the ESP electrodes. This coupling technique worked better in the positive corona discharge mode because more electrons were in the high energy region near the electrode. Detailed mechanisms of Hg0 oxidation are proposed and discussed based on ozone generation measurements and Hg0 oxidation behavior observations in single gas environments (O2, N2, and CO2). The effect of O2 concentration in flue gas, as well as the effects of particles (SiO2, TiO2, and KI) was also evaluated. In addition, the performance of a soft X-rays coupled ESP in Hg0 oxidations was investigated in a lab-scale coal combustion system. With the ESP voltage at +10 kV, soft X-ray enhancement, and KI addition, mercury oxidation was maximized. Mercury is a significant-impact atmospheric pollutant due to its toxicity. Coal-fired power plants are the primary emission sources of anthropogenic releases of mercury; hence, mercury emission control from coal-fired power plant is important. This study provides an alternative mercury control technology for coal-fired power plants. The proposed electrostatic precipitator with in situ soft X-rays has high efficiency on elemental mercury conversion. Effects of flue gas conditions (gas compositions, particles, etc.) on performance of this technology were also evaluated, which provided guidance on the application of the technology for coal-fired power plant mercury control.
NASA Astrophysics Data System (ADS)
Sutherland, Michael Stephen
2010-12-01
The Galactic magnetic field is poorly understood. Essentially the only reliable measurements of its properties are the local orientation and field strength. Its behavior at galactic scales is unknown. Historically, magnetic field measurements have been performed using radio astronomy techniques which are sensitive to certain regions of the Galaxy and rely upon models of the distribution of gas and dust within the disk. However, the deflection of trajectories of ultra high energy cosmic rays arriving from extragalactic sources depends only on the properties of the magnetic field. In this work, a method is developed for determining acceptable global models of the Galactic magnetic field by backtracking cosmic rays through the field model. This method constrains the parameter space of magnetic field models by comparing a test statistic between backtracked cosmic rays and isotropic expectations for assumed cosmic ray source and composition hypotheses. Constraints on Galactic magnetic field models are established using data from the southern site of the Pierre Auger Observatory under various source distribution and cosmic ray composition hypotheses. Field models possessing structure similar to the stellar spiral arms are found to be inconsistent with hypotheses of an iron cosmic ray composition and sources selected from catalogs tracing the local matter distribution in the universe. These field models are consistent with hypothesis combinations of proton composition and sources tracing the local matter distribution. In particular, strong constraints are found on the parameter space of bisymmetric magnetic field models scanned under hypotheses of proton composition and sources selected from the 2MRS-VS, Swift 39-month, and VCV catalogs. Assuming that the Galactic magnetic field is well-described by a bisymmetric model under these hypotheses, the magnetic field strength near the Sun is less than 3-4 muG and magnetic pitch angle is less than -8°. These results comprise the first measurements of the Galactic magnetic field using ultra-high energy cosmic rays and supplement existing radio astronomical measurements of the Galactic magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goel, Ashutosh; Kansal, Ishu; Dipartimento di Ingegneria dei Materiali e dell'Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia, 41100 Modena
2009-11-01
We report on the synthesis, sintering, and crystallization behaviors of a glass with a composition corresponding to 90 mol % CaMgSi{sub 2}O{sub 6}-10 mol % NaFeSi{sub 2}O{sub 6}. The investigated glass composition crystallized superficially immediately after casting of the melt and needs a high cooling rate (rapid quenching) in order to produce an amorphous glass. Differential thermal analysis and hot-stage microscopy were employed to investigate the glass forming ability, sintering behavior, relative nucleation rate, and crystallization behavior of the glass composition. The crystalline phase assemblage in the glass-ceramics was studied under nonisothermal heating conditions in the temperature range of 850-950more » deg. C in both air and N{sub 2} atmosphere. X-ray diffraction studies adjoined with the Rietveld-reference intensity ratio method were employed to quantify the amount of crystalline phases, while electron microscopy was used to shed some light on the microstructure of the resultant glass-ceramics. Well sintered glass-ceramics with diopside as the primary crystalline phase were obtained where the amount of diopside varied with the heating conditions.« less
The incommensurately modulated(1 - x)Ta 2O 5· xWO 3, 0 ≤ x ≤ 0.267 solid solution
NASA Astrophysics Data System (ADS)
Schmid, Siegbert; Withers, Ray L.; Thompson, John G.
1992-08-01
The phase(1 - x)Ta 2O 5 · WO 3, 0 ≤ x ≤ 0.267 has been studied by X-ray powder diffraction and transmission electron microscopy. It was previously described as an infinite series of anion-deficient, α-UO 3-type "line phases," with compositions resulting from intergrowths of different blocks made up by small numbers of α-UO 3-type cells. More correctly(1 - x)Ta 2O 5· xWO 3, 0 ≤ x ≤ 0.267 is described as an incommensurately modulated structure with a linearly composition-dependent primary modulation wave-vector qprim. = qb*. The underlying orthorhombically distorted α-UO 3-type parent structure has space group symmetry Cmmm ( a ≈ 6.20-6.14, b ≈ 3.66, c ≈ 3.89-3.85Å). Characteristic extinction conditions imply a superspace group symmetry of P : Cmmmm : s, -1,1. The four previously reported crystal structures in the solid solution field are examined by means of apparent valence calculations. Crystal chemical reasons are proposed for the width of the composition range,0 ≤ x ≤ 0.267, observed for the title phase.
Aab, A.; Abreu, P.; Aglietta, M.; ...
2014-12-01
Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most ofmore » the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.« less
NASA Astrophysics Data System (ADS)
Ram, Subhash Chandra; Chattopadhyay, K.; Chakrabarty, I.
2018-04-01
Functionally graded A356 alloy (Al–7.2Si–0.3Mg) –Mg2Si in situ composites have been synthesized via centrifugal casting route. Mg2Si particles tend to migrate towards the core of the tubular product by centrifugal force. The in situ formed Mg2Si particles in composites are characterized by x-ray diffraction (XRD) analysis, Energy dispersive spectrometry (EDS), Optical, Scanning Electron and Transmission Electron Microscopy. Apart from primary blocky Mg2Si particles the matrix contains other phases viz. Al-Si eutectic, pseudo-binary Al-Mg2Si eutectic and Al-Fe-Si intermetallics. Density is found to decrease and %porosity is increased with increase in volume fraction of Mg2Si. Maximum hardness was observed at the inner core region due to maximum segregation of Mg2Si particles and gradually decreases towards the outer periphery region. The dry sliding wear was evaluated with varying parameters such as normal loads (N) and sliding distances (m). A substantial increase in wear resistance at the inner core region is observed. From the worn surface characterization, the wear mechanisms have been explained.
Mechanistic Effects of Porosity on Structural Composite Materials
NASA Astrophysics Data System (ADS)
Siver, Andrew
As fiber reinforced composites continue to gain popularity as primary structures in aerospace, automotive, and powersports industries, quality control becomes an extremely important aspect of materials and mechanical engineering. The ability to recognize and control manufacturing induced defects can greatly reduce the likelihood of unexpected catastrophic failure. Porosity is the result of trapped volatiles or air bubbles during the layup process and can significantly compromise the strength of fiber reinforced composites. A comprehensive study was performed on an AS4C-UF3352 TCR carbon fiber-epoxy prepreg system to determine the effect of porosity on flexural, shear, low-velocity impact, and damage residual strength properties. Autoclave cure pressure was controlled to induce varying levels of porosity to construct six laminates with porosity concentrations between 0-40%. Porosity concentrations were measured using several destructive and nondestructive techniques including resin burnoff, sectioning and optical analysis, and X-ray computed tomography (CT) scanning. Ultrasonic transmission, thermography, and CT scanning provided nondestructive imaging to evaluate impact damage. A bilinear relationship accurately characterizes the change in mechanical properties with increasing porosity. Strength properties are relatively unaffected when porosity concentrations are below approximately 2.25% and decrease linearly by up to 40% in high porosity specimens.
Wang, R Z; Addadi, L; Weiner, S
1997-04-29
The teeth of sea urchins comprise a variety of different structural entities, all of which are composed of magnesium-bearing calcite together with a small amount of organic material. The teeth are worn down continuously, but in such a way that they remain sharp and functional. Here we describe aspects of the structural, compositional and micromechanical properties of the teeth of Paracentrotus lividus using scanning electron microscopy, infrared spectrometry, atomic absorption. X-ray diffraction and microindentation. The S-shaped single crystalline calcitic fibres are one of the main structural elements of the tooth. They extend from the stone part to the keel. The diameter of the fibres increases gradually from less than 1 micron at the stone tip to about 20 microns at the keel end, while their MgCO3 contents decrease from about 13 mol% to about 4.5 mol%. Each fibre is coated by a thin organic sheath and surrounded by polycrystalline calcitic discs containing as much as 35 mol% MgCO3. This structure constitutes a unique kind of gradient fibre-reinforced ceramic matrix composite, whose microhardness and toughness decrease gradually from the stone part to the keel. Primary plates are also important structural elements of the tooth. Each primary plate has a very unusual sandwich-like structure with a calcitic envelope surrounding a thin apparently amorphous CaCO3 layer. This central layer, together with the primary plate/disc interface, improves the toughness of this zone by stopping and blunting cracks. The self-sharpening function of the teeth is believed to result from the combination of the geometrical shape of the main structural elements and their spatial arrangement, the interfacial strength between structural elements, and the hardness gradient extending from the working stone part to the surrounding zones. The sea urchin tooth structure possesses an array of interesting functional design features, some of which may possibly be applicable to materials science.
NASA Astrophysics Data System (ADS)
Lin, Chi-Ming; Chang, Chia-Ming; Chen, Jie-Hao; Hsieh, Chih-Chun; Wu, Weite
2009-05-01
A series of high-carbon Cr-based hard-facing alloys were successfully fabricated on a substrate of 0.45 pct C carbon steel by gas tungsten arc welding (GTAW) process using various alloy fillers with chromium and chromium carbide, CrC (Cr:C = 4:1) powders. These claddings were designed to observe hypoeutectic, near-eutectic, and hypereutectic structures with various (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides at room temperature. According to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and optical microscopy (OM), in 3.8 pct C cladding, the microstructure consisted of the primary carbides with outer shells (Cr,Fe)23C6 surrounding (Cr,Fe)7C3 cores and [ α + (Cr,Fe)23C6] eutectic structures. In 5.9 pct C cladding, the composite comprised primary (Cr,Fe)7C3 as the reinforcing phase and [α + (Cr,Fe)7C3] eutectic structures as matrix. Various morphologies of carbides were found in primary and eutectic (Cr,Fe)7C3 carbides, which included bladelike and rodlike (with a hexagonal cross section). The 5.9C cladding with great amounts of primary (Cr,Fe)7C3 carbides had the highest hardness (approximately HRC 63.9) of the all conditions.
Synthesis and characterization of Al & SiCp nano particles by non-contact ultrasonic assisted method
NASA Astrophysics Data System (ADS)
Swain, Pradyut Kumar; Das, Ratnakar; Sahoo, Ashok Kumar; Naik, Bikash; Padhi, Payodhar
2018-05-01
The present study deals with proper mixing of SiCp nano particle in the aluminum metal matrix in two stages of processing i.e. primary and secondary. During primary processing, the breaking of agglomeration of nano particles take place and these are mixed with liquid aluminum powder using high frequency(35kHz) mechanical vibration. But, during secondary processing, mixing of nano particles along with subsequent cooling take place using high frequency non contact ultrasonic method. The study also reveals that in the liquid metal nano particle were uniformly dispersed and the segregation of the particles near the grain boundaries is due to pushing of the nano particle during grain growth. The study was performed by taking aluminum as matrix and SiCp as reinforcement with weight fraction of 2% and 3% and SiCp particles sizes of 30nm each. Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were conducted for characterization of nano composite material.
1986-09-30
Il.g. Honors, Awards - none II.h. Participants :Mr. Asok Ray ; Graduate Student working towards his Ph.D. Thesis. Advisor: Dr. V.K. Kinra at Texas A&M...Presentations ll.d.1 Invited Presentation at Topical or Scientific/Technical Society Conferences i) A.K. Ray , V.K. Kinra, S.P. Rawal and M.S. Misra...FC16 ii) S.P. Rawal, J.H. Armstrong, M.S. Misra, A.K. Ray and V.K. Kinra, "Damping Measurements of Gr/AI Composites", Symposium on Dynamic Behavior of
NASA Technical Reports Server (NTRS)
Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.
2014-01-01
C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.
Water window imaging x ray microscope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1992-01-01
A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.
Investigation on structural, optical and electrical properties of polythiophene-Al2O3 composites
NASA Astrophysics Data System (ADS)
Vijeth, H.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Devendrappa, H.
2018-05-01
The polythiophene (PTH) and polythiophene-Al2O3 composites prepared by in situ chemical polymerisation in the presence of anionic surfactant camphor sulfonic acid (CSA). The formation of composite is confirmed by X-ray Diffraction (XRD) and Energy Dispersive X-ray spectroscopy (EDX) analysis. The surface morphology was studied using Field Emission Electron Microscopy (FESEM). Optical properties was studied using UV-visible spectroscopy, it observed decrease in the band gap reveals material has potential application in optical devices. The dielectric constant and AC conductivity of composite have been studied for different temperature in the frequency range 1 kHz -1 MHz.
NASA Astrophysics Data System (ADS)
Zou, C.; Marrow, T. J.; Reinhard, C.; Li, B.; Zhang, C.; Wang, S.
2016-03-01
The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a "node-bond" geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1~ 9.3% closed micropores.
NASA Astrophysics Data System (ADS)
Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy; Huang, Nay Ming; Arifin, Zainudin; Mazhar, Muhammad
2015-10-01
A heterobimetallic complex [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO3-TiO2 composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO3-TiO2 composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application.
Near-edge X-ray refraction fine structure microscopy
Farmand, Maryam; Celestre, Richard; Denes, Peter; ...
2017-02-06
We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can seemore » nearly five-fold improved spatial resolution on resonance.« less
NASA Astrophysics Data System (ADS)
Jezzine, Karim; Imperiale, Alexandre; Demaldent, Edouard; Le Bourdais, Florian; Calmon, Pierre; Dominguez, Nicolas
2018-04-01
Models for the simulation of ultrasonic inspections of flat and curved plate-like composite structures, as well as stiffeners, are available in the CIVA-COMPOSITE module released in 2016. A first modelling approach using a ray-based model is able to predict the ultrasonic propagation in an anisotropic effective medium obtained after having homogenized the composite laminate. Fast 3D computations can be performed on configurations featuring delaminations, flat bottom holes or inclusions for example. In addition, computations on ply waviness using this model will be available in CIVA 2017. Another approach is proposed in the CIVA-COMPOSITE module. It is based on the coupling of CIVA ray-based model and a finite difference scheme in time domain (FDTD) developed by AIRBUS. The ray model handles the ultrasonic propagation between the transducer and the FDTD computation zone that surrounds the composite part. In this way, the computational efficiency is preserved and the ultrasound scattering by the composite structure can be predicted. Alternatively, a high order finite element approach is currently developed at CEA but not yet integrated in CIVA. The advantages of this approach will be discussed and first simulation results on Carbon Fiber Reinforced Polymers (CFRP) will be shown. Finally, the application of these modelling tools to the construction of metamodels is discussed.
The influence of FLiNaK salt impregnation on the mechanical properties of a 2D woven C/C composite
NASA Astrophysics Data System (ADS)
Zhang, Dongsheng; Xia, Huihao; Yang, Xinmei; Feng, Shanglei; Song, Jinliang; Zhou, Xingtai
2017-03-01
Impregnating of molten LiF-NaF-KF salt (LiF-NaF-KF: 46.5-11.5-42 mol%, FLiNaK) into a 2D woven C/C composite was performed at 650 °C under different pressure. The weight gain and mechanical properties change of the 2D woven C/C composite after FLiNaK salt impregnation were measured. The FLiNaK salt distribution into the 2D woven C/C composite was observed by X-ray computed tomography (X-ray CT) and scanning electron microscopy. The results showed that the weight gain of the 2D woven C/C composite increased with increasing impregnating pressure. In X-ray CT images, FLiNaK salt was distributed into the open pores and fissures among fiber bundles and neighboring plies. The interlaminar shear strength, compressive strength, and flexural strength of the 2D woven C/C composite increased with the increase of weight gain. The influence of FLiNaK salt impregnation on the mechanical properties was attributed to the coupling effect of re-densification of FLiNaK salt impregnation and residual stress formed in 2D woven C/C composite.
NASA Astrophysics Data System (ADS)
Stonehill, L. C.; Coupland, D. D. S.; Dallmann, N. A.; Feldman, W. C.; Mesick, K.; Nowicki, S.; Storms, S.
2017-12-01
The Elpasolite Planetary Ice and Composition Spectrometer (EPICS) is an innovative, low-resource gamma-ray and neutron spectrometer for planetary science missions, enabled by new scintillator and photodetector technologies. Neutrons and gamma rays are produced by cosmic ray interactions with planetary bodies and their subsequent interactions with the near-surface materials produce distinctive energy spectra. Measuring these spectra reveals details of the planetary near-surface composition that are not accessible through any other phenomenology. EPICS will be the first planetary science instrument to fully integrate the neutron and gamma-ray spectrometers. This integration is enabled by the elpasolite family of scintillators that offer gamma-ray spectroscopy energy resolutions as good as 3% FWHM at 662 keV, thermal neutron sensitivity, and the ability to distinguish gamma-ray and neutron signals via pulse shape differences. This new detection technology will significantly reduce size, weight, and power (SWaP) while providing similar neutron performance and improved gamma energy resolution compared to previous scintillator instruments, and the ability to monitor the cosmic-ray source term. EPICS will detect scintillation light with silicon photomultipliers rather than traditional photomultiplier tubes, offering dramatic additional SWaP reduction. EPICS is under development with Los Alamos National Laboratory internal research and development funding. Here we report on the EPICS design, provide an update on the current status of the EPICS development, and discuss the expected sensitivity and performance of EPICS in several potential missions to airless bodies.
Du, Haiying; Yao, PengJun; Sun, Yanhui; Wang, Jing; Wang, Huisheng; Yu, Naisen
2017-01-01
In2O3/SnO2 composite hetero-nanofibers were synthesized by an electrospinning technique for detecting indoor volatile organic gases. The physical and chemical properties of In2O3/SnO2 hetero-nanofibers were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), Energy Dispersive X-Ray Spectroscopy (EDX), specific surface Brunauer–Emmett–Teller (BET) and X-ray photoelectron spectroscopy (XPS). Gas sensing properties of In2O3/SnO2 composite hetero-nanofibers were measured with six kinds of indoor volatile organic gases in concentration range of 0.5~50 ppm at the operating temperature of 275 °C. The In2O3/SnO2 composite hetero-nanofibers sensor exhibited good formaldehyde sensing properties, which would be attributed to the formation of n-n homotype heterojunction in the In2O3/SnO2 composite hetero-nanofibers. Finally, the sensing mechanism of the In2O3/SnO2 composite hetero-nanofibers was analyzed based on the energy-band principle. PMID:28792433
A Multi-Variate Fit to the Chemical Composition of the Cosmic-Ray Spectrum
NASA Astrophysics Data System (ADS)
Eisch, Jonathan
Since the discovery of cosmic rays over a century ago, evidence of their origins has remained elusive. Deflected by galactic magnetic fields, the only direct evidence of their origin and propagation remain encoded in their energy distribution and chemical composition. Current models of galactic cosmic rays predict variations of the energy distribution of individual elements in an energy region around 3x1015 eV known as the knee. This work presents a method to measure the energy distribution of individual elemental groups in the knee region and its application to a year of data from the IceCube detector. The method uses cosmic rays detected by both IceTop, the surface-array component, and the deep-ice component of IceCube during the 2009-2010 operation of the IC-59 detector. IceTop is used to measure the energy and the relative likelihood of the mass composition using the signal from the cosmic-ray induced extensive air shower reaching the surface. IceCube, 1.5 km below the surface, measures the energy of the high-energy bundle of muons created in the very first interactions after the cosmic ray enters the atmosphere. These event distributions are fit by a constrained model derived from detailed simulations of cosmic rays representing five chemical elements. The results of this analysis are evaluated in terms of the theoretical uncertainties in cosmic-ray interactions and seasonal variations in the atmosphere. The improvements in high-energy cosmic ray hadronic-interaction models informed by this analysis, combined with increased data from subsequent operation of the IceCube detector, could provide crucial limits on the origin of cosmic rays and their propagation through the galaxy. In the course of developing this method, a number of analysis and statistical techniques were developed to deal with the difficulties inherent in this type of measurement. These include a composition-sensitive air shower reconstruction technique, a method to model simulated event distributions with limited statistics, and a method to optimize and estimate the error on a regularized fit.
Development of Cu Reinforced SiC Particulate Composites
NASA Astrophysics Data System (ADS)
Singh, Harshpreet; Kumar, Lailesh; Nasimul Alam, Syed
2015-02-01
This paper presents the results of Cu-SiCp composites developed by powder metallurgy route and an attempt has been made to make a comparison between the composites developed by using unmilled Cu powder and milled Cu powder. SiC particles as reinforcement was blended with unmilled and as-milled Cu powderwith reinforcement contents of 10, 20, 30, 40 vol. % by powder metallurgy route. The mechanical properties of pure Cu and the composites developed were studied after sintering at 900°C for 1 h. Density of the sintered composites were found out based on the Archimedes' principle. X-ray diffraction of all the composites was done in order to determine the various phases in the composites. Scanning electron microscopy (SEM) and EDS (electron diffraction x-ray spectroscopy) was carried out for the microstructural analysis of the composites. Vickers microhardness tester was used to find out the hardness of the samples. Wear properties of the developed composites were also studied.
Study of chloride ion transport of composite by using cement and starch as a binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armynah, Bidayatul; Halide, Halmar; Zahrawani,
This study presents the chemical bonding and the structural properties of composites from accelerator chloride test migration (ACTM). The volume fractions between binder (cement and starch) and charcoal in composites are 20:80 and 60:40. The effect of the binder to the chemical composition, chemical bonding, and structural properties before and after chloride ion passing through the composites was determined by X-ray fluorescence (XRF), by Fourier transform infra-red (FTIR), and x-ray diffraction (XRD), respectively. From the XRD data, XRF data, and the FTIR data shows the amount of chemical composition, the type of binding, and the structure of composites are dependingmore » on the type of binder. The amount of chloride migration using starch as binder is higher than that of cement as a binder due to the density effects.« less
NASA Astrophysics Data System (ADS)
Zhang, Dacheng; Zhang, Xiong; Chen, Yao; Yu, Peng; Wang, Changhui; Ma, Yanwei
Graphene and polypyrrole composite (PPy/GNS) is synthesized via in situ polymerization of pyrrole monomer in the presence of graphene under acid conditions. The structure and morphology of the composite are characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectrometer (FTIR), X-rays photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). It is found that a uniform composite is formed with polypyrrole being homogeneously surrounded by graphene nanosheets (GNS). The composite is a promising candidate for supercapacitors to have higher specific capacitance, better rate capability and cycling stability than those of pure polypyrrole. The specific capacitance of PPy/GNS composite based on the three-electrode cell configuration is as high as 482 F g -1 at a current density of 0.5 A g -1. After 1000 cycles, the attenuation of the specific capacitance is less than 5%, indicating that composite has excellent cycling performance.
NASA Astrophysics Data System (ADS)
Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.
2008-08-01
The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found ( p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.
Modification of carbon composites by nanoceramic compounds
NASA Astrophysics Data System (ADS)
Stoch, A.; Jastrzebski, W.; Długoń, E.; Stoch, G. J.; Błażewicz, S.; Adamczyk, A.; Tatarzyńska, K.
2005-06-01
Carbon-carbon composites (C/C) exhibit excellent high-temperature mechanical properties but their air oxidation limits their use at temperatures above 500 °C to inert atmosphere. Variety of coatings has been used to protect C/C composites from oxidation. In this work C/C composite substrates were covered with ceramic multilayer coats by electrophoretic deposition from ceramic sols such as silica sol, alumina sol and silica-lumina sol. Sol particles were of nano-sized dimensions. Deposited coats were annealed at 900-1500 °C. Oxidation tests at 600 °C reveal that the best protection of C/C composite against oxidation gives the multilayer coat formed by three or four electrophoretic depositions. The phase composition in the final annealed layers was analyzed by Infrared spectroscopy (FTIR) and by X-ray diffraction analysis (XRD). Morphology and chemical composition was observed using Scanning electron microscopy (SEM) with energy dispersive X-ray microanalysis (EDS).
Indications of Proton-Dominated Cosmic-Ray Composition above 1.6 EeV
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Al-Seady, M.; Allen, M.; Amman, J. F.; Anderson, R. J.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Loh, E. C.; Liu, J.; Lundquist, J. P.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M.; Rodriguez, D.; Sasaki, N.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S.; Thomas, S. B.; Thomas, J. R.; Thomson, G. B.; Tupa, D.; Zech, A.; Zhang, X.
2010-04-01
We report studies of ultrahigh-energy cosmic-ray composition via analysis of depth of air shower maximum (Xmax), for air shower events collected by the High-Resolution Fly’s Eye (HiRes) observatory. The HiRes data are consistent with a constant elongation rate d⟨Xmax⟩/d[log(E)] of 47.9±6.0(stat)±3.2(syst)g/cm2/decade for energies between 1.6 and 63 EeV, and are consistent with a predominantly protonic composition of cosmic rays when interpreted via the QGSJET01 and QGSJET-II high-energy hadronic interaction models. These measurements constrain models in which the galactic-to-extragalactic transition is the cause of the energy spectrum ankle at 4×1018eV.
Zhang, F.; Allen, A.J.; Levine, L.E.; Espinal, L.; Antonucci, J.M.; Skrtic, D.; O’Donnell, J.N.R.; Ilavsky, J.
2012-01-01
The local structural changes in amorphous calcium phosphate (ACP) based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering – X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While results from conventional bulk measurements do not show clear signs of structural change, USAXS-XPCS results reveal unambiguous evidence for local structural variations on a similar time scale to that of water loss in the ACP fillers. A thermal-expansion based simulation indicates that thermal behavior alone does not account for the observed dynamics. Together, these results suggest that changes in the water content of ACP affect the composite morphology due to changes in ACP structure that occur without an amorphous-to-crystalline conversion. It is also noted that biomedical materials research could benefit greatly from USAXS-XPCS, a dynamic approach. PMID:22374649
Luminosity correlations in quasars
NASA Technical Reports Server (NTRS)
Chanan, G. A.
1983-01-01
Simulations are conducted with and without flux thresholds in an investigation of quasar luminosity correlations by means of a Monte Carlo analysis, for various model distributions of quasars in X-rays and optical luminosity. For the case where the X-ray photons are primary, an anticorrelation between X-ray-to-optical luminosity ratio and optical luminosity arises as a natural consequence which resembles observations. The low optical luminosities of X-ray selected quasars can be understood as a consequence of the same effect, and similar conclusions may hold if the X-ray and optical luminosities are determined independently by a third parameter, although they do not hold if the optical photons are primary. The importance of such considerations is demonstrated through a reanalysis of the published X-ray-to-optical flux ratios for the 3CR sample.
A convenient method for X-ray analysis in TEM that measures mass thickness and composition
NASA Astrophysics Data System (ADS)
Statham, P.; Sagar, J.; Holland, J.; Pinard, P.; Lozano-Perez, S.
2018-01-01
We consider a new approach for quantitative analysis in transmission electron microscopy (TEM) that offers the same convenience as single-standard quantitative analysis in scanning electron microscopy (SEM). Instead of a bulk standard, a thin film with known mass thickness is used as a reference. The procedure involves recording an X-ray spectrum from the reference film for each session of acquisitions on real specimens. There is no need to measure the beam current; the current only needs to be stable for the duration of the session. A new reference standard with a large (1 mm x 1 mm) area of uniform thickness of 100 nm silicon nitride is used to reveal regions of X-ray detector occlusion that would give misleading results for any X-ray method that measures thickness. Unlike previous methods, the new X-ray method does not require an accurate beam current monitor but delivers equivalent accuracy in mass thickness measurement. Quantitative compositional results are also automatically corrected for specimen self-absorption. The new method is tested using a wedge specimen of Inconel 600 that is used to calibrate the high angle angular dark field (HAADF) signal to provide a thickness reference and results are compared with electron energy-loss spectrometry (EELS) measurements. For the new X-ray method, element composition results are consistent with the expected composition for the alloy and the mass thickness measurement is shown to provide an accurate alternative to EELS for thickness determination in TEM without the uncertainty associated with mean free path estimates.
Multispectral variable magnification glancing incidence x ray telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1992-01-01
A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.
Wide-angle X-ray scattering study of heat-treated PEEK and PEEK composite
NASA Technical Reports Server (NTRS)
Cebe, Peggy; Lowry, Lynn; Chung, Shirley Y.; Yavrouian, Andre; Gupta, Amitava
1987-01-01
Samples of poly(etheretherketone) (PEEK) neat resin and APC-2 carbon fiber composite were subjected to various heat treatments, and the effect of quenching and annealing treatments was studied by wide-angle X-ray scattering. It is found that high-temperature treatments may introduce disorder into neat resin and composite PEEK when followed by rapid cooling. The disorder is metastable and can revert to ordered state when the material is heated above its glass transition temperature and then cooled slowly. The disorder may result from residual thermal stresses.
Kaiser, Jozef; Holá, Markéta; Galiová, Michaela; Novotný, Karel; Kanický, Viktor; Martinec, Petr; Sčučka, Jiří; Brun, Francesco; Sodini, Nicola; Tromba, Giuliana; Mancini, Lucia; Kořistková, Tamara
2011-08-01
The outcomes from the feasibility study on utilization of synchrotron radiation X-ray microtomography (SR-μCT) to investigate the texture and the quantitative mineralogical composition of selected calcium oxalate-based urinary calculi fragments are presented. The comparison of the results obtained by SR-μCT analysis with those derived from current standard analytical approaches is provided. SR-μCT is proved as a potential effective technique for determination of texture, 3D microstructure, and composition of kidney stones.
Planetary and satellite x ray spectroscopy: A new window on solid-body composition by remote sensing
NASA Technical Reports Server (NTRS)
Chenette, D. L.; Wolcott, R. W.; Selesnick, R. S.
1993-01-01
The rings and most of the satellites of the outer planets orbit within the radiation belts of their parent bodies. This is an environment with intense fluxes of energetic electrons. As a result, these objects are strong emitters of X-rays. The characteristic X-ray lines from these bodies depend on atomic composition, but they are not sensitive to how the material is arranged in compounds or mixtures. X-ray fluorescence spectral analysis has demonstrated its unique value in the laboratory as a qualitative and quantitative analysis tool. This technique has yet to be fully exploited in a planetary instrument for remote sensing. The characteristic X-ray emissions provide atomic relative abundances. These results are complementary to the molecular composition information obtained from IR, visible, and UV emission spectra. The atomic relative abundances are crucial to understanding the formation and evolution of these bodies. They are also crucial to the proper interpretation of the molecular composition results from the other sensors. The intensities of the characteristic X-ray emissions are sufficiently strong to be measured with an instrument of modest size. Recent developments in X-ray detector technologies and electronic miniaturization have made possible space-flight X-ray imaging and nonimaging spectrometers of high sensitivity and excellent energy resolution that are rugged enough to survive long-duration space missions. Depending on the application, such instruments are capable of resolving elemental abundances of elements from carbon through iron. At the same time, by measuring the bremsstrahlung intensity and energy spectrum, the characteristics of the source electron flux can be determined. We will discuss these concepts, including estimated source strengths, and will describe a small instrument capable of providing this unique channel of information for future planetary missions. We propose to build this instrument using innovative electronics packaging methods to minimize size and weight.
Mineralogy of Sediments on a Cold and Icy Early Mars
NASA Astrophysics Data System (ADS)
Rampe, E. B.; Horgan, B. H. N.; Smith, R.; Scudder, N.; Rutledge, A. M.; Bamber, E.; Morris, R. V.
2017-12-01
The water-related minerals discovered in ancient martian terrains suggest liquid water was abundant on the surface and/or near subsurface during Mars' early history. The debate remains, however, whether these minerals are indicative of a warm and wet or cold and icy climate. To characterize mineral assemblages of cold and icy mafic terrains, we analyzed pro- and supraglacial rocks and sediments from the Collier and Diller glacial valleys in Three Sisters, Oregon. We identified primary and secondary phases using X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible/short-wave-infrared (VSWIR) and thermal-infrared (TIR) spectroscopies. Samples from both glacial valleys are dominated by primary igneous minerals (i.e., plagioclase and pyroxene). Sediments in the Collier glacial valley contain minor to trace amounts of phyllosilicates and zeolites, but these phases are likely detrital and sourced from hydrothermally altered units on North Sister. We find that the authigenic phases in cold and icy mafic terrains are poorly crystalline and/or amorphous. TEM-EDS analyses of the <2 um size fraction of glacial flour shows the presence of many different nanophase materials, including iron oxides, devitrified volcanic glass, and Fe-Si-Al (e.g., proto-clay) phases. A variety of primary and secondary amorphous materials (e.g., volcanic glass, leached glass, allophane) have been suggested from orbital IR data from Mars, and the CheMin XRD on the Curiosity rover has identified X-ray amorphous materials in all rocks and soils measured to date. The compositions of the Gale Crater amorphous components cannot be explained by primary volcanic glass alone and likely include secondary silicates, iron oxides, and sulfates. We suggest that the prevalence of amorphous materials on the martian surface and the variety of amorphous components may be a signature of a cold and icy climate on Early Mars.
Small air showers and collider physics
NASA Technical Reports Server (NTRS)
Capdevielle, J. N.; Gawin, J.; Grochalska, B.
1985-01-01
At energies lower than 2.5 X 10 to the 5 GeV (in Lab. system), more accurate information on nucleon-nucleon collision (p-p collider and on primary composition now exist. The behavior of those both basic elements in cosmic ray phenomenology from ISR energy suggests some tendencies for reasonable extrapolation in the next decade 2.0x10 to the 5 to 2.0x10 to the 6 GeV. Small showers in altitude, recorded in the decade 2 X 10 to the 4 to 2 X 10 to the 5 GeV offers a good tool to testify the validity of all the Monte-Carlo simulation analysis and appreciate how nucleon-air collision are different from nucleon-nucleon collisions.
Structure of Rv1848 (UreA), the Mycobacterium tuberculosis urease γ subunit
Habel, Jeff E.; Bursey, Evan H.; Rho, Beom-Seop; Kim, Chang-Yub; Segelke, Brent W.; Rupp, Bernhard; Park, Min S.; Terwilliger, Thomas C.; Hung, Li-Wei
2010-01-01
The crystal structure of the urease γ subunit (UreA) from Mycobacterium tuberculosis, Rv1848, has been determined at 1.8 Å resolution. The asymmetric unit contains three copies of Rv1848 arranged into a homotrimer that is similar to the UreA trimer in the structure of urease from Klebsiella aerogenes. Small-angle X-ray scattering experiments indicate that the Rv1848 protein also forms trimers in solution. The observed homotrimer and the organization of urease genes within the M. tuberculosis genome suggest that M. tuberculosis urease has the (αβγ)3 composition observed for other bacterial ureases. The γ subunit may be of primary importance for the formation of the urease quaternary structure. PMID:20606272
NASA Astrophysics Data System (ADS)
Riebe, My E. I.; Huber, Liliane; Metzler, Knut; Busemann, Henner; Luginbuehl, Stefanie M.; Meier, Matthias M. M.; Maden, Colin; Wieler, Rainer
2017-09-01
Whether or not some meteorites retain a record of irradiation by a large flux of energetic particles from the early sun in the form of excesses of cosmic-ray produced noble gases in individual crystals or single chondrules is a topic of ongoing debate. Here, we present He and Ne isotopic data for individual chondrules in Murchison, a chondritic regolith breccia of the CM group. We separated 27 chondrules from a clastic matrix portion and 26 chondrules from an adjacent single so-called "primary accretionary rock" (Metzler et al., 1992). All chondrules from the primary rock fragment are expected to share a common irradiation history, whereas chondrules from the clastic matrix were stirred in the regolith independently of each other. All "primary rock chondrules" and 23 of the "matrix chondrules" have very similar concentrations of cosmogenic 3He and 21Ne, corresponding to a cosmic-ray exposure age to galactic cosmic rays (GCR) of ∼1.3-1.9 Ma, in the range of Murchison's meteoroid exposure age determined with cosmogenic radionuclides. Four clastic matrix chondrules contain excesses of cosmogenic 3He and 21Ne, corresponding to nominal 4π exposure ages of ∼4-∼29 Ma, with a Ne isotopic composition as expected for production by GCR. If the fraction of excess cosmogenic gas bearing chondrules in the primary rock and clastic matrix were the same, we would expect this result with a statistical probability of only 0.5 - 2.7%. Therefore, the exposure age distributions for Murchison chondrules in primary rock and clastic matrix are very likely different. Such a difference is expected if the excess cosmogenic gas was acquired by some of the matrix chondrules in the regolith, but not if chondrules were irradiated in the solar nebula by the early sun before they accreted on the Murchison parent body. Therefore, Murchison does not provide evidence for irradiation by a high fluence of energetic particles from the early sun. By inference, this statement likely holds for the other regolithic meteorites for which large occasional excesses of cosmogenic noble gases have been reported. Considering pre-irradiation in a regolith (2π exposure), the pre-exposure times for these four chondrules are at least between some 4 and 40 Ma near the very surface of the parent body, and even longer if they were buried deeper in the regolith.
ERIC Educational Resources Information Center
Slotte, Sari; Sääkslahti, Arja; Metsämuuronen, Jari; Rintala, Pauli
2015-01-01
Objective: The main aim was to examine the association between fundamental movement skills (FMS) and objectively measured body composition using dual energy X-ray absorptiometry (DXA). Methods: A study of 304 eight-year-old children in Finland. FMS were assessed with the "Test of gross motor development," 2nd ed. Total body fat…
Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography
NASA Astrophysics Data System (ADS)
Balaskó, M.; Veres, I.; Molnár, Gy.; Balaskó, Zs.; Sváb, E.
2004-07-01
In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered.
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2011-10-01
We report the observation of a steepening in the cosmic ray energy spectrum of heavy primary particles at about 8×1016eV. This structure is also seen in the all-particle energy spectrum, but is less significant. Whereas the “knee” of the cosmic ray spectrum at 3-5×1015eV was assigned to light primary masses by the KASCADE experiment, the new structure found by the KASCADE-Grande experiment is caused by heavy primaries. The result is obtained by independent measurements of the charged particle and muon components of the secondary particles of extensive air showers in the primary energy range of 1016 to 1018eV. The data are analyzed on a single-event basis taking into account also the correlation of the two observables.
Pulsed Neurton Elemental On-Line Material Analyzer
Vourvopoulos, George
2002-08-20
An on-line material analyzer which utilizes pulsed neutron generation in order to determine the composition of material flowing through the apparatus. The on-line elemental material analyzer is based on a pulsed neutron generator. The elements in the material interact with the fast and thermal neutrons produced from the pulsed generator. Spectra of gamma-rays produced from fast neutrons interacting with elements of the material are analyzed and stored separately from spectra produced from thermal neutron reactions. Measurements of neutron activation takes place separately from the above reactions and at a distance from the neutron generator. A primary passageway allows the material to flow through at a constant rate of speed and operators to provide data corresponding to fast and thermal neutron reactions. A secondary passageway meters the material to allow for neutron activation analysis. The apparatus also has the capability to determine the density of the flowed material. Finally, the apparatus continually utilizes a neutron detector in order to normalize the yield of the gamma ray detectors and thereby automatically calibrates and adjusts the spectra data for fluctuations in neutron generation.
Seidel, Ronald; Blumer, Michael; Pechriggl, Elisabeth-Judith; Lyons, Kady; Hall, Brian K; Fratzl, Peter; Weaver, James C; Dean, Mason N
2017-10-01
The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens. Copyright © 2017 Elsevier Inc. All rights reserved.
AMS Observations of Light Cosmic Ray Isotopes and Implications for their Production in the Galaxy
NASA Astrophysics Data System (ADS)
Tomassetti, Nicola
2012-08-01
Observations of light isotopes in cosmic rays provide information on their origin and propagation in the Galaxy. Using the data collected by AMS-01 in the STS-91 space mission, we report our final results on the isotopic composition of hydrogen and helium between 200 MeV and 1.4 GeV per nucleon. These measurements are in good agreement with the previous data and set new standards of precision. We discuss the role of isotopic composition data in modeling the cosmic ray production, acceleration and diffusive transport in the Galaxy.
Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating
NASA Technical Reports Server (NTRS)
Sahoo, N. K.; Shapiro, A. P.
1998-01-01
In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.
Milella, E; Cosentino, F; Licciulli, A; Massaro, C
2001-06-01
In the present work a titania network encapsulating a hydroxyapatite particulate phase is proposed as a bioceramic composite coating. The coating on a titanium substrate was produced starting from a sol containing a mixture of titania colloidal particles and hydroxyapatite submicron particles using the dip-coating technique. The microstructure, the morphology and the surface chemical composition of the coating were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Adhesion tests were also performed. These analyses showed that the obtained coating was chemically clean, homogeneous, rough, porous, with a low thickness and well-defined phase composition as well as a good adhesion to the substrate.
NASA Astrophysics Data System (ADS)
Kumar, Uday; Badawi, Emad; Mukhopadhyay, P. K.
A series of Al-Mgx alloys, with x = 0.82, 2.09, 2.28, 2.49 and 4.47 wt.%, respectively were characterized by using positron annihilation lifetime studies (PAL), X-ray diffraction (XRD), and sound velocity and internal friction using a vibrating reed technique (VRT). PAL lifetime values increase linearly as the composition is varied, but texturing or preferential orientation is maximum at an intermediate value of composition (x = 2.49%). The internal friction shows a minimum at the same composition, and the sound velocity changes show the maximum value here too. This means that at this composition the sample is the most ordered and defect free.
NASA Astrophysics Data System (ADS)
Ignatov, D.; Zhurbina, N.; Gerasimenko, A.
2017-01-01
3-D composites are widely used in tissue engineering. A comprehensive analysis by X-ray microtomography was conducted to study the structure of the 3-D composites. Comprehensive analysis of the structure of the 3-D composites consisted of scanning, image reconstruction of shadow projections, two-dimensional and three-dimensional visualization of the reconstructed images and quantitative analysis of the samples. Experimental samples of composites were formed by laser vaporization of the aqueous dispersion BSA and single-walled (SWCNTs) and multi-layer (MWCNTs) carbon nanotubes. The samples have a homogeneous structure over the entire volume, the percentage of porosity of 3-D composites based on SWCNTs and MWCNTs - 16.44%, 28.31%, respectively. An average pore diameter of 3-D composites based on SWCNTs and MWCNTs - 45 μm 93 μm. 3-D composites based on carbon nanotubes in bovine serum albumin matrix can be used in tissue engineering of bone and cartilage, providing cell proliferation and blood vessel sprouting.
Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 2
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1985-01-01
Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. Topic areas include the composition, spectra, and anisotropy of cosmic ray nuclei with energies and 1 TeV, isotopes, antiprotons and related subjects, and electrons, positrons, and measurements of synchrotron radiation.
Test of high-energy hadronic interaction models with high-altitude cosmic-ray data
NASA Astrophysics Data System (ADS)
Haungs, A.; Kempa, J.
2003-09-01
Emulsion experiments placed at high mountain altitudes register hadrons and high-energy γ-rays with an energy threshold in the TeV region. These secondary shower particles are produced in the forward direction of interactions of mainly primary protons and alpha-particles in the Earth's atmosphere. Single γ's and hadrons are mainly produced by the interactions of the primary cosmic-ray nuclei of primary energy below 1015eV. Therefore the measurements are sensitive to the physics of high-energy hadronic interaction models, e.g., as implemented in the Monte Carlo air shower simulation program CORSIKA. By use of detailed simulations invoking various different models for the hadronic interactions we compare the predictions for the single-particle spectra with data of the Pamir experiment. For higher primary energies characteristics of so-called gamma-ray families are used for the comparisons. Including detailed simulations for the Pamir detector we found that the data are incompatible with the HDPM and SIBYLL 1.6 models, but are in agreement with QGSJET, NEXUS, and VENUS.
Pelletier, Jacques C.
1987-01-01
Two cases of primary benign bone tumors were diagnosed radiographically in a chiropractic practice. Although primary osseous tumors are somewhat uncommon, their potential presence emphasizes the importance of x-ray diagnosis as an essential adjunct to chiropractic practice. This procedure may preclude underlying lesions before considering treatment of seemingly uncomplicated injuries. Two such cases are presented: unicameral bone cyst and osteochondroma. ImagesFigure 1Figure 2Figure 3
A long duration balloon-borne telescope for solar gamma-ray astronomy
NASA Technical Reports Server (NTRS)
Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.
1989-01-01
A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.
A long duration balloon-borne telescope for solar gamma-ray astronomy
NASA Astrophysics Data System (ADS)
Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.
A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.
Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; ...
2017-09-01
This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca 0.9La 0.1Al 0.1Mn 0.9O 3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 degrees C shows the importance of balance between surface area, purity of the perovskite phase, and surfacemore » composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm -2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm -2, demonstrating an ~50% increase when compared to the highest performing composite with undoped carbon at the same loading.« less
NASA Astrophysics Data System (ADS)
Dzara, Michael J.; Christ, Jason M.; Joghee, Prabhuram; Ngo, Chilan; Cadigan, Christopher A.; Bender, Guido; Richards, Ryan M.; O'Hayre, Ryan; Pylypenko, Svitlana
2018-01-01
This work reports the first account of perovskite oxide and carbon composite oxygen reduction reaction (ORR) catalysts integrated into anion exchange membrane fuel cells (AEMFCs). Perovskite oxides with a theoretical stoichiometry of Ca0.9La0.1Al0.1Mn0.9O3-δ are synthesized by an aerogel method and calcined at various temperatures, resulting in a set of materials with varied surface chemistry and surface area. Material composition is evaluated by X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The perovskite oxide calcined at 800 °C shows the importance of balance between surface area, purity of the perovskite phase, and surface composition, resulting in the highest ORR mass activity when evaluated in rotating disk electrodes. Integration of this catalyst into AEMFCs reveals that the best AEMFC performance is obtained when using composites with 30:70 perovskite oxide:carbon composition. Doubling the loading leads to an increase in the power density from 30 to 76 mW cm-2. The AEMFC prepared with a composite based on perovskite oxide and N-carbon achieves a power density of 44 mW cm-2, demonstrating an ∼50% increase when compared to the highest performing composite with undoped carbon at the same loading.
Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties.
Zhang, Jin; Wang, Bing; Li, Chuang; Cui, Hao; Zhai, Jianping; Li, Qin
2014-09-01
To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere (FAC)-supported CeO2-BiVO4 (CeO2-BiVO4/FAC) composite photocatalyst was prepared by modified metalorganic decomposition and impregnation methods. The physical and photophysical properties of the composite have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Visible diffuse reflectance spectra. The XRD patterns exhibited characteristic diffraction peaks of both BiVO4 and CeO2 crystalline phases. The XPS results showed that Ce was present as both Ce(4+) and Ce(3+) oxidation states in CeO2 and dispersed on the surface of BiVO4 to constitute a p-n heterojunction composite. The absorption threshold of the CeO2-BiVO4/FAC composite shifted to a longer wavelength in the UV-Vis absorption spectrum compared to the pure CeO2 and pure BiVO4. The composites exhibited enhanced photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. It was found that the 7.5wt.% CeO2-BiVO4/FAC composite showed the highest photocatalytic activity for MB dye wastewater treatment. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Li, XueAi; Han, XiJiang; Du, YunChen; Xu, Ping
2011-01-01
Magnetic and electromagnetic properties were investigated on the composites of iron oxide and Co-B alloy, which were prepared by a modified chemical reduction method. The composites are characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDXA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometry (VSM). The complex electromagnetic parameters (permittivity ɛr= ɛr'+j ɛr″ and permeability μr= μr'+j μr″) of paraffin mixed composite samples (paraffin:composites=1:1 in mass ratio) were measured in the frequency range 2-18 GHz by vector network analyzer. The measured real part ( ɛr') and imaginary part ( ɛr″) of the relative permittivity show two resonant peaks in the range of 2-18 GHz. The imaginary parts of relative permeability ( μr″) of all samples exhibited one broad resonant peak over the 2-8 GHz range. The μr″ of samples with higher molar ratio of Co to Fe (C and D) shows negative values within 13-18 GHz, which exhibit resonant and antiresonant permeabilities simultaneously. Calculation results indicated that the reflection loss values of the composites and paraffin wax mixtures are less than -10 dB with frequency width of about 6 GHz at the matching thickness.
Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties
NASA Astrophysics Data System (ADS)
Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V.
2014-05-01
Zinc oxide/Graphene (GZ) composites with different concentrations of ZnO were successfully synthesized through simple chemical precipitation method. The X-ray diffraction pattern and the micro-Raman spectroscopic technique revealed the formation of GZ composite, and the energy dispersive X-ray spectrometry analysis showed the purity of the prepared samples. The ZnO nanoparticles decorated graphene sheets were clearly visible in the field emission scanning electron micrograph. Raman mapping was employed to analyze the homogeneity of the prepared samples. The diffuse-reflectance spectra clearly indicated that the formation of GZ composites promoted the absorption in the visible region also. The photocatalytic activity of ZnO and GZ composites was studied by the photodegradation of Methylene blue dye. The results revealed that the GZ composites exhibited a higher photocatalytic activity than pristine ZnO. Hence, we proposed a simple wet chemical method to synthesize GZ composite and its application on photocatalysis was demonstrated.
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1986-01-01
Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.
To measure the chemical composition of a Near Earth Object
NASA Astrophysics Data System (ADS)
Gasnault, 0.; Ball, A.; Biele, J.; D'Uston, C.; Forni, O.; Klingelhofer, G.; Maurice, S.; Ulamec, S.
Introduction. Scenarios for a Near Earth Object (NEO) rendezvous mission were discussed recently in Europe. Such a mission would address scientific questions about the initial conditions and evolutionary history of the solar nebula, as well as mitigation considerations to prevent impact with the Earth. In our opinion the measurement of the elemental composition and the distribution of volatiles in the shallow sub-surface are two of the key observations to be conducted, either from an orbiter or a lander. These measurements are also valuable for documentation (landing site candidates and sample context). This report is limited to the chemical composition, but we assume that remote and/or in-situ observations of physical characteristics, interior, morphology, mineralogy, and organic compounds will also be made as essential complements to achieve the mission scientific objectives. Scientific Interest. The analysis of the bulk composition addresses three fundamental aspects of the scientific mission: (1) the formation of the asteroid or the comet; (2) the evolution of the object; (3) the relation between the parent body and collected meteorites on Earth. Classification of an asteroid/comet can be based on its global composition (abundances of Mg, Si, Fe, Al, Ca, etc. along with its mineralogy), which bears the signature of the feeding zone where it formed. For example the K/U and K/Th ratios seem to increase with distance from the Sun (decreasing temperature). The hydrogen content is another measurable to study the distribution of volatiles in the Solar System. The surface composition is also the result of the degree of evolution of the object and of the interactions with its environment. Building a compositional map of the major elements is necessary to identify and characterize the processes that influenced the asteroid along its history. Finally, knowing the chemical composition will obviously help to relate the parent 1 body to meteorites. Ideally the measurement of specific isotopes, including O, C and those produced by the exposure to the cosmic rays, such as 38 Ar or 21 Ne, can pinpoint to the family of meteorites, but such measurements are challenging with restricted resources. Instrument Payload Options. To define the most appropriate instrument(s) in terms of scientific return and technical constraints, various solutions have been studied. For the orbiter this includes an X-ray spectrometer with a solar monitor, and a gamma-ray spectrometer with a neutron sensor. For a lander, it has been demonstrated that an active X-ray spectrometer gives outstanding results for very low resources. If mass is available in the frame of an ambitious mission, one can consider active experiments such as a laser-induced breakdown spectrometer, a mass spectrometer (needing sample manipulation, a laser ablation system, or an ion source), or evolved gas analyzers. It is very difficult however to baseline the use of active experiments from the orbiter (very close fly-bys) such as those on board the Phobos missions. On the one hand the main constraints on the lander are related to the resources (mass, power, volume) and possibly the need for target contact/manipulation. On the other hand the difficulties from the orbiter are the sensitivity to prioritized chemical elements and the mapping resolution (e.g. of the order of 1/10 of the altitude for X-rays, and equivalent to the altitude for gamma-rays). Remote-sensing experiments have been evaluated from that perspective; It is possible to estimate the accumulation time needed to reach enough precision: of the order of 1 h for X-rays and several hours for gamma-rays above each pixel (defined by the spatial resolution, see above). In a classical orbital mission scenario these numbers translate into several weeks of observations (more than 1 month). Lessons learned from previous missions (Apollo, Lunar Prospector, NEAR, Mars Odyssey, SMART-1) are also taken into account: the difficulty to monitor the solar activity for the X-rays, the low signal to noise ratio for the gamma-rays. Previous experiments were successful when the ratio orbit-radius over body-radius was about 5-7 for X-rays and less than 2 for gamma-rays. All these points put strong constraints on the operations to measure properly the chemical composition of a NEO. 2
X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses
Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav; ...
2017-05-10
The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less
X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav
The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less
NASA Astrophysics Data System (ADS)
Shellnutt, J. G.; Pham, Thuy T.
2018-05-01
The Late Permian Emeishan large igneous province (ELIP) is considered to be one of the best examples of a mantle plume derived large igneous province. One of the primary observations that favour a mantle plume regime is the presence of ultramafic volcanic rocks. The picrites suggest primary mantle melts erupted and that mantle potential temperatures (TP) of the ELIP were > 200oC above ambient mantle conditions. However, they may represent a mixture of liquid and cumulus olivine and pyroxene rather than primary liquids. Consequently, temperature estimates based on the picrite compositions may not be accurate. Here we calculate mantle potential temperature (TP) estimates and primary liquids compositions using PRIMELT3 for the low-Ti (Ti/Y < 500) Emeishan basalt as they represent definite liquid compositions. The calculated TP yield a range from 1400oC to 1550oC, which is consistent with variability across a mantle plume axis. The primary melt compositions of the basalts are mostly picritic. The results of this study indicate that the Emeishan basalt was produced by a high temperature regime and that a few of the ultramafic volcanic rocks may be indicative of primary liquids.
NASA Technical Reports Server (NTRS)
Vanhollebeke, M. A. I.; Mcdonald, F. B.; Trainor, J. H.
1985-01-01
Studies of the charge composition of two solar gamma ray/neutron-flare events reveal a striking enrichment of iron relative to oxygen with a smaller enrichment of intermediate nuclei. He/O is also enhanced and moderate amounts of He-3 are detected but there is no evidence for H-2 or H-3.
Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo
2016-02-08
The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses.
The uniformity and imaging properties of some new ceramic scintillators
NASA Astrophysics Data System (ADS)
Chac, George T. L.; Miller, Brian W.; Shah, Kanai; Baldoni, Gary; Domanik, Kenneth J.; Bora, Vaibhav; Cherepy, Nerine J.; Seeley, Zachary; Barber, H. Bradford
2012-10-01
Results are presented of investigations into the composition, uniformity and gamma-ray imaging performance of new ceramic scintillators with synthetic garnet structure. The ceramic scintillators were produced by a process that uses flame pyrolysis to make nanoparticles which are sintered into a ceramic and then compacted by hot isostatic compression into a transparent material. There is concern that the resulting ceramic scintillator might not have the uniformity of composition necessary for use in gamma-ray spectroscopy and gamma-ray imaging. The compositional uniformity of four samples of three ceramic scintillator types (GYGAG:Ce, GLuGAG:Ce and LuAG:Pr) was tested using an electron microprobe. It was found that all samples were uniform in elemental composition to the limit of sensitivity of the microprobe (few tenths of a percent atomic) over distance scales from ~ 1 cm to ~ 1 um. The light yield and energy resolution of all ceramic scintillator samples were mapped with a highly collimated 57Co source (122 keV) and performance was uniform at mapping scale of 0.25 mm. Good imaging performance with single gamma-ray photon detection was demonstrated for all samples using a BazookaSPECT system, and the imaging spatial resolution, measured as the FWHM of a LSF was 150 um.
Cosmic ray experimental observations
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.; Mcdonald, F. B.
1974-01-01
The current experimental situation in cosmic ray studies is discussed, with special emphasis on the development of new detector systems. Topics covered are the techniques for particle identification, energy measurements, gas Cerenkov counters, magnet spectrometers, ionization spectrometers, track detectors, nuclear emulsions, multiparameter analysis using arrays of detectors, the Goddard ionization spectrometer, charge spectra, relative abundances, isotope composition, antinuclei in cosmic rays, electrons, the measurement of cosmic ray arrival directions, and the prehistory of cosmic rays.
Rossi and high-energy astronomy
NASA Astrophysics Data System (ADS)
Clark, George W.
2012-03-01
The contributions of Bruno Rossi to high-energy astronomy began in Italy in the 1930s with investigations concerning the nature of cosmic rays in theory and in hands-on experiments at the universities of Florence and Padua. Recent discoveries had cast doubt on Robert Millikan's idea that the primary cosmic rays are gamma rays created in the production of the elements by fusion of hydrogen atoms in interstellar space. Rossi entered the field with a prediction published in 1930 of a difference between the intensity of cosmic rays from the east and the west that would occur if the primary cosmic rays were charged particles of one sign. In the same year he invented the first practical electronic coincidence circuit, which he used in a series of fundamental particle experiments and in an unsuccessful attempt to detect an east-west effect at Florence. Expecting by theory that the effect would be greater at high altitude near the equator, he took his experiment to Eritrea in 1934 where his measurements demonstrated that the primary cosmic rays are predominantly positive particles. In the report of his expedition he also described his discovery of extensive cosmic-ray air showers. After WWII and his work at Los Alamos, Rossi resumed his cosmic-ray research, now at MIT, in a new style best described in his own words: ``Now I had the responsibility of an entire group, and what mattered was no longer my own work, but the work of the group.'' He suggested the new methods of ``density sampling'' and ``fast timing'' for air shower studies, and promoted their application in numerous experiments on the nature and origins of the highest energy cosmic rays. In 1959 he initiated and participated as a consultant in the work of Riccardo Giacconi that led to the discovery of the first x-ray star, Sco X-1, and the development of the first imaging x-ray telescopes. At MIT, members of the Rossi Cosmic Ray Group took the early steps in gamma-ray astronomy, first with balloon experiments that set lower and lower limits on the intensity of primary gamma rays, and then with the satellite experiments led by William Kraushaar that discovered the galactic and extra-galactic components of cosmic gamma rays. After Sco X-1, Rossi focused his efforts on exploring the solar wind and the interplanetary plasma while leaving his younger colleagues to pursue the new field of extra-solar x-ray astronomy with balloon, rocket, and satellite experiments.
[Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].
Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping
2012-05-01
Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.
Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard (Inventor)
1990-01-01
A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.
Yan, Xiaoting; Tong, Zongrui; Chen, Yu; Mo, Yanghe; Feng, Huaiyu; Li, Peng; Qu, Xiaosai; Jin, Shaohua
2017-01-01
Carboxymethyl chitosan (CMCS) microparticles are a potential candidate for hemostatic wound dressing. However, its low swelling property limits its hemostatic performance. Poly(γ-glutamic acid) (PGA) is a natural polymer with excellent hydrophilicity. In the current study, a novel CMCS/PGA composite microparticles with a dual-network structure was prepared by the emulsification/internal gelation method. The structure and thermal stability of the composite were determined by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The effects of preparation conditions on the swelling behavior of the composite were investigated. The results indicate that the swelling property of CMCS/PGA composite microparticles is pH sensitive. Levofloxacin (LFX) was immobilized in the composite microparticles as a model drug to evaluate the drug delivery performance of the composite. The release kinetics of LFX from the composite microparticles with different structures was determined. The results suggest that the CMCS/PGA composite microparticles are an excellent candidate carrier for drug delivery. PMID:28452963
Investigation of the properties of galactic cosmic rays with the KASCADE-Grande experiment
NASA Astrophysics Data System (ADS)
Hörandel, J. R.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2011-02-01
The properties of galactic cosmic rays are investigated with the KASCADE-Grande experiment in the energy range between 1014 and 1018 eV. Recent results are discussed. They concern mainly the all-particle energy spectrum and the elemental composition of cosmic rays.
Effect of γ irradiation on the properties of basalt fiber reinforced epoxy resin matrix composite
NASA Astrophysics Data System (ADS)
Li, Ran; Gu, Yizhuo; Yang, Zhongjia; Li, Min; Wang, Shaokai; Zhang, Zuoguang
2015-11-01
Gamma-ray (γ-ray) irradiation is a crucial reason for the aging in materials used for nuclear industry. Due to high specific strength and stiffness, light weight and good corrosion resistance, fiber reinforced composites are regarded as an alternative of traditional materials used on nuclear facilities. In this study, basalt fiber (BF)/AG80 epoxy composite laminates were fabricated by autoclave process and treated with 60Co gamma irradiation dose up to 2.0 MGy. Irradiation induced polymer chain scission and oxidation of AG80 resin were detected from physical and chemical analysis. The experimental results show that the tensile and flexural performances of irradiated BF/AG80 composite maintain stable and have a low amplitude attenuation respectively, and the interlaminar shear strength has increased from irradiation dose of 0-1.5 MGy. Furthermore, the comparison between the studied BF composite and reported polymer and composite materials was done for evaluating the γ resistance property of BF composite.
NASA Astrophysics Data System (ADS)
Zhang, Guangxin; Sun, Zhiming; Duan, Yongwei; Ma, Ruixin; Zheng, Shuilin
2017-08-01
The TiO2/diatomite composite was synthesized through a mild hydrolysis of titanyl sulfate. The prepared composite was characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffused reflectance spectroscopy. The results demonstrate that the anatase TiO2 nanopartilces anchored on the surface of diatomite with Ti-O-Si bonds between diatomite and TiO2. The photodegradation of gaseous formaldehyde under UV irradiation by the TiO2/diatomite composite was studied under various operating conditions, including relative humidity, illumination intensity and catalyst amount, which have significant influence on the degradation process. The TiO2/diatomite composite exhibited better photocatalytic activity than pure TiO2, which could be attributed to the favorable nanoparticles dispersibility and strong formaldehyde adsorption capacity. In addition, the composite exhibited outstanding reusability over five cycles. The TiO2/diatomite composite shows great promising application foreground in formaldehyde degradation.
Determination of the solubility of tin indium oxide using in situ and ex x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, G. B.; Mason, T. O.; Okasinski, J. S.
A novel approach to determine the thermodynamic solubility of tin in indium oxide via the exsolution from tin overdoped nano-ITO powders is presented. High-energy, in situ and ex situ synchrotron X-ray diffraction was utilized to study the solubility limit at temperatures ranging from 900 C to 1375 C. The tin exsolution from overdoped nanopowders and the formation of In{sub 4}Sn{sub 3}O{sub 12} were observed in situ during the first 4-48 h of high-temperature treatment. Samples annealed between 900 C and 1175 C were also studied ex situ with heat treatments for up to 2060 h. Structural results obtained from Rietveldmore » analysis include compositional phase analysis, atomic positions, and lattice parameters. The tin solubility in In{sub 2}O{sub 3} was determined using the phase analysis compositions from X-ray diffraction and the elemental compositions obtained from X-ray fluorescence. Experimental complications that can lead to incorrect tin solubility values in the literature are discussed.« less
NASA Astrophysics Data System (ADS)
Willis, Kyle V.; Srogi, LeeAnn; Lutz, Tim; Monson, Frederick C.; Pollock, Meagen
2017-12-01
Textures and compositions are critical information for interpreting rock formation. Existing methods to integrate both types of information favor high-resolution images of mineral compositions over small areas or low-resolution images of larger areas for phase identification. The method in this paper produces images of individual phases in which textural and compositional details are resolved over three orders of magnitude, from tens of micrometers to tens of millimeters. To construct these images, called Phase Composition Maps (PCMs), we make use of the resolution in backscattered electron (BSE) images and calibrate the gray scale values with mineral analyses by energy-dispersive X-ray spectrometry (EDS). The resulting images show the area of a standard thin section (roughly 40 mm × 20 mm) with spatial resolution as good as 3.5 μm/pixel, or more than 81 000 pixels/mm2, comparable to the resolution of X-ray element maps produced by wavelength-dispersive spectrometry (WDS). Procedures to create PCMs for mafic igneous rocks with multivariate linear regression models for minerals with solid solution (olivine, plagioclase feldspar, and pyroxenes) are presented and are applicable to other rock types. PCMs are processed using threshold functions based on the regression models to image specific composition ranges of minerals. PCMs are constructed using widely-available instrumentation: a scanning-electron microscope (SEM) with BSE and EDS X-ray detectors and standard image processing software such as ImageJ and Adobe Photoshop. Three brief applications illustrate the use of PCMs as petrologic tools: to reveal mineral composition patterns at multiple scales; to generate crystal size distributions for intracrystalline compositional zones and compare growth over time; and to image spatial distributions of minerals at different stages of magma crystallization by integrating textures and compositions with thermodynamic modeling.
Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach.
Huang, Huajie; Wang, Xin
2011-08-01
Graphene nanoplate-MnO(2) composites have been synthesized by oxidising part of the carbon atoms in the framework of graphene nanoplates at ambient temperature. The composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). It was found that the oxidation extent of the carbon atoms in the graphene framework in these composites was dependent on the reaction time, which also influenced their microstructure, morphology and electrochemical properties. Compared with MnO(2) nanolamellas, the nanocomposite prepared with a reaction time of 3 h reveals better electrochemical properties as a supercapacitor electrode material. This journal is © The Royal Society of Chemistry 2011
Novel radiation-resistant glass fiber/epoxy composite for cryogenic insulation system
NASA Astrophysics Data System (ADS)
Wu, Z. X.; Zhang, H.; Yang, H. H.; Chu, X. X.; Li, L. F.
2010-08-01
A new radiation-resistant epoxy resin system was developed that has low viscosity and long working time at 45 °C. The system consists of triglycidyl-p-aminophenol (TGPAP) epoxide, isopropylidenebisphenol bis[(2-glycidyloxy-3-n-butoxy)-1-propylether] (IPBE) epoxide and diethyl toluene diamine (DETD). Boron-free glass fiber composites of epoxy resin with different ratio of TGPAP/IPBE/DETD were prepared by vacuum press impregnation. The ratio of TGPAP/IPBE affected the working time and the viscosity at the impregnation. The mechanical properties of the composites at 300 K and at 77 K were measured before and after 60Co γ-ray irradiation of 1 MGy at ambient temperature. The γ-ray radiation scarcely affected the properties of the composites.
Lawrence, David J; Peplowski, Patrick N; Prettyman, Thomas H; Feldman, William C; Bazell, David; Mittlefehldt, David W; Reedy, Robert C; Yamashita, Naoyuki
2013-01-01
Surface composition information from Vesta is reported using fast neutron data collected by the gamma ray and neutron detector on the Dawn spacecraft. After correcting for variations due to hydrogen, fast neutrons show a compositional dynamic range and spatial variability that is consistent with variations in average atomic mass from howardite, eucrite, and diogenite (HED) meteorites. These data provide additional compositional evidence that Vesta is the parent body to HED meteorites. A subset of fast neutron data having lower statistical precision show spatial variations that are consistent with a 400 ppm variability in hydrogen concentrations across Vesta and supports the idea that Vesta's hydrogen is due to long-term delivery of carbonaceous chondrite material. PMID:26074718
NASA Astrophysics Data System (ADS)
Ambriola, M. L.; Barbiellini, G.; Bartalucci, S.; Basini, G.; Bellotti, R.; Bergstroem, D.; Bocciolini, M.; Boezio, M.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Castellano, M.; Ciacio, F.; Circella, M.; de Marzo, C.; de Pascale, M. P.; Finetti, N.; Francke, T.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Perego, A.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.
1999-08-01
CAPRICE98 is a superconducting magnetic spectrometer built by the WiZard collaboration. It was launched from Ft. Sumner, NM, USA on the 28th of May 1998. For the first time a gas RICH detector has been flown together with a silicon electromagnetic calorimeter. The instrument configuration included a time of flight detector and a drift chamber stack, which were placed in the region of a magnet field, for rigidity measurement. Science objectives for this experiment include the study of antimatter in cosmic rays and that of cosmic ray composition in the atmosphere with special focus on muons.
Comet composition and density analyzer
NASA Technical Reports Server (NTRS)
Clark, B. C.
1982-01-01
Distinctions between cometary material and other extraterrestrial materials (meteorite suites and stratospherically-captured cosmic dust) are addressed. The technique of X-ray fluorescence (XRF) for analysis of elemental composition is involved. Concomitant with these investigations, the problem of collecting representative samples of comet dust (for rendezvous missions) was solved, and several related techniques such as mineralogic analysis (X-ray diffraction), direct analysis of the nucleus without docking (electron macroprobe), dust flux rate measurement, and test sample preparation were evaluated. An explicit experiment concept based upon X-ray fluorescence analysis of biased and unbiased sample collections was scoped and proposed for a future rendezvous mission with a short-period comet.
2017-12-08
NASA release April 1, 2010 The gamma-ray output from Cen A's lobes exceeds their radio output by more than ten times. High-energy gamma rays detected by Fermi's Large Area Telescope are depicted as purple in this gamma ray/optical composite of the galaxy. Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory To learn more about these images go to: www.nasa.gov/mission_pages/GLAST/news/smokestack-plumes.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.
Our objective was to investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to localmore » structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Significantly, for the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified.« less
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; ...
2014-07-28
Our objective was to investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to localmore » structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Significantly, for the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified.« less
Low-luminosity gamma-ray bursts as the sources of ultrahigh-energy cosmic ray nuclei
NASA Astrophysics Data System (ADS)
Zhang, B. Theodore; Murase, Kohta; Kimura, Shigeo S.; Horiuchi, Shunsaku; Mészáros, Peter
2018-04-01
Recent results from the Pierre Auger Collaboration have shown that the composition of ultrahigh-energy cosmic rays (UHECRs) becomes gradually heavier with increasing energy. Although gamma-ray bursts (GRBs) have been promising sources of UHECRs, it is still unclear whether they can account for the Auger results because of their unknown nuclear composition of ejected UHECRs. In this work, we revisit the possibility that low-luminosity GRBs (LL GRBs) act as the sources of UHECR nuclei and give new predictions based on the intrajet nuclear composition models considering progenitor dependencies. We find that the nuclear component in the jet can be divided into two groups according to the mass fraction of silicon nuclei, Si-free and Si-rich. Motivated by the connection between LL GRBs and transrelativistic supernovae, we also consider the hypernova ejecta composition. Then, we discuss the survivability of UHECR nuclei in the jet base and internal shocks of the jets, and show that it is easier for nuclei to survive for typical LL GRBs. Finally, we numerically propagate UHECR nuclei ejected from LL GRBs with different composition models and compare the resulting spectra and composition to Auger data. Our results show that both the Si-rich progenitor and hypernova ejecta models match the Auger data well, while the Si-free progenitor models have more difficulty in fitting the spectrum. We argue that our model is consistent with the newly reported cross-correlation between the UHECRs and starburst galaxies, since both LL GRBs and hypernovae are expected to be tracers of the star-formation activity. LL GRBs have also been suggested as the dominant origin of IceCube neutrinos in the PeV range, and the LL GRB origin of UHECRs can be critically tested by near-future multimessenger observations.
Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; Vaudin, Mark D.; Skrtic, Drago; Antonucci, Joseph M.; Hoffman, Kathleen M.; Giuseppetti, Anthony A.; Ilavsky, Jan
2014-01-01
Objective To investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP) -to-apatite transition in ACP based dental composite materials. Methods Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. Results We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to local structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. Significance For the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified. PMID:25082155
Alignment and Integration Techniques for Mirror Segment Pairs on the Constellation X Telescope
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo; Lehan, John; Olsen, Larry; Owens, Scott; Saha, Timo; Wallace, Tom; Zhang, Will
2007-01-01
We present the concepts behind current alignment and integration techniques for testing a Constellation-X primary-secondary mirror segment pair in an x-ray beam line test. We examine the effects of a passive mount on thin glass x-ray mirror segments, and the issues of mount shape and environment on alignment. We also investigate how bonding and transfer to a permanent housing affects the quality of the final image, comparing predicted results to a full x-ray test on a primary secondary pair.
NASA Astrophysics Data System (ADS)
Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bigongiari, G.; Bindi, V.; Bizzaglia, S.; Bizzarri, M.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Borsini, S.; Boschini, M. J.; Bourquin, M.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Cascioli, V.; Castellini, G.; Cernuda, I.; Cerreta, D.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, H.; Cheng, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Gil, E. Cortina; Coste, B.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Di Masso, L.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Donnini, F.; Du, W. J.; Duranti, M.; D'Urso, D.; Eline, A.; Eppling, F. J.; Eronen, T.; Fan, Y. Y.; Farnesini, L.; Feng, J.; Fiandrini, E.; Fiasson, A.; Finch, E.; Fisher, P.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Gillard, W.; Giovacchini, F.; Goglov, P.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guandalini, C.; Guerri, I.; Guo, K. H.; Haas, D.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Kossakowski, R.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Levi, G.; Li, H. L.; Li, J. Q.; Li, Q.; Li, Q.; Li, T. X.; Li, W.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, H.; Lolli, M.; Lomtadze, T.; Lu, M. J.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, J. Z.; Lv, S. S.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Müller, M.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Obermeier, A.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Papi, A.; Pauluzzi, M.; Pedreschi, E.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Piluso, A.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Postaci, E.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Sbarra, C.; Schael, S.; Schmidt, S. M.; von Dratzig, A. Schulz; Schwering, G.; Scolieri, G.; Seo, E. S.; Shan, B. S.; Shan, Y. H.; Shi, J. Y.; Shi, X. Y.; Shi, Y. M.; Siedenburg, T.; Son, D.; Spada, F.; Spinella, F.; Sun, W.; Sun, W. H.; Tacconi, M.; Tang, C. P.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vaurynovich, S.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, R. S.; Wang, X.; Wang, Z. X.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Wu, H.; Wu, X.; Xia, X.; Xie, M.; Xie, S.; Xiong, R. Q.; Xin, G. M.; Xu, N. S.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Ye, Q. H.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, J. H.; Zhang, M. T.; Zhang, X. B.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; Zurbach, C.; AMS Collaboration
2015-05-01
A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity of the flux spectral index for the first time. The spectral index progressively hardens at high rigidities.
Composition of prehistoric rock-painting pigments from Egypt (Gilf Kébir area).
Darchuk, L; Rotondo, G Gatto; Swaenen, M; Worobiec, A; Tsybrii, Z; Makarovska, Y; Van Grieken, R
2011-12-01
The composition of rock-painting pigments from Egypt (Gilf Kebia area) has been analyzed by means of molecular spectroscopy such as Fourier transform infrared and micro-Raman spectroscopy and scanning electron microscopy coupled to an energy dispersive X-ray spectrometer and X-ray fluorescence analysis. Red and yellow pigments were recognized as red and yellow ochre with additional rutile. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Anoshkin, A. N.; Osokin, V. M.; Tretyakov, A. A.; Potrakhov, N. N.; Bessonov, V. B.
2017-02-01
In the article on the example of the straightener blade made of polymer composite materials, discusses the advantages of using the method of microfocus X-ray for nondestructive testing of aviation products. Described basic types of defects characteristics occurring in a similar type parts both during their manufacture and during their operation, namely, interlayer delamination, pores and wrinkles. Peculiarities of microfocus X-ray are shown, which is the use of radiation sources with a focal spot size of less than 100 μm. These features make it possible to increase the details and therefore, to minimize the size of detected defects in transmission. On the basis of experimental studies were defined radiographic signs of major types of defects, typical for products made of polymeric composite materials. Calculated time costs of personnel required for high-resolution X-ray recording and evaluation of test results.
Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements
NASA Technical Reports Server (NTRS)
Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.
2013-01-01
The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.
NASA Technical Reports Server (NTRS)
Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.
1993-01-01
An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.
NASA Astrophysics Data System (ADS)
Jany, B. R.; Janas, A.; Krok, F.
2017-11-01
The quantitative composition of metal alloy nanowires on InSb(001) semiconductor surface and gold nanostructures on germanium surface is determined by blind source separation (BSS) machine learning (ML) method using non negative matrix factorization (NMF) from energy dispersive X-ray spectroscopy (EDX) spectrum image maps measured in a scanning electron microscope (SEM). The BSS method blindly decomposes the collected EDX spectrum image into three source components, which correspond directly to the X-ray signals coming from the supported metal nanostructures, bulk semiconductor signal and carbon background. The recovered quantitative composition is validated by detailed Monte Carlo simulations and is confirmed by separate cross-sectional TEM EDX measurements of the nanostructures. This shows that SEM EDX measurements together with machine learning blind source separation processing could be successfully used for the nanostructures quantitative chemical composition determination.
NASA Astrophysics Data System (ADS)
Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing
2017-03-01
Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.
How to Estimate Fat Mass in Overweight and Obese Subjects
Donini, Lorenzo Maria; Poggiogalle, Eleonora; del Balzo, Valeria; Lubrano, Carla; Faliva, Milena; Opizzi, Annalisa; Perna, Simone; Pinto, Alessandro; Rondanelli, Mariangela
2013-01-01
Background. The prevalence of overweight and obesity is increasing and represents a primary health concern. Body composition evaluation is rarely performed in overweight/obese subjects, and the diagnosis is almost always achieved just considering body mass index (BMI). In fact, whereas BMI can be considered an important tool in epidemiological surveys, different papers stated the limitations of the use of BMI in single individuals. Aim. To assess the determinants of body composition in overweight and obese subjects. Methods. In 103 overweight or obese subjects (74 women, aged 41.5 ± 10 years, and 29 men, aged 43.8 ± 8 years), a multidimensional evaluation was performed including the assessment of body composition using Dual Energy X-Ray Absorptiometry (DXA), anthropometry, bioimpedance analysis (BIA), and biochemical parameters (total cholesterol, triacylglycerol, HDL- and LDL-cholesterol, free fatty acids and glycerol, glucose, insulin, C-reactive protein, plasma acylated and unacylated ghrelin, adiponectin, and leptin serum levels). Results. BMI does not represent the main predictor of FM estimated by DXA; FM from BIA and hip circumference showed a better association with FM from DXA. Moreover, models omitting BMI explained a greater part of variance. These data are confirmed by the predictive value analysis where BMI showed a performance similar to a “coin flip.” PMID:23662101
Lopez Barrilao, Jennifer; Kuhn, Bernd; Wessel, Egbert
2017-10-01
To fulfil the new challenges of the German "Energiewende" more efficient, sustainable, flexible and cost-effective energy technologies are strongly needed. For a reduction of consumed primary resources higher efficiency steam cycles with increased operating parameters, pressure and temperature, are mandatory. Therefore advanced materials are needed. The present study focuses on a new concept of high chromium, fully ferritic steels. These steels, originally designed for solid oxide fuel cell applications, provide favourable steam oxidation resistance, creep and thermomechanical fatigue behaviour in comparison to conventional ferritic-martensitic steels. The strength of this type of steel is achieved by a combination of solid-solution hardening and precipitation strengthening by intermetallic Laves phase particles. The effect of alloy composition on particle composition was measured by energy dispersive X-ray spectroscopy and partly verified by thermodynamic modelling results. Generally the Laves phase particles demonstrated high thermodynamic stability during long-term annealing up to 40,000h at 600°C. Variations in chemical alloy composition influence Laves phase particle formation and consequently lead to significant changes in creep behaviour. For this reason particle size distribution evolution was analysed in detail and associated with the creep performance of several trial alloys. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thermodynamic analysis and experimental study on the oxidation of the Zn-Al-Mg coating baths
NASA Astrophysics Data System (ADS)
Su, Xuping; Zhou, Jie; Wang, Jianhua; Wu, Changjun; Liu, Ya; Tu, Hao; Peng, Haoping
2017-02-01
Surface oxidation of molten Zn-6Al baths containing 0.0, 3.0 and 6.0 wt. % Mg were analyzed using X-ray photoelectron spectroscopy. γ-Al2O3 is formed on the surface of the Zn-6Al bath, while MgAl2O4 and MgO occur at 460 °C in the Zn-6Al-3Mg and Zn-6Al-6Mg baths, respectively. Thermodynamic analysis on the oxidation of the Zn-Al-Mg baths was performed. Calculated phase diagrams at 460 °C and 560 °C show good agreements with the experimental results. MgO or MgAl2O4 exists in almost the entire composition range of the calculated oxidation diagrams. According to the calculation, oxidation products depend on the composition and temperature of the baths. The primary and secondary oxidation products of the Zn-Al-Mg baths can be reasonably explained by oxidation phase diagrams. Utilizing these results, the favorable practical bath melts and operating conditions can be designed.
Pulsar gamma-rays: Spectra luminosities and efficiencies
NASA Technical Reports Server (NTRS)
Harding, A. K.
1980-01-01
The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.
NASA Astrophysics Data System (ADS)
Ginzburg, Vitalii L.
1988-06-01
(Invited talk at the 20th International Cosmic Ray Conference, Moscow, 2-15 August 1987) The basic topics discussed here are the primary cosmic rays near the earth, cosmic rays in the universe, the origin of cosmic rays, a galactic model with a halo, and some prospects for future research.
Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment
NASA Technical Reports Server (NTRS)
Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.
1977-01-01
Gamma-ray and X-ray spectrometers carried in the service modules of the Apollo 15 and Apollo 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristic energy distribution of gamma rays and X-rays emitted from the lunar surface. A large-scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. Analyses of the results have indicated (1) that the Al/Si ratios are highest in the lunar highlands and considerably lower in the maria, and (2) that the Mg/Si concentrations generally show the opposite relationship. The objective of the gamma-ray experiment was to measure the natural and cosmic-ray-induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions. Regions of relatively high natural radioactivity were found in the Mare Imbrium and Oceanus Procellarum regions.
TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, A.; Buckley, J. H.; Bugaev, V.
2016-04-20
The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by themore » VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.« less
In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Bhatt, Ramkrishna T.
1991-01-01
The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.
In-situ x-ray monitoring of damage accumulation in SiC/RBSN tensile specimens
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Bhatt, Ramakrishna T.
1991-01-01
The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.
Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan
2015-01-01
Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.
Peng, Weijun; Li, Hongqiang; Song, Shaoxian
2017-02-15
CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.
Development of stitched/RTM composite primary structures
NASA Technical Reports Server (NTRS)
Kullerd, Susan M.; Dow, Marvin B.
1992-01-01
The goal of the NASA Advanced Composites Technology (ACT) Program is to provide the technology required to gain the full benefit of weight savings and performance offered by composite primary structures. Achieving the goal is dependent on developing composite materials and structures which are damage tolerant and economical to manufacture. Researchers at NASA LaRC and Douglas Aircraft Company are investigating stitching reinforcement combined with resin transfer molding (RTM) to create structures meeting the ACT program goals. The Douglas work is being performed under a NASA contract entitled Innovative Composites Aircraft Primary Structures (ICAPS). The research is aimed at materials, processes and structural concepts for application in both transport wings and fuselages. Empirical guidelines are being established for stitching reinforcement in primary structures. New data are presented in this paper for evaluation tests of thick (90-ply) and thin (16-ply) stitched laminates, and from selection tests of RTM composite resins. Tension strength, compression strength and post-impact compression strength data are reported. Elements of a NASA LaRC program to expand the science base for stitched/RTM composites are discussed.
Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration
2014-07-01
The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.
The Extensive Air Shower Experiment Kascade-Grande
NASA Astrophysics Data System (ADS)
Kang, Donghwa; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schatz, G.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
The extensive air shower experiment KASCADE-Grande (KArlsruhe Shower Core and Array DEtector and Grande array) is located on site of the Forschungszentrum Karlsruhe in Germany. The original KASCADE experiment consisted of a densely packed scintillator array with unshielded and shielded detectors for the measurement of the electromagnetic and muonic shower component independently, as well as muon tracking devices and a hadron calorimeter. The Grande array as an extension of KASCADE consists of 37 scintillation detector stations covering an area of 700×700 m2. The main goal for the combined measurements of KASCADE and Grande is the investigation of the energy spectrum and composition of primary cosmic rays in the energy range of 1016 to 1018 eV. In this paper an overview of the KASCADE-Grande experiment and recent results will be presented.
NASA Astrophysics Data System (ADS)
Kang, D.; Apel, W. D.; Arteaga-Velazquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schroder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.
2013-02-01
KASCADE-Grande is a large detector array for observations of the energy spectrum as well as the chemical composition of cosmic ray air showers up to primary energies of 1 EeV. The multi-detector arrangement allows to measure the electromagnetic and muonic components for individual air showers. In this analysis, the reconstruction of the all-particle energy spectrum is based on the size spectra of the charged particle component. The energy is calibrated by using Monte Carlo simulations performed with CORSIKA and high-energy interaction models QGSJet, EPOS and SIBYLL. In all cases FLUKA has been used as low-energy interaction model. In this contribution the resulting spectra by means of different hadronic interaction models will be compared and discussed.
NASA Technical Reports Server (NTRS)
Wheeler, D. R.
1978-01-01
X-ray photoelectron spectroscopy was used to characterize radiofrequency sputter deposited films of several refractory compounds. Both the bulk film properties such as purity and stoichiometry and the character of the interfacial region between the film and substrate were examined. The materials were CrB2, MoS2, Mo2C, and Mo2B5 deposited on 440C steel. It was found that oxygen from the sputtering target was the primary impurity in all cases. Biasing improves the film purity. The effect of biasing on film stoichiometry is different for each compound. Comparison of the interfacial composition with friction data suggests that adhesion of these films is improved if a region of mixed film and iron oxides can be formed.
NASA Astrophysics Data System (ADS)
Guggino, S. N.; Hervig, R. L.
2010-12-01
Fluorine (F) is a volatile constituent of magmas and hydrous minerals, and trace amounts of F are incorporated into nominally anhydrous minerals such as olivine and clinopyroxene. Microanalytical techniques are routinely used to measure trace amounts of F at both high sensitivity and high spatial resolution in glasses and crystals. However, there are few well-established F concentrations for the glass standards routinely used in microanalytical laboratories, particularly standards of low silica, basaltic composition. In this study, we determined the F content of fourteen commonly used microanalytical glass standards of basaltic, intermediate, and rhyolitic composition. To serve as calibration standards, five basaltic glasses with ~0.2 to 2.5 wt% F were synthesized and characterized. A natural tholeiite from the East Pacific Rise was mixed with variable amounts of CaF2. The mixture was heated in a 1 atmosphere furnace to 1440 °C at fO2 = NNO for 30 minutes and quenched in water. Portions of the run products were studied by electron probe microanalysis (EPMA) and secondary ion mass spectrometry (SIMS). The EPMA used a 15 µm diameter defocused electron beam with a 15 kV accelerating voltage and a 25 nA primary current, a TAP crystal for detecting FKα X-rays, and Biotite 3 as the F standard. The F contents by EPMA agreed with the F added to the basalts after correction for mass loss during melting. The SIMS analyses used a primary beam of 16O- and detection of low-energy negative ions (-5 kV) at a mass resolution that resolved 18OH. Both microanalytical techniques confirmed homogeneity, and the SIMS calibration defined by EPMA shows an excellent linear trend with backgrounds of 2 ppm or less. Analyses of basaltic glass standards based on our synthesized calibration standards gave the following F contents and 2σ errors (ppm): ALV-519 = 83 ± 3; BCR-2G = 359 ± 6; BHVO-2G = 322 ± 15; GSA-1G = 10 ± 1; GSC-1G = 11 ± 1; GSD-1G = 19 ± 2; GSE-1G = 173 ± 1; KL2G (MPI-DING) = 101 ± 1; ML3B-G (MPI-DING) = 49 ± 17. These values are lower than published values for BCR-2 and BHVO-2 (unmelted powders) and the “information values” for the MPI-DING glass standards. Proton Induced Gamma ray Emission (PIGE) was tested for the high silica samples. PIGE analyses (1.7 MeV Tandem Accelerator; reaction type: 19F(p, αγ)16O; primary current = 20-30 nA; incident beam voltage = 1.5 MeV) were calibrated with a crystal of fluor-topaz (F = 20.3 wt%) and gave F values of: NIST 610 = 266 ± 14 ppm; NIST 620 = 54 ± 5 ppm; and UTR-2 = 1432 ± 32 ppm. SIMS calibration defined by the PIGE analyses shows an excellent linear trend with low background similar to the basaltic calibration. The F concentrations of intermediate MPI-DING glasses were determined based on SIMS calibration generated from the PIGE analysis above. The F concentrations and 2σ errors (ppm) are: T1G = 219.9 ± 6.8; StHs/680-G = 278.0 ± 2.0 ppm. This study revealed a large matrix effect between the high-silica and basaltic glasses, thus requiring the use of appropriate standards and separate SIMS calibrations when analyzing samples of different compositions.
NASA Astrophysics Data System (ADS)
Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua
2010-11-01
A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.
The isotopic composition of cosmic-ray calcium
NASA Technical Reports Server (NTRS)
Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.;
2001-01-01
We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.
HESS J1818-154, a new composite supernova remnant discovered in TeV gamma rays and X-rays
NASA Astrophysics Data System (ADS)
H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.
2014-02-01
Composite supernova remnants (SNRs) constitute a small subclass of the remnants of massive stellar explosions where non-thermal radiation is observed from both the expanding shell-like shock front and from a pulsar wind nebula (PWN) located inside of the SNR. These systems represent a unique evolutionary phase of SNRs where observations in the radio, X-ray, and γ-ray regimes allow the study of the co-evolution of both these energetic phenomena. In this article, we report results from observations of the shell-type SNR G 15.4+0.1 performed with the High Energy Stereoscopic System (H.E.S.S.) and XMM-Newton. A compact TeV γ-ray source, HESS J1818-154, located in the center and contained within the shell of G 15.4+0.1 is detected by H.E.S.S. and featurs a spectrum best represented by a power-law model with a spectral index of -2.3 ± 0.3stat ± 0.2sys and an integral flux of F(> 0.42 TeV) = (0.9 ± 0.3stat ± 0.2sys) × 10-12 cm-2 s-1. Furthermore, a recent observation with XMM-Newton reveals extended X-ray emission strongly peaked in the center of G 15.4+0.1. The X-ray source shows indications of an energy-dependent morphology featuring a compact core at energies above 4 keV and more extended emission that fills the entire region within the SNR at lower energies. Together, the X-ray and VHE γ-ray emission provide strong evidence of a PWN located inside the shell of G 15.4+0.1 and this SNR can therefore be classified as a composite based on these observations. The radio, X-ray, and γ-ray emission from the PWN is compatible with a one-zone leptonic model that requires a low average magnetic field inside the emission region. An unambiguous counterpart to the putative pulsar, which is thought to power the PWN, has been detected neither in radio nor in X-ray observations of G 15.4+0.1.
NASA Astrophysics Data System (ADS)
Mahmoud, Mohamed E.; El-Khatib, Ahmed M.; Badawi, Mohamed S.; Rashad, Amal R.; El-Sharkawy, Rehab M.; Thabet, Abouzeid A.
2018-04-01
Polymer composites of high-density polyethylene (HD-PE) filled with powdered lead oxide nanoparticles (PbO NPs) and bulk lead oxide (PbO Blk) were prepared with filler weight fraction [10% and 50%]. These polymer composites were investigated for radiation-shielding of gamma-rays emitted from radioactive point sources [241Am, 133Ba, 137Cs, and 60Co]. The polymer was found to decrease the heaviness of the shielding material and increase the flexibility while the metal oxide fillers acted as principle radiation attenuators in the polymer composite. The prepared composites were characterized by Fourier transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET) and field emission transmission electron microscope (FE-TEM). The morphological analysis of the assembled composites showed that, PbO NPs and PbO Blk materials exhibited homogenous dispersion in the polymer-matrix. Thermogravimetric analysis (TGA) demonstrated that the thermal-stability of HD-PE was enhanced in the presence of both PbO Blk and PbO NPs. The results declared that, the density of polymer composites was increase with the percentage of filler contents. The highest density value was identified as 1.652 g cm-3 for 50 wt% of PbO NPs. Linear attenuation coefficients (μ) have been estimated from the use of XCOM code and measured results. Reasonable agreement was attended between theoretical and experimental results. These composites were also found to display excellent percentage of heaviness with respect to other conventional materials.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater
NASA Astrophysics Data System (ADS)
Morris, Richard V.; Vaniman, David T.; Blake, David F.; Gellert, Ralf; Chipera, Steve J.; Rampe, Elizabeth B.; Ming, Douglas W.; Morrison, Shaunna M.; Downs, Robert T.; Treiman, Allan H.; Yen, Albert S.; Grotzinger, John P.; Achilles, Cherie N.; Bristow, Thomas F.; Crisp, Joy A.; Des Marais, David J.; Farmer, Jack D.; Fendrich, Kim V.; Frydenvang, Jens; Graff, Trevor G.; Morookian, John-Michael; Stolper, Edward M.; Schwenzer, Susanne P.
2016-06-01
Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ˜40 wt.% crystalline and ˜60 wt.% X-ray amorphous material and a bulk composition with ˜74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (˜17 wt.% of bulk sample), tridymite (˜14 wt.%), sanidine (˜3 wt.%), cation-deficient magnetite (˜3 wt.%), cristobalite (˜2 wt.%), and anhydrite (˜1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (˜39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides-perchlorates-chlorates), and has minor TiO2 and Fe2O3T oxides (˜5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin's tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill.
TU-F-CAMPUS-T-04: Using Gold Nanoparticles to Target Mitochondria in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, A; McMahon, S; Lin, Y
2015-06-15
Purpose: The mitochondrion, like the cell nucleus, contains genetic material and plays several critical roles that determine the cell viability, including neutralization of free radicals within the cell. Studies have shown that irradiated cells with impaired mitochondria will incur more damage to the cell nucleus. This study investigates the potential use of GNPs to enhance radiation-induced damage to the organelle. Methods: The compositions of the organelles of a JURKAT cell were determined experimentally. Using Monte Carlo simulations, we investigate the significance of dose enhancement in a monoenergetic (10–50 keV and 6 MeV) x-ray irradiated cell cytoplasm, consisting of the experimentallymore » determined composition. We also investigate the track structure of secondary electrons in the mitochondria using Geant4-DNA in the presence and absence of GNPs for incident protons and photons. The biological effect was determined using an approach based on the local effect model, assuming the mitochondrial DNA (mtDNA) was the primary target. Results: Adding 0.01% of gold to the cell cytoplasm material can cause substantial dose enhancement, dependent on the incident x-ray energy. Track structure Monte Carlo (MC) simulations show an increased number of ionization events within the mitochondrion structure. The close proximity of GNPs to the mtDNA storing nucleoid may cause the mtDNA to receive doses above ∼100 Gy for keV x-rays, leading to mitochondrial dysfunction. Conclusion: A substantial increase in ionization events can occur in the mitochondria in the presence of GNPs. If GNPs can be delivered to tumors and attached to a sufficient number of mitochondria inside the tumor cells, mitochondrial induced cell death could be a prevalent cause of cell death. The biological structures developed here will be included in the biological MC toolkit, TOPAS-nBio.« less
The Hohlraum Drive Campaign on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Moody, John D.
2013-10-01
The Hohlraum drive effort on the National Ignition Facility (NIF) laser has three primary goals: 1) improve hohlraum performance by improving laser beam propagation, reducing backscatter from laser plasma interactions (LPI), controlling x-ray and electron preheat, and modifying the x-ray drive spectrum; 2) improve understanding of crossbeam energy transfer physics to better evaluate this as a symmetry tuning method; and 3) improve modeling in order to find optimum designs. Our experimental strategy for improving performance explores the impact of significant changes to the hohlraum shape, wall material, gasfill composition, and gasfill density on integrated implosion experiments. We are investigating the performance of a rugby-shaped design that has a significantly larger diameter (7 mm) at the waist than our standard 5.75 mm diameter cylindrical-shaped hohlraum but maintains approximately the same wall area. We are also exploring changes to the gasfill composition in cylindrical hohlraums by using neopentane at room temperature to compare with our standard helium gasfill. In addition, we are also investigating higher He gasfill density (1.6 mg/cc vs nominal 0.96 mg/cc) and increased x-ray drive very early in the pulse. Besides these integrated experiments, our strategy includes experiments testing separate aspects of the hohlraum physics. These include time-resolved and time-integrated measurements of cross-beam transfer rates and laser-beam spatial power distribution at early and late times using modified targets. Non-local thermal equilibrium modeling and heat transport relevant to ignition experiments are being studied using sphere targets on the Omega laser system. These simpler targets provide benchmarks for improving our modeling tools. This talk will summarize the results of the Hohlraum Drive campaign and discuss future directions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA2-344.
Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater
Morris, Richard V.; Vaniman, David T.; Blake, David F.; Gellert, Ralf; Chipera, Steve J.; Rampe, Elizabeth B.; Ming, Douglas W.; Morrison, Shaunna M.; Downs, Robert T.; Treiman, Allan H.; Yen, Albert S.; Grotzinger, John P.; Achilles, Cherie N.; Bristow, Thomas F.; Crisp, Joy A.; Des Marais, David J.; Farmer, Jack D.; Fendrich, Kim V.; Graff, Trevor G.; Morookian, John-Michael; Stolper, Edward M.; Schwenzer, Susanne P.
2016-01-01
Tridymite, a low-pressure, high-temperature (>870 °C) SiO2 polymorph, was detected in a drill sample of laminated mudstone (Buckskin) at Marias Pass in Gale crater, Mars, by the Chemistry and Mineralogy X-ray diffraction instrument onboard the Mars Science Laboratory rover Curiosity. The tridymitic mudstone has ∼40 wt.% crystalline and ∼60 wt.% X-ray amorphous material and a bulk composition with ∼74 wt.% SiO2 (Alpha Particle X-Ray Spectrometer analysis). Plagioclase (∼17 wt.% of bulk sample), tridymite (∼14 wt.%), sanidine (∼3 wt.%), cation-deficient magnetite (∼3 wt.%), cristobalite (∼2 wt.%), and anhydrite (∼1 wt.%) are the mudstone crystalline minerals. Amorphous material is silica-rich (∼39 wt.% opal-A and/or high-SiO2 glass and opal-CT), volatile-bearing (16 wt.% mixed cation sulfates, phosphates, and chlorides−perchlorates−chlorates), and has minor TiO2 and Fe2O3T oxides (∼5 wt.%). Rietveld refinement yielded a monoclinic structural model for a well-crystalline tridymite, consistent with high formation temperatures. Terrestrial tridymite is commonly associated with silicic volcanism, and detritus from such volcanism in a “Lake Gale” catchment environment can account for Buckskin’s tridymite, cristobalite, feldspar, and any residual high-SiO2 glass. These cogenetic detrital phases are possibly sourced from the Gale crater wall/rim/central peak. Opaline silica could form during diagenesis from high-SiO2 glass, as amorphous precipitated silica, or as a residue of acidic leaching in the sediment source region or at Marias Pass. The amorphous mixed-cation salts and oxides and possibly the crystalline magnetite (otherwise detrital) are primary precipitates and/or their diagenesis products derived from multiple infiltrations of aqueous solutions having variable compositions, temperatures, and acidities. Anhydrite is post lithification fracture/vein fill. PMID:27298370
Black Hole Jets Make Shock Waves
2014-07-02
A composite image of the spiral galaxy NGC 4258 showing X-ray emission observed with NASA Chandra X-ray Observatory blue and infrared emission observed with NASA Spitzer Space Telescope red and green.
NASA Astrophysics Data System (ADS)
Brueckner, J.
2004-05-01
The new Alpha Particle X-Ray Spectrometer (APXS) is a small, light-weight instrument to obtain x-ray spectra from Martian surface samples. The sensor head contains a high-resolution x-ray detector that is surrounded by a circle of radioactive Cm-244 sources. Alpha and x-ray radiation emitted by the sources is used to induce x-ray excitation in the sample. Elements from sodium to zinc (increasing by atomic weight) are detected and their concentrations determined. The APXS is mounted on each Instrument Deployment Device (IDD) of the two Mars Exploration Rovers (MER) Spirit and Opportunity. Rover Spirit landed in the large Gusev crater that seems to have been altered by water activities in the past based on evidence of orbital images. Rover Opportunity landed in a very small crater of the Meridiani Planum, where the mineral hematite that points to water-related processes is expected to be found. Inside the little crater, a light-colored outcrop is exposed that shows widespread fine layering. The first APXS high-resolution x-ray spectrum of a Gusev soil indicated many similarities to the composition of the Mars Pathfinder (MPF) and Viking soils. However, differences are also noticeable: Low-Z elements are somewhat higher compared to MPF soils, while high-Z elements are depleted, notably Ti. Potassium in the soils reflects the K concentration of the local rocks at the different landing sites pointing toward a local contribution to the soil's composition. The Rock Abrasion Tool was used to grind the first rock on Mars at Gusev: Adirondack's undisturbed and ground surface was measured by the APXS. The composition of its fresh surface is different from the MPF soilfree rock, noticeably in Mg and Al, and clearly exhibits a basaltic nature related to the composition of basaltic shergottites. The first rock at the Meridiani crater outcrop (dubbed Robert-E) exhibited a very high sulfur concentration, more than a factor of 15 compared to rock Adirondack, indicating it is doubtful that this outcrop is from igneous activity. Camera based observations of the layering of rock Robert-E and its chemical composition are pointing to a sedimentary process where sulfate played a significant role in the cementation of the outcrop.
Li, Lei; Raji, Abdul-Rahman O; Fei, Huilong; Yang, Yang; Samuel, Errol L G; Tour, James M
2013-07-24
A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and X-ray diffraction analysis. The resulting composite has a high specific capacitance of 340 F/g and stable cycling performance with 90% capacitance retention over 4200 cycles. The high performance of the composite results from the synergistic combination of electrically conductive GNRs and highly capacitive PANI. The method developed here is practical for large-scale development of pseudocapacitor electrodes for energy storage.
Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma
NASA Technical Reports Server (NTRS)
Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.
1984-01-01
Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.
Primary mass discrimination of high energy cosmic rays using PNN and k-NN methods
NASA Astrophysics Data System (ADS)
Rastegarzadeh, G.; Nemati, M.
2018-02-01
Probabilistic neural network (PNN) and k-Nearest Neighbors (k-NN) methods are widely used data classification techniques. In this paper, these two methods have been used to classify the Extensive Air Shower (EAS) data sets which were simulated using the CORSIKA code for three primary cosmic rays. The primaries are proton, oxygen and iron nuclei at energies of 100 TeV-10 PeV. This study is performed in the following of the investigations into the primary cosmic ray mass sensitive observables. We propose a new approach for measuring the mass sensitive observables of EAS in order to improve the primary mass separation. In this work, the EAS observables measurement has performed locally instead of total measurements. Also the relationships between the included number of observables in the classification methods and the prediction accuracy have been investigated. We have shown that the local measurements and inclusion of more mass sensitive observables in the classification processes can improve the classifying quality and also we have shown that muons and electrons energy density can be considered as primary mass sensitive observables in primary mass classification. Also it must be noted that this study is performed for Tehran observation level without considering the details of any certain EAS detection array.
Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays
NASA Astrophysics Data System (ADS)
Abbasi, R.; Bellido, J.; Belz, J.; de Souza, V.; Hanlon, W.; Ikeda, D.; Lundquist, J. P.; Sokolskypt, P.; Stroman, T.; Tameda, Y.; Tsunesada, Y.; Unger, M.; Yushkov, A.
For the first time a proper comparison of the average depth of shower maximum (Xmax) published by the Pierre Auger and Telescope Array Observatories is presented. The Xmax distributions measured by the Pierre Auger Observatory were fit using simulated events initiated by four primaries (proton, helium, nitrogen and iron). The primary abundances which best describe the Auger data were simulated through the Telescope Array (TA) Middle Drum (MD) fluorescence and surface detector array. The simulated events were analyzed by the TA Collaboration using the same procedure as applied to their data. The result is a simulated version of the Auger data as it would be observed by TA. This analysis allows a direct comparison of the evolution of < Xmax > with energy of both data sets. The < Xmax > measured by TA-MD is consistent with a preliminary simulation of the Auger data through the TA detector and the average difference between the two data sets was found to be (2.9 ± 2.7 (stat.) ± 18 (syst.)) g/cm2.
The Energy Spectra of Heavy Nuclei Measured by the ATIC Experiment
NASA Technical Reports Server (NTRS)
Panov, A. D.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazley, A. R.; Ganel, O.; Gunasingha, R. M.
2004-01-01
ATIC (Advanced Thin Ionization Calorimeter) is a balloon-borne experiment to measure the spectra and composition of primary cosmic rays in the region of total energy from 100 GeV to near 100 TeV for Z from 1 to 26. ATIC consists of a pixelated silicon matrix detector to measure charge plus a fully active BGO calorimeter, to measure energy, located below a carbon target interleaved with three layers of scintillator hodoscope. The ATIC instrument had a second (scientific) flight from McMurdo, Antarctica from 12/29/02 to 1/18/03, yielding 20 days of good data. The GEANT 3.21 Monte Carlo code with the QGSM event generator and the FLUKA code with the DPMJET-II event generator were used to convert energy deposition measurements to primary energy. We present the preliminary energy spectra for the abundant elements C, O, Ne, Mg, Si and Fe and compare them with the results of the first (test) flight of ATIC in 2000-01 and with results from the HEAO-3 and CRN experiments.
Zhao, Shuhui; Li, Zhongqin; Zhou, Ping
2011-09-01
Aerosol samples were collected during the scientific expedition to Mt. Bogda in July-August, 2009. The major inorganic ions (Na( + ), NH⁺₄, K( + ), Mg(2 + ), Ca(2 + ), Cl( - ), SO²⁻₄, and NO⁻₃) of the aerosols were determined by ion chromatography. SO²⁻₄, NO⁻₃, and Ca(2 + ) were the dominate ions, with the mean concentrations of 0.86, 0.56, and 0.28 μg m⁻³, respectively. These mean ion concentrations were generally comparable with the background conditions in remote site of Xinjiang, while much lower than those in Ürümqi. Morphology and elemental compositions of 1,500 particles were determined by field emission scanning electron microscopy equipped with an energy dispersive X-ray spectrometer. Based on the morphology and elemental compositions, particles were classed into four major groups: soot (15.1%), fly ash (4.7%), mineral particles (78.9%), and little other matters (0.8% Fe-rich particles and 0.5% unrecognized particles). Presence of soot and fly ash particles indicated the influence of anthropogenic pollutions, while abundance mineral particles suggested that natural processes were the primary source of aerosols over this region, coinciding with the ionic analysis. Backward air mass trajectory analysis suggested that Ürümqi may contribute some anthropogenic pollution to this region, while the arid and semi-arid regions of Central Asia were the primary source.
Polyaniline nanofiber/large mesoporous carbon composites as electrode materials for supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Huan; Xu, Bin; Jia, Mengqiu; Zhang, Mei; Cao, Bin; Zhao, Xiaonan; Wang, Yu
2015-03-01
A composite of polyaniline nanofiber/large mesoporous carbon (PANI-F/LMC) hybrid was prepared by an in situ chemical oxidative polymerization of aniline monomer with nano-CaCO3 templated LMC as host matrix for supercapacitors. The morphology, composition and electronic structure of the composites (PANI-F/LMC) together with pure PANI nanofibers and the LMC were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), FT-IR, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the PANI nanofibers were incorporated into the large mesochannels of LMC with interpenetrating framework formed. Such unique structure endows the PANI-F/LMC composite with a high capacitance of 473 F g-1 at a current load of 0.1 A g-1 with good rate performance and cycling stability, suggesting its potential application in the electrode material for supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tahir, Dahlang, E-mail: dtahir@fmipa.unhas.ac.id; Bakri, Fahrul; Liong, Syarifuddin
We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH{sub 3}) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO{sub 3}, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is aboutmore » 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.
2009-03-15
The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that largemore » particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.« less
NASA Astrophysics Data System (ADS)
Vijaya Bhaskar, S.; Rajmohan, T.; Palanikumar, K.; Bharath Ganesh Kumar, B.
2016-04-01
Metal matrix composites (MMCs) reinforced with ceramic nano particles (less than 100 nm), termed as metal matrix nano composites (MMNCs), can overcome those disadvantages associated with the conventional MMCs. MMCs containing carbon nanotubes are being developed and projected for diverse applications in various fields of engineering like automotive, avionic, electronic and bio-medical sectors. The present investigation deals with the synthesis and characterization of hybrid magnesium matrix reinforced with various different wt% (0-0.45) of multi wall carbon nano tubes (MWCNT) and micro SiC particles prepared through powder metallurgy route. Microstructure and mechanical properties such as micro hardness and density of the composites were examined. Microstructure of MMNCs have been investigated by scanning electron microscope, X-ray diffraction and energy dispersive X-ray spectroscopy (EDS) for better observation of dispersion of reinforcement. The results indicated that the increase in wt% of MWCNT improves the mechanical properties of the composite.
Facile synthesis of uniform hierarchical composites CuO-CeO2 for enhanced dye removal
NASA Astrophysics Data System (ADS)
Xu, Pan; Niu, Helin; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi; Gao, Yuanhao; Chen, Changle
2016-12-01
The hierarchically shaped CuO-CeO2 composites were prepared through a facile solvothermal method without using any template. The as-prepared products were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and N2 adsorption-desorption analysis. In the characterization, we found that CuO-CeO2 composites were showed uniform size and morphology which were consisted of the secondary nanoflakes interconnected with each other. Most interestingly, the composites showed efficient performance to remove methyl blue and Congo red dyes from water with maximum adsorption capacities of 2131.24 and 1072.09 mg g-1, respectively. In addition, because of their larger surface area and the unique hierarchical structures, the adsorption performance of the CuO-CeO2 composites is much better than the materials of CuO and CeO2.
Mechanical Grinding Preparation and Characterization of TiO2-Coated Wollastonite Composite Pigments
Chen, Wanting; Liang, Yu; Hou, Xifeng; Zhang, Jing; Ding, Hao; Sun, Sijia; Cao, Hu
2018-01-01
TiO2-coated wollastonite composite pigments were prepared by the mechano-chemical grinding of wollastonite and TiO2 powder together in a wet ultrafine stirred mill. X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and infrared spectra were used to investigate the microstructures and morphologies of the composite and the reaction mechanism. The results indicate that the TiO2-coated wollastonite composite pigments have similar properties to titanium dioxide pigment, showing much better properties than dry and wet mixing of wollastonite and TiO2. The hiding power of TiO2-coated wollastonite composite pigments (45% TiO2) is 17.97 g/m2, reaching 81.08% of titanium dioxide. A firm combination between wollastonite and TiO2 is obtained through a surface dehydroxylation reaction during the mechano-chemical method. PMID:29649116
Modeling of laser interactions with composite materials
Rubenchik, Alexander M.; Boley, Charles D.
2013-05-07
In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.
In search of the noble gas 3.52 Ga atmospheric signatures
NASA Astrophysics Data System (ADS)
Pujol, M.; Marty, B.; Philippot, P.
2008-12-01
The isotopic signatures of noble gases in the Present-day mantle and in the atmosphere permit exceptional insight into the evolution of these reservoirs through time ([1]). However, related exchange models are under- constrained and would require direct measurements of the atmospheric composition long ago, e.g., in the Archaean. Drilling in the the 3.52 Ga chert-barite ([2]) of the Dresser formation(Pilbara Drilling Project) , North Pole, Pilbara craton (Western Australia), led to recovery of exceptionally fresh samples preserving primary fluid inclusions unaffected by surface weathering. The whole formation is considered to be an already established basin when hydrothermal processes started. The chemical composition of primary fluid inclusions trapped in hydrothermal quartz from vacuolar komatiitic basalt from 110 m depth were determined by synchrotron X-ray microfluorescence (ESRF, Grenoble,France). Data show that fluids are relatively homogenous, consisting of a Ba-rich fluid and a Fe (+Ba)-rich fluid of hydrothermal origin as concluded by Foriel et al.([3]). The isotopic compositions of xenon and argon trapped in these fluids were measured by mass spectrometry following vacuum crushing. The three argon isotopes show a homogeneous signature quite different from present-day Earth atmosphere but we cannot exclude the possibility that secondary nuclear reactions produced these anomalies. Despite this, the Xe isotopic trends indicate a less radiogenic signature than the Present-day atmosphere, and probably represent a remnant of the Archaean atmosphere. If this xenon composition is primitive then it implies that there is no cosmogenic production through time. However, argon ratios could be explained by cosmogenic production which implies significant surface exposure times. Cosmogenic production will produce correlated argon and xenon isotope signatures. Therefore it is necessary to differentiate primary from secondary composition. To investigate the effects of these nuclear reactions on Xe isotope production, barite from 30m shallower depth in the same core were analyzed. Variable excesses can be linked to spallogenic and cosmogenic reactions ([4] [5] [6]) which allow the primitive Xe isotopic signature to be isolated from subsequent secondary production. Models of the archaean atmospheric noble gas signature can thereby be compared with different theories on primitive atmospheric composition. [1] Staudacher T. Allègre C.J. (1982) EPSL 60, p 389-406 [2] Van Kranendonk MJ., Hickman A.H., Williams I.R. and Nijman W. (2001) Rec.-Geol. Surv. West. Aust. 2001/9, 134 [3] Foriel J., Philippot P., Rey P., Somogyi A., Banks D. and Ménez B. (2004) EPSL, 228, 451-463 [4]Srinivasan B. (1976) EPSL, 31, 129-141 [5]Charalambus S. (1971) Nuclear Physics, A166, 145 [6]Meshik A. P., Hohenberg C. M., Pravdivtseva O. V. and Kapusta Y. (2001) Phys. Rev., C 64, 035205-1 035205-6
Advanced Cosmic-ray Composition Experiment for Space Station: ISS accommodation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wefel, John P.
1999-01-22
ACCESS--Advanced Cosmic-ray Composition Experiment for Space Station--was selected as a new Mission Concept under NRA 96-OSS-03, with the goal of combining calorimeter and transition radiation techniques to provide measurements of cosmic rays from Hydrogen through Nickel up to energies approaching the 'knee' in the cosmic ray all particle spectrum, plus providing measurements of the Z>28 (Ultra-Heavy) nuclei at all energies. An instrument to perform such an investigation is undergoing an ISS/STS Accommodation Study at JSC. The instrument concept, the mission plan, and the accommodation issues for an ISS attached payload which include, in part, the carrier, ISS Site, thermal control,more » power, data and operations are described and the current status of these issues, for an ACCESS Mission, is summarized.« less
NASA Astrophysics Data System (ADS)
Iwasaki, Yuma; Kusne, A. Gilad; Takeuchi, Ichiro
2017-12-01
Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition-phase maps from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis and the choice of measure's performance impact on automatic composition-phase map determination. Nine dissimilarity measures are investigated for their impact in analyzing X-ray diffraction patterns for a Fe-Co-Ni ternary alloy composition spread. The cosine, Pearson correlation coefficient, and Jensen-Shannon divergence measures are shown to provide the best performance in the presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction patterns in general beyond data from combinatorial libraries.
Alonso-Sierra, S; Velázquez-Castillo, R; Millán-Malo, B; Nava, R; Bucio, L; Manzano-Ramírez, A; Cid-Luna, H; Rivera-Muñoz, E M
2017-11-01
Hydroxyapatite-based materials have been used for dental and biomedical applications. They are commonly studied due to their favorable response presented when used for replacement of bone tissue. Those materials should be porous enough to allow cell penetration, internal tissue growth, vascular incursion and nutrient supply. Furthermore, their morphology should be designed to guide the growth of new bone tissue in anatomically applicable ways. In this work, the mechanical performance and 3D X-ray microtomography (X-ray μCT) study of a biomimetic, organic-inorganic composite material, based on hydroxyapatite, with physicochemical, structural, morphological and mechanical properties very similar to those of natural bone tissue is reported. Ceramic pieces in different shapes and several porous sizes were produced using a Modified Gel Casting Method. Pieces with a controlled and 3D hierarchical interconnected porous structure were molded by adding polymethylmethacrylate microspheres. Subsequently, they were subject to a thermal treatment to remove polymers and to promote a sinterization of the ceramic particles, obtaining a HAp scaffold with controlled porosity. Then, two different organic phases were used to generate an organic-inorganic composite material, so gelatin and collagen, which was extracted from bovine tail, were used. The biomimetic organic-inorganic composite material was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, Fourier Transform Infrared Spectroscopy and 3D X-ray microtomography techniques. Mechanical properties were characterized in compression tests, obtaining a dramatic and synergic increment in the mechanical properties due to the chemical and physical interactions between the two phases and to the open-cell cellular behavior of the final composite material; the maximum compressive strength obtained corresponds to about 3 times higher than that reported for natural cancellous bone. The pore size distribution obtained could be capable to allow cell penetration, internal tissue in-growth, vascular incursion and nutrient supply and this material has tremendous potential for use as a replacement of bone tissue or in the manufacture and molding of prosthesis with desired shapes. Copyright © 2017 Elsevier B.V. All rights reserved.
Cosmic ray research in India: 1912-2012
NASA Astrophysics Data System (ADS)
Tonwar, Suresh C.
2013-02-01
The progress of research in cosmic rays in India over the last 100 years is reviewed, starting with the pioneering work of Debendra Mohan Bose and Homi Bhabha. Experimental research in cosmic rays in India received a big push with the establishment of the Tata Institute of Fundamental Research by Homi Bhabha in Bombay in 1945, the Physical Research Laboratory by Vikram Sarabhai in Ahemedabad in 1947 and the setting up of a cosmic ray research group by Piara Singh Gill at the Aligarh Muslim University in Aligarh in 1949. Studies on high energy interactions by B.V. Sreekantan and colleagues and on muons and neutrinos deep underground in KGF mines by M.G.K. Menon and coworkers were the highlights of the research work in India in 1950's and 60's. In 1970's and 80's, important advances were made in India in several areas, for example, search for proton decay in KGF mines by M.G.K. Menon et al, search for TeV cosmic gamma-ray sources at Ooty and Pachmari by P.V. Ramanamurthy and colleagues, search for PeV cosmic gamma ray sources by S.C. Tonwar et al at Ooty and by M.V.S. Rao and coworkers at KGF. In 1990's, Sreekantan and Tonwar initiated the GRAPES-3 project at Ooty to determine the composition of cosmic ray flux around the 'knee' in the primary energy spectrum at PeV energies using a large muon detector and a compact air shower array. Another major effort to search for TeV gamma-ray sources was initiated by H. Razdan and C.L. Bhat, initially at Gulmarg in Kashmir in the 1980's, leading to successful observations with a stereoscopic imaging atmospheric Cherenkov telescope at Mount Abu in early 2000. In recent years the Pachmari group and the Mount Abu group have joined together to install a sophisticated system of atmospheric Cherenkov detectors at Hanle in the Ladakh region at an altitude of 4200 m to continue studies on VHE sources of cosmic gammarays.
Gao, Weichun; Zhang, Yongxiang; Zhang, Xiaoye; Duan, Zhilong; Wang, Youhao; Qin, Can; Hu, Xiao; Wang, Hao; Chang, Shan
2015-11-01
In this study, coarse sand-supported zero valent iron (ZVI) composite was synthesized by adding sodium alginate to immobilize. Composite was detected by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF). SEM results showed that composite had core-shell structure and a wide porous distribution pattern. The synthesized composite was used for degradation of 2,4-dichlorophenol (2,4-DCP) contamination in groundwater. Experimental results demonstrated that degradation mechanism of 2,4-DCP using coarse sand-supported ZVI included adsorption, desorption, and dechlorination. 2,4-DCP adsorption was described as pseudo-second-order kinetic model. It was concluded that dechlorination was the key reaction pathway, ZVI and hydrogen are prime reductants in dechlorination of 2,4-DCP using ZVI.
Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Zichao; Leyffer, Sven; Wild, Stefan M.
2016-01-01
Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematicallymore » speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.« less
Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.
Asghar, Z; Requena, G; Sket, F
2015-07-01
The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Pinpointing the knee of cosmic rays with diffuse PeV γ-rays and neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y. Q.; Hu, H. B.; Yuan, Q.
2014-11-01
The origin of the knee in the cosmic ray spectrum remains to be an unsolved fundamental problem. There are various kinds of models that predict different break positions and the compositions of the knee. In this work, we suggest the use of diffuse γ-rays and neutrinos as probes to test these models. Based on several typical types of composition models, the diffuse γ-ray and neutrino spectra are calculated and show distinctive cutoff behaviors at energies from tens of TeV to multi-PeV. The expected flux will be observable by the newly upgraded Tibet-ASγ+MD (muon detector) experiment as well as more sensitivemore » future projects, such as LHAASO and HiSCORE. By comparing the neutrino spectrum with the recent observations by the IceCube experiment, we find that the diffuse neutrinos from interactions between the cosmic rays and the interstellar medium may not be responsible to the majority of the IceCube events. Future measurements of the neutrinos may be able to identify the Galactic diffuse component and shed further light on the problem of the knee of cosmic rays.« less
Characterization of composite materials based on cement-ceramic powder blended binder
NASA Astrophysics Data System (ADS)
Kulovaná, Tereza; Pavlík, Zbyšek
2016-06-01
Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.
NASA Astrophysics Data System (ADS)
Pan, Jun; Xi, Baojuan; Li, Jingfa; Yan, Yan; Li, Qianwen; Qian, Yitai
2011-08-01
We report a new morphology of wurzite cadmium sulfide with nanoparticles decorated on rod-bundle structures, which were synthesized via calcinations of an inorganic/organic composite at 400 °C in air. The composite was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The structure, composition, and morphology of the prepared material were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscope, FT-IR spectrometry, photoluminescence spectrometry, and UV-visible spectrometry. Results indicated that the composite could be defined as CdS 0.65/Cd-TGA0.35. X-ray diffraction revealed that the annealed product is CdS with wurtizite phase. The diameter of the rod is about 150-400 nm and the length from the top to the bottom of the decorated nanoparticle is about 100 nm. The composite showed high intensity of photoluminescence with similar peak position, compared to that of wurtzite CdS, because of the structure defects.
Characterization of composite materials based on cement-ceramic powder blended binder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulovaná, Tereza; Pavlík, Zbyšek
Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO{sub 2} emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzedmore » by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.« less
Revision of the NIST Standard for (223)Ra: New Measurements and Review of 2008 Data.
Zimmerman, B E; Bergeron, D E; Cessna, J T; Fitzgerald, R; Pibida, L
2015-01-01
After discovering a discrepancy in the transfer standard currently being disseminated by the National Institute of Standards and Technology (NIST), we have performed a new primary standardization of the alpha-emitter (223)Ra using Live-timed Anticoincidence Counting (LTAC) and the Triple-to-Double Coincidence Ratio Method (TDCR). Additional confirmatory measurements were made with the CIEMAT-NIST efficiency tracing method (CNET) of liquid scintillation counting, integral γ-ray counting using a NaI(Tl) well counter, and several High Purity Germanium (HPGe) detectors in an attempt to understand the origin of the discrepancy and to provide a correction. The results indicate that a -9.5 % difference exists between activity values obtained using the former transfer standard relative to the new primary standardization. During one of the experiments, a 2 % difference in activity was observed between dilutions of the (223)Ra master solution prepared using the composition used in the original standardization and those prepared using 1 mol·L(-1) HCl. This effect appeared to be dependent on the number of dilutions or the total dilution factor to the master solution, but the magnitude was not reproducible. A new calibration factor ("K-value") has been determined for the NIST Secondary Standard Ionization Chamber (IC "A"), thereby correcting the discrepancy between the primary and secondary standards.
Kikuchi, Sakiko; Mitsunobu, Satoshi; Takaki, Yoshihiro; Yamanaka, Toshiro; Toki, Tomohiro; Noguchi, Takuroh; Nakamura, Kentaro; Abe, Mariko; Hirai, Miho; Yamamoto, Masahiro; Uematsu, Katsuyuki; Miyazaki, Junichi; Nunoura, Takuro; Takahashi, Yoshio; Takai, Ken
2016-01-01
ABSTRACT It has been suggested that iron is one of the most important energy sources for photosynthesis-independent microbial ecosystems in the ocean crust. Iron-metabolizing chemolithoautotrophs play a key role as primary producers, but little is known about their distribution and diversity and their ecological role as submarine iron-metabolizing chemolithotrophs, particularly the iron oxidizers. In this study, we investigated the microbial communities in several iron-dominated flocculent mats found in deep-sea hydrothermal fields in the Mariana Volcanic Arc and Trough and the Okinawa Trough by culture-independent molecular techniques and X-ray mineralogical analyses. The abundance and composition of the 16S rRNA gene phylotypes demonstrated the ubiquity of zetaproteobacterial phylotypes in iron-dominated mat communities affected by hydrothermal fluid input. Electron microscopy with energy-dispersive X-ray microanalysis and X-ray absorption fine structure (XAFS) analysis revealed the chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species and the potential contribution of Zetaproteobacteria to the in situ generation. These results suggest that putative iron-oxidizing chemolithoautotrophs play a significant ecological role in producing iron-dominated flocculent mats and that they are important for iron and carbon cycles in deep-sea low-temperature hydrothermal environments. IMPORTANCE We report novel aspects of microbiology from iron-dominated flocculent mats in various deep-sea environments. In this study, we examined the relationship between Zetaproteobacteria and iron oxides across several hydrothermally influenced sites in the deep sea. We analyzed iron-dominated mats using culture-independent molecular techniques and X-ray mineralogical analyses. The scanning electron microscopy–energy-dispersive X-ray spectroscopy SEM-EDS analysis and X-ray absorption fine structure (XAFS) analysis revealed chemical and mineralogical signatures of biogenic Fe-(oxy)hydroxide species as well as the potential contribution of the zetaproteobacterial population to the in situ production. These key findings provide important information for understanding the mechanisms of both geomicrobiological iron cycling and the formation of iron-dominated mats in deep-sea hydrothermal fields. PMID:27422841
Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian
2018-05-21
In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.
Cosmic-ray detectors on the Moon
NASA Technical Reports Server (NTRS)
Linsley, John
1988-01-01
The state of cosmic ray physics is reviewed. It is concluded that the nonexistent lunar magnetic field, the low lunar radiation background, and the lack of an atmosphere on the Moon provide an excellent environment for the study of high energy primary cosmic rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Voloshin, A. E.; Ralchenko, V. G.
2016-11-15
Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.
Resonant Soft X-ray Scattering of Cellulose Microstructure in Plant Primary Cell Walls
NASA Astrophysics Data System (ADS)
Ye, Dan; Kiemle, Sarah N.; Wang, Cheng; Cosgrove, Daniel J.; Gomez, Esther W.; Gomez, Enrique D.
Cellulosic biomass is the most abundant raw material available for the production of renewable and sustainable biofuels. Breaking down cellulose is the rate-limiting step in economical biofuel production; therefore, a detailed understanding of the microscopic structure of plant cell walls is required to develop efficient biofuel conversion methods. Primary cell walls are key determinants of plant growth and mechanics. Their structure is complex and heterogeneous, making it difficult to elucidate how various components such as pectin, hemicellulose, and cellulose contribute to the overall structure. The electron density of these wall components is similar; such that conventional hard X-ray scattering does not generate enough contrast to resolve the different elements of the polysaccharide network. The chemical specificity of resonant soft X-ray scattering allows contrast to be generated based on differences in chemistry of the different polysaccharides. By varying incident X-ray energies, we have achieved increased scattering contrast between cellulose and other polysaccharides from primary cell walls of onions. By performing scattering at certain energies, features of the network structure of the cell wall are resolved. From the soft X-ray scattering results, we obtained the packing distance of cellulose microfibrils embedded in the polysaccharide network.
Implications of the experimental results on high energy cosmic rays with regard to their origin
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Linsley, J.
1985-01-01
It was shown in an earlier report that current cosmic ray evidence supports a change in the cosmic ray composition in the region between 10 to the 6th power and 10 to the 8th power GeV total energy in the direction of a smaller average value of A. Compared to normal celestial abundances, the heavy nuclei are much less abundant, and, in fact, the composition measurements above 10 to the 8th power GeV are consistent with there being only protons. Here, these results combined with those of the energy spectrum and anisotropy of the comsic rays and other astrophysical information will be examined to try to determine their implications for the origin of the cosmic rays. In this paper, consideration is given to the implications of one or more than one type of source in the galaxy to see which are consistent with the interpretation of current measurements. The nature of the source types that would be required are discussed.
Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo
2016-01-01
The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses. PMID:26854067
Exploring the X-ray Morphology of the Supernova Remnant Kes 27 using Numerical Simulations
NASA Astrophysics Data System (ADS)
Dwarkadas, Vikram; Dewey, D.
2013-04-01
Kesteven 27 is a member of the class of thermal composite or mixed-morphology remnants, which can show thermal X-ray emission extending all the way in towards the center. The Chandra image shows two incomplete shell-like features in the north-eastern half, with brightness fading towards the southwest. The X-ray and radio structure led Chen et al. (2008) to suggest that the morphology represents a supernova remnant expanding in a windblown bubble. The two X-ray rings represent the outer shock of the supernova remnant, and a reflected shock arising from collision with a dense shell. Using numerical simulations followed by a computation of the X-ray emission, we explore this possibility. Our initial modeling suggests that the scenario discussed by Chen et al. (2008) may not work. We suggest and discuss modifications to this scenario that may be able to reproduce the observed morphology, and the implications for thermal composite remnants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di, Zichao; Leyffer, Sven; Wild, Stefan M.
Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematicallymore » speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.« less
NASA Astrophysics Data System (ADS)
Carasco, C.; Perot, B.; Viesti, G.; Valkovic, V.; Sudac, D.; Bernard, S.; Mariani, A.; Szabo, J.-L.; Sannie, G.; Lunardon, M.; Bottosso, C.; Moretto, S.; Pesente, S.; Peerani, P.; Sequeira, V.; Salvato, M.
2007-11-01
The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) inspection system uses 14 MeV neutrons produced by the D(T,n α) reaction to detect explosives in cargo containers. Fast-neutron-induced reactions inside the container produce gamma rays, which are detected in coincidence with the associated alpha particle. The definition of the neutron path and the time-of-flight measurement allow positioning the source of the gamma ray inside the container, while the chemical composition of the target material is correlated with the energy spectrum of the coincident gamma rays. However, in case of dense cargo, neutron moderation and photon attenuation inside the container make difficult the reconstruction of the material composition from the measured gamma-ray energy spectrum. An analytical method has been developed and validated against experimental data, which allows obtaining the chemical carbon-to-oxygen and carbon-to-nitrogen ratios of the inspected items from the gamma-ray energy spectra. The principle of the method is presented along with validation tests.