Sample records for ray scale height

  1. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  2. The relationship between the galactic matter distribution, cosmic ray dynamics, and gamma ray production

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.

    1976-01-01

    Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.

  3. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    NASA Astrophysics Data System (ADS)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  4. Structure and dynamics of coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1995-01-01

    The Normal Incidence X-ray Telescope (NIXT) obtained a unique set of high resolution full disk solar images which were exposed simultaneously by X-rays in a passband at 63.5 A and by visible light. The perfect alignment of a photospheric visible light image with a coronal X-ray image enables us to present observations of X-ray intensity vs an accurately determined height above the visible limb. The height at which the observed X-ray intensity peak varies from 4000 km in active regions to 9000 km in quiet regions of the sun. The interpretation of the observations stems from the previously established fact that, for the coronal loops, emission in the NIXT bandpass peaks sharply just above the footpoints. Because there is not a sharp peak in the observed X-ray intensity vs off limb height, we conclude that the loop footpoints, when viewed at the limb, are obscured by absorption in chromospheric material along the line of sight. We calculate the X-ray intensity vs height predicted by a number of different idealizations of the solar atmosphere, and we compare these calculations with the observed X-ray intensity vs height. The calculations use existing coronal and chromospheric models. In order for the calculations to reproduce the observed off limb X-ray intensities, we are forced to assume an atmosphere in which the footpoints of coronal loops are interspersed along the line of sight with cooler chromospheric material extending to heights well above the loop footpoints. We argue that the absorption coefficient for NIXT X-rays by chromospheric material is roughly proportional to the neutral hydrogen density, and we estimate an average neutral hydrogen density and scale height implied by the data.

  5. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  6. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Baldini, L.; Uchiyama, Y.

    2012-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TeV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  7. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Baldini, L.; Uchiyama, Y.

    2011-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  8. Scaling of human body composition to stature: new insights into body mass index.

    PubMed

    Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo

    2007-07-01

    Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. We examined the critical underlying assumptions of adiposity-body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n=411; organs=76) and the other a larger DXA database (n=1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of approximately 2 (all P<0.001); bone and bone mineral mass scaled to height with powers >2 (2.31-2.48), and the fraction of weight as bone mineral mass was significantly (P<0.001) correlated with height in women. AT scaled weakly to height with powers of approximately 2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P=0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P=0.002). These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies.

  9. Scaling of human body composition to stature: new insights into body mass index 123

    PubMed Central

    Heymsfield, Steven B; Gallagher, Dympna; Mayer, Laurel; Beetsch, Joel; Pietrobelli, Angelo

    2009-01-01

    Background Although Quetelet first reported in 1835 that adult weight scales to the square of stature, limited or no information is available on how anatomical body compartments, including adipose tissue (AT), scale to height. Objective We examined the critical underlying assumptions of adiposity–body mass index (BMI) relations and extended these analyses to major anatomical compartments: skeletal muscle (SM), bone, residual mass, weight (AT+SM+bone), AT-free mass, and organs (liver, brain). Design This was a cross-sectional analysis of 2 body-composition databases: one including magnetic resonance imaging and dual-energy X-ray absorptiometry (DXA) estimates of evaluated components in adults (total n = 411; organs = 76) and the other a larger DXA database (n = 1346) that included related estimates of fat, fat-free mass, and bone mineral mass. Results Weight, primary lean components (SM, residual mass, AT-free mass, and fat-free mass), and liver scaled to height with powers of ≈2 (all P < 0.001); bone and bone mineral mass scaled to height with powers > 2 (2.31–2.48), and the fraction of weight as bone mineral mass was significantly (P < 0.001) correlated with height in women. AT scaled weakly to height with powers of ≈2, and adiposity was independent of height. Brain mass scaled to height with a power of 0.83 (P = 0.04) in men and nonsignificantly in women; the fraction of weight as brain was inversely related to height in women (P = 0.002). Conclusions These observations suggest that short and tall subjects with equivalent BMIs have similar but not identical body composition, provide new insights into earlier BMI-related observations and thus establish a foundation for height-normalized indexes, and create an analytic framework for future studies. PMID:17616766

  10. Differences between brain mass and body weight scaling to height: potential mechanism of reduced mass-specific resting energy expenditure of taller adults.

    PubMed

    Heymsfield, Steven B; Chirachariyavej, Thamrong; Rhyu, Im Joo; Roongpisuthipong, Chulaporn; Heo, Moonseong; Pietrobelli, Angelo

    2009-01-01

    Adult resting energy expenditure (REE) scales as height( approximately 1.5), whereas body weight (BW) scales as height( approximately 2). Mass-specific REE (i.e., REE/BW) is thus lower in tall subjects compared with their shorter counterparts, the mechanism of which is unknown. We evaluated the hypothesis that high-metabolic-rate brain mass scales to height with a power significantly less than that of BW, a theory that if valid would provide a potential mechanism for height-related REE effects. The hypothesis was tested by measuring brain mass on a large (n = 372) postmortem sample of Thai men. Since brain mass-body size relations may be influenced by age, the hypothesis was secondarily explored in Thai men age < or =45 yr (n = 299) and with brain magnetic resonance imaging (MRI) studies in Korean men (n = 30) age > or =20<30 yr. The scaling of large body compartments was examined in a third group of Asian men living in New York (NY, n = 28) with MRI and dual-energy X-ray absorptiometry. Brain mass scaled to height with a power (mean +/- SEE; 0.46 +/- 0.13) significantly smaller (P < 0.001) than that of BW scaled to height (2.36 +/- 0.19) in the whole group of Thai men; brain mass/BW scaled negatively to height (-1.94 +/- 0.20, P < 0.001). Similar results were observed in younger Thai men, and results for brain mass/BW vs. height were directionally the same (P = 0.09) in Korean men. Skeletal muscle and bone scaled to height with powers similar to that of BW (i.e., approximately 2-3) in the NY Asian men. Models developed using REE estimates in Thai men suggest that brain accounts for most of the REE/BW height dependency. Tall and short men thus differ in relative brain mass, but the proportions of BW as large compartments appear independent of height, observations that provide a potential mechanistic basis for related differences in REE and that have implications for the study of adult energy requirements.

  11. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  12. Microhabitat Selection by Marine Mesoconsumers in a Thermally Heterogeneous Habitat: Behavioral Thermoregulation or Avoiding Predation Risk?

    PubMed Central

    Vaudo, Jeremy J.; Heithaus, Michael R.

    2013-01-01

    Habitat selection decisions by consumers has the potential to shape ecosystems. Understanding the factors that influence habitat selection is therefore critical to understanding ecosystem function. This is especially true of mesoconsumers because they provide the link between upper and lower tropic levels. We examined the factors influencing microhabitat selection of marine mesoconsumers – juvenile giant shovelnose rays (Glaucostegus typus), reticulate whiprays (Himantura uarnak), and pink whiprays (H. fai) – in a coastal ecosystem with intact predator and prey populations and marked spatial and temporal thermal heterogeneity. Using a combination of belt transects and data on water temperature, tidal height, prey abundance, predator abundance and ray behavior, we found that giant shovelnose rays and reticulate whiprays were most often found resting in nearshore microhabitats, especially at low tidal heights during the warm season. Microhabitat selection did not match predictions derived from distributions of prey. Although at a course scale, ray distributions appeared to match predictions of behavioral thermoregulation theory, fine-scale examination revealed a mismatch. The selection of the shallow nearshore microhabitat at low tidal heights during periods of high predator abundance (warm season) suggests that this microhabitat may serve as a refuge, although it may come with metabolic costs due to higher temperatures. The results of this study highlight the importance of predators in the habitat selection decisions of mesoconsumers and that within thermal gradients, factors, such as predation risk, must be considered in addition to behavioral thermoregulation to explain habitat selection decisions. Furthermore, increasing water temperatures predicted by climate change may result in complex trade-offs that might have important implications for ecosystem dynamics. PMID:23593501

  13. Gravitational and relativistic deflection of X-ray superradiance

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Te; Ahrens, Sven

    2015-03-01

    Einstein predicted that clocks at different altitudes tick at various rates under the influence of gravity. This effect has been observed using 57Fe Mössbauer spectroscopy over an elevation of 22.5 m (ref. 1) or by comparing accurate optical clocks at different heights on a submetre scale. However, challenges remain in finding novel methods for the detection of gravitational and relativistic effects on more compact scales. Here, we investigate a scheme that potentially allows for millimetre- to submillimetre-scale studies of the gravitational redshift by probing a nuclear crystal with X-rays. Also, a rotating crystal can force interacting X-rays to experience inhomogeneous clock tick rates within it. We find that an association of gravitational redshift and special-relativistic time dilation with quantum interference is manifested by a time-dependent deflection of X-rays. The scheme suggests a table-top solution for probing gravitational and special-relativistic effects, which should be within the reach of current experimental technology.

  14. Galactic Disk Winds Driven by Cosmic Ray Pressure

    NASA Astrophysics Data System (ADS)

    Mao, S. Alwin; Ostriker, Eve C.

    2018-02-01

    Cosmic ray pressure gradients transfer energy and momentum to extraplanar gas in disk galaxies, potentially driving significant mass loss as galactic winds. This may be particularly important for launching high-velocity outflows of “cool” (T ≲ 104 K) gas. We study cosmic ray-driven disk winds using a simplified semi-analytic model assuming streamlines follow the large-scale gravitational potential gradient. We consider scaled Milky Way–like potentials including a disk, bulge, and halo with a range of halo velocities V H = 50–300 km s-1 and streamline footpoints with radii in the disk R 0 = 1–16 kpc at a height of 1 kpc. Our solutions cover a wide range of footpoint gas velocity u 0, magnetic–to–cosmic ray pressure ratio, gas–to–cosmic ray pressure ratio, and angular momentum. Cosmic ray streaming at the Alfvén speed enables the effective sound speed C eff to increase from the footpoint to a critical point where C eff,c = u c ∼ V H; this differs from thermal winds, in which C eff decreases outward. The critical point is typically at a height of 1–6 kpc from the disk, increasing with V H, and the asymptotic wind velocity exceeds the escape speed of the halo. Mass-loss rates are insensitive to the footpoint values of the magnetic field and angular momentum. In addition to numerical parameter space exploration, we develop and compare to analytic scaling relations. We show that winds have mass-loss rates per unit area up to \\dot{Σ}∼ Π0VH-5/3u02/3, where Π0 is the footpoint cosmic ray pressure and u 0 is set by the upwelling of galactic fountains. The predicted wind mass-loss rate exceeds the star formation rate for V H ≲ 200 km s-1 and u 0 = 50 km s-1, a typical fountain velocity.

  15. Validation of Ionosonde Electron Density Reconstruction Algorithms with IONOLAB-RAY in Central Europe

    NASA Astrophysics Data System (ADS)

    Gok, Gokhan; Mosna, Zbysek; Arikan, Feza; Arikan, Orhan; Erdem, Esra

    2016-07-01

    Ionospheric observation is essentially accomplished by specialized radar systems called ionosondes. The time delay between the transmitted and received signals versus frequency is measured by the ionosondes and the received signals are processed to generate ionogram plots, which show the time delay or reflection height of signals with respect to transmitted frequency. The critical frequencies of ionospheric layers and virtual heights, that provide useful information about ionospheric structurecan be extracted from ionograms . Ionograms also indicate the amount of variability or disturbances in the ionosphere. With special inversion algorithms and tomographical methods, electron density profiles can also be estimated from the ionograms. Although structural pictures of ionosphere in the vertical direction can be observed from ionosonde measurements, some errors may arise due to inaccuracies that arise from signal propagation, modeling, data processing and tomographic reconstruction algorithms. Recently IONOLAB group (www.ionolab.org) developed a new algorithm for effective and accurate extraction of ionospheric parameters and reconstruction of electron density profile from ionograms. The electron density reconstruction algorithm applies advanced optimization techniques to calculate parameters of any existing analytical function which defines electron density with respect to height using ionogram measurement data. The process of reconstructing electron density with respect to height is known as the ionogram scaling or true height analysis. IONOLAB-RAY algorithm is a tool to investigate the propagation path and parameters of HF wave in the ionosphere. The algorithm models the wave propagation using ray representation under geometrical optics approximation. In the algorithm , the structural ionospheric characteristics arerepresented as realistically as possible including anisotropicity, inhomogenity and time dependence in 3-D voxel structure. The algorithm is also used for various purposes including calculation of actual height and generation of ionograms. In this study, the performance of electron density reconstruction algorithm of IONOLAB group and standard electron density profile algorithms of ionosondes are compared with IONOLAB-RAY wave propagation simulation in near vertical incidence. The electron density reconstruction and parameter extraction algorithms of ionosondes are validated with the IONOLAB-RAY results both for quiet anddisturbed ionospheric states in Central Europe using ionosonde stations such as Pruhonice and Juliusruh . It is observed that IONOLAB ionosonde parameter extraction and electron density reconstruction algorithm performs significantly better compared to standard algorithms especially for disturbed ionospheric conditions. IONOLAB-RAY provides an efficient and reliable tool to investigate and validate ionosonde electron density reconstruction algorithms, especially in determination of reflection height (true height) of signals and critical parameters of ionosphere. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  16. A coronal hole and its identification as the source of a high velocity solar wind stream

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.; Timothy, A. F.; Roelof, E. C.

    1973-01-01

    X-ray images of the solar corona showed a magnetically open structure in the low corona which extended from N20W20 to the south pole. Analysis of the measured X-ray intensities shows the density scale heights within the structure to be typically a factor of two less than that in the surrounding large scale magnetically closed regions. The structure is identified as a coronal hole. Wind measurements for the appropriate period were traced back to the sun by the method of instantaneous ideal spirals. A striking agreement was found between the Carrington longitude of the solar source of a recurrent high velocity solar wind stream and the position of the hole.

  17. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  18. Unipedicular versus bipedicular percutaneous vertebroplasty for osteoporotic vertebral compression fractures: a prospective randomized study.

    PubMed

    Zhang, Liang; Liu, Zhongjun; Wang, Jingcheng; Feng, Xinmin; Yang, Jiandong; Tao, Yuping; Zhang, Shengfei

    2015-06-14

    Percutaneous vertebroplasty (PVP) typically involves conventional lower-viscosity cement injection via bipedicular approach. Limited evidence is available comparing the clinical outcomes and complications in treating osteoporotic vertebral compression fractures (OVCFs) with PVP using high-viscosity cement through unipedicular or bipedicular approach. Fifty patients with OVCFs were randomly allocated into two groups adopting unipedicular or bipedicular PVP. The efficacy of unipedicular and bipedicular PVP was assessed by comparing operation time, X-ray exposure time, incidence of complications, vertebral height restoration, and improvement of the visual analogue scale (VAS), Oswestry disability index (ODI) and Short Form-36 (SF-36) General Health Survey scores. The mean operative and exposure time to X-rays in the unipedicular PVP group was less than that of the bipedicular group (p < 0.05). No statistically significant differences were observed in the VAS score, ODI score, SF-36 score, cement leakage rate or vertebral height restoration between the two groups (p > 0.05). Unipedicular and bipedicular PVP are safe and effective treatments for OVCF. Compared with bipedicular PVP, unipedicular PVP entails a shorter surgical time and lower X-ray irradiation.

  19. Complex UV/X-ray variability of 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Pawar, P. K.; Dewangan, G. C.; Papadakis, I. E.; Patil, M. K.; Pal, Main; Kembhavi, A. K.

    2017-12-01

    We study the relationship between the UV and X-ray variability of the narrow-line Seyfert 1 galaxy 1H 0707-495. Using a year-long Swift monitoring and four long XMM-Newton observations, we perform cross-correlation analyses of the UV and X-ray light curves, on both long and short time-scales. We also perform time-resolved X-ray spectroscopy on 1-2 ks scale, and study the relationship between the UV emission and the X-ray spectral components - soft X-ray excess and a power law. We find that the UV and X-ray variations anticorrelate on short, and possibly on long time-scales as well. Our results rule out reprocessing as the dominant mechanism for the UV variability, as well as the inward propagating fluctuations in the accretion rate. Absence of a positive correlation between the photon index and the UV flux suggests that the observed UV emission is unlikely to be the seed photons for the thermal Comptonization. We find a strong correlation between the continuum flux and the soft-excess temperature which implies that the soft excess is most likely the reprocessed X-ray emission in the inner accretion disc. Strong X-ray heating of the innermost regions in the disc, due to gravitational light bending, appears to be an important effect in 1H 0707-495, giving rise to a significant fraction of the soft excess as reprocessed thermal emission. We also find indications for a non-static, dynamic X-ray corona, where either the size or height (or both) vary with time.

  20. [The Relation between the Height of Radiographic Table and Workloads of Radiologic Technologist in General X-ray Examinations].

    PubMed

    Hattori, Akiko; Mizoguchi, Noriko; Arimura, Hisao; Fukano, Yuuichi; Umezu, Yoshiyuki; Yabuuchi, Hidetake

    2015-12-01

    Workloads of radiological technologists under different conditions of heights of radiographic table and/or X-ray tube assembly were calculated using a software for preventing musculoskeletal complaint to investigate optimal working environment for general X-ray examinations. In the patient positioning, compressive force of lumbar disc decreased at higher radiographic table within the range of 45-90 cm. On the other hand, workload of the shoulder joint increased with increase in the height of radiographic table. Load of the shoulder joint similarly increased as the height of the X-ray tube assembly increased. Compressive force of lumbar disc reduced by approximately 10-30% as the height ratio of the radiographic table to body height increased by approximately 40%, compared to the lowest table of 45 cm. Muscle load of a 50-years-old woman was approximately double compared to a 30-year-old man, even in the same workload. It is important to keep suitable height of radiographic table for reduction of the workloads of lumbar rather than shoulder joint, because floating-type radiographic table is generally used.

  1. Pethia aurea (Teleostei: Cyprinidae), a new species of barb from West Bengal, India, with redescription of P. gelius and P. canius.

    PubMed

    Knight, J D Marcus

    2013-01-01

    Fishes currently assigned to Pethia gelius Hamilton from West Bengal are shown to belong to a closely-related group of three species: P gelius, its erstwhile synonym P canius Hamilton and a new species, P aurea. The three species are distinguished from all other species of Pethia by having the lateral line incomplete, with 3-4 pored scales; 20-26 scales in lateral series on body; ½4-5/l/2-3½ scales in transverse line on body; 8-9 predorsal scales; barbels absent and by a unique colour pattern consisting of two or three black blotches on the body (which, however, fade on preservation), the first behind the opercle, the second beneath the origin of the dorsal fin, extending to the mid-lateral region, and the third above the origin of the anal fin. A black spot is also present at the base of the dorsal and anal fins. Additionally, P gelius is distinguished by having the last unbranched dorsal-fin ray thick, straight, serrated, with 20-25 serrae on its posterior margin; a snout length of 6.1-8.4% standard length (SL); a body depth of 32.6-37.7% SL; and a dorsal-fin height of 19.4-22.8% SL. Pethia canius is additionally distinguished by having a snout length of 8.9-11.8% SL; a body depth of 28.1-32.2% SL; and dorsal-fin height of 26.9-32.8% SL. Pethia aurea, new species, is additionally distinguished from all its congeners by having ½5/1/3-3½ scales in transverse line on body; 9 pre-dorsal scales; and last unbranched dorsal-fin ray slender, serrated, with 19-22 serrae on posterior margin.

  2. Spatial structure and temporal development of a solar X-ray flare observed from Skylab on June 15, 1973

    NASA Technical Reports Server (NTRS)

    Pallavicini, R.; Vaiana, G. S.; Kahler, S. W.; Krieger, A. S.

    1975-01-01

    Morphological and quantitative analyses are presented of a 1B solar flare that was observed with high spatial and temporal resolution by the S-054 grazing-incidence X-ray telescope aboard Skylab. It is found that the flare had the configuration of a compact region with a characteristic size of the order of 30 arcsec at the intensity peak, the interior of the region appeared to be highly structured and to consist of temporally changing complex loop systems, brightening over an extended part of the active region preceded the flare onset, and the impulsive phase was marked by rapid brightening in the loop structures. The X-ray photographs also indicate that the X-ray emission was centered over the neutral line of the longitudinal magnetic field, loop systems formed at successively increasing heights during the decay phase, and different regions of the flare had distinctly different light curves. The flux profiles for the different regions are shown to suggest continued heating during the decay phase. It is concluded that flare models should be based on a multiplicity of volumes ordered in loops of successively larger scale lengths and heights rather than on a single point of energy release and deposition.

  3. Radio haloes in nearby galaxies modelled with 1D cosmic ray transport using SPINNAKER

    NASA Astrophysics Data System (ADS)

    Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D. J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B. S.; Mulcahy, D. D.; Westmeier, T.; Dettmar, R.-J.

    2018-05-01

    We present radio continuum maps of 12 nearby (D ≤ 27 Mpc), edge-on (i ≥ 76°), late-type spiral galaxies mostly at 1.4 and 5 GHz, observed with the Australia Telescope Compact Array, Very Large Array, Westerbork Synthesis Radio Telescope, Effelsberg 100-m, and Parkes 64-m telescopes. All galaxies show clear evidence of radio haloes, including the first detection in the Magellanic-type galaxy NGC 55. In 11 galaxies, we find a thin and a thick disc that can be better fitted by exponential rather than Gaussian functions. We fit our SPINNAKER (SPectral INdex Numerical Analysis of K(c)osmic-ray Electron Radio-emission) 1D cosmic ray transport models to the vertical model profiles of the non-thermal intensity and to the non-thermal radio spectral index in the halo. We simultaneously fit for the advection speed (or diffusion coefficient) and magnetic field scale height. In the thick disc, the magnetic field scale heights range from 2 to 8 kpc with an average across the sample of 3.0 ± 1.7 kpc; they show no correlation with either star formation rate (SFR), SFR surface density (ΣSFR), or rotation speed (Vrot). The advection speeds range from 100 to 700 km s - 1 and display correlations of V∝SFR0.36 ± 0.06 and V∝ Σ _SFR^{0.39± 0.09}; they agree remarkably well with the escape velocities (0.5 ≤ V/Vesc ≤ 2), which can be explained by cosmic ray-driven winds. Radio haloes show the presence of disc winds in galaxies with ΣSFR > 10 - 3 M⊙ yr - 1 kpc - 2 that extend over several kpc and are driven by processes related to the distributed star formation in the disc.

  4. Direct energy inputs to the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Lanzerotti, L. J.

    1979-01-01

    As a working definition of the extent of the middle atmosphere (MA), the height range from 30 to 100 km was adopted. The neutral and ionic composition and the dynamics within this height range are, for the most part, poorly understood. From available information, the importance of various particle and photon energy sources, including their variability, for ionization of the neutral atmosphere in this height range is assessed. The following topics are discussed: (1) penetration of the MA by particle and electromagnetic energy; (2) ionization sources for the MA; (3) galactic cosmic rays; (4) solar H Ly alpha, other EUV, and X-rays; (5) magnetospheric electrons and bremsstrahlung X-rays; and (6) solar cosmic rays.

  5. In search of stratospheric bromine oxide

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1986-01-01

    The Imaging Spectrometric Observatory (ISO) is capable of recording spectra in the wavelength range of 200 to 12000 Angstroms. Data from a recent Spacelab 1 ATLAS mission has imaged the terrestrial airglow at tangent ray heights of 90 and 150 km. These data contain information about trace atmospheric constituents such as bromine oxide (BrO), hydroxyl (OH), and chlorine dioxide (OClO). The abundances of these species are critical to stratospheric models of catalytic ozone destruction. Heretofore, very few observations were made especially for BrO. Software was developed to purge unwanted solar features from the airglow spectra. The next step is a measure of the strength of the emission features for BrO. The final analysis will yield the scale height of this important compound.

  6. Multi-parameter Nonlinear Gain Correction of X-ray Transition Edge Sensors for the X-ray Integral Field Unit

    NASA Astrophysics Data System (ADS)

    Cucchetti, E.; Eckart, M. E.; Peille, P.; Porter, F. S.; Pajot, F.; Pointecouteau, E.

    2018-04-01

    With its array of 3840 Transition Edge Sensors (TESs), the Athena X-ray Integral Field Unit (X-IFU) will provide spatially resolved high-resolution spectroscopy (2.5 eV up to 7 keV) from 0.2 to 12 keV, with an absolute energy scale accuracy of 0.4 eV. Slight changes in the TES operating environment can cause significant variations in its energy response function, which may result in systematic errors in the absolute energy scale. We plan to monitor such changes at pixel level via onboard X-ray calibration sources and correct the energy scale accordingly using a linear or quadratic interpolation of gain curves obtained during ground calibration. However, this may not be sufficient to meet the 0.4 eV accuracy required for the X-IFU. In this contribution, we introduce a new two-parameter gain correction technique, based on both the pulse-height estimate of a fiducial line and the baseline value of the pixels. Using gain functions that simulate ground calibration data, we show that this technique can accurately correct deviations in detector gain due to changes in TES operating conditions such as heat sink temperature, bias voltage, thermal radiation loading and linear amplifier gain. We also address potential optimisations of the onboard calibration source and compare the performance of this new technique with those previously used.

  7. Airborne Detection of Cosmic-Ray Albedo Neutrons for Regional-Scale Surveys of Root-Zone Soil Water on Earth

    NASA Astrophysics Data System (ADS)

    Schrön, M.; Bannehr, L.; Köhli, M.; Zreda, M. G.; Weimar, J.; Zacharias, S.; Oswald, S. E.; Bumberger, J.; Samaniego, L. E.; Schmidt, U.; Zieger, P.; Dietrich, P.

    2017-12-01

    While the detection of albedo neutrons from cosmic rays became a standard method in planetary space science, airborne neutron sensing has never been conceived for hydrological research on Earth. We assessed the applicability of atmospheric neutrons to sense root-zone soil moisture averaged over tens of hectares using neutron detectors on an airborne vehicle. Large-scale quantification of near-surface water content is an urgent challenge in hydrology. Information about soil and plant water is crucial to accurately assess the risks for floods and droughts, to adjust regional weather forecasts, and to calibrate and validate the corresponding models. However, there is a lack of data at scales relevant for these applications. Most conventional ground-based geophysical instruments provide root-zone soil moisture only within a few tens of m2, while electromagnetic signals from conventional remote-sensing instruments can only penetrate the first few centimeters below surface, though at larger spatial areas.In the last couple of years, stationary and roving neutron detectors have been used to sense the albedo component of cosmic-ray neutrons, which represents the average water content within 10—15 hectares and 10—50 cm depth. However, the application of these instruments is limited by inaccessible terrain and interfering local effects from roads. To overcome these limitations, we have pioneered first simulations and experiments of such sensors in the field of airborne geophysics. Theoretical investigations have shown that the footprint increases substantially with height above ground, while local effects smooth out throughout the whole area. Campaigns with neutron detectors mounted on a lightweight gyrocopter have been conducted over areas of various landuse types including agricultural fields, urban areas, forests, flood plains, and lakes. The neutron signal showed influence of soil moisture patterns in heights of up to 180 m above ground. We found correlation with ground-truthing data, using mobile cosmic-ray neutron sensors, local soil samples, TDR, and buried wireless soil moisture monitoring networks. The work opens the path towards further systematic assessment of airborne neutron sensing, which could become a valuable addition - or even an alternative - to conventional remote-sensing methods.

  8. Gray scale x-ray mask

    DOEpatents

    Morales, Alfredo M [Livermore, CA; Gonzales, Marcela [Seattle, WA

    2006-03-07

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  9. Measured neutron and gamma spectra from californium-252 in a tissue-equivalent medium.

    PubMed

    Elson, H R; Stupar, T A; Shapiro, A; Kereiakes, J G

    1979-01-01

    A method of experimentally obtaining both neutron and gamma-ray spectra in a scattering medium is described. The method utilizes a liquid-organic scintillator (NE-213) coupled with a pulse-shape discrimination circuit. This allows the separation of the neutron-induced pulse-height data from the gamma-ray pulse-height data. Using mathematical unfolding techniques, the two sets of pulse-height data were transformed to obtain the neutron and gamma-ray energy spectra. A small spherical detector was designed and constructed to reduce the errors incurred by attempting spectral measurements in a scattering medium. Demonstration of the utility of the system to obtain the neutron and gamma-ray spectra in a scattering medium was performed by characterizing the neutron and gamma-ray spectra at various sites about a 3.7-microgram (1.5 cm active length) californium-252 source in a tissue-equivalent medium.

  10. Human brain mass: similar body composition associations as observed across mammals.

    PubMed

    Heymsfield, Steven B; Müller, Manfred J; Bosy-Westphal, Anja; Thomas, Diana; Shen, Wei

    2012-01-01

    A classic association is the link between brain mass and body mass across mammals that has now been shown to derive from fat-free mass (FFM) and not fat mass (FM). This study aimed to establish for the first time the associations between human brain mass and body composition and to compare these relations with those established for liver as a reference organ. Subjects were 112 men and 148 women who had brain and liver mass measured by magnetic resonance imaging with FM and FFM measured by dual-energy X-ray absorptiometry. Brain mass scaled to height (H) with powers of ≤0.6 in men and women; liver mass and FFM both scaled similarly as H(~2) . The fraction of FFM as brain thus scaled inversely to height (P < 0.001) while liver mass/FFM was independent of height. After controlling for age, brain, and liver mass were associated with FFM while liver was additionally associated with FM (all models P ≤ 0.01). After controlling for age and sex, FFM accounted for ~5% of the variance in brain mass while levels were substantially higher for liver mass (~60%). Brain mass was significantly larger (P < 0.001) in men than in women, even after controlling for age and FFM. As across mammals, human brain mass associates significantly, although weakly, with FFM and not FM; the fraction of FFM as brain relates inversely to height; brain differs in these relations from liver, another small high metabolic rate organ; and the sexual dimorphism in brain mass persists even after adjusting for age and FFM. Copyright © 2012 Wiley Periodicals, Inc.

  11. First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz

    2017-03-01

    Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.

  12. Pulse-height defect due to electron interaction in dead layers of Ge/Li/ gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Larsen, R. N.; Strauss, M. G.

    1969-01-01

    Study shows the pulse-height degradation of gamma ray spectra in germanium/lithium detectors to be due to electron interaction in the dead layers that exist in all semiconductor detectors. A pulse shape discrimination technique identifies and eliminates these defective pulses.

  13. Surface roughening and scaling behavior of vacuum-deposited SnCl{sub 2}Pc organic thin films on different substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obaidulla, Sk. Md.; Giri, P. K., E-mail: giri@iitg.ernet.in; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039

    2015-11-30

    The evolution of surface morphology and scaling behavior of tin (IV) phthalocyanine dichloride (SnCl{sub 2}Pc) thin films grown on Si(100) and glass substrates have been studied using atomic force microscopy (AFM) and height-height correlation function analysis. X-ray diffraction measurement confirms the crystalline nature of the SnCl{sub 2}Pc thin film on glass substrate, while no crystallographic ordering is present for the film grown on Si substrate. The growth exponent β is found to be much larger for the film on glass substrate (0.48 ± 0.07) as compared to that on Si substrate (0.21 ± 0.08), which may be due to the high step-edge barrier, so-calledmore » Ehrlich-Schwöbel barrier, resulting in the upward dominant growth on glass substrate. From the 2D fast Fourier transform of AFM images and derived scaling exponents, we conclude that the surface evolution follows a mound like growth. These results imply the superiority of glass substrate over the Si substrate for the growth of device quality SnCl{sub 2}Pc thin film.« less

  14. X-Ray Source Heights in a Solar Flare: Thick-Target Versus Thermal Conduction Front Heating

    NASA Technical Reports Server (NTRS)

    Reep, J. W.; Bradshaw, S. J.; Holman, G. D.

    2016-01-01

    Observations of solar flares with RHESSI have shown X-ray sources traveling along flaring loops, from the corona down to the chromosphere and back up. The 2002 November 28 C1.1 flare, first observed with RHESSI by Sui et al. and quantitatively analyzed by O'Flannagain et al., very clearly shows this behavior. By employing numerical experiments, we use these observations of X-ray source height motions as a constraint to distinguish between heating due to a non-thermal electron beam and in situ energy deposition in the corona. We find that both heating scenarios can reproduce the observed light curves, but our results favor non-thermal heating. In situ heating is inconsistent with the observed X-ray source morphology and always gives a height dispersion with photon energy opposite to what is observed.

  15. An Einstein survey of the 1 keV soft X-ray background in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Stanford, John M.; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed 56 Einstein Observatory Imaging Proportional Counter (IPC) observations within +/- 3 deg of the Galactic plane in order to determine the low-latitude soft X-ray background flux in the 0.56-1.73 keV band. Any detected X-ray point source which fell within our regions of study was removed from the image, enabling us to present maps of the background flux as a function of Galactic latitude along 18 meridians. These maps reveal considerable structure to the background in the Galactic plane on an angular scale of approximately 1 deg. Our results are compared with those of an earlier study of the 1 keV X-ray background along l = 25 deg by Kahn & Caillault. The double-peaked structure they found is not discernible in our results, possibly because of the presence of solar backscattered flux in their data. A model which takes into account contributions to the background by extragalactic and stellar sources, the distribution of both atomic and molecular absorbing material with the Galaxy, the energy dependence of the cross section for absorption of X-rays, and the energy dependence of the detector has been constructed and fitted to these new data to derive constraints on the scale height, temperature, and volume emissivity of the unaccounted-for X-ray-emitting material. The results of this model along l = 25 deg are roughly similar to those of the model of Kahn & Caillault along the same meridian.

  16. Characterization of x-ray framing cameras for the National Ignition Facility using single photon pulse height analysis.

    PubMed

    Holder, J P; Benedetti, L R; Bradley, D K

    2016-11-01

    Single hit pulse height analysis is applied to National Ignition Facility x-ray framing cameras to quantify gain and gain variation in a single micro-channel plate-based instrument. This method allows the separation of gain from detectability in these photon-detecting devices. While pulse heights measured by standard-DC calibration methods follow the expected exponential distribution at the limit of a compound-Poisson process, gain-gated pulse heights follow a more complex distribution that may be approximated as a weighted sum of a few exponentials. We can reproduce this behavior with a simple statistical-sampling model.

  17. [Study on Intelligent Automatic Tracking Radiation Protection Curtain].

    PubMed

    Zhao, Longyang; Han, Jindong; Ou, Minjian; Chen, Jinlong

    2015-09-01

    In order to overcome the shortcomings of traditional X-ray inspection taking passive protection mode, this paper combines the automatic control technology, puts forward a kind of active protection X-ray equipment. The device of automatic detection of patients receiving X-ray irradiation part, intelligent adjustment in patients and shooting device between automatic tracking radiation protection device height. The device has the advantages of automatic adjustment, anti-radiation device, reduce the height of non-irradiated area X-ray radiation and improve the work efficiency. Testing by the professional organization, the device can decrease more than 90% of X-ray dose for patients with non-irradiated area.

  18. Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    1994-01-01

    The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.

  19. Implications for gravitational lensing and the dark matter content in clusters of galaxies from spatially resolved x-ray spectra

    NASA Technical Reports Server (NTRS)

    Loewenstein, M.

    1994-01-01

    A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.

  20. Moment expansion for ionospheric range error

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A.; Reich, R.; Parker, H.; Berbert, J.

    1972-01-01

    On a plane earth, the ionospheric or tropospheric range error depends only on the total refractivity content or zeroth moment of the refracting layer and the elevation angle. On a spherical earth, however, the dependence is more complex; so for more accurate results it has been necessary to resort to complex ray-tracing calculations. A simple, high-accuracy alternative to the ray-tracing calculation is presented. By appropriate expansion of the angular dependence in the ray-tracing integral in a power series in height, an expression is obtained for the range error in terms of a simple function of elevation angle, E, at the expansion height and of the mth moment of the refractivity, N, distribution about the expansion height. The rapidity of convergence is heavily dependent on the choice of expansion height. For expansion heights in the neighborhood of the centroid of the layer (300-490 km), the expansion to N = 2 (three terms) gives results accurate to about 0.4% at E = 10 deg. As an analytic tool, the expansion affords some insight on the influence of layer shape on range errors in special problems.

  1. New Perspectives on the Dynamical State of Extraplanar Diffuse Ionized Gas Layers

    NASA Astrophysics Data System (ADS)

    Boettcher, Erin; Zweibel, Ellen; Gallagher, John S.; Benjamin, Robert A.

    2018-01-01

    Gaseous, disk-halo interfaces are an important boundary in the baryon cycle in galaxies like the Milky Way, and their structure, support, and kinematics carry clues about the star formation feedback and accretion processes that produce them. Due to their unexpectedly large scale heights, which are often several times greater than their thermal scale heights, it is unclear whether they are in dynamical equilibrium, or are evidence of a galactic fountain, wind, or accretion flow. In the nearby, edge-on disk galaxies NGC 891 and NGC 5775, we test a dynamical equilibrium model of the extraplanar diffuse ionized gas (eDIG) layer by quantifying the thermal, turbulent, magnetic field, and cosmic ray pressure gradients using optical emission-line spectroscopy from the SparsePak IFU at the WIYN Observatory and the Robert Stobie Spectrograph on the Southern African Large Telescope and radio continuum observations from Continuum Halos in Nearby Galaxies - an EVLA Survey. The vertical pressure gradients are too shallow to produce the observed scale heights at the moderate galactocentric radii where the gas is believed to be found (R < 8 kpc). For the low-inclination galaxy M83, we develop a Markov Chain Monte Carlo method to decompose the [NII]λλ6548, 6583, Hα, and [SII]λλ6717, 6731 emission lines into multiple components, and identify eDIG emission based on its rotational velocity lag and elevated [NII]/Hα and [SII]/Hα line ratios. The median, line-of-sight velocity dispersion of the eDIG layer, σ = 96 km/s, greatly exceeds the horizontal velocity dispersions observed in edge-on eDIG layers (σ = 20 - 60 km/s), presenting the possibility that these layers have anisotropic random motions. The role of an anisotropic velocity dispersion in producing eDIG scale heights, as well as the absence of evidence for large-scale inflow or outflow, motivates further study of eDIG dynamics in face-on galaxies with a range of star formation rates. This work was supported by the NSF GRFP under Grant No. DGE-1256259.

  2. A physical model of the infrared-to-radio correlation in galaxies

    NASA Technical Reports Server (NTRS)

    Helou, G.; Bicay, M. D.

    1993-01-01

    We explore the implications of the IR-radio correlation in star-forming galaxies, using a simple physical model constrained by the constant global ratio q of IR to radio emission and by the radial falloff of this ratio in disks of galaxies. The modeling takes into account the diffusion, radiative decay, and escape of cosmic-ray electrons responsible for the synchrotron emission, and the full range of optical depths to dust-heating photons. We introduce two assumptions: that dust-heating photons and radio-emitting cosmic-ray electrons are created in constant proportion to each other as part of the star formation activity, and that gas and magnetic field are well coupled locally, expressed as B proportional to n exp beta, with beta between 1/3 and 2/3. We conclude that disk galaxies would maintain the observed constant ratio q under these assumptions if the disk scale height h(0) and the escape scale length l(esc) for cosmic-ray electrons followed a relation of the form l(esc) proportional to h(0) exp 1/2; the IR-to-radio ratio will then depend very weakly on interstellar density, and, therefore, on magnetic field strength or mean optical depth.

  3. Influence of race, acculturation, and socioeconomic status on tendency toward overweight in Asian-American and Mexican-American early adolescent females.

    PubMed

    Schaefer, Sara E; Salazar, Melissa; Bruhn, Christine; Saviano, Dennis; Boushey, Carol; Van Loan, Marta D

    2009-06-01

    Health disparities in chronic disease prevalence exist in the United States among racial/ethnic groups. This study explores relationships between physical, socioeconomic, and cultural characteristics of a multi-ethnic sample of early adolescent females which may assist health educators in designing programs targeting these groups. Mexican-American and Asian-American sixth grade females (n = 144) were enrolled in Adequate Calcium Today. Physical measurements included weight, height, and BMI. Dual energy X-ray absorptiometry determined percent body fat (%BF). Socioeconomic status was determined by enrollment in free or reduced meal program (FRMP). An adapted Acculturation Rating Scale for Mexican-Americans-II (ARSMA-II) measured acculturation. Mexican-Americans had greater height, BMI, %BF, and a greater tendency toward overweight (P < 0.01) than Asian-American. Asian-Americans were more acculturated than MA (P < 0.005), attributed to a lower ethnic orientation scale score. Within Asian-Americans, %BF was higher among FRMP participants than non-participants (P < 0.05). Income and acculturation may affect tendency toward chronic disease.

  4. Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2018-02-01

    We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. The algorithm is found to out-perform current leading x-ray inversion algorithms when the error due to counting statistics is high.

  5. Compensation of X-ray mirror shape-errors using refractive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawhney, Kawal, E-mail: Kawal.sawhney@diamond.ac.uk; Laundy, David; Pape, Ian

    2016-08-01

    Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the sizemore » of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.« less

  6. Status of the Topside Vary-Chap Ionospheric Model

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Nsumei, Patrick; Huang, Xueqin; Bilitza, Dieter

    Status of the Topside Vary-Chap Ionospheric Model The general alpha-Chapman function for a multi-constituent gas which includes a continuously varying scale height and was therefore dubbed the Vary-Chap function, can present the topside electron density profiles in analytical form. The Vary-Chap profile is defined by the scale height function H(h) and the height and density of the F2 layer peak. By expressing 80,000 ISIS-2 measured topside density profiles as Vary-Chap functions we derived 80,000 scale height functions, which form the basis for the topside density profile modeling. The normalized scale height profiles Hn = H(h)/Hm were grouped according to season, MLAT, and MLT for each 50 km height bin from 200 km to 1400 km, and the median, lower, and upper quartiles for each bin were calculated. Hm is the scale height at the F2 layer peak. The resulting Hn functions are modeled in terms of hyperbolic tangent functions using 5 parameters that are determined by multivariate least squares, including the transition height hT where the scale height gradient has a maximum. These normalized scale height functions, representing the model of the topside electron density profiles from hmF2 to 1,400 km altitude, are independent of hmF2 and NmF2 and can therefore be directly used for the topside Ne profile in IRI. Similarly, this model can extend measured bottomside profiles to the topside, replacing the simple alpha-Chapman function with constant scale height that is currently used for construction of the topside profile in the Digisondes / ARTIST of the Global Ionospheric Radio Observatory (GIRO). It turns out that Hm(top) calculated from the topside profiles is generally several times larger than Hm(bot) derived from the bottomside profiles. This follows necessarily from the difference in the definition of the scale height functions for the topside and bottomside profiles. The diurnal variations of the ratio Hm(top) / Hm(bot) has been determined for different latitudes which makes it now possible to specify the topside profile for any given bottomside profile.

  7. Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data

    DOE PAGES

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2018-02-27

    We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. Finally, the algorithm is found to out-perform current leading x-ray inversion algorithms when the error duemore » to counting statistics is high.« less

  8. Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    We measured Electron Energy Distribution Functions (EEDFs) from below 200 eV to over 8 keV and spanning five orders-of-magnitude in intensity, produced in a low-power, RF-heated, tandem mirror discharge in the PFRC-II apparatus. The EEDF was obtained from the x-ray energy distribution function (XEDF) using a novel Poisson-regularized spectrum inversion algorithm applied to pulse-height spectra that included both Bremsstrahlung and line emissions. The XEDF was measured using a specially calibrated Amptek Silicon Drift Detector (SDD) pulse-height system with 125 eV FWHM at 5.9 keV. Finally, the algorithm is found to out-perform current leading x-ray inversion algorithms when the error duemore » to counting statistics is high.« less

  9. Diffuse galactic gamma rays at intermediate and high latitudes. I. Constraints on the ISM properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cholis, Ilias; Tavakoli, Maryam; Evoli, Carmelo

    2012-05-01

    We study the high latitude (|b| > 10°) diffuse γ-ray emission in the Galaxy in light of the recently published data from the Fermi collaboration at energies between 100 MeV and 100 GeV. The unprecedented accuracy in these measurements allows to probe and constrain the properties of sources and propagation of cosmic rays (CRs) in the Galaxy, as well as confirming conventional assumptions made on the interstellar medium (ISM). Using the publicly available DRAGON code, that has been shown to reproduce local measurements of CRs, we study assumptions made in the literature on atomic (HI) and molecular hydrogen (H2) gasmore » distributions in the ISM, and non spatially uniform models of diffusion in the Galaxy. By performing a combined analysis of CR and γ-ray spectra, we derive constraints on the properties of the ISM gas distribution and the vertical scale height of galactic CR diffusion, which may have implications also on indirect Dark Matter detection. We also discuss some of the possible interpretations of the break at high rigidity in CR protons and helium spectra, recently observed by PAMELA and their impact on γ-rays.« less

  10. High-Mass X-ray Binaries in hard X- rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    We present a review of the latest results of the all-sky survey, performed with the INTEGRAL observatory. The deep exposure spent by INTEGRAL in the Galactic plane region, as well as for nearby galaxies allowed us to obtain a flux limited sample for High Mass X-ray Binaries in the Local Galactic Group and measure their physical properties, like a luminosity function, spatial density distribution, etc. Particularly, it was determined the most accurate up to date spatial density distribution of HMXBs in the Galaxy and its correlation with the star formation rate distribution. Based on the measured value of the vertical distribution of HMXBs (a scale-height h~85 pc) we also estimated a kinematical age of HMXBs. Properties of the population of HMXBs are explained in the framework of the population synthesis model. Based on this model we argue that a flaring activity of so-called supergiant fast X-ray transients (SFXTs), the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion. The resulted global characteristics of the HMXB population are used for predictions of sources number counts in sky surveys of future X-ray missions.

  11. Muon production height studies with the air shower experiment KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Büttner, C.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Link, K.; Ludwig, M.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Obenland, R.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schatz, G.; Schieler, H.; Schröder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2011-01-01

    A large area (128 m2) muon tracking detector, located within the KASCADE experiment, has been built with the aim to identify muons (Eμ > 0.8 GeV) and their angular correlation in extensive air showers by track measurements under 18 r.l. shielding. Orientation of the muon track with respect to the shower axis is expressed in terms of the radial and tangential angles, which are the basic tools for all muon investigations with the tracking detector. By means of triangulation the muon production height is determined. Distributions of measured production heights are compared to CORSIKA shower simulations. Analysis of these heights reveals a transition from light to heavy cosmic ray primary particles with increasing shower energy in the energy region of the 'Knee' of the cosmic ray spectrum

  12. Cosmic ray electrons, positrons and the synchrotron emission of the Galaxy: consistent analysis and implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, Giuseppe Di; Evoli, Carmelo; Gaggero, Daniele

    2013-03-01

    A multichannel analysis of cosmic ray electron and positron spectra and of the diffuse synchrotron emission of the Galaxy is performed by using the DRAGON code. This study is aimed at probing the interstellar electron source spectrum down to E ∼< 1GeV and at constraining several propagation parameters. We find that above 4GeV the e{sup −} source spectrum is compatible with a power-law of index ∼ 2.5. Below 4GeV instead it must be significantly suppressed and the total lepton spectrum is dominated by secondary particles. The positron spectrum and fraction measured below a few GeV are consistently reproduced only withinmore » low reacceleration models. We also constrain the scale-height z{sub t} of the cosmic-ray distribution using three independent (and, in two cases, original) arguments, showing that values of z{sub t} ∼< 2kpc are excluded. This result may have strong implications for particle dark matter searches.« less

  13. Scaling of adult regional body mass and body composition as a whole to height: Relevance to body shape and body mass index.

    PubMed

    Schuna, John M; Peterson, Courtney M; Thomas, Diana M; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B

    2015-01-01

    Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht(2) ), but does regional body mass and body composition as a whole also scale as Ht(2) ? This question is relevant to a wide range of biological topics, including interpretation of body mass index (BMI). Dual-energy X-ray absorptiometry (DXA) was used to quantify regional body mass [head (MH), trunk, arms, and legs] and whole-body composition [fat, lean soft tissue (LST), and bone mineral content (BMC)] in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n = 17,126) and Korean NHANES (n = 8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Exploratory analyses revealed a consistent scaling pattern across men and women of the four population groups: regional mass powers, head (∼0.8-1) < arms and trunk (∼1.8-2.3) < legs (∼2.3-2.6); and body composition, LST (∼2.0-2.3) < BMC (∼2.1-2.4). Small sex and population differences in scaling powers were also observed. As body mass scaled uniformly across the eight sex and population groups as Ht(∼2) , tall and short subjects differed in body shape (e.g., MH/MB ∝ Ht(-∼1) ) and composition. Adult human body shape and relative composition are a function of body size as represented by stature, a finding that reveals a previously unrecognized phenotypic heterogeneity as defined by BMI. These observations provide new pathways for exploring mechanisms governing the interrelations between adult stature, body morphology, biomechanics, and metabolism. © 2014 Wiley Periodicals, Inc.

  14. Scaling of Adult Regional Body Mass and Body Composition as a Whole to Height: Relevance to Body Shape and Body Mass Index

    PubMed Central

    Schuna, John M.; Peterson, Courtney M.; Thomas, Diana M.; Heo, Moonseong; Hong, Sangmo; Choi, Woong; Heymsfield, Steven B.

    2015-01-01

    Objectives Adult body mass (MB) empirically scales as height (Ht) squared (MB ∝ Ht2), but does regional body mass and body composition as a whole also scale as Ht2? This question is relevant to a wide range of biological topics, including interpretation of body mass index. Methods Dual-energy x-ray absorptiometry (DXA) was used to quantify regional body mass (head [MH], trunk, arms, legs) and whole-body composition (fat, lean soft tissue [LST], and bone mineral content [BMC]) in non-Hispanic (NH) white, NH black, Mexican American, and Korean adults participating in the National Health and Nutrition Examination Survey (NHANES; n=17,126) and Korean NHANES (n=8,942). Regression models were developed to establish Ht scaling powers for each measured component with adjustments for age and adiposity. Results Exploratory analyses revealed a consistent scaling pattern across men and women of the four race/ethnic groups: regional mass powers, head (~0.8-1) < arms and trunk (~1.8-2.3) < legs (~2.3-2.6); and body composition, LST (~2.0-2.3) < BMC (~2.1-2.4). Small sex and race/ethnic differences in scaling powers were also observed. As body mass scaled uniformly across the eight sex and race/ethnic groups as Ht~2, tall and short subjects differed in body shape (e.g., Mh/Mb ∝ Ht−~1) and composition. Conclusions Adult human body shape and relative composition are a function of body size as defined by stature, a finding that has important implications in multiple areas of biological research. PMID:25381999

  15. Investigating ChaMPlane X-Ray Sources in the Galactic Bulge with Magellan LDSS2 Spectra

    NASA Astrophysics Data System (ADS)

    Koenig, Xavier; Grindlay, Jonathan E.; van den Berg, Maureen; Laycock, Silas; Zhao, Ping; Hong, JaeSub; Schlegel, Eric M.

    2008-09-01

    We have carried out optical and X-ray spectral analyses on a sample of 136 candidate optical counterparts of X-ray sources found in five Galactic bulge fields included in our Chandra Multiwavelength Plane Survey. We use a combination of optical spectral fitting and quantile X-ray analysis to obtain the hydrogen column density toward each object, and a three-dimensional dust model of the Galaxy to estimate the most probable distance in each case. We present the discovery of a population of stellar coronal emission sources, likely consisting of pre-main-sequence, young main-sequence, and main-sequence stars, as well as a component of active binaries of RS CVn or BY Dra type. We identify one candidate quiescent low-mass X-ray binary with a subgiant companion; we note that this object may also be an RS CVn system. We report the discovery of three new X-ray-detected cataclysmic variables (CVs) in the direction of the Galactic center (at distances lesssim2 kpc). This number is in excess of predictions made with a simple CV model based on a local CV space density of lesssim10-5 pc-3, and a scale height ~200 pc. We discuss several possible reasons for this observed excess.

  16. Self-organized nano-structuring of CoO islands on Fe(001)

    NASA Astrophysics Data System (ADS)

    Brambilla, A.; Picone, A.; Giannotti, D.; Riva, M.; Bussetti, G.; Berti, G.; Calloni, A.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-01-01

    The realization of nanometer-scale structures through bottom-up strategies can be accomplished by exploiting a buried network of dislocations. We show that, by following appropriate growth steps in ultra-high vacuum molecular beam epitaxy, it is possible to grow nano-structured films of CoO coupled to Fe(001) substrates, with tunable sizes (both the lateral size and the maximum height scale linearly with coverage). The growth mode is discussed in terms of the evolution of surface morphology and chemical interactions as a function of the CoO thickness. Scanning tunneling microscopy measurements reveal that square mounds of CoO with lateral dimensions of less than 25 nm and heights below 10 atomic layers are obtained by growing few-nanometers-thick CoO films on a pre-oxidized Fe(001) surface covered by an ultra-thin Co buffer layer. In the early stages of growth, a network of misfit dislocations develops, which works as a template for the CoO nano-structuring. From a chemical point of view, at variance with typical CoO/Fe interfaces, neither Fe segregation at the surface nor Fe oxidation at the buried interface are observed, as seen by Auger electron spectroscopy and X-ray Photoemission Spectroscopy, respectively.

  17. Study of the post-flare loops on 29 July 1973. I - Dynamics of the X-ray loops

    NASA Technical Reports Server (NTRS)

    Nolte, J. T.; Gerassimenko, M.; Krieger, A. S.; Petrasso, R. D.; Svestka, Z.

    1979-01-01

    We derive an empirical model of the X-ray emitting post-flare loops observed during the decay phase of the 29 July 1973 flare. We find that the loops are elliptical, with the brightest emitting region at the tops. We determine the height, velocity of growth, and ratio of height to width of the loops at times from 3 to 12 hr after the flare onset.

  18. Disks around merging binary black holes: From GW150914 to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.

    2018-02-01

    We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.

  19. Pulse height tests of a large diameter fast LaBr₃:Ce scintillation detector.

    PubMed

    Naqvi, A A; Khiari, F Z; Maslehuddin, M; Gondal, M A; Al-Amoudi, O S B; Ukashat, M S; Ilyas, A M; Liadi, F A; Isab, A A; Khateeb-ur Rehman; Raashid, M; Dastageer, M A

    2015-10-01

    The pulse height response of a large diameter fast 100 mm × 100 mm LaBr3:Ce detector was measured for 0.1-10 MeV gamma-rays. The detector has a claimed time resolution of 608 ps for 511 keV gamma rays, but has relatively poor energy resolution due to the characteristics of its fast photomultiplier. The detector pulse height response was measured for gamma rays from cobalt, cesium, and bismuth radioisotope sources as well as prompt gamma rays from thermal neutron capture in water samples contaminated with mercury (3.1 wt%), boron (2.5 wt%), cadmium (0.25 wt%), chromium (52 wt%), and nickel (22 wt%) compounds. The energy resolution of the detector was determined from full width at half maximum (FWHM) of element-characteristic gamma ray peaks in the pulse height spectrum associated with the element present in the contaminated water sample. The measured energy resolution of the 100 mm × 100 mm detector varies from 12.7±0.2% to 1.9±0.1% for 0.1 to 10 MeV gamma rays, respectively. The graph showing the energy resolution ΔE/E(%) versus 1/√Eγ was fitted with a linear function to study the detector light collection from the slope of the curve. The slope of the present 100 mm × 100 mm detector is almost twice as large as the slope of a similar curve of previously published data for a 89 mm × 203 mm LaBr3:Ce detector. This indicates almost two times poorer light collection in the 100 mm × 100 mm detector as compared to the other detector. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Handheld CZT radiation detector

    DOEpatents

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  1. Analysis of the temporal-spatial distribution of ionosphere scale height based on COSMIC occultation data

    NASA Astrophysics Data System (ADS)

    Ma, Xin-Xin; Lin, Zhan; Jin, Hong-Lin; Chen, Hua-Ran; Jiao, Li-Guo

    2017-11-01

    In this study, the distribution characteristics of scale height at various solar activity levels were statistically analyzed using the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation data for 2007-2013. The results show that: (1) in the mid-high latitude region, the daytime (06-17LT) scale height exhibits annual variations in the form of a single peak structure with the crest appearing in summer. At the high latitude region, an annual variation is also observed for nighttime (18-05LT) scale height; (2) changes in the spatial distribution of the scale height occur. The crests are deflected towards the north during daytime (12-14LT) at a geomagnetic longitude of 60°W-180°W, and they are distributed roughly along the geomagnetic equator at 60°W-180°E. In the approximate region of 120°W-150°E and 50°S-80°S, the scale height values are significantly higher than those in other mid-latitude areas. This region enlarges with increased solar activity, and shows an approximately symmetric distribution about 0° geomagnetic longitude. Nighttime (00-02LT) scale height values in the high-latitude region are larger than those in the low-mid latitude region. These results could serve as reference for the study of ionosphere distribution and construction of the corresponding profile model.

  2. Ionospheric scale height from the refraction of satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.; Titheridge, J. E.

    1972-01-01

    Accurate observations of the elevation angle of arrival of 20 MHz signals from the polar orbiting satellite Beacon-B for a 20 month period have provided transmission ionograms which may be reduced to give Hp the scale height at the peak of the ionosphere. Noon seasonal averages of Hp are 1.35 (in winter) to 1.55 (in summer) times greater than the scale height obtained from bottom-side ionograms. A comparison of scale height at the peak with routine measurements of total content and peak electron density indicates that the O+/H+ transition level is above 1000 km during the day but comes down to about 630 km on winter nights. A predawn peak in the overall scale height is caused by a lowering of the layer to a region of increased recombination and is magnified in winter by low O+/H+ transition levels.

  3. Thin and thick cloud top height retrieval algorithm with the Infrared Camera and LIDAR of the JEM-EUSO Space Mission

    NASA Astrophysics Data System (ADS)

    Sáez-Cano, G.; Morales de los Ríos, J. A.; del Peral, L.; Neronov, A.; Wada, S.; Rodríguez Frías, M. D.

    2015-03-01

    The origin of cosmic rays have remained a mistery for more than a century. JEM-EUSO is a pioneer space-based telescope that will be located at the International Space Station (ISS) and its aim is to detect Ultra High Energy Cosmic Rays (UHECR) and Extremely High Energy Cosmic Rays (EHECR) by observing the atmosphere. Unlike ground-based telescopes, JEM-EUSO will observe from upwards, and therefore, for a properly UHECR reconstruction under cloudy conditions, a key element of JEM-EUSO is an Atmospheric Monitoring System (AMS). This AMS consists of a space qualified bi-spectral Infrared Camera, that will provide the cloud coverage and cloud top height in the JEM-EUSO Field of View (FoV) and a LIDAR, that will measure the atmospheric optical depth in the direction it has been shot. In this paper we will explain the effects of clouds for the determination of the UHECR arrival direction. Moreover, since the cloud top height retrieval is crucial to analyze the UHECR and EHECR events under cloudy conditions, the retrieval algorithm that fulfills the technical requierements of the Infrared Camera of JEM-EUSO to reconstruct the cloud top height is presently reported.

  4. Fieldable computer system for determining gamma-ray pulse-height distributions, flux spectra, and dose rates from Little Boy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.

    1984-01-01

    Our system consists of a LeCroy 3500 data acquisition system with a built-in CAMAC crate and eight bismuth-germanate detectors 7.62 cm in diameter and 7.62 cm long. Gamma-ray pulse-height distributions are acquired simultaneously for up to eight positions. The system was very carefully calibrated and characterized from 0.1 to 8.3 MeV using gamma-ray spectra from a variety of radioactive sources. By fitting the pulse-height distributions from the sources with a function containing 17 parameters, we determined theoretical repsonse functions. We use these response functions to unfold the distributions to obtain flux spectra. A flux-to-dose-rate conversion curve based on the workmore » of Dimbylow and Francis is then used to obtain dose rates. Direct use of measured spectra and flux-to-dose-rate curves to obtain dose rates avoids the errors that can arise from spectrum dependence in simple gamma-ray dosimeter instruments. We present some gamma-ray doses for the Little Boy assembly operated at low power. These results can be used to determine the exposures of the Hiroshima survivors and thus aid in the establishment of radation exposure limits for the nuclear industry.« less

  5. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Brendan T.; Oleksak, Richard P.; Thevuthasan, Suntharampillai

    A method to modulate the Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. The interfacial chemistries that modulate barrier heights for the Pt/a-IGZO system were investigated using in-situ X-ray photoelectron spectroscopy. A significant reduction of indium, from In3+ to In0, occurs during deposition of Pt on to the a-IGZO surface in ultra-high vacuum. Post-annealing and controlling the background ambient O2 pressure allows tuning the degree of indium reduction and the corresponding Schottky barrier height between 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries atmore » Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metalsemiconductor field-effect transistors.« less

  6. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt–Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Brendan T.; Oleksak, Richard P.; Thevuthasan, Suntharampillai

    A method to modulate the Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. The interfacial chemistries that modulate barrier heights for the Pt/a-IGZO system were investigated using in-situ X-ray photoelectron spectroscopy. A significant reduction of indium, from In 3+ to In 0, occurs during deposition of Pt on to the a-IGZO surface in ultra-high vacuum. Post-annealing and controlling the background ambient O 2 pressure allows tuning the degree of indium reduction and the corresponding Schottky barrier height between 0.17 to 0.77 eV. Understanding the detailedmore » interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metalsemiconductor field-effect transistors.« less

  7. Observation of gravity waves during the extreme tornado outbreak of 3 April 1974

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Phan, T.; Smith, R. E.

    1978-01-01

    A continuous wave-spectrum high-frequency radiowave Doppler sounder array was used to observe upper-atmospheric disturbances during an extreme tornado outbreak. The observations indicated that gravity waves with two harmonic wave periods were detected at the F-region ionospheric height. Using a group ray path computational technique, the observed gravity waves were traced in order to locate potential sources. The signals were apparently excited 1-3 hours before tornado touchdown. Reverse ray tracing indicated that the wave source was located at the aurora zone with a Kp index of 6 at the time of wave excitation. The summation of the 24-hour Kp index for the day was 36. The results agree with existing theories (Testud, 1970; Titheridge, 1971; Kato, 1976) for the excitation of large-scale traveling ionospheric disturbances associated with geomagnetic activity in the aurora zone.

  8. GBT CHANG-ES: Enhancing Radio Halos in Edge-on Galaxies Through Short-Spacing Corrections

    NASA Astrophysics Data System (ADS)

    Trent Braun, Timothy; Kepley, Amanda; Rand, Richard J.; Mason, Brian Scott; CHANG-ES

    2018-01-01

    We present L- and C-band continuum Stokes I data from the Green Bank Telescope (GBT) of 35 edge-on spiral galaxies that are part of the Continuum Halos in Nearby Galaxies, an EVLA Survey (CHANG-ES). CHANG-ES is an Expanded Very Large Array (EVLA) large program to measure radio continuum emission from the halos of 35 edge-on spiral galaxies in order to address a wide variety of science goals, including constraining the structure of magnetic fields, understanding the origins of radio halos, and probing both cosmic ray transport and cosmic ray driven winds. These goals can be reached by studying radio halo scale heights, spectral index variations with height, and the distribution of intensity and position angle of polarized emission. In particular, we are interested in modeling non-thermal presssure gradients in the gaseous halos of nearby galaxies to predict how they contribute to the decrease in the rotation of extraplanar gas with increasing height off of the galactic midplanes (lagging halos). Ultimately, the study of lagging halos will help us probe the efficacy of gas cycling between the disk and the halo in nearby galaxies. Crucial to this and the rest of the CHANG-ES analysis is the combination of the VLA data (B,C,D configurations in L-band and C,D configurations in C-band) with the GBT data in order to fill in the missing short-spacings in the u-v plane, which increases our sensitivity to large-scale emission and allows us to recover the total flux density. We present preliminary results from two methods of combining single-dish and interferometic data, namely the use of GBT data cubes as a model for the CASA task tclean and combining the Fourier transforms of the images as weighted sums in the u-v plane (feathering). Lastly, we detail our new data reduction pipeline for our wideband GBT continuum data, with an emphasis on the application of a least-squares basket-weaving technique used to remove striping image artifacts that notoriously plague single-dish maps.

  9. Mesoscopic Length Scale Controls the Rheology of Dense Suspensions

    NASA Astrophysics Data System (ADS)

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-01

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  10. Mesoscopic length scale controls the rheology of dense suspensions.

    PubMed

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-03

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  11. Integrating disparate lidar data at the national scale to assess the relationships between height above ground, land cover and ecoregions

    USGS Publications Warehouse

    Stoker, Jason M.; Cochrane, Mark A.; Roy, David P.

    2013-01-01

    With the acquisition of lidar data for over 30 percent of the US, it is now possible to assess the three-dimensional distribution of features at the national scale. This paper integrates over 350 billion lidar points from 28 disparate datasets into a national-scale database and evaluates if height above ground is an important variable in the context of other nationalscale layers, such as the US Geological Survey National Land Cover Database and the US Environmental Protection Agency ecoregions maps. While the results were not homoscedastic and the available data did not allow for a complete height census in any of the classes, it does appear that where lidar data were used, there were detectable differences in heights among many of these national classification schemes. This study supports the hypothesis that there were real, detectable differences in heights in certain national-scale classification schemes, despite height not being a variable used in any of the classification routines.

  12. Coronal temperatures of unusually active K-dwarf binary systems

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1994-01-01

    We report the results of a ROSAT pointed study of 4 BY Dra systems. Good quality pulse-height spectra are available from all four systems. Except for a required interstellar absorption component in HD 319139, the four systems have remarkably similar x-ray spectra; the two systems BD +22deg.669 and BD +23deg.635 look virtually identical in x rays. Analysis of the 4 x-ray spectra reveals that, in all cases, a single-temperature hot plasma (RS or Mewe) spectra is inadequate to fit the data, and two temperatures are required. We present examples of fitted pulse-height spectra and chi squared contours in kT(sub 1)-kT(sub 2) space.

  13. Study on the keV neutron capture reaction in 56Fe and 57Fe

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Lee, Manwoo; Kim, Guinyun; Ro, Tae-Ik; Kang, Yeong-Rok; Igashira, Masayuki; Katabuchi, Tatsuya

    2014-03-01

    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the -ray transmission coefficients described by -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results.

  14. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  15. Topside correction of IRI by global modeling of ionospheric scale height using COSMIC radio occultation data

    NASA Astrophysics Data System (ADS)

    Wu, M. J.; Guo, P.; Fu, N. F.; Xu, T. L.; Xu, X. S.; Jin, H. L.; Hu, X. G.

    2016-06-01

    The ionosphere scale height is one of the most significant ionospheric parameters, which contains information about the ion and electron temperatures and dynamics in upper ionosphere. In this paper, an empirical orthogonal function (EOF) analysis method is applied to process all the ionospheric radio occultations of GPS/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) from the year 2007 to 2011 to reconstruct a global ionospheric scale height model. This monthly medium model has spatial resolution of 5° in geomagnetic latitude (-87.5° ~ 87.5°) and temporal resolution of 2 h in local time. EOF analysis preserves the characteristics of scale height quite well in the geomagnetic latitudinal, anural, seasonal, and diurnal variations. In comparison with COSMIC measurements of the year of 2012, the reconstructed model indicates a reasonable accuracy. In order to improve the topside model of International Reference Ionosphere (IRI), we attempted to adopt the scale height model in the Bent topside model by applying a scale factor q as an additional constraint. With the factor q functioning in the exponent profile of topside ionosphere, the IRI scale height should be forced equal to the precise COSMIC measurements. In this way, the IRI topside profile can be improved to get closer to the realistic density profiles. Internal quality check of this approach is carried out by comparing COSMIC realistic measurements and IRI with or without correction, respectively. In general, the initial IRI model overestimates the topside electron density to some extent, and with the correction introduced by COSMIC scale height model, the deviation of vertical total electron content (VTEC) between them is reduced. Furthermore, independent validation with Global Ionospheric Maps VTEC implies a reasonable improvement in the IRI VTEC with the topside model correction.

  16. Individualized adjustments to reference phantom internal organ dosimetry—scaling factors given knowledge of patient external anatomy

    NASA Astrophysics Data System (ADS)

    Wayson, Michael B.; Bolch, Wesley E.

    2018-04-01

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.

  17. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient external anatomy.

    PubMed

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.

  18. Structure and Composition of Isolated Core-Shell (In ,Ga )N /GaN Rods Based on Nanofocus X-Ray Diffraction and Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Krause, Thilo; Hanke, Michael; Nicolai, Lars; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Kahnt, Maik; Falkenberg, Gerald; Schroer, Christian G.; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas

    2017-02-01

    Nanofocus x-ray diffraction is used to investigate the structure and local strain field of an isolated (In ,Ga )N /GaN core-shell microrod. Because the high spatial resolution of the x-ray beam is only 80 ×90 nm2, we are able to investigate several distinct volumes on one individual side facet. Here, we find a drastic increase in thickness of the outer GaN shell along the rod height. Additionally, we performed high-angle annular dark-field scanning-transmission-electron-microscopy measurements on several rods from the same sample showing that (In,Ga)N double-quantum-well and GaN barrier thicknesses also increase strongly along the height. Moreover, plastic relaxation is observed in the top part of the rod. Based on the experimentally obtained structural parameters, we simulate the strain-induced deformation using the finite-element method, which serves as the input for subsequent kinematic scattering simulations. The simulations reveal a significant increase of elastic in-plane relaxation along the rod height. However, at a certain height, the occurrence of plastic relaxation yields a decrease of the elastic strain. Because of the experimentally obtained structural input for the finite-element simulations, we can exclude unknown structural influences on the strain distribution, and we are able to translate the elastic relaxation into an indium concentration which increases by a factor of 4 from the bottom to the height where plastic relaxation occurs.

  19. Comparison of Circumference Measures and Height-Weight Tables With Dual-Energy X-Ray Absorptiometry Assessment of Body Composition in R.O.T.C. Cadets.

    PubMed

    Mitchell, Katherine M; Pritchett, Robert C; Gee, David L; Pritchett, Kelly L

    2017-09-01

    Mitchell, KM, Pritchett, RC, Gee, DL, and Pritchett, KL. Comparison of circumference measures and height-weight tables with dual-energy X-ray absorptiometry assessment of body composition in R.O.T.C. cadets. J Strength Cond Res 31(9): 2552-2556, 2017-Height-weight tables and circumference measures are used by the U.S. Army to predict body composition because they require little equipment or expertise. However, agreement between the Army's new 2002 circumference equation and an established laboratory technique has not been determined. The purpose of this study was to quantify agreement in body fat percentages between the Army's circumference measures (taping) and dual-energy X-ray absorptiometry (DXA); second to determine categorical agreement between height-weight tables and DXA. Male Reserve Officer Training Corps (R.O.T.C.) cadets (N = 23; 20.6 ± 1.6 years, 179.1 ± 6.6 cm; 81.4 ± 10.3 kg) were taped according to Army protocol to predict body fat. The % body fat prediction was compared with DXA through a Bland-Altman Plot with ±2-4% body fat established as a zone of agreement (ZOA). Thirteen out of 23 cadets fell outside the ZOA. No cadet was over the compliance threshold (20-22% fat) using the tape method, however, with DXA, 7 out of 23 cadets were noncompliant. Height-weight tables provided a moderate level of categorical agreement with DXA. The results depict poor agreement between taping and DXA, as taping generally underestimated % body fat. Compared with taping, height-weight tables were better able to identify excess fat weight.

  20. Reliable scar scoring system to assess photographs of burn patients.

    PubMed

    Mecott, Gabriel A; Finnerty, Celeste C; Herndon, David N; Al-Mousawi, Ahmed M; Branski, Ludwik K; Hegde, Sachin; Kraft, Robert; Williams, Felicia N; Maldonado, Susana A; Rivero, Haidy G; Rodriguez-Escobar, Noe; Jeschke, Marc G

    2015-12-01

    Several scar-scoring scales exist to clinically monitor burn scar development and maturation. Although scoring scars through direct clinical examination is ideal, scars must sometimes be scored from photographs. No scar scale currently exists for the latter purpose. We modified a previously described scar scale (Yeong et al., J Burn Care Rehabil 1997) and tested the reliability of this new scale in assessing burn scars from photographs. The new scale consisted of three parameters as follows: scar height, surface appearance, and color mismatch. Each parameter was assigned a score of 1 (best) to 4 (worst), generating a total score of 3-12. Five physicians with burns training scored 120 representative photographs using the original and modified scales. Reliability was analyzed using coefficient of agreement, Cronbach alpha, intraclass correlation coefficient, variance, and coefficient of variance. Analysis of variance was performed using the Kruskal-Wallis test. Color mismatch and scar height scores were validated by analyzing actual height and color differences. The intraclass correlation coefficient, the coefficient of agreement, and Cronbach alpha were higher for the modified scale than those of the original scale. The original scale produced more variance than that in the modified scale. Subanalysis demonstrated that, for all categories, the modified scale had greater correlation and reliability than the original scale. The correlation between color mismatch scores and actual color differences was 0.84 and between scar height scores and actual height was 0.81. The modified scar scale is a simple, reliable, and useful scale for evaluating photographs of burn patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Sun; Imada, S.; Moon, Y.-J.; Lee, Jin-Yi

    2014-01-01

    We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Fe XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.

  2. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    PubMed

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  3. The topside ionospheric effective scale heights (HT) derived with ROCSAT-1 and ground-based Ionosonde observations at equatorial and mid-latitude stations

    NASA Astrophysics Data System (ADS)

    Ram Sudarsanam, Tulasi; Su, Shin-Yi; Liu, C. H.; Reinisch, Bodo

    In this study, we propose the assimilation of topside in situ electron density data from ROCSAT-1 satellite along with the ionosonde measurements for accurate determination of topside iono-spheric effective scale heights (HT) using -Chapman function. The reconstructed topside elec-tron density profiles using these scale heights exhibit an excellent similitude with Jicamarca Incoherent Scatter Radar (ISR) profiles, and are much better representations than the existing methods of Reinisch-Huang method and/or the empirical IRI-2007 model. The main advan-tage with this method is that it allows the precise determination of the effective scale height (HT) and the topside electron density profiles at a dense network of ionosonde/digisonde sta-tions where no ISR facilities are available. The demonstration of the method is applied by investigating the diurnal, seasonal and solar activity variations of HT over the dip-equatorial station Jicamarca and the mid-latitude station Grahamstown. The diurnal variation of scale heights over Jicamarca consistently exhibits a morning time descent followed by a minimum around 0700-0800 LT and a pronounced maximum at noon during all the seasons of both high and moderate solar activity periods. Further, the scale heights exhibit a secondary maximum during the post-sunset hours of equinoctial and summer months, whereas the post-sunset peak is absent during the winter months. These typical features are further investigated using the topside ion properties obtained by ROCSAT-1 as well as SAMI2 model simulations. The re-sults consistently indicate that the diurnal variation of the effective scale height (HT) does not closely follow the plasma temperature variation and at equatorial latitudes is largely controlled by the vertical ExB drift.

  4. Small-scale open ocean currents have large effects on wind wave heights

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen

    2017-06-01

    Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>>2/>(g2>>2>) times the current spectrum, where >> is the spatially averaged significant wave height, >> is the energy-averaged period, and g is the gravity acceleration. This variability induced by currents has been largely overlooked in spite of its relevance for extreme wave heights and remote sensing.Plain Language SummaryWe show that the variations in currents at scales 10 to 100 km are the main source of variations in wave heights at the same scales. Our work uses a combination of realistic numerical models for currents and waves and data from the Jason-3 and SARAL/AltiKa satellites. This finding will be of interest for the investigation of extreme wave heights, remote sensing, and air-sea interactions. As an immediate application, the present results will help constrain the error budget of the up-coming satellite missions, in particular the Surface Water and Ocean Topography (SWOT) mission, and decide how the data will have to be processed to arrive at accurate sea level and wave measurements. It will also help in the analysis of wave measurements by the CFOSAT satellite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24229583','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24229583"><span>[Clinical analysis and genetic diagnosis of short-limb inherited short stature diseases in children].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Fang; Ma, Hong-Wei; Song, Ying; Hu, Man; Ren, Shuang; Yu, Ya-Fen; Zhao, Gui-Jie</p> <p>2013-11-01</p> <p>To analyze the clinical manifestations, bone X-ray findings and genetic analysis results of three short-limb inherited short stature diseases: achondroplasia (ACH), hypochondroplasia (HCH) and pseudoachondroplasia (PSACH). The clinical manifestations, bone X-ray findings, and genetic analysis results of 10 children with genetically confirmed short-limb inherited short stature diseases, including 4 cases of ACH 3 cases of HCH, and 3 cases of PSACH, were analyzed. The 10 patients had a mean body height of -3.69±1.79 SD, a mean sitting height/standing height ratio of 0.65±0.03, and a mean finger spacing/body height ratio of 0.93±0.04. Four ACH cases and 3 PSACH cases showed typical bone X-ray findings; one HCH case showed a smaller sciatic notch, and another HCH case showed no widening of interpedicular distance. G380R mutation in FGFR3 gene was detected in 3 of 4 ACH cases, and Y278C mutation in the other ACH case, N540K mutation in FGFR3 gene was detected in 3 HCH cases, and heterozygous mutations in COMP gene were detected in 3 PSACH cases. Children with ACH and PSACH have severer short stature and skeletal deformities than children with HCH, who have mild, atypical clinical manifestations. Bone X-ray and genetic analysis are helpful for the diagnosis and differential diagnosis of the three diseases. The mutational hotspots in two genes are involved in the three diseases, which is conducive to clinical genetic diagnosis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdSpR..60.1617Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdSpR..60.1617Y"><span>An investigation of ionospheric upper transition height variations at low and equatorial latitudes deduced from combined COSMIC and C/NOFS measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Changjun; Zhao, Biqiang; Zhu, Jie; Yue, Xinan; Wan, Weixing</p> <p>2017-10-01</p> <p>In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an α-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E × B) drift in the equatorial ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2985Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2985Z"><span>An investigation of ionospheric upper transition height variations at low and equatorial latitudes deduced from combined COSMIC and C/NOFS measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Biqiang</p> <p>2017-04-01</p> <p>In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an a-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E×B) drift in the equatorial ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...614A..54V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...614A..54V"><span>LOFAR observations of the quiet solar corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vocks, C.; Mann, G.; Breitling, F.; Bisi, M. M.; Dąbrowski, B.; Fallows, R.; Gallagher, P. T.; Krankowski, A.; Magdalenić, J.; Marqué, C.; Morosan, D.; Rucker, H.</p> <p>2018-06-01</p> <p>Context. The quiet solar corona emits meter-wave thermal bremsstrahlung. Coronal radio emission can only propagate above that radius, Rω, where the local plasma frequency equals the observing frequency. The radio interferometer LOw Frequency ARray (LOFAR) observes in its low band (10-90 MHz) solar radio emission originating from the middle and upper corona. Aims: We present the first solar aperture synthesis imaging observations in the low band of LOFAR in 12 frequencies each separated by 5 MHz. From each of these radio maps we infer Rω, and a scale height temperature, T. These results can be combined into coronal density and temperature profiles. Methods: We derived radial intensity profiles from the radio images. We focus on polar directions with simpler, radial magnetic field structure. Intensity profiles were modeled by ray-tracing simulations, following wave paths through the refractive solar corona, and including free-free emission and absorption. We fitted model profiles to observations with Rω and T as fitting parameters. Results: In the low corona, Rω < 1.5 solar radii, we find high scale height temperatures up to 2.2 × 106 K, much more than the brightness temperatures usually found there. But if all Rω values are combined into a density profile, this profile can be fitted by a hydrostatic model with the same temperature, thereby confirming this with two independent methods. The density profile deviates from the hydrostatic model above 1.5 solar radii, indicating the transition into the solar wind. Conclusions: These results demonstrate what information can be gleaned from solar low-frequency radio images. The scale height temperatures we find are not only higher than brightness temperatures, but also than temperatures derived from coronograph or extreme ultraviolet (EUV) data. Future observations will provide continuous frequency coverage. This continuous coverage eliminates the need for local hydrostatic density models in the data analysis and enables the analysis of more complex coronal structures such as those with closed magnetic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11837968','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11837968"><span>Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Le, Pichon Alexis; Garcés, Milton; Blanc, Elisabeth; Barthélémy, Maud; Drob, Doug P</p> <p>2002-01-01</p> <p>Infrasonic signals generated by daily supersonic Concorde flights between North America and Europe have been consistently recorded by an array of microbarographs in France. These signals are used to investigate the effects of atmospheric variability on long-range sound propagation. Statistical analysis of wave parameters shows seasonal and daily variations associated with changes in the wind structure of the atmosphere. The measurements are compared to the predictions obtained by tracing rays through realistic atmospheric models. Theoretical ray paths allow a consistent interpretation of the observed wave parameters. Variations in the reflection level, travel time, azimuth deviation and propagation range are explained by the source and propagation models. The angular deviation of a ray's azimuth direction, due to the seasonal and diurnal fluctuations of the transverse wind component, is found to be approximately 5 degrees from the initial launch direction. One application of the seasonal and diurnal variations of the observed phase parameters is the use of ground measurements to estimate fluctuations in the wind velocity at the reflection heights. The simulations point out that care must be taken when ascribing a phase velocity to a turning height. Ray path simulations which allow the correct computation of reflection heights are essential for accurate phase identifications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820010222','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820010222"><span>The distribution of free electrons in the inner galaxy from pulsar dispersion measures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harding, D. S.; Harding, A. K.</p> <p>1981-01-01</p> <p>The dispersion measures of a sample of 149 pulsars in the inner Galaxy (absolute value of l 50 deg) were statistically analyzed to deduce the large-scale distribution of free thermal electrons in this region. The dispersion measure distribution of these pulsars shows significant evidence for a decrease in the electron scale height from a local value greater than the pulsar scale height to a value less than the pulsar scale height at galactocentric radii inside of approximately 7 kpc. An increase in the electron density (to a value around .15/cu cm at 4 to 5 kpc) must accompany such a decrease in scale height. There is also evidence for a large-scale warp in the electron distribution below the b + 0 deg plane inside the Solar circle. A model is proposed for the electron distribution which incorporates these features and Monte Carlo generated dispersion measure distributions are presented for parameters which best reproduce the observed pulsar distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1360905-determination-copper-nanoparticle-size-distributions-total-reflection-ray-fluorescence-spectroscopy','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1360905-determination-copper-nanoparticle-size-distributions-total-reflection-ray-fluorescence-spectroscopy"><span>Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Singh, Andy; Luening, Katharina; Brennan, Sean; ...</p> <p>2017-01-01</p> <p>Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1360905','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1360905"><span>Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Singh, Andy; Luening, Katharina; Brennan, Sean</p> <p></p> <p>Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDR19006E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDR19006E"><span>Testing Momentum Enhancement of Ribbon Fin Based Propulsion Using a Robotic Model With an Adjustable Body</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>English, Ian; Curet, Oscar</p> <p>2016-11-01</p> <p>Lighthill and Blake's 1990 momentum enhancement theory suggests there is a multiplicative propulsive effect linked to the ratio of body and fin heights in Gymnotiform and Balistiform swimmers, which propel themselves using multi-rayed undulating fins while keeping their bodies mostly rigid. Proof of such a momentum enhancement could have a profound effect on unmanned underwater vehicle design and shed light on the evolutionary advantage to body-fin ratios found in nature, shown as optimal for momentum enhancement in Lighthill and Blake's theory. A robotic ribbon fin with twelve independent fin rays, elastic fin membrane, and a body of adjustable height was developed specifically to experimentally test momentum enhancement. Thrust tests for various body heights were conducted in a recirculating flow tank at different flow speeds and fin flapping frequencies. When comparing thrust at different body heights, flow speeds, and frequencies to a 'no-body' thrust test case at each frequency and flow speed, data indicate there is no momentum enhancement factor due to the presence of a body on top of an undulating fin. This suggests that if there is a benefit to a specific ratio between body and fin height, it is not due to momentum enhancement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22348207-spectroscopic-study-dark-lane-cool-loop-solar-limb-active-region-hinode-eis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22348207-spectroscopic-study-dark-lane-cool-loop-solar-limb-active-region-hinode-eis"><span>Spectroscopic study of a dark lane and a cool loop in a solar limb active region by Hinode/EIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lee, Kyoung-Sun; Imada, S.; Moon, Y.-J.</p> <p>2014-01-10</p> <p>We investigated a cool loop and a dark lane over a limb active region on 2007 March 14 using the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in the coronal spectral lines and is rooted on a bright point. We examined their electron densities, Doppler velocities, and nonthermal velocities as a function of distance from the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII, and Femore » XIV spectra. We also compared the observed density scale heights with the calculated scale heights from each peak formation temperatures of the spectral lines under the hydrostatic equilibrium. We noted that the observed density scale heights of the cool loop are consistent with the calculated heights, with the exception of one observed cooler temperature; we also found that the observed scale heights of the dark lane are much lower than their calculated scale heights. The nonthermal velocity in the cool loop slightly decreases along the loop, while nonthermal velocity in the dark lane sharply falls off with height. Such a decrease in the nonthermal velocity may be explained by wave damping near the solar surface or by turbulence due to magnetic reconnection near the bright point.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720010016','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720010016"><span>The POPOP4 library and codes for preparing secondary gamma-ray production cross sections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ford, W. E., III</p> <p>1972-01-01</p> <p>The POPOP4 code for converting secondary gamma ray yield data to multigroup secondary gamma ray production cross sections and the POPOP4 library of secondary gamma ray yield data are described. Recent results of the testing of uranium and iron data sets from the POPOP4 library are given. The data sets were tested by comparing calculated secondary gamma ray pulse height spectra measured at the ORNL TSR-II reactor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H44D..01Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H44D..01Z"><span>Technological advances in cosmogenic neutron detectors for measuring soil water content</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zreda, M. G.; Schrön, M.; Köhli, M.</p> <p>2017-12-01</p> <p>The cosmic-ray neutron probe is used for measuring area-average soil water content at the hectometer scale. Early work showed a simple exponential decrease with distance of the instrument's sensitivity and a footprint 300 m in radius. Recent research suggested a much higher sensitivity to local neutrons and reduced footprint. We show results confirming the high sensitivity to local neutrons, describe two ways to reduce local and increase far-field effects, and propose ways of measuring neutrons at different spatial scales. Measurements with moderated detectors across a 10-m-wide creek and a 2-m-wide water tank show a decrease by 30% and 20%, respectively, of neutron intensity over water compared to that over land nearby. These results mean that the detector is sensitive to meter-scale heterogeneities of water content. This sensitivity can be reduced by rising the detector or by shielding it from local neutrons. The effect of local water distributions on the measured neutron intensity decreases with height. In the water tank experiment it disappeared almost completely at the height of 2 m, leading to the conjecture that the height roughly equal to the horizontal scale of heterogeneity would eliminate the sensitivity. This may or may not be practical. Shielding the detector below by a hydrogenous material removes a substantial fraction of the local neutrons. The shielded detector has a reduced count rate, reduced sensitivity to local neutrons and increased sensitivity to neutrons farther afield, and a larger footprint. Such a detector could be preferable to the current cosmogenic-neutron probe under heterogeneous soil water conditions. The shielding experiments also inspired the development of a local-area neutron detector. It has hydrogenous neutron shields on all sides except the bottom, substantially blocking the neutrons coming from afar, while allowing the neutrons coming directly from below. Its footprint is equal to its physical dimension when the detector is placed on the surface. Once this detector is calibrated, it can be useful in calibrating the wide-area detector, for example over stony soils that are difficult to sample physically for water content determination, and in high-resolution mapping of neutron intensity and soil moisture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25411280','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25411280"><span>Scaling of adult body weight to height across sex and race/ethnic groups: relevance to BMI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heymsfield, Steven B; Peterson, Courtney M; Thomas, Diana M; Heo, Moonseong; Schuna, John M; Hong, Sangmo; Choi, Woong</p> <p>2014-12-01</p> <p>Body mass index (BMI) is formulated on the assumption that body weight (BW) scales to height with a power of 2 (BW∝height(2)), independent of sex and race-ethnicity. Powers differing from 2 are observed in studies of selected samples, thus raising the question if BMI is a generalizable metric that makes BW independent of height across populations. The objectives were to test the hypothesis that adult BW scales to height with a power of 2 independent of sex and race-ethnicity and to advance an understanding of BMI as a measure of shape by extending allometric analyses to waist circumference (WC). We conducted cross-sectional subject evaluations, including body composition, from the NHANES and the Korean NHANES (KNHANES). Variations of the allometric model (Y = αX(β)) were used to establish height scaling powers (β ± SE) across non-Hispanic white and black, Mexican American, and Korean men and women. Exploratory analyses in population samples established age and adiposity as important independent determinants of height scaling powers (i.e., β). After age and adiposity in the next series of analyses were controlled for, BW scaling powers were nonsignificantly different between race/ethnic groups within each sex group; WC findings were similar in women, whereas small but significant between-race differences were observed in the men. Sex differences in β values were nonsignificant except for BW in non-Hispanic blacks and WC in Koreans (P < 0.05). Nationally representative powers for BW were (NHANES/KNHANES) 2.12 ± 0.05/2.11 ± 0.06 for men and 2.02 ± 0.04/1.99 ± 0.06 for women and for WC were 0.66 ± 0.03/0.67 ± 0.05 for men and 0.61 ± 0.04/0.56 ± 0.05 for women. Adult BW scales to height with a power of ∼2 across the 8 sex and race/ethnic groups, an observation that makes BMI a generalizable height-independent measure of shape across most populations. WC also follows generalizable scaling rules, a finding that has implications for defining body shape in populations who differ in stature. © 2014 American Society for Nutrition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/7304567','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/7304567"><span>Long-term effects of prenatal x-ray of human females. II. Growth and development.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meyer, M B; Tonascia, J</p> <p>1981-09-01</p> <p>Experimental studies and studies of survivors of in-utero exposure to atomic bomb blasts have shown significant stunting of growth and mental retardation following these exposures. Central nervous system damage following very low doses of x-ray at around the time of birth has also been observed in experimental animals. This long term follow-up studies of 1458 human females exposed in utero to diagnostic x-rays and of 1458 matched unexposed controls studied in Baltimore, Maryland, included measurements of height, weight and school achievement. Women who had been exposed to x-rays in utero were significantly shorter in their mid-twenties than were their matched, unexposed controls, even after adjustment for other social and economic factors. However, additional follow-up revealed that mothers of exposed women were also shorter than the control mothers. Short stature appeared to be a selective factor for x-ray during pregnancy (mostly pelvimetry, 1947-1952). Mothers' and daughters' heights were similarly correctly among exposed and control mother-daughter pairs, suggesting that the height differences between exposed daughters and their controls were due to these selective factor rather than to any direct effect of radiation on growth. Exposed women reported poorer school achievement than control women. However, except for a higher proportion of exposed women leaving school because of pregnancy, these measurements were no longer significantly different when rates were simultaneously adjusted for socioeconomic differences between exposed and control women.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31G1584S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31G1584S"><span>The feasibility of using a universal Random Forest model to map tree height across different locations and vegetation types</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Y.; Guo, Q.; Jin, S.; Gao, S.; Hu, T.; Liu, J.; Xue, B. L.</p> <p>2017-12-01</p> <p>Tree height is an important forest structure parameter for understanding forest ecosystem and improving the accuracy of global carbon stock quantification. Light detection and ranging (LiDAR) can provide accurate tree height measurements, but its use in large-scale tree height mapping is limited by the spatial availability. Random Forest (RF) has been one of the most commonly used algorithms for mapping large-scale tree height through the fusion of LiDAR and other remotely sensed datasets. However, how the variances in vegetation types, geolocations and spatial scales of different study sites influence the RF results is still a question that needs to be addressed. In this study, we selected 16 study sites across four vegetation types in United States (U.S.) fully covered by airborne LiDAR data, and the area of each site was 100 km2. The LiDAR-derived canopy height models (CHMs) were used as the ground truth to train the RF algorithm to predict canopy height from other remotely sensed variables, such as Landsat TM imagery, terrain information and climate surfaces. To address the abovementioned question, 22 models were run under different combinations of vegetation types, geolocations and spatial scales. The results show that the RF model trained at one specific location or vegetation type cannot be used to predict tree height in other locations or vegetation types. However, by training the RF model using samples from all locations and vegetation types, a universal model can be achieved for predicting canopy height across different locations and vegetation types. Moreover, the number of training samples and the targeted spatial resolution of the canopy height product have noticeable influence on the RF prediction accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1212373-fresnel-zone-plate-stacking-intermediate-field-high-efficiency-focusing-hard-ray-regime','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1212373-fresnel-zone-plate-stacking-intermediate-field-high-efficiency-focusing-hard-ray-regime"><span>Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; ...</p> <p>2014-11-05</p> <p>Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies formore » high resolution focusing at three different energies, 10, 11.8, and 25 keV.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22351494-milky-way-hot-halo-convectively-unstable','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22351494-milky-way-hot-halo-convectively-unstable"><span>Is the Milky Way's hot halo convectively unstable?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Henley, David B.; Shelton, Robin L., E-mail: dbh@physast.uga.edu</p> <p>2014-03-20</p> <p>We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Usingmore » published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27710241','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27710241"><span>Randomized Trial of Aromatase Inhibitors, Growth Hormone, or Combination in Pubertal Boys with Idiopathic, Short Stature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mauras, Nelly; Ross, Judith L; Gagliardi, Priscila; Yu, Y Miles; Hossain, Jobayer; Permuy, Joseph; Damaso, Ligeia; Merinbaum, Debbie; Singh, Ravinder J; Gaete, Ximena; Mericq, Veronica</p> <p>2016-12-01</p> <p>Growth of short children in puberty is limited by the effect of estrogen on epiphyseal fusion. To compare: 1) the efficacy and safety of aromatase inhibitors (AIs) vs GH vs AI/GH on increasing adult height potential in pubertal boys with severe idiopathic short stature (ISS); and 2) differences in body composition among groups. Randomized three-arm open-label comparator. Outpatient clinical research. Seventy-six pubertal boys [mean (SE) age, 14.1 (0.1) years] with ISS [height SD score (SDS), -2.3 (0.0)]. Daily AIs (anastrozole or letrozole), GH, or AI/GH for 24-36 months. Anthropometry, bone ages, dual x-ray absorptiometry, spine x-rays, hormones, safety labs. Height gain [mean (SE)] at 24 months was: AI, +14.0 (0.8) cm; GH, +17.1 (0.9) cm; AI/GH, +18.9 (0.8) cm (P < .0006, analysis of covariance). Height SDS was: AI, -1.73 (0.12); GH, -1.43 (0.14); AI/GH, -1.25 (0.12) (P < .0012). Those treated through 36 months grew more. Regardless of treatment duration, height SDS at near-final height [n = 71; age, 17.4 (0.2) years; bone age, 15.3 (0.1) years; height achieved, ∼97.6%] was: AI, -1.4 (0.1); GH, -1.4 (0.2); AI/GH, -1.0 (0.1) (P = .06). Absolute height change was: AI, +18.2 (1.6) cm; GH, +20.6 (1.5) cm; AI/GH, +22.5 (1.4) cm (P = .01) (expected height gain at -2.0 height SDS, +13.0 cm). AI/GH had higher fat free mass accrual. Measures of bone health, safety labs, and adverse events were similar in all groups. Letrozole caused higher T and lower estradiol than anastrozole. Combination therapy with AI/GH increases height potential in pubertal boys with ISS more than GH and AI alone treated for 24-36 months with a strong safety profile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhFl...26a2106S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhFl...26a2106S"><span>Pore-scale dynamics of salt transport and distribution in drying porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shokri, Nima</p> <p>2014-01-01</p> <p>Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22257107-pore-scale-dynamics-salt-transport-distribution-drying-porous-media','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22257107-pore-scale-dynamics-salt-transport-distribution-drying-porous-media"><span>Pore-scale dynamics of salt transport and distribution in drying porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shokri, Nima, E-mail: nima.shokri@manchester.ac.uk</p> <p>2014-01-15</p> <p>Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI{sub 2} solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sandmore » column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI{sub 2} concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MNRAS.431..327L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MNRAS.431..327L"><span>Population of persistent high-mass X-ray binaries in the Milky Way</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lutovinov, A. A.; Revnivtsev, M. G.; Tsygankov, S. S.; Krivonos, R. A.</p> <p>2013-05-01</p> <p>We present results of the study of persistent high-mass X-ray binaries (HMXBs) in the Milky Way, obtained from the deep INTEGRAL Galactic plane survey. This survey provides us a new insight into the population of HMXBs because almost half of the whole sample consists of sources discovered with INTEGRAL. It is demonstrated for the first time that the majority of persistent HMXBs have supergiant companions and their luminosity function steepens somewhere around ˜2 × 1036 erg s-1. We show that the spatial density distribution of HMXBs correlates well with the star formation rate distribution in the Galaxy. The vertical distribution of HMXBs has a scale-height h ≃ 85 pc, that is somewhat larger than the distribution of young stars in the Galaxy. We propose a simple toy model, which adequately describes general properties of HMXBs in which neutron stars accrete a matter from the wind of its companion (wind-fed NS-HMXBs population). Using the elaborated model we argue that a flaring activity of the so-called supergiant fast X-ray transients, the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19620000789','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19620000789"><span>Effect of the Diurnal Atmospheric Bulge on Satellite Accelerations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wyatt, Stanley P.</p> <p>1961-01-01</p> <p>Formulas are developed to express the secular acceleration of a satellite on passing through an atmosphere which bulges in the sunward direction and in which the scale height increases with height, these two properties of the high atmosphere having previously been established from satellite observations. Comparison of the new formulas with those for a spherically symmetric atmosphere of constant scale height indicates that deduced atmospheric densities may be systematically incorrect by up to 50 or 60 percent at heights of 500 to 600 km when the earlier and simpler equations are used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASS...32..311P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASS...32..311P"><span>Vertical Scale Height of the Topside Ionosphere Around the Korean Peninsula: Estimates from Ionosondes and the Swarm Constellation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Jaeheung; Kwak, Young-Sil; Mun, Jun-Chul; Min, Kyoung-Wook</p> <p>2015-12-01</p> <p>In this study, we estimated the topside scale height of plasma density (Hm) using the Swarm constellation and ionosondes in Korea. The Hm above Korean Peninsula is generally around 50 km. Statistical distributions of the topside scale height exhibited a complex dependence upon local time and season. The results were in general agreement with those of Tulasi Ram et al. (2009), who used the same method to calculate the topside scale height in a mid-latitude region. On the contrary, our results did not fully coincide with those obtained by Liu et al. (2007), who used electron density profiles from Arecibo Incoherent Scatter Radar (ISR) between 1966 and 2002. The disagreement may result from the limitations in our approximation method and data coverage used for estimations, as well as the inherent dependence of Hm on Geographic LONgitude (GLON).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RScI...88j3107S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RScI...88j3107S"><span>X-ray spectrometer having 12 000 resolving power at 8 keV energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seely, John F.; Hudson, Lawrence T.; Henins, Albert; Feldman, Uri</p> <p>2017-10-01</p> <p>An x-ray spectrometer employing a thin (50 μm) silicon transmission crystal was used to record high-resolution Cu Kα spectra from a laboratory x-ray source. The diffraction was from the (331) planes that were at an angle of 13.26° to the crystal surface. The components of the spectral lines resulting from single-vacancy (1s) and double-vacancy (1s and 3d) transitions were observed. After accounting for the natural lifetime widths from reference double-crystal spectra and the spatial resolution of the image plate detector, the intrinsic broadening of the transmission crystal was measured to be as small as 0.67 eV and the resolving power 12 000, the highest resolving power achieved by a compact (0.5 m long) spectrometer employing a single transmission crystal operating in the hard x-ray region. By recording spectra with variable source-to-crystal distances and comparing to the calculated widths from various geometrical broadening mechanisms, the primary contributions to the intrinsic crystal broadening were found to be the source height at small distances and the crystal apertured height at large distances. By reducing these two effects, using a smaller source size and vignetting the crystal height, the intrinsic crystal broadening is then limited by the crystal thickness and the rocking curve width and would be 0.4 eV at 8 keV energy (20 000 resolving power).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840031562&hterms=coulomb+law&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcoulomb%2Blaw','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840031562&hterms=coulomb+law&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcoulomb%2Blaw"><span>A comparison of the thick-target model with stereo data on the height structure of solar hard X-ray bursts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brown, J. C.; Carlaw, V. A.; Cromwell, D.; Kane, S. R.</p> <p>1983-01-01</p> <p>The thick target, hard solar X-ray source height structure is predicted for the case of a beam that is injected vertically downward, having a power law spectrum, being dominated by Coulomb collisional energy losses, and being structurally characterized by the ratio of hard X-ray flux from an upper part of the source to that from the entire source. These predictions are compared with the flux ratios at 150 and 350 keV which were observed by two spacecraft for five events in which the solar limb occults part of the source for one spacecraft. The energy dependence of the occultation ratio is found to be inconsistent with that predicted by the model, and it is concluded that noncollisional losses must be significant in beam dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=sex+AND+videos&pg=2&id=EJ1169192','ERIC'); return false;" href="https://eric.ed.gov/?q=sex+AND+videos&pg=2&id=EJ1169192"><span>Scaling Constraints in Junior Tennis: The Influence of Net Height on Skilled Players' Match-Play Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Limpens, Vera; Buszard, Tim; Shoemaker, Emma; Savelsbergh, Geert J. P.; Reid, Machar</p> <p>2018-01-01</p> <p>Purpose: The net height in tennis (0.91 m) is approximately 50% of a professional tennis player's height. Children are also expected to play with this net height, even though it is approximately 70% of the average 10-year-old's height. This study examined the immediate effect of lowering net height on the performance characteristics of skilled…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...856...45J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...856...45J"><span>The Three-dimensional Spatial Distribution of Interstellar Gas in the Milky Way: Implications for Cosmic Rays and High-energy Gamma-ray Emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jóhannesson, Guđlaugur; Porter, Troy A.; Moskalenko, Igor V.</p> <p>2018-03-01</p> <p>Direct measurements of cosmic ray (CR) species combined with observations of their associated γ-ray emissions can be used to constrain models of CR propagation, trace the structure of the Galaxy, and search for signatures of new physics. The spatial density distribution of interstellar gas is a vital element for all these studies. So far, models have employed the 2D cylindrically symmetric geometry, but their accuracy is well behind that of the available data. In this paper, 3D spatial density models for neutral and molecular hydrogen are constructed based on empirical model fitting to gas line-survey data. The developed density models incorporate spiral arms and account for the warping of the disk, and the increasing gas scale height with radial distance from the Galactic center. They are employed together with the GALPROP CR propagation code to investigate how the new 3D gas models affect calculations of CR propagation and high-energy γ-ray intensity maps. The calculations reveal non-trivial features that are directly related to the new gas models. The best-fit values for propagation model parameters employing 3D gas models are presented and they differ significantly from those derived with the 2D gas density models that have been widely used. The combination of 3D CR and gas density models provide a more realistic basis for the interpretation of non-thermal emissions from the Galaxy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17747455','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17747455"><span>Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kliore, A; Cain, D L; Levy, G S; Eshleman, V R; Fjeldbo, G; Drake, F D</p> <p>1965-09-10</p> <p>Changes in the frequency, phase, and amplitude of the Mariner IV radio signal, caused by passage through the atmosphere and ionosphere of Mars, were observed immediately before and after occultation by the planet. Preliminary analysis of these effects has yielded estimates of the refractivity and density of the atmosphere near the surface, the scale height in the atmosphere, and the electron density profile of the Martian ionosphere. The atmospheric density, temperature, and scale height are lower than previously predicted, as are the maximum density, temperature, scale height, and altitude of the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950029369&hterms=Streaming+Media&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DStreaming%2BMedia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950029369&hterms=Streaming+Media&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DStreaming%2BMedia"><span>Acoustic instability driven by cosmic-ray streaming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Begelman, Mitchell C.; Zweibel, Ellen G.</p> <p>1994-01-01</p> <p>We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic-ray pressure are separated by either laminar or turbulent jumps in which the thermal gas is subject to intense heating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816720S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816720S"><span>Soil Moisture Estimation Across Scales with Mobile Sensors for Cosmic-Ray Neutrons from the Ground and Air</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schrön, Martin; Köhler, Mandy; Bannehr, Lutz; Köhli, Markus; Fersch, Benjamin; Rebmann, Corinna; Mai, Juliane; Cuntz, Matthias; Kögler, Simon; Schröter, Ingmar; Wollschläger, Ute; Oswald, Sascha; Dietrich, Peter; Zacharias, Steffen</p> <p>2016-04-01</p> <p>Soil moisture is a key variable for environmental sciences, but its determination at various scales and depths is still an open challenge. Cosmic-ray neutron sensing has become a well accepted and unique method to monitor an effective soil water content, covering tens of hectares in area and tens of centimeters in depth. The technology is famous for its low maintanance, non-invasiveness, continous measurement, and most importantly its large footprint and penetration depth. Beeing more representative than point data, and finer resolved plus deeper penetrating than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for agriculture, regional hydrologic and land surface models. The method takes advantage of omnipresent neutrons which are extraordinarily sensitive to hydrogen in soil, plants, snow and air. Unwanted hydrogen sources in the footprint can be excluded by local calibration to extract the pure soil water information. However, this procedure is not feasible for mobile measurements, where neutron detectors are mounted on a car to do catchment-scale surveys. As a solution to that problem, we suggest strategies to correct spatial neutron data with the help of available spatial data of soil type, landuse and vegetation. We further present results of mobile rover campaigns at various scales and conditions, covering small sites from 0.2 km2 to catchments of 100 km2 area, and complex terrain from agricultural fields, urban areas, forests, to snowy alpine sites. As the rover is limited to accessible roads, we further investigated the applicability of airborne measurements. First tests with a gyrocopter at 150 to 200m heights proofed the concept of airborne neutron detection for environmental sciences. Moreover, neutron transport simulations confirm an improved areal coverage during these campaigns. Mobile neutron measurements at the ground or air are a promising tool for the detection of water sources across many scales. The method has a great potential to improve spatial performance of hydrological models, and help to assess regional soil moisture states for agriculture and flood risk management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19423888','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19423888"><span>Bas-relief generation using adaptive histogram equalization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Xianfang; Rosin, Paul L; Martin, Ralph R; Langbein, Frank C</p> <p>2009-01-01</p> <p>An algorithm is presented to automatically generate bas-reliefs based on adaptive histogram equalization (AHE), starting from an input height field. A mesh model may alternatively be provided, in which case a height field is first created via orthogonal or perspective projection. The height field is regularly gridded and treated as an image, enabling a modified AHE method to be used to generate a bas-relief with a user-chosen height range. We modify the original image-contrast-enhancement AHE method to use gradient weights also to enhance the shape features of the bas-relief. To effectively compress the height field, we limit the height-dependent scaling factors used to compute relative height variations in the output from height variations in the input; this prevents any height differences from having too great effect. Results of AHE over different neighborhood sizes are averaged to preserve information at different scales in the resulting bas-relief. Compared to previous approaches, the proposed algorithm is simple and yet largely preserves original shape features. Experiments show that our results are, in general, comparable to and in some cases better than the best previously published methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006620','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006620"><span>The Height of a White-Light Flare and its Hard X-Ray Sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oliveros, Juan-Carlos Martinez; Hudson, Hugh S.; Hurford, Gordon J.; Kriucker, Saem; Lin, R. P.; Lindsey, Charles; Couvidat, Sebastien; Schou, Jesper; Thompson, W. T.</p> <p>2012-01-01</p> <p>We describe observations of a white-light (WL) flare (SOL2011-02-24T07:35:00, M3.5) close to the limb of the Sun, from which we obtain estimates of the heights of the optical continuum sources and those of the associated hard X-ray (HXR) sources. For this purpose, we use HXR images from the Reuven Ramaty High Energy Spectroscopic Imager and optical images at 6173 Ang. from the Solar Dynamics Observatory.We find that the centroids of the impulsive-phase emissions in WL and HXRs (30 -80 keV) match closely in central distance (angular displacement from Sun center), within uncertainties of order 0".2. This directly implies a common source height for these radiations, strengthening the connection between visible flare continuum formation and the accelerated electrons. We also estimate the absolute heights of these emissions as vertical distances from Sun center. Such a direct estimation has not been done previously, to our knowledge. Using a simultaneous 195 Ang. image from the Solar-Terrestrial RElations Observatory spacecraft to identify the heliographic coordinates of the flare footpoints, we determine mean heights above the photosphere (as normally defined; tau = 1 at 5000 Ang.) of 305 +/- 170 km and 195 +/- 70 km, respectively, for the centroids of the HXR and WL footpoint sources of the flare. These heights are unexpectedly low in the atmosphere, and are consistent with the expected locations of tau = 1 for the 6173 Ang and the approx 40 keV photons observed, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12212556P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12212556P"><span>Interpreting Observations of Large-Scale Traveling Ionospheric Disturbances by Ionospheric Sounders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pederick, L. H.; Cervera, M. A.; Harris, T. J.</p> <p>2017-12-01</p> <p>From July to October 2015, the Australian Defence Science and Technology Group conducted an experiment during which a vertical incidence sounder (VIS) was set up at Alice Springs Airport. During September 2015 this VIS observed the passage of many large-scale traveling ionospheric disturbances (TIDs). By plotting the measured virtual heights across multiple frequencies as a function of time, the passage of the TID can be clearly displayed. Using this plotting method, we show that all the TIDs observed during the campaign by the VIS at Alice Springs show an apparent downward phase progression of the crests and troughs. The passage of the TID can be more clearly interpreted by plotting the true height of iso-ionic contours across multiple plasma frequencies; the true heights can be obtained by inverting each ionogram to obtain an electron density profile. These plots can be used to measure the vertical phase speed of a TID and also reveal a time lag between events seen in true height compared to virtual height. To the best of our knowledge, this style of analysis has not previously been applied to other swept-frequency sounder observations. We develop a simple model to investigate the effect of the passage of a large-scale TID on a VIS. The model confirms that for a TID with a downward vertical phase progression, the crests and troughs will appear earlier in virtual height than in true height and will have a smaller apparent speed in true height than in virtual height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH51C2514H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH51C2514H"><span>Quasi-Periodic Pulsations in the Earth's Ionosphere Synchronized with Solar Flare Emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayes, L.; Gallagher, P.; McCauley, J.; Dennis, B. R.; Ireland, J.; Inglis, A. R.</p> <p>2017-12-01</p> <p>Solar flare activity is a powerful factor affecting the geophysical processes in the Earth's ionosphere. In particular, X-ray photons with wavelength < 10 A can penetrate down to the D-region ( 60-90 km in altitude) resulting in a dramatic increase of ionization in this lowest lying region of the Earth's ionosphere. This manifests as a substantial enhancement of electron density height profile at these altitudes to extents large enough to change the propagation conditions for Very Low Frequency (VLF 3-30 kHz) radio waves that travel in the waveguide formed by the Earth and the lower ionosphere. Recently, it has become clear that flares exhibit quasi-periodic pulsations with periods of seconds to minutes at EUV, X-ray and gamma-ray wavelengths. To date, it has not been known if the Earth's ionosphere is sensitive to these dynamic solar pulsations. Here, we report ionospheric pulsations with periods of 20 minutes that are synchronized with a set of pulsating flare loops using VLF observations of the ionospheric D-layer together with X-ray and EUV observations of a solar flare from the NOAA/GOES and NASA/SDO satellites. Modeling of the ionosphere show that the D-region electron density varies by up to an order of magnitude over the timescale of the pulsations. Our results show that the Earth's ionosphere is more sensitive to small-scale changes in solar activity than previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24454862','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24454862"><span>"A Body Shape Index" in middle-age and older Indonesian population: scaling exponents and association with incident hypertension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheung, Yin Bun</p> <p>2014-01-01</p> <p>"A Body Shape Index" (ABSI) is a recently proposed index that standardizes waist circumference for body mass index (BMI) and height. This study aims to: (a) examine if the ABSI scaling exponents for standardizing waist circumference for BMI and height are valid in middle-aged and older Indonesian population, and (b) compare the association between incident hypertension and ABSI and other anthropometric measures. The Indonesian Family Life Survey Wave 3 measured anthropometric variables and blood pressure of 8255 adults aged between 40 to 85 years in 2000. The relationship between two anthropometric quantities, e.g. weight (w) and height (h), can be expressed as the power law-equivalent [Formula: see text], where p = 2 is the scaling exponent in the derivation of the BMI and can be estimated by linear regression analysis. This was extended to the regression analysis of the log-transformed waist circumference, weight and height to establish the scaling exponents in the ABSI. The values for men were similar to those developed by the previous American study, which were 2/3 (BMI) and 1/2 (height). Those for women were somewhat smaller, at 3/5 (BMI) and 1/5 (height). The original (American) ABSI leads to mild negative correlation with BMI (-0.14) and height (-0.12) in the female population. Analysis of the development of hypertension between Waves 3 and 4 (average interval 7.5 years) in relation to ABSI measured at Wave 3 showed stronger association if the locally derived (Indonesian) scaling exponents were used. However, both versions of the ABSI were less associated with incident hypertension than waist circumference and BMI. The values for the scaling exponents for ABSI are roughly similar between the American population and the middle-aged and older Indonesian population, although larger discrepancy was found in women. The ABSI is less associated with incident hypertension than waist circumference and BMI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4138729','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4138729"><span>Variations of Scale Height at F-Region Peak Based on Ionosonde Measurements during Solar Maximum over the Crest of Equatorial Ionization Anomaly Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chuo, Yu-Jung</p> <p>2014-01-01</p> <p>Scale height is an important parameter in characterizing the shape of the ionosphere and its physical processes. In this study, we attempt to examine and discuss the variation of scale height, H m, around the F-layer peak height during high solar activity at the northern crest of the equatorial ionization anomaly (EIA) region. H m exhibits day-to-day variation and seasonal variation, with a greater average daily variation during daytime in summer. Furthermore, the diurnal variation of H m exhibits an abnormal peak at presunrise during all the seasons, particularly in winter. This increase is also observed in the F2-layer peak height for the same duration with an upward movement associated with thermospheric wind toward the equator; this upward movement increases the N2/O ratio and H m, but it causes a decrease in the F2-layer maximum critical frequency during the presunrise period. PMID:25162048</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSH13A1990L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSH13A1990L"><span>Height Dependence of Plasma Properties of a Dark Lane and a Cool Loop in a Solar Limb Active Region Observed by Hinode/EIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, K.; Imada, S.; Moon, Y.; Lee, J.</p> <p>2013-12-01</p> <p>We investigate spectral properties of a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer. The cool loop is clearly seen in the spectral lines formed at the transition region temperature. The dark lane is characterized by an elongated faint structure in coronal spectral lines and rooted on a bright point. We determine their electron densities, Doppler velocities, and non-thermal velocities with height over the limb. We derived electron densities using the density sensitive line pairs of Mg VII, Si X, Fe XII, Fe XIII and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Fe XII and the scale height temperatures of the dark lane from each spectral lines are much lower than their peak formation temperatures. The non-thermal velocity in the cool loop slightly decreases along the loop while that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20103654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20103654"><span>Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zemel, Babette S; Leonard, Mary B; Kelly, Andrea; Lappe, Joan M; Gilsanz, Vicente; Oberfield, Sharon; Mahboubi, Soroosh; Shepherd, John A; Hangartner, Thomas N; Frederick, Margaret M; Winer, Karen K; Kalkwarf, Heidi J</p> <p>2010-03-01</p> <p>In children, bone mineral content (BMC) and bone mineral density (BMD) measurements by dual-energy x-ray absorptiometry (DXA) are affected by height status. No consensus exists on how to adjust BMC or BMD (BMC/BMD) measurements for short or tall stature. The aim of this study was to compare various methods to adjust BMC/BMD for height in healthy children. Data from the Bone Mineral Density in Childhood Study (BMDCS) were used to develop adjustment methods that were validated using an independent cross-sectional sample of healthy children from the Reference Data Project (RDP). We conducted the study in five clinical centers in the United States. We included 1546 BMDCS and 650 RDP participants (7 to 17 yr of age, 50% female). No interventions were used. We measured spine and whole body (WB) BMC and BMD Z-scores for age (BMC/BMD(age)), height age (BMC/BMD(height age)), height (BMC(height)), bone mineral apparent density (BMAD(age)), and height-for-age Z-score (HAZ) (BMC/BMD(haz)). Spine and WB BMC/BMD(age)Z and BMAD(age)Z were positively (P < 0.005; r = 0.11 to 0.64) associated with HAZ. Spine BMD(haz) and BMC(haz)Z were not associated with HAZ; WB BMC(haz)Z was modestly associated with HAZ (r = 0.14; P = 0.0003). All other adjustment methods were negatively associated with HAZ (P < 0.005; r = -0.20 to -0.34). The deviation between adjusted and BMC/BMD(age) Z-scores was associated with age for most measures (P < 0.005) except for BMC/BMD(haz). Most methods to adjust BMC/BMD Z-scores for height were biased by age and/or HAZ. Adjustments using HAZ were least biased relative to HAZ and age and can be used to evaluate the effect of short or tall stature on BMC/BMD Z-scores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5155684','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5155684"><span>Randomized Trial of Aromatase Inhibitors, Growth Hormone, or Combination in Pubertal Boys with Idiopathic, Short Stature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ross, Judith L.; Gagliardi, Priscila; Yu, Y. Miles; Hossain, Jobayer; Permuy, Joseph; Damaso, Ligeia; Merinbaum, Debbie; Singh, Ravinder J.; Gaete, Ximena; Mericq, Veronica</p> <p>2016-01-01</p> <p>Context: Growth of short children in puberty is limited by the effect of estrogen on epiphyseal fusion. Objectives: To compare: 1) the efficacy and safety of aromatase inhibitors (AIs) vs GH vs AI/GH on increasing adult height potential in pubertal boys with severe idiopathic short stature (ISS); and 2) differences in body composition among groups. Design: Randomized three-arm open-label comparator. Setting: Outpatient clinical research. Patients: Seventy-six pubertal boys [mean (SE) age, 14.1 (0.1) years] with ISS [height SD score (SDS), −2.3 (0.0)]. Intervention: Daily AIs (anastrozole or letrozole), GH, or AI/GH for 24–36 months. Outcomes: Anthropometry, bone ages, dual x-ray absorptiometry, spine x-rays, hormones, safety labs. Results: Height gain [mean (SE)] at 24 months was: AI, +14.0 (0.8) cm; GH, +17.1 (0.9) cm; AI/GH, +18.9 (0.8) cm (P < .0006, analysis of covariance). Height SDS was: AI, −1.73 (0.12); GH, −1.43 (0.14); AI/GH, −1.25 (0.12) (P < .0012). Those treated through 36 months grew more. Regardless of treatment duration, height SDS at near-final height [n = 71; age, 17.4 (0.2) years; bone age, 15.3 (0.1) years; height achieved, ∼97.6%] was: AI, −1.4 (0.1); GH, −1.4 (0.2); AI/GH, −1.0 (0.1) (P = .06). Absolute height change was: AI, +18.2 (1.6) cm; GH, +20.6 (1.5) cm; AI/GH, +22.5 (1.4) cm (P = .01) (expected height gain at −2.0 height SDS, +13.0 cm). AI/GH had higher fat free mass accrual. Measures of bone health, safety labs, and adverse events were similar in all groups. Letrozole caused higher T and lower estradiol than anastrozole. Conclusions: Combination therapy with AI/GH increases height potential in pubertal boys with ISS more than GH and AI alone treated for 24–36 months with a strong safety profile. PMID:27710241</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JKAS...44...23A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JKAS...44...23A"><span>Vertical Structure of NGC 4631</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ann, Hong Bae; Seo, Mira Seo; Baek, Su-Ja</p> <p>2011-02-01</p> <p>We present a deep CCD imaging in B and V bands which allows us to analyze the vertical structure of NGC 4631. We derive the scale heights of the thin and thick disks at a variety of positions along the major axis of the disk. The scale heights of the thin disk are nearly constant while those of the thick disk tend to increase with increasing galactocentric distance. The mean scale heights of the thin disk derived from B and V images are similar to each other (˜450 pc). Instead, those of the thick disk show a strong east-west asymmetry which is caused by the diffuse stellar emission that is most prominent in the north west regions above the disk plane. The ratio of scale heights (z_{thick}/z_{thin}) is about 2.5 in the east side of the disk. However, this ratio is greater than 4 for the thick disk above the disk plane in the west side of the galaxy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930055611&hterms=Veta&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DVeta%2BE','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930055611&hterms=Veta&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DVeta%2BE"><span>Correcting X-ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chartas, G.; Flanagan, K.; Hughes, J. P.; Kellogg, E. M.; Nguyen, D.; Zombek, M.; Joy, M.; Kolodziejezak, J.</p> <p>1993-01-01</p> <p>The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters, correcting for the reflectivity of the mirror and convolving with the detector response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930016998','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930016998"><span>Correcting x ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chartas, G.; Flanagan, Kathy; Hughes, John P.; Kellogg, Edwin M.; Nguyen, D.; Zombeck, M.; Joy, M.; Kolodziejezak, J.</p> <p>1992-01-01</p> <p>The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters correcting for the reflectivity of the mirror and convolving with the detector response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940010019','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940010019"><span>Measurements of the spatial structure and directivity of 100 KeV photon sources in solar flares using PVO and ISEE-3 spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, Kinsey A.</p> <p>1991-01-01</p> <p>The objective of this grant was to measure the spatial structure and directivity of the hard X-ray and low energy gamma-ray (100 keV-2 MeV) continuum sources in solar flares using stereoscopic observations made with spectrometers aboard the Pioneer Venus Orbiter (PVO) and Third International Sun Earth Explorer (ISEE-3) spacecraft. Since the hard X-ray emission is produced by energetic electrons through the bremsstrahlung process, the observed directivity can be directly related to the 'beaming' of electrons accelerated during the flare as they propagate from the acceleration region in the corona to the chromosphere/transition region. Some models (e.g., the thick-target model) predict that most of the impulsive hard X-ray/low energy gamma-ray source is located in the chromosphere, the effective height of the X-ray source above the photosphere increasing with the decrease in the photon energy. This can be verified by determining the height-dependence of the photon source through stereoscopic observations of those flares which are partially occulted from the view of one of the two spacecraft. Thus predictions about beaming of electrons as well as their spatial distributions could be tested through the analysis proposed under this grant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911801A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911801A"><span>Small scale currents and ocean wave heights: from today's models to future satellite observations with CFOSAT and SKIM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ardhuin, Fabrice; Gille, Sarah; Menemenlis, Dimitris; Rocha, Cesar; Rascle, Nicolas; Gula, Jonathan; Chapron, Bertrand</p> <p>2017-04-01</p> <p>Tidal currents and large oceanic currents, such as the Agulhas, Gulf Stream and Kuroshio, are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of ocean currents at scales of 10 km or less have revealed the ubiquitous presence of fronts and filaments. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations at 10 km. This current-induced variability creates gradients in wave heights that were previously overlooked and are relevant for extreme wave heights and remote sensing. The spectrum of significant wave heights is found to be of the order of 70⟨Hs ⟩2/(g2⟨Tm0,-1⟩2) times the current spectrum, where ⟨Hs ⟩ is the spatially-averaged significant wave height, ⟨Tm0,-1⟩ is the average energy period, and g is the gravity acceleration. This small scale variability is consistent with Jason-3 and SARAL along-track variability. We will discuss how future satellite mission with wave spectrometers can help observe these wave-current interactions. CFOSAT is due for launch in 2018, and SKIM is a proposal for ESA Earth Explorer 9.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679343-th-cd-swank-factor-segmented-scintillators-multi-slice-ct-detectors-pulse-height-spectra-light-escape','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679343-th-cd-swank-factor-segmented-scintillators-multi-slice-ct-detectors-pulse-height-spectra-light-escape"><span>TH-CD-207B-06: Swank Factor of Segmented Scintillators in Multi-Slice CT Detectors: Pulse Height Spectra and Light Escape</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Howansky, A; Peng, B; Lubinsky, A</p> <p></p> <p>Purpose: Pulse height spectra (PHS) have been used to determine the Swank factor of a scintillator by measuring fluctuations in its light output per x-ray interaction. The Swank factor and x-ray quantum efficiency of a scintillator define the upper limit to its imaging performance, i.e. DQE(0). The Swank factor below the K-edge is dominated by optical properties, i.e. variations in light escape efficiency from different depths of interaction, denoted e(z). These variations can be optimized to improve tradeoffs in x-ray absorption, light yield, and spatial resolution. This work develops a quantitative model for interpreting measured PHS, and estimating e(z) onmore » an absolute scale. The method is used to investigate segmented ceramic GOS scintillators used in multi-slice CT detectors. Methods: PHS of a ceramic GOS plate (1 mm thickness) and segmented GOS array (1.4 mm thick) were measured at 46 keV. Signal and noise propagation through x-ray conversion gain, light escape, detection by a photomultiplier tube and dynode amplification were modeled using a cascade of stochastic gain stages. PHS were calculated with these expressions and compared to measurements. Light escape parameters were varied until modeled PHS agreed with measurements. The resulting estimates of e(z) were used to calculate PHS without measurement noise to determine the inherent Swank factor. Results: The variation in e(z) was 67.2–89.7% in the plate and 40.2–70.8% in the segmented sample, corresponding to conversion gains of 28.6–38.1 keV{sup −1} and 17.1–30.1 keV{sup −1}, respectively. The inherent Swank factors of the plate and segmented sample were 0.99 and 0.95, respectively. Conclusion: The high light escape efficiency in the ceramic GOS samples yields high Swank factors and DQE(0) in CT applications. The PHS model allows the intrinsic optical properties of scintillators to be deduced from PHS measurements, thus it provides new insights for evaluating the imaging performance of segmented ceramic GOS scintillators.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080004414','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080004414"><span>Portable x-ray fluorescence spectrometer for environmental monitoring of inorganic pollutants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clark, III, Benton C. (Inventor); Thornton, Michael G. (Inventor)</p> <p>1991-01-01</p> <p>A portable x-ray fluorescence spectrometer has a portable sensor unit containing a battery, a high voltage power supply, an x-ray tube which produces a beam x-ray radiation directed toward a target sample, and a detector for fluorescent x-rays produced by the sample. If a silicon-lithium detector is used, the sensor unit also contains either a thermoelectric or thermochemical cooler, or a small dewar flask containing liquid nitrogen to cool the detector. A pulse height analyzer (PHA) generates a spectrum of data for each sample consisting of the number of fluorescent x-rays detected as a function of their energy level. The PHA can also store spectrum data for a number of samples in the field. A processing unit can be attached to the pulse height analyzer to upload and analyze the stored spectrum data for each sample. The processing unit provides a graphic display of the spectrum data for each sample, and provides qualitative and/or quantitative analysis of the elemental composition of the sample by comparing the peaks in the sample spectrum against known x-ray energies for various chemical elements. An optional filtration enclosure can be used to filter particles from a sample suspension, either in the form of a natural suspension or a chemically created precipitate. The sensor unit is then temporarily attached to the filtration unit to analyze the particles collected by the filter medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDE34005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDE34005M"><span>Effects of Density Stratification in Compressible Polytropic Convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manduca, Cathryn M.; Anders, Evan H.; Bordwell, Baylee; Brown, Benjamin P.; Burns, Keaton J.; Lecoanet, Daniel; Oishi, Jeffrey S.; Vasil, Geoffrey M.</p> <p>2017-11-01</p> <p>We study compressible convection in polytropically-stratified atmospheres, exploring the effect of varying the total density stratification. Using the Dedalus pseudospectral framework, we perform 2D and 3D simulations. In these experiments we vary the number of density scale heights, studying atmospheres with little stratification (1 density scale height) and significant stratification (5 density scale heights). We vary the level of convective driving (quantified by the Rayleigh number), and study flows at similar Mach numbers by fixing the initial superadiabaticity. We explore the differences between 2D and 3D simulations, and in particular study the equilibration between different reservoirs of energy (kinetic, potential and internal) in the evolved states.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28039881','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28039881"><span>Deriving depth-dependent light escape efficiency and optical Swank factor from measured pulse height spectra of scintillators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R; Zhao, Wei</p> <p>2017-03-01</p> <p>Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e., variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε¯(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε¯(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150-1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε¯(z) were used to calculate each scintillator's optical Swank factor. For scintillators of the same optical design, only minor differences in light escape efficiency were observed between samples with different thickness. As thickness increased, escape efficiency decreased by up to 20% for interactions furthest away from light collection. Optical design (i.e., backing and FOP) predominantly affected the magnitude and relative variation in ε¯(z). Depending on interaction depth and scintillator thickness, samples with an absorptive backing and FOP were estimated to yield 4.1-13.4 photons/keV. Samples with a reflective backing and FOP yielded 10.4-18.4 keV -1 , while those with a reflective backing and no FOP yielded 29.5-52.0 keV -1 . Optical Swank factors were approximately 0.9 and near-unity in samples featuring an absorptive or reflective backing, respectively. This work uses a modeling approach to remove the noise introduced by the measurement apparatus from measured PHS. This method allows absolute quantification of ε¯(z) and more accurate estimation of the optical Swank factor of scintillators. The method was applied to CsI scintillators with different thickness and optical design, and determined that optical design more strongly affects ε¯(z) and Swank factor than differences in CsI thickness. Despite large variations in ε¯(z) between optical designs, the Swank factor of all evaluated samples is above 0.9. Information provided by this methodology can help validate Monte Carlo simulations of structured CsI and optimize scintillator design for x-ray imaging applications. © 2016 American Association of Physicists in Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5573598','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5573598"><span>Deriving depth-dependent light escape efficiency and optical Swank factor from measured pulse height spectra of scintillators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Howansky, Adrian; Peng, Boyu; Lubinsky, Anthony R.; Zhao, Wei</p> <p>2017-01-01</p> <p>Purpose Pulse height spectroscopy has been used by investigators to deduce the imaging properties of scintillators. Pulse height spectra (PHS) are used to compute the Swank factor, which describes the variation in scintillator light output per x-ray interaction. The spread in PHS measured below the K-edge is related to the optical component of the Swank factor, i.e. variations in light escape efficiency from different depths of x-ray interaction in the scintillator, denoted ε̄(z). Optimizing scintillators for medical imaging applications requires understanding of these optical properties, as they determine tradeoffs between parameters such as x-ray absorption, light yield, and spatial resolution. This work develops a model for PHS acquisition such that the effect of measurement uncertainty can be removed. This method allows ε̄(z) to be quantified on an absolute scale and permits more accurate estimation of the optical Swank factor of scintillators. Methods The pulse height spectroscopy acquisition chain was modeled as a linear system of stochastic gain stages. Analytical expressions were derived for signal and noise propagation through the PHS chain, accounting for deterministic and stochastic aspects of x-ray absorption, scintillation, and light detection with a photomultiplier tube. The derived expressions were used to calculate PHS of thallium-doped cesium iodide (CsI) scintillators using parameters that were measured, calculated, or known from literature. PHS were measured at 25 and 32 keV of CsI samples designed with an optically-reflective or absorptive backing, with or without a fiber-optic faceplate (FOP), and with thicknesses ranging from 150–1000 μm. Measured PHS were compared with calculated PHS, then light escape model parameters were varied until measured and modeled results reached agreement. Resulting estimates of ε̄(z) were used to calculate each scintillator’s optical Swank factor. Results For scintillators of the same optical design, only minor differences in light escape efficiency were observed between samples with different thickness. As thickness increased, escape efficiency decreased by up to 20% for interactions furthest away from light collection. Optical design (i.e. backing and FOP) predominantly affected the magnitude and relative variation in ε̄(z). Depending on interaction depth and scintillator thickness, samples with an absorptive backing and FOP were estimated to yield 4.1–13.4 photons/keV. Samples with a reflective backing and FOP yielded 10.4–18.4 keV−1, while those with a reflective backing and no FOP yielded 29.5–52.0 keV−1. Optical Swank factors were approximately 0.9 and near-unity in samples featuring an absorptive or reflective backing, respectively. Conclusions This work uses a modeling approach to remove the noise introduced by the measurement apparatus from measured PHS. This method allows absolute quantification of ε̄(z) and more accurate estimation of the optical Swank factor of scintillators. The method was applied to CsI scintillators with different thickness and optical design, and determined that optical design more strongly affects ε̄(z) and Swank factor than differences in CsI thickness. Despite large variations in ε̄(z) between optical designs, the Swank factor of all evaluated samples is above 0.9. Information provided by this methodology can help validate Monte Carlo simulations of structured CsI and optimize scintillator design for x-ray imaging applications. PMID:28039881</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18762261','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18762261"><span>Melatonin and roentgen irradiation-induced acute radiation enteritis in Albino rats: an animal model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hussein, Mahmoud R; Abu-Dief, Eman E; Kamel, Esam; Abou El-Ghait, Amal T; Abdulwahed, Saad Rezk; Ahmad, Mohamed H</p> <p>2008-11-01</p> <p>Roentgen irradiation can affect normal cells, especially the rapidly growing ones such as the mucosal epithelial cells of the small intestine. The small intestine is the most radiosensitive gastrointestinal organ and patients receiving radiotherapy directed to the abdomen or pelvis may develop radiation enteritis. Although roentgen rays are widely used for both imaging and therapeutic purposes, our knowledge about the morphological changes associated with radiation enteritis is lacking. This study tries to tests the hypothesis that "the intake of melatonin can minimize the morphological features of cell damage associated with radiation enteritis". We performed this investigation to test our hypothesis and to examine the possible radioprotective effects of melatonin in acute radiation enteritis. To achieve these goals, an animal model consisting of 60 Albino rats was established. The animals were divided into five groups: Group 1, non-irradiated; Group 2, X-ray irradiated (X-ray irradiation, 8 Grays); Group 3, X-ray irradiated-pretreated with solvent (ethanol and phosphate buffered saline); Group 4, non-irradiated-group treated with melatonin, and Group 5, X-ray irradiated-pretreated with melatonin. The small intestines were evaluated for gross (macroscopic), histological, morphometric (light microscopy), and ultrastructural changes (transmission electron microscopy). We found morphological variations among the non-irradiated-group, X-ray irradiated-group and X-ray irradiated-intestines of the animals pretreated with melatonin. The development of acute radiation enteritis in X-ray irradiated-group (Groups 2 and 3) was associated with symptoms of enteritis (diarrhea and abdominal distention) and histological features of mucosal injury (mucosal ulceration, necrosis of the epithelial cells). There was a significant reduction of the morphometric parameters (villous count, villous height, crypt height and villous/crypt height ratio). Moreover, the ultrastructural features of cell damage were evident including: apoptosis, lack of parallel arrangement of the microvilli, loss of the covering glycocalyx, desquamation of the microvilli, vacuolation of the apical parts of the cells, dilatation of the rough endoplasmic reticulum, and damage of the mitochondrial cristae. In the non-irradiated-group and in X-ray irradiated-intestines of the animals pretreated with melatonin (Group 5), these changes were absent and the intestinal mucosal structure was preserved. Administration of melatonin prior to irradiation can protect the intestine against X-rays destructive effects, i.e. radiation enteritis. The clinical applications of these observations await further studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1230019','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1230019"><span>Systems and methods that generate height map models for efficient three dimensional reconstruction from depth information</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Frahm, Jan-Michael; Pollefeys, Marc Andre Leon; Gallup, David Robert</p> <p>2015-12-08</p> <p>Methods of generating a three dimensional representation of an object in a reference plane from a depth map including distances from a reference point to pixels in an image of the object taken from a reference point. Weights are assigned to respective voxels in a three dimensional grid along rays extending from the reference point through the pixels in the image based on the distances in the depth map from the reference point to the respective pixels, and a height map including an array of height values in the reference plane is formed based on the assigned weights. An n-layer height map may be constructed by generating a probabilistic occupancy grid for the voxels and forming an n-dimensional height map comprising an array of layer height values in the reference plane based on the probabilistic occupancy grid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4822802-influence-rays-agglutination-reaction-animals-vaccinated-against-brucellosis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4822802-influence-rays-agglutination-reaction-animals-vaccinated-against-brucellosis"><span>THE INFLUENCE OF X-RAYS ON THE AGGLUTINATION REACTION IN ANIMALS VACCINATED AGAINST BRUCELLOSIS (in Russian)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhidovtsev, V.M.</p> <p>1961-08-01</p> <p>Tests on rabbits immunized with dry. live brucellosis vaccine and irradiated with 100, 200, and 400 r at the height of agglutination showed a drop in agglutin titer with increased x-ray dose. The higher the dose the faster is the drop n agglutin. (R.V.J.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21984216','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21984216"><span>Costo-iliac distance: a physical sign of understated importance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barry, P J; O'Mahony, D</p> <p>2012-03-01</p> <p>Osteoporosis is a common condition, especially affecting the older female population. The ability to predict loss of lumbar height using simple anatomical measurements would be a useful tool. Forty subjects were recruited. Mean age was 72 years. Arm span (AS) and the costo-iliac distance (CID) were measured. The CID/AS ratio was calculated. The L(1)-L(4) vertebral height of each patient was obtained from dual-energy X-ray absorptiometry (DEXA). There was a statistically significant correlation between the lumbar height and CID/AS ratio (R (2) = 0.79, p < 0.001). The CID/AS ratio may be a useful bedside test in identifying loss of lumbar vertebral height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10460E..1XL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10460E..1XL"><span>Solution algorithm of dwell time in slope-based figuring model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yong; Zhou, Lin</p> <p>2017-10-01</p> <p>Surface slope profile is commonly used to evaluate X-ray reflective optics, which is used in synchrotron radiation beam. Moreover, the measurement result of measuring instrument for X-ray reflective optics is usually the surface slope profile rather than the surface height profile. To avoid the conversion error, the slope-based figuring model is introduced introduced by processing the X-ray reflective optics based on surface height-based model. However, the pulse iteration method, which can quickly obtain the dell time solution of the traditional height-based figuring model, is not applied to the slope-based figuring model because property of the slope removal function have both positive and negative values and complex asymmetric structure. To overcome this problem, we established the optimal mathematical model for the dwell time solution, By introducing the upper and lower limits of the dwell time and the time gradient constraint. Then we used the constrained least squares algorithm to solve the dwell time in slope-based figuring model. To validate the proposed algorithm, simulations and experiments are conducted. A flat mirror with effective aperture of 80 mm is polished on the ion beam machine. After iterative polishing three times, the surface slope profile error of the workpiece is converged from RMS 5.65 μrad to RMS 1.12 μrad.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NIMPA.886...55Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NIMPA.886...55Q"><span>Characterization of a 6Li enriched Cs2LiYCl6:Ce scintillator and its application as a γ-ray detector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qin, Jianguo; Lai, Caifeng; Lu, Xinxin; Zheng, Pu; Zhu, Tonghua; Liu, Rong; Ye, Bangjiao; Zhang, Xinwei</p> <p>2018-04-01</p> <p>In this work, we characterize the γ-ray response and efficiency for a cylindrical inorganic Cs2LiYCl6:Ce detector 1‧‧ in diameter and 1‧‧ in height. The energy resolution and linearity are obtained from 21 γ-rays with energies ranging from 0.026 to 2.447 MeV. In addition, the neutron γ-ray discrimination is validated by measuring a 252Cf radioisotope. Gamma-ray response functions and matrix below 7 MeV are simulated using a Monte Carlo approach and validated through the unfolded γ-ray spectra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Ge%26Ae..57..859Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Ge%26Ae..57..859Z"><span>Modification of "Pressed" Atmospheres in Active Regions of Ultracool Stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.</p> <p>2017-12-01</p> <p>Ultracool stars usually have active regions, which is confirmed by their high-power radiofrequency emission modulated by the star axial rotation. The interpretation of this emission is commonly based on the electron cyclotron maser mechanism realized in the active regions. A plasma mechanism of radiofrequency emission is not considered, because ultracool star atmospheres are tightly "pressed" against the star surface, and the plasma frequency is much lower than the electron gyrofrequency ( f L ≪ f B) at the coronal levels. This paper explores active regions of ultracool stars for the possible existence of a system of coronal magnetic loops carrying electric current generated by photospheric convection. It is shown that current dissipation induces a temperature increase inside the loops to about 107 K, which causes an increase in the scale of height of the inhomogeneous atmosphere and, at the coronal levels, effectuates condition f L ≫ f B, at which the plasma mechanism of radiofrequency emission prevails over the electron cyclotron maser mechanism. The magnetic loop parameters, intensity of electric currents generated by the photospheric convection, and efficiency of plasma heating inside the magnetic loops are evaluated on the example of the brown dwarf TVLM513-46546. The scale of the height of the modified atmosphere, which appears to be comparable to the star radius, is calculated; it is shown that the soft X-ray flow created by the hot modified atmosphere inside a coronal magnetic loop is about equal to that observed for brown dwarf TVLM513-46546.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820017701&hterms=time+series+forecasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtime%2Bseries%2Bforecasting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820017701&hterms=time+series+forecasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtime%2Bseries%2Bforecasting"><span>Spatial and Temporal scales of time-averaged 700 MB height anomalies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gutzler, D.</p> <p>1981-01-01</p> <p>The monthly and seasonal forecasting technique is based to a large extent on the extrapolation of trends in the positions of the centers of time averaged geopotential height anomalies. The complete forecasted height pattern is subsequently drawn around the forecasted anomaly centers. The efficacy of this technique was tested and time series of observed monthly mean and 5 day mean 700 mb geopotential heights were examined. Autocorrelation statistics are generated to document the tendency for persistence of anomalies. These statistics are compared to a red noise hypothesis to check for evidence of possible preferred time scales of persistence. Space-time spectral analyses at middle latitudes are checked for evidence of periodicities which could be associated with predictable month-to-month trends. A local measure of the average spatial scale of anomalies is devised for guidance in the completion of the anomaly pattern around the forecasted centers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SeScT..29i5022G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SeScT..29i5022G"><span>Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.</p> <p>2014-09-01</p> <p>Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26859093','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26859093"><span>ABCD: Anthropometry, Body Composition, and Crohn Disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brookes, Denise S K; Briody, Julie N; Davies, Peter S W; Hill, Rebecca J</p> <p>2016-07-01</p> <p>Young individuals with Crohn disease (CD) are at risk of poor bone mineral density (BMD) and reduced lean tissue mass (LTM). The importance of LTM for maintaining skeletal health, in both incident and established CD, is evidenced. We used dual-energy x-ray absorptiometry assessment to identify areal BMD and LTM in individuals with CD. In 57 patients with CD (15F; 12.99-14.16 years) anthropometric, disease activity, bone age assessment, and total body dual-energy x-ray absorptiometry measurements were acquired. A 4-step algorithm was used to assess simultaneous bone and body composition data: areal BMD and height z scores, and LTM for height and bone mineral content (BMC) for LTM z scores were calculated. Low z score cut-off values were defined as ≤1 standard deviations below the population means. The CD cohort showed: low areal BMD z scores (P = 0.00); and low LTM for height (P = 0.00) according to defined cut-off values. BMC appeared to be adapting for the lower amount of LTM. Correcting for bone age eliminated the low areal BMD z scores. As expected, LTM for height and BMC for LTM z scores remained unchanged. We present a useful clinical algorithm to show significant LTM for height deficits, regardless of chronological or bone age, in this CD cohort. BMC seemed to adapt to the reduced LTM, indicating clinically "normal" areal BMD for age when considered for height. The ongoing deficits in LTM may, however, create chronic long-term consequences for bone health. Improving LTM should be a focus of clinical treatment in individuals with CD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24973611','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24973611"><span>Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed</p> <p>2014-11-01</p> <p>Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of vertical structure will be more accurate in plots having low herbaceous cover and high amounts of dense shrubs. Through the use of statistically derived correction factors or choosing field methods that better correlate with the imagery, vegetation heights from HR DSMs could be a valuable technique for broad-scale rangeland monitoring needs. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70115119','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70115119"><span>Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gillan, Jeffrey K.; Karl, Jason W.; Duniway, Michael; Elaksher, Ahmed</p> <p>2014-01-01</p> <p>Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of vertical structure will be more accurate in plots having low herbaceous cover and high amounts of dense shrubs. Through the use of statistically derived correction factors or choosing field methods that better correlate with the imagery, vegetation heights from HR DSMs could be a valuable technique for broad-scale rangeland monitoring needs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988SPIE..984..234H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988SPIE..984..234H"><span>Design of an imaging microscope for soft X-ray applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.</p> <p>1988-01-01</p> <p>An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19856424','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19856424"><span>Body size and human energy requirements: Reduced mass-specific total energy expenditure in tall adults.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heymsfield, Steven B; Pietrobelli, Angelo</p> <p>2010-01-01</p> <p>Mammalian resting energy expenditure (REE) increases as approximately weight(0.75) while mass-specific REE scales as approximately weight(-0.25). Energy needs for replacing resting losses are thus less relative to weight (W) in large compared with small mammals, a classic observation with biological implications. Human weight scales as approximately height(2) and tall adults thus have a greater weight than their short counterparts. However, it remains unknown if mass-specific energy requirements are less in tall adults; allometric models linking total energy expenditure (TEE) and weight with height (H) are lacking. We tested the hypothesis that mass-specific energy requirements scale inversely to height in adults by evaluating TEE (doubly labeled water) data collected by the National Academy of Sciences. Activity energy expenditure (AEE) was calculated from TEE, REE (indirect calorimetry), and estimated diet-induced energy expenditure. Main analyses focused on nonmorbidly obese subjects < or =50 yrs of age with non-negative AEE values (n = 404), although results were directionally similar for all samples. Allometric models, including age as a covariate, revealed significantly (P < 0.05) greater REE, AEE, and TEE as a function of height (range H(1.5-1.7)) in both men and women. TEE/W scaled negatively to height ( approximately H(-0.7), P < 0.01) with predicted mass-specific TEE (kcal/kg/d) at +/-2 SD for US height lower in tall compared with short men (40.3 vs. 46.5) and women (37.7 vs. 42.7). REE/W also scaled negatively to height in men (P < 0.001) and women (P < 0.01). Results were generally robust across several different analytic strategies. These observations reveal previously unforeseen associations between human stature and energy requirements that have implications for modeling efforts and provide new links to mammalian biology as a whole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PASJ...70R...1K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PASJ...70R...1K"><span>Diffuse X-ray sky in the Galactic center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koyama, Katsuji</p> <p>2018-01-01</p> <p>The Galactic diffuse X-ray emission (GDXE) in the Milky Way Galaxy is spatially and spectrally decomposed into the Galactic center X-ray emission (GCXE), the Galactic ridge X-ray emission (GRXE), and the Galactic bulge X-ray emission (GBXE). The X-ray spectra of the GDXE are characterized by the strong K-shell lines of the highly ionized atoms, and the brightest lines are the K-shell transition (principal quantum number transition of n = 2 → 1) of neutral iron (Fe I-Kα), He-like iron (Fe XXV-Heα), and He-like sulfur (S XV-Heα). Accordingly, the GDXE is composed of a high-temperature plasma of ˜7 keV (HTP) and a low-temperature plasma of ˜1 keV, which emit the Fe XXV-Heα and S XV-Heα lines, respectively. The Fe I-Kα line is emitted from nearly neutral irons, and hence the third component of the GDXE is a cool gas (CG). The Fe I-Kα distribution in the GCXE region is clumpy (Fe I-Kα clump), associated with giant molecular cloud (MC) complexes (Sagittarius A, B, C, D, and E) in the central molecular zone. The origin of the Fe I-Kα clumps is the fluorescence and Thomson scattering from the MCs irradiated by past big flares of the supermassive black hole Sagittarius A*. The scale heights and equivalent widths of the Fe I-Kα, Fe XXV-Heα, and Fe XXVI-Lyα (n = 2 → 1 transition of H-like iron) lines are different among the GCXE, GBXE, and GRXE. Therefore, their structures and origins are separately examined. This paper gives an overview of the research history and the present understandings of the GDXE, while in particular focusing on the origin of the HTP and CG in the GCXE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AnGeo..26.1731G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AnGeo..26.1731G"><span>Classification of X-ray solar flares regarding their effects on the lower ionosphere electron density profile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grubor, D. P.; Ulić, D. M. Å.; Žigman, V.</p> <p>2008-06-01</p> <p>The classification of X-ray solar flares is performed regarding their effects on the Very Low Frequency (VLF) wave propagation along the Earth-ionosphere waveguide. The changes in propagation are detected from an observed VLF signal phase and amplitude perturbations, taking place during X-ray solar flares. All flare effects chosen for the analysis are recorded by the Absolute Phase and Amplitude Logger (AbsPal), during the summer months of 2004-2007, on the single trace, Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E) with a distance along the Great Circle Path (GCP) D≍2000 km in length. The observed VLF amplitude and phase perturbations are simulated by the computer program Long-Wavelength Propagation Capability (LWPC), using Wait's model of the lower ionosphere, as determined by two parameters: the sharpness (β in 1/km) and reflection height (H' in km). By varying the values of β and H' so as to match the observed amplitude and phase perturbations, the variation of the D-region electron density height profile Ne(z) was reconstructed, throughout flare duration. The procedure is illustrated as applied to a series of flares, from class C to M5 (5×10-5 W/m2 at 0.1-0.8 nm), each giving rise to a different time development of signal perturbation. The corresponding change in electron density from the unperturbed value at the unperturbed reflection height, i.e. Ne(74 km)=2.16×108 m-3 to the value induced by an M5 class flare, up to Ne(74 km)=4×1010 m-3 is obtained. The β parameter is found to range from 0.30-0.49 1/km and the reflection height H' to vary from 74-63 km. The changes in Ne(z) during the flares, within height range z=60 to 90 km are determined, as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://medlineplus.gov/ency/article/001656.htm','NIH-MEDLINEPLUS'); return false;" href="https://medlineplus.gov/ency/article/001656.htm"><span>Noonan syndrome</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... ray , or echocardiogram Hearing tests Growth hormone levels Genetic testing can help diagnose this syndrome. ... Problems with the structure of the heart Short height Social problems due to physical symptoms</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JSWSC...2A..21K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JSWSC...2A..21K"><span>Adjustments of the TaD electron density reconstruction model with GNSS-TEC parameters for operational application purposes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kutiev, Ivan; Marinov, Pencho; Fidanova, Stefka; Belehaki, Anna; Tsagouri, Ioanna</p> <p>2012-12-01</p> <p>Validation results on the latest version of TaD model (TaDv2) show realistic reconstruction of the electron density profiles (EDPs) with an average error of 3 TECU, similar to the error obtained from GNSS-TEC calculated paremeters. The work presented here has the aim to further improve the accuracy of the TaD topside reconstruction, adjusting the TEC parameter calculated from TaD model with the TEC parameter calculated by GNSS transmitting RINEX files provided by receivers co-located with the Digisondes. The performance of the new version is tested during a storm period demonstrating further improvements in respect to the previous version. Statistical comparison of modeled and observed TEC confirms the validity of the proposed adjustment. A significant benefit of the proposed upgrade is that it facilitates the real-time implementation of TaD. The model needs a reliable measure of the scale height at the peak height, which is supposed to be provided by Digisondes. Oftenly, the automatic scaling software fails to correctly calculate the scale height at the peak, Hm, due to interferences in the receiving signal. Consequently the model estimated topside scale height is wrongly calculated leading to unrealistic results for the modeled EDP. The proposed TEC adjustment forces the model to correctly reproduce the topside scale height, despite the inaccurate values of Hm. This adjustment is very important for the application of TaD in an operational environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1850m0006L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1850m0006L"><span>Reflectance degradation of a secondary concentrator by nitrate salt vapor deposition in an open volumetric receiver configuration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lahlou, Radia; Armstrong, Peter R.; Calvet, Nicolas; Shamim, Tariq</p> <p>2017-06-01</p> <p>Nitrate salt vapor deposition on the reflecting surface of a secondary concentrator placed on top of an open molten salt tank at 500 °C is investigated using a lab-scale setup over an 8h-exposure cycle. Deposition, consisting of mostly spherical particles, is characterized in terms of chemical composition using energy dispersive X-ray spectroscopy. The corresponding specular reflectance degradation both temporary (before washing off the salt deposits) and permanent (residual reflectance loss after cleaning), is measured at different incidence angles and at reference points located at different heights. Reflectance drop due to salt deposits is compared to the one resulting from dust deposition. Long-term reflectance degradation by means of corrosion needs to be further studied through suitable accelerated aging tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1377529-controllable-growth-vertically-aligned-graphene-face-sic','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1377529-controllable-growth-vertically-aligned-graphene-face-sic"><span>Controllable growth of vertically aligned graphene on C-face SiC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Liu, Yu; Chen, Lianlian; Hilliard, Donovan; ...</p> <p>2016-10-06</p> <p>We investigated how to control the growth of vertically aligned graphene on C-face SiC by varying the processing conditions. It is found that, the growth rate scales with the annealing temperature and the graphene height is proportional to the annealing time. Temperature gradient and crystalline quality of the SiC substrates influence their vaporization. The partial vapor pressure is crucial as it can interfere with further vaporization. A growth mechanism is proposed in terms of physical vapor transport. The monolayer character of vertically aligned graphene is verified by Raman and X-ray absorption spectroscopy. With the processed samples, d 0 magnetism ismore » realized and negative magnetoresistance is observed after Cu implantation. We also prove that multiple carriers exist in vertically aligned graphene.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApSS..416...51Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApSS..416...51Y"><span>Effect of angle of deposition on the Fractal properties of ZnO thin film surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yadav, R. P.; Agarwal, D. C.; Kumar, Manvendra; Rajput, Parasmani; Tomar, D. S.; Pandey, S. N.; Priya, P. K.; Mittal, A. K.</p> <p>2017-09-01</p> <p>Zinc oxide (ZnO) thin films were prepared by atom beam sputtering at various deposition angles in the range of 20-75°. The deposited thin films were examined by glancing angle X-ray diffraction and atomic force microscopy (AFM). Scaling law analysis was performed on AFM images to show that the thin film surfaces are self-affine. Fractal dimension of each of the 256 vertical sections along the fast scan direction of a discretized surface, obtained from the AFM height data, was estimated using the Higuchi's algorithm. Hurst exponent was computed from the fractal dimension. The grain sizes, as determined by applying self-correlation function on AFM micrographs, varied with the deposition angle in the same manner as the Hurst exponent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1377529','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1377529"><span>Controllable growth of vertically aligned graphene on C-face SiC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Yu; Chen, Lianlian; Hilliard, Donovan</p> <p></p> <p>We investigated how to control the growth of vertically aligned graphene on C-face SiC by varying the processing conditions. It is found that, the growth rate scales with the annealing temperature and the graphene height is proportional to the annealing time. Temperature gradient and crystalline quality of the SiC substrates influence their vaporization. The partial vapor pressure is crucial as it can interfere with further vaporization. A growth mechanism is proposed in terms of physical vapor transport. The monolayer character of vertically aligned graphene is verified by Raman and X-ray absorption spectroscopy. With the processed samples, d 0 magnetism ismore » realized and negative magnetoresistance is observed after Cu implantation. We also prove that multiple carriers exist in vertically aligned graphene.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H13B1316S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H13B1316S"><span>Pore-scale dynamics of salt transport in drying porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shokri, N.</p> <p>2013-12-01</p> <p>Understanding the physics of water evaporation from saline porous media is important in many hydrological processes such as land-atmosphere interactions, water management, vegetation, soil salinity, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 microns and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron X-rays energies immediately above (33.2690 keV) and below (33.0690 keV) the K-edge value of Iodine (33.1694 keV). Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. The experiment was continued for 12 hours. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. The Peclet number (describing the competition between convection and diffusion) was greater than one in our experiment resulting in higher salt concentrations closer to the evaporation surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray micro-tomography as an effective tool to investigate the dynamics of dissolved salt transport in porous media with high spatial and temporal resolutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJRSP..43..197T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJRSP..43..197T"><span>Study of solar flare induced D-region ionosphere changes using VLF amplitude observations at a low latitude site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tan, L. M.; Thu, N. N.; Ha, T. Q.; Marbouti, M.</p> <p>2014-06-01</p> <p>About 26 solar flare events from C2.56 to X3.2 classes were obtained and analyzed at Tay Nguyen University, Vietnam (12.56°N, 108.02°E) during May - December 2013 using very low frequency remote sensing to understand the responses of low latitude D-region ionosphere during solar flares. The observed VLF amplitude perturbations are used as the input parameters for the simulated Long Wavelength Propagation Capability (LWPC) program, using Wait's model of lower ionosphere, to calculate two Wait's parameters, viz. the reflection height (H') and the sharpness factor (?). The results reveal that when X-ray irradiance is increased, ? increased from 0.3 to 0.506 km-1, while H' decreased from 74 to 60 km. The electron density increased at the height of 74 km with 1-3 orders of magnitude during solar flares. These phenomena can be explained as: the ionization due to X-ray irradiance becomes greater than that due to cosmic rays and Lyman-α radiation, which increases the electron density profile. The present results are in agreement with the earlier results. The 3D representation of the electron density changes with altitude and time supports to fully understand the shape of the electron density changes due to X-ray flares. The shape variation of electron density is roughly followed to the variation of the amplitude perturbation and keeps this rule for different altitudes. It is also found that the electron density versus the height in lower latitude D-region ionosphere increases more rapidly during solar flares.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014cosp...40E1103G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014cosp...40E1103G"><span>Real-time reconstruction of topside ionosphere scale height from coordinated GPS-TEC and ionosonde observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gulyaeva, Tamara; Poustovalova, Ljubov</p> <p></p> <p>The International Reference Ionosphere model extended to the plasmasphere, IRI-Plas, has been recently updated for assimilation of total electron content, TEC, derived from observations with Global Navigation Satellite System, GNSS. The ionosonde products of the F2 layer peak density (NmF2) and height (hmF2) ensure true electron density maximum at the F2 peak. The daily solar and magnetic indices used by IRI-Plas code are compiled in data files including the 3-hour ap and kp magnetic index from 1958 onward, 12-monthly smoothed sunspot number R12 and Global Electron Content GEC12, daily solar radio flux F10.7 and daily sunspot number Ri. The 3-h ap-index is available in Real Time, RT, mode from GFZ, Potsdam, Germany, daily update of F10.7 is provided by Space Weather Canada service, and daily estimated international sunspot number Ri is provided by Solar Influences Data Analysis Center, SIDC, Belgium. For IRI-Plas-RT operation in regime of the daily update and prediction of the F2 layer peak parameters, the proxy kp and ap forecast for 3 to 24 hours ahead based on data for preceding 12 hours is applied online at http://www.izmiran.ru/services/iweather/. The topside electron density profile of IRI-Plas code is expressed with complementary half-peak density anchor height above hmF2 which corresponds to transition O+/H+ height. The present investigation is focused on reconstruction of topside ionosphere scale height using vertical total electron content (TEC) data derived from the Global Positioning System GPS observations and the ionosonde derived F2 layer peak parameters from 25 observatories ingested into IRI-Plas model. GPS-TEC and ionosonde measurements at solar maximum (September, 2002, and October, 2003) for quiet, positively disturbed, and negatively disturbed days of the month are used to obtain the topside scale height, Htop, representing the range of altitudes from hmF2 to the height where NmF2 decay by e times occurs. Mapping of the F2 layer peak parameters and TEC allows interpolate these parameters at coordinated grid sites from independent GPS receivers and ionosondes data. Exponential scale height Htop exceeds scale height HT of the α-Chapman layer by 3 times - the latter refers to a narrow altitude range from hmF2 to the height of 1.2 times decay of NmF2. While typical quiet daytime value of the topside scale height is around 200 km, it can be enhanced by 2-3 times during the negative phase of the ionospheric storm as it is captured by IRI-Plas-RT model ingesting the F2 peak and TEC data. This study is supported by the joint grant of RFBR 13-02-91370-CT_a and TUBITAK 112E568.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........28H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........28H"><span>Midlatitude D region variations measured from broadband radio atmospherics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Feng</p> <p></p> <p>The high power, broadband very low frequency (VLF, 3--30 kHz) and extremely low frequency (ELF, 3--3000 Hz) electromagnetic waves generated by lightning discharges and propagating in the Earth-ionosphere waveguide can be used to measure the average electron density profile of the lower ionosphere (D region) across the wave propagation path due to several reflections by the upper boundary (lower ionosphere) of the waveguide. This capability makes it possible to frequently and even continuously monitor the D region electron density profile variations over geographically large regions, which are measurements that are essentially impossible by other means. These guided waves, usually called atmospherics (or sferics for short), are recorded by our sensors located near Duke University. The purpose of this work is to develop and implement algorithms to derive the variations of D region electron density profile which is modeled by two parameters (one is height and another is sharpness), by comparing the recorded sferic spectra to a series of model simulated sferic spectra from using a finite difference time domain (FDTD) code. In order to understand the time scales, magnitudes and sources for the midlatitude nighttime D region variations, we analyzed the sferic data of July and August 2005, and extracted both the height and sharpness of the D region electron density profile. The heights show large temporal variations of several kilometers on some nights and the relatively stable behavior on others. Statistical calculations indicate that the hourly average heights during the two months range between 82.0 km and 87.2 km with a mean value of 84.9 km and a standard deviation of 1.1 km. We also observed spatial variations of height as large as 2.0 km over 5 degrees latitudes on some nights, and no spatial variation on others. In addition, the measured height variations exhibited close correlations with local lightning occurrence rate on some nights but no correlation with local lightning or displaced lightning on others. The nighttime profile sharpness during 2.5 hours in two different nights was calculated, and the results were compared to the equivalent sharpness derived from International Reference Ionosphere (IRI) models. Both the absolute values and variation trends in IRI models are different from those in broadband measurements. Based on sferic data similar to those for nighttime, we also measured the day-time D region electron density profile variations in July and August 2005 near Duke University. As expected, the solar radiation is the dominant but not the only determinant source for the daytime D region profile height temporal variations. The observed quiet time heights showed close correlations with solar zenith angle changes but unexpected spatial variations not linked to the solar zenith angle were also observed on some days, with 15% of days exhibiting regional differences larger than 0.5 km. During the solar flare, the induced height change was approximately proportional to the logarithm of the X-ray fluxes. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short (wavelength 0.5--4 A), rather than the long (wavelength 1--8 A) X-ray flux changes. The daytime profile sharpness during morning, noontime and afternoon periods in three different days and for the solar zenith angle range 20 to 75 degrees was calculated. These broadband measured results were compared to narrowband VLF measurements, IRI models and Faraday rotation base IRI models (called FIRI). The estimated sharpness from all these sources was more consistent when the solar zenith angle was small than when it was large. By applying the nighttime and daytime measurement techniques, we also derived the D region variations during sunrise and sunset periods. The measurements showed that both the electron density profile height and sharpness decrease during the sunrise period while increase during the sunset period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002653','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002653"><span>Spaceborne Potential for Examining Taiga-Tundra Ecotone Form and Vulnerability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Montesano, Paul M.; Sun, Guoqing; Dubayah, Ralph O.; Ranson, K. Jon</p> <p>2016-01-01</p> <p>In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and heterogeneous structural changes that occur across the broad circumpolar extent. Such changes may be related to ecotone form, described by the horizontal and vertical patterns of forest structure (e.g., tree cover, density and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, variable and widespread vegetation change warrants the application of spaceborne data including high-resolution (less than 5m) spaceborne imagery (HRSI) across broad scales for examining TTE form and predicting dynamics. This study analyzes forest structure at the patch-scale in the TTE to provide a means to examine both vertical and horizontal components of ecotone form. We demonstrate the potential of spaceborne data for integrating forest height and density to assess TTE form at the scale of forest patches across the circumpolar biome by (1) mapping forest patches in study sites along the TTE in northern Siberia with a multi-resolution suite of spaceborne data, and (2) examining the uncertainty of forest patch height from this suite of data across sites of primarily diffuse TTE forms. Results demonstrate the opportunities for improving patch-scale spaceborne estimates of forest height, the vertical component of TTE form, with HRSI. The distribution of relative maximum height uncertainty based on prediction intervals is centered at approximately 40%, constraining the use of height for discerning differences in forest patches. We discuss this uncertainty in light of a conceptual model of general ecotone forms, and highlight how the uncertainty of spaceborne estimates of height can contribute to the uncertainty in identifying TTE forms. A focus on reducing the uncertainty of height estimates in forest patches may improve depiction of TTE form, which may help explain variable forest responses in the TTE to climate change and the vulnerability of portions of the TTE to forest structure change. structural changes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BGeo...13.3847M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BGeo...13.3847M"><span>Spaceborne potential for examining taiga-tundra ecotone form and vulnerability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montesano, Paul M.; Sun, Guoqing; Dubayah, Ralph O.; Ranson, K. Jon</p> <p>2016-07-01</p> <p>In the taiga-tundra ecotone (TTE), site-dependent forest structure characteristics can influence the subtle and heterogeneous structural changes that occur across the broad circumpolar extent. Such changes may be related to ecotone form, described by the horizontal and vertical patterns of forest structure (e.g., tree cover, density, and height) within TTE forest patches, driven by local site conditions, and linked to ecotone dynamics. The unique circumstance of subtle, variable, and widespread vegetation change warrants the application of spaceborne data including high-resolution (< 5 m) spaceborne imagery (HRSI) across broad scales for examining TTE form and predicting dynamics. This study analyzes forest structure at the patch scale in the TTE to provide a means to examine both vertical and horizontal components of ecotone form. We demonstrate the potential of spaceborne data for integrating forest height and density to assess TTE form at the scale of forest patches across the circumpolar biome by (1) mapping forest patches in study sites along the TTE in northern Siberia with a multi-resolution suite of spaceborne data and (2) examining the uncertainty of forest patch height from this suite of data across sites of primarily diffuse TTE forms. Results demonstrate the opportunities for improving patch-scale spaceborne estimates of forest height, the vertical component of TTE form, with HRSI. The distribution of relative maximum height uncertainty based on prediction intervals is centered at ˜ 40 %, constraining the use of height for discerning differences in forest patches. We discuss this uncertainty in light of a conceptual model of general ecotone forms and highlight how the uncertainty of spaceborne estimates of height can contribute to the uncertainty in identifying TTE forms. A focus on reducing the uncertainty of height estimates in forest patches may improve depiction of TTE form, which may help explain variable forest responses in the TTE to climate change and the vulnerability of portions of the TTE to forest structure change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002315&hterms=porter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dporter','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002315&hterms=porter&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3Dporter"><span>Progress Towards Improved Analysis of TES X-ray Data Using Principal Component Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Busch, S. E.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Fixsen, D. J.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170002315'); toggleEditAbsImage('author_20170002315_show'); toggleEditAbsImage('author_20170002315_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170002315_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170002315_hide"></p> <p>2015-01-01</p> <p>The traditional method of applying a digital optimal filter to measure X-ray pulses from transition-edge sensor (TES) devices does not achieve the best energy resolution when the signals have a highly non-linear response to energy, or the noise is non-stationary during the pulse. We present an implementation of a method to analyze X-ray data from TESs, which is based upon principal component analysis (PCA). Our method separates the X-ray signal pulse into orthogonal components that have the largest variance. We typically recover pulse height, arrival time, differences in pulse shape, and the variation of pulse height with detector temperature. These components can then be combined to form a representation of pulse energy. An added value of this method is that by reporting information on more descriptive parameters (as opposed to a single number representing energy), we generate a much more complete picture of the pulse received. Here we report on progress in developing this technique for future implementation on X-ray telescopes. We used an 55Fe source to characterize Mo/Au TESs. On the same dataset, the PCA method recovers a spectral resolution that is better by a factor of two than achievable with digital optimal filters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001NIMPA.467.1269P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001NIMPA.467.1269P"><span>Deep X-ray lithography for the fabrication of microstructures at ELSA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pantenburg, F. J.; Mohr, J.</p> <p>2001-07-01</p> <p>Two beamlines at the Electron Stretcher Accelerator (ELSA) of Bonn University are dedicated for the production of microstructures by deep X-ray lithography with synchrotron radiation. They are equipped with state-of-the-art X-ray scanners, maintained and used by Forschungszentrum Karlsruhe. Polymer microstructure heights between 30 and 3000 μm are manufactured regularly for research and industrial projects. This requires different characteristic energies. Therefore, ELSA operates routinely at 1.6, 2.3 and 2.7 GeV, for high-resolution X-ray mask fabrication, deep and ultra-deep X-ray lithography, respectively. The experimental setup, as well as the structure quality of deep and ultra deep X-ray lithographic microstructures are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20496869','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20496869"><span>Achieving a stable time response in polymeric radiation sensors under charge injection by X-rays.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Intaniwet, Akarin; Mills, Christopher A; Sellin, Paul J; Shkunov, Maxim; Keddie, Joseph L</p> <p>2010-06-01</p> <p>Existing inorganic materials for radiation sensors suffer from several drawbacks, including their inability to cover large curved areas, lack of tissue-equivalence, toxicity, and mechanical inflexibility. As an alternative to inorganics, poly(triarylamine) (PTAA) diodes have been evaluated for their suitability for detecting radiation via the direct creation of X-ray induced photocurrents. A single layer of PTAA is deposited on indium tin oxide (ITO) substrates, with top electrodes selected from Al, Au, Ni, and Pd. The choice of metal electrode has a pronounced effect on the performance of the device; there is a direct correlation between the diode rectification factor and the metal-PTAA barrier height. A diode with an Al contact shows the highest quality of rectifying junction, and it produces a high X-ray photocurrent (several nA) that is stable during continuous exposure to 50 kV Mo Kalpha X-radiation over long time scales, combined with a high signal-to-noise ratio with fast response times of less than 0.25 s. Diodes with a low band gap, 'Ohmic' contact, such as ITO/PTAA/Au, show a slow transient response. This result can be explained by the build-up of space charge at the metal-PTAA interface, caused by a high level of charge injection due to X-ray-induced carriers. These data provide new insights into the optimum selection of metals for Schottky contacts on organic materials, with wider applications in light sensors and photovoltaic devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...848...13G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...848...13G"><span>Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Güngör, C.; Ekşi, K. Y.; Göğüş, E.; Güver, T.</p> <p>2017-10-01</p> <p>Aql X-1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer/proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X-1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propeller stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X-1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.118....1N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.118....1N"><span>Internal wave scattering in continental slope canyons, part 1: Theory and development of a ray tracing algorithm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nazarian, Robert H.; Legg, Sonya</p> <p>2017-10-01</p> <p>When internal waves interact with topography, such as continental slopes, they can transfer wave energy to local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the effects of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation). This effort is divided into two parts. In the first part, presented here, we extend the theory of 3-dimensional internal wave reflection to a rotated coordinate system aligned with our idealized V-shaped canyons. Based on the updated linear internal wave reflection solution that we derive, we construct a ray tracing algorithm which traces a large number of rays (the discrete analog of a continuous wave) into the canyon region where they can scatter off topography. Although a ray tracing approach has been employed in other studies, we have, for the first time, used ray tracing to calculate changes in wavenumber and ray density which, in turn, can be used to calculate the Froude number (a measure of the likelihood of instability). We show that for canyons of intermediate aspect ratio, large spatial envelopes of instability can form in the presence of supercritical sidewalls. Additionally, the canyon height and length can modulate the Froude number. The second part of this study, a diagnosis of internal wave scattering in continental slope canyons using both numerical simulations and this ray tracing algorithm, as well as a test of robustness of the ray tracing, is presented in the companion article.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26764800','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26764800"><span>Mathematical model for logarithmic scaling of velocity fluctuations in wall turbulence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mouri, Hideaki</p> <p>2015-12-01</p> <p>For wall turbulence, moments of velocity fluctuations are known to be logarithmic functions of the height from the wall. This logarithmic scaling is due to the existence of a characteristic velocity and to the nonexistence of any characteristic height in the range of the scaling. By using the mathematics of random variables, we obtain its necessary and sufficient conditions. They are compared with characteristics of a phenomenological model of eddies attached to the wall and also with those of the logarithmic scaling of the mean velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800015419','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800015419"><span>Shuttle program: Computing atmospheric scale height for refraction corrections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lear, W. M.</p> <p>1980-01-01</p> <p>Methods for computing the atmospheric scale height to determine radio wave refraction were investigated for different atmospheres, and different angles of elevation. Tables of refractivity versus altitude are included. The equations used to compute the refraction corrections are given. It is concluded that very accurate corrections are determined with the assumption of an exponential atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/18486','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/18486"><span>An empirical InSAR-optical fusion approach to mapping vegetation canopy height</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Wayne S. Walker; Josef M. Kellndorfer; Elizabeth LaPoint; Michael Hoppus; James Westfall</p> <p>2007-01-01</p> <p>Exploiting synergies afforded by a host of recently available national-scale data sets derived from interferometric synthetic aperture radar (InSAR) and passive optical remote sensing, this paper describes the development of a novel empirical approach for the provision of regional- to continental-scale estimates of vegetation canopy height. Supported by data from the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27554367','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27554367"><span>The influence of operator position, height and body orientation on eye lens dose in interventional radiology and cardiology: Monte Carlo simulations versus realistic clinical measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Principi, S; Farah, J; Ferrari, P; Carinou, E; Clairand, I; Ginjaume, M</p> <p>2016-09-01</p> <p>This paper aims to provide some practical recommendations to reduce eye lens dose for workers exposed to X-rays in interventional cardiology and radiology and also to propose an eye lens correction factor when lead glasses are used. Monte Carlo simulations are used to study the variation of eye lens exposure with operator position, height and body orientation with respect to the patient and the X-ray tube. The paper also looks into the efficiency of wraparound lead glasses using simulations. Computation results are compared with experimental measurements performed in Spanish hospitals using eye lens dosemeters as well as with data from available literature. Simulations showed that left eye exposure is generally higher than the right eye, when the operator stands on the right side of the patient. Operator height can induce a strong dose decrease by up to a factor of 2 for the left eye for 10-cm-taller operators. Body rotation of the operator away from the tube by 45°-60° reduces eye exposure by a factor of 2. The calculation-based correction factor of 0.3 for wraparound type lead glasses was found to agree reasonably well with experimental data. Simple precautions, such as the positioning of the image screen away from the X-ray source, lead to a significant reduction of the eye lens dose. Measurements and simulations performed in this work also show that a general eye lens correction factor of 0.5 can be used when lead glasses are worn regardless of operator position, height and body orientation. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17192815','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17192815"><span>Comparison of techniques for correction of magnification of pelvic X-rays for hip surgery planning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>The, Bertram; Kootstra, Johan W J; Hosman, Anton H; Verdonschot, Nico; Gerritsma, Carina L E; Diercks, Ron L</p> <p>2007-12-01</p> <p>The aim of this study was to develop an accurate method for correction of magnification of pelvic x-rays to enhance accuracy of hip surgery planning. All investigated methods aim at estimating the anteroposterior location of the hip joint in supine position to correctly position a reference object for correction of magnification. An existing method-which is currently being used in clinical practice in our clinics-is based on estimating the position of the hip joint by palpation of the greater trochanter. It is only moderately accurate and difficult to execute reliably in clinical practice. To develop a new method, 99 patients who already had a hip implant in situ were included; this enabled determining the true location of the hip joint deducted from the magnification of the prosthesis. Physical examination was used to obtain predictor variables possibly associated with the height of the hip joint. This included a simple dynamic hip joint examination to estimate the position of the center of rotation. Prediction equations were then constructed using regression analysis. The performance of these prediction equations was compared with the performance of the existing protocol. The mean absolute error in predicting the height of the hip joint center using the old method was 20 mm (range -79 mm to +46 mm). This was 11 mm for the new method (-32 mm to +39 mm). The prediction equation is: height (mm) = 34 + 1/2 abdominal circumference (cm). The newly developed prediction equation is a superior method for predicting the height of the hip joint center for correction of magnification of pelvic x-rays. We recommend its implementation in the departments of radiology and orthopedic surgery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/25599','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/25599"><span>Determination of the maximum MGS mounting height : phase II detailed analysis with LS-DYNA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2012-12-01</p> <p>Determination of the maximum Midwest Guardrail System (MGS) mounting height was performed in two phases. : Phase I concentrated on crash testing: two full-scale crash tests were performed on the MGS with top-rail mounting heights : of 34 in. (864 mm)...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B3..617K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B3..617K"><span>Automatically Determining Scale Within Unstructured Point Clouds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kadamen, Jayren; Sithole, George</p> <p>2016-06-01</p> <p>Three dimensional models obtained from imagery have an arbitrary scale and therefore have to be scaled. Automatically scaling these models requires the detection of objects in these models which can be computationally intensive. Real-time object detection may pose problems for applications such as indoor navigation. This investigation poses the idea that relational cues, specifically height ratios, within indoor environments may offer an easier means to obtain scales for models created using imagery. The investigation aimed to show two things, (a) that the size of objects, especially the height off ground is consistent within an environment, and (b) that based on this consistency, objects can be identified and their general size used to scale a model. To test the idea a hypothesis is first tested on a terrestrial lidar scan of an indoor environment. Later as a proof of concept the same test is applied to a model created using imagery. The most notable finding was that the detection of objects can be more readily done by studying the ratio between the dimensions of objects that have their dimensions defined by human physiology. For example the dimensions of desks and chairs are related to the height of an average person. In the test, the difference between generalised and actual dimensions of objects were assessed. A maximum difference of 3.96% (2.93cm) was observed from automated scaling. By analysing the ratio between the heights (distance from the floor) of the tops of objects in a room, identification was also achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21358817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21358817"><span>The influence of recent climate change on tree height growth differs with species and spatial environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Messaoud, Yassine; Chen, Han Y H</p> <p>2011-02-16</p> <p>Tree growth has been reported to increase in response to recent global climate change in controlled and semi-controlled experiments, but few studies have reported response of tree growth to increased temperature and atmospheric carbon dioxide (CO₂) concentration in natural environments. This study addresses how recent global climate change has affected height growth of trembling aspen (Populus tremuloides Michx) and black spruce (Picea mariana Mill B.S.) in their natural environments. We sampled 145 stands dominated by aspen and 82 dominated by spruce over the entire range of their distributions in British Columbia, Canada. These stands were established naturally after fire between the 19th and 20th centuries. Height growth was quantified as total heights of sampled dominant and co-dominant trees at breast-height age of 50 years. We assessed the relationships between 50-year height growth and environmental factors at both spatial and temporal scales. We also tested whether the tree growth associated with global climate change differed with spatial environment (latitude, longitude and elevation). As expected, height growth of both species was positively related to temperature variables at the regional scale and with soil moisture and nutrient availability at the local scale. While height growth of trembling aspen was not significantly related to any of the temporal variables we examined, that of black spruce increased significantly with stand establishment date, the anomaly of the average maximum summer temperature between May-August, and atmospheric CO₂ concentration, but not with the Palmer Drought Severity Index. Furthermore, the increase of spruce height growth associated with recent climate change was higher in the western than in eastern part of British Columbia. This study demonstrates that the response of height growth to recent climate change, i.e., increasing temperature and atmospheric CO₂ concentration, did not only differ with tree species, but also their growing spatial environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25101782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25101782"><span>The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J</p> <p>2014-01-01</p> <p>Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r(2) = ∼ 0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r(2) = ∼ 0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of forest bird species. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4125162','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4125162"><span>The Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird Species Richness across the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J.</p> <p>2014-01-01</p> <p>Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r2 = ∼0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r2 = ∼0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of forest bird species. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness. PMID:25101782</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820054527&hterms=oso&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doso','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820054527&hterms=oso&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doso"><span>Vertical flows of supergranular and mesogranular scale observed on the sun with OSO 8</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>November, L. J.; Toomre, J.; Gebbie, K. B.; Simon, G. W.</p> <p>1982-01-01</p> <p>A program of observations was carried out in order to study the penetration of supergranular flows over a broad range of heights in the solar atmosphere. Steady Doppler velocities are determined from observations of a Si II spectral line using the Ultraviolet Spectrometer on the Orbiting Solar Observatory 8 (OSO 8) satellite and Fe I and Mg I lines with the diode-array instrument on the vacuum telescope at Sacramento Peak Observatory (SPO). The heights of formation of these spectral lines span about 1400 km or nearly 11 density scale heights from the photosphere to the middle chromosphere. Steady vertical flows on spatial scales typical of supergranulation and mesogranulation have been detected in the middle chromosphere with OSO 8. The patterns of intensity and steady velocity of granular scale are reproducible in successive data sets. The patterns appear to evolve slowly over the 9 hr period spanned by six orbits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040141567&hterms=devices+eye&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddevices%2Beye','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040141567&hterms=devices+eye&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddevices%2Beye"><span>Eye height scaling of absolute size in immersive and nonimmersive displays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dixon, M. W.; Wraga, M.; Proffitt, D. R.; Williams, G. C.; Kaiser, M. K. (Principal Investigator)</p> <p>2000-01-01</p> <p>Eye-height (EH) scaling of absolute height was investigated in three experiments. In Experiment 1, standing observers viewed cubes in an immersive virtual environment. Observers' center of projection was placed at actual EH and at 0.7 times actual EH. Observers' size judgments revealed that the EH manipulation was 76.8% effective. In Experiment 2, seated observers viewed the same cubes on an interactive desktop display; however, no effect of EH was found in response to the simulated EH manipulation. Experiment 3 tested standing observers in the immersive environment with the field of view reduced to match that of the desktop. Comparable to Experiment 1, the effect of EH was 77%. These results suggest that EH scaling is not generally used when people view an interactive desktop display because the altitude of the center of projection is indeterminate. EH scaling is spontaneously evoked, however, in immersive environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA33A2596F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA33A2596F"><span>Analysis of the Effect of Electron Density Perturbations Generated by Gravity Waves on HF Communication Links</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fagre, M.; Elias, A. G.; Chum, J.; Cabrera, M. A.</p> <p>2017-12-01</p> <p>In the present work, ray tracing of high frequency (HF) signals in ionospheric disturbed conditions is analyzed, particularly in the presence of electron density perturbations generated by gravity waves (GWs). The three-dimensional numerical ray tracing code by Jones and Stephenson, based on Hamilton's equations, which is commonly used to study radio propagation through the ionosphere, is used. An electron density perturbation model is implemented to this code based upon the consideration of atmospheric GWs generated at a height of 150 km in the thermosphere and propagating up into the ionosphere. The motion of the neutral gas at these altitudes induces disturbances in the background plasma which affects HF signals propagation. To obtain a realistic model of GWs in order to analyze the propagation and dispersion characteristics, a GW ray tracing method with kinematic viscosity and thermal diffusivity was applied. The IRI-2012, HWM14 and NRLMSISE-00 models were incorporated to assess electron density, wind velocities, neutral temperature and total mass density needed for the ray tracing codes. Preliminary results of gravity wave effects on ground range and reflection height are presented for low-mid latitude ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.14611030U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.14611030U"><span>Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Cs-133 and I-127</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Umezawa, Seigo; Igashira, Masayuki; Katabuchi, Tatuya; Dominic, Moraru; Yanagida, Shotaro; Okamiya, Tomohiro</p> <p>2017-09-01</p> <p>The neutron capture cross sections and the capture gamma-ray spectra of 127I and 133Cs at incident neutron energies from 15 to 100 keV have been measured by the time-of-flight method. Capture gamma-rays were detected with an anti-Compton NaI(Tl) spectrometer, and the pulse-height weighting technique was applied to derive capture yields. The capture cross sections of 127I and 133Cs were determined using the standard capture cross section of 197Au. The total errors of the cross sections were 3.8-5.1%. The obtained cross sections were compared with evaluated values in JENDL-4.0 and ENDF/B-VII.1. For 127I, the energy dependence is different between the present results and the evaluations. For 133Cs, the evaluated values in JENDL-4.0 agree with the present results but the evaluated values in ENDF/B-VII.1 are smaller than the present results by 14%-18%. The capture gamma-ray spectra of 133Cs and 127I were derived by unfolding the pulse height spectra with detector response functions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22365467-imaging-observation-quasi-periodic-disturbances-amplitudes-increasing-height-polar-region-solar-corona','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22365467-imaging-observation-quasi-periodic-disturbances-amplitudes-increasing-height-polar-region-solar-corona"><span>Imaging observation of quasi-periodic disturbances' amplitudes increasing with height in the polar region of the solar corona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Su, J. T.; Priya, T. G.; Liu, Y.</p> <p></p> <p>At present, there have been few extreme ultraviolet (EUV) imaging observations of spatial variations of the density perturbations due to the slow magnetoacoustic waves (SMWs) propagating along the solar coronal magnetic fields. In this paper, we present such observations taken from the polar region of the corona with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory and investigate the amplitude of quasi-periodic propagating disturbances that increase with height in the lower corona (0-9 Mm over the solar limb). We statistically determined the following parameters associated with the disturbances: pressure scale height, period, and wavelength in AIA 171more » Å, 193 Å, and 211 Å channels. The scale height and wavelength are dependent of temperature, while the period is independent of temperature. The acoustic velocities inferred from the scale height highly correlate with the ratios of wavelength to period, i.e., phase speeds. They provide evidence that the propagating disturbances in the lower corona are likely SMWs and the spatial variations in EUV intensity in the polar region likely reflects the density compressional effect by the propagating SMWs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850000323&hterms=flight+simulator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dflight%2Bsimulator','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850000323&hterms=flight+simulator&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dflight%2Bsimulator"><span>Laser Altimeter for Flight Simulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Webster, L. D.</p> <p>1986-01-01</p> <p>Height of flight-simulator probe above model of terrain measured by automatic laser triangulation system. Airplane simulated by probe that moves over model of terrain. Altitude of airplane scaled from height of probe above model. Height measured by triangulation of laser beam aimed at intersection of model surface with plumb line of probe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770041757&hterms=pulse-shape+discrimination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpulse-shape%2Bdiscrimination','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770041757&hterms=pulse-shape+discrimination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpulse-shape%2Bdiscrimination"><span>The HEAO-A Scanning Modulation Collimator instrument</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roy, A.; Ballas, J.; Jagoda, N.; Mckinnon, P.; Ramsey, A.; Wester, E.</p> <p>1977-01-01</p> <p>The Scanning Modulation Collimator X-ray instrument for the HEAO-A satellite was designed to measure celestial radiation in the range between 1 and 15 KeV and to resolve, and correlate, the position of X-ray sources with visible light sources on the celestial sphere to within 5 arc seconds. The positional accuracy is made possible by mechanical collimation of the X-ray sources viewed by the instrument. High sensitivity is provided from two systems each containing four gas filled proportional counters followed by preamplification, signal summing, pulse height analysis, pulse shape discrimination, X-ray event accumulators and telemetry processing electronics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ISPAn.II2a.285V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ISPAn.II2a.285V"><span>Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.</p> <p>2013-09-01</p> <p>Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows that water barriers are better preserved with the new method. This research confirms the idea that topographical information, mainly the boundary locations and object classes, can enrich the height grid for this hydrological application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750020524','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750020524"><span>An investigation of the solar zenith angle variation of D-region ionization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ratnasiri, P. A. J.; Sechrist, C. F., Jr.</p> <p>1975-01-01</p> <p>Model calculations are carried out with a view to interpreting the solar zenith angle variation of D-region ionization. A model is developed for the neutral chemistry including the transport terms relating to molecular and eddy diffusion. The diurnal behavior is described of the minor neutral constituents formed in an oxygen-hydrogen-nitrogen atmosphere, in the height interval between 30 and 120 km. Computations carried out for two cases of the eddy diffusion coefficients models indicate that the constituents which are important for the D-region positive-ion chemistry do not show a significant variation with zenith angle for values up to 75 deg over the D-region heights. In the ion chemistry model, ion-pair production rates are calculated for solar X-rays between 1 A and 100 A, EUV radiations from 100 A up to the Lyman-alpha line, precipitating electrons, and galactic cosmic rays. The solar zenith angle variation of the positive-ion composition, negative-ion composition, and the electron densities are described up to 75 deg zenith angle, in the height interval between 60 and 100 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.476.1909A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.476.1909A"><span>Resolving the disc-halo degeneracy - I: a look at NGC 628</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aniyan, S.; Freeman, K. C.; Arnaboldi, M.; Gerhard, O. E.; Coccato, L.; Fabricius, M.; Kuijken, K.; Merrifield, M.; Ponomareva, A. A.</p> <p>2018-05-01</p> <p>The decomposition of the rotation curve of galaxies into contribution from the disc and dark halo remains uncertain and depends on the adopted mass-to-light ratio (M/L) of the disc. Given the vertical velocity dispersion of stars and disc scale height, the disc surface mass density and hence the M/L can be estimated. We address a conceptual problem with previous measurements of the scale height and dispersion. When using this method, the dispersion and scale height must refer to the same population of stars. The scale height is obtained from near-infrared (IR) studies of edge-on galaxies and is weighted towards older kinematically hotter stars, whereas the dispersion obtained from integrated light in the optical bands includes stars of all ages. We aim to extract the dispersion for the hotter stars, so that it can then be used with the correct scale height to obtain the disc surface mass density. We use a sample of planetary nebulae (PNe) as dynamical tracers in the face-on galaxy NGC 628. We extract two different dispersions from its velocity histogram - representing the older and younger PNe. We also present complementary stellar absorption spectra in the inner regions of this galaxy and use a direct pixel fitting technique to extract the two components. Our analysis concludes that previous studies, which do not take account of the young disc, underestimate the disc surface mass density by a factor of ˜2. This is sufficient to make a maximal disc for NGC 628 appear like a submaximal disc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.303..362H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.303..362H"><span>Scale-dependent behavior of the foredune: Implications for barrier island response to storms and sea-level rise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Houser, Chris; Wernette, Phil; Weymer, Bradley A.</p> <p>2018-02-01</p> <p>The impact of storm surge on a barrier island tends to be considered from a single cross-shore dimension, dependent on the relative elevations of the storm surge and dune crest. However, the foredune is rarely uniform and can exhibit considerable variation in height and width at a range of length scales. In this study, LiDAR data from barrier islands in Texas and Florida are used to explore how shoreline position and dune morphology vary alongshore, and to determine how this variability is altered or reinforced by storms and post-storm recovery. Wavelet analysis reveals that a power law can approximate historical shoreline change across all scales, but that storm-scale shoreline change ( 10 years) and dune height exhibit similar scale-dependent variations at swash and surf zone scales (< 1000 m). The in-phase nature of the relationship between dune height and storm-scale shoreline change indicates that areas of greater storm-scale shoreline retreat are associated with areas of smaller dunes. It is argued that the decoupling of storm-scale and historical shoreline change at swash and surf zone scales is also associated with the alongshore redistribution of sediment and the tendency of shorelines to evolve to a more diffusive (or straight) pattern with time. The wavelet analysis of the data for post-storm dune recovery is also characterized by red noise at the smallest scales characteristic of diffusive systems, suggesting that it is possible that small-scale variations in dune height can be repaired through alongshore recovery and expansion if there is sufficient time between storms. However, the time required for dune recovery exceeds the time between storms capable of eroding and overwashing the dune. Correlation between historical shoreline retreat and the variance of the dune at swash and surf zone scales suggests that the persistence of the dune is an important control on transgression through island migration or shoreline retreat with relative sea-level rise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998BAAS...30..769C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998BAAS...30..769C"><span>Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.</p> <p>1998-01-01</p> <p>Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CMaPh.tmp...55R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CMaPh.tmp...55R"><span>Dimers in Piecewise Temperleyan Domains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russkikh, Marianna</p> <p>2018-03-01</p> <p>We study the large-scale behavior of the height function in the dimer model on the square lattice. Richard Kenyon has shown that the fluctuations of the height function on Temperleyan discretizations of a planar domain converge in the scaling limit (as the mesh size tends to zero) to the Gaussian Free Field with Dirichlet boundary conditions. We extend Kenyon's result to a more general class of discretizations. Moreover, we introduce a new factorization of the coupling function of the double-dimer model into two discrete holomorphic functions, which are similar to discrete fermions defined in Smirnov (Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, 2006; Ann Math (2) 172:1435-1467, 2010). For Temperleyan discretizations with appropriate boundary modifications, the results of Kenyon imply that the expectation of the double-dimer height function converges to a harmonic function in the scaling limit. We use the above factorization to extend this result to the class of all polygonal discretizations, that are not necessarily Temperleyan. Furthermore, we show that, quite surprisingly, the expectation of the double-dimer height function in the Temperleyan case is exactly discrete harmonic (for an appropriate choice of Laplacian) even before taking the scaling limit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17823425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17823425"><span>Fetal programming of body dimensions and percentage body fat measured in prepubertal children with a 4-component model of body composition, dual-energy X-ray absorptiometry, deuterium dilution, densitometry, and skinfold thicknesses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elia, Marinos; Betts, Peter; Jackson, Diane M; Mulligan, Jean</p> <p>2007-09-01</p> <p>Intrauterine programming of body composition [percentage body fat (%BF)] has been sparsely examined with multiple independent reference techniques in children. The effects on and consequences of body build (dimensions, mass, and length of body segments) are unclear. The study examined whether percentage fat and relation of percentage fat to body mass index (BMI; in kg/m2) in prepubertal children are programmed during intrauterine development and are dependent on body build. It also aimed to examine the extent to which height can be predicted by parental height and birth weight. Eighty-five white children (44 boys, 41 girls; aged 6.5-9.1 y) had body composition measured with a 4-component model (n = 58), dual-energy X-ray absorptiometry (n = 84), deuterium dilution (n = 81), densitometry (n = 62), and skinfold thicknesses (n = 85). An increase in birth weight of 1 SD was associated with a decrease of 1.95% fat as measured by the 4-component model (P = 0.012) and 0.82-2.75% by the other techniques. These associations were independent of age, sex, socioeconomic status, physical activity, BMI, and body build. Body build did not decrease the strength of the associations. Birth weight was a significantly better predictor of height than was self-reported midparental height, accounting for 19.4% of the variability at 5 y of age and 10.3% at 7.8 y of age (17.8% and 8.8% of which were independent of parental height at these ages, respectively). Consistent trends across body-composition measurement techniques add strength to the suggestion that percentage fat in prepubertal children is programmed in utero (independently of body build and BMI). It also suggests birth weight is a better predictor of prepubertal height than is self-reported midparental height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1088&context=usgsstaffpub','USGSPUBS'); return false;" href="http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1088&context=usgsstaffpub"><span>Selection of nesting habitat by sharp-tailed grouse in the Nebraska sandhills</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Prose, Bart L.; Cade, Brian S.; Hein, Dale</p> <p>2002-01-01</p> <p>We evaluated nesting habitat selection (disproportionate use compared to availability) by plains sharp-tailed grouse (Tympanuchus phasianellus jamesi) on rangelands grazed by cattle (Bos taurus) relative to height, density, and heterogeneity of residual herbaceous vegetation remaining from previous growing seasons. Residual cover is critical for nesting sharp-tailed grouse and can be lacking on grazed rangelands. Aerial photography and a geographic information system were used to analyze residual cover height classes and several measures of residual cover heterogeneity in nest (n = 38) and random (n = 38) plots. Height classes corresponded to visual obstruction readings (VORs), the height to which total visual obstruction by vegetation occurs. Analyses were conducted for five spatial scales ranging from 1 to 16 ha to test for scale effects on nesting habitat selection. Sharp-tailed grouse selected nesting habitat with more area in tall (greater than or equal to 4 cm VOR) residual cover than at random sites at all scales, less area in short residual cover (less than 2 cm VOR) at the I-ha scale, and less area in short and medium (2 to 3.9 cm YOR) residual cover at the 2- through 16-ha scales. Selection of shrub habitat containing patches of shrubs was evident only at the 16-ha scale. Patches of tall residual cover were larger in nest plots than in random plots at the 8- and 16-ha scales, and patches of short cover were smaller in nest plots at the I-ha scale. Two scales of pattern defined by mean patch size were detected for overall residual cover, but did not relate to nesting habitat selection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4938440','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4938440"><span>Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>O’Connor, Christopher D.; Lynch, Ann M.</p> <p>2016-01-01</p> <p>A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1) tree condition and physical form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increasing tree age, and (4) differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381) were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926). Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree model that disregarded tree condition (n = 3,740) was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST. PMID:27391084</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27391084','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27391084"><span>Tree Morphologic Plasticity Explains Deviation from Metabolic Scaling Theory in Semi-Arid Conifer Forests, Southwestern USA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Swetnam, Tyson L; O'Connor, Christopher D; Lynch, Ann M</p> <p>2016-01-01</p> <p>A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1) tree condition and physical form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increasing tree age, and (4) differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381) were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926). Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree model that disregarded tree condition (n = 3,740) was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CG....109..216R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CG....109..216R"><span>A continuous scale-space method for the automated placement of spot heights on maps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rocca, Luigi; Jenny, Bernhard; Puppo, Enrico</p> <p>2017-12-01</p> <p>Spot heights and soundings explicitly indicate terrain elevation on cartographic maps. Cartographers have developed design principles for the manual selection, placement, labeling, and generalization of spot height locations, but these processes are work-intensive and expensive. Finding an algorithmic criterion that matches the cartographers' judgment in ranking the significance of features on a terrain is a difficult endeavor. This article proposes a method for the automated selection of spot heights locations representing natural features such as peaks, saddles and depressions. A lifespan of critical points in a continuous scale-space model is employed as the main measure of the importance of features, and an algorithm and a data structure for its computation are described. We also introduce a method for the comparison of algorithmically computed spot height locations with manually produced reference compilations. The new method is compared with two known techniques from the literature. Results show spot height locations that are closer to reference spot heights produced manually by swisstopo cartographers, compared to previous techniques. The introduced method can be applied to elevation models for the creation of topographic and bathymetric maps. It also ranks the importance of extracted spot height locations, which allows for a variation in the size of symbols and labels according to the significance of represented features. The importance ranking could also be useful for adjusting spot height density of zoomable maps in real time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAnIV-3...71C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAnIV-3...71C"><span>Object Based Building Extraction and Building Period Estimation from Unmanned Aerial Vehicle Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Comert, Resul; Kaplan, Onur</p> <p>2018-04-01</p> <p>The aim of this study is to examine whether it is possible to estimate the building periods with respect to the building heights in the urban scale seismic performance assessment studies by using the building height retrieved from the unmanned aerial vehicle (UAV) data. For this purpose, a small area, which includes eight residential reinforced concrete buildings, was selected in Eskisehir (Turkey) city center. In this paper, the possibilities of obtaining the building heights that are used in the estimation of building periods from UAV based data, have been investigated. The investigations were carried out in 3 stages; (i) Building boundary extraction with Object Based Image Analysis (OBIA), (ii) height calculation for buildings of interest from nDSM and accuracy assessment with the terrestrial survey. (iii) Estimation of building period using height information. The average difference between the periods estimated according to the heights obtained from field measurements and from the UAV data is 2.86 % and the maximum difference is 13.2 %. Results of this study have shown that the building heights retrieved from the UAV data can be used in the building period estimation in the urban scale vulnerability assessments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJMPB..3250163W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJMPB..3250163W"><span>Fabrication of absorption gratings with X-ray lithography for X-ray phase contrast imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Bo; Wang, Yu-Ting; Yi, Fu-Ting; Zhang, Tian-Chong; Liu, Jing; Zhou, Yue</p> <p>2018-05-01</p> <p>Grating-based X-ray phase contrast imaging is promising especially in the medical area. Two or three gratings are involved in grating-based X-ray phase contrast imaging in which the absorption grating of high-aspect-ratio is the most important device and the fabrication process is a great challenge. The material with large atomic number Z is used to fabricate the absorption grating for excellent absorption of X-ray, and Au is usually used. The fabrication process, which involves X-ray lithography, development and gold electroplating, is described in this paper. The absorption gratings with 4 μm period and about 100 μm height are fabricated and the high-aspect-ratio is 50.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23267782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23267782"><span>Limitations of expressing left ventricular mass relative to height and to body surface area in children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Foster, Bethany J; Gao, Tao; Mackie, Andrew S; Zemel, Babette S; Ali, Huma; Platt, Robert W; Colan, Steven D</p> <p>2013-04-01</p> <p>Left ventricular (LV) mass varies in proportion to lean body mass (LBM) but is usually expressed relative to height or body surface area (BSA), each of which functions as a surrogate for LBM. The aims of this study were to characterize the adiposity-related biases associated with each of these scaling variables and to determine the impact of these biases on the diagnosis of LV hypertrophy (LVH) in a group of children at risk for LVH. In a retrospective study, LV mass was estimated using M-mode echocardiography in 222 healthy nonoverweight reference children and 112 children "at risk" for LVH (48 healthy overweight children and 64 children with hypertension). LBM was estimated for all children using validated predictive equations and was considered the criterion scaling variable. Z scores for LV mass for LBM, LV mass for height, and LV mass for BSA were calculated for each child relative to the reference group. The performance of height-based and BSA-based Z scores were compared with that of LBM-based Z scores at different levels of adiposity (estimated by the Z score for body mass index for age [BMIz]). Among healthy normotensive children, LV mass-for-height Z scores were greater than LV mass-for-LBM Z scores at higher values of BMIz and lower than LV mass-for-LBM Z scores at lower values of BMIz (R(2) = 0.52, P < .0001). LV mass-for-BSA Z scores for agreed well with LBM-based Z scores at BMIz < 0.7 but were lower than LV mass-for-LBM Z scores for at BMIz > 0.7 (R(2) = 0.31, P < .0001). Compared with 13% of at-risk children classified as having LVH on the basis of LV mass for LBM > 95th percentile, 30% and 11% had LVH when LV mass was scaled to height and BSA, respectively. Scaling LV mass to BSA in children results in less misclassification with respect to LVH than does scaling to height. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9965E..0HH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9965E..0HH"><span>Control x-ray deformable mirrors with few measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Lei; Xue, Junpeng; Idir, Mourad</p> <p>2016-09-01</p> <p>After years of development from a concept to early experimental stage, X-ray Deformable Mirrors (XDMs) are used in many synchrotron/free-electron laser facilities as a standard x-ray optics tool. XDM is becoming an integral part of the present and future large x-ray and EUV projects and will be essential in exploiting the full potential of the new sources currently under construction. The main objective of using XDMs is to correct wavefront errors or to enable variable focus beam sizes at the sample. Due to the coupling among the N actuators of a DM, it is usually necessary to perform a calibration or training process to drive the DM into the target shape. Commonly, in order to optimize the actuators settings to minimize slope/height errors, an initial measurement need to be collected, with all actuators set to 0, and then either N or 2N measurements are necessary learn each actuator behavior sequentially. In total, it means that N+1 or 2N+1 scans are required to perform this learning process. When the actuators number N is important and the actuator response or the necessary metrology is slow then this learning process can be time consuming. In this work, we present a fast and accurate method to drive an x-ray active bimorph mirror to a target shape with only 3 or 4 measurements. Instead of sequentially measuring and calculating the influence functions of all actuators and then predicting the voltages needed for any desired shape, the metrology data are directly used to "guide" the mirror from its current status towards the particular target slope/height via iterative compensations. The feedback for the iteration process is the discrepancy in curvature calculated by using B-spline fitting of the measured height/slope data. In this paper, the feasibility of this simple and effective approach is demonstrated with experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA135455','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA135455"><span>Effects of Long-Term Low-Level Radiofrequency Radiation Exposure on Rats. Volume 2. Average SAR and SAR Distribution in Man Exposed to 450-MHz RFR.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1983-09-01</p> <p>adult man (full-scale height = 171 cm) and child (full-scale height = 86 cm), with arms down. We used the full-scale figure to reflect a worst-case... child for all orientations was much higher than that for the adult (e.g., 0.187 W/kg versus 0.063 W/kg), which is expected since the frequency is closer...to the resonance frequency for the child . Another series of scale-model measurements was conducted for determination of the average SAR values for</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22225301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22225301"><span>Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: application to pulse-height spectroscopy in a-Se.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fang, Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S; Badano, Aldo</p> <p>2012-01-01</p> <p>The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760034466&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DKrieger','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760034466&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DKrieger"><span>A comparison of coronal X-ray structures of active regions with magnetic fields computed from photospheric observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Poletto, G.; Vaiana, G. S.; Zombeck, M. V.; Krieger, A. S.; Timothy, A. F.</p> <p>1975-01-01</p> <p>The appearances of several X-ray active regions observed on March 7, 1970 and June 15, 1973 are compared with the corresponding coronal magnetic-field topology. Coronal fields have been computed from measurements of the longitudinal component of the underlying magnetic fields, based on the current-free hypothesis. An overall correspondence between X-ray structures and calculated field lines is established, and the magnetic counterparts of different X-ray features are also examined. A correspondence between enhanced X-ray emission and the location of compact closed field lines is suggested. Representative magnetic-field values calculated under the assumption of current-free fields are given for heights up to 200 sec.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017xru..conf...40B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017xru..conf...40B"><span>A Suzaku, NuSTAR and XMMNewton} view on variable absorption and relativistic reflection in NGC 4151</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beuchert, T.; Markowitz, A.; Dauser, T.; Garcia, J.; Keck, M.; Wilms, J.; Kadler, M.; Brenneman, L.; Zdziarski, A.</p> <p>2017-10-01</p> <p>We disentangle X-ray disk reflection from complex line-of-sight absorption in NGC 4151 using Suzaku, NuSTAR, and XMMNewton}. Extending upon Keck et al. (2015), we develop a physically-motivated baseline model using the latest lamp-post reflection code relxillCp_lp, which includes a Comptonization continuum. We identify two components at heights of 1.2 and 15.0 gravitational radii using a long-look simultaneous Suzaku/NuSTAR observation but argue for a vertically extended corona as opposed to distinct primary sources. We also find two neutral absorbers (one full-covering and one partial-covering), an ionized absorber (log ξ=2.8), and a highly-ionized ultra-fast outflow, all reported previously. All analyzed spectra are well described by this baseline model. The bulk of the spectral variability on time-scales from days to years can be attributed to changes of both neutral absorbers, which are inversely correlated with the hard X-ray continuum flux. The observed evolution is either consistent with changes in the absorber structure (clumpy absorber in the outer BLR or a dusty radiatively driven wind) or a geometrically stable neutral absorber that becomes increasingly ionized at a rising flux level. The soft X-rays below 1 keV are dominated by photoionized emission from extended gas, which may act as a warm mirror for the nuclear radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053607&hterms=Electric+current&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DElectric%2Bcurrent','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053607&hterms=Electric+current&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DElectric%2Bcurrent"><span>Heating of the solar middle chromosphere by large-scale electric currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, M. L.</p> <p>1995-01-01</p> <p>A global resistive, two-dimensional, time-dependent magnetohydrodynamic (MHD) model is used to introduce and support the hypothesis that the quiet solar middle chromosphere is heated by resistive dissipation of large-scale electric currents which fill most of its volume. The scale height and maximum magnitude of the current density are 400 km and 31.3 m/sq m, respectively. The associated magnetic field is almost horizontal, has the same scale height as the current density, and has a maximum magnitude of 153 G. The current is carried by electrons flowing across magnetic field lines at 1 m/s. The resistivity is the electron contribution to the Pedersen resitivity for a weakly ionized, strongly magnetized, hydrogen gas. The model does not include a driving mechanism. Most of the physical quantities in the model decrease exponentially with time on a resistive timescale of 41.3 minutes. However, the initial values and spatial; dependence of these quantities are expected to be essentially the same as they would be if the correct driving mechanism were included in a more general model. The heating rate per unit mass is found to be 4.5 x 10(exp 9) ergs/g/s, independent of height and latitude. The electron density scale height is found to be 800 km. The model predicts that 90% of the thermal energy required to heat the middle chromosphere is deposited in the height range 300-760 km above the temperature minimum. It is shown to be consistent to assume that the radiation rate per unit volume is proportional to the magnetic energy density, and then it follows that the heating rate per unit volume is also proportional to the energy from the photosphere into the overlying chromosphere are briefly discussed as possible driving mechanisms for establishing and maintaining the current system. The case in which part of or all of the current is carried by protons and metal ions, and the contribution of electron-proton scattering to the current are also considered, with the conclusion that these effects do not change the qualitative prediction of the model, but probably change the quantitative predictions slightly, mainly by increasing the maximum magntiude of the current density and magnetic field to at most approximately 100 mA/m and approximately 484 G, respectively. The heating rate per unit mass, current density scale height, magnetic field scale height, temperatures, and pressures are unchanged or are only slightly changed by including these additional effects due to protons and ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22038664-silicon-structuring-etching-liquid-chlorine-fluorine-precursors-using-femtosecond-laser-pulses','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22038664-silicon-structuring-etching-liquid-chlorine-fluorine-precursors-using-femtosecond-laser-pulses"><span>Silicon structuring by etching with liquid chlorine and fluorine precursors using femtosecond laser pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Radu, C.; Simion, S.; Zamfirescu, M.</p> <p>2011-08-01</p> <p>The aim of this study is to investigate the micrometer and submicrometer scale structuring of silicon by liquid chlorine and fluorine precursors with 200 fs laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths. The silicon surface was irradiated at normal incidence by immersing the Si (111) substrates in a glass container filled with liquid chlorine (CCl{sub 4}) and fluorine (C{sub 2}Cl{sub 3}F{sub 3}) precursors. We report that silicon surfaces develop an array of spikes with single step irradiation processes at 775 nm and equally at 387 nm. When irradiating the Si surface with 400more » pulses at 330 mJ/cm{sup 2} laser fluence and a 775 nm wavelength, the average height of the formed Si spikes in the case of fluorine precursors is 4.2 {mu}m, with a full width at half maximum of 890 nm. At the same irradiation wavelength chlorine precursors develop Si spikes 4 {mu}m in height and with a full width at half maximum of 2.3 {mu}m with irradiation of 700 pulses at 560 mJ/cm{sup 2} laser fluence. Well ordered areas of submicrometer spikes with an average height of about 500 nm and a width of 300 nm have been created by irradiation at 387 nm by chlorine precursors, whereas the fluorine precursors fabricate spikes with an average height of 700 nm and a width of about 200 nm. Atomic force microscopy and scanning electron microscopy of the surface show that the formation of the micrometer and sub-micrometer spikes involves a combination of capillary waves on the molten silicon surface and laser-induced etching of silicon, at both 775 nm and 387 nm wavelength irradiation. The energy-dispersive x-ray measurements indicate the presence of chlorine and fluorine precursors on the structured surface. The fluorine precursors create a more ordered area of Si spikes at both micrometer and sub-micrometer scales. The potential use of patterned Si substrates with gradient topography as model scaffolds for the systematic exploration of the role of 3D micro/nano morphology on cell adhesion and growth is envisaged.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1263837-growth-mode-transition-complex-oxide-heteroepitaxy-atomically-resolved-studies','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1263837-growth-mode-transition-complex-oxide-heteroepitaxy-atomically-resolved-studies"><span>Growth Mode Transition in Complex Oxide Heteroepitaxy: Atomically Resolved Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Tselev, Alexander; Vasudevan, Rama K.; Gianfrancesco, Anthony G.; ...</p> <p>2016-04-04</p> <p>Here we performed investigations of the atomic-scale surface structure of epitaxial La 5/8Ca 3/8MnO 3 thin films as a model system dependent on growth conditions in pulsed laser deposition with emphasis on film growth kinetics. Postdeposition in situ scanning tunneling microscopy was combined with in operando reflective high-energy electron diffraction to monitor the film growth and ex situ X-ray diffraction for structural analysis. We find a correlation between the out-of-plane lattice parameter and both adspecies mobility and height of the Ehrlich–Schwoebel barrier, with mobility of adatoms greater over the cationically stoichiometric terminations. We find that the data suggest that themore » out-of-plane lattice parameter is dependent on the mechanism of epitaxial strain relaxation, which is controlled by the oxidative power of the deposition environment.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.7803S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.7803S"><span>Spectral decomposition of internal gravity wave sea surface height in global models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis</p> <p>2017-10-01</p> <p>Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13b4007L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13b4007L"><span>The North Atlantic-Eurasian teleconnection in summer and its effects on Eurasian climates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Jianping; Ruan, Chengqing</p> <p>2018-02-01</p> <p>A teleconnection between the North Atlantic Ocean and the Eurasian continent is suggested by statistical and dynamical analysis of the northern summer 500 hPa geopotential height field. This teleconnection, termed the Atlantic-Eurasian (AEA) teleconnection, has five centers of action, in the subtropical North Atlantic Ocean, northeastern North Atlantic Ocean, Eastern Europe, the Kara Sea, and north China. The AEA index (AEAI) shows that the AEA undergoes a high degree of variability from year to year, and the AEAI has an increasing trend over the last 30 years. Our results suggest that this phenomenon is a large-scale Rossby wave train that originates in the subtropical North Atlantic Ocean. We support this conclusion by the methods of stationary wave ray tracing in non-uniform horizontal basic flow, wave activity flux calculations, and numerical models. The AEA and midlatitude circumglobal teleconnection pattern manifest distinct features at the hemispheric scale, despite the anomalies associated with them bear some similarities in the northeastern North Atlantic and Eastern Europe. Regional climate variations are strongly linked to this AEA along its path through northern Eurasia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ISPAr.XL5...87B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ISPAr.XL5...87B"><span>A feasibility study on the measurement of tree trunks in forests using multi-scale vertical images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berveglieri, A.; Oliveira, R. O.; Tommaselli, A. M. G.</p> <p>2014-06-01</p> <p>The determination of the Diameter at Breast Height (DBH) is an important variable that contributes to several studies on forest, e.g., environmental monitoring, tree growth, volume of wood, and biomass estimation. This paper presents a preliminary technique for the measurement of tree trunks using terrestrial images collected with a panoramic camera in nadir view. A multi-scale model is generated with these images. Homologue points on the trunk surface are measured over the images and their ground coordinates are determined by intersection of rays. The resulting XY coordinates of each trunk, defining an arc shape, can be used as observations in a circle fitting by least squares. Then, the DBH of each trunk is calculated using an estimated radius. Experiments were performed in two urban forest areas to assess the approach. In comparison with direct measurements on the trunks taken with a measuring tape, the discrepancies presented a Root Mean Square Error (RMSE) of 1.8 cm with a standard deviation of 0.7 cm. These results demonstrate compatibility with manual measurements and confirm the feasibility of the proposed technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710651S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710651S"><span>Scale Height variations with solar cycle in the ionosphere of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis</p> <p>2015-04-01</p> <p>The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP13A0822L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP13A0822L"><span>Comparing wave shoaling methods used in large-scale coastal evolution modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Limber, P. W.; Adams, P. N.; Murray, A.</p> <p>2013-12-01</p> <p>A variety of methods are available to simulate wave propagation from the deep ocean to the surf zone. They range from simple and computationally fast (e.g. linear wave theory applied to shore-parallel bathymetric contours) to complicated and computationally intense (e.g., Delft's ';Simulating WAves Nearshore', or SWAN, model applied to complex bathymetry). Despite their differences, the goal of each method is the same with respect to coastline evolution modeling: to link offshore waves with rates of (and gradients in) alongshore sediment transport. Choosing a shoaling technique for modeling coastline evolution should be partly informed by the spatial and temporal scales of the model, as well as the model's intent (is it simulating a specific coastline, or exploring generic coastline dynamics?). However, the particular advantages and disadvantages of each technique, and how the advantages/disadvantages vary over different model spatial and temporal scales, are not always clear. We present a wave shoaling model that simultaneously computes breaking wave heights and angles using three increasingly complex wave shoaling routines: the most basic approach assuming shore-parallel bathymetric contours, a wave ray tracing method that includes wave energy convergence and divergence and non-shore-parallel contours, and a spectral wave model (SWAN). Initial results show reasonable agreement between wave models along a flat shoreline for small (1 m) wave heights, low wave angles (0 to 10 degrees), and simple bathymetry. But, as wave heights and angles increase, bathymetry becomes more variable, and the shoreline shape becomes sinuous, the model results begin to diverge. This causes different gradients in alongshore sediment transport between model runs employing different shoaling techniques and, therefore, different coastline behavior. Because SWAN does not approximate wave breaking (which drives alongshore sediment transport) we use a routine to extract grid cells from SWAN output where wave height is approximately one-half of the water depth (a standard wave breaking threshold). The goal of this modeling exercise is to understand under what conditions a simple wave model is sufficient for simulating coastline evolution, and when using a more complex shoaling routine can optimize a coastline model. The Coastline Evolution Model (CEM; Ashton and Murray, 2006) is used to show how different shoaling routines affect modeled coastline behavior. The CEM currently includes the most basic wave shoaling approach to simulate cape and spit formation. We will instead couple it to SWAN, using the insight from the comprehensive wave model (above) to guide its application. This will allow waves transformed over complex bathymetry, such as cape-associated shoals and ridges, to be input for the CEM so that large-scale coastline behavior can be addressed in less idealized environments. Ashton, A., and Murray, A.B., 2006, High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes: Journal of Geophysical Research, v. 111, p. F04011, doi:10.1029/2005JF000422.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1237544-experimental-determination-gamma-ray-discrimination-pillar-structured-thermal-neutron-detectors-under-high-gamma-ray-flux','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1237544-experimental-determination-gamma-ray-discrimination-pillar-structured-thermal-neutron-detectors-under-high-gamma-ray-flux"><span>Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Shao, Qinghui; Conway, Adam M.; Voss, Lars F.; ...</p> <p>2015-08-04</p> <p>Silicon pillar structures filled with a neutron converter material ( 10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 10 6 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 10 9 photons/cm 2s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26512347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26512347"><span>Body mass index and body composition scaling to height in children and adolescent.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chung, Sochung</p> <p>2015-09-01</p> <p>Childhood obesity prevalence has been increased and known to be related to various diseases and mortality in adult and body mass index (BMI) has been widely used as a screening tool in children with obesity. It is important to understand what BMI is and its limitations. BMI is a measure of weight adjusted for height. Weight scales to height with a power of about 2, is the basis of BMI (weight/height(2)) as the scaling of body weight to height across adults provides powers rounded to 2. BMI has the advantage of a simple and noninvasive surrogate measure of body fat, but it has limitation in differentiating body fat from lean (fat free) mass and low-moderate sensitivity is problematic for clinical applications. Among overweight children higher BMI levels can be a result of increased either fat or fat-free mass. BMI could be divided into fat-free mass index and fat mass index. Monitoring of the changes in body composition is important as distinguishing changes in each component occur with rapid growth in adolescents as it is occur in concert with changes in the hormonal environment. Reference values for each body composition indexes and chart created with selected percentiles of a normal adolescent population could be helpful in growth assessment and health risk evaluation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720037846&hterms=pulse-shape+discrimination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpulse-shape%2Bdiscrimination','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720037846&hterms=pulse-shape+discrimination&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpulse-shape%2Bdiscrimination"><span>The UHURU X-ray instrument.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jagoda, N.; Austin, G.; Mickiewicz, S.; Goddard, R.</p> <p>1972-01-01</p> <p>On Dec. 12, 1970, the UHURU X-ray observatory was launched into equatorial orbit with the prime mission of conducting an all-sky survey of astronomical X-ray sources with intensities of 0.00005 Sco-X1 or greater. The X-ray detection system contains 12 gas-filled proportional counters, 6 behind each collimator. The aspect system is discussed together with the structure, the pulse height analyzer, the command system, the calibration system, and the power distribution system. Pulse shape discrimination circuits used on UHURU use the same technique that was used on the system originally developed for large area proportional counters described by Gorenstein and Mickiewicz (1968).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/4068195','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/4068195"><span>Accuracy of recumbent height measurement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gray, D S; Crider, J B; Kelley, C; Dickinson, L C</p> <p>1985-01-01</p> <p>Since many patients requiring specialized nutritional support are bedridden, measurement of height for purposes of nutritional assessment or prescription must often be done with the patient in bed. This study examined the accuracy of measuring body height in bed in the supine position. Two measurements were performed on 108 ambulatory inpatients: (1) standing height using a standard height-weight scale, and (2) bed height using a flexible tape. Patients were divided into four groups based on which of two researchers performed each of the two measurements. Each patient was also weighed and self-reported height, weight, sex, and age were recorded. Bed height was significantly longer than standing height by 3.68 cm, but the two measurements were equally precise. It was believed, however, that this 2% difference was probably not clinically significant in most circumstances. Bed height correlated highly with standing height (r = 0.95), and the regression equation was standing height = 13.82 +/- 0.09 bed height. Patients overestimated their heights. Heights recorded by nurses were more accurate when patients were measured than when asked about their heights, but the patients were more often asked than measured.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015yCat..35870061C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015yCat..35870061C"><span>VizieR Online Data Catalog: BlackCAT, stellar-mass BH in X-ray trans. (Corral-Santana+, 2016)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corral-Santana, J. M.; Casares, J.; Munoz-Darias, T.; Bauer, F. E.; Martinez-Pais, I. G.; Russell, D. M.</p> <p>2015-11-01</p> <p>Astrometric, observational and dynamical parameters of the 59 black hole transients discovered since 1966 in the Galaxy. For each object, we provide: year of discovery, name(s), right ascension (hms) and declination (dms) in equinox J2000 with uncertainty and wavelength range of the source of coordinates, Galactic longitude and latitude (deg), distance and scale height (kpc), number of outbursts, ID number for cross-correlation with the online version, X-ray flux at the peak of the outburst (erg/s/cm2) in the range 2-10keV, magnitude at the peak of the outburst and in quiescence in AB, reddening (mag), orbital period (h) and their corresponding references. In addition, for the sample of dynamically confirmed black holes, we provide: up to 4 optical and 3 infrared magnitudes in quiescence (AB), the spectral type of the companion star, the orbital period (h), the radial velocity of the companion star (km/s), the mass function (M⊙), the mass of the black hole (M⊙), the mass ratio, the inclination (deg) and the rotational broadening (km/s) with their corresponding references. (7 data files).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994ApJ...420..570B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994ApJ...420..570B"><span>X-ray-emitting gas surrounding the spiral galaxy NGC 891</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bregman, Joel N.; Pildis, Rachel A.</p> <p>1994-01-01</p> <p>We observed the edge-on spiral galaxy NGC 891 with the Position Sensitive Proportional Counter (PSPC) on Roentgen Satellite (ROSAT) to search for how extraplanar gas expected in the galactic fountain model. Diffuse X-ray emission surrounds the disk with a Half Width at Half Maximum (HWHM) for the surface brightness perpendicular to the disk of 50 sec (2.4 kpc) and a radial extent of approximately 6.5 kpc, both of which are similar in extent to the extended H(alpha) and radio halo component; the implied density scale height for the hot gas is 7 kpc. The spectrum is best fitted with a hard stellar component and a soft diffuse gas component of temperature 3.6 x 106 K. The density of this gas is 2 x 10-3/cu cm, the luminosity is 4.4 x 1039 ergs/s, the mass is 1 x 108 solar mass, and the pressure (P/k) is 1.4 104 K/cu cm. These data are consistent with this gas participating in a galactic fountain, where the material approaches hydrostatic equilibrium before cooling at a rate of 0.12 solar mass/yr. The cooled material may be responsible for some of the H(alpha) emission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667662-partial-accretion-propeller-stage-low-mass-ray-binary-aql-x1','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667662-partial-accretion-propeller-stage-low-mass-ray-binary-aql-x1"><span>Partial Accretion in the Propeller Stage of Low-mass X-Ray Binary Aql X–1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Güngör, C.; Ekşi, K. Y.; Göğüş, E.</p> <p></p> <p>Aql X–1 is one of the most prolific low-mass X-ray binary transients (LMXBTs) showing outbursts almost annually. We present the results of our spectral analyses of Rossi X-Ray Timing Explorer /proportional counter-array observations of the 2000 and 2011 outbursts. We investigate the spectral changes related to the changing disk-magnetosphere interaction modes of Aql X–1. The X-ray light curves of the outbursts of LMXBTs typically show phases of fast rise and exponential decay. The decay phase shows a “knee” where the flux goes from the slow-decay to the rapid-decay stage. We assume that the rapid decay corresponds to a weak propellermore » stage at which a fraction of the inflowing matter in the disk accretes onto the star. We introduce a novel method for inferring, from the light curve, the fraction of the inflowing matter in the disk that accretes onto the neutron star depending on the fastness parameter. We determine the fastness parameter range within which the transition from the accretion to the partial propeller stage is realized. This fastness parameter range is a measure of the scale height of the disk in units of the inner disk radius. We applied the method to a sample of outbursts of Aql X–1 with different maximum flux and duration times. We show that different outbursts with different maximum luminosity and duration follow a similar path in the parameter space of accreted/inflowing mass flux fraction versus fastness parameter.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/4314143','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/4314143"><span>PULSE AMPLITUDE ANALYZER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gray, G.W.; Jensen, A.S.</p> <p>1957-10-22</p> <p>A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760042315&hterms=piles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dpiles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760042315&hterms=piles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dpiles"><span>Pulse pile-up in hard X-ray detector systems. [for solar X-rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Datlowe, D. W.</p> <p>1975-01-01</p> <p>When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11025653','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11025653"><span>Measurement and validation of benchmark-quality thick-target tungsten X-ray spectra below 150 kVp.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M</p> <p>2000-11-01</p> <p>Pulse-height distributions of two constant potential X-ray tubes with fixed anode tungsten targets were measured and unfolded. The measurements employed quantitative alignment of the beam, the use of two different semiconductor detectors (high-purity germanium and cadmium-zinc-telluride), two different ion chamber systems with beam-specific calibration factors, and various filter and tube potential combinations. Monte Carlo response matrices were generated for each detector for unfolding the pulse-height distributions into spectra incident on the detectors. These response matrices were validated for the low error bars assigned to the data. A significant aspect of the validation of spectra, and a detailed characterization of the X-ray tubes, involved measuring filtered and unfiltered beams at multiple tube potentials (30-150 kVp). Full corrections to ion chamber readings were employed to convert normalized fluence spectra into absolute fluence spectra. The characterization of fixed anode pitting and its dominance over exit window plating and/or detector dead layer was determined. An Appendix of tabulated benchmark spectra with assigned error ranges was developed for future reference.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NIMPA.636...82C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NIMPA.636...82C"><span>Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caldeira Filho, A. M.; Mulato, M.</p> <p>2011-04-01</p> <p>Some semiconductor materials such as lead iodide (PbI2) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 108 Ω cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010020028','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010020028"><span>Microgravity Propellant Tank Geyser Analysis and Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thornton, Randall J.; Hochstein, John I.; Turner, James E. (Technical Monitor)</p> <p>2001-01-01</p> <p>An established correlation for geyser height prediction of an axial jet inflow into a microgravity propellant tank was analyzed and an effort to develop an improved correlation was made. The original correlation, developed using data from ethanol flow in small-scale drop tower tests, uses the jet-Weber number and the jet-Bond number to predict geyser height. A new correlation was developed from the same set of experimental data using the jet-Weber number and both the jet-Bond number and tank-Bond number to describe the geyser formation. The resulting correlation produced nearly a 40% reduction in geyser height predictive error compared to the original correlation with experimental data. Two additional tanks were computationally modeled in addition to the small-scale tank used in the drop tower testing. One of these tanks was a 50% enlarged small-scale tank and the other a full-scale 2 m radius tank. Simulations were also run for liquid oxygen and liquid hydrogen. Results indicated that the new correlation outperformed the original correlation in geyser height prediction under most circumstances. The new correlation has also shown a superior ability to recognize the difference between flow patterns II (geyser formation only) and III (pooling at opposite end of tank from the bulk fluid region).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCoPh.365...37O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCoPh.365...37O"><span>Importance of curvature evaluation scale for predictive simulations of dynamic gas-liquid interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Owkes, Mark; Cauble, Eric; Senecal, Jacob; Currie, Robert A.</p> <p>2018-07-01</p> <p>The effect of the scale used to compute the interfacial curvature on the prediction of dynamic gas-liquid interfaces is investigated. A new interface curvature calculation methodology referred to herein as the Adjustable Curvature Evaluation Scale (ACES) is proposed. ACES leverages a weighted least squares regression to fit a polynomial through points computed on the volume-of-fluid representation of the gas-liquid interface. The interface curvature is evaluated from this polynomial. Varying the least squares weight with distance from the location where the curvature is being computed, adjusts the scale the curvature is evaluated on. ACES is verified using canonical static test cases and compared against second- and fourth-order height function methods. Simulations of dynamic interfaces, including a standing wave and oscillating droplet, are performed to assess the impact of the curvature evaluation scale for predicting interface motions. ACES and the height function methods are combined with two different unsplit geometric volume-of-fluid (VoF) schemes that define the interface on meshes with different levels of refinement. We find that the results depend significantly on curvature evaluation scale. Particularly, the ACES scheme with a properly chosen weight function is accurate, but fails when the scale is too small or large. Surprisingly, the second-order height function method is more accurate than the fourth-order variant for the dynamic tests even though the fourth-order method performs better for static interfaces. Comparing the curvature evaluation scale of the second- and fourth-order height function methods, we find the second-order method is closer to the optimum scale identified with ACES. This result suggests that the curvature scale is driving the accuracy of the dynamics. This work highlights the importance of studying numerical methods with realistic (dynamic) test cases and that the interactions of the various discretizations is as important as the accuracy of one part of the discretization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015411','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015411"><span>Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for sub-130 nm Technologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pellish, Jonathan A.; Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Michael M.; Sanders, Anthony B.; Ladbury, Raymond L.; Oldham, Timothy R.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kenneth P.</p> <p>2010-01-01</p> <p>We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180000008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180000008"><span>Impact of Spacecraft Shielding on Direct Ionization Soft Error Rates for Sub-130 nm Technologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pellish, Jonathan A.; Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Sanders, Anthony B.; Ladbury, Raymond L.; Oldham, Timothy R.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kenneth P.</p> <p>2010-01-01</p> <p>We use ray tracing software to model various levels of spacecraft shielding complexity and energy deposition pulse height analysis to study how it affects the direct ionization soft error rate of microelectronic components in space. The analysis incorporates the galactic cosmic ray background, trapped proton, and solar heavy ion environments as well as the October 1989 and July 2000 solar particle events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850027591','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850027591"><span>On the characteristics of emulsion chamber family events produced in low heights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jing, G.; Jing, C.; Zhu, Q.; Ding, L.</p> <p>1985-01-01</p> <p>The uncertainty of the primary cosmic ray composition at 10 to the 14th power -10 to the 16th power eV is well known to make the study of the nuclear interaction mechanism more difficult. Experimentally considering, if one can identify effectively the family events which are produced in low heights, then an event sample induced by primary protons might be able to be separated. It is undoubtedly very meaningful. In this paper an attempt is made to simulate the family events under the condition of mountain emulsion chamber experiments with a reasonable model. The aim is to search for the dependence of some experimentally observable quantities to the interaction height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CryRp..62..313R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CryRp..62..313R"><span>Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roshchin, B. S.; Chukhovsky, F. N.; Pavlyuk, M. D.; Opolchentsev, A. M.; Asadchikov, V. E.</p> <p>2017-03-01</p> <p>The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface between two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22645189-study-grazing-incidence-ray-scattering-strongly-disturbed-fractal-surfaces','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22645189-study-grazing-incidence-ray-scattering-strongly-disturbed-fractal-surfaces"><span>Study of the grazing-incidence X-ray scattering of strongly disturbed fractal surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roshchin, B. S., E-mail: ross@crys.ras.ru; Chukhovsky, F. N.; Pavlyuk, M. D.</p> <p>2017-03-15</p> <p>The applicability of different approaches to the description of hard X-ray scattering from rough surfaces is generally limited by a maximum surface roughness height of no more than 1 nm. Meanwhile, this value is several times larger for the surfaces of different materials subjected to treatment, especially in the initial treatment stages. To control the roughness parameters in all stages of surface treatment, a new approach has been developed, which is based on a series expansion of wavefield over the plane eigenstate-function waves describing the small-angle scattering of incident X-rays in terms of plane q-waves propagating through the interface betweenmore » two media with a random function of relief heights. To determine the amplitudes of reflected and transmitted plane q-waves, a system of two linked integral equations was derived. The solutions to these equations correspond (in zero order) to the well-known Fresnel expressions for a smooth plane interface. Based on these solutions, a statistical fractal model of an isotropic rough interface is built in terms of root-mean-square roughness σ, two-point correlation length l, and fractal surface index h. The model is used to interpret X-ray scattering data for polished surfaces of single-crystal cadmium telluride samples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ACP....16..907P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ACP....16..907P"><span>A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paugam, R.; Wooster, M.; Freitas, S.; Martin, M. Val</p> <p>2016-01-01</p> <p>Landscape fires produce smoke containing a very wide variety of chemical species, both gases and aerosols. For larger, more intense fires that produce the greatest amounts of emissions per unit time, the smoke tends initially to be transported vertically or semi-vertically close by the source region, driven by the intense heat and convective energy released by the burning vegetation. The column of hot smoke rapidly entrains cooler ambient air, forming a rising plume within which the fire emissions are transported. The characteristics of this plume, and in particular the height to which it rises before releasing the majority of the smoke burden into the wider atmosphere, are important in terms of how the fire emissions are ultimately transported, since for example winds at different altitudes may be quite different. This difference in atmospheric transport then may also affect the longevity, chemical conversion, and fate of the plumes chemical constituents, with for example very high plume injection heights being associated with extreme long-range atmospheric transport. Here we review how such landscape-scale fire smoke plume injection heights are represented in larger-scale atmospheric transport models aiming to represent the impacts of wildfire emissions on component of the Earth system. In particular we detail (i) satellite Earth observation data sets capable of being used to remotely assess wildfire plume height distributions and (ii) the driving characteristics of the causal fires. We also discuss both the physical mechanisms and dynamics taking place in fire plumes and investigate the efficiency and limitations of currently available injection height parameterizations. Finally, we conclude by suggesting some future parameterization developments and ideas on Earth observation data selection that may be relevant to the instigation of enhanced methodologies aimed at injection height representation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028895','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028895"><span>Quantitative analysis of scale of aeromagnetic data raises questions about geologic-map scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nykanen, V.; Raines, G.L.</p> <p>2006-01-01</p> <p>A recently published study has shown that small-scale geologic map data can reproduce mineral assessments made with considerably larger scale data. This result contradicts conventional wisdom about the importance of scale in mineral exploration, at least for regional studies. In order to formally investigate aspects of scale, a weights-of-evidence analysis using known gold occurrences and deposits in the Central Lapland Greenstone Belt of Finland as training sites provided a test of the predictive power of the aeromagnetic data. These orogenic-mesothermal-type gold occurrences and deposits have strong lithologic and structural controls associated with long (up to several kilometers), narrow (up to hundreds of meters) hydrothermal alteration zones with associated magnetic lows. The aeromagnetic data were processed using conventional geophysical methods of successive upward continuation simulating terrane clearance or 'flight height' from the original 30 m to an artificial 2000 m. The analyses show, as expected, that the predictive power of aeromagnetic data, as measured by the weights-of-evidence contrast, decreases with increasing flight height. Interestingly, the Moran autocorrelation of aeromagnetic data representing differing flight height, that is spatial scales, decreases with decreasing resolution of source data. The Moran autocorrelation coefficient scems to be another measure of the quality of the aeromagnetic data for predicting exploration targets. ?? Springer Science+Business Media, LLC 2007.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/25818','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/25818"><span>MASH full-scale crash testing of 4-ft mounting height, 24"\\0xD730" Chevron sign installed on 5.5H:1V slope ditch.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2013-03-01</p> <p>Current TxDOT practice allows installation of all existing chevron sizes on 7-ft mounting height, but restricts the use of 4-ft mounting height for the three smallest existing chevron signsthat is, 12 inches 18 inches, 18 inches 24 inches, a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980223576','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980223576"><span>Effect of Surface Roughness on Characteristics of Spherical Shock Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huber, Paul W.; McFarland, Donald R.</p> <p>1959-01-01</p> <p>Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10004E..1QA','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10004E..1QA"><span>An experimental comparison of standard stereo matching algorithms applied to cloud top height estimation from satellite IR images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anzalone, Anna; Isgrò, Francesco</p> <p>2016-10-01</p> <p>The JEM-EUSO (Japanese Experiment Module-Extreme Universe Space Observatory) telescope will measure Ultra High Energy Cosmic Ray properties by detecting the UV fluorescent light generated in the interaction between cosmic rays and the atmosphere. Cloud information is crucial for a proper interpretation of these data. The problem of recovering the cloud-top height from satellite images in infrared has struck some attention over the last few decades, as a valuable tool for the atmospheric monitoring. A number of radiative methods do exist, like C02 slicing and Split Window algorithms, using one or more infrared bands. A different way to tackle the problem is, when possible, to exploit the availability of multiple views, and recover the cloud top height through stereo imaging and triangulation. A crucial step in the 3D reconstruction is the process that attempts to match a characteristic point or features selected in one image, with one of those detected in the second image. In this article the performance of a group matching algorithms that include both area-based and global techniques, has been tested. They are applied to stereo pairs of satellite IR images with the final aim of evaluating the cloud top height. Cloudy images from SEVIRI on the geostationary Meteosat Second Generation 9 and 10 (MSG-2, MSG-3) have been selected. After having applied to the cloudy scenes the algorithms for stereo matching, the outcoming maps of disparity are transformed in depth maps according to the geometry of the reference data system. As ground truth we have used the height maps provided by the database of MODIS (Moderate Resolution Imaging Spectroradiometer) on-board Terra/Aqua polar satellites, that contains images quasi-synchronous to the imaging provided by MSG.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OcMod..87...30S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OcMod..87...30S"><span>Scaling depth-induced wave-breaking in two-dimensional spectral wave models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salmon, J. E.; Holthuijsen, L. H.; Zijlema, M.; van Vledder, G. Ph.; Pietrzak, J. D.</p> <p>2015-03-01</p> <p>Wave breaking in shallow water is still poorly understood and needs to be better parameterized in 2D spectral wave models. Significant wave heights over horizontal bathymetries are typically under-predicted in locally generated wave conditions and over-predicted in non-locally generated conditions. A joint scaling dependent on both local bottom slope and normalized wave number is presented and is shown to resolve these issues. Compared to the 12 wave breaking parameterizations considered in this study, this joint scaling demonstrates significant improvements, up to ∼50% error reduction, over 1D horizontal bathymetries for both locally and non-locally generated waves. In order to account for the inherent differences between uni-directional (1D) and directionally spread (2D) wave conditions, an extension of the wave breaking dissipation models is presented. By including the effects of wave directionality, rms-errors for the significant wave height are reduced for the best performing parameterizations in conditions with strong directional spreading. With this extension, our joint scaling improves modeling skill for significant wave heights over a verification data set of 11 different 1D laboratory bathymetries, 3 shallow lakes and 4 coastal sites. The corresponding averaged normalized rms-error for significant wave height in the 2D cases varied between 8% and 27%. In comparison, using the default setting with a constant scaling, as used in most presently operating 2D spectral wave models, gave equivalent errors between 15% and 38%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1417282-radiopaque-resists-two-photon-lithography-enable-submicron-imaging-polymer-parts-via-ray-computed-tomography','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1417282-radiopaque-resists-two-photon-lithography-enable-submicron-imaging-polymer-parts-via-ray-computed-tomography"><span>Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Saha, Sourabh K.; Oakdale, James S.; Cuadra, Jefferson A.</p> <p></p> <p>Two-photon lithography (TPL) is a high-resolution additive manufacturing (AM) technique capable of producing arbitrarily complex three-dimensional (3D) microstructures with features 2–3 orders of magnitude finer than human hair. This process finds numerous applications as a direct route toward the fabrication of novel optical and mechanical metamaterials, miniaturized optics, microfluidics, biological scaffolds, and various other intricate 3D parts. As TPL matures, metrology and inspection become a crucial step in the manufacturing process to ensure that the geometric form of the end product meets design specifications. X-ray-based computed tomography (CT) is a nondestructive technique that can provide this inspection capability for themore » evaluation of complex internal 3D structure. However, polymeric photoresists commonly used for TPL, as well as other forms of stereolithography, poorly attenuate X-rays due to the low atomic number (Z) of their constituent elements and therefore appear relatively transparent during imaging. We present the development of optically clear yet radiopaque photoresists for enhanced contrast under X-ray CT. We have synthesized iodinated acrylate monomers to formulate high-Z photoresist materials that are capable of forming 3D microstructures with sub-150 nm features. In addition, we have developed a formulation protocol to match the refractive index of the photoresists to the immersion medium of the objective lens so as to enable dip-in laser lithography, a direct laser writing technique for producing millimeter-tall structures. Our radiopaque photopolymer then resists increase X-ray attenuation by a factor of more than 10 times without sacrificing the sub-150 nm feature resolution or the millimeter-scale part height. Thus, our resists can successfully replace existing photopolymers to generate AM parts that are suitable for inspection via X-ray CT. By providing the “feedstock” for radiopaque AM parts, our resist formulation is expected to play a critical role in enabling fabrication of functional polymer parts to tight design tolerances.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1417282-radiopaque-resists-two-photon-lithography-enable-submicron-imaging-polymer-parts-via-ray-computed-tomography','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1417282-radiopaque-resists-two-photon-lithography-enable-submicron-imaging-polymer-parts-via-ray-computed-tomography"><span>Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Saha, Sourabh K.; Oakdale, James S.; Cuadra, Jefferson A.; ...</p> <p>2017-11-24</p> <p>Two-photon lithography (TPL) is a high-resolution additive manufacturing (AM) technique capable of producing arbitrarily complex three-dimensional (3D) microstructures with features 2–3 orders of magnitude finer than human hair. This process finds numerous applications as a direct route toward the fabrication of novel optical and mechanical metamaterials, miniaturized optics, microfluidics, biological scaffolds, and various other intricate 3D parts. As TPL matures, metrology and inspection become a crucial step in the manufacturing process to ensure that the geometric form of the end product meets design specifications. X-ray-based computed tomography (CT) is a nondestructive technique that can provide this inspection capability for themore » evaluation of complex internal 3D structure. However, polymeric photoresists commonly used for TPL, as well as other forms of stereolithography, poorly attenuate X-rays due to the low atomic number (Z) of their constituent elements and therefore appear relatively transparent during imaging. We present the development of optically clear yet radiopaque photoresists for enhanced contrast under X-ray CT. We have synthesized iodinated acrylate monomers to formulate high-Z photoresist materials that are capable of forming 3D microstructures with sub-150 nm features. In addition, we have developed a formulation protocol to match the refractive index of the photoresists to the immersion medium of the objective lens so as to enable dip-in laser lithography, a direct laser writing technique for producing millimeter-tall structures. Our radiopaque photopolymer then resists increase X-ray attenuation by a factor of more than 10 times without sacrificing the sub-150 nm feature resolution or the millimeter-scale part height. Thus, our resists can successfully replace existing photopolymers to generate AM parts that are suitable for inspection via X-ray CT. By providing the “feedstock” for radiopaque AM parts, our resist formulation is expected to play a critical role in enabling fabrication of functional polymer parts to tight design tolerances.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930054095&hterms=Kilauea+volcano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DKilauea%2Bvolcano','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930054095&hterms=Kilauea+volcano&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DKilauea%2Bvolcano"><span>Lava flow topographic measurements for radar data interpretation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Campbell, Bruce A.; Garvin, James B.</p> <p>1993-01-01</p> <p>Topographic profiles at 25- and 5-cm horizontal resolution for three sites along a lava flow on Kilauea Volcano are presented, and these data are used to illustrate techniques for surface roughness analysis. Height and slope distributions and the height autocorrelation function are evaluated as a function of varying lowpass filter wavelength for the 25-cm data. Rms slopes are found to increase rapidly with decreasing topographic scale and are typically much higher than those found by modeling of Magellan altimeter data for Venus. A more robust description of the surface roughness appears to be the ratio of rms height to surface height correlation length. For all three sites this parameter falls within the range of values typically found from model fits to Magellan altimeter waveforms. The 5-cm profile data are used to estimate the effect of small-scale roughness on quasi-specular scattering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PMB....63a5022G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PMB....63a5022G"><span>K-edge energy-based calibration method for photon counting detectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong</p> <p>2018-01-01</p> <p>In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19173435','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19173435"><span>Voice classification and vocal tract of singers: a study of x-ray images and morphology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Roers, Friederike; Mürbe, Dirk; Sundberg, Johan</p> <p>2009-01-01</p> <p>This investigation compares vocal tract dimensions and the classification of singer voices by examining an x-ray material assembled between 1959 and 1991 of students admitted to the solo singing education at the University of Music, Dresden, Germany. A total of 132 images were available to analysis. Different classifications' values of the lengths of the total vocal tract, the pharynx, and mouth cavities as well as of the relative position of the larynx, the height of the palatal arch, and the estimated vocal fold length were analyzed statistically, and some significant differences were found. The length of the pharynx cavity seemed particularly influential on the total vocal tract length, which varied systematically with classification. Also studied were the relationships between voice classification and the body height and weight and the body mass index. The data support the hypothesis that there are consistent morphological vocal tract differences between singers of different voice classifications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890007075','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890007075"><span>Acoustic propagation in a thermally stratified atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vanmoorhem, W. K.</p> <p>1988-01-01</p> <p>Acoustic propagation in an atmosphere with a specific form of a temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solutions have been considered, the primary emphasis has been on solutions of the acoustic wave equation with point source where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870018057','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870018057"><span>Acoustic propagation in a thermally stratified atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vanmoorhem, W. K.</p> <p>1987-01-01</p> <p>Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JAP...106j4903M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JAP...106j4903M"><span>Schottky's conjecture on multiplication of field enhancement factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, Ryan; Lau, Y. Y.; Booske, John H.</p> <p>2009-11-01</p> <p>Of great interest to high power microwave, millimeter wave to terahertz sources, x-ray tubes, electrons guns, etc., is the electric field enhancement obtained from sharp emitting structures fabricated by various microfabrication methods. In this paper, we use conformal mapping to investigate the field enhancement of several rectilinear geometries, including a single rectangular ridge, a trapezoidal ridge, and their superposition, i.e., one ridge on top of another. We show that the composite field enhancement factor of the double ridge with a microprotrusion on top of a macroprotrusion is dominated by the product of the individual protrusions' field enhancement factors over a very wide range of geometric aspect ratios, as conjectured by Schottky. Simplified scaling laws are proposed. Significant deviation from Schottky's product rule occurs almost exclusively when the half-width of the macroprotrusion is less than the height of the microprotrusion. Accurate expressions of the divergent electric field near the sharp edges are derived.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21930215','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21930215"><span>Correlation among body height, intelligence, and brain gray matter volume in healthy children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kotozaki, Yuka; Nouchi, Rui; Wu, Kai; Fukuda, Hiroshi; Kawashima, Ryuta</p> <p>2012-01-16</p> <p>A significant positive correlation between height and intelligence has been demonstrated in children. Additionally, intelligence has been associated with the volume of gray matter in the brains of children. Based on these correlations, we analyzed the correlation among height, full-scale intelligence quotient (IQ) and gray matter volume applying voxel-based morphometry using data from the brain magnetic resonance images of 160 healthy children aged 5-18 years of age. As a result, body height was significantly positively correlated with brain gray matter volume. Additionally, the regional gray matter volume of several regions such as the bilateral prefrontal cortices, temporoparietal region, and cerebellum was significantly positively correlated with body height and that the gray matter volume of several of these regions was also significantly positively correlated with full-scale intelligence quotient (IQ) scores after adjusting for age, sex, and socioeconomic status. Our results demonstrate that gray and white matter volume may mediate the correlation between body height and intelligence in healthy children. Additionally, the correlations among gray and white matter volume, height, and intelligence may be at least partially explained by the effect of insulin-like growth factor-1 and growth hormones. Given the importance of the effect of environmental factors, especially nutrition, on height, IQ, and gray matter volume, the present results stress the importance of nutrition during childhood for the healthy maturation of body and brain. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820034547&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820034547&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drust"><span>Application of X-ray imaging techniques to auroral monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rust, D. M.; Burstein, P.</p> <p>1981-01-01</p> <p>The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003ASAJ..114.2358M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003ASAJ..114.2358M"><span>Spiral model of pitch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, James D.</p> <p>2003-10-01</p> <p>A spiral model of pitch interrelates tone chroma, tone height, equal temperament scales, and a cochlear map. Donkin suggested in 1870 that the pitch of tones could be well represented by an equiangular spiral. More recently, the cylindrical helix has been popular for representing tone chroma and tone height. Here it is shown that tone chroma, tone height, and cochlear position can be conveniently related to tone frequency via a planar spiral. For this ``equal-temperament spiral,'' (ET Spiral) tone chroma is conceived as a circular array with semitones at 30° intervals. The frequency of sound on the cent scale (re 16.351 Hz) is represented by the radius of the spiral defined by r=(1200/2π)θr, where θr is in radians. By these definitions, one revolution represents one octave, 1200 cents, 30° represents a semitone, the radius relates θ to cents in accordance with equal temperament (ET) tuning, and the arclength of the spiral matches the mapping of sound frequency to the basilar membrane. Thus, the ET Spiral gives tone chroma as θ, tone height as the cent scale, and the cochlear map as the arclength. The possible implications and directions for further work are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29437172','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29437172"><span>Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L</p> <p>2018-03-13</p> <p>Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1260561-optimizing-ray-mirror-thermal-performance-usingmatched-profile-cooling','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1260561-optimizing-ray-mirror-thermal-performance-usingmatched-profile-cooling"><span>Optimizing X-ray mirror thermal performance using matched profile cooling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Lin; Cocco, Daniele; Kelez, Nicholas</p> <p>2015-08-07</p> <p>To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick–Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle ismore » presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ~11belowthe requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030066610&hterms=hinson&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhinson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030066610&hterms=hinson&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dhinson"><span>Characteristics of Mini-Magnetospheres Formed by Paleo-Magnetic Fields of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ness, N. F.; Krymskii, A. M.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.; Barashyan, K. K.</p> <p>2003-01-01</p> <p>The intensely and non-uniformly magnetized crustal sources generate an effective large-scale magnetic field. In the Southern hemisphere the strongest crustal fields lead to the formation of large-scale mini-magnetospheres. In the Northern hemisphere, the crustal fields are rather weak and there are only isolated mini-magnetospheres. Re-connection with the interplanetary magnetic field (IMF) occurs in many localized regions. This may occur not only in cusp-like structures above nearly vertical field anomalies but also in halos extending several hundreds of kilometers from these sources. Re-connection will permit solar wind (SW) and more energetic particles to precipitate into and heat the neutral atmosphere. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment are concentrated in the near polar regions. The effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak has been derived for each of the profiles studied. The effective scale-heights have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A significant difference between the large-scale mini-magnetospheres and regions outside of them has been found. The neutral atmosphere is cooler inside the large-scale mini-magnetospheres. It appears that outside of the cusps the strong crustal magnetic fields prevent additional heating of the neutral atmosphere by direct interaction of the SW. The scale-height of the neutral atmosphere density derived from the experiment with the MGS Accelerometer has been compared with MAG/ER data. The scale-height was found to be usually larger than mean value near the boundaries of potential mini-magnetospheres and around cusps . It may indicate that the paleo-magnetic/IMF field re-connection is characteristic of the mini-magnetospheres at Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750003225','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750003225"><span>The correlation of VLF propagation variations with atmospheric planetary-scale waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cavalieri, D. J.; Deland, R. J.; Potemra, T. A.; Gavin, R. F.</p> <p>1973-01-01</p> <p>Variations in the received daytime phase of long distance, cesium-controlled, VLF transmission were compared to the height variations of the 10-mb isobaric surface during the first three months of 1965 and 1969. The VLF phase values are also compared to height variations of constant electron densities in the E-region and to variations of f-min which have been shown to be well correlated with planetary-scale variations in the stratosphere by Deland and Cavalieri (1973). The VLF phase variations show good correlation with these previous ionospheric measurements and with the 10-mb surfaces. The planetary scale waves in the stratosphere are shown to be travelling on the average eastward in 1965 and westward in 1969. These correlations are interpreted as due to the propagation of travelling planetary scale waves with westward tilted wave fronts. Upward energy transport due to the vertical structure of those waves is also discussed. These correlations provide further evidence for the coupling between the lower ionosphere at about 70 km altitude (the daytime VLF reflection height and the stratosphere, and they demonstrate the importance of planetary wave phenomena to VLF propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/25729','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/25729"><span>Nonlinear load-deflection behavior of abutment backwalls with varying height and soil density.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-12-01</p> <p>We address the scaling of abutment wall lateral response with wall height and compaction condition through testing and analytical work. The : analytical work was undertaken to develop hyperbolic curves representing the load-deflection response of bac...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4175H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4175H"><span>Stereophotogrammetry in studies of riparian vegetation dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hortobagyi, Borbala; Vautier, Franck; Corenblit, Dov; Steiger, Johannes</p> <p>2014-05-01</p> <p>Riparian vegetation responds to hydrogeomorphic disturbances and also controls sediment deposition and erosion. Spatio-temporal riparian vegetation dynamics within fluvial corridors have been quantified in many studies using aerial photographs and GIS. However, this approach does not allow the consideration of woody vegetation growth rates (i.e. vertical dimension) which are fundamental when studying feedbacks between the processes of fluvial landform construction and vegetation establishment and succession. We built 3D photogrammetric models of vegetation height based on aerial argentic and digital photographs from sites of the Allier and Garonne Rivers (France). The models were realized at two different spatial scales and with two different methods. The "large" scale corresponds to the reach of the river corridor on the Allier river (photograph taken in 2009) and the "small" scale to river bars of the Allier (photographs taken in 2002, 2009) and Garonne Rivers (photographs taken in 2000, 2002, 2006 and 2010). At the corridor scale, we generated vegetation height models using an automatic procedure. This method is fast but can only be used with digital photographs. At the bar scale, we constructed the models manually using a 3D visualization on the screen. This technique showed good results for digital and also argentic photographs but is very time-consuming. A diachronic study was performed in order to investigate vegetation succession by distinguishing three different classes according to the vegetation height: herbs (<1 m), shrubs (1-4 m) or trees (>4 m). Both methods, i.e. automatic and manual, were employed to study the evolution of the three vegetation classes and the recruitment of new vegetation patches. A comparison was conducted between the vegetation height given by models (automatic and manual) and the vegetation height measured in the field. The manually produced models (small scale) were of a precision of 0.5-1 m, allowing the quantification of woody vegetation growth rates. Thus, our results show that the manual method we developed is accurate to quantify vegetation growth rates at small scales, whereas the less accurate automatic method is appropriate to study vegetation succession at the corridor scale. Both methods are complementary and will contribute to a further exploration of the mutual relationships between hydrogeomorphic processes, topography and vegetation dynamics within alluvial systems, adding the quantification of the vertical dimension of riparian vegetation to their spatio-temporal characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1437222-sensitivity-study-impact-installation-parameters-system-configuration-performance-bifacial-pv-arrays','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1437222-sensitivity-study-impact-installation-parameters-system-configuration-performance-bifacial-pv-arrays"><span>A Sensitivity Study of the Impact of Installation Parameters and System Configuration on the Performance of Bifacial PV Arrays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marion, William F; Deline, Christopher A; Asgharzadeh, Amir</p> <p></p> <p>In this paper, we present the effect of installation parameters (tilt angle, height above ground, and albedo) on the bifacial gain and energy yield of three south-facing photovoltaic (PV) system configurations: a single module, a row of five modules, and five rows of five modules utilizing RADIANCE-based ray tracing model. We show that height and albedo have a direct impact on the performance of bifacial systems. However, the impact of the tilt angle is more complicated. Seasonal optimum tilt angles are dependent on parameters such as height, albedo, size of the system, weather conditions, and time of the year. Formore » a single bifacial module installed in Albuquerque, NM, USA (35 degrees N) with a reasonable clearance (~1 m) from the ground, the seasonal optimum tilt angle is lowest (~5 degrees) for the summer solstice and highest (~65 degrees) for the winter solstice. For larger systems, seasonal optimum tilt angles are usually higher and can be up to 20 degrees greater than that for a single module system. Annual simulations also indicate that for larger fixed-tilt systems installed on a highly reflective ground (such as snow or a white roofing material with an albedo of ~81%), the optimum tilt angle is higher than the optimum angle of the smaller size systems. We also show that modules in larger scale systems generate lower energy due to horizon blocking and large shadowing area cast by the modules on the ground. For albedo of 21%, the center module in a large array generates up to 7% less energy than a single bifacial module. To validate our model, we utilize measured data from Sandia National Laboratories' fixed-tilt bifacial PV testbed and compare it with our simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008183','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008183"><span>Comparison of Organ Dosimetry for Astronaut Phantoms: Earth-Based vs. Microgravity-Based Anthropometry and Body Positioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>VanBaalen, Mary; Bahadon, Amir; Shavers, Mark; Semones, Edward</p> <p>2011-01-01</p> <p>The purpose of this study is to use NASA radiation transport codes to compare astronaut organ dose equivalents resulting from solar particle events (SPE), geomagnetically trapped protons, and free-space galactic cosmic rays (GCR) using phantom models representing Earth-based and microgravity-based anthropometry and positioning. Methods: The Univer sity of Florida hybrid adult phantoms were scaled to represent male and female astronauts with 5th, 50th, and 95th percentile heights and weights as measured on Earth. Another set of scaled phantoms, incorporating microgravity-induced changes, such as spinal lengthening, leg volume loss, and the assumption of the neutral body position, was also created. A ray-tracer was created and used to generate body self-shielding distributions for dose points within a voxelized phantom under isotropic irradiation conditions, which closely approximates the free-space radiation environment. Simplified external shielding consisting of an aluminum spherical shell was used to consider the influence of a spacesuit or shielding of a hull. These distributions were combined with depth dose distributions generated from the NASA radiation transport codes BRYNTRN (SPE and trapped protons) and HZETRN (GCR) to yield dose equivalent. Many points were sampled per organ. Results: The organ dos e equivalent rates were on the order of 1.5-2.5 mSv per day for GCR (1977 solar minimum) and 0.4-0.8 mSv per day for trapped proton irradiation with shielding of 2 g cm-2 aluminum equivalent. The organ dose equivalents for SPE irradiation varied considerably, with the skin and eye lens having the highest organ dose equivalents and deep-seated organs, such as the bladder, liver, and stomach having the lowest. Conclus ions: The greatest differences between the Earth-based and microgravity-based phantoms are observed for smaller ray thicknesses, since the most drastic changes involved limb repositioning and not overall phantom size. Improved self-shielding models reduce the overall uncertainty in organ dosimetry for mission-risk projections and assessments for astronauts</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4193778','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4193778"><span>A Small-Scale Comparison of Iceland Scallop Size Distributions Obtained from a Camera Based Autonomous Underwater Vehicle and Dredge Survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Singh, Warsha; Örnólfsdóttir, Erla B.; Stefansson, Gunnar</p> <p>2014-01-01</p> <p>An approach is developed to estimate size of Iceland scallop shells from AUV photos. A small-scale camera based AUV survey of Iceland scallops was conducted at a defined site off West Iceland. Prior to height estimation of the identified shells, the distortions introduced by the vehicle orientation and the camera lens were corrected. The average AUV pitch and roll was and deg that resulted in error in ground distance rendering these effects negligible. A quadratic polynomial model was identified for lens distortion correction. This model successfully predicted a theoretical grid from a frame photographed underwater, representing the inherent lens distortion. The predicted shell heights were scaled for the distance from the bottom at which the photos were taken. This approach was validated by height estimation of scallops of known sizes. An underestimation of approximately cm was seen, which could be attributed to pixel error, where each pixel represented cm. After correcting for this difference the estimated heights ranged from cm. A comparison of the height-distribution from a small-scale dredge survey carried out in the vicinity showed non-overlapping peaks in size distribution, with scallops of a broader size range visible in the AUV survey. Further investigations are necessary to evaluate any underlying bias and to validate how representative these surveys are of the true population. The low resolution images made identification of smaller scallops difficult. Overall, the observations of very few small scallops in both surveys could be attributed to low recruitment levels in the recent years due to the known scallop parasite outbreak in the region. PMID:25303243</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25303243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25303243"><span>A small-scale comparison of Iceland scallop size distributions obtained from a camera based autonomous underwater vehicle and dredge survey.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singh, Warsha; Örnólfsdóttir, Erla B; Stefansson, Gunnar</p> <p>2014-01-01</p> <p>An approach is developed to estimate size of Iceland scallop shells from AUV photos. A small-scale camera based AUV survey of Iceland scallops was conducted at a defined site off West Iceland. Prior to height estimation of the identified shells, the distortions introduced by the vehicle orientation and the camera lens were corrected. The average AUV pitch and roll was 1.3 and 2.3 deg that resulted in <2% error in ground distance rendering these effects negligible. A quadratic polynomial model was identified for lens distortion correction. This model successfully predicted a theoretical grid from a frame photographed underwater, representing the inherent lens distortion. The predicted shell heights were scaled for the distance from the bottom at which the photos were taken. This approach was validated by height estimation of scallops of known sizes. An underestimation of approximately 0.5 cm was seen, which could be attributed to pixel error, where each pixel represented 0.24 x 0.27 cm. After correcting for this difference the estimated heights ranged from 3.8-9.3 cm. A comparison of the height-distribution from a small-scale dredge survey carried out in the vicinity showed non-overlapping peaks in size distribution, with scallops of a broader size range visible in the AUV survey. Further investigations are necessary to evaluate any underlying bias and to validate how representative these surveys are of the true population. The low resolution images made identification of smaller scallops difficult. Overall, the observations of very few small scallops in both surveys could be attributed to low recruitment levels in the recent years due to the known scallop parasite outbreak in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SpWea..16..304P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SpWea..16..304P"><span>Modeling the Lower Part of the Topside Ionospheric Vertical Electron Density Profile Over the European Region by Means of Swarm Satellites Data and IRI UP Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pignalberi, A.; Pezzopane, M.; Rizzi, R.</p> <p>2018-03-01</p> <p>An empirical method to model the lower part of the ionospheric topside region from the F2 layer peak height to about 500-600 km of altitude over the European region is proposed. The method is based on electron density values recorded from December 2013 to June 2016 by Swarm satellites and on foF2 and hmF2 values provided by IRI UP (International Reference Ionosphere UPdate), which is a method developed to update the IRI model relying on the assimilation of foF2 and M(3000)F2 data routinely recorded by a network of European ionosonde stations. Topside effective scale heights are calculated by fitting some definite analytical functions (α-Chapman, β-Chapman, Epstein, and exponential) through the values recorded by Swarm and the ones output by IRI UP, with the assumption that the effective scale height is constant in the altitude range considered. Calculated effective scale heights are then modeled as a function of foF2 and hmF2, in order to be operationally applicable to both ionosonde measurements and ionospheric models, like IRI. The method produces two-dimensional grids of the median effective scale height binned as a function of foF2 and hmF2, for each of the considered topside profiles. A statistical comparison with Constellation Observing System for Meteorology, Ionosphere, and Climate/FORMOsa SATellite-3 collected Radio Occultation profiles is carried out to assess the validity of the proposed method and to investigate which of the considered topside profiles is the best one. The α-Chapman topside function displays the best performance compared to the others and also when compared to the NeQuick topside option of IRI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24368144','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24368144"><span>Relationships of 35 lower limb muscles to height and body mass quantified using MRI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Handsfield, Geoffrey G; Meyer, Craig H; Hart, Joseph M; Abel, Mark F; Blemker, Silvia S</p> <p>2014-02-07</p> <p>Skeletal muscle is the most abundant tissue in the body and serves various physiological functions including the generation of movement and support. Whole body motor function requires adequate quantity, geometry, and distribution of muscle. This raises the question: how do muscles scale with subject size in order to achieve similar function across humans? While much of the current knowledge of human muscle architecture is based on cadaver dissection, modern medical imaging avoids limitations of old age, poor health, and limited subject pool, allowing for muscle architecture data to be obtained in vivo from healthy subjects ranging in size. The purpose of this study was to use novel fast-acquisition MRI to quantify volumes and lengths of 35 major lower limb muscles in 24 young, healthy subjects and to determine if muscle size correlates with bone geometry and subject parameters of mass and height. It was found that total lower limb muscle volume scales with mass (R(2)=0.85) and with the height-mass product (R(2)=0.92). Furthermore, individual muscle volumes scale with total muscle volume (median R(2)=0.66), with the height-mass product (median R(2)=0.61), and with mass (median R(2)=0.52). Muscle volume scales with bone volume (R(2)=0.75), and muscle length relative to bone length is conserved (median s.d.=2.1% of limb length). These relationships allow for an arbitrary subject's individual muscle volumes to be estimated from mass or mass and height while muscle lengths may be estimated from limb length. The dataset presented here can further be used as a normative standard to compare populations with musculoskeletal pathologies. © 2013 Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040081289','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040081289"><span>Retrievals of Jovian Tropospheric Phosphine from Cassini/CIRS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Irwin, P. G. J.; Parrish, P.; Fouchet, T.; Calcutt, S. B.; Taylor, F. W.; Simon-Miller, A. A.; Nixon, C. A.</p> <p>2004-01-01</p> <p>On December 30th 2000, the Cassini-Huygens spacecraft reached the perijove milestone on its continuing journey to the Saturnian system. During an extended six-month encounter, the Composite Infrared Spectrometer (CIRS) returned spectra of the Jovian atmosphere, rings and satellites from 10-1400 cm(exp -1) (1000-7 microns) at a programmable spectral resolution of 0.5 to 15 cm(exp -1). The improved spectral resolution of CIRS over previous IR instrument-missions to Jupiter, the extended spectral range, and higher signal-to-noise performance provide significant advantages over previous data sets. CIRS global observations of the mid-infrared spectrum of Jupiter at medium resolution (2.5 cm(exp -1)) have been analysed both with a radiance differencing scheme and an optimal estimation retrieval model to retrieve the spatial variation of phosphine and ammonia fractional scale height in the troposphere between 60 deg S and 60 deg N at a spatial resolution of 6 deg. The ammonia fractional scale height appears to be high over the Equatorial Zone (EZ) but low over the North Equatorial Belt (NEB) and South Equatorial Belt (SEB) indicating rapid uplift or strong vertical mixing in the EZ. The abundance of phosphine shows a similar strong latitudinal variation which generally matches that of the ammonia fractional scale height. However while the ammonia fractional scale height distribution is to a first order symmetric in latitude, the phosphine distribution shows a North/South asymmetry at mid latitudes with higher amounts detected at 40 deg N than 40 deg S. In addition the data show that while the ammonia fractional scale height at this spatial resolution appears to be low over the Great Red Spot (GRS), indicating reduced vertical mixing above the approx. 500 mb level, the abundance of phosphine at deeper levels may be enhanced at the northern edge of the GRS indicating upwelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JPSJ...71.2310T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JPSJ...71.2310T"><span>Mound-Interface Kinetics in Dictyostelium Aggregation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tutu, Hiroki</p> <p>2002-09-01</p> <p>The mound development of the cellular slime mold amoebae Dictyostelium discoideum is studied with an interface kinetic model for the height of cell layers. As a competitive role for the chemotaxis, we compare two types of curvature relaxations; the surface relaxation induced by cell-substrate affinity (model A), and that comes from a cell-cell adhesive effect (model B). It is found that both models are characterized by the growth law for the maximum mound height. Based on a self-similarity scaling hypothesis for the spatial structure of streaming pattern, we suggest a scaling law for the growth of mound-height hmax ˜ t1-1/α+β/α with α = 2 (4) for the model A (B) and a number 0 ≤ β < 1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910064264&hterms=1094&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%25231094','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910064264&hterms=1094&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%25231094"><span>Design and analysis of aspherical multilayer imaging X-ray microscope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shealy, David L.; Jiang, WU; Hoover, Richard B.</p> <p>1991-01-01</p> <p>Spherical Schwarzschild microscopes for soft X-ray applications in microscopy and projection lithography employ two concentric spherical mirrors that are configured such that the third-order spherical aberration and coma are zero. Based on incoherent, sine-wave MTF calculations, the object-plane resolution of a magnification-factor-20 microscope is presently analyzed as a function of object height and numerical aperture of the primary for several spherical Schwarzschild, conic, and aspherical two-mirror microscope configurations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..501...86Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..501...86Y"><span>Height conditions salary expectations: Evidence from large-scale data in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xiao; Gao, Jian; Liu, Jin-Hu; Zhou, Tao</p> <p>2018-07-01</p> <p>Height premium has been revealed by extensive literature, however, evidence from China based on large-scale data remains still lacking. In this paper, we study how height conditions salary expectations by exploring a dataset covering over 140,000 Chinese job seekers. By using graphical and regression models, we find evidence in support of height premium that tall people expect a significantly higher salary in career development. In particular, regression results suggest stronger effects of height premium on female than on male, however, the gender differences decrease as the education level increases and become insignificant after holding all control variables fixed. Further, results from graphical models suggest three promising ways in helping short people: (i) to accumulate more working experiences, since one year seniority can respectively make up about 3 cm and 7 cm shortness for female and male; (ii) to increase the level of education, since one higher academic degree may eliminate all disadvantages that brought by shortness; (iii) to target jobs in regions with a higher level of development. Our work provides a cross-culture supportive evidence of height premium and contributes two novel features to the literature: the compensation story in helping short people, and the focus on salary expectations in isolation from discrimination channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29503757','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29503757"><span>Applying Deep Learning in Medical Images: The Case of Bone Age Estimation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jang Hyung; Kim, Kwang Gi</p> <p>2018-01-01</p> <p>A diagnostic need often arises to estimate bone age from X-ray images of the hand of a subject during the growth period. Together with measured physical height, such information may be used as indicators for the height growth prognosis of the subject. We present a way to apply the deep learning technique to medical image analysis using hand bone age estimation as an example. Age estimation was formulated as a regression problem with hand X-ray images as input and estimated age as output. A set of hand X-ray images was used to form a training set with which a regression model was trained. An image preprocessing procedure is described which reduces image variations across data instances that are unrelated to age-wise variation. The use of Caffe, a deep learning tool is demonstrated. A rather simple deep learning network was adopted and trained for tutorial purpose. A test set distinct from the training set was formed to assess the validity of the approach. The measured mean absolute difference value was 18.9 months, and the concordance correlation coefficient was 0.78. It is shown that the proposed deep learning-based neural network can be used to estimate a subject's age from hand X-ray images, which eliminates the need for tedious atlas look-ups in clinical environments and should improve the time and cost efficiency of the estimation process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661441-origin-galactic-diffuse-ray-emission-iron-shell-line-diagnostics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661441-origin-galactic-diffuse-ray-emission-iron-shell-line-diagnostics"><span>ORIGIN OF THE GALACTIC DIFFUSE X-RAY EMISSION: IRON K-SHELL LINE DIAGNOSTICS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nobukawa, Masayoshi; Uchiyama, Hideki; Nobukawa, Kumiko K.</p> <p></p> <p>This paper reports detailed K-shell line profiles of iron (Fe) and nickel (Ni) of the Galactic Center X-ray Emission (GCXE), Galactic Bulge X-ray Emission (GBXE), Galactic Ridge X-ray Emission (GRXE), magnetic Cataclysmic Variables (mCVs), non-magnetic Cataclysmic Variables (non-mCVs), and coronally Active Binaries (ABs). For the study of the origin of the GCXE, GBXE, and GRXE, the spectral analysis is focused on equivalent widths of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α  lines. The global spectrum of the GBXE is reproduced by a combination of the mCVs, non-mCVs, and ABs spectra. On the other hand,more » the GRXE spectrum shows significant data excesses at the Fe i-K α and Fe xxv-He α  line energies. This means that additional components other than mCVs, non-mCVs, and ABs are required, which have symbiotic phenomena of cold gas and very high-temperature plasma. The GCXE spectrum shows larger excesses than those found in the GRXE spectrum at all the K-shell lines of iron and nickel. Among them the largest ones are the Fe i-K α , Fe xxv-He α , Fe xxvi-Ly α , and Fe xxvi-Ly β  lines. Together with the fact that the scale heights of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α lines are similar to that of the central molecular zone (CMZ), the excess components would be related to high-energy activity in the extreme envelopment of the CMZ.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT.......199D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT.......199D"><span>Engineering of pulsed laser deposited calcium phosphate biomaterials in controlled atmospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drukteinis, Saulius E.</p> <p></p> <p>Synthetic calcium phosphates (CAP) such as hydroxyapatite (HA) have been used as regenerative bone graft materials and also as thin films to improve the integration of biomedical implant devices within skeletal tissue. Pulsed laser deposition (PLD) can deposit crystalline HA with significant adhesion on titanium biomaterials. However, there are PLD processing constraints due to the complex physical and chemical interactions occurring simultaneously during PLD, which influence ablation plume formation and development. In this investigation PLD CAP films were engineered with a focus on novel decoupling of partial pressure of H2O (g) ( PH2O ) from total background pressure, in combination with substrate heat treatment and laser energy density control. Characterization of these films was performed with X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy, and Optical Profilometry. In vitro cellular adhesion testing was also performed using osteoblast (MC3T3) cell lines to evaluate adhesion of bone-forming cells on processed PLD CAP samples. Preferred a-axis orientation films were deposited in H2O (g) saturated atmospheres with reduced laser fluence (< 4 J/cm2). Crystalline HA/tetracalcium phosphate (TTCP) films were deposited in H2O ( g)-deficient atmospheres with higher laser fluence (> 3 J/cm 2). Varied PH2O resulted in control of biphasic HA/TTCP composition with increasing TTCP at lower PH2O . These were dense continuous films composed of micron-scale particles. Cellular adhesion assays did not demonstrate a significant difference between osteoblast adhesion density on HA films compared with biphasic HA/TTCP films. Room temperature PLD at varied PH2O combined with furnace heat treatment resulted in controlled variation in surface amplitude parameters including surface roughness (S a), root mean square (Sq), peak to valley height (St), and ten-point height ( Sz). These discontinuous films were composed of nano-scale particles and resulted in significant osteoblast adhesion compared to control samples or to PLD CAP films deposited on heated substrates. Surface amplitude parameters (Sa, Sq, St, and Sz) correlated with osteoblast adhesion. This new approach of control over H2O ( g) operating atmospheres enabled the deposition of unique PLD CAP films with potential use as thin films for biomedical implants or as regenerative bone graft materials. Keywords: hydroxyapatite, pulsed laser deposition, biomaterials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890039111&hterms=Armandroff&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3DArmandroff','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890039111&hterms=Armandroff&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3DArmandroff"><span>The properties of the disk system of globular clusters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Armandroff, Taft E.</p> <p>1989-01-01</p> <p>A large refined data sample is used to study the properties and origin of the disk system of globular clusters. A scale height for the disk cluster system of 800-1500 pc is found which is consistent with scale-height determinations for samples of field stars identified with the Galactic thick disk. A rotational velocity of 193 + or - 29 km/s and a line-of-sight velocity dispersion of 59 + or - 14 km/s have been found for the metal-rich clusters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5443699','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5443699"><span>The basis for cosmic ray feedback: Written on the wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zweibel, Ellen G.</p> <p>2017-01-01</p> <p>Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed. PMID:28579734</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24e5402Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24e5402Z"><span>The basis for cosmic ray feedback: Written on the wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zweibel, Ellen G.</p> <p>2017-05-01</p> <p>Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28579734','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28579734"><span>The basis for cosmic ray feedback: Written on the wind.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zweibel, Ellen G</p> <p>2017-05-01</p> <p>Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback . Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015FrEaS...3...77D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015FrEaS...3...77D"><span>Convective boundary layer heights over mountainous terrain - A review of concepts -</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Wekker, Stephan; Kossmann, Meinolf</p> <p>2015-12-01</p> <p>Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910001202','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910001202"><span>Cloud and boundary layer structure over San Nicolas Island during FIRE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Albrecht, Bruce A.; Fairall, Christopher W.; Syrett, William J.; Schubert, Wayne H.; Snider, Jack B.</p> <p>1990-01-01</p> <p>The temporal evolution of the structure of the marine boundary layer and of the associated low-level clouds observed in the vicinity of the San Nicolas Island (SNI) is defined from data collected during the First ISCCP Regional Experiment (FIRE) Marine Stratocumulus Intense Field Observations (IFO) (July 1 to 19). Surface, radiosonde, and remote-sensing measurements are used for this analysis. Sounding from the Island and from the ship Point Sur, which was located approximately 100 km northwest of SNI, are used to define variations in the thermodynamic structure of the lower-troposphere on time scales of 12 hours and longer. Time-height sections of potential temperature and equivalent potential temperature clearly define large-scale variations in the height and the strength of the inversion and periods where the conditions for cloud-top entrainment instability (CTEI) are met. Well defined variations in the height and the strength of the inversion were associated with a Cataline Eddy that was present at various times during the experiment and with the passage of the remnants of a tropical cyclone on July 18. The large-scale variations in the mean thermodynamic structure at SNI correlate well with those observed from the Point Sur. Cloud characteristics are defined for 19 days of the experiment using data from a microwave radiometer, a cloud ceilometer, a sodar, and longwave and shortwave radiometers. The depth of the cloud layer is estimated by defining inversion heights from the sodar reflectivity and cloud-base heights from a laser ceilometer. The integrated liquid water obtained from NOAA's microwave radiometer is compared with the adiabatic liquid water content that is calculated by lifting a parcel adiabatically from cloud base. In addition, the cloud structure is characterized by the variability in cloud-base height and in the integrated liquid water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C21A0703P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C21A0703P"><span>Interannual Variability in Amundsen Sea Ice-Shelf Height Change Linked to ENSO</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paolo, F. S.; Fricker, H. A.; Padman, L.</p> <p>2015-12-01</p> <p>Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to our 18-year (1994-2012) time series of ice-shelf height in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends of AS ice-shelf height changes are much larger than the range of interannual variability, the short-term rate of change dh/dt can vary about the trend by more than 50%. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. Since both of these processes affecting ice-shelf mass balance respond to changes in wind fields for different ENSO states, we expect some correlation between them. We will describe the spatial structure of AS ice-shelf height response to ENSO, and attempt to distinguish the precipitation signal from basal mass balance due to changing CDW inflows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AeoRe..28...39I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AeoRe..28...39I"><span>Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iturri, Laura Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel Eduardo</p> <p>2017-10-01</p> <p>There is little information about the mineral and organic composition of sediments eroded by wind at different heights. Because of that, wind tunnel simulations were performed on four agricultural loess soils of different granulometry and their saltating materials collected at different heights. The particulate matter with an aerodynamic diameter mainly smaller than 10 μm (PM10) of these soils was obtained separately by a laboratory method. Results indicated that the granulometric composition of sediments collected at different heights was more homogeneous in fine- than in sandy-textured soils, which were more affected by sorting effects during wind erosion. This agrees with the preferential transport of quartz at low heights and of clay minerals at greater heights. SOC contents increased with height, but the composition of the organic materials was different: stable carboxylic acids, aldehydes, amides and aromatics were preferentially transported close to the ground because their were found in larger aggregates, while plant debris and polysaccharides, carbohydrates and derivatives of microbial origin from organic matter dominated at greater heights for all soil types. The amount of SOC in the PM10 fraction was higher when it was emitted from sandy than from fine textured soils. Because of the sorting process produced by wind erosion, the stable organic matter compounds will be transported at low heights and local scales, modifying soil fertility due to nutrient exportation, while less stable organic compounds will be part of the suspension losses, which are known to affect some processes at regional- or global scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JInst..13P2018T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JInst..13P2018T"><span>Characterization of germanium detectors for the measurement of the angular distribution of prompt γ-rays at the ANNRI in the MLF of the J-PARC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takada, S.; Okudaira, T.; Goto, F.; Hirota, K.; Kimura, A.; Kitaguchi, M.; Koga, J.; Nakao, T.; Sakai, K.; Shimizu, H. M.; Yamamoto, T.; Yoshioka, T.</p> <p>2018-02-01</p> <p>In this study, the germanium detector assembly, installed at the Accurate Neutron-Nuclear Reaction measurement Instruments (ANNRI) in the Material and Life Science Facility (MLF) operated by the Japan Proton Accelerator Research Complex (J-PARC), has been characterized for extension to the measurement of the angular distribution of individual γ-ray transitions from neutron-induced compound states. We have developed a Monte Carlo simulation code using the GEANT4 toolkit, which can reproduce the pulse-height spectra of γ-rays from radioactive sources and (n,γ) reactions. The simulation is applicable to the measurement of γ-rays in the energy region of 0.5-11.0 MeV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26370826','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26370826"><span>3D X-ray ultra-microscopy of bone tissue.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Langer, M; Peyrin, F</p> <p>2016-02-01</p> <p>We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25001205','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25001205"><span>Countermovement strategy changes with vertical jump height to accommodate feasible force constraints.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Seyoung; Park, Sukyung; Choi, Sangkyu</p> <p>2014-09-22</p> <p>In this study, we developed a curve-fit model of countermovement dynamics and examined whether the characteristics of a countermovement jump can be quantified using the model parameter and its scaling; we expected that the model-based analysis would facilitate an understanding of the basic mechanisms of force reduction and propulsion with a simplified framework of the center of mass (CoM) mechanics. Ten healthy young subjects jumped straight up to five different levels ranging from approximately 10% to 35% of their body heights. The kinematic and kinetic data on the CoM were measured using a force plate system synchronized with motion capture cameras. All subjects generated larger vertical forces compared with their body weights from the countermovement and sufficiently lowered their CoM position to support the work performed by push-off as the vertical elevations became more challenging. The model simulation reasonably reproduced the trajectories of vertical force during the countermovement, and the model parameters were replaced by linear and polynomial regression functions in terms of the vertical jump height. Gradual scaling trends of the individual model parameters were observed as a function of the vertical jump height with different degrees of scaling, depending on the subject. The results imply that the subjects may be aware of the jumping dynamics when subjected to various vertical jump heights and may select their countermovement strategies to effectively accommodate biomechanical constraints, i.e., limited force generation for the standing vertical jump. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22356697-plasma-dynamics-above-solar-flare-soft-ray-loop-tops','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22356697-plasma-dynamics-above-solar-flare-soft-ray-loop-tops"><span>Plasma dynamics above solar flare soft x-ray loop tops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Doschek, G. A.; Warren, H. P.; McKenzie, D. E.</p> <p>2014-06-10</p> <p>We measure non-thermal motions in flare loop tops and above the loop tops using profiles of highly ionized spectral lines of Fe XXIV and Fe XXIII formed at multimillion-degree temperatures. Non-thermal motions that may be due to turbulence or multiple flow regions along the line of sight are extracted from the line profiles. The non-thermal motions are measured for four flares seen at or close to the solar limb. The profile data are obtained using the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. The multimillion-degree non-thermal motions are between 20 and 60 km s{sup –1} and appear to increase withmore » height above the loop tops. Motions determined from coronal lines (i.e., lines formed at about 1.5 MK) tend to be smaller. The multimillion-degree temperatures in the loop tops and above range from about 11 MK to 15 MK and also tend to increase with height above the bright X-ray-emitting loop tops. The non-thermal motions measured along the line of sight, as well as their apparent increase with height, are supported by Solar Dynamics Observatory Atmospheric Imaging Assembly measurements of turbulent velocities in the plane of the sky.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970023940','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970023940"><span>Spectral and Temporal Characteristics of X-Ray-Bright Stars in the Pleiades</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gagne, Marc; Caillault, Jean-Pierre; Stauffer, John R.</p> <p>1995-01-01</p> <p>We follow up our deep ROSAT imaging survey of the Pleiades (Stauffer et al. 1994) with an analysis of the spectral and temporal characteristics of the X-ray-bright stars in the Pleiades. Raymond & Smith (1977) one and two-temperature models have been used to fit the position-sensitive proportional counter (PSPC) pulse-height spectra of the dozen or so brightest sources associated with late-type Pleiades members. The best-fit temperatures suggest hot coronal temperatures for K, M, and rapidly rotating G stars, and cooler temperatures for F and slowly rotating G stars. In order to probe the many less X-ray-luminous stars, we have generated composite spectra by combining net counts from all Pleiades members according to spectral type and rotational velocity. Model fits to the composite spectra confirm the trend seen in the individual spectral fits. Particularly interesting is the apparent dependence of coronal temperature on L(sub x)/L(sub bol). A hardness-ratio analysis also confirms some of these trends. The PSPC data have also revealed a dozen or so strong X-ray flares with peak X-ray luminosities in excess of approx. 10(exp 30) ergs/sec. We have modeled the brightest of these flares with a simple quasi-static cooling loop model. The peak temperature and emission measure and the inferred electron density and plasma volume suggest a very large scale flaring event. The PSPC data were collected over a period of approx. 18 months, allowing us to search for source variability on timescales ranging from less than a day (in the case of flares) to more than a year between individual exposures. On approximately year-long timescales, roughly 25% of the late-type stars are variable. Since the Pleiades was also intensively monitored by the imaging instruments on the Einstein Observatory, we have examined X-ray luminosity variations on the 10 yr timescale between Einstein and ROSAT and find that up to 40% of the late-type stars are X-ray variable. Since there is only marginal evidence for increased variability on decade-long timescales, the variability observed on long and short timescales may have a common physical origin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1702G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1702G"><span>Case study of inclined sporadic E layers in the Earth's ionosphere observed by CHAMP/GPS radio occultations: Coupling between the tilted plasma layers and internal waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gubenko, Vladimir N.; Pavelyev, A. G.; Kirillovich, I. A.; Liou, Y.-A.</p> <p>2018-04-01</p> <p>We have used the radio occultation (RO) satellite data CHAMP/GPS (Challenging Minisatellite Payload/Global Positioning System) for studying the ionosphere of the Earth. A method for deriving the parameters of ionospheric structures is based upon an analysis of the RO signal variations in the phase path and intensity. This method allows one to estimate the spatial displacement of a plasma layer with respect to the ray perigee, and to determine the layer inclination and height correction values. In this paper, we focus on the case study of inclined sporadic E (Es) layers in the high-latitude ionosphere based on available CHAMP RO data. Assuming that the internal gravity waves (IGWs) with the phase-fronts parallel to the ionization layer surfaces are responsible for the tilt angles of sporadic plasma layers, we have developed a new technique for determining the parameters of IGWs linked with the inclined Es structures. A small-scale internal wave may be modulating initially horizontal Es layer in height and causing a direction of the plasma density gradient to be rotated and aligned with that of the wave propagation vector k. The results of determination of the intrinsic wave frequency and period, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase speeds, and other characteristics of IGWs under study are presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3864504','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3864504"><span>Screw Placement Accuracy for Minimally Invasive Transforaminal Lumbar Interbody Fusion Surgery: A Study on 3-D Neuronavigation-Guided Surgery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Torres, Jorge; James, Andrew R.; Alimi, Marjan; Tsiouris, Apostolos John; Geannette, Christian; Härtl, Roger</p> <p>2012-01-01</p> <p>Purpose The aim of this study was to assess the impact of 3-D navigation for pedicle screw placement accuracy in minimally invasive transverse lumbar interbody fusion (MIS-TLIF). Methods A retrospective review of 52 patients who had MIS-TLIF assisted with 3D navigation is presented. Clinical outcomes were assessed with the Oswestry Disability Index (ODI), Visual Analog Scales (VAS), and MacNab scores. Radiographic outcomes were assessed using X-rays and thin-slice computed tomography. Result The mean age was 56.5 years, and 172 screws were implanted with 16 pedicle breaches (91.0% accuracy rate). Radiographic fusion rate at a mean follow-up of 15.6 months was 87.23%. No revision surgeries were required. The mean improvement in the VAS back pain, VAS leg pain, and ODI at 11.3 months follow-up was 4.3, 4.5, and 26.8 points, respectively. At last follow-up the mean postoperative disc height gain was 4.92 mm and the mean postoperative disc angle gain was 2.79 degrees. At L5–S1 level, there was a significant correlation between a greater disc space height gain and a lower VAS leg score. Conclusion Our data support that application of 3-D navigation in MIS-TLIF is associated with a high level of accuracy in the pedicle screw placement. PMID:24353961</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031837&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031837&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dvertical%2Bheight"><span>The vertical distribution and origin of HCN in Neptune's atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lellouch, Emmanuel; Romani, Paul N.; Rosenqvist, Jan</p> <p>1994-01-01</p> <p>Measurements and modeling of the (3-2) rotational line of hydrogen cyanide at 265.9 GHz in Neptune's atmosphere are presented. High signal-to-noise observations provide information on the HCN vertical distribution in Neptune's stratosphere. The HCN mixing ratio is found to be nearly uniform with height above the condensation level. Best fits occur for HCN distributions that have a slight increase with altitude. A least-squares analysis yields a mixing ratio of (3.2 +/- 0.8)10(exp -10) at 2 mbar and a mean mixing ratio scale height of 250(sup 750)(sub -110) km in the 0.1-3 mbar region. To interpret these results, we developed a photochemical model of HCN. HCN formation is initiated by the reaction between CH3 radicals, produced from methane photochemistry, and N atoms. The primary sink for HCN is condensation, with minor contributions from photolysis and chemical losses. Two possible sources of N atoms are investigated: (1) infall of N escaped from Triton's upper atmosphere, and (2) galactic cosmic ray (GCR) impact on internal N2. Given the uncertainties on (i) the transport and possible ionization of N in Neptune's magnetosphere, and the fate of N(+) reaching Neptune's upper atmosphere and (ii) the N2 mixing ratio in Neptune's deep atmosphere, we suggest that both sources of N atoms may significantly contibute to the formation of HCN.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CMaPh.tmp.1291C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CMaPh.tmp.1291C"><span>Transversal Fluctuations of the ASEP, Stochastic Six Vertex Model, and Hall-Littlewood Gibbsian Line Ensembles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Corwin, Ivan; Dimitrov, Evgeni</p> <p>2018-05-01</p> <p>We consider the ASEP and the stochastic six vertex model started with step initial data. After a long time, T, it is known that the one-point height function fluctuations for these systems are of order T 1/3. We prove the KPZ prediction of T 2/3 scaling in space. Namely, we prove tightness (and Brownian absolute continuity of all subsequential limits) as T goes to infinity of the height function with spatial coordinate scaled by T 2/3 and fluctuations scaled by T 1/3. The starting point for proving these results is a connection discovered recently by Borodin-Bufetov-Wheeler between the stochastic six vertex height function and the Hall-Littlewood process (a certain measure on plane partitions). Interpreting this process as a line ensemble with a Gibbsian resampling invariance, we show that the one-point tightness of the top curve can be propagated to the tightness of the entire curve.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810007125','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810007125"><span>A comparative analysis of rawinsonde and NIMBUS 6 and TIROS N satellite profile data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scoggins, J. R.; Carle, W. E.; Knight, K.; Moyer, V.; Cheng, N. M.</p> <p>1981-01-01</p> <p>Comparisons are made between rawinsonde and satellite profiles in seven areas for a wide range of surface and weather conditions. Variables considered include temperature, dewpoint temperature, thickness, precipitable water, lapse rate of temperature, stability, geopotential height, mixing ratio, wind direction, wind speed, and kinematic parameters, including vorticity and the advection of vorticity and temperature. In addition, comparisons are made in the form of cross sections and synoptic fields for selected variables. Sounding data from the NIMBUS 6 and TIROS N satellites were used. Geostrophic wind computed from smoothed geopotential heights provided large scale flow patterns that agreed well with the rawinsonde wind fields. Surface wind patterns as well as magnitudes computed by use of the log law to extrapolate wind to a height of 10 m agreed with observations. Results of this study demonstrate rather conclusively that satellite profile data can be used to determine characteristics of large scale systems but that small scale features, such as frontal zones, cannot yet be resolved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EPJWC..9307005B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EPJWC..9307005B"><span>DESCANT and β-delayed neutron measurements at TRIUMF</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bildstein, V.; Garrett, P. E.; Ashley, S. F.; Ball, G. C.; Bianco, L.; Bandyopadhyay, D.; Bangay, J.; Crider, B. P.; Demand, G.; Deng, G.; Dillmann, I.; Finlay, A.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Krücken, R.; Leach, K. G.; Martin, J.-P.; McEllistrem, M. T.; Pearson, C. J.; Peters, E. E.; Prados-Estévez, F. M.; Radich, A.; Sarazin, F.; Sumithrarachchi, C.; Svensson, C. E.; Vanhoy, J. R.; Wong, J.; Yates, S. W.</p> <p>2015-05-01</p> <p>The DESCANT array (Deuterated Scintillator Array for Neutron Tagging) consists of up to 70 detectors, each filled with approximately 2 liters of deuterated benzene. This scintillator material o_ers pulse-shape discrimination (PSD) capabilities to distinguish between neutrons and γ-rays interacting with the scintillator material. In addition, the anisotropic nature of n - d scattering allows for the determination of the neutron energy spectrum directly from the pulse height spectrum, complementing the traditional time-of-flight (ToF) information. DESCANT can be coupled either to the TIGRESS (TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer) γ-ray spectrometer [1] located in the ISAC-II [2] hall of TRIUMF for in-beam experiments, or to the GRIFFIN (Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei) γ-ray spectrometer [3] located in the ISAC-I hall of TRIUMF for decay spectroscopy experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950040028&hterms=SPIRAL+MODEL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DSPIRAL%2BMODEL','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950040028&hterms=SPIRAL+MODEL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DSPIRAL%2BMODEL"><span>X-ray-emitting gas surrounding the spiral galaxy NGC 891</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bregman, Joel N.; Pidis, Rachel A.</p> <p>1994-01-01</p> <p>We observed the edge-on spiral galaxy NGC 891 with the Position Sensitive Proportional Counter (PSPC) on Roentgen Satellite (ROSAT) to search for how extraplanar gas expected in the galactic fountain model. Diffuse X-ray emission surrounds the disk with a Half Width at Half Maximum (HWHM) for the surface brightness perpendicular to the disk of 50 sec (2.4 kpc) and a radial extent of approximately 6.5 kpc, both of which are similar in extent to the extended H(alpha) and radio halo component; the implied density scale height for the hot gas is 7 kpc. The spectrum is best fitted with a hard stellar component and a soft diffuse gas component of temperature 3.6 x 10(exp 6) K. The density of this gas is 2 x 10(exp -3)/cu cm, the luminosity is 4.4 x 10(exp 39) ergs/s, the mass is 1 x 10(exp 8) solar mass, and the pressure (P/k) is 1.4 10(exp 4) K/cu cm. These data are consistent with this gas participating in a galactic fountain, where the material approaches hydrostatic equilibrium before cooling at a rate of 0.12 solar mass/yr. The cooled material may be responsible for some of the H(alpha) emission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22365185-faraday-dispersion-functions-galaxies','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22365185-faraday-dispersion-functions-galaxies"><span>Faraday dispersion functions of galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ideguchi, Shinsuke; Tashiro, Yuichi; Takahashi, Keitaro</p> <p>2014-09-01</p> <p>The Faraday dispersion function (FDF), which can be derived from an observed polarization spectrum by Faraday rotation measure synthesis, is a profile of polarized emissions as a function of Faraday depth. We study intrinsic FDFs along sight lines through face-on Milky Way like galaxies by means of a sophisticated galactic model incorporating three-dimensional MHD turbulence, and investigate how much information the FDF intrinsically contains. Since the FDF reflects distributions of thermal and cosmic-ray electrons as well as magnetic fields, it has been expected that the FDF could be a new probe to examine internal structures of galaxies. We, however, findmore » that an intrinsic FDF along a sight line through a galaxy is very complicated, depending significantly on actual configurations of turbulence. We perform 800 realizations of turbulence and find no universal shape of the FDF even if we fix the global parameters of the model. We calculate the probability distribution functions of the standard deviation, skewness, and kurtosis of FDFs and compare them for models with different global parameters. Our models predict that the presence of vertical magnetic fields and the large-scale height of cosmic-ray electrons tend to make the standard deviation relatively large. In contrast, the differences in skewness and kurtosis are relatively less significant.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016BaltA..25..225R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016BaltA..25..225R"><span>Depressed emission between magnetic arcades near a sunspot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ryabov, B. I.; Shibasaki, K.</p> <p></p> <p>The locations of the depressed emission in microwaves, EUV and soft X-rays are compared with each other and with the location of the plasma outflow in the active region (AR) 8535 on the Sun. We found that two open-field regions overlap the regions of depressed emission near the AR's sunspot. These two open-field regions are simulated with the potential-field source-surface (PFSS) model under radial distances of RSS = 1.8 R⊙ and RSS = 2.5 R⊙. Each open-field region is located between the arcades of the loops of the same magnetic polarity. The former open-field region covers the region of the plasma outflow, which is thus useful for the tests on connection to the heliosphere. The utmost microwave depression of the intensity in the ordinary mode (the Very Large Array 15 GHz observations) also overlaps the region of the plasma outflow and thus indicates this outflow. The lasting for eight days depression in soft X-rays and the SOHO EIT 2.84× 10-8 m images are attributed to the evacuation of as hot coronal plasma as T≥ 2× 106 K from the extended in height (``open") magnetic structures. We conclude that the AR 8535 presents the sunspot atmosphere affected by the large-scale magnetic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997SPIE.2949..143J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997SPIE.2949..143J"><span>Optimizing height presentation for aircraft cockpit displays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jordan, Chris S.; Croft, D.; Selcon, Stephen J.; Markin, H.; Jackson, M.</p> <p>1997-02-01</p> <p>This paper describes an experiment conducted to investigate the type of display symbology that most effectively conveys height information to users of head-down plan-view radar displays. The experiment also investigated the use of multiple information sources (redundancy) in the design of such displays. Subjects were presented with eight different height display formats. These formats were constructed from a control, and/or one, two, or three sources of redundant information. The three formats were letter coding, analogue scaling, and toggling (spatially switching the position of the height information from above to below the aircraft symbol). Subjects were required to indicate altitude awareness via a four-key, forced-choice keyboard response. Error scores and response times were taken as performance measures. There were three main findings. First, there was a significant performance advantage when the altitude information was presented above and below the symbol to aid the representation of height information. Second, the analogue scale, a line whose length indicated altitude, proved significantly detrimental to performance. Finally, no relationship was found between the number of redundant information sources employed and performance. The implications for future aircraft and displays are discussed in relation to current aircraft tactical displays and in the context of perceptual psychological theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1358284','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1358284"><span>Optimization of a Fast Neutron Scintillator for Real-Time Pulse Shape Discrimination in the Transient Reactor Test Facility (TREAT) Hodoscope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, James T.; Thompson, Scott J.; Watson, Scott M.</p> <p></p> <p>We present a multi-channel, fast neutron/gamma ray detector array system that utilizes ZnS(Ag) scintillator detectors. The system employs field programmable gate arrays (FPGAs) to do real-time all digital neutron/gamma ray discrimination with pulse height and time histograms to allow count rates in excess of 1,000,000 pulses per second per channel. The system detector number is scalable in blocks of 16 channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720010074','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720010074"><span>Some gamma-ray shielding measurements made at altitudes greater than 115000 feet using large Ge(Li) detectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chapman, G. T.; Cumby, R. P.; Gibbons, J. H.; Macklin, R. L.; Parker, H. W.</p> <p>1972-01-01</p> <p>A series of balloon-flight experiments at altitudes greater than 115,000 feet were conducted to gain information relative to the use of composite shields (passive and/or active) for shielding large-volume, lithium-drifted, germanium (Ge(Li)) detectors used in gamma-ray spectrometers. Data showing the pulse-height spectra of the environmental gamma radiation as measured at 5.3 and 3.8 gms sq cm residual atmosphere with an unshielded diode detector are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6419E..22H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6419E..22H"><span>Cloud-top height retrieval from polarizing remote sensor POLDER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Xianqiang; Pan, Delu; Yan, Bai; Mao, Zhihua</p> <p>2006-10-01</p> <p>A new cloud-top height retrieval method is proposed by using polarizing remote sensing. In cloudy conditions, it shows that, in purple and blue bands, linear polarizing radiance at the top-of-atmosphere (TOA) is mainly contributed by Rayleigh scattering of the atmosphere's molecules above cloud, and the contribution by cloud reflection and aerosol scattering can be neglected. With such characteristics, the basis principle and method of cloud-top height retrieval using polarizing remote sensing are presented in detail, and tested by the polarizing remote sensing data of POLDER. The satellite-derived cloud-top height product can not only show the distribution of global cloud-top height, but also obtain the cloud-top height distribution of moderate-scale meteorological phenomena like hurricanes and typhoons. This new method is promising to become the operational algorithm for cloud-top height retrieval for POLDER and the future polarizing remote sensing satellites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28453166','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28453166"><span>An analysis of the relationship between bodily injury severity and fall height in victims of fatal falls from height.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Teresiński, Grzegorz; Milaszkiewicz, Anna; Cywka, Tomasz</p> <p>2016-01-01</p> <p>Aim of the study: One of the basic issues discussed in forensic literature regarding falls from a height is determination of fall heights and differentiation between suicidal and accidental falls. The aim of the study was to verify the usefulness of the available methods for the purposes of forensic expertises. Material and methods: The study encompassed fatalities of falls from a height whose autopsies were performed in the Department of Forensic Medicine in Lublin. Results: Similarly to other authors, the severity of injuries was assessed using the <i>Abbreviated Injury Scale </i>(AIS) and injury severity score (ISS). The study findings demonstrated a statistically significant correlation between the fall height and the severity of injuries according to ISS and a statistically significant difference in fall heights between the groups of accidents and suicides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGeod..85..661G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGeod..85..661G"><span>Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gegout, P.; Biancale, R.; Soudarin, L.</p> <p>2011-10-01</p> <p>The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays' and elevations' mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range corrections at the measurement level with millimeter accuracy at low elevation. AMF to the azimuthal anisotropy of the neutral atmosphere are designed to adapt to complex weather conditions by adaptively changing their truncations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23207404','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23207404"><span>Optimal scaling of weight and waist circumference to height for maximal association with DXA-measured total body fat mass by sex, age and race/ethnicity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heo, M; Kabat, G C; Gallagher, D; Heymsfield, S B; Rohan, T E</p> <p>2013-08-01</p> <p>Body mass index (BMI; weight (Wt)/height (Ht) (in kg m(-2)) and waist circumference (WC) are widely used as proxy anthropometric measures for total adiposity. Little is known about what scaling power of 'x' in both Wt(kg)/Ht(m)(x) and WC(m)/Ht(m)(x) is maximally associated with measured total body fat mass (TBFM). Establishing values for x would provide the information needed to create optimum anthropometric surrogate measures of adiposity. To estimate the value of 'x' that renders Wt/Ht(x) and WC/Ht(x) maximally associated with DXA-measured TBFM. Participants of the NHANES 1999-2004 surveys, stratified by sex (men, women), race/ethnicity (non-Hispanic whites, non-Hispanic blacks, Mexican-Americans), and age(18-29, 30-49, 50-84 years). We apply a grid search by increasing x from 0.0-3.0 by increments of 0.1 to the simple regression models, TBFM=b0+b1*(Wt/Ht(x)) and TBFM=b0+b1*(WC/Ht(x)) to obtain an estimate of x that results in the greatest R(2), taking into account complex survey design features and multiply imputed data. R(2)'s for BMI are 0.86 for men (N=6544) and 0.92 for women (N=6362). The optimal powers x for weight are 1.0 (R(2)=0.90) for men and 0.8 (R(2)=0.96) for women. The optimal power x for WC is 0, that is, no scaling of WC to height, for men (R(2)=0.90) or women (R(2)=0.82). The optimal powers for weight across nine combinations of race/ethnicity and age groups for each sex vary slightly (x=0.8-1.3) whereas the optimal scaling powers for WC are all 0 for both sexes except for non-Hispanic black men aged 18-29y (x=0.1). Although the weight-for-height indices with optimal powers are not independent of height, they yield more accurate TBFM estimates than BMI. In reference to TBFM, Wt/Ht and Wt/Ht(0.8) are the optimal weight-for-height indices for men and women, respectively, whereas WC alone, without Ht adjustment, is the optimal WC-for-height index for both sexes. Thus, BMI, an index independent of height, may be less useful when predicting TBFM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22356638-milky-way-red-dwarfs-borg-survey-galactic-scale-height-distribution-dwarf-stars-wfc3-imaging','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22356638-milky-way-red-dwarfs-borg-survey-galactic-scale-height-distribution-dwarf-stars-wfc3-imaging"><span>Milky Way red dwarfs in the BoRG survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Holwerda, B. W.; Bouwens, R.; Trenti, M.</p> <p>2014-06-10</p> <p>We present a tally of Milky Way late-type dwarf stars in 68 Wide Field Camera 3 (WFC3) pure-parallel fields (227 arcmin{sup 2}) from the Brightest of Reionizing Galaxies survey for high-redshift galaxies. Using spectroscopically identified M-dwarfs in two public surveys, the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey and the Early Release Science mosaics, we identify a morphological selection criterion using the half-light radius (r {sub 50}), a near-infrared J – H, G – J color region where M-dwarfs are found, and a V – J relation with M-dwarf subtype. We apply this morphological selection of stellar objects, color-color selectionmore » of M-dwarfs, and optical-near-infrared color subtyping to compile a catalog of 274 M-dwarfs belonging to the disk of the Milky Way with a limiting magnitude of m {sub F125W} < 24(AB). Based on the M-dwarf statistics, we conclude that (1) the previously identified north-south discrepancy in M-dwarf numbers persists in our sample; there are more M-dwarfs in the northern fields on average than in southern ones, (2) the Milky Way's single disk scale-height for M-dwarfs is 0.3-4 kpc, depending on subtype, (3) the scale-height depends on M-dwarf subtype with early types (M0-4) high scale-height (z {sub 0} = 3-4 kpc) and later types M5 and above in the thin disk (z {sub 0} = 0.3-0.5 kpc), (4) a second component is visible in the vertical distribution, with a different, much higher scale-height in the southern fields compared to the northern ones. We report the M-dwarf component of the Sagittarius stream in one of our fields with 11 confirmed M-dwarfs, seven of which are at the stream's distance. In addition to the M-dwarf catalog, we report the discovery of 1 T-dwarfs and 30 L-dwarfs from their near-infrared colors. The dwarf scale-height and the relative low incidence in our fields of L- and T-dwarfs in these fields makes it unlikely that these stars will be interlopers in great numbers in color-selected samples of high-redshift galaxies. The relative ubiquity of M-dwarfs however will make them ideal tracers of Galactic halo substructure with EUCLID and reference stars for James Webb Space Telescope observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRD..120.4600Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRD..120.4600Z"><span>Studies of the variations of the first Schumann resonance frequency during the solar flare on 7 March 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Hongjuan; Qiao, Xiaolin</p> <p>2015-05-01</p> <p>The ELF measurements at the YS station in China during the X5.4 solar flare on 7 March 2012 are examined. The first modal Schumann resonance (SR) frequencies of the horizontal magnetic field components were found to increase by 0.1-0.2 Hz during the X-ray burst. During the enhancement of the proton flux, the first modal frequency of the east-west magnetic field component decreases by approximately 0.6 Hz at most, while the variation in the north-south magnetic field component is less well defined. The mechanisms of the variations are simulated with a finite difference time domain technique by modeling the perturbed conductivity profile in the day-night asymmetric Earth-ionosphere cavity and modeling the global lightning source with the raw flash data measured by satellites. The simulated varying trends of the SR frequencies observed near the ground with the altitudes of the conductivity perturbations are nearly the same as those previously reported and are interpreted by the two characteristic height model first proposed by Greifinger and Greifinger. It is concluded that the SR frequencies increase for enhanced conductivity above the altitude of 60-70 km because of the lowered magnetic height and decrease for enhanced conductivity below this altitude due to the lowered electric height. This finding can explain the opposite behaviors of the SR frequencies during X-ray bursts and strong solar proton events (SPEs). The simulation model in this work proved to be effective, with the simulated shifts in the values of SR frequencies during X-ray bursts and SPEs being close to the practical measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1379534-resonant-soft-ray-scattering-polymer-materials','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1379534-resonant-soft-ray-scattering-polymer-materials"><span>Resonant soft X-ray scattering for polymer materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Liu, Feng; Brady, Michael A.; Wang, Cheng</p> <p>2016-04-16</p> <p>Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29690247','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29690247"><span>A new species of Myloplus Gill (Characiformes, Serrasalmidae) from the Tumucumaque Mountain Range, Brazil and French Guiana, with comments on M. rubripinnis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Andrade, Marcelo C; JÉgu, Michel; Gama, Cecile S</p> <p>2018-04-03</p> <p>A new species of Myloplus Gill is described from Eastern Tumucumaque Mountain Range, drainages of the Oyapock and Araguari rivers between Brazil and French Guiana. The new species is diagnosed by having comparatively large scales on the flanks, resulting in lower counts when compared with congeners, i.e., 59 to 70 total perforated scales on lateral line, 31 to 35 longitudinal scales above lateral line, 24 to 29 longitudinal scales below lateral line, and 22 to 26 circumpeduncular scale rows. The new species most closely resembles Myloplus rubripinnis by sharing with this species a general rounded shape, a similar color pattern, and a high number of rays, i.e., 23 to 25 branched dorsal-fin rays and 35 to 38 branched anal-fin rays in the new species (vs. 24 to 25 and 32 to 40, respectively, in M. rubripinnis). After reviewing the available type-specimens of all Myloplus species, M. rubripinnis is re-diagnosed as having higher counts of branched dorsal-fin rays and anal-fin rays combined to tiny scales on flanks, i.e., 85 to 89 total perforated scales on lateral line, 38 to 45 longitudinal scales above lateral line, 33 to 42 longitudinal scales below lateral line, and 30 to 39 circumpeduncular scale rows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22492405-investigation-significantly-high-barrier-height-cu-gan-schottky-diode','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22492405-investigation-significantly-high-barrier-height-cu-gan-schottky-diode"><span>Investigation of significantly high barrier height in Cu/GaN Schottky diode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Garg, Manjari, E-mail: meghagarg142@gmail.com; Kumar, Ashutosh; Singh, R.</p> <p>2016-01-15</p> <p>Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantlymore » higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu{sub 2}O) layer at the interface between Cu and GaN. With Cu{sub 2}O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu{sub 2}O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn.tmp...57W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn.tmp...57W"><span>Experimental investigation of internal tides generated by finite-height topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Shuya; Chen, Xu; Wang, Jinhu; Meng, Jing</p> <p>2018-06-01</p> <p>Internal tides generated by finite-height topography are investigated in the laboratory, and the particle image velocimetry (PIV) technique is applied to measure the velocity fields. The energy, energy flux, and vertical mode structure of the internal tides are calculated and analyzed. The experimental results indicate that the strength of the wave field is mainly affected by the normalized topography height. The rays radiated from the taller topography are wider than those radiated from the lower topography. Both the experimental and theoretical results indicate that the normalized energy and energy flux of the internal tides are mainly determined by the normalized topography height, and the increase of the two quantities follows a quadratic function, and they almost remain unchanged with different normalized frequencies except for higher frequency. The percentage of energy for mode-1 and mode-2 internal tides is determined not only by frequency but also by topography height. In addition, an "inherent normalized frequency" is observed in the experiment, at which the percentage of energy for mode 1 and mode 2 does not vary with topography height. The decay rate of internal tide energy in the near field and far field is also estimated, with average values of 36.5 and 7.5%, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMSH13A2241L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMSH13A2241L"><span>Spectroscopic Study of a Dark Lane and a Cool Loop in a Solar Limb Active Region by Hinode/EIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, K.; Imada, S.; Moon, Y.; Lee, J.</p> <p>2012-12-01</p> <p>We investigate a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer (EIS). The cool loop is clearly seen in the EIS spectral lines formed at the transition region temperature (log T = 5.8). The dark lane is characterized by an elongated faint structure in coronal spectral lines (log T = 5.8 - 6.1) and rooted on a bright point. We examine their electron densities, Doppler velocities, and non-thermal velocities as a function of distance from the limb using the spectral lines formed at different temperatures (log T = 5.4 - 6.4). The electron densities of the cool loop and the dark lane are derived from the density sensitive line pairs of Mg VII, Fe XII, and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Mg VII (log T = 5.8) and the scale height temperature of the dark lane is close to a peak formation temperature of the Fe XII and Fe XIII (log T = 6.1 - 6.2). It is interesting to note that the structures of the cool loop and the dark lane are most visible in these temperature lines. While the non-thermal velocity in the cool loop slightly decreases (less than 7 km {s-1}) along the loop, that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the fast solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...852L...8L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...852L...8L"><span>Constraining the Accretion Geometry of the Intermediate Polar EX Hya Using NuSTAR, Swift, and Chandra Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luna, G. J. M.; Mukai, K.; Orio, M.; Zemko, P.</p> <p>2018-01-01</p> <p>In magnetically accreting white dwarfs, the height above the white dwarf surface where the standing shock is formed is intimately related with the accretion rate and the white dwarf mass. However, it is difficult to measure. We obtained new data with NuSTAR and Swift that, together with archival Chandra data, allow us to constrain the height of the shock in the intermediate polar EX Hya. We conclude that the shock has to form at least at a distance of about one white dwarf radius from the surface in order to explain the weak Fe Kα 6.4 keV line, the absence of a reflection hump in the high-energy continuum, and the energy dependence of the white dwarf spin pulsed fraction. Additionally, the NuSTAR data allowed us to measure the true, uncontaminated hard X-ray (12-40 keV) flux, whose measurement was contaminated by the nearby galaxy cluster Abell 3528 in non-imaging X-ray instruments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2374595','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2374595"><span>Atomic-scale imaging of DNA using scanning tunnelling microscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Driscoll, R J; Youngquist, M G; Baldeschwieler, J D</p> <p>1990-07-19</p> <p>The scanning tunnelling microscope (STM) has been used to visualize DNA under water, under oil and in air. Images of single-stranded DNA have shown that submolecular resolution is possible. Here we describe atomic-resolution imaging of duplex DNA. Topographic STM images of uncoated duplex DNA on a graphite substrate obtained in ultra-high vacuum are presented that show double-helical structure, base pairs, and atomic-scale substructure. Experimental STM profiles show excellent correlation with atomic contours of the van der Waals surface of A-form DNA derived from X-ray crystallography. A comparison of variations in the barrier to quantum mechanical tunnelling (barrier-height) with atomic-scale topography shows correlation over the phosphate-sugar backbone but anticorrelation over the base pairs. This relationship may be due to the different chemical characteristics of parts of the molecule. Further investigation of this phenomenon should lead to a better understanding of the physics of imaging adsorbates with the STM and may prove useful in sequencing DNA. The improved resolution compared with previously published STM images of DNA may be attributable to ultra-high vacuum, high data-pixel density, slow scan rate, a fortuitously clean and sharp tip and/or a relatively dilute and extremely clean sample solution. This work demonstrates the potential of the STM for characterization of large biomolecular structures, but additional development will be required to make such high resolution imaging of DNA and other large molecules routine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA135174','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA135174"><span>Automatic Real Time Ionogram Scaler with True Height Analysis - Artist</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1983-07-01</p> <p>scaled. The corresponding autoscaled values were compared with the manual scaled h’F, h’F2, fminF, foE, foEs, h’E and hlEs. The ARTIST program...I ... , ·~ J .,\\; j~~·n! I:\\’~ .. IC HT:/\\L rritw!E I ONOGI\\AM SCALER ’:!"[’!’if T:\\!_1!: H~:IGHT ANALYSIS - ARTIST P...S. TYPE OF REPORT & PERiCO COVERED Scientific Report No. 7 AUTOMATIC REAL TIME IONOGRAM SCALER WITH TRUE HEIGHT ANALYSIS - ARTIST 6. PERFORMING O𔃾G</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1323136-scaling-multicrystal-data-sets-collected-high-intensity-ray-electron-sources','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1323136-scaling-multicrystal-data-sets-collected-high-intensity-ray-electron-sources"><span>On the scaling of multicrystal data sets collected at high-intensity X-ray and electron sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Coppens, Philip; Fournier, Bertrand</p> <p>2015-11-11</p> <p>Here, the need for data-scaling has become increasingly evident as time-resolved pump-probe photocrystallography is rapidly developing at high intensity X-ray sources. Several aspects of the scaling of data sets collected at synchrotrons, XFELs (X-ray Free Electron Lasers) and high-intensity pulsed electron sources are discussed. They include laser-ON/laser-OFF data scaling, inter- and intra-data set scaling. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26192522','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26192522"><span>Polarized reflectance and transmittance properties of windblown sea surfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mobley, Curtis D</p> <p>2015-05-20</p> <p>Generation of random sea surfaces using wave variance spectra and Fourier transforms is formulated in a way that guarantees conservation of wave energy and fully resolves wave height and slope variances. Monte Carlo polarized ray tracing, which accounts for multiple scattering between light rays and wave facets, is used to compute effective Mueller matrices for reflection and transmission of air- or water-incident polarized radiance. Irradiance reflectances computed using a Rayleigh sky radiance distribution, sea surfaces generated with Cox-Munk statistics, and unpolarized ray tracing differ by 10%-18% compared with values computed using elevation- and slope-resolving surfaces and polarized ray tracing. Radiance reflectance factors, as used to estimate water-leaving radiance from measured upwelling and sky radiances, are shown to depend on sky polarization, and improved values are given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhC..40h6001W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhC..40h6001W"><span>Discriminating cosmic muons and X-rays based on rise time using a GEM detector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi</p> <p>2016-08-01</p> <p>Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730002871&hterms=herglotz+wiechert&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dherglotz%2Bwiechert','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730002871&hterms=herglotz+wiechert&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dherglotz%2Bwiechert"><span>Profile inversion in presence of ray bending</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wallio, H. A.; Grossi, M. D.</p> <p>1972-01-01</p> <p>Inversion of radio occultation data for planetary atmospheres and ionospheres has been performed using the seismological Herglotz-Wiechert method, as adapted by Phinney and Anderson to the radio-occultation case. Profile reconstruction performed in computer simulated experiments with this approach have been compared with the ones obtained with the straight-ray Abel transform. For a thin atmosphere and ionosphere, like the ones encountered on Mars, microwave occultation data can be inverted accurately with both methods. For a dense ionosphere like the sun's corona, ray bending of microwaves is severe, and recovered refractivity by the Herglotz-Wiechert method provides significant improvement over the straight-ray Abel transform: the error reduces from more than 60% to less than 20% at a height of 60,000 km above the base of the corona.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900013984','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900013984"><span>Implications of the IRAS data for galactic gamma ray astronomy and EGRET</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stecker, Floyd W.</p> <p>1990-01-01</p> <p>Using the results of gamma-ray, millimeter wave and far surveys of the galaxy, logically consistent picture of the large scale distribution of galactic gas and cosmic rays was derived, tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of te galaxy, the large scale radial distributions of galactic far-infrared emission independently was obtained for both the Northern and Southern Hemisphere sides of the Galaxy. The dominant feature in these distributions was found to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Evidence was found for spiral arm features. Strong correlations are evident between the large scale galactic distributions of far-infrared emission, gamma-ray emission and total CO emission. There is particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale. The 5 kpc ring was evident in existing galactic gamma-ray data. The extent to which the more detailed spiral arm features are evident in the more resolved EGRET (Energetic Gamma-Ray Experimental Telescope) data will help to determine more precisely the propagation characteristics of cosmic rays.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22596461-ray-analysis-electron-bernstein-wave-heating-mst','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22596461-ray-analysis-electron-bernstein-wave-heating-mst"><span>X-ray analysis of electron Bernstein wave heating in MST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.</p> <p>2016-11-15</p> <p>A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. Thismore » provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6318E..1DT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6318E..1DT"><span>High-resolution x-ray tomography using laboratory sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing</p> <p>2006-08-01</p> <p>X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGeo....7.2531K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGeo....7.2531K"><span>Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Köhler, P.; Huth, A.</p> <p>2010-08-01</p> <p>The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques such as LIDAR and radar interferometry have the potential to quantify the carbon contained in the vegetation, although this calculation contains due to the heterogeneity of the forest landscape structural uncertainties which restrict future applications to spatial averages of about one hectare in size. The uncertainties in AGB for a given canopy height are here 20-40% (95% confidence level) corresponding to a standard deviation of less than ± 10%. This uncertainty on the 1 ha-scale is much smaller than in the analysis of 0.04 ha-scale data. At this small scale (0.04 ha) AGB can only be calculated out of canopy height with an uncertainty which is at least of the magnitude of the signal itself due to the natural spatial heterogeneity of these forests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4436369','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4436369"><span>The Importance of Postural Cues for Determining Eye Height in Immersive Virtual Reality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Leyrer, Markus; Linkenauger, Sally A.; Bülthoff, Heinrich H.; Mohler, Betty J.</p> <p>2015-01-01</p> <p>In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height. PMID:25993274</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25993274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25993274"><span>The importance of postural cues for determining eye height in immersive virtual reality.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leyrer, Markus; Linkenauger, Sally A; Bülthoff, Heinrich H; Mohler, Betty J</p> <p>2015-01-01</p> <p>In human perception, the ability to determine eye height is essential, because eye height is used to scale heights of objects, velocities, affordances and distances, all of which allow for successful environmental interaction. It is well understood that eye height is fundamental to determine many of these percepts. Yet, how eye height itself is provided is still largely unknown. While the information potentially specifying eye height in the real world is naturally coincident in an environment with a regular ground surface, these sources of information can be easily divergent in similar and common virtual reality scenarios. Thus, we conducted virtual reality experiments where we manipulated the virtual eye height in a distance perception task to investigate how eye height might be determined in such a scenario. We found that humans rely more on their postural cues for determining their eye height if there is a conflict between visual and postural information and little opportunity for perceptual-motor calibration is provided. This is demonstrated by the predictable variations in their distance estimates. Our results suggest that the eye height in such circumstances is informed by postural cues when estimating egocentric distances in virtual reality and consequently, does not depend on an internalized value for eye height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HEAD...1610604M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HEAD...1610604M"><span>Self-similar semi-analytical RMHD jet model: first steps towards a more comprehensive jet modelling for data fitting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Markoff, Sera; Ceccobello, Chiara; Heemskerk, Martin; Cavecchi, Yuri; Polko, Peter; Meier, David</p> <p>2017-08-01</p> <p>Jets are ubiquitous and reveal themselves at different scales and redshifts, showing an extreme diversity in energetics, shapes and emission. Indeed jets are found to be characteristic features of black hole systems, such as X-ray binaries (XRBs) and active galactic nuclei (AGN), as well as of young stellar objects (YSOs) and gamma-ray bursts (GRBs). Observations suggest that jets are an energetically important component of the system that hosts them, because the jet power appears to be comparable to the accretion power. Significant evidence has been found of the impact of jets not only in the immediate proximity of the central object, but as well on their surrounding environment, where they deposit the energy extracted from the accretion flow. Moreover, the inflow/outflow system produces radiation over the entire electromagnetic spectrum, from radio to X-rays. Therefore it is a compelling problem to be solved and deeply understood. I present a new integration scheme to solve radial self-similar, stationary, axisymmetric relativistic magneto-hydro-dynamics (MHD) equations describing collimated, relativistic outflows crossing smoothly all the singular points (the Alfvén point and the modified slow/fast points). For the first time, the integration can be performed all the way from the disk mid-plane to downstream of the modified fast point. I will discuss an ensemble of jet solutions showing diverse jet dynamics (jet Lorentz factor ~ 1-10) and geometric properties (i.e. shock height ~ 103 - 107 gravitational radii), which makes our model suitable for application to many different systems where a relativistic jet is launched.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10096E..1GV','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10096E..1GV"><span>Path profiles of Cn2 derived from radiometer temperature measurements and geometrical ray tracing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vyhnalek, Brian E.</p> <p>2017-02-01</p> <p>Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter C 2 n is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify C 2 n profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170004747','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170004747"><span>Path Profiles of Cn2 Derived from Radiometer Temperature Measurements and Geometrical Ray Tracing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vyhnalek, Brian E.</p> <p>2017-01-01</p> <p>Atmospheric turbulence has significant impairments on the operation of Free-Space Optical (FSO) communication systems, in particular temporal and spatial intensity fluctuations at the receiving aperture resulting in power surges and fades, changes in angle of arrival, spatial coherence degradation, etc. The refractive index structure parameter Cn2 is a statistical measure of the strength of turbulence in the atmosphere and is highly dependent upon vertical height. Therefore to understand atmospheric turbulence effects on vertical FSO communication links such as space-to-ground links, it is necessary to specify Cn2 profiles along the atmospheric propagation path. To avoid the limitations on the applicability of classical approaches, propagation simulation through geometrical ray tracing is applied. This is achieved by considering the atmosphere along the optical propagation path as a spatial distribution of spherical bubbles with varying relative refractive index deviations representing turbulent eddies. The relative deviations of the refractive index are statistically determined from altitude-dependent and time-varying temperature fluctuations, as measured by a microwave profiling radiometer. For each representative atmosphere ray paths are analyzed using geometrical optics, which is particularly advantageous in situations of strong turbulence where there is severe wavefront distortion and discontinuity. The refractive index structure parameter is then determined as a function of height and time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865062','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865062"><span>Precision manometer gauge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>McPherson, Malcolm J.; Bellman, Robert A.</p> <p>1984-01-01</p> <p>A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5823456','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5823456"><span>Precision manometer gauge</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>McPherson, M.J.; Bellman, R.A.</p> <p>1982-09-27</p> <p>A precision manometer gauge which locates a zero height and a measured height of liquid using an open tube in communication with a reservoir adapted to receive the pressure to be measured. The open tube has a reference section carried on a positioning plate which is moved vertically with machine tool precision. Double scales are provided to read the height of the positioning plate accurately, the reference section being inclined for accurate meniscus adjustment, and means being provided to accurately locate a zero or reference position.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..266...96B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..266...96B"><span>Orbital and physical characteristics of meter-scale impactors from airburst observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, P.; Wiegert, P.; Clark, D.; Tagliaferri, E.</p> <p>2016-03-01</p> <p>We have analyzed the orbits and ablation characteristics in the atmosphere of 59 Earth-impacting fireballs, produced by meteoroids 1 m in diameter or larger, described here as meter-scale. Using heights at peak luminosity as a proxy for strength, we determine that there is roughly an order of magnitude spread in strengths of the population of meter-scale impactors at the Earth. We use fireballs producing recovered meteorites and well documented fireballs from ground-based camera networks to calibrate our ablation model interpretation of the observed peak height of luminosity as a function of speed. The orbits and physical strength of these objects are consistent with the majority being asteroidal bodies originating from the inner main asteroid belt. This is in contrast to earlier suggestions by Ceplecha (Ceplecha, Z. [1994]. Astron. Astrophys. 286, 967-970) that the majority of meter-tens of meter sized meteoroids are ;… cometary bodies of the weakest known structure;. We find a lower limit of ∼10-15% of our objects have a possible cometary (Jupiter-Family comet and/or Halley-type comet) origin based on orbital characteristics alone. Only half this number, however, also show evidence for weaker than average structure. Two events, Sumava and USG 20131121, have exceptionally high (relative to the remainder of the population) heights of peak brightness. These are physically most consistent with high microporosity objects, though both were on asteroidal-type orbits. We also find three events, including the Oct 8, 2009 airburst near Sulawesi, Indonesia, which display comparatively low heights of peak brightness, consistent with strong monolithic stones or iron meteoroids. Based on orbital similarity, we find a probable connection among several events in our population with the Taurid meteoroid complex; no other major meteoroid streams show probable linkages to the orbits of our meter-scale population. Our impactors cover almost four orders of magnitude in mass, but no trend in height of peak brightness as a function of mass is evident, suggesting no strong trend in strength with size for meter-scale impactors consistent with the results of Popova et al. (Popova, O.P. et al. [2011]. Meteorit. Planet. Sci. 46, 1525-1550).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22522166-large-scale-contraction-subsequent-disruption-coronal-loops-during-various-phases-m6-flare-associated-confined-flux-rope-eruption','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22522166-large-scale-contraction-subsequent-disruption-coronal-loops-during-various-phases-m6-flare-associated-confined-flux-rope-eruption"><span>LARGE-SCALE CONTRACTION AND SUBSEQUENT DISRUPTION OF CORONAL LOOPS DURING VARIOUS PHASES OF THE M6.2 FLARE ASSOCIATED WITH THE CONFINED FLUX ROPE ERUPTION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kushwaha, Upendra; Joshi, Bhuwan; Moon, Yong-Jae</p> <p></p> <p>We investigate evolutionary phases of an M6.2 flare and the associated confined eruption of a prominence. The pre-flare phase exhibits spectacular large-scale contraction of overlying extreme ultraviolet (EUV) coronal loops during which the loop system was subjected to an altitude decrease of ∼20 Mm (40% of the initial height) for an extended span of ∼30 minutes. This contraction phase is accompanied by sequential EUV brightenings associated with hard X-ray (HXR; up to 25 keV) and microwave (MW) sources from low-lying loops in the core region which together with X-ray spectra indicate strong localized heating in the source region before themore » filament activation. With the onset of the flare’s impulsive phase, we detect HXR and MW sources that exhibit intricate temporal and spatial evolution in relation to the fast rise of the prominence. Following the flare maximum, the filament eruption slowed down and subsequently became confined within the large overlying active region loops. During the confinement process of the erupting prominence, we detect MW emission from the extended coronal region with multiple emission centroids, which likely represent emission from hot blobs of plasma formed after the collapse of the expanding flux rope and entailing prominence material. RHESSI spectroscopy reveals high plasma temperature (∼30 MK) and substantial non-thermal characteristics (δ ∼ 5) during the impulsive phase of the flare. The time evolution of thermal energy exhibits a good correspondence with the variations in cumulative non-thermal energy, which suggests that the energy of accelerated particles is efficiently converted to hot flare plasma, implying an effective validation of the Neupert effect.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvB..94w5436S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvB..94w5436S"><span>Adsorption heights and bonding strength of organic molecules on a Pb-Ag surface alloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stadtmüller, Benjamin; Haag, Norman; Seidel, Johannes; van Straaten, Gerben; Franke, Markus; Kumpf, Christian; Cinchetti, Mirko; Aeschlimann, Martin</p> <p>2016-12-01</p> <p>The understanding of the fundamental geometric and electronic properties of metal-organic hybrid interfaces is a key issue on the way to improving the performance of organic electronic and spintronic devices. Here, we studied the adsorption heights of copper-II-phthalocyanine (CuPc) and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) on a Pb1Ag2 surface alloy on Ag(111) using the normal-incidence x-ray standing waves technique. We find a significantly larger adsorption height of both molecules on the Pb-Ag surface alloy compared to the bare Ag(111) surface which is caused by the larger size of Pb. This increased adsorption height suppresses the partial chemical interaction of both molecules with Ag surface atoms. Instead, CuPc and PTCDA molecules bond only to the Pb atoms with different interaction strength ranging from a van der Waals-like interaction for CuPc to a weak chemical interaction with additional local bonds for PTCDA. The different adsorption heights for CuPc and PTCDA on Pb1Ag2 are the result of local site-specific molecule-surface bonds mediated by functional molecular groups and the different charge donating and accepting character of CuPc and PTCDA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009IEITC..92.3875W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009IEITC..92.3875W"><span>Estimation of Bridge Height over Water from Polarimetric SAR Image Data Using Mapping and Projection Algorithm and De-Orientation Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Haipeng; Xu, Feng; Jin, Ya-Qiu; Ouchi, Kazuo</p> <p></p> <p>An inversion method of bridge height over water by polarimetric synthetic aperture radar (SAR) is developed. A geometric ray description to illustrate scattering mechanism of a bridge over water surface is identified by polarimetric image analysis. Using the mapping and projecting algorithm, a polarimetric SAR image of a bridge model is first simulated and shows that scattering from a bridge over water can be identified by three strip lines corresponding to single-, double-, and triple-order scattering, respectively. A set of polarimetric parameters based on the de-orientation theory is applied to analysis of three types scattering, and the thinning-clustering algorithm and Hough transform are then employed to locate the image positions of these strip lines. These lines are used to invert the bridge height. Fully polarimetric image data of airborne Pi-SAR at X-band are applied to inversion of the height and width of the Naruto Bridge in Japan. Based on the same principle, this approach is also applicable to spaceborne ALOSPALSAR single-polarization data of the Eastern Ocean Bridge in China. The results show good feasibility to realize the bridge height inversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22876562','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22876562"><span>Marked increase of final height by long-term aromatase inhibition in a boy with idiopathic short stature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krebs, Andreas; Moske-Eick, Olaf; Doerfer, Jürgen; Roemer-Pergher, Cordula; van der Werf-Grohmann, Natascha; Schwab, Karl Otfried</p> <p>2012-01-01</p> <p>Growth hormone (GH) is the most frequently used treatment in children with idiopathic short stature (ISS). Aromatase inhibitor (AI) therapy is still in an experimental state, and both final height (FH) and long-term efficacy data in ISS have not been published. We present a 14.5-year-old boy with ISS and a height of 142.7 cm [standard deviation score (SDS) -2.79]. Based on the baseline bone age (BA) of 13.5-14 years, his predicted adult height (PAH) by Bayley/Pinneau was 154 cm (SDS -3.77)-158.2 (SDS -3.15). After a 5-year letrozole monotherapy, FH was 169 cm (SDS -1.57) showing a height difference between PAH and FH from 10.8 to 15 cm. No permanent side effects of the medication have been observed. Both a transient occurrence and a spontaneous recovery of decreased bone mineral apparent density were seen, verified by dual-energy X-ray absorptiometry. Spinal magnetic resonance imaging revealed no vertebral abnormalities. All therapy might be an effective and low-cost alternative to the use of GH. Further controlled trials should prove efficacy and safety of long-term AI therapy in boys with ISS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15615327','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15615327"><span>Being overweight: negative outcomes for African American adolescents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Setiloane, Kelebogile</p> <p>2004-01-01</p> <p>The present study looked at how bodyweight affected African American adolescents their physical characteristics of height and weight, their behavioral characteristics of eating preferences, and their psychological characteristics of self-esteem and locus of control. In the summer of 2002 29 African-American adolescents who were participating in a one month Summer Institute were questioned on the perceptions of their weight and their food practices. They also completed self-esteem and locus of control scales. The Self-esteem scales used were the Rosenberg Self-Esteem scale (RSE), the Rosenberg-Simmons Self-Esteem scale (RSSE), the Rosenberg Depressive Affect scale (RDA), and the Rosenberg Self-Consciousness scale (RSC) The subjects had their height and weight measured and their calculated Body Mass Index (BMI) was divided into high BMI's (124 and above) and low BMI's (123 and below). High BMI's thought they were significantly heavier than low BMI's (p = 0.5), and drank more soft drinks (p = 0.1) than low BMI's. Further, the high BMI group had significantly lower self-esteem than the low BMI group on the RSE scale (p = 0.03) and the RSSE scale (p = 0.02).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29144884','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29144884"><span>Adiposity and Asthma in a Nationwide Study of Children and Adults in the United States.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forno, Erick; Han, Yueh-Ying; Libman, Ingrid M; Muzumdar, Radhika H; Celedón, Juan C</p> <p>2018-03-01</p> <p>Although obesity has been associated with asthma, body mass index is suboptimal to fully characterize adiposity. We examined the relation between adiposity and asthma in a large sample of the U.S. population, using indices defined by dual-energy X-ray absorptiometry. We analyzed data from 8,886 children (aged 8-19 yr) and 12,795 adults (aged 20-69 yr) from the 2001 to 2006 National Health and Nutrition Examination Survey. In addition to body mass index, percent body fat, waist circumference, and waist-to-height ratio, dual-energy X-ray absorptiometry was used to calculate whole-body and local adiposity indices: fat mass index; total, trunk, and legs percent fat; and trunk-to-total fat mass ratio, legs-to-total fat mass ratio, and trunk-to-legs fat mass ratios. Logistic regression was used for the analysis of adiposity measures and asthma. Among children, general adiposity was significantly associated with asthma, with no major differences by sex. Results were driven by nonatopic children, in whom trunk-predominant (central) adiposity (assessed by waist circumference, waist-to-height ratio, trunk-to-total fat mass ratio, and trunk-to-legs fat mass ratio) was also associated with asthma. There were no significant associations among atopic children. Among adults, all adiposity indices were associated with asthma, with central adiposity significant only among women. The results in adults were driven by atopy, especially in women. Adiposity measured by dual-energy X-ray absorptiometry provides similar information to that obtained by using anthropometric indices among children of both sexes and among adult men. However, dual-energy X-ray absorptiometry provides additional information in adult women, in whom dual-energy X-ray absorptiometry-measured central adiposity is significantly associated with asthma, particularly atopic asthma.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ITNS...62...68L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ITNS...62...68L"><span>Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben</p> <p>2015-02-01</p> <p>The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NIMPA.824..220B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NIMPA.824..220B"><span>Development of a novel micro pattern gaseous detector for cosmic ray muon tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biglietti, M.; Canale, V.; Franchino, S.; Iengo, P.; Iodice, M.; Petrucci, F.</p> <p>2016-07-01</p> <p>We propose a novel detector (Thick Groove Detector, TGD) designed for cosmic ray tomography with a spatial resolution of 500 μm, trying to keep the construction procedure as simple as possible and to reduce the operating costs. The TGD belongs to the category of MPGDs with an amplification region less than 1 mm wide formed by alternate anode/cathode microstrips layers at different heights. A first 10×10 cm2 prototype has been built, divided in four sections with different test geometries. We present the construction procedure and the first results in terms of gain and stability. Preliminary studies with cosmic rays are also reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29880007','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29880007"><span>Bone cement distribution is a potential predictor to the reconstructive effects of unilateral percutaneous kyphoplasty in OVCFs: a retrospective study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Jiachen; Qian, Lie; Jiang, Changqing; Chen, Xiuyuan; Feng, Fan; Lao, Lifeng</p> <p>2018-06-07</p> <p>Osteoporotic vertebral compression fracture (OVCF) is a common type of fracture, and percutaneous kyphoplasty (PKP) is an eligible solution to it. Previous studies have revealed that both the volume and filling pattern of bone cement correlate with the clinical outcomes after PKP procedure. However, the role of bone cement distribution remains to be illustrated. To retrospectively evaluate the relationship between the bone cement distribution and the clinical outcomes of unilateral PKP, we enrolled 73 OVCF patients receiving unilateral PKP treatment. All the intervened vertebrae were classified into three groups based on the bone cement distribution observed on postoperative X-ray films. Preoperative and postoperative radiographic parameters including the vertebral height and kyphotic Cobb angle were recorded, and anterior vertebral height restoration rate (AVHRR) and Cobb angle correction (CR) were then calculated to assess the vertebral height reconstruction. Preoperative and postoperative Oswestry Disability Index (ODI) and visual analogue scale (VAS) were adopted by interviewing patients to assess the mobility improvement and pain relief. Demographic data, body mass index (BMI), lumbar bone mineral density (evaluated by BMD T-score) of each patient, bone cement volume (BV), and bone cement extravasation (BE) were also recorded. Between- and within-group comparisons and multivariable correlation analysis were carried out to analyze the data. VAS and ODI scores were both significantly improved in all of the enrolled cases with no significant differences between groups. Among the three groups, the average age, AVHRR, and BV were significantly different. Occurrence of BE was significantly different between two of the three groups. AVHRR was demonstrated to correlate negatively with preoperative anterior vertebral height ratio and positively with preoperative Cobb angle, CR, diffusion score, and ODI changes. Bone cement distribution is a potential predictor to the reconstructive effects in unilateral PKP for OVCFs. Bone cement distribution is associated with AVHRR and BV, as well as the risk of BE occurrence. Greater bone cement distribution may indicate better vertebral restoration along with a higher BE risk.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960001687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960001687"><span>The NASA/MSFC Global Reference Atmospheric Model-1995 version (GRAM-95)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.; Jeffries, W. R., III; Yung, S. P.; Johnson, D. L.</p> <p>1995-01-01</p> <p>The latest version of the Global Reference Atmospheric Model (GRAM-95) is presented and discussed. GRAM-95 uses the new Global Upper Air Climatic Atlas (GUACA) CD-ROM data set, for 0- to 27-km altitudes. As with earlier versions, GRAM-95 provides complete geographical and altitude coverage for each month of the year. Individual years 1985 to 1991 and a period-of-record (1980 to 1991) can be simulated for the GUACA height range. GRAM-95 uses a specially developed data set, based on Middle Atmosphere Program (MAP) data, for the 20- to 120-km height range, and the NASA Marshall Engineering Thermosphere (MET) model for heights above 90 km. Fairing techniques assure a smooth transition in the overlap height ranges (20 to 27 km and 90 to 120 km). In addition to the traditional GRAM variables of pressure, density, temperature and wind components, GRAM-95 now includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He, and H). A new, variable-scale perturbation model provides both large-scale and small-scale deviations from mean values for the thermodynamic variables and horizontal and vertical wind components. The perturbation model includes new features that simulate intermittency (patchiness) in turbulence and small-scale perturbation fields. The density perturbations and density gradients (density shears) computed by the new model compare favorably in their statistical characteristics with observed density perturbations and density shears from 32 space shuttle reentry profiles. GRAM-95 provides considerable improvement in wind estimates from the new GUACA data set, compared to winds calculated from the geostrophic wind relations previously used in the 0- to 25-km height range. The GRAM-95 code has been put into a more modular form, easier to incorporate as subroutines in other programs (e.g., trajectory codes). A complete user's guide for running the program, plus sample input and output, is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914702B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914702B"><span>Surface-Based 3d measurements of aeolian bedforms on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balme, Matthew; Robson, Ellen; Barnes, Robert; Huber, Ben; Butcher, Frances; Fawdon, Peter; Gupta, Sanjeev; Paar, Gerhard</p> <p>2017-04-01</p> <p>The surface of Mars hosts many different types of aeolian bedforms, from small wind-ripples with cm-scale wavelength, through decametre-scale "Transverse Aeolian Ridges" (TARs), to km-scale dunes. To date, all mobile Mars surface-missions ('Rovers') have encountered aeolian bedforms of one kind or another. Aeolian deposits of loose, unconsolidated material provide hazards to Mars Rovers: sinkage into the aeolian material and enhanced slippage can prevent traction and forward progress, forcing the Rover to backtrack (e.g., MER Opportunity) and can even 'trap' the rover ending the mission (e.g., MER Spirit). Here, we present morphometry measurements of meter-scale ripple-like bedforms on Mars, as observed by the MER Opportunity Rover during its traverse across the Meridiani Planum region of Mars. The aim is to assess whether there is a relationship between bedforms parameters that can be measured from orbit such as length and width, and bedform height, which can only be reliably measured from orbit for larger features such as TARs. If such a relationship can be found, it might allow estimates of ripple-height to be made from remote sensing data alone. This could help understand the formation mechanism and provide a better characterization of the hazard presented by these features. For much of the first 30 km of the traverse, Opportunity travelled across flat plains with meter-scale, ripple-like aeolian bedforms ("plains ripples") superposed upon them. During the traverse, the Rover acquired stereo imaging data of its surroundings using both its scientific Pancam cameras system and the navigational Navcam system. Using these data, and newly developed Pro3D™ and PRoViP™ software from Joanneum Research, we obtained Digital Elevation Models of many areas along the traverse, allowing us to measure the heights, widths and lengths of aeolian bedforms. In addition, the same bedforms were digitized from orbital HiRISE image data (25 cm/pix resolution) in ArcGIS software to check for agreement between the ground-based and space-based measurements. We found that there is a clear correlation between bedform height and bedform length (as measured perpendicular to the bedform ridge crest and thus, by inference, parallel to the bedform forming wind). We find that bedform height is about 1/15th of bedform length (or bedform wavelength where bedforms are "saturated") - in agreement with terrestrial measurements of granule ripples. This relationship, and the distribution of bedforms heights observed for different bedforms lengths, can be used to provide a probabilistic method of determining the height distributions of bedforms in a given area, simply by measuring their lengths from orbit. This will be useful for determining traversability by Rovers, and so is helpful both for landing site selection and strategic planning of Rover routes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptCo.405..378Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptCo.405..378Y"><span>Ray-leakage-free discal solar concentrators of a novel design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Peng; Xu, Xiping; Jiang, Zhaoguo; Hai, Yina</p> <p>2017-12-01</p> <p>For high concentration ratio of the planar concentrator which is mainly used for photovoltaic or solar-thermal applications, the ray-leakage must be prevented during rays propagated in the lightguide. In this paper, the design of a ray-leakage-free discal solar concentrator is proposed which provides a high concentration ratio while acquiring a high optical efficiency. The design structure of the coupling structure is a straightforward hemisphere instead of complicated structure in other concentrators because the emergent rays from the hybrid collectors have any tilt angle, which prompts the ray-leakage-free propagating length can be raised greatly. A mathematical model between geometrical concentration ratio, reflection times and the corresponding parameters is established, where the corresponding parameters include the parabola coefficient, outermost collector width, collector height, the expanding angle and the collector quantity. Numerical simulation results show that more than 1200x geometrical concentration ratio of the proposed concentrator is achieved without any leakage from the lightguide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA194246','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA194246"><span>Ionospheric Convection and Structure Using Ground-Based Digital Ionosondes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-02-01</p> <p>M(3000)F2 were provided by the autoscaling software ARTIST which is part of the Digisonde /6, 7/. The virtual height traces scaled from the ionograms...using ARTIST were passed to the true-height analyuis program POLAN /8/, to pro- vide reliable estimates of hmF2. DISCREPANCIES BETWEEN POLAN AND</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22251369-distributions-methyl-group-rotational-barriers-polycrystalline-organic-solids','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22251369-distributions-methyl-group-rotational-barriers-polycrystalline-organic-solids"><span>Distributions of methyl group rotational barriers in polycrystalline organic solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Beckmann, Peter A., E-mail: pbeckman@brynmawr.edu, E-mail: wangxianlong@uestc.edu.cn; Conn, Kathleen G.; Division of Education and Human Services, Neumann University, One Neumann Drive, Aston, Pennsylvania 19014-1298</p> <p></p> <p>We bring together solid state {sup 1}H spin-lattice relaxation rate measurements, scanning electron microscopy, single crystal X-ray diffraction, and electronic structure calculations for two methyl substituted organic compounds to investigate methyl group (CH{sub 3}) rotational dynamics in the solid state. Methyl group rotational barrier heights are computed using electronic structure calculations, both in isolated molecules and in molecular clusters mimicking a perfect single crystal environment. The calculations are performed on suitable clusters built from the X-ray diffraction studies. These calculations allow for an estimate of the intramolecular and the intermolecular contributions to the barrier heights. The {sup 1}H relaxation measurements,more » on the other hand, are performed with polycrystalline samples which have been investigated with scanning electron microscopy. The {sup 1}H relaxation measurements are best fitted with a distribution of activation energies for methyl group rotation and we propose, based on the scanning electron microscopy images, that this distribution arises from molecules near crystallite surfaces or near other crystal imperfections (vacancies, dislocations, etc.). An activation energy characterizing this distribution is compared with a barrier height determined from the electronic structure calculations and a consistent model for methyl group rotation is developed. The compounds are 1,6-dimethylphenanthrene and 1,8-dimethylphenanthrene and the methyl group barriers being discussed and compared are in the 2–12 kJ mol{sup −1} range.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16931352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16931352"><span>Body mass index is not a good predictor of bone density: results from WHI, CHS, and EPIDOS.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Robbins, John; Schott, Anne-Marie; Azari, Rahman; Kronmal, Richard</p> <p>2006-01-01</p> <p>Body mass index (BMI) is often used to predict bone mineral density (BMD). This may be flawed. Large epidemiologic studies with BMI and BMD data were analyzed. Weight alone is a better predictor of BMD than BMI. Thus, when selecting individuals for dual-energy X-ray absorptiometry, weight should be used instead of BMI. Low body mass index (BMI) is frequently suggested as one of the factors that indicates the need for bone mineral density (BMD) screening for osteoporosis. The inclusion of the height-squared term in the denominator of this predictive factor is taken on faith or from other data, but it may not be reasonable in this case. We used data from three large epidemiologic studies to test the BMI, height, and weight as predictors of BMD: (1) the Women's Health Initiative (WHI) with 11,390 women; (2) the Cardiovascular Health Study (CHS) with 1,578 men and women; (3) and EPIDOS with 7,598 women. Dual-energy X-ray absorptiometry data on one or more BMD sites, the total hip, the femoral neck, and the lumbar spine from the three studies, as well as height and weight were examined. Correlation coefficients for BMI and weight with BMD were compared. Log transformed models were evaluated to compare the strengths of the models. The result of weight alone was a much better predictor of BMD for all sites in the three studies than BMI. Taller participants had larger BMDs than would have been predicted by BMI. In conclusion, BMIs should not be used to select individuals for BMD screening. A regression model using weight alone or weight and height is a better predictor of BMD in all three populations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23134702H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23134702H"><span>Disorder in the Disk: The Influence of Accretion Disk Thickness on the Large-scale Magnetic Dynamo.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hogg, J. Drew; Reynolds, Christopher S.</p> <p>2018-01-01</p> <p>The evolution of the magnetic field from the enigmatic large-scale dynamo is often considered a central feature of the accretion disk around a black hole. The resulting low-frequency oscillations introduced from the growth and decay of the field strength, along with the change in field orientation, are thought to be intimately tied to variability from the disk. Several factors are at play, but the dynamo can either be directly tied to observable signatures through modulation of the heating rate, or indirectly as the source of quasiperiodic oscillations, the driver of nonlinear structure from propagating fluctuations in mass accretion rate, or even the trigger of state transitions. We present a selection of results from a recent study of this process using a suite of four global, high-resolution, MHD accretion disk simulations. We systematically vary the scale height ratio and find the large-scale dynamo fails to develop above a scale height ratio of h/r ≥ 0.2. Using “butterfly” diagrams of the azimuthal magnetic field, we show the large-scale dynamo exists in the thinner accretion disk models, but fails to excite when the scale height ratio is increased, a feature which is also reflected in 2D Fourier transforms. Additionally, we calculate the dynamo α-parameter through correlations in the averaged magnetic field and turbulent electromotive force, and also generate synthetic light curves from the disk cooling. Using our emission proxy, we find the disks have markedly different characters as photometric fluctuations are larger and less ordered when the disk is thicker and the dynamo is absent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11863612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11863612"><span>Statistical theory for the Kardar-Parisi-Zhang equation in (1+1) dimensions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Masoudi, A A; Shahbazi, F; Davoudi, J; Tabar, M Reza Rahimi</p> <p>2002-02-01</p> <p>The Kardar-Parisi-Zhang (KPZ) equation in (1+1) dimensions dynamically develops sharply connected valley structures within which the height derivative is not continuous. We develop a statistical theory for the KPZ equation in (1+1) dimensions driven with a random forcing that is white in time and Gaussian-correlated in space. A master equation is derived for the joint probability density function of height difference and height gradient P(h-h*, partial differential(x)h,t) when the forcing correlation length is much smaller than the system size and much larger than the typical sharp valley width. In the time scales before the creation of the sharp valleys, we find the exact generating function of h-h* and partial differential(x)h. The time scale of the sharp valley formation is expressed in terms of the force characteristics. In the stationary state, when the sharp valleys are fully developed, finite-size corrections to the scaling laws of the structure functions left angle bracket(h-h*)(n)(partial differential(x)h)(m)right angle bracket are also obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFD.D2009K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFD.D2009K"><span>Focused-based multifractal analysis of the wake in a wind turbine array utilizing proper orthogonal decomposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kadum, Hawwa; Ali, Naseem; Cal, Raúl</p> <p>2016-11-01</p> <p>Hot-wire anemometry measurements have been performed on a 3 x 3 wind turbine array to study the multifractality of the turbulent kinetic energy dissipations. A multifractal spectrum and Hurst exponents are determined at nine locations downstream of the hub height, and bottom and top tips. Higher multifractality is found at 0.5D and 1D downstream of the bottom tip and hub height. The second order of the Hurst exponent and combination factor show an ability to predict the flow state in terms of its development. Snapshot proper orthogonal decomposition is used to identify the coherent and incoherent structures and to reconstruct the stochastic velocity using a specific number of the POD eigenfunctions. The accumulation of the turbulent kinetic energy in top tip location exhibits fast convergence compared to the bottom tip and hub height locations. The dissipation of the large and small scales are determined using the reconstructed stochastic velocities. The higher multifractality is shown in the dissipation of the large scale compared to small-scale dissipation showing consistency with the behavior of the original signals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518665-small-scale-anisotropies-cosmic-rays-from-relative-diffusion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518665-small-scale-anisotropies-cosmic-rays-from-relative-diffusion"><span>SMALL-SCALE ANISOTROPIES OF COSMIC RAYS FROM RELATIVE DIFFUSION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ahlers, Markus; Mertsch, Philipp</p> <p>2015-12-10</p> <p>The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that canmore » account for the effect.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA487454','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA487454"><span>Aerial Reconnaissance Binoculars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1974-06-01</p> <p>199212 Z= 8,51005 L= 0 M= 204139-4 N= . Table 1.2 Marginal ray height for zero degroos Ineldont rayo YO= .6 X ) Y= .60795 Z= 3-96631E-p X 0 Y= .6143...in high vibration environments where standard military binoculars (7 x 50) are only marginally helpful to the naked eye in the detection of targets...of-view 17.8 degrees Exit Pupil 9.65 mm Eye Relief 274 mm Size 4.5 x 8.75 x 3.5 inches Weight 4.3 lbs 3 2. Computer Design - Ray Tracing of Original</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22608388-silicon-refractive-lenses-surface-scattering-high-energy-rays','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22608388-silicon-refractive-lenses-surface-scattering-high-energy-rays"><span>1D silicon refractive lenses for surface scattering with high energy x-rays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bertram, F.; Gutowski, O.; Schroer, C.</p> <p>2016-07-27</p> <p>At the high energy X-ray beamline P07 at PETRA III, 1D focusing down to 4 micrometer vertical beam height while preserving a horizontal beam width of 0.5 mm was established by refractive lenses etched into a silicon wafer. A single wafer with 8 different lens structures can cover the full energy range between 50 and 120 keV. For surface diffraction on ultrathin films a factor of 4 in intensity can be achieved compared to the already established Al-compound refractive 2D-lenses.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970016800&hterms=1603&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2526%25231603','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970016800&hterms=1603&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3D%2526%25231603"><span>The Imaging Properties of a Silicon Wafer X-Ray Telescope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Joy, M. K.; Kolodziejczak, J. J.; Weisskopf, M. C.; Fair, S.; Ramsey, B. D.</p> <p>1994-01-01</p> <p>Silicon wafers have excellent optical properties --- low microroughness and good medium-scale flatness --- which Make them suitable candidates for inexpensive flat-plate grazing-incidence x-ray mirrors. On short spatial scales (less than 3 mm) the surface quality of silicon wafers rivals that expected of the Advanced X-Ray Astrophysics Facility (AXAF) high-resolution optics. On larger spatial scales, however, performance may be degraded by the departure from flatness of the wafer and by distortions induced by the mounting scheme. In order to investigate such effects, we designed and constructed a prototype silicon-wafer x-ray telescope. The device was then tested in both visible light and x rays. The telescope module consists of 94 150-mm-diameter wafers, densely packed into the first stage of a Kirkpatrick-Baez configuration. X-ray tests at three energies (4.5, 6.4, and 8.0 keV) showed an energy-independent line spread function with full width at half maximum (FWHM) of 150 arcseconds, dominated by deviations from large-scale flatness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGD.....7.3227K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGD.....7.3227K"><span>Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Köhler, P.; Huth, A.</p> <p>2010-05-01</p> <p>The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to quantify the carbon contained in the vegetation, although this calculation contains due to the heterogeneity of the forest landscape structural uncertainties which restrict future applications to spatial averages of about one hectare in size. The uncertainties in AGB for a given canopy height are here 20-40% (95% confidence level) corresponding to a standard deviation of less than ±10%. This uncertainty on the 1 ha-scale is much smaller than in the analysis of 0.04 ha-scale data. At this small scale (0.04 ha) AGB can only be calculated out of canopy height with an uncertainty which is at least of the magnitude of the signal itself due to the natural spatial heterogeneity of these forests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...710964H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...710964H"><span>Tracking the shape-dependent sintering of platinum-rhodium model catalysts under operando conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hejral, Uta; Müller, Patrick; Balmes, Olivier; Pontoni, Diego; Stierle, Andreas</p> <p>2016-03-01</p> <p>Nanoparticle sintering during catalytic reactions is a major cause for catalyst deactivation. Understanding its atomic-scale processes and finding strategies to reduce it is of paramount scientific and economic interest. Here, we report on the composition-dependent three-dimensional restructuring of epitaxial platinum-rhodium alloy nanoparticles on alumina during carbon monoxide oxidation at 550 K and near-atmospheric pressures employing in situ high-energy grazing incidence x-ray diffraction, online mass spectrometry and a combinatorial sample design. For platinum-rich particles our results disclose a dramatic reaction-induced height increase, accompanied by a corresponding reduction of the total particle surface coverage. We find this restructuring to be progressively reduced for particles with increasing rhodium composition. We explain our observations by a carbon monoxide oxidation promoted non-classical Ostwald ripening process during which smaller particles are destabilized by the heat of reaction. Its driving force lies in the initial particle shape which features for platinum-rich particles a kinetically stabilized, low aspect ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25081782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25081782"><span>Three new species of Trimma (Pisces; Gobioidei) from Indonesia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Winterbottom, Richard; Erdmann, Mark V; Cahyani, N K Dita</p> <p>2014-07-18</p> <p>Three new species of Trimma are described from various localities in Indonesia. All three can be readily identified from their live, freshly collected, or preserved colouration. Trimma meranyx n. sp. is further distinguished from other species by the possession of 8-9 scales in the predorsal midline, up to three rows of (usually) cycloid scales on the opercle, two scales at the posterodorsal border of the cheek, a very slightly elongate second dorsal spine which only just reaches the spine or anterior rays of the second dorsal fin, unbranched pectoral fin rays, a fifth pelvic fin ray that branches once and is 64-85% the length of the fourth ray, and a full basal membrane connecting the inner branches of the two fifth pelvic rays. The dark red (live) or black posterior half of the caudal peduncle with large white spots straddling the dorsal and ventral midlines just anterior to the first procurrent caudal fin rays is the diagnostic colour character. The species is known from North Sulawesi, West Papua (Raja Ampat and Fakfak), and the south-eastern tip of Papua New Guinea, with possible records from the Philippines and Vanuatu. Trimma pajama n. sp. has 6 scales in the predorsal midline, two ctenoid scales along the dorsal margin of the opercle, a slightly elongate second dorsal spine reaching posteriorly to the base of the spine or first ray of the second dorsal fin, unbranched pectoral fin rays, a fifth pelvic ray with a single branch point and which is 58-72% the length of the fourth ray, and a full basal membrane connecting the inner branches of the two fifth pelvic rays. The live, freshly collected and preserved colour pattern of alternating dark and light stripes on the head and most of the body (except the posterior half of the caudal peduncle) is diagnostic. It is currently known from West Papua (Raja Ampat and Fakfak) and the southern tip of Papua New Guinea, with possible records from Kalimantan (Indonesia), Palau, the Hermit Is (Papua New Guinea) and the Solomon Islands. Trimma zurae n. sp. has 8-9 scales in the predorsal midline, usually a single row of cycloid scales along the upper border of the opercle, 11 anterior and 9 posterior transverse scale rows, no elongated spines in the first dorsal fin, 9 dorsal and 8 anal fin rays, the middle rays of the pectoral fin branched, a single branch in the fifth pelvic fin ray which is 65-76% the length of the fourth ray and a reduced basal membrane of < 20% the length of the fifth ray. The eye-diameter sized black ocellated spot between the first to fifth spines of the first dorsal fin is diagnostic, as are the pupil-diameter sized orange spots on the nape, opercle and posterodorsal part of the cheek. It is currently known only from a single locality just west of Manado, Sulawesi. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10386E..0BL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10386E..0BL"><span>Refractive optics to compensate x-ray mirror shape-errors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian</p> <p>2017-08-01</p> <p>Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810056415&hterms=twilight&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtwilight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810056415&hterms=twilight&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dtwilight"><span>The Martian twilight</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kahn, R.; Goody, R.; Pollack, J.</p> <p>1981-01-01</p> <p>The changing sky brightness during the Martian twilight as measured by the Viking lander cameras is shown to be consistent with data obtained from sky brightness measurements. An exponential distribution of dust with a scale height of 10 km, equal to the atmospheric scale height, is consistent with the shape of the light curve. Multiple scattering resulting from the forward scattering peak of large particles makes a major contribution to the intensity of the twilight. The spectral distribution of light in the twilight sky may require slightly different optical properties for the scattering particles at high levels from those of the aerosol at lower levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B11H..07T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B11H..07T"><span>Time Series of Tropical-Forest Structure from TanDEM-X, Transformed to Time Series of Biomass by MODIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Treuhaft, R. N.; Baccini, A.; Goncalves, F. G.; Lei, Y.; Keller, M.; Walker, W. S.</p> <p>2017-12-01</p> <p>Tropical forests account for about 50% of the world's forested biomass, and play a critical role in the control of atmospheric carbon dioxide. Large-scale (1000's of km) changes in forest structure and biomass bear on global carbon source-sink dynamics, while small-scale (< 100 m) changes bear on deforestation and degradation monitoring. After describing the interferometric SAR (InSAR) phase-height observation, we show forest phase-height time series from the TanDEM-X radar interferometer at X-band (3 cm), taken with monthly and sub-hectare temporal and spatial resolution, respectively. The measurements were taken with more than 30 TanDEM-X passes over Tapajós National Forest in the Brazilian Amazon between 2011 and 2014. The transformation of phase-height rates into aboveground biomass (AGB) rates is based on the idea that the change in AGB due to a change in phase-height depends on the plot's AGB. Plots with higher AGB will produce more AGB for a given increase in height or phase-height. Postulating a power-law dependence of plot-level mass density on physical height, we previously found that the best conversion factors for transforming phase-height rate to AGB rate were indeed dependent on AGB. For 78 plots, we demonstrated AGB rates from InSAR phase-height rates using AGB from field measurements. For regional modeling of the Amazon Basin, field measurements of AGB, to specify the conversion factors, is impractical. Conversion factors from InSAR phase-height rate to AGB rate in this talk will be based on AGB derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). AGB measurement from MODIS is based on the spectral reflectance of 7 bands from the visible to short wave infrared, and auxiliary metrics describing the variance in reflectance. The mapping of MODIS reflectance to AGB is enabled by training a machine learning algorithm with lidar-derived AGB data, which are in turn trained by field measurements for small areas. The performance of TanDEM-X AGB rate from MODIS-derived conversion factors will be compared to that derived from field-based conversion factors. We will also attempt to improve phase-height rate to AGB rate transformation by deriving improved models of mass density dependences on height, based on the aggregation of single-stem allometrics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22039365-spatial-structure-mono-abundance-sub-populations-milky-way-disk','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22039365-spatial-structure-mono-abundance-sub-populations-milky-way-disk"><span>THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bovy, Jo; Rix, Hans-Walter; Liu Chao</p> <p>2012-07-10</p> <p>The spatial, kinematic, and elemental-abundance structure of the Milky Way's stellar disk is complex, and has been difficult to dissect with local spectroscopic or global photometric data. Here, we develop and apply a rigorous density modeling approach for Galactic spectroscopic surveys that enables investigation of the global spatial structure of stellar sub-populations in narrow bins of [{alpha}/Fe] and [Fe/H], using 23,767 G-type dwarfs from SDSS/SEGUE, which effectively sample 5 kpc < R{sub GC} < 12 kpc and 0.3 kpc {approx}< |Z| {approx}< 3 kpc. We fit models for the number density of each such ([{alpha}/Fe] and [Fe/H]) mono-abundance component, properlymore » accounting for the complex spectroscopic SEGUE sampling of the underlying stellar population, as well as for the metallicity and color distributions of the samples. We find that each mono-abundance sub-population has a simple spatial structure that can be described by a single exponential in both the vertical and radial directions, with continuously increasing scale heights ( Almost-Equal-To 200 pc to 1 kpc) and decreasing scale lengths (>4.5 kpc to 2 kpc) for increasingly older sub-populations, as indicated by their lower metallicities and [{alpha}/Fe] enhancements. That the abundance-selected sub-components with the largest scale heights have the shortest scale lengths is in sharp contrast with purely geometric 'thick-thin disk' decompositions. To the extent that [{alpha}/Fe] is an adequate proxy for age, our results directly show that older disk sub-populations are more centrally concentrated, which implies inside-out formation of galactic disks. The fact that the largest scale-height sub-components are most centrally concentrated in the Milky Way is an almost inevitable consequence of explaining the vertical structure of the disk through internal evolution. Whether the simple spatial structure of the mono-abundance sub-components and the striking correlations between age, scale length, and scale height can be plausibly explained by satellite accretion or other external heating remains to be seen.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4356200','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4356200"><span>Changes in Monkey Crystalline Lens Spherical Aberration During Simulated Accommodation in a Lens Stretcher</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie</p> <p>2015-01-01</p> <p>Purpose. The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Methods. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4–16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. Results. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from −6.3 ± 0.7 μm for young lenses to −5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and −2.6 ± 0.5 μm, respectively. Conclusions. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. PMID:25670492</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25670492','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25670492"><span>Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maceo Heilman, Bianca; Manns, Fabrice; de Castro, Alberto; Durkee, Heather; Arrieta, Esdras; Marcos, Susana; Parel, Jean-Marie</p> <p>2015-02-10</p> <p>The purpose of this study was to quantify accommodation-induced changes in the spherical aberration of cynomolgus monkey lenses. Twenty-four lenses from 20 cynomolgus monkeys (Macaca fascicularis; 4.4-16.0 years of age; postmortem time 13.5 ± 13.0 hours) were mounted in a lens stretcher. Lens spherical aberration was measured in the unstretched (accommodated) and stretched (relaxed) states with a laser ray tracing system that delivered 51 equally spaced parallel rays along 1 meridian of the lens over the central 6-mm optical zone. A camera mounted below the lens was used to measure the ray height at multiple positions along the optical axis. For each entrance ray, the change in ray height with axial position was fitted with a third-order polynomial. The effective paraxial focal length and Zernike spherical aberration coefficients corresponding to a 6-mm pupil diameter were extracted from the fitted values. The unstretched lens power decreased with age from 59.3 ± 4.0 diopters (D) for young lenses to 45.7 ± 3.1 D for older lenses. The unstretched lens shifted toward less negative spherical aberration with age, from -6.3 ± 0.7 μm for young lenses to -5.0 ± 0.5 μm for older lenses. The power and spherical aberration of lenses in the stretched state were independent of age, with values of 33.5 ± 3.4 D and -2.6 ± 0.5 μm, respectively. Spherical aberration is negative in cynomolgus monkey lenses and becomes more negative with accommodation. These results are in good agreement with the predicted values using computational ray tracing in a lens model with a reconstructed gradient refractive index. The spherical aberration of the unstretched lens becomes less negative with age. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10612E..0OY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10612E..0OY"><span>Correlation methods in optical metrology with state-of-the-art x-ray mirrors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.</p> <p>2018-01-01</p> <p>The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of <100 nrad (root-mean-square) and height error of <1-2 nm (peak-tovalley). These are for optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1237458-effect-slope-errors-performance-mirrors-ray-free-electron-laser-applications','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1237458-effect-slope-errors-performance-mirrors-ray-free-electron-laser-applications"><span>Effect of slope errors on the performance of mirrors for x-ray free electron laser applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pardini, Tom; Cocco, Daniele; Hau-Riege, Stefan P.</p> <p>2015-12-02</p> <p>In this work we point out that slope errors play only a minor role in the performance of a certain class of x-ray optics for X-ray Free Electron Laser (XFEL) applications. Using physical optics propagation simulations and the formalism of Church and Takacs [Opt. Eng. 34, 353 (1995)], we show that diffraction limited optics commonly found at XFEL facilities posses a critical spatial wavelength that makes them less sensitive to slope errors, and more sensitive to height error. Given the number of XFELs currently operating or under construction across the world, we hope that this simple observation will help tomore » correctly define specifications for x-ray optics to be deployed at XFELs, possibly reducing the budget and the timeframe needed to complete the optical manufacturing and metrology.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26698980','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26698980"><span>Effect of slope errors on the performance of mirrors for x-ray free electron laser applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pardini, Tom; Cocco, Daniele; Hau-Riege, Stefan P</p> <p>2015-12-14</p> <p>In this work we point out that slope errors play only a minor role in the performance of a certain class of x-ray optics for X-ray Free Electron Laser (XFEL) applications. Using physical optics propagation simulations and the formalism of Church and Takacs [Opt. Eng. 34, 353 (1995)], we show that diffraction limited optics commonly found at XFEL facilities posses a critical spatial wavelength that makes them less sensitive to slope errors, and more sensitive to height error. Given the number of XFELs currently operating or under construction across the world, we hope that this simple observation will help to correctly define specifications for x-ray optics to be deployed at XFELs, possibly reducing the budget and the timeframe needed to complete the optical manufacturing and metrology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E2145Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E2145Z"><span>Wind-jet interaction in high-mass X-ray binaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zdziarski, Andrzej</p> <p>2016-07-01</p> <p>Jets in high-mass X-ray binaries can strongly interact with the stellar wind from the donor. The interaction leads, in particular, to formation of recollimation shocks. The shocks can then accelerate electrons in the jet and lead to enhanced emission, observable in the radio and gamma-ray bands. DooSoo, Zdziarski & Heinz (2016) have formulated a condition on the maximum jet power (as a function of the jet velocity and wind rate and velocity) at which such shocks form. This criterion can explain the large difference in the radio and gamma-ray loudness between Cyg X-1 and Cyg X-3. The orbital modulation of radio emission observed in Cyg X-1 and Cyg X-3 allows a measurement of the location of the height along the jet where the bulk of emission at a given frequency occurs. Strong absorption of X-rays in the wind of Cyg X-3 is required to account for properties of the correlation of the radio emission with soft and hard X-rays. That absorption can also account for the unusual spectral and timing X-ray properties of this source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27553773','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27553773"><span>A predictive nondestructive model for the covariation of tree height, diameter, and stem volume scaling relationships.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Zhongrui; Zhong, Quanlin; Niklas, Karl J; Cai, Liang; Yang, Yusheng; Cheng, Dongliang</p> <p>2016-08-24</p> <p>Metabolic scaling theory (MST) posits that the scaling exponents among plant height H, diameter D, and biomass M will covary across phyletically diverse species. However, the relationships between scaling exponents and normalization constants remain unclear. Therefore, we developed a predictive model for the covariation of H, D, and stem volume V scaling relationships and used data from Chinese fir (Cunninghamia lanceolata) in Jiangxi province, China to test it. As predicted by the model and supported by the data, normalization constants are positively correlated with their associated scaling exponents for D vs. V and H vs. V, whereas normalization constants are negatively correlated with the scaling exponents of H vs. D. The prediction model also yielded reliable estimations of V (mean absolute percentage error = 10.5 ± 0.32 SE across 12 model calibrated sites). These results (1) support a totally new covariation scaling model, (2) indicate that differences in stem volume scaling relationships at the intra-specific level are driven by anatomical or ecophysiological responses to site quality and/or management practices, and (3) provide an accurate non-destructive method for predicting Chinese fir stem volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19800050','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19800050"><span>Analysis of applied forces and electromyography of back and shoulders muscles when performing a simulated hand scaling task.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Porter, William; Gallagher, Sean; Torma-Krajewski, Janet</p> <p>2010-05-01</p> <p>Hand scaling is a physically demanding task responsible for numerous overexertion injuries in underground mining. Scaling requires the miner to use a long pry bar to remove loose rock, reducing the likelihood of rock fall injuries. The experiments described in this article simulated "rib" scaling (scaling a mine wall) from an elevated bucket to examine force generation and electromyographic responses using two types of scaling bars (steel and fiberglass-reinforced aluminum) at five target heights ranging from floor level to 176 cm. Ten male and six female subjects were tested in separate experiments. Peak and average force applied at the scaling bar tip and normalized electromyography (EMG) of the left and right pairs of the deltoid and erectores spinae muscles were obtained. Work height significantly affected peak prying force during scaling activities with highest force capacity at the lower levels. Bar type did not affect force generation. However, use of the lighter fiberglass bar required significantly more muscle activity to achieve the same force. Results of these studies suggest that miners scale points on the rock face that are below their knees, and reposition the bucket as often as necessary to do so. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25966243','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25966243"><span>Selection of putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reis, R V; Amorim, E P; Ledo, C A S; Pestana, R K N; Gonçalves, Z S; Borém, A</p> <p>2015-05-11</p> <p>The aim of this study was to select putative Terra Maranhão plantain cultivar mutants obtained by gamma radiation, with good agronomic traits and short height. A total of 315 buds were irradiated in vitro with gamma rays in doses of 20 Gy and were subcultivated and evaluated in the field over 2 production cycles. The clones were evaluated to select the best 10% of the plants. Cultivation was undertaken at a spacing of 3 x 4 m, and fertilization was carried out according to the technical recommendations for the crop. A total of 111 irradiated plants and 41 controls were evaluated in the field. Among the irradiated plants selected, genotypes that exhibited reduced height were observed. The genotypes Irra 04, Irra 13, Irra 19, and Irra 21 exhibited a height of 3.6 m, which was below the mean value of the controls selected. Other irradiated genotypes selected such as Irra 14 and Irra 16, with a height of 3.65 m, are promising because, in addition to reduced height, they exhibited good bunch weight and shorter period to flowering in relation to the mean value of the controls, which is a significant factor for the next stages in breeding. These results confirm the possibility of inducing mutations in Terra type banana plants to obtain desirable agronomic traits and short height.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009NuPhS.196..305D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009NuPhS.196..305D"><span>Muon Production Height investigated by the Air-Shower Experiment KASCADE-Grande</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doll, P.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, H.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; KASCADE-Grande Collaboration</p> <p>2009-12-01</p> <p>A large area (128 m2) Muon Tracking Detector (MTD), located within the KASCADE experiment, has been built with the aim to identify muons ( E>0.8 GeV) and their directions in extensive air showers by track measurements under more than 18 r.l. shielding. The orientation of the muon track with respect to the shower axis is expressed in terms of the radial- and tangential angles. By means of triangulation the muon production height H is determined. By means of H, a transition from light to heavy cosmic ray primary particles with increasing shower energy E from 1-10 PeV is observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-08-02/pdf/2012-18929.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-08-02/pdf/2012-18929.pdf"><span>77 FR 46034 - Utility Scale Wind Towers From the People's Republic of China: Preliminary Determination of Sales...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-08-02</p> <p>... nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation capacity in... efficiencies have been improving, and turbine heights have been rising to altitudes with much stronger winds... configurations that meet the minimum height requirement and are designed to support wind turbine electrical...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/38428','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/38428"><span>Height-diameter allometry of tropical forest trees</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>T.R. Feldpausch; L. Banin; O.L. Phillips; T.R. Baker; S.L. Lewis; C.A. Quesada; K. Affum-Baffoe; E.J.M.M. Arets; N.J. Berry; M. Bird; E.S. Brondizio; P de Camargo; J. Chave; G. Djagbletey; T.F. Domingues; M. Drescher; P.M. Fearnside; M.B. Franca; N.M. Fyllas; G. Lopez-Gonzalez; A. Hladik; N. Higuchi; M.O. Hunter; Y. Iida; K.A. Salim; A.R. Kassim; M. Keller; J. Kemp; D.A. King; J.C. Lovett; B.S. Marimon; B.H. Marimon-Junior; E. Lenza; A.R. Marshall; D.J. Metcalfe; E.T.A. Mitchard; E.F. Moran; B.W. Nelson; R. Nilus; E.M. Nogueira; M. Palace; S. Patiño; K.S.-H. Peh; M.T. Raventos; J.M. Reitsma; G. Saiz; F. Schrodt; B. Sonke; H.E. Taedoumg; S. Tan; L. White; H. Woll; J. Lloyd</p> <p>2011-01-01</p> <p>Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70197039','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70197039"><span>Comparison of the precision of age estimates generated from fin rays, scales, and otoliths of Blue Sucker</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Acre, Matthew R.; Alejandrez, Celeste; East, Jessica; Massure, Wade A.; Miyazono, S.; Pease, Jessica E.; Roesler, Elizabeth L.; Williams, H.M.; Grabowski, Timothy B.</p> <p>2017-01-01</p> <p>Evaluating the precision of age estimates generated by different readers and different calcified structures is an important part of generating reliable estimations of growth, recruitment, and mortality for fish populations. Understanding the potential loss of precision associated with using structures harvested without sacrificing individuals, such as scales or fin rays, is particularly important when working with imperiled species, such as Cycleptus elongatus (Blue Sucker). We collected otoliths (lapilli), scales, and the first fin rays of the dorsal, anal, pelvic, and pectoral fins of 9 Blue Suckers. We generated age estimates from each structure by both experienced (n = 5) and novice (n = 4) readers. We found that, independent of the structure used to generate the age estimates, the mean coefficient of variation (CV) of experienced readers was approximately 29% lower than that of novice readers. Further, the mean CV of age estimates generated from pectoral-fin rays, pelvic-fin rays, and scales were statistically indistinguishable and less than those of dorsal-fin rays, anal-fin rays, and otoliths. Anal-, dorsal-, and pelvic-fin rays and scales underestimated age compared to otoliths, but age estimates from pectoral-fin rays were comparable to those from otoliths. Skill level, structure, and fish total-length influenced reader precision between subsequent reads of the same aging structure from a particular fish. Using structures that can be harvested non-lethally to estimate the age of Blue Sucker can provide reliable and reproducible results, similar to those that would be expected from using otoliths. Therefore, we recommend the use of pectoral-fin rays as a non-lethal method to obtain age estimates for Blue Suckers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3356661','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3356661"><span>Irregular topography at the Earth’s inner core boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dai, Zhiyang; Wang, Wei; Wen, Lianxing</p> <p>2012-01-01</p> <p>Compressional seismic wave reflected off the Earth’s inner core boundary (ICB) from earthquakes occurring in the Banda Sea and recorded at the Hi-net stations in Japan exhibits significant variations in travel time (from -2 to 2.5 s) and amplitude (with a factor of more than 4) across the seismic array. Such variations indicate that Earth’s ICB is irregular, with a combination of at least two scales of topography: a height variation of 14 km changing within a lateral distance of no more than 6 km, and a height variation of 4–8 km with a lateral length scale of 2–4 km. The characteristics of the ICB topography indicate that small-scale variations of temperature and/or core composition exist near the ICB, and/or the ICB topographic surface is being deformed by small-scale forces out of its thermocompositional equilibrium position and is metastable. PMID:22547788</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930091641','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930091641"><span>Ground-Handling Forces on a 1/40-scale Model of the U. S. Airship "Akron."</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Silverstein, Abe; Gulick, B G</p> <p>1937-01-01</p> <p>This report presents the results of full-scale wind tunnel tests conducted to determine the ground-handling forces on a 1/40-scale model of the U. S. Airship "Akron." Ground-handling conditions were simulated by establishing a velocity gradient above a special ground board in the tunnel comparable with that encountered over a landing field. The tests were conducted at Reynolds numbers ranging from 5,000,000 to 19,000,000 at each of six angles of yaw between 0 degree and 180 degrees and at four heights of the model above the ground board. The ground-handling forces vary greatly with the angle of yaw and reach large values at appreciable angles of yaw. Small changes in height, pitch, or roll did not critically affect the forces on the model. In the range of Reynolds numbers tested, no significant variation of the forces with the scale was disclosed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22547788','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22547788"><span>Irregular topography at the Earth's inner core boundary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dai, Zhiyang; Wang, Wei; Wen, Lianxing</p> <p>2012-05-15</p> <p>Compressional seismic wave reflected off the Earth's inner core boundary (ICB) from earthquakes occurring in the Banda Sea and recorded at the Hi-net stations in Japan exhibits significant variations in travel time (from -2 to 2.5 s) and amplitude (with a factor of more than 4) across the seismic array. Such variations indicate that Earth's ICB is irregular, with a combination of at least two scales of topography: a height variation of 14 km changing within a lateral distance of no more than 6 km, and a height variation of 4-8 km with a lateral length scale of 2-4 km. The characteristics of the ICB topography indicate that small-scale variations of temperature and/or core composition exist near the ICB, and/or the ICB topographic surface is being deformed by small-scale forces out of its thermocompositional equilibrium position and is metastable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29248348','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29248348"><span>An alternative method for calibration of flow field flow fractionation channels for hydrodynamic radius determination: The nanoemulsion method (featuring multi angle light scattering).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bolinsson, Hans; Lu, Yi; Hall, Stephen; Nilsson, Lars; Håkansson, Andreas</p> <p>2018-01-19</p> <p>This study suggests a novel method for determination of the channel height in asymmetrical flow field-flow fractionation (AF4), which can be used for calibration of the channel for hydrodynamic radius determinations. The novel method uses an oil-in-water nanoemulsion together with multi angle light scattering (MALS) and elution theory to determine channel height from an AF4 experiment. The method is validated using two orthogonal methods; first, by using standard particle elution experiments and, secondly, by imaging an assembled and carrier liquid filled channel by x-ray computed tomography (XCT). It is concluded that the channel height can be determined with approximately the same accuracy as with the traditional channel height determination technique. However, the nanoemulsion method can be used under more challenging conditions than standard particles, as the nanoemulsion remains stable in a wider pH range than the previously used standard particles. Moreover, the novel method is also more cost effective. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.474.5425M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.474.5425M"><span>On the radiation beaming of bright X-ray pulsars and constraints on neutron star mass-radius relation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mushtukov, Alexander A.; Verhagen, Patrick A.; Tsygankov, Sergey S.; van der Klis, Michiel; Lutovinov, Alexander A.; Larchenkova, Tatiana I.</p> <p>2018-03-01</p> <p>The luminosity of accreting magnetized neutron stars can largely exceed the Eddington value due to appearance of accretion columns. The height of the columns can be comparable to the neutron star radius. The columns produce the X-rays detected by the observer directly and illuminate the stellar surface, which reprocesses the X-rays and causes additional component of the observed flux. The geometry of the column and the illuminated part of the surface determine the radiation beaming. Curved space-time affects the angular flux distribution. We construct a simple model of the beam patterns formed by direct and reflected flux from the column. We take into account the possibility of appearance of accretion columns, whose height is comparable to the neutron star radius. We argue that depending on the compactness of the star, the flux from the column can be either strongly amplified due to gravitational lensing, or significantly reduced due to column eclipse by the star. The eclipses of high accretion columns result in specific features in pulse profiles. Their detection can put constraints on the neutron star radius. We speculate that column eclipses are observed in X-ray pulsar V 0332+53, leading us to the conclusion of large neutron star radius in this system (˜15 km if M ˜ 1.4 M⊙). We point out that the beam pattern can be strongly affected by scattering in the accretion channel at high luminosity, which has to be taken into account in the models reproducing the pulse profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017npjCM...3....4I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017npjCM...3....4I"><span>Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iwasaki, Yuma; Kusne, A. Gilad; Takeuchi, Ichiro</p> <p>2017-12-01</p> <p>Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition-phase maps from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis and the choice of measure's performance impact on automatic composition-phase map determination. Nine dissimilarity measures are investigated for their impact in analyzing X-ray diffraction patterns for a Fe-Co-Ni ternary alloy composition spread. The cosine, Pearson correlation coefficient, and Jensen-Shannon divergence measures are shown to provide the best performance in the presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction patterns in general beyond data from combinatorial libraries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.9299T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.9299T"><span>Nanoscale Roughness of Natural Fault Surfaces Controlled by Scale-Dependent Yield Strength</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thom, C. A.; Brodsky, E. E.; Carpick, R. W.; Pharr, G. M.; Oliver, W. C.; Goldsby, D. L.</p> <p>2017-09-01</p> <p>Many natural fault surfaces exhibit remarkably similar scale-dependent roughness, which may reflect the scale-dependent yield strength of rocks. Using atomic force microscopy (AFM), we show that a sample of the Corona Heights Fault exhibits isotropic surface roughness well-described by a power law, with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. The roughness data and a recently proposed theoretical framework predict that yield strength varies with length scale as <fi>λ</fi>-0.25+/-0.05. Nanoindentation tests on the Corona Heights sample and another fault sample whose topography was previously measured with AFM (the Yair Fault) reveal a scale-dependent yield stress with power-law exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08, respectively. These values are within one to two standard deviations of the predicted value, and provide experimental evidence that fault roughness is controlled by intrinsic material properties, which produces a characteristic surface geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1341885','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1341885"><span>Wavelet-based techniques for the gamma-ray sky</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias</p> <p>2016-07-01</p> <p>Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800060822&hterms=lupus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dlupus','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800060822&hterms=lupus&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dlupus"><span>An extended soft X-ray source in Delphinus - H2027+19</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stern, R. A.; Walker, A. B. C.; Charles, P. A.; Nugent, J. J.; Garmire, G. P.</p> <p>1980-01-01</p> <p>A new extended soft X-ray source has been observed with the HEAO 1 A-2 experiment. The source, H2027+19, emits primarily in the 0.16-0.4 keV band with a total flux in this band of 2 x 10 to the -11th erg/sq cm s. It is found that both simple continuum and coronal plasma models provide good fits to the observed pulse-height spectrum. The most likely physical models are either that the source is an old supernova remnant or that it is a region of enhanced soft X-ray emission surrounding an H I cloud imbedded in a coronal plasma, as suggested by Hayakawa et al. (1979) for the Lupus Loop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NIMPA.825...78D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NIMPA.825...78D"><span>i-TED: A novel concept for high-sensitivity (n,γ) cross-section measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Domingo-Pardo, C.</p> <p>2016-07-01</p> <p>A new method for measuring (n , γ) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features γ-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture γ-rays arising from the sample under study and background γ-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017LSSR...15...23S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017LSSR...15...23S"><span>Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.</p> <p>2017-11-01</p> <p>One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation when compared to the UF/NCI Computational Phantom Library.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhRvE..85f6319Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhRvE..85f6319Z"><span>Band gaps and localization of surface water waves over large-scale sand waves with random fluctuations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi</p> <p>2012-06-01</p> <p>Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AAS...22330104G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AAS...22330104G"><span>Fermi rules out the IC/CMB model for the Large-Scale Jet X-ray emission of 3C 273</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Georganopoulos, Markos; Meyer, E. T.</p> <p>2014-01-01</p> <p>The process responsible for the Chandra-detected X-ray emission from the large-scale jets of powerful quasars is not clear yet. The two main models are inverse Compton scattering off the cosmic microwave background (IC/CMB) photons and synchrotron emission from a population of electrons separate from those producing the radio-IR emission. These two models imply radically different conditions in the large scale jet in terms of jet speed and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the larger-scale environment. Georganopoulos et al. (2006) proposed a diagnostic based on a fundamental difference between these two models: the production of synchrotron X-rays requires multi-TeV electrons, while the EC/CMB model requires a cutoff in the electron energy distribution below TeV energies. This has significant implications for the gamma-ray emission predicted by these two models. Here we present new Fermi observations that put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that clearly violates the flux expected from the IC/CMB X-ray interpretation found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source. Further, the Fermi upper limit constraints the Doppler beaming factor delta <5.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/52204','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/52204"><span>Tree morphologic plasticity explains deviation from metabolic scaling theory in semi-arid conifer forests, southwestern USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Tyson L. Swetnam; Christopher D. O' Connor; Ann M. Lynch</p> <p>2016-01-01</p> <p>A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=earth+AND+size&pg=5&id=EJ512673','ERIC'); return false;" href="https://eric.ed.gov/?q=earth+AND+size&pg=5&id=EJ512673"><span>Earth Walk: Touring Our Planet's Inner Structure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Muller, Eric P.</p> <p>1995-01-01</p> <p>Describes an excursion that effectively helps students visualize the earth's immense size and numerous structures without the usual scale and ratio distortions found in most textbooks and allows students to compare their body's height to a scaled-down earth. (JRH)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21G1022W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21G1022W"><span>Towards large-scale mapping of urban three-dimensional structure using Landsat imagery and global elevation datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, P.; Huang, C.</p> <p>2017-12-01</p> <p>The three-dimensional (3D) structure of buildings and infrastructures is fundamental to understanding and modelling of the impacts and challenges of urbanization in terms of energy use, carbon emissions, and earthquake vulnerabilities. However, spatially detailed maps of urban 3D structure have been scarce, particularly in fast-changing developing countries. We present here a novel methodology to map the volume of buildings and infrastructures at 30 meter resolution using a synergy of Landsat imagery and openly available global digital surface models (DSMs), including the Shuttle Radar Topography Mission (SRTM), ASTER Global Digital Elevation Map (GDEM), ALOS World 3D - 30m (AW3D30), and the recently released global DSM from the TanDEM-X mission. Our method builds on the concept of object-based height profile to extract height metrics from the DSMs and use a machine learning algorithm to predict height and volume from the height metrics. We have tested this algorithm in the entire England and assessed our result using Lidar measurements in 25 England cities. Our initial assessments achieved a RMSE of 1.4 m (R2 = 0.72) for building height and a RMSE of 1208.7 m3 (R2 = 0.69) for building volume, demonstrating the potential of large-scale applications and fully automated mapping of urban structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2375I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2375I"><span>Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ichikawa, Kaoru; Akiyama, Hiroaki; Ebinuma, Takuji; Isoguchi, Osamu; Kimura, Noriaki; Kitazawa, Yukihito; Konda, Masanori; Kouguchi, Nobuyuki; Tamura, Hitoshi; Tomita, Hiroyuki; Yoshikawa, Yutaka; Waseda, Takuji</p> <p>2016-04-01</p> <p>There has been considerable interest in GNSS Reflectometry (GNSS-R) as a new remote-sensing method. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH. It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 200 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results obtained by the multi-sensor platform at observation towers, and preparation status of a ground station that will be supplied to receive CYGNSS data at Japan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JARS...10d6021B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JARS...10d6021B"><span>Toward an automated low-cost three-dimensional crop surface monitoring system using oblique stereo imagery from consumer-grade smart cameras</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brocks, Sebastian; Bendig, Juliane; Bareth, Georg</p> <p>2016-10-01</p> <p>Crop surface models (CSMs) representing plant height above ground level are a useful tool for monitoring in-field crop growth variability and enabling precision agriculture applications. A semiautomated system for generating CSMs was implemented. It combines an Android application running on a set of smart cameras for image acquisition and transmission and a set of Python scripts automating the structure-from-motion (SfM) software package Agisoft Photoscan and ArcGIS. Only ground-control-point (GCP) marking was performed manually. This system was set up on a barley field experiment with nine different barley cultivars in the growing period of 2014. Images were acquired three times a day for a period of two months. CSMs were successfully generated for 95 out of 98 acquisitions between May 2 and June 30. The best linear regressions of the CSM-derived plot-wise averaged plant-heights compared to manual plant height measurements taken at four dates resulted in a coefficient of determination R2 of 0.87 and a root-mean-square error (RMSE) of 0.08 m, with Willmott's refined index of model performance dr equaling 0.78. In total, 103 mean plot heights were used in the regression based on the noon acquisition time. The presented system succeeded in semiautomatedly monitoring crop height on a plot scale to field scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19409241','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19409241"><span>[Final size attained in type 1 diabetes children].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Galera Martínez, R; García García, E; Gámez Gómez, M D; Gómez Llorente, J L; Garrido Fernández, P; Bonillo Perales, A</p> <p>2009-03-01</p> <p>To describe the final height and height-gain in relation to target height, in children with type 1 diabetes mellitus, and analyse their relationship to different variables. Retrospective analysis of the growth data of 52 children (27 girls) diagnosed with type 1 diabetes mellitus before 14 years old, and followed up until their final height was attained. final height, target height, illness duration, glycated haemoglobin (HbA1c), insulin dose, BMI, and other autoimmune diseases. The height SDS (standard deviation scale) at diagnosis was slightly higher (0.734 in boys and 0.563 in girls). During the development of the disease, a growth reduction was seen, which was significantly higher in boys of prepubertal age (p = 0.016). The mean final height attained was 173.14 +/- 5.28 cm in boys and 161.9 +/- 6.97 cm in girls. Height gain was 1.56 +/- 3.66 in boys (SDS = -0.034) and 2.26 +/- 6.13 in girls (SDS = 0.385). The only variable significantly related to height gain was mean glycated-haemoglobin (growth reduction of 2 cm for every increment of 1% in mean glycated-haemoglobin). At onset, diabetic children were slightly taller than the general population. A growth reduction was shown as the disease developed, significantly higher in boys of prepubertal age. The final height in boys was slightly lower than the mean, but in girls was similar to the general population. Both sexes attained their target height, although the height gain was less in boys. Poorer metabolic control was associated with reduced height gain.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA445550','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA445550"><span>Limits to the Extraction of Information from Multi-Hop Skywave Radar Signals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2005-04-14</p> <p>equations to compute the eikonal rays gh a model ionosphere, plotting the resulting tories in the range-height plane. oes received via these multi...kilometres. This extensive database is ideally suited to the sta- tistical analysis of the directional, diurnal, seasonal 0 0 500 1000 1500 2000 2500</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SeScT..32c5004A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SeScT..32c5004A"><span>Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.</p> <p>2017-03-01</p> <p>Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (<7 × 1015 cm-3) free charge density in the nominally undoped films. The barrier height and ideality factor were estimated by current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1054926','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1054926"><span>ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Biswas, Pratim; Al-Dahhan, Muthanna</p> <p>2012-11-01</p> <p>Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empiricalmore » approaches and are operated as black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nation's needs for energy and environmental safety. In addition, the outcome of the proposed study will have a broader impact on other processes that utilize spouted beds, such as coal gasification, granulation, drying, catalytic reactions, etc.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ISPAn..I4..193T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ISPAn..I4..193T"><span>Validation Study on Alos Prism Dsm Mosaic and Aster Gdem 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tadono, T.; Takaku, J.; Shimada, M.</p> <p>2012-07-01</p> <p>This study aims to evaluate height accuracy of two datasets obtained by spaceborne optical instruments of a digital elevation data for a large-scale area. The digital surface model (DSM) was generated by the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed 'Daichi'), and the global digital elevation model (DEM) version 2 (GDEM-2) was derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard NASA's TERRA satellite. The test site of this study was the entire country of Bhutan, which is located on the southern slopes of the eastern Himalayas. Bhutan is not a large country, covering about 330 km from east to west, and 170 km from north to south; however, it has large height variation from 200 m to more than 7,000 m. This therefore makes it very interesting for validating digital topographic information in terms of national scale generation as well as wide height range. Regarding the reference data, field surveys were conducted in 2010 and 2011, and collected ground control points by a global positioning system were used for evaluating precise height accuracies in point scale as check points (CPs), with a 3 arc-sec DEM created by the Shuttle Radar Topography Mission (SRTM-3) used to validate the wide region. The results confirmed a root mean square error of 8.1 m for PRISM DSM and 29.4 m for GDEM-2 by CPs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770023497','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770023497"><span>Backscattering from a Gaussian distributed, perfectly conducting, rough surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brown, G. S.</p> <p>1977-01-01</p> <p>The problem of scattering by random surfaces possessing many scales of roughness is analyzed. The approach is applicable to bistatic scattering from dielectric surfaces, however, this specific analysis is restricted to backscattering from a perfectly conducting surface in order to more clearly illustrate the method. The surface is assumed to be Gaussian distributed so that the surface height can be split into large and small scale components, relative to the electromagnetic wavelength. A first order perturbation approach is employed wherein the scattering solution for the large scale structure is perturbed by the small scale diffraction effects. The scattering from the large scale structure is treated via geometrical optics techniques. The effect of the large scale surface structure is shown to be equivalent to a convolution in k-space of the height spectrum with the following: the shadowing function, a polarization and surface slope dependent function, and a Gaussian factor resulting from the unperturbed geometrical optics solution. This solution provides a continuous transition between the near normal incidence geometrical optics and wide angle Bragg scattering results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002861','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002861"><span>Investigating the Impact of Surface Heterogeneity on the Convective Boundary Layer Over Urban Areas Through Coupled Large-Eddy Simulation and Remote Sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.</p> <p>2011-01-01</p> <p>Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870052751&hterms=astronomia+espacio&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dastronomia%2By%2Bespacio','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870052751&hterms=astronomia+espacio&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dastronomia%2By%2Bespacio"><span>A dynamic flare with anomalously dense flare loops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Svestka, Z.; Fontenla, J. M.; Machado, M. E.; Martin, S. F.; Neidig, D. F.</p> <p>1986-01-01</p> <p>The dynamic flare of November 6, 1980 developed a rich system of growing loops which could be followed in H-alpha for 1.5 hours. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of b-values for a hydrogen atom reveal that this requires electron densities in the loops to be close to 10 to the 12th per cu cm. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 10 to the 12th per cu cm if no nonthermal motions were present. It is now general knowledge that flare loops are initially observed in X-rays and become visible in H-alpha only after cooling. For such a high density a loop would cool through radiation from 10 to the 7th K to 10 to the 4th K within a few minutes so that the dense H-alpha loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H-alpha. Therefore, the density must have been significantly smaller when the loops were formed and the flare loops were apparently both shrinking and becoming denser while cooling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910047608&hterms=discrete+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddiscrete%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910047608&hterms=discrete+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddiscrete%2Bstructure"><span>On the large scale structure of X-ray background sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bi, H. G.; Meszaros, A.; Meszaros, P.</p> <p>1991-01-01</p> <p>The large scale clustering of the sources responsible for the X-ray background is discussed, under the assumption of a discrete origin. The formalism necessary for calculating the X-ray spatial fluctuations in the most general case where the source density contrast in structures varies with redshift is developed. A comparison of this with observational limits is useful for obtaining information concerning various galaxy formation scenarios. The calculations presented show that a varying density contrast has a small impact on the expected X-ray fluctuations. This strengthens and extends previous conclusions concerning the size and comoving density of large scale structures at redshifts 0.5 between 4.0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.457.3975S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.457.3975S"><span>Global diffusion of cosmic rays in random magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snodin, A. P.; Shukurov, A.; Sarson, G. R.; Bushby, P. J.; Rodrigues, L. F. S.</p> <p>2016-04-01</p> <p>The propagation of charged particles, including cosmic rays, in a partially ordered magnetic field is characterized by a diffusion tensor whose components depend on the particle's Larmor radius RL and the degree of order in the magnetic field. Most studies of the particle diffusion presuppose a scale separation between the mean and random magnetic fields (e.g. there being a pronounced minimum in the magnetic power spectrum at intermediate scales). Scale separation is often a good approximation in laboratory plasmas, but not in most astrophysical environments such as the interstellar medium (ISM). Modern simulations of the ISM have numerical resolution of the order of 1 pc, so the Larmor radius of the cosmic rays that dominate in energy density is at least 106 times smaller than the resolved scales. Large-scale simulations of cosmic ray propagation in the ISM thus rely on oversimplified forms of the diffusion tensor. We take the first steps towards a more realistic description of cosmic ray diffusion for such simulations, obtaining direct estimates of the diffusion tensor from test particle simulations in random magnetic fields (with the Larmor radius scale being fully resolved), for a range of particle energies corresponding to 10-2 ≲ RL/lc ≲ 103, where lc is the magnetic correlation length. We obtain explicit expressions for the cosmic ray diffusion tensor for RL/lc ≪ 1, that might be used in a sub-grid model of cosmic ray diffusion. The diffusion coefficients obtained are closely connected with existing transport theories that include the random walk of magnetic lines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160000791','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160000791"><span>Hartman Testing of X-Ray Telescopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Saha, Timo T.; Biskasch, Michael; Zhang, William W.</p> <p>2013-01-01</p> <p>Hartmann testing of x-ray telescopes is a simple test method to retrieve and analyze alignment errors and low-order circumferential errors of x-ray telescopes and their components. A narrow slit is scanned along the circumference of the telescope in front of the mirror and the centroids of the images are calculated. From the centroid data, alignment errors, radius variation errors, and cone-angle variation errors can be calculated. Mean cone angle, mean radial height (average radius), and the focal length of the telescope can also be estimated if the centroid data is measured at multiple focal plane locations. In this paper we present the basic equations that are used in the analysis process. These equations can be applied to full circumference or segmented x-ray telescopes. We use the Optical Surface Analysis Code (OSAC) to model a segmented x-ray telescope and show that the derived equations and accompanying analysis retrieves the alignment errors and low order circumferential errors accurately.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdSpR..60..991S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdSpR..60..991S"><span>Measurement of secondary cosmic ray intensity at Regener-Pfotzer height using low-cost weather balloons and its correlation with solar activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarkar, Ritabrata; Chakrabarti, Sandip K.; Pal, Partha Sarathi; Bhowmick, Debashis; Bhattacharya, Arnab</p> <p>2017-09-01</p> <p>Cosmic ray flux in our planetary system is primarily modulated by solar activity. Radiation effects of cosmic rays on the Earth strongly depend on latitude due to the variation of the geomagnetic field strength. To study these effects we carried out a series of measurements of the radiation characteristics in the atmosphere due to cosmic rays from various places (geomagnetic latitude: ∼14.50°N) in West Bengal, India, located near the Tropic of Cancer, for several years (2012-2016) particularly covering the solar maximum in the 24th solar cycle. We present low energy (15-140 keV) secondary radiation measurement results extending from the ground till the near space (∼40 km) using a scintillator detector on board rubber weather balloons. We also concentrate on the cosmic ray intensity at the Regener-Pfotzer maxima and find a strong anti-correlation between this intensity and the solar activity even at low geomagnetic latitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869897','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869897"><span>Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Carpenter, Donald A.</p> <p>1995-01-01</p> <p>A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/55816','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/55816"><span>Nondestructive method and apparatus for imaging grains in curved surfaces of polycrystalline articles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Carpenter, D.A.</p> <p>1995-05-23</p> <p>A nondestructive method, and associated apparatus, are provided for determining the grain flow of the grains in a convex curved, textured polycrystalline surface. The convex, curved surface of a polycrystalline article is aligned in a horizontal x-ray diffractometer and a monochromatic, converging x-ray beam is directed onto the curved surface of the polycrystalline article so that the converging x-ray beam is diffracted by crystallographic planes of the grains in the polycrystalline article. The diffracted x-ray beam is caused to pass through a set of horizontal, parallel slits to limit the height of the beam and thereafter. The linear intensity of the diffracted x-ray is measured, using a linear position sensitive proportional counter, as a function of position in a direction orthogonal to the counter so as to generate two dimensional data. An image of the grains in the curved surface of the polycrystalline article is provided based on the two-dimensional data. 7 Figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/37260','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/37260"><span>Regional distribution of forest height and biomass from multisensor data fusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Yifan Yu; Sassan Saatch; Linda S. Heath; Elizabeth LaPoint; Ranga Myneni; Yuri Knyazikhin</p> <p>2010-01-01</p> <p>Elevation data acquired from radar interferometry at C-band from SRTM are used in data fusion techniques to estimate regional scale forest height and aboveground live biomass (AGLB) over the state of Maine. Two fusion techniques have been developed to perform post-processing and parameter estimations from four data sets: 1 arc sec National Elevation Data (NED), SRTM...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34572','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34572"><span>Landscape-scale parameterization of a tree-level forest growth model: a k-nearest neighbor imputation approach incorporating LiDAR data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Michael J. Falkowski; Andrew T. Hudak; Nicholas L. Crookston; Paul E. Gessler; Edward H. Uebler; Alistair M. S. Smith</p> <p>2010-01-01</p> <p>Sustainable forest management requires timely, detailed forest inventory data across large areas, which is difficult to obtain via traditional forest inventory techniques. This study evaluated k-nearest neighbor imputation models incorporating LiDAR data to predict tree-level inventory data (individual tree height, diameter at breast height, and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15243731','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15243731"><span>Stepping over obstacles: anticipatory modifications in children with and without Down syndrome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Virji-Babul, Naznin; Brown, Michelle</p> <p>2004-12-01</p> <p>The purpose of this study was to explore the mechanism of anticipatory control of gait in relation to the perception of an obstacle. Typically developing (TD) children (4-7 years of age) and children with Down syndrome (5-6 years of age) walked and stepped over obstacles of two different heights-a "subtle" obstacle that was placed at a very low distance from the floor (1% of total body height) and an "obvious" obstacle that was placed at a much higher distance from the floor (15% of total body height). Spatial and temporal measures of the gait cycle were analyzed. TD children showed increased variability in pre-obstacle step lengths only in response to the higher obstacle. Children with DS showed a decrease in variability in response to the higher obstacle and marked qualitative changes in their gait cycle. Both groups of children were able to scale toe clearance with obstacle height. These results show that TD young children can make task-specific anticipatory adjustments by modulating step length and toe clearance. Children with DS show appropriate scaling of toe clearance and are beginning to show the emergence of anticipatory responses under specific environmental conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920015439','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920015439"><span>Additions to Mars Global Reference Atmospheric Model (MARS-GRAM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.; James, Bonnie</p> <p>1992-01-01</p> <p>Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification was also made which allows heights to go 'below' local terrain height and return 'realistic' pressure, density, and temperature, and not the surface values, as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local 'valley' areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch versions of Mars-GRAM are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023731','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023731"><span>Additions to Mars Global Reference Atmospheric Model (Mars-GRAM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.</p> <p>1991-01-01</p> <p>Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification has also been made which allows heights to go below local terrain height and return realistic pressure, density, and temperature (not the surface values) as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local valley areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch version of Mars-GRAM are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870000943','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870000943"><span>Research relative to high resolution camera on the advanced X-ray astrophysics facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1986-01-01</p> <p>The HRC (High Resolution Camera) is a photon counting instrument to be flown on the Advanced X-Ray Astrophysics Facility (AXAF). It is a large field of view, high angular resolution, detector for the x-ray telescope. The HRC consists of a CsI coated microchannel plate (MCP) acting as a soft x-ray photocathode, followed by a second MCP for high electronic gain. The MCPs are readout by a crossed grid of resistively coupled wires to provide high spatial resolution along with timing and pulse height data. The instrument will be used in two modes, as a direct imaging detector with a limiting sensitivity of 10 to the -15 ergs sq cm sec in a 10 to the 5th second exposure, and as a readout for an objective transmission grating providing spectral resolution of several hundreds to thousands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920006534','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920006534"><span>X ray microscope assembly and alignment support and advanced x ray microscope design and analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shealy, David L.</p> <p>1991-01-01</p> <p>Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840044890&hterms=Steiner&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DSteiner','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840044890&hterms=Steiner&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DSteiner"><span>Photospheric soft X-ray emission from hot DA white dwarfs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wesemael, F.; Raymond, J. C.; Kahn, S. M.; Liebert, J.; Steiner, J. E.; Shipman, H. L.</p> <p>1984-01-01</p> <p>The Einstein Observatory's imaging proportional counter has detected 150-eV soft X-ray radiation from the four hot DA white dwarfs EG 187, Gr 288 and 289, and LB 1663. The observed pulse height spectra suggest that the emission is generated by hot photospheres whose T(eff) lie in the 30,000-60,000 K range. The IUE spacecraft UV spectra and H-beta line profiles for the four stars have been fitted, along with the X-ray fluxes, with a grid of hot, high gravity, homogeneous model atmospheres of mixed H-He composition. In all cases, the data require the presence of some X-ray opacity in the photosphere. Attention is given to the implications of this result in the context of white dwarf surface layer diffusion theories. Also noted are the limits imposed on the hot white dwarf population by the Einstein Medium Sensitivity Survey.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986harp.reptQ....J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986harp.reptQ....J"><span>HARPA: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, R. M.; Riley, J. P.; Georges, T. M.</p> <p>1986-08-01</p> <p>The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1260489-ray-metrology-performance-cm-long-ray-deformable-mirror','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1260489-ray-metrology-performance-cm-long-ray-deformable-mirror"><span>X-ray metrology and performance of a 45-cm long x-ray deformable mirror</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Poyneer, Lisa A.; Brejnholt, Nicolai F.; Hill, Randall; ...</p> <p>2016-05-20</p> <p>We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Lastly, direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22597931-ray-metrology-performance-cm-long-ray-deformable-mirror','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22597931-ray-metrology-performance-cm-long-ray-deformable-mirror"><span>X-ray metrology and performance of a 45-cm long x-ray deformable mirror</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Poyneer, Lisa A., E-mail: poyneer1@llnl.gov; Brejnholt, Nicolai F.; Hill, Randall</p> <p>2016-05-15</p> <p>We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950060149&hterms=Population+numbers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DPopulation%2Bnumbers','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950060149&hterms=Population+numbers&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DPopulation%2Bnumbers"><span>An extended galactic population of low-luminosity x-ray sources (CVs?) and the diffuse x-ray background</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maoz, Eyal; Grindlay, Jonathan E.</p> <p>1995-01-01</p> <p>The incompatibility of the properties of the X-ray background (XRB) with active galactic nuclei (AGNs) contributing approximately greater than 60% at energies of a few keV has often been interpreted as being due to a substantial contribution of a new population of yet unrecognized X-ray sources. The existence of such population has been recently suggested also by an analysis of very deep ROSAT observations which revealed a considerable excess of faint X-ray sources over that expected from QSO evolution models, and that the average spectrum of the resolved sources becomes harder with decreasing flux limit. These sources could be extragalactic in origin, but if they make a substantial contribution to the XRB then they must exhibit much weaker clustering than galaxies or QSOs in order to be consistent with the stringent constraints on source clustering imposed by autocorrelation analyses of the unresolved XRB. We investigate the possibility that the indicated new population of X-ray sources is Galactic in origin. Examining spherical halo and thick disk distributions, we derive the allowed properties of such populations which would resolve the discrepancy found in the number counts of faint sources and be consistent with observational constraints on the total background intensity, the XRB anisotropy, the number of unidentified bright sources, the Galaxy's total X-ray luminosity, and with the results of fluctuation analyses of the unresolved XRB. We find that a flattened Galactic halo (or a thick disk) distribution with a scale height of a few kpc is consistent with all the above requirements. The typical X-ray luminosity of the sources is approximately equal to 10(exp 30-31)ergs/s in the 0.5-2 keV band, the number density of sources in the solar vicinity is approximately 10(exp -4.5)pc(exp -3), their total number in the Galaxy is approximately 10(exp 8.5), and their total contribution to the Galaxy's X-ray luminosity is approximately 10(exp 39) ergs/s. We discuss the possible nature of these soures, including their being subdwarfs, low mass x-ray binaries (LMXBs), massive black holes, and old neutron stars. We argue that the inferred X-ray and optical luminosities of these sources, the slope of their energy spectrum, and the derived local number density and spatial distribution are all consistent with their being intrinsically faint cataclysmic variables with low accretion rates. We suggest a few possibilities for the origin of such population, including an origin from disrupted globular clusters or dark clusters. We make predictions and suggest tests that could either confirm or rule out our proposal in the near future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25164448','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25164448"><span>Migrant Asian Indians in New Zealand; prediction of metabolic syndrome using body weights and measures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jowitt, Ljiljana M; Lu, Louise Weiwei; Rush, Elaine C</p> <p>2014-01-01</p> <p>The aim of this study of Asian Indian migrants in New Zealand was to determine cut-off points for body mass index, waist circumference, waist-to-hip ratio, and waist-to-height ratio that best discriminate for increased risk of type 2 diabetes and cardiovascular disease. One hundred and seventy-five (90F, 85M) Asian Indian volunteers (aged >50 y) were recruited from urban Auckland, New Zealand. Body weight, height and waist and hip circumferences were measured using standard techniques. Waist-to-hip ratio, waist-to-height ratio and body mass index were derived. Total and percent body fat by dual energy X-ray absorptiometry, and fasting glucose, insulin and lipids were measured. Three measures of metabolic risk were determined: the homeostasis model assessment of insulin resistance, the McAuley score for insulin sensitivity and metabolic syndrome by International Diabetes Federation criteria. Body mass index, percent body fat and anthropometric measurements of central adiposity generally did not perform well as indicators of metabolic risk in this high risk population of Asian Indian migrants. Our data support the use of lower ethnic specific body mass index and waist circumference for Asian Indian women and men. The discriminatory power of waist-to-height ratio was similar to that of body mass index. Hence, waist-to-height ratio could be used as a simple screening tool. A recommendation, of a waist-to- height ratio of less than 0.5 that would underpin the simple public health message of "your waist circumference should be less than half your height".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810046669&hterms=plague&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dplague','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810046669&hterms=plague&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dplague"><span>A variable mixing-length ratio for convection theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chan, K. L.; Wolff, C. L.; Sofia, S.</p> <p>1981-01-01</p> <p>It is argued that a natural choice for the local mixing length in the mixing-length theory of convection has a value proportional to the local density scale height of the convective bubbles. The resultant variable mixing-length ratio (the ratio between the mixing length and the pressure scale height) of this theory is enhanced in the superadiabatic region and approaches a constant in deeper layers. Numerical tests comparing the new mixing length successfully eliminate most of the density inversion that typically plagues conventional results. The new approach also seems to indicate the existence of granular motion at the top of the convection zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22597669-edge-induced-schottky-barrier-modulation-metal-contacts-exfoliated-molybdenum-disulfide-flakes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22597669-edge-induced-schottky-barrier-modulation-metal-contacts-exfoliated-molybdenum-disulfide-flakes"><span>Edge-induced Schottky barrier modulation at metal contacts to exfoliated molybdenum disulfide flakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nouchi, Ryo, E-mail: r-nouchi@21c.osakafu-u.ac.jp</p> <p>2016-08-14</p> <p>Ultrathin two-dimensional semiconductors obtained from layered transition-metal dichalcogenides such as molybdenum disulfide (MoS{sub 2}) are promising for ultimately scaled transistors beyond Si. Although the shortening of the semiconductor channel is widely studied, the narrowing of the channel, which should also be important for scaling down the transistor, has been examined to a lesser degree thus far. In this study, the impact of narrowing on mechanically exfoliated MoS{sub 2} flakes was investigated according to the channel-width-dependent Schottky barrier heights at Cr/Au contacts. Narrower channels were found to possess a higher Schottky barrier height, which is ascribed to the edge-induced band bendingmore » in MoS{sub 2}. The higher barrier heights degrade the transistor performance as a higher electrode-contact resistance. Theoretical analyses based on Poisson's equation showed that the edge-induced effect can be alleviated by a high dopant impurity concentration, but this strategy should be limited to channel widths of roughly 0.7 μm because of the impurity-induced charge-carrier mobility degradation. Therefore, proper termination of the dangling bonds at the edges should be necessary for aggressive scaling with layered semiconductors.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24164113','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24164113"><span>Deformation of ferrofluid marbles in the presence of a permanent magnet.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nguyen, Nam-Trung</p> <p>2013-11-12</p> <p>This paper investigates the deformation of ferrofluid marbles in the presence of a permanent magnet. Ferrofluid marbles are formed using a water-based ferrofluid and 1 μm hydrophobic polytetrafluoride particles. A marble placed on a Teflon coated glass plate deforms under gravity. In the presence of a permanent magnet, the marble is further deformed with a larger contact area. The geometric parameters are normalized by the radius of an undistorted spherical marble. The paper first discusses a scaling relationship between the dimensionless radius of the contact area as well as the dimensionless height and the magnetic Bond number. The dimensionless contact radius is proportional to the fourth root of the magnetic bond number. The dimensionless height scales with the inverse square root of the magnetic Bond number. In the case of a moving marble dragged by a permanent magnet, the deformation is evaluated as the difference between advancing and receding curvatures of the top view. The dimensionless height and the contact diameter of the marble do not significantly depend on the speed or the capillary number. The scaling analysis and experimental data show that the deformation is proportional to the capillary number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGeod..85....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGeod..85....1S"><span>Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarti, Pierguido; Abbondanza, Claudio; Petrov, Leonid; Negusini, Monia</p> <p>2011-01-01</p> <p>The impact of signal path variations (SPVs) caused by antenna gravitational deformations on geodetic very long baseline interferometry (VLBI) results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models in geodetic VLBI data analysis, estimates of the antenna reference point positions are shifted upward by 8.9 and 6.7 mm, respectively. The impact on other parameters is negligible. To simulate the impact of antenna gravitational deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects of the simulations are changes in VLBI heights in the range [-3, 73] mm and a net scale increase of 0.3-0.8 ppb. The height bias is larger than random errors of VLBI position estimates, implying the possibility of significant scale distortions related to antenna gravitational deformations. This demonstrates the need to precisely measure gravitational deformations of other VLBI telescopes, to derive their precise SPV models and to apply them in routine geodetic data analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Ap%26SS.350....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Ap%26SS.350....1S"><span>Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Ashutosh K.; Singh, A. K.; Singh, Rajesh; Singh, R. P.</p> <p>2014-03-01</p> <p>The results of very low frequency (VLF) wave amplitude measurements carried out at the low latitude station Varanasi (geom. lat. 14∘55'N, long. 154∘E), India during solar flares are presented for the first time. The VLF waves (19.8 kHz) transmitted from the NWC-transmitter, Australia propagated in the Earth-ionosphere waveguide to long distances and were recorded at Varanasi. Data are analyzed and the reflection height H' and the sharpness factor β are evaluated. It is found that the reflection height decreases whereas sharpness factor increases with the increase of solar flare power. The H' is found to be higher and β smaller at low latitudes than the corresponding values at mid and high latitudes. The sunspot numbers were low during the considered period 2011-2012, being the rising phase of solar cycle 24 and as a result cosmic rays may impact the D-region ionosphere. The increased ionization from the flare lowers the effective reflecting height, H', of the D-region roughly in proportion to the logarithm of the X-ray flare intensity from a typical mid-day unperturbed value of about 71-72 km down to about 65 km for an X class flare. The sharpness ( β) of the lower edge of the D-region is also significantly increased by the flare but reaches a clear saturation value of about 0.48 km-1 for flares of magnitude greater than about X1 class.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H41E1365B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H41E1365B"><span>Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.</p> <p>2015-12-01</p> <p>The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26624716','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26624716"><span>Three new species of the Indo-Pacific fish genus Hime (Aulopidae, Aulopiformes), all resembling the type species H. japonica (Günther 1877).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gomon, Martin F; Struthers, Carl D</p> <p>2015-11-19</p> <p>Descriptions of three new species of the aulopid genus Hime from the central and western Pacific and presumably the easternmost Indian Ocean are presented. Hime surrubea sp. nov., confined to the Hawaiian Island region, has been misidentified in species accounts and faunal lists as H. japonica and although resembling it is separable from that species by its shorter caudal peduncle, slightly larger head, larger eye, especially relative to head size, and slightly smaller pectoral and pelvic fins. Hime capitonis sp. nov. is known conclusively only from seamounts off the southern tip of New Caledonia and Vanuatu, and is distinguishable by its distinctively large head (32.3-35.6% SL) and eyes (orbital diameter 10.8-13.0% SL) and relatively few scales between the anus and anal fin origin (7-9). The Indonesian H. caudizoma sp. nov. is so far known from only 8 specimens, acquired in markets in southeastern Lombok and presumably caught nearby in what would be regarded the eastern reaches of the Indian Ocean. The species is recognisable by its dorsal fin of rather uniform moderate height with nearly straight distal margin and 17 rather than 16 rays, none of which is filamentous in either sex, the second penultimate ray rather than anterior rays the longest in males. Like the other two described here, H. caudizoma has among the largest head and eyes of the family. Observations on the dorsal fin form and other features of H. microps Parin & Kotlyar, 1989 are provided based on a large male specimen collected at Rapa Iti, Austral Islands and a re-evaluation of the original description.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11B0340T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11B0340T"><span>Nanoscale Roughness of Faults Explained by the Scale-Dependent Yield Stress of Geologic Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thom, C.; Brodsky, E. E.; Carpick, R. W.; Goldsby, D. L.; Pharr, G.; Oliver, W.</p> <p>2017-12-01</p> <p>Despite significant differences in their lithologies and slip histories, natural fault surfaces exhibit remarkably similar scale-dependent roughness over lateral length scales spanning 7 orders of magnitude, from microns to tens of meters. Recent work has suggested that a scale-dependent yield stress may result in such a characteristic roughness, but experimental evidence in favor of this hypothesis has been lacking. We employ an atomic force microscope (AFM) operating in intermittent-contact mode to map the topography of the Corona Heights fault surface. Our experiments demonstrate that the Corona Heights fault exhibits isotropic self-affine roughness with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. If yield stress controls roughness, then the roughness data predict that yield strength varies with length scale as λ-0.25 +/ 0.05. To test the relationship between roughness and yield stress, we conducted nanoindentation tests on the same Corona Heights sample and a sample of the Yair Fault, a carbonate fault surface that has been previously characterized by AFM. A diamond Berkovich indenter tip was used to indent the samples at a nominally constant strain rate (defined as the loading rate divided by the load) of 0.2 s-1. The continuous stiffness method (CSM) was used to measure the indentation hardness (which is proportional to yield stress) and the elastic modulus of the sample as a function of depth in each test. For both samples, the yield stress decreases with increasing size of the indents, a behavior consistent with that observed for many engineering materials and recently for other geologic materials such as olivine. The magnitude of this "indentation size effect" is best described by a power-law with exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08 for the Corona Heights and Yair Faults, respectively. These results demonstrate a link between surface roughness and yield stress, and suggest that fault geometry is the physical manifestation of a scale-dependent yield stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616140W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616140W"><span>Evaluation of planetary boundary layer schemes in meso-scale simulations above the North and Baltic Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder</p> <p>2014-05-01</p> <p>The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE) and the atmosphere's thermal stability are important to estimate power production and loads. Especially the TKE is in the focus of our research since the Master Length Scale of the closure schemes depends on it. A third step is the validation of the results using wind measurements around the North Sea. Because the considered heights are much larger than available data from met masts, we use LiDAR observations (light detection and ranging) and prospectively UAVs (unmanned aerial vehicle).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990097534&hterms=EIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DEIT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990097534&hterms=EIT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DEIT"><span>3D-Stereoscopic Analysis of Solar Active Region Loops. 2; SoHo/EIT Observations at Temperatures of 1.5-2.5 MK</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aschwanden, Markus J.; Alexander, David; Hurlburt, Neal; Newmark, Jeffrey S.; Neupert, Werner M.; Klimchuk, J. A.; Gary, G. Allen</p> <p>1999-01-01</p> <p>In this paper we study the three-dimensional (3D) structure of hot (T(sub e) approximately equals 1.5 - 2.5 MK) loops in solar active region NOAA 7986, observed on 1996 August 30 with the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO). This complements a first study on cooler (T(sub e) approximately equals 1.0 - 1.5 MK) loops of the same active region, using the same method of Dynamic Stereoscopy to reconstruct the 3D geometry. We reconstruct the 3D-coordinates x(s), y(s), z(s), the density n(sub e)(s), and temperature profile T(sub e)(s) of 35 individual loop segments (as function of the loop coordinate s) using EIT 195 A and 284 A images. The major findings are: (1) All loops are found to be in hydrostatic equilibrium, in the entire temperature regime of T(sub e) = 1.0 - 2.5 MK; (2) The analyzed loops have a height of 2-3 scale heights, and thus only segments extending over about one vertical scale height have sufficient emission measure contrast for detection; (3) The temperature gradient over the lowest scale height is of order dT/ds is approximately 1 - 4 K/km; (4) The radiative loss rate is found to exceed the conductive loss rate by about two orders or magnitude, making thermal conduction negligible to explain the temperature structure of the loops; (5) A steady-state can only be achieved when the heating rate E(sub H) matches the radiative loss rate in hydrostatic equilibrium, requiring a heat deposition length lambda(sub H) of the half density scale height lambda, predicting a scaling law with the loop base pressure, EH varies as p(sub 0 exp 2). This favors coronal heating mechanisms that operate near the loop footpoints; (6) We find a reciprocal correlation between the loop pressure p(sub 0) and loop length L, i.e. p(sub 0) varies as 1/L, implying a scaling law of the steady-state requirement with loop length, i.e. E(sub H ) varies as 1/L(exp 2). The heating rate shows no correlation with the loop-aligned magnetic field component B(sub z) at the footpoints, but is correlated with the azimuthal field B(sub phi) = Bz(RDelta Phi/L) of a twisted loop, and is thus consistent with heating mechanisms based on field-aligned currents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352615-ray-crystal-truncation-rod-studies-surface-oxidation-reduction-pt','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352615-ray-crystal-truncation-rod-studies-surface-oxidation-reduction-pt"><span>X-ray Crystal Truncation Rod Studies of Surface Oxidation and Reduction on Pt(111)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Liu, Yihua; Barbour, Andi; Komanicky, Vladimir; ...</p> <p>2016-02-26</p> <p>Here, we present X-ray crystal truncation rods measurements of Pt(111) surface under electrochemical conditions. Analyses of crystal truncation rods reveal that surface oxide formation buckles the top surface layer of platinum to two different heights at the potential (0.95 V vs RHE) below the so-called place-exchange potential. While the anti-Bragg intensity, sensitive to the top surface layer, drops in response to the anodic charge transfers, its responses to the cathodic charge transfers are significantly delayed. Implications to the surface oxidation and reduction behaviors are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18807076','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18807076"><span>A two-concentric-loop iterative method in estimation of displacement height and roughness length for momentum and sensible heat.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Wenguang; Qualls, Russell J; Berliner, Pedro R</p> <p>2008-11-01</p> <p>A two-concentric-loop iterative (TCLI) method is proposed to estimate the displacement height and roughness length for momentum and sensible heat by using the measurements of wind speed and air temperature at two heights, sensible heat flux above the crop canopy, and the surface temperature of the canopy. This method is deduced theoretically from existing formulae and equations. The main advantage of this method is that data measured not only under near neutral conditions, but also under unstable and slightly stable conditions can be used to calculate the scaling parameters. Based on the data measured above an Acacia Saligna agroforestry system, the displacement height (d0) calculated by the TCLI method and by a conventional method are compared. Under strict neutral conditions, the two methods give almost the same results. Under unstable conditions, d0 values calculated by the conventional method are systematically lower than those calculated by the TCLI method, with the latter exhibiting only slightly lower values than those seen under strictly neutral conditions. Computation of the average values of the scaling parameters for the agroforestry system showed that the displacement height and roughness length for momentum are 68% and 9.4% of the average height of the tree canopy, respectively, which are similar to percentages found in the literature. The calculated roughness length for sensible heat is 6.4% of the average height of the tree canopy, a little higher than the percentages documented in the literature. When wind direction was aligned within 5 degrees of the row direction of the trees, the average displacement height calculated was about 0.6 m lower than when the wind blew across the row direction. This difference was statistically significant at the 0.0005 probability level. This implies that when the wind blows parallel to the row direction, the logarithmic profile of wind speed is shifted lower to the ground, so that, at a given height, the wind speeds are faster than when the wind blows perpendicular to the row direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860027733&hterms=soft+power&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsoft%2Bpower','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860027733&hterms=soft+power&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsoft%2Bpower"><span>Soft X-ray observations of two BL Lacertae objects - Markarian 421 and 501</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Singh, K. P.; Garmire, G. P.</p> <p>1985-01-01</p> <p>This paper reports on the soft X-ray (0.15-2.8 keV) observations of two BL Lacertae-type objects, viz., Mrk 421 and Mrk 501. The observations were made with the low-energy detectors on the HEAO 1 satellite during the period 1977 August-1978 December. Steep, soft X-ray power-law spectra with photon index Gamma = 3 are found for both Mrk 421 and Mrk 501. The power-law models are found to give a significantly better fit than the thermal models to the observed pulse-height spectra of Mrk 421 and Mrk 501. Day-to-day soft X-ray (0.25 keV band) intensity variations are observed only in Mrk 501. No significant change is found in Gamma from both the BL Lac objects during the period of observations. However, the sum of all the X-ray observations from 1976 until 1980 can be understood in terms of two spectral components of variable intensity to account for the X-ray emission observed between 0.15 and 20 keV from Mrk 421 and Mrk 501.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033205','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033205"><span>An evaluation of the precision of fin ray, otolith, and scale age determinations for brook trout</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stolarski, J.T.; Hartman, K.J.</p> <p>2008-01-01</p> <p>The ages of brook trout Salvelinus fontinalis are typically estimated using scales despite a lack of research documenting the effectiveness of this technique. The use of scales is often preferred because it is nonlethal and is believed to require less effort than alternative methods. To evaluate the relative effectiveness of different age estimation methodologies for brook trout, we measured the precision and processing times of scale, sagittal otolith, and pectoral fin ray age estimation techniques. Three independent readers, age bias plots, coefficients of variation (CV = 100 x SD/mean), and percent agreement (PA) were used to measure within-reader, among-structure bias and within-structure, among-reader precision. Bias was generally minimal; however, the age estimates derived from scales tended to be lower than those derived from otoliths within older (age > 2) cohorts. Otolith, fin ray, and scale age estimates were within 1 year of each other for 95% of the comparisons. The measures of precision for scales (CV = 6.59; PA = 82.30) and otoliths (CV = 7.45; PA = 81.48) suggest higher agreement between these structures than with fin rays (CV = 11.30; PA = 65.84). The mean per-sample processing times were lower for scale (13.88 min) and otolith techniques (12.23 min) than for fin ray techniques (22.68 min). The comparable processing times of scales and otoliths contradict popular belief and are probably a result of the high proportion of regenerated scales within samples and the ability to infer age from whole (as opposed to sectioned) otoliths. This research suggests that while scales produce age estimates rivaling those of otoliths for younger (age > 3) cohorts, they may be biased within older cohorts and therefore should be used with caution. ?? Copyright by the American Fisheries Society 2008.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005254','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005254"><span>Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140005254'); toggleEditAbsImage('author_20140005254_show'); toggleEditAbsImage('author_20140005254_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140005254_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140005254_hide"></p> <p>2012-01-01</p> <p>We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ApJ...740...16A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ApJ...740...16A"><span>Observation of Anisotropy in the Arrival Directions of Galactic Cosmic Rays at Multiple Angular Scales with IceCube</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Gora, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hajismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madajczyk, B.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, C. C.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration</p> <p>2011-10-01</p> <p>Between 2009 May and 2010 May, the IceCube neutrino detector at the South Pole recorded 32 billion muons generated in air showers produced by cosmic rays with a median energy of 20 TeV. With a data set of this size, it is possible to probe the southern sky for per-mil anisotropy on all angular scales in the arrival direction distribution of cosmic rays. Applying a power spectrum analysis to the relative intensity map of the cosmic ray flux in the southern hemisphere, we show that the arrival direction distribution is not isotropic, but shows significant structure on several angular scales. In addition to previously reported large-scale structure in the form of a strong dipole and quadrupole, the data show small-scale structure on scales between 15° and 30°. The skymap exhibits several localized regions of significant excess and deficit in cosmic ray intensity. The relative intensity of the smaller-scale structures is about a factor of five weaker than that of the dipole and quadrupole structure. The most significant structure, an excess localized at (right ascension α = 122fdg4 and declination δ = -47fdg4), extends over at least 20° in right ascension and has a post-trials significance of 5.3σ. The origin of this anisotropy is still unknown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012A%26A...545A.103H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012A%26A...545A.103H"><span>Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>HESS Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gérard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Ali, M. O.</p> <p>2012-09-01</p> <p>Context. In some galaxy clusters, powerful active galactic nuclei (AGN) have blown bubbles with cluster scale extent into the ambient medium. The main pressure support of these bubbles is not known to date, but cosmic rays are a viable possibility. For such a scenario copious gamma-ray emission is expected as a tracer of cosmic rays from these systems. Aims: Hydra A, the closest galaxy cluster hosting a cluster scale AGN outburst, located at a redshift of 0.0538, is investigated for being a gamma-ray emitter with the High Energy Stereoscopic System (H.E.S.S.) array and the Fermi Large Area Telescope (Fermi-LAT). Methods: Data obtained in 20.2 h of dedicated H.E.S.S. observations and 38 months of Fermi-LAT data, gathered by its usual all-sky scanning mode, have been analyzed to search for a gamma-ray signal. Results: No signal has been found in either data set. Upper limits on the gamma-ray flux are derived and are compared to models. These are the first limits on gamma-ray emission ever presented for galaxy clusters hosting cluster scale AGN outbursts. Conclusions: The non-detection of Hydra A in gamma-rays has important implications on the particle populations and physical conditions inside the bubbles in this system. For the case of bubbles mainly supported by hadronic cosmic rays, the most favorable scenario, which involves full mixing between cosmic rays and embedding medium, can be excluded. However, hadronic cosmic rays still remain a viable pressure support agent to sustain the bubbles against the thermal pressure of the ambient medium. The largest population of highly-energetic electrons, which are relevant for inverse-Compton gamma-ray production is found in the youngest inner lobes of Hydra A. The limit on the inverse-Compton gamma-ray flux excludes a magnetic field below half of the equipartition value of 16 μG in the inner lobes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910026202&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910026202&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight"><span>Ultrahigh vertical resolution radar measurements in the lower stratosphere at Arecibo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ierkic, H. M.; Perillat, P.; Woodman, R. F.</p> <p>1990-01-01</p> <p>The paper reports on heretofore unprecedented observations of the turbulent layers in the lower stratosphere using the Arecibo 2380-MHz radar. Spectral profiles with about 20 m height and 15 s time resolutions at altitudes in the range 16-19 km are used to parametrize relevant characteristics of the turbulence, namely, vertical widths, distributions, lifetimes, and cutoffs height. These measurements validate previous deconvolved estimates and are free from contaminating factors like shear or beam broadening and partial reflections. Some theoretical predictions are verified, in particular those relating to the height of cutoff and the outer scale of the turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22156759-when-clusters-collide-constraints-antimatter-largest-scales','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22156759-when-clusters-collide-constraints-antimatter-largest-scales"><span>When clusters collide: constraints on antimatter on the largest scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Steigman, Gary, E-mail: steigman@mps.ohio-state.edu</p> <p>2008-10-15</p> <p>Observations have ruled out the presence of significant amounts of antimatter in the Universe on scales ranging from the solar system, to the Galaxy, to groups and clusters of galaxies, and even to distances comparable to the scale of the present horizon. Except for the model-dependent constraints on the largest scales, the most significant upper limits to diffuse antimatter in the Universe are those on the {approx}Mpc scale of clusters of galaxies provided by the EGRET upper bounds to annihilation gamma rays from galaxy clusters whose intracluster gas is revealed through its x-ray emission. On the scale of individual clustersmore » of galaxies the upper bounds to the fraction of mixed matter and antimatter for the 55 clusters from a flux-limited x-ray survey range from 5 Multiplication-Sign 10{sup -9} to <1 Multiplication-Sign 10{sup -6}, strongly suggesting that individual clusters of galaxies are made entirely of matter or of antimatter. X-ray and gamma-ray observations of colliding clusters of galaxies, such as the Bullet Cluster, permit these constraints to be extended to even larger scales. If the observations of the Bullet Cluster, where the upper bound to the antimatter fraction is found to be <3 Multiplication-Sign 10{sup -6}, can be generalized to other colliding clusters of galaxies, cosmologically significant amounts of antimatter will be excluded on scales of order {approx}20 Mpc (M{approx}5 Multiplication-Sign 10{sup 15}M{sub sun})« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1356226','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1356226"><span>Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens [Fast Atomic-Scale Chemical Imaging of Crystalline Materials by STEM Energy-Dispersive X-ray Spectroscopy Achieved with Thin Specimens].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lu, Ping; Yuan, Renliang; Zuo, Jian Min</p> <p></p> <p>Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1356226-fast-atomic-scale-elemental-mapping-crystalline-materials-stem-energy-dispersive-ray-spectroscopy-achieved-thin-specimens-fast-atomic-scale-chemical-imaging-crystalline-materials-stem-energy-dispersive-ray-spectroscopy-achieved-thin-specimens','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1356226-fast-atomic-scale-elemental-mapping-crystalline-materials-stem-energy-dispersive-ray-spectroscopy-achieved-thin-specimens-fast-atomic-scale-chemical-imaging-crystalline-materials-stem-energy-dispersive-ray-spectroscopy-achieved-thin-specimens"><span>Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens [Fast Atomic-Scale Chemical Imaging of Crystalline Materials by STEM Energy-Dispersive X-ray Spectroscopy Achieved with Thin Specimens].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lu, Ping; Yuan, Renliang; Zuo, Jian Min</p> <p>2017-02-23</p> <p>Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667723-polarization-radiation-turbulent-magnetic-fields-from-ray-binaries','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667723-polarization-radiation-turbulent-magnetic-fields-from-ray-binaries"><span>Polarization Radiation with Turbulent Magnetic Fields from X-Ray Binaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Jian-Fu; Xiang, Fu-Yuan; Lu, Ju-Fu, E-mail: jfzhang@xtu.edu.cn, E-mail: fyxiang@xtu.edu.cn, E-mail: lujf@xmu.edu.cn</p> <p>2017-02-10</p> <p>We study the properties of polarized radiation in turbulent magnetic fields from X-ray binary jets. These turbulent magnetic fields are composed of large- and small-scale configurations, which result in the polarized jitter radiation when the characteristic length of turbulence is less than the non-relativistic Larmor radius. On the contrary, the polarized synchrotron emission occurs, corresponding to a large-scale turbulent environment. We calculate the spectral energy distributions and the degree of polarization for a general microquasar. Numerical results show that turbulent magnetic field configurations can indeed provide a high degree of polarization, which does not mean that a uniform, large-scale magneticmore » field structure exists. The model is applied to investigate the properties of polarized radiation of the black-hole X-ray binary Cygnus X-1. Under the constraint of multiband observations of this source, our studies demonstrate that the model can explain the high polarization degree at the MeV tail and predict the highly polarized properties at the high-energy γ -ray region, and that the dominant small-scale turbulent magnetic field plays an important role for explaining the highly polarized observation at hard X-ray/soft γ -ray bands. This model can be tested by polarization observations of upcoming polarimeters at high-energy γ -ray bands.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080032470','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080032470"><span>A KPC-Scale X-Ray Jet in the BL Lac Source S5 2007+777</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sambruna, Rita M.; Donato, Davide; Cheung, C.C.; Tavecchio, F.; Maraschi, L.</p> <p>2008-01-01</p> <p>X-ray jets in AGN are commonly observed in FRII and FRI radiogalaxies, but rarely in BL Lacs, most probably due to their orientation close to the line of sight and the ensuing foreshortening effects. Only three BL Lacs are known so far to contain a kpc-scale X-ray jet. In this paper, we present the evidence for the existence of a fourth extended X-ray jet in the classical radio-selected source S5 2007+777, which for its hybrid FRI/II radio morphology has been classified as a HYMOR (HYbrid MOrphology Radio source). Our Chandra ACISS observations of this source revealed an X-ray counterpart to the 19"-long radio jet. Interestingly, the X-ray properties of the kpc-scale jet in S5 2007+777 are very similar to those observed in FRII jets. First, the X-ray morphology closely mirrors the radio one, with the X-rays being concentrated in the discrete radio knots. Second, the X-ray continuum of the jet/brightest knot is described by a very hard power law, with photon index gamma(sub x) approximately 1. Third, the optical upper limit from archival HST data implies a concave radio-to-X-ray SED. If the X-ray emission is attributed to IC/CMB with equipartition, strong beaming (delta= 13) is required, implying a very large scale (Mpc) jet. The beaming requirement can be somewhat relaxed assuming a magnetic field lower than equipartition. Alternatively, synchrotron emission from a second population of very high-energy electrons is viable. Comparison to other HYMOR jets detected with Chandra is discussed, as well as general implications for the origin of the FRI/II division.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/13107','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/13107"><span>Three scales of aerial photography compared for making stand measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Earl J. Rogers; Gene Avery; Roy A. Chapman</p> <p>1959-01-01</p> <p>Three scales of aerial photography were tested in an attempt to determine the best scale to use in forest surveying. This was done by comparing photo measurements of average tree height, average crown diameter, and crown-closure percent. These stand variables were selected for testing because of their applicability in making aerial estimates of timber volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5403696','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5403696"><span>Inaccurate self-report of height and its impact on misclassification of body mass index in postmenopausal women</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mai, Xiaodan; Sperrazza, Jill N; Marshall, Britt A; Hovey, Kathleen M; Wactawski-Wende, Jean</p> <p>2016-01-01</p> <p>Objective Self-reported height is commonly used in population obesity research. Evidence has also shown a positive association between depression and obesity. We examined the extent of height misreporting and its impact on body mass index (BMI) calculations and classification, and explored whether depression is associated with height misreporting. Methods The Buffalo Osteoporosis and Periodontal Disease Follow-up Study enrolled 1,015 postmenopausal women between 2002–2006. Participants self-reported their height on a questionnaire prior to stadiometer measurement at the clinical visit. Depressive symptoms were assessed using the Center for Epidemiologic Studies Depression Scale. Odds ratios (OR) and 95% confidence intervals (CI) for association between depression and height misreporting were estimated using logistic regression. Results Overall, 446 women (43.9%) misreported height by >½ inch, of which 296 (29.2%) underestimated and 150 (14.8%) overestimated their height. Height misreporting influenced BMI calculations by ≥1 unit in 12% of women, and influenced classification into WHO BMI categories in 8% of women. After adjusting for age, race, education, and measured BMI, women with significant depressive symptoms were more likely to misreport their height (OR=1.65, 95%CI: 1.04–2.61). Conclusions Height misreporting was common in older women and significantly influenced BMI calculations and classification. Obtaining objective data is thus important for studies investigating obesity-disease associations in this population, especially in those with significant depressive symptoms. PMID:27846053</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/46124','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/46124"><span>Uncertainty of large-area estimates of indicators of forest structural gamma diversity: A study based on national forest inventory data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Susanne Winter; Andreas Böck; Ronald E. McRoberts</p> <p>2012-01-01</p> <p>Tree diameter and height are commonly measured forest structural variables, and indicators based on them are candidates for assessing forest diversity. We conducted our study on the uncertainty of estimates for mostly large geographic scales for four indicators of forest structural gamma diversity: mean tree diameter, mean tree height, and standard deviations of tree...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhPl...11.5156N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhPl...11.5156N"><span>Current scaling of radiated power for 40-mm diameter single wire arrays on Z</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.</p> <p>2004-11-01</p> <p>In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28343817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28343817"><span>Conventional vs  invert-grayscale X-ray for diagnosis of pneumothorax in the emergency setting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Musalar, Ekrem; Ekinci, Salih; Ünek, Orkun; Arş, Eda; Eren, Hakan Şevki; Gürses, Bengi; Aktaş, Can</p> <p>2017-09-01</p> <p>Pneumothorax is a pathologic condition in which air is accumulated between the visceral and parietal pleura. After clinical suspicion, in order to diagnose the severity of the condition, imaging is necessary. By using the help of Picture Archiving and Communication Systems (PACS) direct conventional X-rays are converted to gray-scale and this has become a preferred method among many physicians. Our study design was a case-control study with cross-over design study. Posterior-anterior chest X-rays of patients were evaluated for pneumothorax by 10 expert physicians with at least 3years of experience and who have used inverted gray-scale posterior anterior chest X-ray for diagnosing pneumothorax. The study included posterior anterior chest X-ray images of 268 patients of which 106 were diagnosed with spontaneous pneumothorax and 162 patients used as a control group. The sensitivity of Digital-conventional X-rays was found to be higher than that of inverted gray-scale images (95% CI (2,08-5,04), p<0,01). There was no statistically significant difference between the gold standard and digital-conventional images (95% CI (0,45-2,17), p=0,20), while the evaluations of the gray-scale images were found to be less sensitive for diagnosis (95% CI (3,16-5,67) p<0,01). Inverted gray-scale imaging is not a superior imaging modality over digital-conventional X-ray for the diagnosis of pneumothorax. Prospective studies should be performed where diagnostic potency of inverted gray-scale radiograms is tested against gold standard chest CT. Further research should compare inverted grayscale to lung ultrasound to assess them as alternatives prior to CT. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OptMa..36.2030Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OptMa..36.2030Y"><span>Intrinsic light yield and light loss coefficient of Bi4Ge3O12 single crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yawai, Nattasuda; Chewpraditkul, Weerapong; Wanarak, Chalerm; Nikl, Martin; Ratanatongchai, Wichian</p> <p>2014-10-01</p> <p>In this paper we present the scintillation properties of polished Bi4Ge3O12 (BGO) crystals grown by the Bridgman method. The light yield (LY) and energy resolution were measured using XP5200B photomultiplier. At 662 keV γ-rays, high LY of 9680 photons/MeV and good energy resolution of 8.6% were obtained for a 5 × 5 × 1 mm3 BGO sample. The intrinsic LY and light loss coefficient were evaluated. The photofraction in pulse height spectrum of 662 keV γ-rays and the mass attenuation coefficient at 59.5 and 662 keV γ-rays were also determined and compared with the theoretical ones calculated using the WinXCom program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22392437-hard-ray-nanofocusing-using-adaptive-focusing-optics-based-piezoelectric-deformable-mirrors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22392437-hard-ray-nanofocusing-using-adaptive-focusing-optics-based-piezoelectric-deformable-mirrors"><span>Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa</p> <p>2015-04-15</p> <p>An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (Vmore » × H) was achieved at an X-ray energy of 10 keV.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B41B0398O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B41B0398O"><span>Mapping Fearscapes of a Mammalian Herbivore using Terrestrial LiDAR and UAV Imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olsoy, P.; Nobler, J. D.; Forbey, J.; Rachlow, J. L.; Burgess, M. A.; Glenn, N. F.; Shipley, L. A.</p> <p>2013-12-01</p> <p>Concealment allows prey animals to remain hidden from a predator and can influence both real and perceived risks of predation. The heterogeneous nature of vegetative structure can create a variable landscape of concealment - a 'fearscape' - that may influence habitat quality and use by prey. Traditional measurements of concealment rely on a limited number of distances, heights, and vantage points, resulting in small snapshots of concealment available to a prey animal. Our objective was to demonstrate the benefits of emerging remote sensing techniques to map fearscapes for pygmy rabbits (Brachylagus idahoensis) in sagebrush steppe habitat across a continuous range of scales. Specifically, we used vegetation height rasters derived from terrestrial laser scanning (TLS) to create viewsheds from multiple vantage points, representing predator visibility. The sum of all the viewsheds modeled horizontal concealment of prey at both the shrub and patch scales. We also used a small, unmanned aerial vehicle (UAV) to determine vertical concealment at a habitat scale. Terrestrial laser scanning provided similar estimates of horizontal concealment at the shrub scale when compared to photographic methods (R2 = 0.85). Both TLS and UAV provide the potential to quantify concealment of prey from multiple distances, heights, or vantage points, allowing the creation of a manipulable fearscape map that can be correlated with habitat use by prey animals. The predictive power of such a map also could identify shrubs or patches for fine scale nutritional and concealment analysis for future investigation and conservation efforts. Fearscape map at the mound-scale. Viewsheds were calculated from 100 equally spaced observer points located 4 m from the closest on-mound sagebrush of interest. Red areas offer low concealment, while green areas provide high concealment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA272859','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA272859"><span>Howard’s Command and Control of Idaho’s Nez Perce War</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-06-04</p> <p>Valencia Boise, ID S;5(:)7 Josie Spellman 60:7 17th Street Coeur D’Alene, ID 83814 Ray Stark 3=5S Agate Court Boise, ID 8Z705 Criag Stremel 5215 Tarre Heights Manhattan, KS 66502 0 129 1 • •• 0 0 06 0 0 A</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001ICRC....6.2103G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001ICRC....6.2103G"><span>Lorentz symmetry violation and UHECR experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gonzalez-Mestres, L.</p> <p>2001-08-01</p> <p>Lorentz symmetry violation (LSV) at Planck scale can be tested through ultra-high energy cosmic rays (UHECR). We discuss deformed Lorentz symmetry (DLS) and energy non-conservation (ENC) patterns where the effective LSV parameter varies like the square of the momentum scale (e.g. quadratically de-formed relativistic kinematics, QDRK). In such patterns, a ≈ 106 LSV at Planck scale would be enough to produce observable effects on the properties of cosmic rays at the ≈ 1020 eV scale: absence of GZK cutoff, stability of unstable particles, lower interaction rates, kinematical failure of any parton model and of standard formulae for Lorentz contraction and time dilation... Its phenomeno-logical implications are compatible with existing data. Precise signatures are discussed in several patterns. If the effective LSV or ENC parameter is taken to vary linearly with the momentum scale (e.g. linearly deformed relativistic kinematics, LDRK), contradictions seem to arise with UHECR data. Conse-quences are important for UHECR and high-energy gamma-ray exper iments, as well as for high-energy cosmic rays and gravitational waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900019150','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900019150"><span>Implications of the IRAS data for galactic gamma-ray astronomy and EGRET</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stecker, F. W.</p> <p>1990-01-01</p> <p>Using the results of gamma-ray, millimeter wave and far infrared surveys of the galaxy, one can derive a logically consistent picture of the large scale distribution of galactic gas and cosmic rays, one tied to the overall processes of stellar birth and destruction on a galactic scale. Using the results of the IRAS far-infrared survey of the galaxy, the large scale radial distribution of galactic far-infrared emission were obtained independently for both the Northern and Southern Hemisphere sides of the Galaxy. It was found that the dominant feature in these distributions to be a broad peak coincident with the 5 kpc molecular gas cloud ring. Also found was evidence of spiral arm features. Strong correlations are evident between the large scale galactic distributions of far infrared emission, gamma-ray emission and total CO emission. There is a particularly tight correlation between the distribution of warm molecular clouds and far-infrared emission on a galactic scale.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010072238','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010072238"><span>Day-Scale Variability of 3C 279 and Searches for Correlations in Gamma-Ray, X-Ray and Optical Bands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hartman, R. C.; Villata, M.; Balonek, T. J.; Bertsch, D. L.; Bock, H.; Boettcher, M.; Carini, M. T.; Collmar, W.; DeFrancesco, G.; Ferrera, E. C.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20010072238'); toggleEditAbsImage('author_20010072238_show'); toggleEditAbsImage('author_20010072238_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20010072238_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20010072238_hide"></p> <p>2001-01-01</p> <p>Light curves of 3C 279 are presented in optical (R-band), X-rays (RXTE/PCA), and gamma rays (CGRO/EGRET) for 1999 Jan-Feb and 2000 Jan-Mar. During both of those epochs the gamma-ray levels were high, and all three observed bands demonstrated substantial variation, on time scales as short as one day. Correlation analyses provided no consistent pattern, although a rather significant optical/gamma-ray correlation was seen in 1999, with a gamma-ray lag of approximately 2.5 days, and there are other suggestions of correlations in the light curves. For comparison, correlation analysis is also presented for the gamma-ray and X-ray light curves during the large gamma-ray flare in 1996 Feb and the two gamma-bright weeks leading up to it; the correlation at that time was strong, with a gamma-ray/X-ray offset of no more than one day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989GeoRL..16..759M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989GeoRL..16..759M"><span>On the lower altitude limit of the Venusian ionopause</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahajan, K. K.; Mayr, H. G.; Brace, L. H.; Cloutier, P. A.</p> <p>1989-07-01</p> <p>It has been observed from the plasma experiments on the Pioneer Venus Orbiter that the altitude of the upper boundary of the ionosphere decreases in response to increasing solar wind dynamic pressure. However, at pressures above about 2.5 x 10 to the -8th dynes/sq cm, the further decrease in the ionopause height is rather small. Following the model of Cloutier et al. (1969), it is suggested that during high solar wind conditions, when the ionopause is formed at lower altitudes, the solar wind induces vertical and horizontal flows which sweep away the ionospheric plasma that is produced locally by photoionization. As a result, a disturbed photodynamical ionosphere is formed which has the scale height of the ionizable neutral constituent. It is shown that such a photodynamical ionosphere is observed at the subsolar ionopause under these conditions. As a consequence of this interaction, the ionopause altitude is observed to follow the small-scale height of the ionizable species, atomic oxygen, showing only small changes with solar wind pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhRvE..77f1601C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhRvE..77f1601C"><span>Morphology and phase behavior of ethanol nanodrops condensed on chemically patterned surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Checco, Antonio; Ocko, Benjamin M.</p> <p>2008-06-01</p> <p>Equilibrium wetting of ethanol onto chemically patterned nanostripes has been investigated using environmental atomic force microscopy (AFM) in noncontact mode. The chemical patterns are composed of COOH-terminated “wetting” regions and CH3 -terminated “nonwetting” regions. A specially designed environmental AFM chamber allowed for accurate measurements of droplet height as a function of the temperature offset between the substrate and a macroscopic ethanol reservoir. At saturation, the height dependence scales with droplet width according to w1/2 , in excellent agreement with the augmented Young equation (AYE) modeled with dispersive, nonretarded surface potentials. At small under- and oversaturations, the AYE model accurately fits the data if an effective ΔT is used as a fitting parameter. There is a systematic difference between the measured ΔT and the values extracted from the fits to the data. In addition to static measurements, we present time-resolved measurements of the droplet height which enable the study of condensation-evaporation dynamics of nanometer-scale drops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17...87M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17...87M"><span>The Parameterization of PBL height with Helicity and preliminary Application in Tropical Cyclone Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Leiming</p> <p>2015-04-01</p> <p>Planetary Boundary Layer (PBL) plays an important role in transferring the energy and moisture from ocean to tropical cyclone (TC). Thus, the accuracy of PBL parameterization determines the performance of numerical model on TC prediction to a large extent. Among various components of PBL parameterization, the definition on the height of PBL is the first should be concerned, which determines the vertical scale of PBL and the associated processes of turbulence in different scales. However, up to now, there is lacked consensus on how to define the height of PBL in the TC research community. The PBL heights represented by current numerical models usually exhibits significant difference with TC observation (e.g., Zhang et al., 2011; Storm et al., 2008), leading to the rapid growth of error in TC prediction. In an effort to narrow the gap between PBL parameterization and reality, this study presents a new parameterization scheme for the definition of PBL height. Instead of using traditional definition for PBL height with Richardson number, which has been verified not appropriate for the strongly sheared structure of TC PBL in recent observation studies, the new scheme employs a dynamical definition based on the conception of helicity. In this sense the spiral structures associated with inflow layer and rolls are expected to be represented in PBL parameterization. By defining the PBL height at each grid point, the new scheme also avoids to assume the symmetric inflow layer that is usually implemented in observational studies. The new scheme is applied to the Yonsei University (YSU) scheme in the Weather Research and Forecasting (WRF) model of US National Center for Atmospheric Research (NCAR) and verified with numerical experiments on TC Morakot (2009), which brought torrential rainfall and disaster to Taiwan and China mainland during landfall. The Morakot case is selected in this study to examine the performance of the new scheme in representing various structures of PBL over land and ocean. The results of simulations show that, in addition to enhancing the PBL height in the situation of intensive convection, the new scheme also significantly reduces the PBL height and 2m-temperature over land during the night time, a well-known problem for YSU scheme according to previous studies. The activity of PBL processes are modulated due to the improved PBL height, which ultimately leads to the improvement of prediction on TC Morakot. Key Words: PBL; Parameterization; Numerical Prediction; Tropical Cyclone Acknowledgements. This study was jointly supported by the Chinese National 973 Project (No. 2013CB430300, and No. 2009CB421500) and grant from the National Natural Science Foundation (No. 41475059). References Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks Jr., 2011: On the characteristic height scales of the hurricane boundary layer, Mon. Weather Rev., 139, 2523-2535. Storm B., J. Dudhia, S. Basu, et al., 2008: Evaluation of the Weather Research and Forecasting Model on forecasting Low-level Jets: Implications for Wind Energy. Wind Energ., DOI: 10.1002/we.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1265355-rb+-adsorption-quartz-aqueous-interface-comparison-resonant-anomalous-ray-reflectivity-ab-initio-calculations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1265355-rb+-adsorption-quartz-aqueous-interface-comparison-resonant-anomalous-ray-reflectivity-ab-initio-calculations"><span>Rb + adsorption at the quartz(101)-aqueous interface: comparison of resonant anomalous x-ray reflectivity with ab initio calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; ...</p> <p>2015-01-29</p> <p>We study adsorption of Rb + to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb + distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights ofmore » 1.8 ± 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb + between these two conditions. At pH 7, the lowest energy structure shows that Rb + adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb + coverage was -0.11 C/m 2, in good agreement with the range of the surface charge magnitudes reported in the literature.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PASJ..tmp...40M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PASJ..tmp...40M"><span>Can the relativistic light-bending model explain X-ray spectral variations of Seyfert galaxies?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mizumoto, Misaki; Moriyama, Kotaro; Ebisawa, Ken; Mineshige, Shin; Kawanaka, Norita; Tsujimoto, Masahiro</p> <p>2018-04-01</p> <p>Many Seyfert galaxies are known to exhibit Fe-K broad emission line features in their X-ray energy spectra. The observed lines have three distinct features: (1) the line profiles are skewed and show significant low-energy tails, (2) the Fe-K band has low variability, which produces a broad and deep dip in the root-mean-square (rms) spectra, and (3) photons in this band have time lags behind those in the adjacent energy bands with amplitudes of several Rg/c, where Rg is the gravitational radius. The "relativistic light-bending model" is proposed to explain these observed features, where a compact X-ray source ("lamp post") above an extreme Kerr black hole illuminates the innermost area of the accretion disc. In this paper, we critically examine the relativistic light-bending model by computing the rms spectra and the lag features using a ray-tracing technique, when a lamp post moves vertically on the black hole spin axis. As a result, we found that the observed deep rms dip requires that the iron is extremely overabundant (≳10 solar), whereas the observed lag amplitude is consistent with the normal iron abundance. Furthermore, disappearance of the lag in the high-flux state requires a source height as high as ˜40 Rg, which contradicts the relativistically broad emission line feature. Our simulations agree with the data that the reverberation feature moves to lower frequencies with larger source height; however, if this scenario is correct, the simulations predict the detection of a clear Fe-K lag at low frequencies, which is not constrained in the data. Therefore, we conclude that the relativistic light-bending model may not explain the characteristic Fe-K spectral variations in Seyfert galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PASJ...70...42M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PASJ...70...42M"><span>Can the relativistic light-bending model explain X-ray spectral variations of Seyfert galaxies?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mizumoto, Misaki; Moriyama, Kotaro; Ebisawa, Ken; Mineshige, Shin; Kawanaka, Norita; Tsujimoto, Masahiro</p> <p>2018-06-01</p> <p>Many Seyfert galaxies are known to exhibit Fe-K broad emission line features in their X-ray energy spectra. The observed lines have three distinct features: (1) the line profiles are skewed and show significant low-energy tails, (2) the Fe-K band has low variability, which produces a broad and deep dip in the root-mean-square (rms) spectra, and (3) photons in this band have time lags behind those in the adjacent energy bands with amplitudes of several Rg/c, where Rg is the gravitational radius. The "relativistic light-bending model" is proposed to explain these observed features, where a compact X-ray source ("lamp post") above an extreme Kerr black hole illuminates the innermost area of the accretion disc. In this paper, we critically examine the relativistic light-bending model by computing the rms spectra and the lag features using a ray-tracing technique, when a lamp post moves vertically on the black hole spin axis. As a result, we found that the observed deep rms dip requires that the iron is extremely overabundant (≳10 solar), whereas the observed lag amplitude is consistent with the normal iron abundance. Furthermore, disappearance of the lag in the high-flux state requires a source height as high as ˜40 Rg, which contradicts the relativistically broad emission line feature. Our simulations agree with the data that the reverberation feature moves to lower frequencies with larger source height; however, if this scenario is correct, the simulations predict the detection of a clear Fe-K lag at low frequencies, which is not constrained in the data. Therefore, we conclude that the relativistic light-bending model may not explain the characteristic Fe-K spectral variations in Seyfert galaxies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NIMPA.789...16P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NIMPA.789...16P"><span>Organic liquid scintillation detectors for on-the-fly neutron/gamma alarming and radionuclide identification in a pedestrian radiation portal monitor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paff, Marc Gerrit; Ruch, Marc L.; Poitrasson-Riviere, Alexis; Sagadevan, Athena; Clarke, Shaun D.; Pozzi, Sara</p> <p>2015-07-01</p> <p>We present new experimental results from a radiation portal monitor based on the use of organic liquid scintillators. The system was tested as part of a 3He-free radiation portal monitor testing campaign at the European Commission's Joint Research Centre in Ispra, Italy, in February 2014. The radiation portal monitor was subjected to a wide range of test conditions described in ANSI N42.35, including a variety of gamma-ray sources and a 20,000 n/s 252Cf source. A false alarm test tested whether radiation portal monitors ever alarmed in the presence of only natural background. The University of Michigan Detection for Nuclear Nonproliferation Group's system triggered zero false alarms in 2739 trials. It consistently alarmed on a variety of gamma-ray sources travelling at 1.2 m/s at a 70 cm source to detector distance. The neutron source was detected at speeds up to 3 m/s and in configurations with up to 8 cm of high density polyethylene shielding. The success of on-the-fly radionuclide identification varied with the gamma-ray source measured as well as with which of two radionuclide identification methods was used. Both methods used a least squares comparison between the measured pulse height distributions to library spectra to pick the best match. The methods varied in how the pulse height distributions were modified prior to the least squares comparison. Correct identification rates were as high as 100% for highly enriched uranium, but as low as 50% for 241Am. Both radionuclide identification algorithms produced mixed results, but the concept of using liquid scintillation detectors for gamma-ray and neutron alarming in radiation portal monitor was validated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22494001-su-some-preliminary-analysis-angular-distribution-ray-scattered-soft-tissues','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22494001-su-some-preliminary-analysis-angular-distribution-ray-scattered-soft-tissues"><span>SU-E-I-44: Some Preliminary Analysis of Angular Distribution of X-Ray Scattered On Soft Tissues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ganezer, K; Krmar, M; Cvejic, Z</p> <p>2015-06-15</p> <p>Purpose: The angular distribution of x-radiation scattered at small angles (up to 16 degrees) from several different animal soft tissue (skin, fat, muscle, retina, etc) were measured using standard equipment devoted to study of crystal structure which provides excellent geometry conditions of measurements. showed measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Methods: An x-ray scattering profilemore » usually consists of sharp diffraction peak; however some properties of the spatial profiles of scattered radiation as intensity, the peak position, height, area, FWHM, the ratio of peak heights, etc. Results: The data contained measurable differences for different tissues. In the simplest possible case when measured samples do not differ in structure (different concentration solutions) it can be seen that intensity of scattered radiation is decreasing function of the concentration and the peak of the maximum of scattering distribution depends on the concentration as well. Measurements of different samples in the very preliminary phase showed that simple biological material used in study showed slightly different scattering pattern, especially at higher angles (around 10degrees). Intensity of radiation scattered from same tissue type is very dependent on water content and several more parameters. Conclusion: This preliminary study using animal soft tissues on the angular distributions of scattered x-rays suggests that angular distributions of X-rays scattered off of soft tissues might be useful in distinguishing healthy tissue from malignant soft tissue.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26004522','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26004522"><span>Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D</p> <p>2015-10-01</p> <p>We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V11B2753A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V11B2753A"><span>Counterintuitive effects of substrate roughness on PDCs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andrews, B. J.; Manga, M.</p> <p>2012-12-01</p> <p>We model dilute pyroclastic density currents (PDCs) using scaled, warm, particle-laden density currents in a 6 m long, 0.6 m wide, 1.8 m tall air-filled tank. In this set of experiments, we run currents over substrates with characteristic roughness scales, hr, ranging over ~3 orders of magnitude from smooth, through 250 μm sandpaper, 0.1-, 1-, 2-, 5-, and 10 cm hemispheres. As substrate roughness increases, runout distance increases until a critical roughness height, hrc, is reached; further increases in roughness height decrease runout. The critical roughness height appears to be 0.25-0.5 htb, the thickness of the turbulent lower layer of the density currents. The dependence of runout on hr is most likely the result of increases in substrate roughness decreasing the average current velocity and converting that energy into increased turbulence intensity. Small values of hr thus result in increased runout as sedimentation is inhibited by the increased turbulence intensity. At larger values of hr current behavior is controlled by much larger decreases in average current velocity, even though sedimentation decreases. Scaling our experiments up to the size of real volcanic eruptions suggests that landscapes must have characteristic roughness hr>10 m to reduce the runout of natural PDCs, smaller roughness scales can increase runout. Comparison of relevant bulk (Reynolds number, densimetric and thermal Richardson numbers, excess buoyant thermal energy density) and turbulent (Stokes and settling numbers) between our experiments and natural dilute PDCs indicates that we are accurately modeling at least the large scale behaviors and dynamics of dilute PDCs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22004536-effect-intermittent-gyro-scale-slab-turbulence-parallel-perpendicular-cosmic-ray-transport','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22004536-effect-intermittent-gyro-scale-slab-turbulence-parallel-perpendicular-cosmic-ray-transport"><span>THE EFFECT OF INTERMITTENT GYRO-SCALE SLAB TURBULENCE ON PARALLEL AND PERPENDICULAR COSMIC-RAY TRANSPORT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Le Roux, J. A.</p> <p></p> <p>Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales.more » In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=%22flapping+flight%22+OR+%22flapping+wing%22+OR+%22bird+flight%22&id=EJ260300','ERIC'); return false;" href="https://eric.ed.gov/?q=%22flapping+flight%22+OR+%22flapping+wing%22+OR+%22bird+flight%22&id=EJ260300"><span>Fundamentals of Zoological Scaling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lin, Herbert</p> <p>1982-01-01</p> <p>The following animal characteristics are considered to determine how properties and characteristics of various systems change with system size (scaling): skeletal weight, speed of running, height and range of jumping, food consumption, heart rate, lifetime, locomotive efficiency, frequency of wing-flapping, and maximum sizes of flying and hovering…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3731318','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3731318"><span>Effects of Isometric Scaling on Vertical Jumping Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bobbert, Maarten F.</p> <p>2013-01-01</p> <p>Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860018250&hterms=attention+pictures&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dattention%2Bpictures','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860018250&hterms=attention+pictures&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dattention%2Bpictures"><span>Seasonal variation of the stratospheric circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hirota, I.; Shiotani, M.</p> <p>1985-01-01</p> <p>An extensive analysis is made of the extratropical stratospheric circulation in terms of the seasonal variation of large-scale motion fields, with the aid of height and temperature data obtained from the TIROS satellite. Special attention is paid to a comparison of climatological aspects between the Northern Hemisphere (NH) and the Southern Hemisphere (SH). In order to see the general picture of the annual mach of the upper stratosphere, the zonal mean values of geopotential height of the 1 mb level at 70 deg N and 70 deg S were plotted on the daily basis throughout a year. It is observed that, during the winter, the zonal mean 1 mb height in the NH is much more variable than that in the SH. It is also notable that the SH height is rather oscillatory throughout the longer period from midwinter to early summer. Since the zonal mean height in the polar latitude is a rough measure of the mean zonal flow in extratropical latitudes, the difference of the seasonal variation between the two hemispheres mentioned above is considered to be due mainly to the planetary wave-mean flow interaction in the middle atmosphere. The wave activity in the middle atmosphere is represented more rigorously by the Eliassen-Palm flux associated with vertically propagating planetary waves forced from below. The day-to-day variation of the EP flux in the upper stratosphere shows that the wave activity varies intermittently with a characteristic time scale of about two weeks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25859325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25859325"><span>Tree height-diameter allometry across the United States.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hulshof, Catherine M; Swenson, Nathan G; Weiser, Michael D</p> <p>2015-03-01</p> <p>The relationship between tree height and diameter is fundamental in determining community and ecosystem structure as well as estimates of biomass and carbon storage. Yet our understanding of how tree allometry relates to climate and whole organismal function is limited. We used the Forest Inventory and Analysis National Program database to determine height-diameter allometries of 2,976,937 individuals of 293 tree species across the United States. The shape of the allometric relationship was determined by comparing linear and nonlinear functional forms. Mixed-effects models were used to test for allometric differences due to climate and floristic (between angiosperms and gymnosperms) and functional groups (leaf habit and shade tolerance). Tree allometry significantly differed across the United States largely because of climate. Temperature, and to some extent precipitation, in part explained tree allometric variation. The magnitude of allometric variation due to climate, however, had a phylogenetic signal. Specifically, angiosperm allometry was more sensitive to differences in temperature compared to gymnosperms. Most notably, angiosperm height was more negatively influenced by increasing temperature variability, whereas gymnosperm height was negatively influenced by decreasing precipitation and increasing altitude. There was little evidence to suggest that shade tolerance influenced tree allometry except for very shade-intolerant trees which were taller for any given diameter. Tree allometry is plastic rather than fixed and scaling parameters vary around predicted central tendencies. This allometric variation provides insight into life-history strategies, phylogenetic history, and environmental limitations at biogeographical scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17241985','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17241985"><span>Maximum plant height and the biophysical factors that limit it.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Niklas, Karl J</p> <p>2007-03-01</p> <p>Basic engineering theory and empirically determined allometric relationships for the biomass partitioning patterns of extant tree-sized plants show that the mechanical requirements for vertical growth do not impose intrinsic limits on the maximum heights that can be reached by species with woody, self-supporting stems. This implies that maximum tree height is constrained by other factors, among which hydraulic constraints are plausible. A review of the available information on scaling relationships observed for large tree-sized plants, nevertheless, indicates that mechanical and hydraulic requirements impose dual restraints on plant height and thus, may play equally (but differentially) important roles during the growth of arborescent, large-sized species. It may be the case that adaptations to mechanical and hydraulic phenomena have optimized growth, survival and reproductive success rather than longevity and mature size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120i3002P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120i3002P"><span>Near- and Extended-Edge X-Ray-Absorption Fine-Structure Spectroscopy Using Ultrafast Coherent High-Order Harmonic Supercontinua</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Popmintchev, Dimitar; Galloway, Benjamin R.; Chen, Ming-Chang; Dollar, Franklin; Mancuso, Christopher A.; Hankla, Amelia; Miaja-Avila, Luis; O'Neil, Galen; Shaw, Justin M.; Fan, Guangyu; Ališauskas, Skirmantas; Andriukaitis, Giedrius; Balčiunas, Tadas; Mücke, Oliver D.; Pugzlys, Audrius; Baltuška, Andrius; Kapteyn, Henry C.; Popmintchev, Tenio; Murnane, Margaret M.</p> <p>2018-03-01</p> <p>Recent advances in high-order harmonic generation have made it possible to use a tabletop-scale setup to produce spatially and temporally coherent beams of light with bandwidth spanning 12 octaves, from the ultraviolet up to x-ray photon energies >1.6 keV . Here we demonstrate the use of this light for x-ray-absorption spectroscopy at the K - and L -absorption edges of solids at photon energies near 1 keV. We also report x-ray-absorption spectroscopy in the water window spectral region (284-543 eV) using a high flux high-order harmonic generation x-ray supercontinuum with 109 photons/s in 1% bandwidth, 3 orders of magnitude larger than has previously been possible using tabletop sources. Since this x-ray radiation emerges as a single attosecond-to-femtosecond pulse with peak brightness exceeding 1026 photons/s /mrad2/mm2/1 % bandwidth, these novel coherent x-ray sources are ideal for probing the fastest molecular and materials processes on femtosecond-to-attosecond time scales and picometer length scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A53M..06N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A53M..06N"><span>Modeling Atmospheric Transport for Greenhouse Gas Observations within the Urban Dome</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nehrkorn, T.; Sargent, M. R.; Wofsy, S. C.</p> <p>2016-12-01</p> <p>Observations of CO2, CH4, and other greenhouse gases (GHGs) within the urban dome of major cities generally show large enhancements over background values, and large sensitivity to surface fluxes (as measured by the footprints computed by Lagrangian Particle Dispersion Models, LPDMs) within the urban dome. However, their use in top-down inversion studies to constrain urban emission estimates is complicated by difficulties in proper modeling of the atmospheric transport. We are conducting experiments with the Weather Research and Forecast model (WRF) coupled to the STILT LPDM to improve model simulation of atmospheric transport on spatial scales of a few km in urban domains, because errors in transport on short time/space scales are amplified by the patchiness of GHG emissions and may engender systematic errors of simulated concentrations.We are evaluating the quality of the meteorological simulations from model configurations with different resolutions and PBL packages, using both standard and non-standard (Lidar PBL height and ACARS aircraft profile) observations. To take into account the effect of building scale eddies for observations located on top of buildings, we are modifying the basic STILT algorithm for the computation of footprints by replacing the nominal receptor height by an effective sampling height. In addition, the footprint computations for near-field emissions make use of the vertical particle spread within the LPDM to arrive at a more appropriate estimate of mixing heights in the immediate vicinity of receptors. We present the effect of these and similar modifications on simulated concentrations and their level of agreement with observed values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.3530L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.3530L"><span>Evolution of Precipitation Structure During the November DYNAMO MJO Event: Cloud-Resolving Model Intercomparison and Cross Validation Using Radar Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xiaowen; Janiga, Matthew A.; Wang, Shuguang; Tao, Wei-Kuo; Rowe, Angela; Xu, Weixin; Liu, Chuntao; Matsui, Toshihisa; Zhang, Chidong</p> <p>2018-04-01</p> <p>Evolution of precipitation structures are simulated and compared with radar observations for the November Madden-Julian Oscillation (MJO) event during the DYNAmics of the MJO (DYNAMO) field campaign. Three ground-based, ship-borne, and spaceborne precipitation radars and three cloud-resolving models (CRMs) driven by observed large-scale forcing are used to study precipitation structures at different locations over the central equatorial Indian Ocean. Convective strength is represented by 0-dBZ echo-top heights, and convective organization by contiguous 17-dBZ areas. The multi-radar and multi-model framework allows for more stringent model validations. The emphasis is on testing models' ability to simulate subtle differences observed at different radar sites when the MJO event passed through. The results show that CRMs forced by site-specific large-scale forcing can reproduce not only common features in cloud populations but also subtle variations observed by different radars. The comparisons also revealed common deficiencies in CRM simulations where they underestimate radar echo-top heights for the strongest convection within large, organized precipitation features. Cross validations with multiple radars and models also enable quantitative comparisons in CRM sensitivity studies using different large-scale forcing, microphysical schemes and parameters, resolutions, and domain sizes. In terms of radar echo-top height temporal variations, many model sensitivity tests have better correlations than radar/model comparisons, indicating robustness in model performance on this aspect. It is further shown that well-validated model simulations could be used to constrain uncertainties in observed echo-top heights when the low-resolution surveillance scanning strategy is used.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptLE.105...14I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptLE.105...14I"><span>3-D optical profilometry at micron scale with multi-frequency fringe projection using modified fibre optic Lloyd's mirror technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inanç, Arda; Kösoğlu, Gülşen; Yüksel, Heba; Naci Inci, Mehmet</p> <p>2018-06-01</p> <p>A new fibre optic Lloyd's mirror method is developed for extracting 3-D height distribution of various objects at the micron scale with a resolution of 4 μm. The fibre optic assembly is elegantly integrated to an optical microscope and a CCD camera. It is demonstrated that the proposed technique is quite suitable and practical to produce an interference pattern with an adjustable frequency. By increasing the distance between the fibre and the mirror with a micrometre stage in the Lloyd's mirror assembly, the separation between the two bright fringes is lowered down to the micron scale without using any additional elements as part of the optical projection unit. A fibre optic cable, whose polymer jacket is partially stripped, and a microfluidic channel are used as test objects to extract their surface topographies. Point by point sensitivity of the method is found to be around 8 μm, changing a couple of microns depending on the fringe frequency and the measured height. A straightforward calibration procedure for the phase to height conversion is also introduced by making use of the vertical moving stage of the optical microscope. The phase analysis of the acquired image is carried out by One Dimensional Continuous Wavelet Transform for which the chosen wavelet is the Morlet wavelet and the carrier removal of the projected fringe patterns is achieved by reference subtraction. Furthermore, flexible multi-frequency property of the proposed method allows measuring discontinuous heights where there are phase ambiguities like 2π by lowering the fringe frequency and eliminating the phase ambiguity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.473.4544S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.473.4544S"><span>Relative distribution of cosmic rays and magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.</p> <p>2018-02-01</p> <p>Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JKAS...37..447I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JKAS...37..447I"><span>Cosmic Rays and Gamma-Rays in Large-Scale Structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inoue, Susumu; Nagashima, Masahiro; Suzuki, Takeru K.; Aoki, Wako</p> <p>2004-12-01</p> <p>During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of 6Li by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790040143&hterms=taylor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D70%26Ntt%3Dtaylor%2Bt%2Bb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790040143&hterms=taylor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D70%26Ntt%3Dtaylor%2Bt%2Bb"><span>Ionosphere of Venus - First observations of the dayside ion composition near dawn and dusk</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, H. A., Jr.; Brinton, H. C.; Bauer, S. J.; Hartle, R. E.; Donahue, T. M.; Cloutier, P. A.; Michel, F. C.; Daniell, R. E., Jr.; Blackwell, B. H.</p> <p>1979-01-01</p> <p>Independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bus and orbiter spacecraft obtained in situ measurements of the composition of the ionosphere of Venus. The spectrometer on the bus explored the dawn region while the spectrometer on the orbiter explored the duskside region. Information on the ion composition in the topside, the lower ionosphere, and the upper ionosphere is presented. Below the O(+) peak near 200 km, the ions are found to exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930004823','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930004823"><span>Unit operations for gas-liquid mass transfer in reduced gravity environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pettit, Donald R.; Allen, David T.</p> <p>1992-01-01</p> <p>Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870027224&hterms=vertical+height&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870027224&hterms=vertical+height&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dvertical%2Bheight"><span>Vertical normal modes of a mesoscale model using a scaled height coordinate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lipton, A. E.; Pielke, R. A.</p> <p>1986-01-01</p> <p>Vertical modes were derived for a version of the Colorado State Regional Atmospheric Mesoscale Modeling System. The impacts of three options for dealing with the upper boundary of the model were studied. The standard model formulation holds pressure constant at a fixed altitude near the model top, and produces a fastest mode with a speed of about 90 m/sec. An alternative formulation, which allows for an external mode, could require recomputation of vertical modes for every surface elevation on the horizontal grid unless the modes are derived in a particular way. These results have bearing on the feasibility of applying vertical mode initialization to models with scaled height coordinates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24888978','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24888978"><span>Partially Biodegradable Distraction Implant to Replace Conventional Implants in Alveolar Bone of Insufficient Height: A Preliminary Study in Dogs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Tao; Zhang, Yongqiang; Shao, Bo; Gao, Yuan; Zhang, Chen; Cao, Qiang; Kong, Liang</p> <p>2015-12-01</p> <p>Dental implants have been widely used in the last few decades. However, patients with insufficient bone height need reconstructive surgeries before implant insertion. The distraction implant (DI) has been invented to simplify the treatment procedure, but the shortcomings of DIs have limited their clinical use. We incorporated biodegradable polyester into a novel DI called the partially biodegradable distraction implant (PBDI). The purpose of this study was to assess the radiological, histological, and biomechanical properties of the PBDI in animal models. PBDIs were manufactured and inserted into the atrophied mandibles of nine dogs. Box-shaped alveolar bones were segmented and distracted. The dogs were randomly divided into three groups that were sacrificed 1, 2, and 3 months after the implant insertion. Actual augmentation height (AAH) of the bone segments was measured to evaluate the effect of distraction. X-ray examination and micro-CT reconstruction and analysis were used to evaluate the regenerated bone in the distraction gap and bone around the functional element. Histological sections were used to evaluate the osseointegration and absorption of the PBDI. Fatigue tests were used to evaluate the biomechanical properties of the PBDI. Little change was found in AAH among the three groups. X-ray examination and micro-CT reconstruction showed good growth of regenerated bone in the distraction gap. Alveolar bone volume around the functional element increased steadily. No obvious bone absorption occurred in the alveolar crest around PBDI. Three months after distraction, the functional element achieved osseointegration, and the support element began to be absorbed. All PBDIs survived the fatigue test. The PBDI is a novel and reliable dental implant. It becomes a conventional implant after the absorption of the support element and the removal of the distraction screw. It is a promising replacement for conventional implants in patients with insufficient alveolar bone height. © 2014 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC41A1066K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC41A1066K"><span>Progress Report on the GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height) Research Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.</p> <p>2016-12-01</p> <p>Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data at Japan, is also reported. Compatibility tests to CYGNSS data and refurbishment of the ground station were completed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008BoLMe.126..103P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008BoLMe.126..103P"><span>Wind-tunnel Modelling of Dispersion from a Scalar Area Source in Urban-Like Roughness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pascheke, Frauke; Barlow, Janet F.; Robins, Alan</p> <p>2008-01-01</p> <p>A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T / U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ISPAr3819W.283S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ISPAr3819W.283S"><span>Morphologic Quality of DSMs Based on Optical and Radar Space Imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sefercik, U. G.; Bayik, C.; Karakis, S.; Jacobsen, K.</p> <p>2011-09-01</p> <p>Digital Surface Models (DSMs) are representing the visible surface of the earth by the height corresponding to its X-, Y-location and height value Z. The quality of a DSM can be described by the accuracy and the morphologic details. Both depend upon the used input information, the used technique and the roughness of the terrain. The influence of the topographic details to the DSM quality is shown for the test fields Istanbul and Zonguldak. Zonguldak has a rough mountainous character with heights from sea level up to 1640m, while Istanbul is dominated by rolling hills going up to an elevation of 435m. DSMs from SPOT-5, the SRTM C-band height models and ASTER GDEM have been investigated. The DSMs have been verified with height models from large scale aerial photos being more accurate and including morphologic details. It was necessary to determine and respect shifts of the height models caused by datum problems and orientation of the height models. The DSM quality is analyzed depending upon the terrain inclination. The DSM quality differs for both test fields. The morphologic quality depends upon the point spacing of the analyzed DSMs and the terrain characteristics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18608473','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18608473"><span>Modelling foot height and foot shape-related dimensions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xiong, Shuping; Goonetilleke, Ravindra S; Witana, Channa P; Lee Au, Emily Yim</p> <p>2008-08-01</p> <p>The application of foot anthropometry to design good-fitting footwear has been difficult due to the lack of generalised models. This study seeks to model foot dimensions so that the characteristic shapes of feet, especially in the midfoot region, can be understood. Fifty Hong Kong Chinese adults (26 males and 24 females) participated in this study. Their foot lengths, foot widths, ball girths and foot heights were measured and then evaluated using mathematical models. The results showed that there were no significant allometry (p > 0.05) effects of foot length on ball girth and foot width. Foot height showed no direct relationship with foot length. However, a normalisation with respect to foot length and foot height resulted in a significant relationship for both males and females with R(2) greater than 0.97. Due to the lack of a direct relationship between foot height and foot length, the current practice of grading shoes with a constant increase in height or proportionate scaling in response to foot length is less than ideal. The results when validated with other populations can be a significant way forward in the design of footwear that has an improved fit in the height dimension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDE33006C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDE33006C"><span>Influences of source condition and dissolution on bubble plume in a stratified environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chu, Shigan; Prosperetti, Andrea</p> <p>2017-11-01</p> <p>A cross-sectionally averaged model is used to study a bubble plume rising in a stratified quiescent liquid. Scaling analyses for the peel height, at which the plume momentum vanishes, and the neutral height, at which its average density equals the ambient density, are presented. Contrary to a widespread practice in the literature, it is argued that the neutral height cannot be identified with the experimentally reported intrusion height. Recognizing this difference provides an explanation of the reason why the intrusion height is found so frequently to lie so much above predictions, and brings the theoretical results in line with observations. The mathematical model depends on three dimensionless parameters, some of which are related to the inlet conditions at the plume source. Their influence on the peel and neutral heights is illustrated by means of numerical results. Aside from the source parameters, we incorporate dissolution of bubbles and the corresponding density change of plume into the model. Contrary to what's documented in literature, density change of plume due to dissolution plays an important role in keeping the total buoyancy of plume, thus alleviating the rapid decrease of peel height because of dissolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23179963','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23179963"><span>Measurement of height velocity is an useful marker for monitoring pituitary function in patients who had traumatic brain injury.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bellone, S; Einaudi, S; Caputo, M; Prodam, F; Busti, A; Belcastro, S; Parlamento, S; Zavattaro, M; Verna, F; Bondone, C; Tessaris, D; Gasco, V; Bona, G; Aimaretti, G</p> <p>2013-12-01</p> <p>To assess the incidence of abnormal neuroendocrine function post-traumatic brain injuriy (TBI) in a large group of paediatric patients and its correlations with clinical parameters (Glasgow coma scale-GCS, Glasgow outcome scale-GOS, TC marshall scale, height velocity). We evaluated 70 patients [58 M, 12 F; age at the time of TBI (mean ± SEM) 8.12 ± 4.23 years] previously hospitalized for TBI at the "Regina Margherita" Hospital, in Turin and "Maggiore della Carità Hospital" in Novara, Italy, between 1998 and 2008. All patients included underwent: auxological, clinical, hormonal and biochemical assessments at recall (after at least 1 year from TBI to T0); auxological visit after 6 months (T6) and hormonal assessments at 12 months (T12) in patients with height velocity (HV) below the 25th centile. At T0, 4 cases of hypothalamus-pituitary dysfunction had been diagnosed; At T6 20/70 patients had an HV <25th centile, but no one had HV < the 3rd centile limit. At T12, among the 20 patients with HV <25th centile, in 13 patients the HV was below the 25th centile and GHRH + Arginine test has been performed. Four subjects demonstrated an impaired GH peak and were classified as GH deficiency (GHD). Of these 4 subjects, 3 subjects showed isolated GHD, while one patient showed multiple hypopituitarism presenting also secondary hypocortisolism and hypothyroidism. The GCS at admission and GOS do not correlate with the onset of hypopituitarism. A simple measurement of the height velocity at least 1 year after the TBI, is enough to recognize patients with a pituitary impairment related to GH deficiency. We suggest to follow-up paediatric population who had TBI with auxological evaluations every 6 months, limiting hormonal evaluation in patients with a reduction of height velocity below the 25th centile limit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3851740','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3851740"><span>Scaling of xylem and phloem transport capacity and resource usage with tree size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hölttä, Teemu; Kurppa, Miika; Nikinmaa, Eero</p> <p>2013-01-01</p> <p>Xylem and phloem need to maintain steady transport rates of water and carbohydrates to match the exchange rates of these compounds at the leaves. A major proportion of the carbon and nitrogen assimilated by a tree is allocated to the construction and maintenance of the xylem and phloem long distance transport tissues. This proportion can be expected to increase with increasing tree size due to the growing transport distances between the assimilating tissues, i.e., leaves and fine roots, at the expense of their growth. We formulated whole tree level scaling relations to estimate how xylem and phloem volume, nitrogen content and hydraulic conductance scale with tree size, and how these properties are distributed along a tree height. Xylem and phloem thicknesses and nitrogen contents were measured within varying positions in four tree species from Southern Finland. Phloem volume, nitrogen amount and hydraulic conductance were found to be concentrated toward the branch and stem apices, in contrast to the xylem where these properties were more concentrated toward the tree base. All of the species under study demonstrated very similar trends. Total nitrogen amount allocated to xylem and phloem was predicted to be comparable to the nitrogen amount allocated to the leaves in small and medium size trees, and to increase significantly above the nitrogen content of the leaves in larger trees. Total volume, hydraulic conductance and nitrogen content of the xylem were predicted to increase faster than that of the phloem with increasing tree height in small trees (<~10 m in height). In larger trees, xylem sapwood turnover to heartwood, if present, would maintain phloem conductance at the same level with xylem conductance with further increases in tree height. Further simulations with a previously published xylem-phloem transport model demonstrated that the Münch pressure flow hypothesis could explain phloem transport with increasing tree height even for the tallest trees. PMID:24367373</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26822335','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26822335"><span>Measuring perceived ceiling height in a visual comparison task.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>von Castell, Christoph; Hecht, Heiko; Oberfeld, Daniel</p> <p>2017-03-01</p> <p>When judging interior space, a dark ceiling is judged to be lower than a light ceiling. The method of metric judgments (e.g., on a centimetre scale) that has typically been used in such tasks may reflect a genuine perceptual effect or it may reflect a cognitively mediated impression. We employed a height-matching method in which perceived ceiling height had to be matched with an adjustable pillar, thus obtaining psychometric functions that allowed for an estimation of the point of subjective equality (PSE) and the difference limen (DL). The height-matching method developed in this paper allows for a direct visual match and does not require metric judgment. It has the added advantage of providing superior precision. Experiment 1 used ceiling heights between 2.90 m and 3.00 m. The PSE proved sensitive to slight changes in perceived ceiling height. The DL was about 3% of the physical ceiling height. Experiment 2 found similar results for lower (2.30 m to 2.50 m) and higher (3.30 m to 3.50 m) ceilings. In Experiment 3, we additionally varied ceiling lightness (light grey vs. dark grey). The height matches showed that the light ceiling appeared significantly higher than the darker ceiling. We therefore attribute the influence of ceiling lightness on perceived ceiling height to a direct perceptual rather than a cognitive effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001E%26PSL.193..213D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001E%26PSL.193..213D"><span>On scaling cosmogenic nuclide production rates for altitude and latitude using cosmic-ray measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desilets, Darin; Zreda, Marek</p> <p>2001-11-01</p> <p>The wide use of cosmogenic nuclides for dating terrestrial landforms has prompted a renewed interest in characterizing the spatial distribution of terrestrial cosmic rays. Cosmic-ray measurements from neutron monitors, nuclear emulsions and cloud chambers have played an important role in developing new models for scaling cosmic-ray neutron intensities and, indirectly, cosmogenic production rates. Unfortunately, current scaling models overlook or misinterpret many of these data. In this paper, we describe factors that must be considered when using neutron measurements to determine scaling formulations for production rates of cosmogenic nuclides. Over the past 50 years, the overwhelming majority of nucleon flux measurements have been taken with neutron monitors. However, in order to use these data for scaling spallation reactions, the following factors must be considered: (1) sensitivity of instruments to muons and to background, (2) instrumental biases in energy sensitivity, (3) solar activity, and (4) the way of ordering cosmic-ray data in the geomagnetic field. Failure to account for these factors can result in discrepancies of as much as 7% in neutron attenuation lengths measured at the same location. This magnitude of deviation can result in an error on the order of 20% in cosmogenic production rates scaled from 4300 m to sea level. The shapes of latitude curves of nucleon flux also depend on these factors to a measurable extent, thereby causing additional uncertainties in cosmogenic production rates. The corrections proposed herein significantly improve our ability to transfer scaling formulations based on neutron measurements to scaling formulations applicable to spallation reactions, and, therefore, constitute an important advance in cosmogenic dating methodology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........43W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........43W"><span>An integrated circuit/microsystem/nano-enhanced four species radiation sensor for inexpensive fissionable material detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waguespack, Randy Paul</p> <p>2011-12-01</p> <p>Small scale radiation detectors sensitive to alpha, beta, electromagnetic, neutron radiation are needed to combat the threat of nuclear terrorism and maintain national security. There are many types of radiation detectors on the market, and the type of detector chosen is usually determined by the type of particle to be detected. In the case of fissionable material, an ideal detector needs to detect all four types of radiation, which is not the focus of many detectors. For fissionable materials, the two main types of radiation that must be detected are gamma rays and neutrons. Our detector uses a glass or quartz scintillator doped with 10B nanoparticles to detect all four types of radiation particles. Boron-10 has a thermal neutron cross section of 3,840 barns. The interaction between the neutron and boron results in a secondary charge particle in the form of an alpha particle to be emitted, which is detectable by the scintillator. Radiation impinging on the scintillator matrix produces varying optical pulses dependent on the energy of the particles. The optical pulses are then detected by a photomultiplier (PM) tube, creating a current proportional to the energy of the particle. Current pulses from the PM tube are differentiated by on-chip pulse height spectroscopy, allowing for source discrimination. The pulse height circuitry has been fabricated with discrete circuits and designed into an integrated circuit package. The ability to replace traditional PM tubes with a smaller, less expensive photomultiplier will further reduce the size of the device and enhance the cost effectiveness and portability of the detector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AWUTP..58...64C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AWUTP..58...64C"><span>Clouds and the Near-Earth Environment: Possible Links</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Condurache-Bota, Simona; Voiculescu, Mirela; Dragomir, Carmelia</p> <p>2015-12-01</p> <p>Climate variability is a hot topic not only for scientists and policy-makers, but also for each and every one of us. The anthropogenic activities are considered to be responsible for most climate change, however there are large uncertainties about the magnitude of effects of solar variability and other extraterrestrial influences, such as galactic cosmic rays on terrestrial climate. Clouds play an important role due to feedbacks of the radiation budget: variation of cloud cover/composition affects climate, which, in turn, affects cloud cover via atmospheric dynamics and sea temperature variations. Cloud formation and evolution are still under scientific scrutiny, since their microphysics is still not understood. Besides atmospheric dynamics and other internal climatic parameters, extraterrestrial sources of cloud cover variation are considered. One of these is the solar wind, whose effect on cloud cover might be modulated by the global atmospheric electrical circuit. Clouds height and composition, their seasonal variation and latitudinal distribution should be considered when trying to identify possible mechanisms by which solar energy is transferred to clouds. The influence of the solar wind on cloud formation can be assessed also through the ap index - the geomagnetic storm index, which can be readily connected with interplanetary magnetic field, IMF structure. This paper proposes to assess the possible relationship between both cloud cover and solar wind proxies, as the ap index, function of cloud height and composition and also through seasonal studies. The data covers almost three solar cycles (1984-2009). Mechanisms are looked for by investigating observed trends or correlation at local/seasonal scale</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNH31C3878R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNH31C3878R"><span>Inversion of tsunami height using ionospheric observations. The case of the 2012 Haida Gwaii tsunami</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rakoto, V.; Lognonne, P. H.; Rolland, L.</p> <p>2014-12-01</p> <p>Large and moderate tsunamis generate atmospheric internal gravity waves that are detectable using ionospheric monitoring. Indeed tsunamis of height 2cm and more in open ocean were detected with GPS (Rolland et al. 2010). We present a new method to retrieve the tsunami height from GPS-derived Total Electron Content observations. We present the case of the Mw 7.8 Haida Gwaii earthquake that occured the 28 october 2012 offshore the Queen Charlotte island near the canadian west coast. This event created a moderate tsunami of 4cm offshore the Hawaii archipelago. Equipped with more than 50 receivers it was possible to image the tsunami-induced ionospheric perturbation. First, our forward model leading to the TEC perturbation follows three steps : (1) 3D modeling of the neutral atmosphere perturbation by summation of tsunami-induced gravity waves normal modes. (2) Coupling of the neutral atmosphere perturbation with the ionosphere to retrieve the electron density perturbation. (3) Integration of the electron density perturbation along each satellite-station ray path. Then we compare this results to the data acquired by the Hawaiian GPS network. Finally, we examine the possibility to invert the TEC data in order to retrieve the tsunami height and waveform. For this we investigate the link between the height of tsunamis and the perturbed TEC in the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B31B0477K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B31B0477K"><span>Assessment of Satellite Albedos Using NASA-CAR Airborne Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kharbouche, S.; Charles, G.; Muller, J. P.</p> <p>2016-12-01</p> <p>Airborne BRF (Bidirectional Reflectance Factor) data has been acquired at multiple altitudes by the NASA CAR (Cloud Absorption Radiometer) multi-spectral instrument since the late 1990s in order to study the reflectance over different types of landscapes depending upon wavelengths, view angles and spatial scales, and to assess derived BRFs from multispectral satellites. As the measured BRFs are taken over a very short period (< 2 minutes), we minimise the effects of solar angles and atmospheric effects. This allows the derivation of a dense set of BRFs which allow direct display of polar plots of the BRDF for different sites in the Arctic. Also, as the measurements have been taken at different flight heights, the upscaling issue can be addressed and detailed with concrete samples. The CAR instrument is well calibrated (back to NIST standards) and can be compared with some ground measurements on the ground. So the derived BRF data for this instrument are likely to be highly reliable and can be used in the validation of some satellites products like radiance, reflectance and albedo, as well as in the BRDF (Bidirectional Reflectance Distribution Function) modelling and in the development of new atmospheric correction techniques. The NASA-CAR, developed by NASA-GSFC can be carried and integrated into many experimental aircraft. So, CAR can be considered as an airborne multi-wavelength scanning radiometer that can measure radiance with instantaneous fields of view of 1°. Over targeted sites, the CAR flies circularly and scans through 180° from straight above, through the horizon to straight down. Data are recorded in 14 narrow spectral bands located in the ultraviolet, visible and near-infrared regions in the electromagnetic spectrum (0.340-2.301 mm). The ray or spot at nadir depends on the flight height. It varies from 1m (height=110m) to 48m (height=5500m). We will show in this presentation the accuracy of BRF, BRDF and Black-Sky-Albedo of MODIS, MISR, MERIS, VGT, Landsat-7 and AVHRR, over vegetated, non-vegetated and ice-covered sites. We will show also how CAR data are arranged and how can be read and deployed. This work was supported by QA4ECV, a project of European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EPJWC..6108001G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EPJWC..6108001G"><span>The X-ray emission mechanism of large scale powerful quasar jets: Fermi rules out IC/CMB for 3C 273.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Georganopoulos, Markos; Meyer, Eileen T.</p> <p>2013-12-01</p> <p>The process responsible for the Chandra-detected X-ray emission from the large-scale jets of powerful quasars is not clear yet. The two main models are inverse Compton scattering off the cosmic microwave background photons (IC/CMB) and synchrotron emission from a population of electrons separate from those producing the radio-IR emission. These two models imply radically different conditions in the large scale jet in terms of jet speed, kinetic power, and maximum energy of the particle acceleration mechanism, with important implications for the impact of the jet on the larger-scale environment. Georganopoulos et al. (2006) proposed a diagnostic based on a fundamental difference between these two models: the production of synchrotron X-rays requires multi-TeV electrons, while the EC/CMB model requires a cutoff in the electron energy distribution below TeV energies. This has significant implications for the γ-ray emission predicted by these two models. Here we present new Fermi observations that put an upper limit on the gamma-ray flux from the large-scale jet of 3C 273 that clearly violates the flux expected from the IC/CMB X-ray interpretation found by extrapolation of the UV to X-ray spectrum of knot A, thus ruling out the IC/CMB interpretation entirely for this source. Further, the upper limit from Fermi puts a limit on the Doppler beaming factor of at least δ <9, assuming equipartition fields, and possibly as low as δ <5 assuming no major deceleration of the jet from knots A through D1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27670362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27670362"><span>Weight-for-length/height growth curves for children and adolescents in China in comparison with body mass index in prevalence estimates of malnutrition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zong, Xinnan; Li, Hui; Zhang, Yaqin; Wu, Huahong</p> <p>2017-05-01</p> <p>It is important to update weight-for-length/height growth curves in China and re-examine their performance in screening malnutrition. To develop weight-for-length/height growth curves for Chinese children and adolescents. A total of 94 302 children aged 0-19 years with complete sex, age, weight and length/height data were obtained from two cross-sectional large-scaled national surveys in China. Weight-for-length/height growth curves were constructed using the LMS method before and after average spermarcheal/menarcheal ages, respectively. Screening performance in prevalence estimates of wasting, overweight and obesity was compared between weight-for-height and body mass index (BMI) criteria based on a test population of 21 416 children aged 3-18. The smoothed weight-for-length percentiles and Z-scores growth curves with length 46-110 cm for both sexes and weight-for-height with height 70-180 cm for boys and 70-170 cm for girls were established. The weight-for-height and BMI-for-age had strong correlation in screening wasting, overweight and obesity in each age-sex group. There was no striking difference in prevalence estimates of wasting, overweight and obesity between two indicators except for obesity prevalence at ages 6-11. This set of smoothed weight-for-length/height growth curves may be useful in assessing nutritional status from infants to post-pubertal adolescents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26164838','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26164838"><span>Indirect Self-Destructiveness and Emotional Intelligence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsirigotis, Konstantinos</p> <p>2016-06-01</p> <p>While emotional intelligence may have a favourable influence on the life and psychological and social functioning of the individual, indirect self-destructiveness exerts a rather negative influence. The aim of this study has been to explore possible relations between indirect self-destructiveness and emotional intelligence. A population of 260 individuals (130 females and 130 males) aged 20-30 (mean age of 24.5) was studied by using the Polish version of the chronic self-destructiveness scale and INTE, i.e., the Polish version of the assessing emotions scale. Indirect self-destructiveness has significant correlations with all variables of INTE (overall score, factor I, factor II), and these correlations are negative. The intensity of indirect self-destructiveness differentiates significantly the height of the emotional intelligence and vice versa: the height of the emotional intelligence differentiates significantly the intensity of indirect self-destructiveness. Indirect self-destructiveness has negative correlations with emotional intelligence as well as its components: the ability to recognize emotions and the ability to utilize emotions. The height of emotional intelligence differentiates the intensity of indirect self-destructiveness, and vice versa: the intensity of indirect self-destructiveness differentiates the height of emotional intelligence. It seems advisable to use emotional intelligence in the prophylactic and therapeutic work with persons with various types of disorders, especially with the syndrome of indirect self-destructiveness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B34A..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B34A..04P"><span>Forest height Mapping using the fusion of Lidar and MULTI-ANGLE spectral data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pang, Y.; Li, Z.</p> <p>2016-12-01</p> <p>Characterizing the complexity of forest ecosystem over large area is highly complex. Light detection and Ranging (LIDAR) approaches have demonstrated a high capacity to accurately estimate forest structural parameters. A number of satellite mission concepts have been proposed to fuse LiDAR with other optical imagery allowing Multi-angle spectral observations to be captured using the Bidirectional Reflectance Distribution Function (BRDF) characteristics of forests. China is developing the concept of Chinese Terrestrial Carbon Mapping Satellite. A multi-beam waveform Lidar is the main sensor. A multi-angle imagery system is considered as the spatial mapping sensor. In this study, we explore the fusion potential of Lidar and multi-angle spectral data to estimate forest height across different scales. We flew intensive airborne Lidar and Multi-angle hyperspectral data in Genhe Forest Ecological Research Station, Northeast China. Then extended the spatial scale with some long transect flights to cover more forest structures. Forest height data derived from airborne lidar data was used as reference data and the multi-angle hyperspectral data was used as model inputs. Our results demonstrate that the multi-angle spectral data can be used to estimate forest height with the RMSE of 1.1 m with an R2 approximately 0.8.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770038609&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DKrieger','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770038609&hterms=Krieger&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DKrieger"><span>Association of X-ray arches with chromospheric neutral lines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcintosh, P. S.; Krieger, A. S.; Nolte, J. T.; Vaiana, G.</p> <p>1976-01-01</p> <p>Daily maps of magnetic neutral lines derived from H-alpha observations have been superimposed on solar X-ray images for the period from June 15 to 30, 1973. Nearly all X-ray-emitting structures consist of systems of arches covering chromospheric neutral lines. Areas of low emissivity, coronal holes, appear as the areas between arcades of arches. The presence of a coronal hole, therefore, is determined by the spacing between neutral lines and the scale of the arches over those neutral lines. X-ray emissivity on the solar disk extends from neutral lines in proportion to the vertical and horizontal scale of the arches over those neutral lines. Increasing scale of arches corresponds with increasing age of magnetic fields associated with the neutral line. All X-ray filament cavities coincided with neutral lines, but filaments appeared under cavities for only part of their length and for only a fraction of the disk passage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPCM...29d3003K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPCM...29d3003K"><span>Thin film growth studies using time-resolved x-ray scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kowarik, Stefan</p> <p>2017-02-01</p> <p>Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27875334','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27875334"><span>Thin film growth studies using time-resolved x-ray scattering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kowarik, Stefan</p> <p>2017-02-01</p> <p>Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193053','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193053"><span>Estimating ages of Utah chubs by use of pectoral fin rays, otoliths, and scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Griffin, Kayla M; Beard, Zachary S.; Flinders, John M.; Quist, Michael C.</p> <p>2017-01-01</p> <p>Utah chub Gila atraria is native to the Upper Snake River system in Wyoming and Idaho and to the Lake Bonneville Basin in Utah and southeastern Idaho. However, the Utah chub has been introduced into many other waterbodies in the western United States, where it competes with ecologically and economically important species. The objectives of this study were to evaluate between-reader precision and reader confidence in age estimates obtained from pectoral fin rays, lapilli (otoliths), asterisci (otoliths), and scales for Utah chubs collected from Henrys Lake, Idaho. Lapilli have been previously shown to provide accurate age estimates for Utah chubs; therefore, we sought to compare age estimates from fin rays, asterisci, and scales to those from lapilli. The between-reader coefficient of variation (CV) in age estimates was lowest and the percent of exact reader agreement (PA-0) was highest for pectoral fin rays (CV = 4.7, PA-0 = 74%), followed by scales (CV = 10.3, PA-0 = 52.3%), lapilli (CV = 11.6, PA-0 = 48.2%), and asterisci (CV = 13.0, PA-0 = 41.7%). Consensus age estimates from pectoral fin rays showed high concordance with consensus age estimates from lapilli. Our results indicate that pectoral fin rays provide the most precise age estimates for Utah chub. Pectoral fin rays are easily collected and processed and also provide age estimates without requiring fish sacrifice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980fmet.symp..251P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980fmet.symp..251P"><span>Incorporation of star measurements for the determination of orbit and attitude parameters of a geosynchronous satellite: An iterative application of linear regression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Phillips, D.</p> <p>1980-10-01</p> <p>Currently on NOAA/NESS's VIRGS system at the World Weather Building star images are being ingested on a daily basis. The image coordinates of the star locations are measured and stored. Subsequently, the information is used to determine the attitude, the misalignment angles between the spin axis and the principal axis of the satellite, and the precession rate and direction. This is done for both the 'East' and 'West' operational geosynchronous satellites. This orientation information is then combined with image measurements of earth based landmarks to determine the orbit of each satellite. The method for determining the orbit is simple. For each landmark measurement one determines a nominal position vector for the satellite by extending a ray from the landmark's position towards the satellite and intersecting the ray with a sphere with center coinciding with the Earth's center and with radius equal to the nominal height for a geosynchronous satellite. The apparent motion of the satellite around the Earth's center is then approximated with a Keplerian model. In turn the variations of the satellite's height, as a function of time found by using this model, are used to redetermine the successive satellite positions by again using the Earth based landmark measurements and intersecting rays from these landmarks with the newly determined spheres. This process is performed iteratively until convergence is achieved. Only three iterations are required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2775527','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2775527"><span>SPORT: Radiographic Predictors of Clinical Outcomes Following Operative or Non-operative Treatment of Degenerative Spondylolisthesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pearson, Adam M.; Lurie, Jon D.; Blood, Emily A.; Frymoyer, John W.; Braeutigam, Heike; An, Howard; Girardi, Federico P.; Weinstein, James N.</p> <p>2009-01-01</p> <p>STUDY DESIGN Subgroup analyses according to treatment received. OBJECTIVES To evaluate whether baseline radiographic findings predicted outcomes in patients with degenerative spondylolisthesis (DS). SUMMARY OF BACKGROUND DATA The SPORT combined randomized and observational DS cohorts. METHODS The Meyerding listhesis grade was determined on the neutral radiograph (n=222). Patients were classified as having low disk height if disk height was less than 5 mm. Flexion-extension radiographs (n=185) were evaluated for mobility. Those with greater than 10° rotation or 4mm translation were considered Hypermobile. Changes in outcome measures were compared between listhesis (Grade 1 vs. Grade 2), disk height (Low vs. Normal) and mobility (Stable vs. Hypermobile) groups using longitudinal regression models adjusted for potential confounders. Outcome measures included SF-36 bodily pain (BP) and physical function (PF) scales, Oswestry disability index (ODI), stenosis bothersomeness index (SBI), and low back pain bothersomeness scale. RESULTS Overall, 86% had a Grade 1 listhesis, 78% had Normal disk height, and 73% were Stable. Baseline symptom severity was similar between groups. Overall, surgery patients improved more than patients treated non-operatively. At one year, outcomes were similar in surgery patients across listhesis, disk height, and mobility groups (ODI: Grade 1 -23.7 vs. Grade 2 -23.3, p=0.90; Normal disk height-23.5 vs. Low disk height -21.9, p=0.66; Stable -21.6 vs. Hypermobile -25.2, p=0.30). Among those treated nonoperatively, Grade 1 patients improved more than Grade 2 patients (BP +13.1 vs. -4.9, p=0.019; ODI -8.0 vs. +4.8, p=0.010 at 1 year), and Hypermobile patients improved more than Stable patients (ODI -15.2 vs -6.6, p=0.041; SBI -7.8 vs -2.7, p=0.002 at 1 year). DISCUSSION Regardless of listhesis grade, disk height or mobility, patients who had surgery improved more than those treated non-operatively. These differences were due, in part, to differences in non-operative outcomes, which were better in patients classified as Grade 1 or Hypermobile. PMID:19050582</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......235C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......235C"><span>Helicopter rotor noise investigation during ice accretion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Baofeng</p> <p></p> <p>An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the measured high-frequency broadband noise increases significantly with increasing surface roughness heights, which indicates that it is feasible to quantify helicopter rotor ice-induced surface roughness through acoustic measurements. Comprehensive broadband noise measurements based on different accreted ice roughness at AERTS are then used to form the data base from which a correlation between the ice-induced surface roughness and the broadband noise level is developed. Two parameters, the arithmetic average roughness height, Ra, and the averaged roughness height, based on the integrated ice thickness at the blade tip, are introduced to describe the ice-induced surface roughness at the early stage of the ice accretion. The ice roughness measurements are correlated to the measured broadband noise level. Strong correlations (absolute mean deviations of 9.3% and 11.2% for correlation using Ra and the averaged roughness height respectively) between the ice roughness and the broadband noise level are obtained, which can be used as a tool to determine the accreted ice roughness in the AERTS facility through acoustic measurement. It might be possible to use a similar approach to develop an early ice accretion detection tool for helicopters, as well as to quantify the ice-induced roughness at the early stage of rotor ice accretion. Rotor broadband noise source identification is conducted and the broadband noise related to ice accretion is argued to be turbulent boundary layer - trailing edge (TBL-TE) noise. Theory suggests TBL-TE noise scales with Mach number to the fifth power, which is also observed in the experimental data. The trailing edge noise theories developed by Ffowcs Williams and Hall, and Howe both identify two important parameters: boundary layer thickness and turbulence intensity. Numerical studies of 2-D airfoils with different ice-induced surface roughness heights are conducted to investigate the extent that surface roughness impacts the boundary layer thickness and turbulence intensity (and ultimately the TBL-TE noise). The results show that boundary layer thickness and turbulence intensity at the trailing edge increase with the increased roughness height. Using Howe's trailing edge noise model, the increased sound pressure level (SPL) of the trailing edge noise due to the increased displacement thickness and normalized integrated turbulence intensity are 6.2 dB and 1.6 dB for large and small accreted ice roughness heights, respectively. The estimated increased SPL values agree well with the experimental results, which are 5.8 dB and 2.6 dB for large and small roughness height, respectively. Finally a detailed broadband noise spectral scaling for all measured broadband noise in both AERTS and UMAC facilities is conducted. The magnitude and the frequency spectrum of the measured broadband noise are scaled on characteristic velocity and length. The peak of the laminar boundary layer - vortex shedding (LBL-VS) noise coalesces well on the Strouhal scaling in those cases. For the measured broadband noise from a rotor with relatively large roughness heights, no contribution of the LBL-VS noise is observed. The velocity scaling shows that the TBL-TE noise, which is the dominant source mechanism, scales with Mach number to the fifth power based on the absolute frequency. The length scaling shows that the TBL-TE noise scales well on the absolute roughness height based on Howe's TE noise theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24452032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24452032"><span>Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lobo, Elena; Dalling, James W</p> <p>2014-03-07</p> <p>Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22320345-parallel-scanning-tomosynthesis-using-slot-scanning-technique-fixed-focus-reconstruction-resulting-image-quality','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22320345-parallel-scanning-tomosynthesis-using-slot-scanning-technique-fixed-focus-reconstruction-resulting-image-quality"><span>Parallel-scanning tomosynthesis using a slot scanning technique: Fixed-focus reconstruction and the resulting image quality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shibata, Koichi, E-mail: shibatak@suzuka-u.ac.jp; Notohara, Daisuke; Sakai, Takihito</p> <p>2014-11-01</p> <p>Purpose: Parallel-scanning tomosynthesis (PS-TS) is a novel technique that fuses the slot scanning technique and the conventional tomosynthesis (TS) technique. This approach allows one to obtain long-view tomosynthesis images in addition to normally sized tomosynthesis images, even when using a system that has no linear tomographic scanning function. The reconstruction technique and an evaluation of the resulting image quality for PS-TS are described in this paper. Methods: The PS-TS image-reconstruction technique consists of several steps (1) the projection images are divided into strips, (2) the strips are stitched together to construct images corresponding to the reconstruction plane, (3) the stitchedmore » images are filtered, and (4) the filtered stitched images are back-projected. In the case of PS-TS using the fixed-focus reconstruction method (PS-TS-F), one set of stitched images is used for the reconstruction planes at all heights, thus avoiding the necessity of repeating steps (1)–(3). A physical evaluation of the image quality of PS-TS-F compared with that of the conventional linear TS was performed using a R/F table (Sonialvision safire, Shimadzu Corp., Kyoto, Japan). The tomographic plane with the best theoretical spatial resolution (the in-focus plane, IFP) was set at a height of 100 mm from the table top by adjusting the reconstruction program. First, the spatial frequency response was evaluated at heights of −100, −50, 0, 50, 100, and 150 mm from the IFP using the edge of a 0.3-mm-thick copper plate. Second, the spatial resolution at each height was visually evaluated using an x-ray test pattern (Model No. 38, PTW Freiburg, Germany). Third, the slice sensitivity at each height was evaluated via the wire method using a 0.1-mm-diameter tungsten wire. Phantom studies using a knee phantom and a whole-body phantom were also performed. Results: The spatial frequency response of PS-TS-F yielded the best results at the IFP and degraded slightly as the distance from the IFP increased. A visual evaluation of the spatial resolution using the x-ray test pattern indicated that the resolution was 1.8 lp/mm at the IFP and 1.2 lp/mm at heights of −100 and 100 mm from the IFP. The authors demonstrated that a spatial resolution of 1.2–1.8 lp/mm could be obtained within heights of 200 mm of the IFP. The slice sensitivity varied between 11.1 and 13.8 mm for heights between −50 and 100 mm, and there was no critical change in the slice sensitivity within a height range of 150 mm around the IFP. The phantom results demonstrated that tomosynthesis and long-view images could be reconstructed. Conclusions: PS-TS-F provides tomosynthesis images while using low-cost systems that have no tomographic scanning function, such as tableside-controlled universal R/F systems or universal radiographic systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SuMi..118..319C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SuMi..118..319C"><span>Effect of the δ-potential on spin-dependent electron tunneling in double barrier semiconductor heterostructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandrasekar, L. Bruno; Gnanasekar, K.; Karunakaran, M.</p> <p>2018-06-01</p> <p>The effect of δ-potential was studied in GaAs/Ga0.6Al0·4As double barrier heterostructure with Dresselhaus spin-orbit interaction. The role of barrier height and position of the δ- potential in the well region was analysed on spin-dependent electron tunneling using transfer matrix method. The spin-separation between spin-resonances on energy scale depends on both height and position of the δ- potential, whereas the tunneling life time of electrons highly influenced by the position of the δ- potential and not on the height. These results might be helpful for the fabrication of spin-filters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910050123&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910050123&hterms=vertical+height&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dvertical%2Bheight"><span>Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hasler, A. F.; Strong, J.; Woodward, R. H.; Pierce, H.</p> <p>1991-01-01</p> <p>Results are presented on an automatic stereo analysis of cloud-top heights from nearly simultaneous satellite image pairs from the GOES and NOAA satellites, using a massively parallel processor computer. Comparisons of computer-derived height fields and manually analyzed fields show that the automatic analysis technique shows promise for performing routine stereo analysis in a real-time environment, providing a useful forecasting tool by augmenting observational data sets of severe thunderstorms and hurricanes. Simulations using synthetic stereo data show that it is possible to automatically resolve small-scale features such as 4000-m-diam clouds to about 1500 m in the vertical.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995PApGe.144..471H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995PApGe.144..471H"><span>Magnitude scale for the Central American tsunamis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hatori, Tokutaro</p> <p>1995-09-01</p> <p>Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to be m=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude ( M s =6.9 7.2). The Central American tsunamis having magnitude m>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4180738','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4180738"><span>Time-resolved coherent X-ray diffraction imaging of surface acoustic waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim</p> <p>2014-01-01</p> <p>Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25294979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25294979"><span>Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim</p> <p>2014-10-01</p> <p>Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28444432','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28444432"><span>Childhood growth predicts higher bone mass and greater bone area in early old age: findings among a subgroup of women from the Helsinki Birth Cohort Study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mikkola, T M; von Bonsdorff, M B; Osmond, C; Salonen, M K; Kajantie, E; Cooper, C; Välimäki, M J; Eriksson, J G</p> <p>2017-09-01</p> <p>We examined the associations between childhood growth and bone properties among women at early old age. Early growth in height predicted greater bone area and higher bone mineral mass. However, information on growth did not improve prediction of bone properties beyond that predicted by body size at early old age. We examined the associations between body size at birth and childhood growth with bone area, bone mineral content (BMC), and areal bone mineral density (aBMD) in early old age. A subgroup of women (n = 178, mean 60.4 years) from the Helsinki Birth Cohort Study, born 1934-1944, participated in dual-energy X-ray absorptiometry (DXA) measurements of the lumbar spine and hip. Height and weight at 0, 2, 7, and 11 years, obtained from health care records, were reconstructed into conditional variables representing growth velocity independent of earlier growth. Weight was adjusted for corresponding height. Linear regression models were adjusted for multiple confounders. Birth length and growth in height before 7 years of age were positively associated with femoral neck area (p < 0.05) and growth in height at all age periods studied with spine bone area (p < 0.01). Growth in height before the age of 7 years was associated with BMC in the femoral neck (p < 0.01) and birth length and growth in height before the age of 7 years were associated with BMC in the spine (p < 0.05). After entering adult height into the models, nearly all associations disappeared. Weight gain during childhood was not associated with bone area or BMC, and aBMD was not associated with early growth. Optimal growth in height in girls is important for obtaining larger skeleton and consequently higher bone mass. However, when predicting bone mineral mass among elderly women, information on early growth does not improve prediction beyond that predicted by current height and weight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986AZh....63..446K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986AZh....63..446K"><span>The influence of cosmic rays on the stability and large-scale dynamics of the interstellar medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuznetsov, V. D.</p> <p>1986-06-01</p> <p>The diffusion-convection formulation is used to study the influence of galactic cosmic rays on the stability and dynamics of the interstellar medium which is supposedly kept in equilibrium by the gravitational field of stars. It is shown that the influence of cosmic rays on the growth rate of MHD instability depends largely on a dimensionless parameter expressing the ratio of the characteristic acoustic time scale to the cosmic-ray diffusion time. If this parameter is small, the cosmic rays will decelerate the build-up of instabilities, thereby stabilizing the system; in contrast, if the parameter is large, the system will be destabilized.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>