Large area soft x-ray collimator to facilitate x-ray optics testing
NASA Technical Reports Server (NTRS)
Espy, Samuel L.
1994-01-01
The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.
X-Ray Calibration Facility/Advanced Video Guidance Sensor Test
NASA Technical Reports Server (NTRS)
Johnston, N. A. S.; Howard, R. T.; Watson, D. W.
2004-01-01
The advanced video guidance sensor was tested in the X-Ray Calibration facility at Marshall Space Flight Center to establish performance during vacuum. Two sensors were tested and a timeline for each are presented. The sensor and test facility are discussed briefly. A new test stand was also developed. A table establishing sensor bias and spot size growth for several ranges is detailed along with testing anomalies.
Association of unipedal standing time and bone mineral density in community-dwelling Japanese women.
Sakai, A; Toba, N; Takeda, M; Suzuki, M; Abe, Y; Aoyagi, K; Nakamura, T
2009-05-01
Bone mineral density (BMD) and physical performance of the lower extremities decrease with age. In community-dwelling Japanese women, unipedal standing time, timed up and go test, and age are associated with BMD while in women aged 70 years and over, unipedal standing time is associated with BMD. The aim of this study was to clarify whether unipedal standing time is significantly associated with BMD in community-dwelling women. The subjects were 90 community-dwelling Japanese women aged 54.7 years. BMD of the second metacarpal bone was measured by computed X-ray densitometry. We measured unipedal standing time as well as timed up and go test to assess physical performance of the lower extremities. Unipedal standing time decreased with increased age. Timed up and go test significantly correlated with age. Low BMD was significantly associated with old age, short unipedal standing time, and long timed up and go test. Stepwise regression analysis revealed that age, unipedal standing time, and timed up and go test were significant factors associated with BMD. In 21 participants aged 70 years and over, body weight and unipedal standing time, but not age, were significantly associated with BMD. BMD and physical performance of the lower extremities decrease with older age. Unipedal standing time, timed up and go test, and age are associated with BMD in community-dwelling Japanese women. In women aged 70 years and over, unipedal standing time is significantly associated with BMD.
Radiation predictions and shielding calculations for RITS-6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick
2005-06-01
The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electronmore » beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access control restricts occupation and in adjacent uncontrolled areas.« less
1999-02-08
In the Vertical Processing Facility (VPF), workers check the placement of the Chandra X-ray Observatory on the stand on the floor. The stand will be used to raise the observatory to a vertical position. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
Measuring x-ray spectra of flash radiographic sources [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehring, Amanda Elizabeth; Espy, Michelle A.; Haines, Todd Joseph
2015-11-02
The x-ray spectra of flash radiographic sources are difficult to measure. The sources measured were Radiographic Integrated Test Stand-6 (370 rad at 1 m; 50 ns pulse) and Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) (550 rad at 1 m; 50 ns pulse). Features of the Compton spectrometer are described, and spectra are shown. Additional slides present data on instrumental calibration.
5. Credit BG. View looking northwest at eastern facade of ...
5. Credit BG. View looking northwest at eastern facade of Test Stand 'E' (Building 4259/E-60), solid rocket motor test facility. Central bay (high concrete walls) was used for testing large solid motors in a vertical position. A second smaller bay to the north fired smaller motors horizontally. Just south of the large bay is an equipment room with access to the tunnel system; entrance is by small single door on east side. The large double doors lead to a third bay used for X-raying solid rocket motors before testing. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
X-Ray Standing Waves on Surfaces
1993-01-01
dependent distributional changes of iodine on Pt 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film 7. Conclusions 8. Acknowledgments...4B. 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film As mentioned previously the total external reflection condition occurs...for a Zn atom layer embedded in the top arachidate bilayer of a Langmuir - Blodgett (LB) multilayer film which was deposited on the surface of a gold
Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand
NASA Astrophysics Data System (ADS)
Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun; Zhou, Xiu-Wen; Yang, Yi
2015-07-01
The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132-300 tungsten wires with 5-10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (˜50 TW) and total radiated energy (˜500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.
Density gradient free electron collisionally excited x-ray laser
Campbell, E.M.; Rosen, M.D.
1984-11-29
An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.
Development of a position sensitive X-ray detector for use in a light weight X-ray diffractometer
NASA Technical Reports Server (NTRS)
Semmler, R. A.
1971-01-01
A position sensitive proportional counter for use in an X-ray diffractometer is developed to permit drastic reductions in the power and weight requirements of the X-ray source and the elimination of the power, weight, and complexity of a moving slit. The final detector constructed and tested has a window spanning 138 and a free standing anode curved along an arc of 7.1 cm radius. Demonstration spectra of a quartz sample in a Debye-Sherrer geometry indicate a spatial resolution of 0.4 - 0.5 mm (0.3 - 0.4 theta). The lunar diffractometer consumed 25 watts in the X-ray generator and weighed about 20 pounds.
Density gradient free electron collisionally excited X-ray laser
Campbell, Edward M.; Rosen, Mordecai D.
1989-01-01
An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.
Performance of the Anti-Coincidence Detector on the GLAST Large Area Telescope
NASA Technical Reports Server (NTRS)
Thompson, D. J.; Charles, E.; Hartman, R. C.; Moiseev, A. A.; Ormes, J. F.
2007-01-01
The Anti-Coincidence Detector (ACD), the outermost detector layer in the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT), is designed to detect and veto incident cosmic ray charged particles, which outnumber cosmic gamma rays by 3-4 orders of magnitude. The challenge in ACD design is that it must have high (0.9997) detection efficiency for singly-charged relativistic particles, but must also have a low probability for self-veto of high-energy gammas by backplash radiation from interactions in the LAT calorimeter. Simulations and tests demonstrate that the ACD meete its design requirements. The performance of the ACD has remained stable thrugh stand-alone environmental testing, shipment across the U.S. installation onto the LAT, shipment back across the U.S., LAT environmental testing, and shipment to Arizona. As part of the fully-assembled GLAST observatory, the ACD is being readied for final testing before launch.
NASA Astrophysics Data System (ADS)
Perneczky, L.; Rauwolf, M.; Ingerle, D.; Eichert, D.; Brigidi, F.; Jark, W.; Bjeoumikhova, S.; Pepponi, G.; Wobrauschek, P.; Streli, C.; Turyanskaya, A.
2018-07-01
The confocal μXRF spectrometer of Atominstitut (ATI) was transported and set up at the X-ray Fluorescence beamline at Elettra - Sincrotrone Trieste. It was successfully adjusted to the incoming beam (9.2 keV). Test measurements on a free-standing Cu wire were performed to determine the size of the focused micro-beam (non-confocal mode, 56 × 35 μm2) and the size of the confocal volume (confocal mode, 41 × 24 × 34 μm2) for the Cu-K α emission. In order to test the setup's capabilities, two areas on different human bone samples were measured in confocal scanning mode. For one of the samples the comparison with a previous μ XRF measurement, obtained with a low power X-ray tube in the lab, is presented.
Liquid-explosives scanners stand trial in airports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Jermey N. A.
Air passengers may once more be allowed to pack beverages, lotions, and hair spray in their carry-on luggage, if imaging technologies to detect liquid explosives can prove their worth. Several competing systems, including multi-energy x-ray systems and a low-field magnetic resonance imaging (MRI) scanner, are undergoing field tests at some airports worldwide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
The Linac Coherent Light Source (LCLS) is required to deliver a high quality electron beam for producing coherent X-rays. As a result, high resolution beam position monitoring is required. The Beam Position Monitor (BPM) digitizer acquires analog signals from the beam line and digitizes them to obtain beam position data. Although Matlab is currently being used to test the BPM digitizer?s functions and capability, the Controls Department at SLAC prefers to use Experimental Physics and Industrial Control Systems (EPICS). This paper discusses the transition of providing similar as well as enhanced functionalities, than those offered by Matlab, to test themore » digitizer. Altogether, the improved test stand development system can perform mathematical and statistical calculations with the waveform signals acquired from the digitizer and compute the fast Fourier transform (FFT) of the signals. Finally, logging of meaningful data into files has been added.« less
NASA Astrophysics Data System (ADS)
Bautz, Mark W.; Kissel, S. E.; Ryu, K.; Suntharalingam, V.
2014-01-01
Silicon X-ray detectors require optical blocking filters to prevent out-of-band (UV, visible and near-IR) radiation from corrupting the X-ray signal. Traditionally, blocking filters have been deposited on thin, free-standing membranes suspended over the detector. Free-standing filters are fragile, however, and in past instruments have required heavy and complex vacuum housings to protect them from acoustic loads during ground operations and launch. A directly-deposited blocking filter greatly simplifies the instrument and in principle permits better soft X-ray detection efficiency than a traditional free-standing filter. Directly-deposited filters have flown in previous generation instruments (e.g. the XMM/Newton Reflection Grating Spectrometer) but none has yet been demonstrated on a modern, high-performance back-illuminated X-ray CCD. We report here on the status of our NASA-funded Strategic Astrophysics Technology program to demonstrate such filters.
Calibration of photo sensors for the space-based cosmic ray telescope JEM-EUSO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karus, Michael
2015-02-24
In order to unveil the mystery of ultra-high energy cosmic rays (UHECRs), the planned fluorescence telescope JEM-EUSO (Extreme Universe Space Observatory on-board Japanese Experiment Module) will observe extensive air showers induced by UHECRs from the International Space Station (ISS) orbit with a huge acceptance. The JEM-EUSO instrument consists of Fresnel optics and a focal surface detector with 5000 multi-anode photomultiplier tubes (MAPMTs), 300000 channels in total. For fluorescence detection of cosmic rays it is essential to calibrate the detector pre-flight with utmost precision and to monitor the performance of the detector throughout the whole mission time. For that purpose amore » calibration stand on-ground was built to measure precisely the performance of Hamamatsu 64 pixel MAPMTs that are planned to be used for JEM-EUSO. To investigate the suitability of alternative detector devices, further research is done with state-of-the-art silicon photomultipliers (SiPMs), namely Hamamatsu multi-pixel photon counters (MPPCs). These will also be tested in the calibration stand and their performance can be compared to conventional photomultiplier tubes.« less
Anatomical based registration of multi-sector x-ray images for panorama reconstruction
NASA Astrophysics Data System (ADS)
Ben-Zikri, Yehuda Kfir; Mendez, Stacy; Linte, Cristian A.
2017-03-01
Accurate measurement of long limb alignment is an essential stage of the pre-operative planning of realignment surgery. This alignment is quantified according to the hip-knee-ankle (HKA) angle of the mechanical axis of the lower extremity and is measured based on a full-length weight-bearing X-ray or standard computed radiography (CR) image of the patient in standing position. Due to the limited field-of-view of the traditionally employed digital X-ray imaging systems, several sector images are required to capture the posture of a standing individual. These sector images need to then be "stitched" together to reconstruct the standing posture. To eliminate user-induced variability and time constraints associated with the traditional manual "stitching" protocol, we have created an image processing application to automate the stitching process, when there are no reliable external markers available in the images, by only relying on the most reliable anatomical content of the image. The application starts with a rough segmentation of the tibia and the sector images are then registered by evaluating the DICE coefficient between the edges of these corresponding bones along the medial edge. The identified translations are then used to register the original sector images into the standing panorama image. To test the robustness of our method, we randomly selected 40 datasets from a variant database consisting of nearly 100 patient X-ray images acquired for patient screening as part of a multi-site clinical trial. The resulting horizontal and vertical translation values from the automated registration were compared to the homologous translations recorded during the manual panorama generation conducted by a knowledgeable X-ray imaging technician. The mean and standard deviation of the differences for the horizontal translation parameters was -0:27+/-1:14 mm and 0:31+/-1:86 mm for the left and right tibia, respectively. The vertical translation differences for the left and right tibia were 1:05+/-5:24 mm and 1:32+/-4:77 mm, respectively. For these differences, the expert radiologist reported no difference in the hip-knee-ankle angular assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cremers, D. A.; Wiens, R. C.; Arp, Z. A.
2003-01-01
One of the most Fundamental pieces of information about any planetary body is the elemental cornposition of its surface materials. The Viking Martian landers employed XRF (x-ray fluorescence) and the MER rovers are carrying APXS (alpha-proton x-ray spectrometer) instruments upgraded from that used on the Pathfinder rover to supply elemental composition information for soils and rocks for which direct contact is possible. These in-situ analyses require that the lander or rover be in contact with the sample
1999-02-08
In the Vertical Processing Facility (VPF), workers check fittings and cables on the stand that will raise the Chandra X-ray Observatory to a vertical position. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-08
In the Vertical Processing Facility (VPF), workers begin moving the overhead crane carrying the Chandra X-ray Observatory from its protective container to a stand on the floor. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
Automated reconstruction of standing posture panoramas from multi-sector long limb x-ray images
NASA Astrophysics Data System (ADS)
Miller, Linzey; Trier, Caroline; Ben-Zikri, Yehuda K.; Linte, Cristian A.
2016-03-01
Due to the digital X-ray imaging system's limited field of view, several individual sector images are required to capture the posture of an individual in standing position. These images are then "stitched together" to reconstruct the standing posture. We have created an image processing application that automates the stitching, therefore minimizing user input, optimizing workflow, and reducing human error. The application begins with pre-processing the input images by removing artifacts, filtering out isolated noisy regions, and amplifying a seamless bone edge. The resulting binary images are then registered together using a rigid-body intensity based registration algorithm. The identified registration transformations are then used to map the original sector images into the panorama image. Our method focuses primarily on the use of the anatomical content of the images to generate the panoramas as opposed to using external markers employed to aid with the alignment process. Currently, results show robust edge detection prior to registration and we have tested our approach by comparing the resulting automatically-stitched panoramas to the manually stitched panoramas in terms of registration parameters, target registration error of homologous markers, and the homogeneity of the digitally subtracted automatically- and manually-stitched images using 26 patient datasets.
NASA Astrophysics Data System (ADS)
Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe
2017-11-01
We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.
A Test Stand to Characterize and Contribute to the Development of DEPFET X-ray Detectors
NASA Astrophysics Data System (ADS)
Falcone, Abe
The field of X-ray astronomy is currently looking forward to several new missions (e.g Athena, BeppiColumbo, and IXPE which is a new SMEX polarimeter), and there is the possibility of a flag-ship mission (e.g. the Lynx X-ray Surveyor) and/or other SMEX through probe class missions in the long-term future with many mission concepts being developed (e.g. ARCUS). The X-ray detec-tors for these future missions must be developed to suitable maturity to be proposed for flight, and expertise operating the newest versions of the detectors must be acquired by potential mis-sion designers and proposers. There are several silicon X-ray imaging active pixel sensor (APS) detectors being developed at this time (hybrid CMOS, monolithic CMOS, and DEPFETs), and each of these have their own advantages and levels of maturity, while they all provide enhanced radia-tion hardness, lower power operation, and versatile readout modes. Of the new APS X-ray detec-tors being developed, the DEPleted p-channel Field Effect Transistors (DEPFETs) have exhibited the best noise performance to-date. While they do require larger pixel structures than their com-petitors, the low noise performance of these detectors makes them an excellent choice for many mission applications (e.g. they will be launched on 2 ESA missions, Athena & BepiColumbo), and their further development could benefit other missions, particularly future missions that might be led by NASA and US scientists. Up until now, the development of these detectors has been lim-ited to only two groups located in Germany; one group is at Max Planck Institute and the other is PNSensors which is comprised of engineers and scientists that previously led the DEPFET design work at Max Planck. We propose to engage one of these groups in order to: (a) acquire newly de-signed test DEPFET detectors built by PNSensor, through a very-low-cost arrangement, (b) build a test stand that can operate these detectors and gain valuable experience running them in vari-ous modes with variations on the detector settings, (c) characterize the DEPFETs independently of the manufacturer and in modes that are relevant to our x-ray applications, and (d) use this new operation experience and characterization data to inform the next design iterations and the op-timization of DEPFET detectors for future X-ray missions.
Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor
NASA Astrophysics Data System (ADS)
Dragone, A.; Kenney, C.; Lozinskaya, A.; Tolbanov, O.; Tyazhev, A.; Zarubin, A.; Wang, Zhehui
2016-11-01
A multilayer stacked X-ray camera concept is described. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detection [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.
X-ray backlighting of imploding aluminium liners on PTS facility
NASA Astrophysics Data System (ADS)
Yang, Qingguo; Liu, Dongbing; Mu, Jian; Huang, Xianbin; Dan, Jiakun; Xie, Xudong; Deng, Wu; Feng, Shuping; Wang, Meng; Ye, Yan; Peng, Qixian; Li, Zeren
2016-09-01
The x-ray backlighting systems, including a 1.865 keV (Si Heα line) spherically bent crystal imaging system and an ˜8.3 keV (Cu Heα line) point-projection imaging system, newly fielded on the Primary Test Stand facility are introduced and its preliminary experimental results in radiography of the aluminium (Al) liners with seeded sinusoidal perturbations are presented. The x-ray backlighter source is created using a 1 TW, 1 kJ Nd: glass high power laser, kilo-joule laser system, recently constructed at China Academy of Engineering Physics. The ablation melt and instability of the imploding Al liner outer edge under the driving current of ˜7.5 MA are successfully observed using these two backlighting systems, respectively.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... AHPB stands for adjusted historical payment basis. CF stands for conversion factor. CRNA stands for...). (3) Outpatient physical and occupational therapy services if furnished by a person or an entity that... established under section 1833(h) of the Act). (5) X-ray, radium, and radioactive isotope therapy, including...
Fei, Han; Li, Wei-shi; Sun, Zhuo-ran; Jiang, Shuai; Chen, Zhong-qiang
2017-01-01
Abstract This study aimed to analyze the effect of patient positions on the lordosis and scoliosis of patients with degenerative lumbar scoliosis (DLS). Seventy-seven patients with DLS were retrospectively analyzed. We measured lordosis and Cobb's angle on preoperative upright x-rays and magnetic resonance imagings in supine position. The lordosis and scoliosis of surgical segments in intraoperative prone position were measured on intraoperative radiographs of 20 patients to compare with that in standing position. Paired t tests were performed to investigate the parameters of the sample. From standing to supine position the whole lordosis increased (29.2 ± 15.7 degree vs. 34.9 ± 11.2 degree), and the whole scoliosis decreased (24.3 ± 11.8 degree vs. 19.0 ± 10.5 degree); 53 of 77 (68.8%) cases had increased lordosis, and 67 of 77 (87%) cases had decreased scoliosis. The lordosis of surgical segments in standing position had no difference with that in intraoprerative prone position. But in changing from supine/standing position to intraoprerative prone position, the scoliosis of surgical segments decreased (14.7 ± 9.4 degree vs. 11.4 ± 7.0 degree; 19.0 ± 11.8 degree vs. 11.4 ± 7.0 degree, respectively), and 18 of 20 (90%) cases had decreased scoliosis in intraoperative prone position than that in standing position. Compared with standing position in DLS patients, supine position increased lordosis and reduced scoliosis, and intraoperative prone position reduced scoliosis significantly. When evaluating the severity of DLS and making preoperative surgical plans, lumbar lordosis in supine position should also be evaluated in addition to upright x-ray, and the effects of different positions should be taken into consideration to reduce deviation. PMID:28796046
Fei, Han; Li, Wei-Shi; Sun, Zhuo-Ran; Jiang, Shuai; Chen, Zhong-Qiang
2017-08-01
This study aimed to analyze the effect of patient positions on the lordosis and scoliosis of patients with degenerative lumbar scoliosis (DLS).Seventy-seven patients with DLS were retrospectively analyzed. We measured lordosis and Cobb's angle on preoperative upright x-rays and magnetic resonance imagings in supine position. The lordosis and scoliosis of surgical segments in intraoperative prone position were measured on intraoperative radiographs of 20 patients to compare with that in standing position. Paired t tests were performed to investigate the parameters of the sample.From standing to supine position the whole lordosis increased (29.2 ± 15.7 degree vs. 34.9 ± 11.2 degree), and the whole scoliosis decreased (24.3 ± 11.8 degree vs. 19.0 ± 10.5 degree); 53 of 77 (68.8%) cases had increased lordosis, and 67 of 77 (87%) cases had decreased scoliosis. The lordosis of surgical segments in standing position had no difference with that in intraoprerative prone position. But in changing from supine/standing position to intraoprerative prone position, the scoliosis of surgical segments decreased (14.7 ± 9.4 degree vs. 11.4 ± 7.0 degree; 19.0 ± 11.8 degree vs. 11.4 ± 7.0 degree, respectively), and 18 of 20 (90%) cases had decreased scoliosis in intraoperative prone position than that in standing position.Compared with standing position in DLS patients, supine position increased lordosis and reduced scoliosis, and intraoperative prone position reduced scoliosis significantly. When evaluating the severity of DLS and making preoperative surgical plans, lumbar lordosis in supine position should also be evaluated in addition to upright x-ray, and the effects of different positions should be taken into consideration to reduce deviation.
Polymeric and Molecular Materials for Advanced Organic Electronics
2014-10-20
x - ray reflectivity, grazing incidence x - ray scattering, cyclic voltam- metry...6). ix These materials are characterized by AFM, conducting AFM, XPS, x - ray reflectivity (XRR), standing wave x - ray reflectivity (SWXRR), x - ray ...radiation hard - ness measurements, and quantum chemical computation of dielectric constants. Remark- ably, for semiconductors as diverse
NASA Technical Reports Server (NTRS)
Cremers, D. A.; Wiens, R. C.; Arp, Z. A.; Harris, R. D.; Maurice, S.
2003-01-01
One of the most fundamental pieces of information about any planetary body is the elemental composition of its surface materials. The Viking Martian landers employed XRF (x-ray fluorescence) and the MER rovers are carrying APXS (alpha-proton x-ray spectrometer) instruments upgraded from that used on the Pathfinder rover to supply elemental composition information for soils and rocks to which direct contact is possible. These in- situ analyses require that the lander or rover be in contact with the sample. In addition to in-situ instrumentation, the present generation of rovers carry instruments that operate at stand-off distances. The Mini-TES is an example of a stand-off instrument on the MER rovers. Other examples for future missions include infrared point spectrometers and microscopic-imagers that can operate at a distance. The main advantage of such types of analyses is obvious: the sensing element does not need to be in contact or even adjacent to the target sample. This opens up new sensing capabilities. For example, targets that cannot be reached by a rover due to impassable terrain or targets positioned on a cliff face can now be accessed using stand-off analysis. In addition, the duty cycle of stand-off analysis can be much greater than that provided by in-situ measurements because the stand-off analysis probe can be aimed rapidly at different features of interest eliminating the need for the rover to actually move to the target. Over the past five years we have been developing a stand-off method of elemental analysis based on atomic emission spectroscopy called laser-induced breakdown spectroscopy (LIBS). A laser-produced spark vaporizes and excites the target material, the elements of which emit at characteristic wavelengths. Using this method, material can be analyzed from within a radius of several tens of meters from the instrument platform. A relatively large area can therefore be sampled from a simple lander without requiring a rover or sampling arms. The placement of such an instrument on a rover would allow the sampling of locations distant from the landing site. Here we give a description of the LIBS method and its advantages. We discuss recent work on determining its characteristics for Mars exploration, including accuracy, detection limits, and suitability for determining the presence of water ice and hydrated minerals. We also give a description of prototype instruments we have tested in field settings.
1999-02-09
In the Vertical Processing Facility (VPF), the STS-93 crew stands in front of the VPF Aft Flight Deck simulator, which is part of KSC's Cargo Integration Test Equipment. From left, they are Mission Specialist Michel Tognini of France, Commander Eileen M. Collins, Mission Specialist Steven A. Hawley, Pilot Jeffrey S. Ashby and Mission Specialist Catherine G. Coleman. Tognini represents France's space agency, the Centre National d'Etudes Spatiales (CNES). STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory, which is undergoing testing in the VPF. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragone, Angelo; Kenney, Chris; Lozinskaya, Anastassiya
Here, we describe a multilayer stacked X-ray camera concept. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detectionmore » [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.« less
Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor
Dragone, Angelo; Kenney, Chris; Lozinskaya, Anastassiya; ...
2016-11-29
Here, we describe a multilayer stacked X-ray camera concept. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detectionmore » [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.« less
NICER Packaging for SpaceX CRS-11
2017-04-06
Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured on a special test stand. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.
Looking northeast from Test Stand 'A' superstructure towards Test Stand ...
Looking northeast from Test Stand 'A' superstructure towards Test Stand 'D' tower (4223/E-24, left background), Test Stand 'C' tower (4217/E-18, center), and Test Stand 'B' (4215/E-16, right foreground). - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
X-ray diffraction and X-ray standing-wave study of the lead stearate film structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.
2016-05-15
A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less
Effect of gold photocathode contamination on a flat spectral response X-ray diode
NASA Astrophysics Data System (ADS)
Wang, Kun-lun; Zhang, Si-qun; Zhou, Shao-tong; Huang, Xian-bin; Ren, Xiao-dong; Dan, Jia-kun; Xu, Qiang
2018-03-01
A detector with an approximately flat spectral response is important for diagnosing intense thermal X-ray flux. A flat-spectral-response X-ray diode (FSR-XRD) utilizes a gold photocathode X-ray diode and a specially configured gold filter to give rise to a nearly flat spectral response in the photon energy range of 100-4000 eV. It has been observed that the spectral responses of several FSR-XRDs changed after a few shots of z-pinch experiments on the Primary Test Stand facility. This paper presents an analysis of the changes by fitting the spectral responses of the gold photocathodes using a model with a free parameter which characterizes the thickness of the contamination. The spectral responses of FSR-XRDs were calibrated with synchrotron radiation, and several cleaning methods were tested with the calibration. Considering the results of model and cleaning, it may be anticipated that contamination was the major reason of the response changing. Contamination worsened the flatness of the spectral response of the FSR-XRD and decreased the averaged response, hence it is important to avoid contamination. Current results indicate a requirement of further study of the contamination.
X-ray standing wave analysis of nanostructures using partially coherent radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in; Das, Gangadhar; Bedzyk, M. J.
2015-09-07
The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (δλ ≠ 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top amore » 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.« less
Aerial shows Stennis test stands
2004-04-16
An aerial photo shows the B-1/B-2 Test Stand (foreground), A-2 Test Stand (middle) and A-1 Test Stand (back). The historic stands have been used to test engines used on every manned Apollo and space shuttle mission.
9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1B ...
9. WEST SIDE, TEST STAND AND SUPERSTRUCTURE. TEST STAND 1-B IN DISTANCE. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Jump as Far as You Can [Problem Solvers: Problem
ERIC Educational Resources Information Center
Bofferding, Laura; Yigit, Melike
2013-01-01
The standing long jump was an Olympic event until 1912. In 1904, Ray Ewry set the world record for the longest standing long jump, which was about 11.5 feet, or 138 inches. Although the standing long jump is no longer an Olympic event, the Norwegians still include it in their National Competition, and Arne Tvervaag set a new world record at about…
Optical Metrology for the Segmented Optics on the Constellation-X Spectroscopy X-Ray Telescope
NASA Technical Reports Server (NTRS)
Content, David; Colella, David; Fleetwood, Charles; Hadjimichael, Theo; Lehan, John; McMann, Joseph; Reid, Paul; Saha, Timo; Wright, Geraldine; Zhang, William
2004-01-01
We present the metrology requirements and metrology implementation necessary to prove out the reflector technology for the Constellation X(C-X) spectroscopy X-ray telescope (SXT). This segmented, 1.6m diameter highly nested Wolter-1 telescope presents many metrology and alignment challenges. In particular, these mirrors have a stringent imaging error budget as compared to their intrinsic stiffness; This is required for Constellation-X to have sufficient effective area with the weight requirement. This has implications for the metrology that can be used. A variety of contract and noncontact optical profiling and interferometric methods are combined to test the formed glass substrates before replication and the replicated reflector segments.The reflectors are tested both stand-alone and in-situ in an alignment tower.Some of these methods have not been used on prior X-ray telescopes and some are feasible only because of the segmented approach used on the SXT. Methods discussed include high precision coordinate measurement machines using very low force or optical probe axial interferometric profiling azimuthal circularity profiling and use of advanced null optics such as conical computer generated hologram (CGHs).
X-ray spectroscopy of the SSME plume
NASA Technical Reports Server (NTRS)
Olive, Dan F.
1988-01-01
In order to examine the potential of using SSME exhaust plume radiation in the soft X-ray spectrum as an early warning system of imminent engine failure, a low cost, low risk experiment was devised. An approach was established, equipment was leased, the system was installed and checked out, and data were successfully acquired demonstrating the proof-of-concept. One spectrum measurement of the SSME plume was acquired during a 300 second burn on the A-1 Test Stand. This spectrum showed a prominent, line emission feature at about 34.5 KeV, a result which was not expected, nor can it be explained at this time. If X-ray spectra are to be useful as a means of monitoring nominal engine operation, it will be necessary to explore this region of the EM spectrum in greater detail. The presence of structure in the spectrum indicates that this technology may prove to be useful as an engine health monitoring system.
Velazquez-Alva, Maria Consuelo; Irigoyen Camacho, Maria Esther; Lazarevich, Irina; Delgadillo Velazquez, Jaime; Acosta Dominguez, Patricia; Zepeda Zepeda, Marco A
2017-01-01
To compare the prevalence of sarcopenia using two indicators: skeletal muscle mass index (SMI) and calf circumference (CC) used in the algorithm proposed by the European Working Group on Sarcopenia in Mexican elderly women. This was a cross-sectional study. Lean body mass was determined by dual-energy X-ray absorptiometry. To define sarcopenia, the SMI was obtained using a cut-off value of 5.5 kg/m 2 , and the CC cut-off was 31 cm. For gait speed and handgrip strength, the cut-off values were 0.8 m/s and 20 kg, respectively. A total of 137 women (mean age 73.8 ± 6.7 years) participated in the study. The prevalence of sarcopenia was 14.6% using SMI and 11.0% using CC (P = 0.009). Body mass index was associated with a lower probability of sarcopenia applying SMI or CC (OR 0.75, P = 0.002 for SMI and OR 0.71, P = 0.004 for CC). Sarcopenia evaluated either with dual-energy X-ray absorptiometry or CC was not associated with physical performance, such as five times chair stand test, timed up and go test and short physical performance battery. Additionally, SMI was not associated with physical performance, five times chair stand test (P = 0.775) and timed up-and-go test (P = 0.341). The prevalence of sarcopenia in active elderly women was low. A higher prevalence of sarcopenia was detected using SMI compared with CC. It is important to identify the best methods to assess skeletal muscle mass to obtain a reliable diagnosis of sarcopenia. Geriatr Gerontol Int 2017; 17: 161-170. © 2015 Japan Geriatrics Society.
Multimodal image registration of the scoliotic torso for surgical planning
2013-01-01
Background This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. Methods TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. Results The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. Conclusions The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso. PMID:23289431
Doping-Based Stabilization of the M2 Phase in Free-Standing VO2 Nanostructures at Room Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelcov, Evgheni; Tselev, Alexander; Ivanov, Ilia N
2012-01-01
A new high-yield method of doping VO2 nanostructures with aluminum is proposed, which renders possible stabilization of the monoclinic M2 phase in free-standing nanoplatelets in ambient conditions and opens an opportunity for realization of a purely electronic Mott Transition Field-Effect Transistor without an accompanying structural transition. The synthesized free-standing M2-phase nanostructures are shown to have very high crystallinity and an extremely sharp temperature-driven metal-insulator transition. A combination of x-ray microdiffraction, micro-Raman spectroscopy, Energy-Dispersive X-ray spectroscopy, and four-probe electrical measurements allowed thorough characterization of the doped nanostructures. Light is shed onto some aspects of the nanostructure growth, and the temperature-doping levelmore » phase diagram is established.« less
Ion implantation for manufacturing bent and periodically bent crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellucci, Valerio; Camattari, Riccardo; Guidi, Vincenzo, E-mail: guidi@fe.infn.it
2015-08-10
Ion implantation is proposed to produce self-standing bent monocrystals. A Si sample 0.2 mm thick was bent to a radius of curvature of 10.5 m. The sample curvature was characterized by interferometric measurements; the crystalline quality of the bulk was tested by X-ray diffraction in transmission geometry through synchrotron light at ESRF (Grenoble, France). Dislocations induced by ion implantation affect only a very superficial layer of the sample, namely, the damaged region is confined in a layer 1 μm thick. Finally, an elective application of a deformed crystal through ion implantation is here proposed, i.e., the realization of a crystalline undulator to producemore » X-ray beams.« less
2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...
2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL
NASA Astrophysics Data System (ADS)
Cassola, V. F.; Kramer, R.; Brayner, C.; Khoury, H. J.
2010-08-01
Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.
28. HISTORIC VIEW OF A3 ROCKET IN TEST STAND NO. ...
28. HISTORIC VIEW OF A-3 ROCKET IN TEST STAND NO. 3 AT KUMMERSDORF (THE LARGEST TEST STAND AT KUMMERSDORF). THE STAND WAS MOBILE, SINCE IT MOVED ALONG RAILS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Recent applications of hard x-ray photoelectron spectroscopy
Weiland, Conan; Rumaiz, Abdul K.; Pianetta, Piero; ...
2016-05-05
Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in-situ or in-operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. We also present physical considerations that differentiate HAXPES from photoemission measurements utilizing soft and ultraviolet x rays.
1. TEST STAND 1A ENVIRONS, SHOWING WEST SIDE OF TEST ...
1. TEST STAND 1-A ENVIRONS, SHOWING WEST SIDE OF TEST STAND 1-A, RP1 COMBINED FUEL STORAGE TANK FARM BELOW WATER TANKS ON HILLSIDE TO LEFT, AND TEST STAND 1-B IN DISTANCE AT RIGHT. Looking east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
NASA and Japanese X-ray observatories Clarify Origin of Cosmic Rays
NASA Technical Reports Server (NTRS)
2005-01-01
Recent observations from NASA and Japanese X-ray observatories have helped clarify one of the long-standing mysteries in astronomy -- the origin of cosmic rays. This image from Japan's Suzaku X-ray observatory shows RXJ1713.7-3946. This supernova remnant is the gaseous remnant of a massive star that exploded. The remnant is about 1,600 years old. The contour lines show where gamma-ray intensity is highest, as measured by the High Energy Stereoscopic System (HESS) in Namibia.
NASA Astrophysics Data System (ADS)
Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli
2016-01-01
Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.
Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli
2016-01-21
Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecular tilt angle about the substrate normal with the increasing film thickness.
20. Building 202, detail of stand A, rocket test stand ...
20. Building 202, detail of stand A, rocket test stand in test cell. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE ...
31. HISTORIC VIEW OF TEST STAND NO. 1 AT PEENEMUENDE A-4 ENGINE AND ROCKET PROPULSION TEST STAND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND ...
GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND CENTER, REDSTONE TEST STAND FOREGROUND RIGHT, SATURN I C TEST STAND BACKGROUND LEFT. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Standing Vs Supine; Does it Matter in Cough Stress Testing?
Patnam, Radhika; Edenfield, Autumn L; Swift, Steven E
The aim of this study was to compare the sensitivity of cough stress test in the standing versus supine position in the evaluation of incontinent females. We performed a prospective observational study of women with the chief complaint of urinary incontinence (UI) undergoing a provocative cough stress test (CST). Subjects underwent both a standing and a supine CST. Testing order was randomized via block randomization. Cough stress test was performed in a standard method via backfill of 200 mL or until the subject described strong urge. The subjects were asked to cough, and the physician documented urine leakage by direct observation. The gold standard for stress UI diagnosis was a positive CST in either position. Sixty subjects were enrolled, 38 (63%) tested positive on any CST, with 38 (63%) positive on standing compared with 29 (28%) positive on supine testing. Nine women (15%) had positive standing and negative supine testing. No subjects had negative standing with positive supine testing. There were no significant differences in positive tests between the 2 randomized groups (standing first and supine second vs. supine first and standing second). When compared with the gold standard of any positive provocative stress test, the supine CST has a sensitivity of 76%, whereas the standing CST has a sensitivity of 100%. The standing CST is more sensitive than the supine CST and should be performed in any patient with a complaint of UI and negative supine CST. The order of testing either supine or standing first does not affect the results.
Development of a Hybrid Gas Detector/Phoswich for Hard X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Pimperl, M. M.; Ramsey, B. D.; Austin, R. A.; Minamitani, T.; Weisskopf, M. C.; Grindlay, J. E.; Lum, K. S. K.; Manandhar, R. P.
1994-01-01
A hybrid detector is under development for use as a balloon-borne instrument in hard x-ray astronomy. The detector provides broad band coverage by coupling an optical avalanche chamber to a phoswich. The optical avalanche chamber yields superior instrument response at low energies while the scintillator takes over at the higher energies where the gas becomes transparent: at 25 keV, the addition of the gas chamber improves the energy resolution by a factor of 2.5 and the spatial resolution by a factor of 10 as compared to the stand-alone response of the phoswich. A half-scale prototype instrument is being constructed for test purposes and to help resolve a number of design questions involving the coupling of the two components.
2011-07-29
Work continues on the A-3 Test Stand at Stennis Space Center. The new stand will allow operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet. The test stand is scheduled for completion and activation in 2013.
NASA Astrophysics Data System (ADS)
Gray, Alexander
In this dissertation we describe several new directions in the field of x-ray photoelectron spectroscopy, with a particular focus on the enhancement and control of the depth sensitivity and selectivity of the measurement. Enhancement of the depth sensitivity is achieved by going to higher photon energies with hard x-ray excitation and taking advantage of the resulting larger electron inelastic mean-free paths. This novel approach provides a more accurate picture of bulk electronic structure, when compared to the traditional soft x-ray photoelectron spectroscopy (XPS) which, for some systems, may be too strongly influenced by surface effects. We present three case-studies wherein such hard x-ray photoelectron spectroscopy (HAXPES) in the multi-keV regime is used to probe the bulk properties of complex thin-film materials, which would be otherwise impossible to investigate using conventional soft x-ray XPS. Namely, (1) we directly observe the opening of a semiconducting gap in epitaxial Cr0.80Al0.20 alloy thin films and confirm this with theory, (2) we study the electronic and structural properties of near-Heusler FexSi1-x alloy thin films of various composition and degrees of crystallinity, and (3) we observe the Mott metal-to-insulator transition in the ultra-thin epitaxial LaNiO3 films via core-level and valence-band spectroscopies. By performing the experiments at the photon energy of 5.95 keV, the bulk-sensitivity of the measurements, characterized by the inelastic mean-free path of the photoemitted electrons, is enhanced by a factor of 4--7 compared to the conventional soft x-ray photoelectron spectroscopy. The experimental results are compared to calculations performed using various first-principle theoretical approaches, such as the density-functional theory and the one-step theory of photoemission. Furthermore, we present the first results of hard x-ray angle-resolved photoemission measurements (HARPES), at excitation energies of 3.24 and 5.95 keV. In a second aspect of this dissertation, depth selectivity is achieved by setting-up an x-ray standing wave field in the sample by growing it on a synthetic periodic multilayer mirror substrate, which in first-order Bragg reflection acts as the standing-wave generator. The antinodes of the standing wave function as "epicenters" for photoemission, and can be moved in the direction perpendicular to the sample surface by either scanning the incidence angle thetainc, or the photon energy through the Bragg condition. Alternatively, provided that one of the underlying layers in the structure is grown in a shape of a wedge with varying thickness, the standing wave can be scanned vertically though the sample simply by moving the sample laterally under the x-ray measurement spot. We present the first study in which the chemical and electronic-structure profiles of a magnetic tunnel junction La 0.7Sr0.3MnO3/SrTiO3 (LSMO/STO) have been quantitatively determined by a combination of soft and hard x-ray standing-wave excited photoemission. By comparing experiment to x-ray optical calculations, the detailed chemical profile of the constituent layers and their interfaces is quantitatively derived with Angstrom precision. Combined with core-hole multiplet theory incorporating Jahn-Teller distortion, these results indicate a change in the Mn bonding state near the LSMO/STO interface. Our results thus further clarify the reduced performance of LSMO/STO magnetic tunnel junction compared to ideal theoretical expectations. Finally, we demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM) as a further aspect of standing-wave photoemission. We show that standing-wave excited photoelectron microscopy can be used to produce element-specific and depth-selective images of patterned samples. In conjunction with x-ray optical theoretical modeling, quantitative information about the depth-dependent chemical composition of the sample can be extracted from the photoemission data. The good agreement between our experimental results and model calculations suggests that future studies with better spatial and spectral resolution will also yield more detailed information about the interfacial regions. This addition of quantitative depth selectivity to the conventional laterally-resolved soft x-ray photoelectron emission microscopy thus should considerably enhance the capabilities of the PEEM as a research, development and metrology tool for science and industry. (Abstract shortened by UMI.)
2010-10-01
An 80,000-gallon liquid hydrogen tank is placed at the A-3 Test Stand construction site on Sept. 24, 2010. The tank will provide propellant for tests of next-generation rocket engines at the stand. It will be placed upright on top of the stand, helping to increase the overall height to 300 feet. Once completed, the A-3 Test Stand will enable operators to test rocket engines at simulated altitudes of up to 100,000 feet. The A-3 stand is the first large rocket engine test structure to be built at Stennis Space Center since the 1960s.
2010-09-24
A 35,000-gallon liquid oxygen tank is placed at the A-3 Test Stand construction site on Sept. 24, 2010. The tank will provide propellant for tests of next-generation rocket engines at the stand. It will be placed upright on top of the stand, helping to increase the overall height to 300 feet. Once completed, the A-3 Test Stand will enable operators to test rocket engines at simulated altitudes of up to 100,000 feet. The A-3 stand is the first large rocket engine test structure to be built at Stennis Space Center since the 1960s.
Photographic copy of site plan for proposed Test Stand "D" ...
Photographic copy of site plan for proposed Test Stand "D" in 1958. The contemporary site plans of test stands "A," "B," and "C" are also visible, along with the interconnecting tunnel system. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering "Site Plan for Proposed Test Stand "D" - Edwards Test Station," drawing no. ESP/22-0, 14 November 1958 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
A-3 Test Stand continues with test cell installation
2010-07-20
Employees at Stennis Space Center continue work on the A-3 Test Stand. As shown, a section of the test cell is lifted for installation on the stand's structural steel frame. Work on the A-3 Test Stand began in 2007. It is scheduled for activation in 2012.
Design of an x-ray telescope optics for XEUS
NASA Astrophysics Data System (ADS)
Graue, Roland; Kampf, Dirk; Wallace, Kotska; Lumb, David; Bavdaz, Marcos; Freyberg, Michael
2017-11-01
The X-ray telescope concept for XEUS is based on an innovative high performance and light weight Silicon Pore Optics technology. The XEUS telescope is segmented into 16 radial, thermostable petals providing the rigid optical bench structure of the stand alone XRay High Precision Tandem Optics. A fully representative Form Fit Function (FFF) Model of one petal is currently under development to demonstrate the outstanding lightweight telescope capabilities with high optically effective area. Starting from the envisaged system performance the related tolerance budgets were derived. These petals are made from ceramics, i.e. CeSiC. The structural and thermal performance of the petal shall be reported. The stepwise alignment and integration procedure on petal level shall be described. The functional performance and environmental test verification plan of the Form Fit Function Model and the test set ups are described in this paper. In parallel to the running development activities the programmatic and technical issues wrt. the FM telescope MAIT with currently 1488 Tandem Optics are under investigation. Remote controlled robot supported assembly, simultaneous active alignment and verification testing and decentralised time effective integration procedures shall be illustrated.
Commercialization of an S-band standing-wave electron accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju
2016-09-01
An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.
Measurements of high energy photons in Z-pinch experiments on primary test stand
NASA Astrophysics Data System (ADS)
Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin
2015-08-01
High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.
Measurements of high energy photons in Z-pinch experiments on primary test stand.
Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin
2015-08-01
High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.
NASA Astrophysics Data System (ADS)
Alaf, M.; Gultekin, D.; Akbulut, H.
2013-06-01
Free-standing multiwalled carbon nano tube papers (buckypapers) were prepared by vacuum filtration from functionalized multi walled carbon nano tubes (MWCNTs) with controlling porosity. Double phase matrix Sn/SnO2/MWCNT nanocomposites were obtained in two steps, including thermal evaporation of metallic tin (Sn) on the MWCNT papers and RF plasma oxidation. The ratio between metallic tin (Sn) and tin oxide (SnO2) was controlled with plasma oxidation time. It was determined that the evaporated pure tin nano crystals were mechanically penetrated into pores of buckypapers to form functionally gradient nanocomposites. Sn/SnO2 coated on MWCNT buckypapers were used as working electrodes in assembled as coin-type (CR2016) test cells. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine the structure and morphology of the obtained nanocomposites. In addition, the discharge/charge test, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out to characterize the electrochemical properties of these composites as anode materials for Li-ion batteries.
2012-06-08
A tethered Stennis Space Center employee climbs an A-3 Test Stand ladder June 8, 2012, against the backdrop of the A-2 and B-1/B-2 stands. The new A-3 Test Stand will enable simulated high-altitude testing of next-generation rocket engines.
2012-06-08
A tethered Stennis Space Center employee climbs an A-3 Test Stand ladded June 8, 2012, against the backdrop of the A-2 and B-1/B-2 stands. The new A-3 Test Stand will enable simulated high-altitude testing of next-generation rocket engines.
Characterization of X-ray Lobster Optics with a Hybrid CMOS sensor
NASA Astrophysics Data System (ADS)
Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.; Bray, Evan; McQuaide, Maria; Kern, Matthew; Wages, Mitchell; Hull, Samuel; Inneman, Adolf; Hudec, Rene; Stehlikova, Veronika
2018-01-01
X-ray lobster optics provide a unique way to focus X-rays onto a small focal plane imager with wide field of view imaging. Such an instrument with angular resolution of a few arcminutes can be used to study GRB afterglows, as well as the variability and spectroscopic characteristics for various astrophysical objects. At Penn State University, we have characterized a lobster optic with an H1RG X-Ray hybrid CMOS detector (100 μm thick Silicon with 18 μm pixel size). The light-weight compact lobster optic with a 25 cm focal length provides two dimensional imaging with ~25 cm2 effective area at 2 keV. We utilize a 47 meter long X-ray beam line at Penn state University to do our experiments where we characterize the overall effective area of the instrument at 1.5 - 8 keV for both on-axis and off-axis angles. In this presentation, we will describe the characterization test stand and methods, as well as the detailed results. While this is simply a proof-of-concept experiment, such an instrument with significant collecting area can be explored for future rocket or CubeSat experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyu, Lu; Niu, Dongmei, E-mail: mayee@csu.edu.cnmailto; Xie, Haipeng
Combining ultraviolet photoemission spectroscopy, X-ray photoemission spectroscopy, atomic force microscopy, and X-ray diffraction measurements, we performed a systematic investigation on the correlation of energy level alignment, film growth, and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on highly oriented pyrolytic graphite. The molecules lie down in the first layer and then stand up from the second layer. The ionization potential shows a sharp decrease from the lying down region to the standing up region. When C8-BTBT molecules start standing up, unconventional energy level band-bending-like shifts are observed as the film thickness increases. These shifts are ascribed to gradual decreasing of the molecularmore » tilt angle about the substrate normal with the increasing film thickness.« less
NASA Astrophysics Data System (ADS)
Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem
2015-11-01
Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.
13. Photographic copy of site plan displaying Test Stand 'C' ...
13. Photographic copy of site plan displaying Test Stand 'C' (4217/E-18), Test Stand 'D' (4223/E-24), and Control and Recording Center (4221/E-22) with ancillary structures, and connecting roads and services. California Institute of Technology, Jet Propulsion Laboratory, Facilities Engineering and Construction Office 'Repairs to Test Stand 'C,' Edwards Test Station, Legend & Site Plan M-1,' drawing no. ESP/115, August 14, 1987. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view of Test Stand ...
Credit WCT. Photographic copy of photograph, view of Test Stand "D" from Test Stand "A" while a rocket engine test is in progress. Cloud of steam is from partly from water created by propellant reaction and from water sprayed by flame bucket into engine exhaust for cooling purposes. A portion of Test Stand "C" is visible at the far right. (JPL negative no. 384-2082-B, 23 October 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Credit BG. View looking northeast at southwestern side of Test ...
Credit BG. View looking northeast at southwestern side of Test Stand "D" complex. Test Stand "D" workshop (Building 4222/E-23) is at left; shed to its immediate right is an entrance to underground tunnel system which interconnects all test stands. To the right of Test Stand "D" tower are four Clayton water-tube flash boilers once used in the Steam Generator Plant 4280/E-81 to power the vacuum ejector system at "D" and "C" stands. A corner of 4280/E-81 appears behind the boilers. Boilers were removed as part of stand dismantling program. The Dv (vertical vacuum) Test Cell is located in the Test Stand "D" tower, behind the sunscreen on the west side. The top of the tower contains a hoist for lifting or lowering rocket engines into the Dv Cell. Other equipment mounted in the tower is part of the steam-driven vacuum ejector system - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
1. Photographic copy of original engineering drawing for Test Stand ...
1. Photographic copy of original engineering drawing for Test Stand 'C.' California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'New Test Stand Plan -- Edwards Test Station' drawing no. E18/2-3, 18 January 1957. - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
View looking west at Test Stand 'A' complex in morning ...
View looking west at Test Stand 'A' complex in morning sun. View shows Monitor Building 4203/E-4 at left, barrier (Building 4216/E-17) to right of 4203/E-4, and Test Stand 'A' tower. Attached structure to lower left of tower is Test Stand 'A' machine room which contained refrigeration equipment. Building in right background with Test Stand 'A' tower shadow on it is Assembly Building 4288/E-89, built in 1984. Row of ground-mounted brackets in foreground was used to carry electrical cable and/or fuel lines. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
25. "TEST STAND 1A UTILIZED TO TEST THE ATLAS ICBM", ...
25. "TEST STAND 1-A UTILIZED TO TEST THE ATLAS ICBM", CROPPED OUT: "DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB." Photo no. 11,371 57; G-AFFTC 15 OCT 57. Looking southwest from below the stand. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
1963-01-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This aerial photograph, taken January 15, 1963, gives a close overall view of the newly developed test complex. Depicted in the forefront center is the S-IC test stand with towers prominent, the Block House is seen in the center just above the S-IC test stand, and the large hole to the left, located midway between the two is the F-1 test stand site.
Dulac, Maude; Boutros, Guy El Hajj; Pion, Charlotte; Barbat-Artigas, Sébastien; Gouspillou, Gilles; Aubertin-Leheudre, Mylène
2016-01-01
To investigate whether handgrip strength normalized to body weight could be a useful clinical tool to identify dynapenia and assess functional capacity in post-menopausal women. A total of 136 postmenopausal women were recruited. Body composition (Dual Energy X-ray Absorptiometry [DEXA], Bio-electrical Impedence Analysis [BIA]), grip strength (dynamometer) and functional capacity (senior fitness tests) were evaluated. Dynapenia was established according to a handgrip strength index (handgrip strength divided by body weight (BW) in Kg/KgBW) obtained from a reference population of young women: Type I dynapenic (<0.44 kg/KgBW) and type II dynapenic (<0.35 kg/KgBW). The results show a positive correlation between handgrip strength index (in kg/KgBW) and alternate-step test (r=0.30, p<0.001), chair-stand test (r=0.25, p<0.005) and one-leg stance test (r=0.335, p<0.001). The results also showed a significant difference in non-dynapenic compared to type I dynapenic and type II dynapenic for the chair-stand test (Non-dynapenic: 12.0±3.0; Type I: 11.7±2.5; Type II: 10.3±3.0) (p=0.037 and p=0.005, respectively) and the one-leg stance test (Non-dynapenic: 54.2±14.2; Type I: 43.8±21.4; Type II: 35.0±21.8) (p=0.030 and p=0.004, respectively). Finally, a significant difference was observed between type II dynapenic and non-dynapenic for the chair-stand test (p=0.032), but not with type I dynapenic. The results showed that handgrip strength was positively correlated with functional capacity. In addition, non-dynapenic women displayed a better functional status when compared to type I and type II dynapenic women. Thus, the determination of the handgrip strength thresholds could be an accessible and affordable clinical tool to identify people at risk of autonomy loss.
[Microfabricated X-ray Optics Technology Development for the Constellation X-Mission
NASA Technical Reports Server (NTRS)
Schattenburg, Mark L.
2005-01-01
MIT has previously developed advanced methods for the application of silicon microstructures (so-called microcombs) in the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) technology development at the NASA Goddard Space Flight Center (GSFC). During the first year of the above Cooperative Agreement, MIT has developed a new, mature, potentially high- yield process for the manufacturing of microcombs that can be applied to a range of substrates independent of thickness. MIT also developed techniques to extract microcomb accuracy from an assembly truss metrology test stand and to extend the dynamic range of its Shack-Hartmann foil metrology tool. The placement repeatability of foil optics with microcombs in the assembly truss has been improved by a factor of two to approximately 0.15 micron. This was achieved by electric contact determination in favor of determining contact through force measurements. Development work on a stress-free thin foil holder was also supported by this agreement and successfully continued under a different grant.
Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong
2016-06-01
This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a "sweet spot" with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of K α1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when misaligned. Accurate spectral measurements in micro-CT systems are significantly influenced by the alignment precision. This practical alignment method using 3D printing technology could be readily applied to other rotating gantry based micro-CT systems with modified design of the supporting structures and careful considerations of the spectrometer and gantry dimensions.
Ren, Liqiang; Wu, Di; Li, Yuhua; Zheng, Bin; Chen, Yong; Yang, Kai; Liu, Hong
2016-01-01
This study presents a practical alignment method for X-ray spectral measurement in a rotating gantry based micro-computed tomography (micro-CT) system using three-dimensional (3D) printing technology. In order to facilitate the spectrometer placement inside the gantry, supporting structures including a cover and a stand were dedicatedly designed and printed using a 3D printer. According to the relative position between the spectrometer and the stand, the upright projection of the spectrometer collimator onto the stand was determined and then marked by a tungsten pinhole. Thus, a visible alignment indicator of the X-ray central beam and the spectrometer collimator represented by the pinhole was established in the micro-CT live mode. Then, a rough alignment could be achieved through repeatedly adjusting and imaging the stand until the pinhole was located at the center of the acquired projection image. With the spectrometer being positioned back onto the stand, the precise alignment was completed by slightly translating the spectrometer-stand assembly around the rough location, until finding a “sweet spot” with the highest photon rate and proper distribution of the X-ray photons in the resultant spectrum. The spectra were acquired under precise alignment and misalignment of approximately 0.2, 0.5, and 1.0mm away from the precise alignment position, and then were compared in qualitative and quantitative analyses. Qualitative analysis results show that, with slight misalignment, the photon rate is reduced from 1302 to 1098, 1031, and 416 photons/second (p/s), respectively, and the characteristic peaks in the acquired spectra are gradually deteriorated. Quantitative analysis indicates that the energy resolutions for characteristic peak of Kα1 were calculated as 1.56% for precise alignment, while were 1.84% and 2.40% for slight misalignment of 0.2mm and 0.5mm. The mean energies were reduced from 43.93keV under precise alignment condition to 40.97, 39.63 and 37.78keV when misaligned. Accurate spectral measurements in micro-CT systems are significantly influenced by the alignment precision. This practical alignment method using 3D printing technology could be readily applied to other rotating gantry based micro-CT systems with modified design of the supporting structures and careful considerations of the spectrometer and gantry dimensions. PMID:27777787
1963-01-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. Looking North, this aerial taken January 15, 1963, gives a closer view of the deep hole for the F-1 test stand site in the forefront. The S-IC test stand with towers prominent is to the right of center, and the Block House is seen left of center.
2011-09-14
Team members check the progress of a liquid nitrogen cold shock test on the A-1 Test Stand at Stennis Space Center on Sept. 15. The cold shock test is used to confirm the test stand's support system can withstand test conditions, when super-cold rocket engine propellant is piped. The A-1 Test Stand is preparing to conduct tests on the powerpack component of the J-2X rocket engine, beginning in early 2012.
1. TEST AREA 1115, SOUTH PART OF SUPPORT COMPLEX, LOOKING ...
1. TEST AREA 1-115, SOUTH PART OF SUPPORT COMPLEX, LOOKING TO EAST FROM ABOVE BUILDING 8655, THE FUEL STORAGE TANK FARM, IN FOREGROUND SHADOW. AT THE RIGHT IS BUILDING 8660, ELECTRICAL SUBSTATION; TO ITS LEFT IS BUILDING 8663, THE HELIUM COMPRESSION PLANT. THE LIGHT TONED STRUCTURE IN THE MIDDLE DISTANCE, CENTER, IS THE MACHINE SHOP FOR TEST STAND 1-3. IN THE FAR DISTANCE IS TEST STAND 1-A, WITH THE WHITE SPHERICAL TANKS, AND TEST STAND 2-A TO ITS RIGHT. ALONG THE HORIZON FROM FAR LEFT ARE TEST STAND 1-D, TEST STAND 1-C, WATER TANKS ABOVE TEST AREA 1-125, AND TEST STAND 1-B IN TEST AREA 1-120. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
1963-01-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This aerial photograph, taken January 15, 1963 gives an overall view of the construction progress of the newly developed test complex. The large white building located in the center is the Block House. Just below and to the right of it is the S-IC test stand. The large hole to the left of the S-IC stand is the F-1 test stand site.
2012-11-08
NASA recorded a historic week Nov. 5-9, conducting tests on all three stands in the E Test Complex at John C. Stennis Space Center. Inset images show the types of tests conducted on the E-1 Test Stand (right), the E-2 Test Stand (left) and the E-3 Test Stand (center). The E-1 photo is from an early October test and is provided courtesy of Blue Origin. Other photos are from tests conducted the week of Nov. 5.
A-2 Test Stand modification work
2010-10-27
John C. Stennis Space Center employees install a new master interface tool on the A-2 Test Stand on Oct. 27, 2010. Until July 2009, the stand had been used for testing space shuttle main engines. With that test series complete, employees are preparing the stand for testing the next-generation J-2X rocket engine being developed. Testing of the new engine is scheduled to begin in 2011.
38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND ...
38. HISTORIC CLOSER VIEW LOOKING WEST OF THE TEST STAND AND ROCKET DURING TEST FIRING NUMBER 10. NOTE THE NUMBER ALONG THE TOP RAIL OF THE STAND JUST TO THE RIGHT OF THE ROCKET, THIS NUMBER INDICATES WHAT NUMBER TEST IS BEING CONDUCTED. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Code of Federal Regulations, 2010 CFR
2010-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2013 CFR
2013-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2012 CFR
2012-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2014 CFR
2014-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
Code of Federal Regulations, 2011 CFR
2011-10-01
... cell test stands, car coupling operations, and retarders). 210.33 Section 210.33 Transportation Other... (switcher locomotives, load cell test stands, car coupling operations, and retarders). (a) Measurement on receiving property of the noise emission levels from switcher locomotives, load cell test stands, car...
NASA Technical Reports Server (NTRS)
2010-01-01
Employees at NASA's John C. Stennis Space Center work to maneuver a structural steam beam into place on the A-1 Test Stand on Jan. 13. The beam was one of several needed to form the thrust takeout structure that will support a new thrust measurement system being installed on the stand for future rocket engine testing. Once lifted onto the stand, the beams had to be hoisted into place through the center of the test stand, with only two inches of clearance on each side. The new thrust measurement system represents a state-of-the-art upgrade from the equipment installed more than 40 years ago when the test stand was first constructed.
2012-08-16
Two large-engine tests were conducted simultaneously for the first time at Stennis Space Center on Aug. 16. A plume on the left indicates a test on the facility's E-1 Test Stand. On the right, a finger of fire indicates a test under way on the A-1 Test Stand. In another first, both tests were conducted by female engineers. The image was taken from atop the facility's A-2 Test Stand, offering a panoramic view that includes the new A-3 Test Stand under construction to the left.
24. SATURN V Fl ENGINE TEST FIRING ON TEST STAND ...
24. SATURN V F-l ENGINE TEST FIRING ON TEST STAND 1A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Osteoporosis and gait and balance disturbances in older sarcopenic obese New Zealanders.
Waters, D L; Hale, L; Grant, A M; Herbison, P; Goulding, A
2010-02-01
Bone, muscle, and fat may affect gait and balance in older adults. Osteoporosis was prevalent in low muscle mass participants and related to gait and balance deficits. Low muscle combined with high fat mass had more functional deficits and poorer bone health, which has implications for falls risk and fractures. Decreasing bone density and muscle mass and increasing fat mass may act synergistically to affect gait and balance in older adults. One hundred eighty-three older adults (age 72.7 +/- 6 years, range 56-93; body mass index 28.2 +/- 4.9, range 16.6-46.0) were recruited from a New Zealand falls prevention intervention trial. Total and appendicular skeletal muscle mass (ASM), percent fat, and bone mineralization were assessed by dual energy X-ray absorptiometry and used to characterize normal lean (NL, n = 51), sarcopenic (SS, n = 18), sarcopenic obese (SO, n = 29), and obese (OO, n = 85) phenotypes. Functional performance was assessed using timed up and go, chair stand, single leg stand, and step test. Regression models were adjusted for age, sex, medications, and physical activity. Femoral neck osteoporosis was present in 22% SS, 17% SO, 12% NL, and 7% OO. Femoral neck osteoporosis with low ASM predicted poor chair stand performance (beta -3.3, standard error 1.6, p = 0.04). SO scored lowest on the chair stand (p = 0.03) and step test (p = 0.03). Higher ASM predicted faster timed up and go performance (p = 0.001). Osteoporosis was prevalent in low ASM groups (SS and SO) and related to gait and balance deficits, particularly in the SO. This has implications for falls risk, fractures, and interventions.
Stand for testing the electrical race car engine
NASA Astrophysics Data System (ADS)
Baier, M.; Franiasz, J.; Mierzwa, P.; Wylenzek, D.
2015-11-01
An engine test stand created especially for research of electrical race car is described in the paper. The car is an aim of Silesian Greenpower project whose participants build and test electrical vehicles to take part in international races in Great Britain. The engine test stand is used to test and measure the characteristics of vehicles and their engines. It has been designed particularly to test the electric cars engineered by students of Silesian Greenpower project. The article contains a description how the test stand works and shows its versatility in many areas. The paper presents both construction of the test stand, control system and sample results of conducted research. The engine test stand was designed and modified using PLM Siemens NX 8.5. The construction of the test stand is highly modular, which means it can be used both for testing the vehicle itself or for tests without the vehicle. The test stand has its own wheel, motor, powertrain and braking system with second engine. Such solution enables verifying various concepts without changing the construction of the vehicle. The control system and measurement system are realized by enabling National Instruments product myRIO (RIO - Reconfigurable Input/Output). This controller in combination with powerful LabVIEW environment performs as an advanced tool to control torque and speed simultaneously. It is crucial as far as the test stand is equipped in two motors - the one being tested and the braking one. The feedback loop is realized by an optical encoder cooperating with the rotor mounted on the wheel. The results of tests are shown live on the screen both as a chart and as single values. After performing several tests there is a report generated. The engine test stand is widely used during process of the Silesian Greenpower vehicle design. Its versatility enables powertrain testing, wheels and tires tests, thermal analysis and more.
View east northeast at Test Stand 'A' complex from road, ...
View east northeast at Test Stand 'A' complex from road, showing Test Stand 'C' test tower in left background (Building 4217/E-18). Curved I-beam labeled '3-ton' is for small traveling hoist. Fuel tanks, propellant lines, and control panels have been removed from tower. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND ...
1. VIEW NORTHEAST, LEFT TO RIGHT COLD CALIBRATION TEST STAND COLD CALIBRATION BLOCKHOUSE IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
2011-07-29
Stennis Space Center employees have installed liquid oxygen and liquid hydrogen tanks atop the A-3 Test Stand, raising the structure to its full 300-foot height. The stand is being built to test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space. The A-3 Test Stand is scheduled for completion and activation in 2013.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Code of Federal Regulations, 2013 CFR
2013-07-01
... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving...
Photographic copy of photograph, aerial view looking north and showing ...
Photographic copy of photograph, aerial view looking north and showing Test Stand 'A' (at bottom), Test Stand 'B' (upper right), and a portion of Test Stand 'C' (top of view). Compare HAER CA-163-1 and 2 and note addition of liquid nitrogen storage tank (Building 4262/E-63) to west of Test Stand 'C' as well as various ancillary facilities located behind earth barriers near Test Stand 'C.' (JPL negative no. 384-3006-A, 12 December 1961) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
A new population of very high energy gamma-ray sources in the Milky Way.
Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borgmeier, C; Braun, I; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; de Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine, M; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van der Walt, D J; Vasileiadis, G; Venter, C; Vincent, P; Visser, B; Völk, H J; Wagner, S J
2005-03-25
Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.
1962-07-03
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of July 3, 1963. All four of its tower legs are well underway.
1963-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of September 5, 1963.
1962-10-26
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken October 26, 1962, depicts the excavation process of the single engine F-1 stand.
1963-09-30
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of September 30, 1963.
1963-06-24
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of June 24, 1963. Two if its four tower legs are underway.
1962-11-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken November 15, 1962, depicts the excavation process of the single engine F-1 stand site.
1963-10-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Northeast of the massive S-IC test stand, the F-1 Engine test stand was built. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the fuel tanks that housed kerosene and just beyond those is the F-1 test stand.
23. "A CAPTIVE ATLAS MISSILE EXPLODED DURING THE TEST ON ...
23. "A CAPTIVE ATLAS MISSILE EXPLODED DURING THE TEST ON TEST STAND 1-A, 27 MARCH 1959, PUTTING THAT TEST STAND OUT-OF-COMMISSION. STAND WAS NOT REPAIRED FOR THE ATLAS PROGRAM BUT TRANSFERRED TO ROCKETDYNE AND MODIFIED FOR THE F-l ENGINE PROGRAM." - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
8. TEST STAND 15, INVERTED ENGINE FIRING TEST, CIRCA 1963. ...
8. TEST STAND 1-5, INVERTED ENGINE FIRING TEST, CIRCA 1963. Original is a color print. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
2011-04-22
Stennis Space Center employees continue work on the A-3 Test Stand test cell. The stand is being built to test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space.
9. COLD CALIBRATION TEST STAND (H1) FROM LEFT TO RIGHT ...
9. COLD CALIBRATION TEST STAND (H-1) FROM LEFT TO RIGHT - WORK BENCH, CONTROL PANEL, CHEMICAL TANK. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. Edwards ...
5. EAST SIDE, TEST STAND AND ITS SUPERSTRUCTURE. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE ...
PERSPECTIVE VIEW LOOKING NORTHEAST AT THE TEST STAND, NOTE THE SERVICE AND SUPPORT BUILDINGS TO THE LEFT AND RIGHT OF THE TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
CLOSEUP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, ...
CLOSE-UP VIEW LOOKING SOUTH AT THE SATURN I TEST STAND, NOTE THE INTERPRETIVE SIGN EXPLAINING THE HISTORIC NATURE OF THE SATURN I TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH ...
43. HISTORIC VIEW LOOKING SOUTHWEST AT THE TEST STAND WITH A REDSTONE ROCKET BEING FUELED AND PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard
2018-03-29
The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.
3. "TEST STAND NO. 13, EXCAVATION PLAN & SECTIONS." Specifications ...
3. "TEST STAND NO. 1-3, EXCAVATION PLAN & SECTIONS." Specifications No. ENG 04-353-50-10; Drawing No. 60-0906; no sheet number within title block; D.O. SERIES 1109/10. Stamped: AS BUILT. No revisions or revision dates. Last work date on this drawing "Checked by EAG, 1/31/49." Though this drawing is specific to Test Stand 1-3, it also illustrates the general methods used for excavation design and retaining wall construction at Test Stand 1-5. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
1. Credit PSR. This view displays the north and west ...
1. Credit PSR. This view displays the north and west facades of Test Stand "G" (Vibration Facility) as seen when looking east southeast (110°). Test Stand "G" no longer houses the vibrator; it now houses an autoclave due to the changing nature of the testing work. The Vibration Facility was Test Stand "G"'s historic function. Test Stand "E" is at the far right. The Vibration Facility subjected motor and engine assemblies to various vibration patterns in order to simulate flight conditions and evaluate the durability of engine and motor designs. - Jet Propulsion Laboratory Edwards Facility, Test Stand G, Edwards Air Force Base, Boron, Kern County, CA
Patient-specific model of a scoliotic torso for surgical planning
NASA Astrophysics Data System (ADS)
Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean
2013-03-01
A method for the construction of a patient-specific model of a scoliotic torso for surgical planning via inter-patient registration is presented. Magnetic Resonance Images (MRI) of a generic model are registered to surface topography (TP) and X-ray data of a test patient. A partial model is first obtained via thin-plate spline registration between TP and X-ray data of the test patient. The MRIs from the generic model are then fit into the test patient using articulated model registration between the vertebrae of the generic model's MRIs in prone position and the test patient's X-rays in standing position. A non-rigid deformation of the soft tissues is performed using a modified thin-plate spline constrained to maintain bone rigidity and to fit in the space between the vertebrae and the surface of the torso. Results show average Dice values of 0:975 +/- 0:012 between the MRIs following inter-patient registration and the surface topography of the test patient, which is comparable to the average value of 0:976 +/- 0:009 previously obtained following intra-patient registration. The results also show a significant improvement compared to rigid inter-patient registration. Future work includes validating the method on a larger cohort of patients and incorporating soft tissue stiffness constraints. The method developed can be used to obtain a geometric model of a patient including bone structures, soft tissues and the surface of the torso which can be incorporated in a surgical simulator in order to better predict the outcome of scoliosis surgery, even if MRI data cannot be acquired for the patient.
NASA Astrophysics Data System (ADS)
Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.
2012-05-01
The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.
1963-01-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were constructed during this time frame. Built just north of the massive S-IC test stand was the F-1 Engine test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken January 14, 1963 depicts the F-1 test stand site with hoses pumping excess water from the site.
1. CAPTIVE TEST STAND D1 FROM THE FERROCEMENT APRON, VIEW ...
1. CAPTIVE TEST STAND D-1 FROM THE FERROCEMENT APRON, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
2. CLOSE UP OF CAPTIVE TEST STAND D4, VIEW TOWARDS ...
2. CLOSE UP OF CAPTIVE TEST STAND D-4, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
1. CAPTIVE TEST STAND D4, CONNECTING TUNNELS AT RIGHT, VIEW ...
1. CAPTIVE TEST STAND D-4, CONNECTING TUNNELS AT RIGHT, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND ...
51. HISTORIC GENERAL VIEW LOOKING WEST AT THE TEST STAND WITH THE MERCURY REDSTONE ROCKET FULLY ASSEMBLED AND BEING PREPARED FOR TESTING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1963-11-20
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo shows the progress of the F-1 Test Stand as of November 20, 1963.
1963-04-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken April 4, 1963 depicts the construction of the F-1 test stand foundation walls.
1963-04-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken April 17, 1963 depicts the construction of the F-1 test stand foundation walls.
Apparatus and methods for real-time detection of explosives devices
Blackburn, Brandon W [Idaho Falls, ID; Hunt, Alan W [Pocatello, ID; Chichester, David L [Idaho Falls, ID
2014-01-07
The present disclosure relates, according to some embodiments, to apparatus, devices, systems, and/or methods for real-time detection of a concealed or camouflaged explosive device (e.g., EFPs and IEDs) from a safe stand-off distance. Apparatus, system and/or methods of the disclosure may also be operable to identify and/or spatially locate and/or detect an explosive device. An apparatus or system may comprise an x-ray generator that generates high-energy x-rays and/or electrons operable to contact and activate a metal comprised in an explosive device from a stand-off distance; and a detector operable to detect activation of the metal. Identifying an explosive device may comprise detecting characteristic radiation signatures emitted by metals specific to an EFP, an IED or a landmine. Apparatus and systems of the disclosure may be mounted on vehicles and methods of the disclosure may be performed while moving in the vehicle and from a safe stand-off distance.
Choi, Y.; Eng, P.; Stubbs, J.; ...
2016-08-21
In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impuritymore » Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Y.; Eng, P.; Stubbs, J.
In this paper, X-ray standing wave fluorescence yield depth profiling was used to determine the solar wind implanted Fe and Ni fluences in a silicon-on-sapphire (SoS) Genesis collector (60326). An internal reference standardization method was developed based on fluorescence from Si and Al in the collector materials. Measured Fe fluence agreed well with that measured previously by us on a sapphire collector (50722) as well as SIMS results by Jurewicz et al. Measured Ni fluence was higher than expected by a factor of two; neither instrumental errors nor solar wind fractionation effects are considered significant perturbations to this value. Impuritymore » Ni within the epitaxial Si layer, if present, could explain the high Ni fluences and therefore needs further investigation. As they stand, these results are consistent with minor temporally-variable Fe and Ni fractionation on the timescale of a year.« less
Credit BG. Test Stand "D" tower as seen looking northeast ...
Credit BG. Test Stand "D" tower as seen looking northeast (See caption for CA-163-F-18). To the right of the view is the stainless steel dome top for Dv Cell (see CA-163-F-22 for view into cell), behind which rests a spherical accumulator--an electrically heated steam generator for powering the vacuum system at "C" and Test Stand "D." Part of the ejector system can be seen on the right corner of the tower, other connections include electrical ducts (thin, flat metal members) and fire protection systems. Note the stand in the foreground with lights used to indicate safety status of the stand during tests - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
ROBERT BOBO AND MIKE NICHOLS AT TEST STAND 4693
2016-12-14
ROBERT BOBO, LEFT, AND MIKE NICHOLS TALK BENEATH THE 221-FOOT-TALL TEST STAND 4693, THE LARGEST OF TWO NEW SPACE LAUNCH SYSTEM TEST STANDS AT MSFC. BOBO MANAGES SLS STRUCTURAL STRENGTH TESTING, AND NICHOLS IS LEAD TEST ENGINEER FOR THE SLS LIQUID HYDROGEN TANK.
Endeavour backdropped against space with Sun displaying rayed effect
1993-12-09
STS061-105-024 (2-13 Dec. 1993) --- One of Endeavour's space walkers captured this view of Endeavour backdropped against the blackness of space, with the Sun displaying a rayed effect. The extended Remote Manipulator System (RMS) arm that the astronaut was standing on is seen on the left side of the view.
22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND ...
22. DETAIL, TWO LIGHTING TYPES AT REAR OF TEST STAND 1-A. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Direct method for imaging elemental distribution profiles with long-period x-ray standing waves
NASA Astrophysics Data System (ADS)
Kohli, Vaibhav; Bedzyk, Michael J.; Fenter, Paul
2010-02-01
A model-independent Fourier-inversion method for imaging elemental profiles from multilayer and total-external reflection x-ray standing wave (XSW) data is developed for the purpose of understanding the assembly of atoms, ions, and molecules at well-defined interfaces in complex environments. The direct-method formalism is derived for the case of a long-period XSW generated by low-angle specular reflection in an attenuating overlayer medium. It is validated through comparison with simulated and experimental data to directly obtain an elemental distribution contained within the overlayer. We demonstrate this formalism by extracting the one-dimensional profile of Ti normal to the surface for a TiO2/Si/Mo trilayer deposited on a Si substrate using the TiKα fluorescence yield measured in air and under an aqueous electrolyte. The model-independent results demonstrate reduced coherent fractions for the in situ results associated with an incoherency of the x-ray beam (which are attributed to fluorescence excitation by diffusely or incoherently scattered x-rays). The uniqueness and limitations of the approach are discussed.
2001-03-13
Workers testing in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) stand alongside the 2001 Mars Odyssey Orbiter and behind its solar array panels. The arrays of lights (right) focus on the panels during illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, T.J.T.; Moir, D.C.; Snell, C.M.
In high resolution flash x-ray imaging technology the electric field developed between the electron beam and the converter target is large enough to draw ions from the target surface. The ions provide fractional neutralization and cause the electron beam to focus radially inward, and the focal point subsequently moves upstream due to the expansion of the ion column. A self-bias target concept is proposed and verified via computer simulation that the electron charge deposited on the target can generate an electric potential, which can effectively limit the ion motion and thereby stabilize the growth of the spot size. A targetmore » chamber using the self bias target concept was designed and tested in the Integrated Test Stand (ITS). The authors have obtained good agreement between computer simulation and experiment.« less
Quasi-mosaicity of (311) planes in silicon and its use in a Laue lens with high-focusing power
NASA Astrophysics Data System (ADS)
Camattari, Riccardo; Paternò, Gianfranco; Bellucci, Valerio; Guidi, Vincenzo
2014-12-01
(311) curved planes can be exploited for efficiently focus hard X-rays. With this purpose, a self-standing bent crystal was manufactured at the Sensor and Semiconductor Laboratory of Ferrara (Italy). The crystal was designed as an optical component for a X-ray concentrator such as a Laue lens. The curvature of (311) planes was obtained through the quasi-mosaic effect. The diffraction efficiency of the sample was tested at the Institut Laue Langevin of Grenoble (France) by using a collimated monochromatic X-ray beam. This was the first prove of the diffraction properties of (311) quasi-mosaic planes. Diffraction efficiency resulted 35 % with a 182 keV X-ray beam, in agreement with the theoretical expectation. It corresponded to a reflectivity of 33 %. While the chosen orientation is not the most performing lying of planes, it can be used, in addition to smaller-index planes, in order to raise the total effective area of a Laue lens. To quantify it, a Laue lens based on quasi-mosaic silicon and germanium crystals, exploiting (111), (422) and (311) diffracting planes, was achieved and simulated with the LaueGen code.
1963-08-13
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo depicts the construction of the F-1 test stand as of August 13, 1963. All four of its tower legs are well underway into the skyline.
Credit BG. View looking southwest at Test Stand "D" complex. ...
Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND ...
9. BUILDING 8769, EAST REAR AND NORTH SIDE, TEST STAND AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND ...
3. EAST SIDE, ALSO SHOWING COVERED TANKS AND TEST STAND 1-5 AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-4, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Fast ultrasonic wavelength tuning in X-ray experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E., E-mail: blagov-ae@mail.ru; Pisarevskii, Yu. V.; Koval’chuk, M. V.
2016-03-15
A method of tuning (scanning) X-ray beam wavelength based on modulation of the lattice parameter of X-ray optical crystal by an ultrasonic standing wave excited in it has been proposed and experimentally implemented. The double-crystal antiparallel scheme of X-ray diffraction, in which an ultrasonic wave is excited in the second crystal, is used in the experiment. The profile of characteristic line k{sub α1} of an X-ray tube with a molybdenum anode is recorded using both the proposed tuning scheme and conventional mechanical rotation of crystal. The results obtained by both techniques are in good agreement.
2. Credit JPL. Photographic copy of photograph, looking northeast at ...
2. Credit JPL. Photographic copy of photograph, looking northeast at unfinished original Test Stand 'C' construction. A portion of the corrugated steel tunnel tube connecting Test Stand 'C' to the first phase of JPL tunnel system construction is visible in the foreground. The steel frame used to support propellant tanks and engine equipment has been erected. The open trap door leads to a chamber inside the Test Stand 'C' base where gaseous nitrogen is distributed via manifolds to Test Stand 'C' control valves. (JPL negative no. 384-1568-A, 19 March 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand C, Edwards Air Force Base, Boron, Kern County, CA
Silva, Paula F. S.; Quintino, Ludmylla F.; Franco, Juliane; Faria, Christina D. C. M.
2014-01-01
Background Subjects with neurological disease (ND) usually show impaired performance during sit-to-stand and stand-to-sit tasks, with a consequent reduction in their mobility levels. Objective To determine the measurement properties and feasibility previously investigated for clinical tests that evaluate sit-to-stand and stand-to-sit in subjects with ND. Method A systematic literature review following the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) protocol was performed. Systematic literature searches of databases (MEDLINE/SCIELO/LILACS/PEDro) were performed to identify relevant studies. In all studies, the following inclusion criteria were assessed: investigation of any measurement property or the feasibility of clinical tests that evaluate sit-to-stand and stand-to-sit tasks in subjects with ND published in any language through December 2012. The COSMIN checklist was used to evaluate the methodological quality of the included studies. Results Eleven studies were included. The measurement properties/feasibility were most commonly investigated for the five-repetition sit-to-stand test, which showed good test-retest reliability (Intraclass Correlation Coefficient:ICC=0.94-0.99) for subjects with stroke, cerebral palsy and dementia. The ICC values were higher for this test than for the number of repetitions in the 30-s test. The five-repetition sit-to-stand test also showed good inter/intra-rater reliabilities (ICC=0.97-0.99) for stroke and inter-rater reliability (ICC=0.99) for subjects with Parkinson disease and incomplete spinal cord injury. For this test, the criterion-related validity for subjects with stroke, cerebral palsy and incomplete spinal cord injury was, in general, moderate (correlation=0.40-0.77), and the feasibility and safety were good for subjects with Alzheimer's disease. Conclusions The five-repetition sit-to-stand test was used more often in subjects with ND, and most of the measurement properties were investigated and showed adequate results. PMID:24839043
2006-09-29
The Stennis Space Center conducted the final space shuttle main engine test on its A-1 Test Stand Friday. The A-1 Test Stand was the site of the first test on a shuttle main engine in 1975. Stennis will continue testing shuttle main engines on its A-2 Test Stand through the end of the Space Shuttle Program in 2010. The A-1 stand begins a new chapter in its operational history in October. It will be temporarily decommissioned to convert it for testing the J-2X engine, which will power the upper stage of NASA's new crew launch vehicle, the Ares I. Although this ends the stand's work on the Space Shuttle Program, it will soon be used for the rocket that will carry America's next generation human spacecraft, Orion.
45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND ...
45. HISTORIC AERIAL VIEW LOOKING SOUTHWEST AT THE TEST STAND AND THE SURROUNDING ELECTRONICS AND EQUIPMENT TRAILERS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Construction Progress of the S-IC Test Stand Complex Bunker House
NASA Technical Reports Server (NTRS)
1963-01-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC stand, additional related facilities were built during this time frame. Built to the east of the S-IC stand, the block house served as the control room. To the south of the blockhouse was a newly constructed pump house used for delivering water to the S-IC stand during testing. North of the massive test stand, the F-1 Engine test stand was built for testing a single F-1 engine. Just southeast of the S-IC stand a concrete bunker house was constructed. The bunker housed an emergency crew clad in fire proof gear, who were close at hand should any emergencies arise during testing. This photo of the completed bunker house was taken on May 7, 1963.
A-3 Test Stand construction moves forward
2010-07-13
Work on the A-3 Test Stand at Stennis Space Center took a step forward in July with delivery of the first-stage steam ejector July 13. Stennis employees are shown preparing the ejector to be lifted into place on the test stand. When activated in 2012, the A-3 Test Stand will allow operators to test rocket engines at simulated altitudes of 100,000 feet, a critical feature for next-generation engines that will take humans beyond low-Earth orbit once more.
5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND ...
5. BUILDING 8768, SOUTH SIDE AND EAST REAR. TEST STAND 1A AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
21. Building 202, underside of test stand A, detail of ...
21. Building 202, underside of test stand A, detail of junction of scrubber structure and test stand with water pipes and valves visible. View looking southeast. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ...
37. HISTORIC GENERAL VIEW LOOKING WEST OF TEST STAND AND ROCKET DURING TEST FIRING NUMBER 2. NOTE THE FLAME BEING EMITTED FROM THE BOTTOM OF THE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND ...
8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND DURING AN ENGINE FIRING. DATE UNKNOWN, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL
Hughes, Lily C; Ortí, Guillermo; Huang, Yu; Sun, Ying; Baldwin, Carole C; Thompson, Andrew W; Arcila, Dahiana; Betancur-R, Ricardo; Li, Chenhong; Becker, Leandro; Bellora, Nicolás; Zhao, Xiaomeng; Li, Xiaofeng; Wang, Min; Fang, Chao; Xie, Bing; Zhou, Zhuocheng; Huang, Hai; Chen, Songlin; Venkatesh, Byrappa; Shi, Qiong
2018-05-14
Our understanding of phylogenetic relationships among bony fishes has been transformed by analysis of a small number of genes, but uncertainty remains around critical nodes. Genome-scale inferences so far have sampled a limited number of taxa and genes. Here we leveraged 144 genomes and 159 transcriptomes to investigate fish evolution with an unparalleled scale of data: >0.5 Mb from 1,105 orthologous exon sequences from 303 species, representing 66 out of 72 ray-finned fish orders. We apply phylogenetic tests designed to trace the effect of whole-genome duplication events on gene trees and find paralogy-free loci using a bioinformatics approach. Genome-wide data support the structure of the fish phylogeny, and hypothesis-testing procedures appropriate for phylogenomic datasets using explicit gene genealogy interrogation settle some long-standing uncertainties, such as the branching order at the base of the teleosts and among early euteleosts, and the sister lineage to the acanthomorph and percomorph radiations. Comprehensive fossil calibrations date the origin of all major fish lineages before the end of the Cretaceous.
10. "TEST STAND 15, AIR FORCE FLIGHT TEST CENTER." ca. ...
10. "TEST STAND 1-5, AIR FORCE FLIGHT TEST CENTER." ca. 1958. Test Area 1-115. Original is a color print, showing Test Stand 1-5 from below, also showing the superstructure of TS1-4 at left. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
Stennis Space Center Conducts Water Flow Test On The B-2 Test Stand
2018-05-04
Stennis Space Center completed a water flow test of the refurbished B-2 Test Stand on May 4, 2018. This included both the deflector and the aspirator, individually and together. This test stand is being prepared for the testing of the Space Launch System's booster core, which will utilize four RS-25 rocket engines.
SSC Test Operations Contract Overview
NASA Technical Reports Server (NTRS)
Kleim, Kerry D.
2010-01-01
This slide presentation reviews the Test Operations Contract at the Stennis Space Center (SSC). There are views of the test stands layouts, and closer views of the test stands. There are descriptions of the test stand capabilities, some of the other test complexes, the Cryogenic propellant storage facility, the High Pressure Industrial Water (HPIW) facility, and Fluid Component Processing Facility (FCPF).
2011-07-29
Rocket engine propellant tanks and cell dome top the A-3 Test Stand under construction at Stennis Space Center. The stand will test next-generation rocket engines that could carry humans beyond low-Earth orbit into deep space once more.
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
40 CFR 63.9285 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This Subpart... engine test cell/stand that is located at a major source of HAP emissions. (a) An engine test cell/stand...
1964-10-01
Test firing of the Saturn I S-I Stage (S-1-10) at the Marshall Space Flight Center. This test stand was originally constructed in 1951 and sometimes called the Redstone or T tower. In l961, the test stand was modified to permit static firing of the S-I/S-IB stages, which produced a total thrust of 1,600,000 pounds. The name of the stand was then changed to the S-IB Static Test Stand.
Murata, Koichi; Sugitani, Shigeki; Yoshioka, Hiroki; Noguchi, Takashi; Aoto, Toshiyuki; Nakamura, Takashi
2010-01-01
The aim of this study was to predict the ambulation reacquisition time after hip fracture in elderly people using the unipedal standing test during the early postoperative stage. Patients with an intertrochanteric fracture treated with internal fixation (n = 35) and patients with a femoral neck fracture treated with hemiarthroplasty (n = 22) were included. A unipedal standing test using the nonoperated leg was performed on days 3 and 7 after the operation. Among the patients with an intertrochanteric fracture, those with a positive result on the unipedal standing test on postoperative day (POD) 3 attained gait with parallel guide bars (BG) and walker-assisted gait (WG) significantly earlier than did patients with a negative result on the unipedal standing test. Patients with a positive result on the unipedal standing test on POD 7 attained BG, WG, and cane-assisted gait (CG) significantly earlier than did patients with a negative test. Among patients with a femoral neck fracture, those with a positive unipedal standing test result on POD 3 attained BG, WG, and CG significantly earlier than did patients with a negative test. Those with a positive test result on POD 7 attained BG, WG, and CG significantly earlier than did patients with a negative test. The unipedal standing test given during the early postoperative stage is a good test for predicting the ambulation reacquisition time. Moreover, it gives information that can help determine the need for subacute rehabilitation and about discharge planning and health service provision.
NASA Johnson Space Center: White Sands Test Facility
NASA Technical Reports Server (NTRS)
Aggarwal, Pravin; Kowalski, Robert R.
2011-01-01
This slide presentation reviews the testing facilities and laboratories available at the White Sands Test Facility (WSTF). The mission of WSTF is to provide the expertise and infrastructure to test and evaluate spacecraft materials, components and propulsion systems that enable the safe exploration and use of space. There are nine rocket test stands in two major test areas, six altitude test stands, three ambient test stands,
17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY ...
17. HISTORIC VIEW OF ROCKET & LAUNCH STAND DESIGNED BY HERMANN OBERTH AND RUDOLF NEBEL FOR THE MOVIE DIE FRAU IM MOND (THE WOMAN ON THE MOON). THE LAUNCH STAND WAS MODIFIED BY THE VFR FOR THE FIRST TEST STAND AT RAKETENFLUGPLATZ NEAR BERLIN. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...
1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
3. COMPLETE X15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ ...
3. COMPLETE X-15 VEHICLE TEST STAND, LOCATED IN SOUTHEAST ¼ OF X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
2010-10-27
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand is hoisted into place at the E-2 Test Stand at John C. Stennis Space Center on Oct. 24, 2010. The unit was installed at the E-2 stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
NASA Astrophysics Data System (ADS)
Durham, J. M.; Poulson, D.; Bacon, J.; Chichester, D. L.; Guardincerri, E.; Morris, C. L.; Plaud-Ramos, K.; Schwendiman, W.; Tolman, J. D.; Winston, P.
2018-04-01
Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.
3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND ...
3. BUILDING 8767, NORTH REAR AND WEST SIDE, TEST STAND 1-A AT FAR RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
5. FLAME DEFLECTOR, COMPLETE X15 VEHICLE TEST STAND. Looking east. ...
5. FLAME DEFLECTOR, COMPLETE X-15 VEHICLE TEST STAND. Looking east. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Credit WCT. Photographic copy of photograph, view looking south down ...
Credit WCT. Photographic copy of photograph, view looking south down easternmost tunnel axis during second phase of JPL tunnel construction in 1959. Reinforced concrete formwork for Test Stand "D" foundation appears in left foreground. Formwork for Building 4222/E-23 (Test Stand "D" Workshop) is in place in right foreground with disturbed earth for western leg of tunnel system evident in background. Test Stand "C" is in center background, where first phase of tunnel construction ended. Test Stand "A" appears as tower in right background. (JPL negative no. 384-1838-C, 9 March 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
10. OBSERVATION POST NO. 3, WEST OF TEST STAND 1A. ...
10. OBSERVATION POST NO. 3, WEST OF TEST STAND 1-A. SOUTH SIDE AND EAST FRONT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
Detail of north side of Test Stand 'A' base, showing ...
Detail of north side of Test Stand 'A' base, showing tanks for distilled water (left), fuel (center), and gaseous nitrogen (right). Other tanks present for tests were removed before this image was taken. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...
6. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking south from north wall of terminal room. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
7. ROCKET SLED ON DECK OF TEST STAND 15. Photo ...
7. ROCKET SLED ON DECK OF TEST STAND 1-5. Photo no. "6085, G-EAFB-16 SEP 52." Looking south to machine shop. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
KEITH HIGGINBOTHAM AT TEST STAND 4699
2016-10-17
KEITH HIGGINBOTHAM, STRUCTURAL TEST LEAD FOR THE SLS SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, IS SHOWN BESIDE TEST STAND 4699 AT THE MARSHALL SPACE FLIGHT CENTER’S WEST TEST AREA. HIGGINBOTHAM WILL BE LEADING STRUCTURAL LOADS TESTING AT TEST STAND 4699 FOR THE CORE STAGE SIMULATER AND THE LAUNCH VEHICLE STAGE ADAPTER. THE TEST SERIES WILL ENSURE EACH STRUCTURE CAN WITHSTAND THE INCREDIBLE STRESSES OF LAUNCH.
Berthonnaud, E.; Hilmi, R.; Dimnet, J.
2012-01-01
The goal of this paper is to access to pelvis position and morphology in standing posture and to determine the relative locations of their articular surfaces. This is obtained from coupling biplanar radiography and bone modeling. The technique involves different successive steps. Punctual landmarks are first reconstructed, in space, from their projected images, identified on two orthogonal standing X-rays. Geometric models, of global pelvis and articular surfaces, are determined from punctual landmarks. The global pelvis is represented as a triangle of summits: the two femoral head centers and the sacral plateau center. The two acetabular cavities are modeled as hemispheres. The anterior sacral plateau edge is represented by an hemi-ellipsis. The modeled articular surfaces are projected on each X-ray. Their optimal location is obtained when the projected contours of their models best fit real outlines identified from landmark images. Linear and angular parameters characterizing the position of global pelvis and articular surfaces are calculated from the corresponding sets of axis. Relative positions of sacral plateau, and acetabular cavities, are then calculated. Two hundred standing pelvis, of subjects and scoliotic patients, have been studied. Examples are presented. They focus upon pelvis orientations, relative positions of articular surfaces, and pelvis asymmetries. PMID:22567279
2011-06-08
Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.
2015-03-26
Stennis Space Center employees install a 96-inch valve during a recent upgrade of the high-pressure industrial water system that serves the site’s large rocket engine test stands. The upgraded system has a capacity to flow 335,000 gallons of water a minute, which is a critical element for testing. At Stennis, engines are anchored in place on large test stands and fired just as they are during an actual space flight. The fire and exhaust from the test is redirected out of the stand by a large flame trench. A water deluge system directs thousands of gallons of water needed to cool the exhaust. Water also must be available for fire suppression in the event of a mishap. The new system supports RS-25 engine testing on the A-1 Test Stand, as well as testing of the core stage of NASA’s new Space Launch System on the B-2 Test Stand at Stennis.
[Research and workshop on alternative fuels for aviation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-09-01
The Renewable Aviation Fuels Development Center (RAFDC) at Baylor University was granted U. S. Department of Energy (US DOE) and Federal Aviation Administration (FAA) funds for research and development to improve the efficiency in ethanol powered aircraft, measure performance and compare emissions of ethanol, Ethyl Tertiary Butyl Ether (ETBE) and 100 LL aviation gasoline. The premise of the initial proposal was to use a test stand owned by Engine Components Inc. (ECI) based in San Antonio, Texas. After the grant was awarded, ECI decided to close down its test stand facility. Since there were no other test stands available atmore » that time, RAFDC was forced to find additional support to build its own test stand. Baylor University provided initial funds for the test stand building. Other obstacles had to be overcome in order to initiate the program. The price of the emission testing equipment had increased substantially beyond the initial quote. Rosemount Analytical Inc. gave RAFDC an estimate of $120,000.00 for a basic emission testing package. RAFDC had to find additional funding to purchase this equipment. The electronic ignition unit also presented a series of time consuming problems. Since at that time there were no off-the-shelf units of this type available, one had to be specially ordered and developed. FAA funds were used to purchase a Super Flow dynamometer. Due to the many unforeseen obstacles, much more time and effort than originally anticipated had to be dedicated to the project, with much of the work done on a volunteer basis. Many people contributed their time to the program. One person, mainly responsible for the initial design of the test stand, was a retired engineer from Allison with extensive aircraft engine test stand experience. Also, many Baylor students volunteered to assemble the. test stand and continue to be involved in the current test program. Although the program presented many challenges, which resulted in delays, the RAFDC's test stand is an asset which provides an ongoing research capability dedicated to the testing of alternative fuels for aircraft engines. The test stand is now entirely functional with the exception of the electronic ignition unit which still needs adjustments.« less
B-1 and B-3 Test Stands at NASA’s Plum Brook Station
1966-09-21
Operation of the High Energy Rocket Engine Research Facility (B-1), left, and Nuclear Rocket Dynamics and Control Facility (B-3) at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The test stands were constructed in the early 1960s to test full-scale liquid hydrogen fuel systems in simulated altitude conditions. Over the next decade each stand was used for two major series of liquid hydrogen rocket tests: the Nuclear Engine for Rocket Vehicle Application (NERVA) and the Centaur second-stage rocket program. The different components of these rocket engines could be studied under flight conditions and adjusted without having to fire the engine. Once the preliminary studies were complete, the entire engine could be fired in larger facilities. The test stands were vertical towers with cryogenic fuel and steam ejector systems. B-1 was 135 feet tall, and B-3 was 210 feet tall. Each test stand had several levels, a test section, and ground floor shop areas. The test stands relied on an array of support buildings to conduct their tests, including a control building, steam exhaust system, and fuel storage and pumping facilities. A large steam-powered altitude exhaust system reduced the pressure at the exhaust nozzle exit of each test stand. This allowed B-1 and B-3 to test turbopump performance in conditions that matched the altitudes of space.
NASA Astrophysics Data System (ADS)
Conti, G.; Nemšák, S.; Kuo, C.-T.; Gehlmann, M.; Conlon, C.; Keqi, A.; Rattanachata, A.; Karslıoǧlu, O.; Mueller, J.; Sethian, J.; Bluhm, H.; Rault, J. E.; Rueff, J. P.; Fang, H.; Javey, A.; Fadley, C. S.
2018-05-01
Free-standing nanoribbons of InAs quantum membranes (QMs) transferred onto a (Si/Mo) multilayer mirror substrate are characterized by hard x-ray photoemission spectroscopy (HXPS) and by standing-wave HXPS (SW-HXPS). Information on the chemical composition and on the chemical states of the elements within the nanoribbons was obtained by HXPS and on the quantitative depth profiles by SW-HXPS. By comparing the experimental SW-HXPS rocking curves to x-ray optical calculations, the chemical depth profile of the InAs(QM) and its interfaces were quantitatively derived with ångström precision. We determined that (i) the exposure to air induced the formation of an InAsO4 layer on top of the stoichiometric InAs(QM); (ii) the top interface between the air-side InAsO4 and the InAs(QM) is not sharp, indicating that interdiffusion occurs between these two layers; (iii) the bottom interface between the InAs(QM) and the native oxide SiO2 on top of the (Si/Mo) substrate is abrupt. In addition, the valence band offset (VBO) between the InAs(QM) and the SiO2/(Si/Mo) substrate was determined by HXPS. The value of VBO = 0.2 ± 0.04 eV is in good agreement with literature results obtained by electrical characterization, giving a clear indication of the formation of a well-defined and abrupt InAs/SiO2 heterojunction. We have demonstrated that HXPS and SW-HXPS are non-destructive, powerful methods for characterizing interfaces and for providing chemical depth profiles of nanostructures, quantum membranes, and 2D layered materials.
Dulac, Maude; Boutros, Guy El Hajj; Pion, Charlotte; Barbat-Artigas, Sébastien; Gouspillou, Gilles; Aubertin-Leheudre, Mylène
2016-01-01
ABSTRACT Objective To investigate whether handgrip strength normalized to body weight could be a useful clinical tool to identify dynapenia and assess functional capacity in post-menopausal women. Method A total of 136 postmenopausal women were recruited. Body composition (Dual Energy X-ray Absorptiometry [DEXA], Bio-electrical Impedence Analysis [BIA]), grip strength (dynamometer) and functional capacity (senior fitness tests) were evaluated. Dynapenia was established according to a handgrip strength index (handgrip strength divided by body weight (BW) in Kg/KgBW) obtained from a reference population of young women: Type I dynapenic (<0.44 kg/KgBW) and type II dynapenic (<0.35 kg/KgBW). Results The results show a positive correlation between handgrip strength index (in kg/KgBW) and alternate-step test (r=0.30, p<0.001), chair-stand test (r=0.25, p<0.005) and one-leg stance test (r=0.335, p<0.001). The results also showed a significant difference in non-dynapenic compared to type I dynapenic and type II dynapenic for the chair-stand test (Non-dynapenic: 12.0±3.0; Type I: 11.7±2.5; Type II: 10.3±3.0) (p=0.037 and p=0.005, respectively) and the one-leg stance test (Non-dynapenic: 54.2±14.2; Type I: 43.8±21.4; Type II: 35.0±21.8) (p=0.030 and p=0.004, respectively). Finally, a significant difference was observed between type II dynapenic and non-dynapenic for the chair-stand test (p=0.032), but not with type I dynapenic. Conclusion The results showed that handgrip strength was positively correlated with functional capacity. In addition, non-dynapenic women displayed a better functional status when compared to type I and type II dynapenic women. Thus, the determination of the handgrip strength thresholds could be an accessible and affordable clinical tool to identify people at risk of autonomy loss. PMID:27683834
Vestibular ataxia and its measurement in man
NASA Technical Reports Server (NTRS)
Fregly, A. R.
1974-01-01
Methods involved in and results obtained with a new comprehensive ataxia test battery are described, and definitions of spontaneous and induced vestibular ataxia in man are given in terms of these findings. In addition, the topic of alcohol-induced ataxia in relation to labyrinth function is investigated. Items in the test battery comprise a sharpened Romberg test, in which the subject stands on the floor with eyes closed and arms folded against his chest, feet heel-to-toe, for 60 seconds; an eyes-open walking test; an eyes-open standing test; an eyes-closed standing test; an eyes-closed on-leg standing test; an eyes-closed walk a line test; an eyes-closed heel-to-toe walking test; and supplementary ataxia tests such as the classical Romberg test.
Impact of Fibromyalgia in the Sit-to-Stand-to-Sit Performance Compared With Healthy Controls.
Collado-Mateo, Daniel; Adsuar, Jose C; Dominguez-Muñoz, Francisco J; Olivares, Pedro R; Gusi, Narcis
2017-06-01
Fibromyalgia is associated with a reduction in the ability to perform activities of daily living. Sit-to-stand-to-sit performance is one of the most common activities of daily living and often is evaluated by counting the number of repetitions of the 30-second chair-stand test. No study, however, has examined the performance over the 30 seconds of this test of female patients with fibromyalgia on a phase-by-phase basis. To evaluate the impact of fibromyalgia on performance of the 30-second chair-stand test and to analyze how the kinematic performance changed over the 30-second test period. A cross-sectional study. Local association of fibromyalgia. Fifteen females with fibromyalgia and nine healthy female controls. Participants performed the 30-second chair-stand test while wearing a motion capture device. Duration of each sit-to-stand-to-sit phase within the 30-second time limit was compared between groups using repeated measures analysis of variance. The association between duration of phases and scores from the revised version of the Fibromyalgia Impact Questionnaire was tested using bivariate correlations. The duration of impulse and sit-to-stand phases were gradually increased over the 30 seconds of the chair-stand test for women with fibromyalgia compared with healthy controls (P = .04 and P = .02, respectively). The mean duration of these 2 phases was associated with symptom duration and the function domain of the revised version of the Fibromyalgia Impact Questionnaire (P < .05). Also, stiffness was directly associated with the duration of the stand-up phase (P = .04). Kinematic performance during the 30-second chair-stand test differed between women with fibromyalgia and healthy controls. Since sit-to-stand from a chair is a common daily activity, women with fibromyalgia may require specific exercises to improve performance of this task. Not applicable. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Isopropyl alcohol tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Water tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Liquid oxygen tank installed at A-3 Test Stand
NASA Technical Reports Server (NTRS)
2009-01-01
A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Water tank installed at A-3 Test Stand
2009-08-13
A water tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen water, liquid oxygen (LOX) and isopropyl alcohol (IPA) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Liquid oxygen tank installed at A-3 Test Stand
2009-09-18
A liquid oxygen (LOX) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen LOX, isopropyl alcohol (IPA) and water tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Isopropyl alcohol tank installed at A-3 Test Stand
2009-09-18
An isopropyl alcohol (IPA) tank is lifted into place at the A-3 Test Stand being built at NASA's John C. Stennis Space Center. Fourteen IPA, water and liquid oxygen (LOX) tanks are being installed to support the chemical steam generators to be used on the A-3 Test Stand. The IPA and LOX tanks will provide fuel for the generators. The water will allow the generators to produce steam that will be used to reduce pressure inside the stand's test cell diffuser, enabling operators to simulate altitudes up to 100,000 feet. In that way, operators can perform the tests needed on rocket engines being built to carry humans back to the moon and possibly beyond. The A-3 Test Stand is set for completion and activation in 2011.
Kang, Seok Hui; Lee, Hyun Seok; Lee, Sukyung; Cho, Ji-Hyung; Kim, Jun Chul
2017-01-01
Our study aims to evaluate the association between thigh muscle cross-sectional area (TMA) using computed tomography (CT), or appendicular skeletal muscle mass (ASM) using dual energy X-ray absorptiometry (DEXA), and physical performance levels in hemodialysis (HD) patients. Patients were included if they were on HD for ≥6 months (n = 84). ASM and TMA were adjusted to body weight (BW, kg) or height2 (Ht2, m2). Each participant performed a short physical performance battery test (SPPB), a sit-to-stand for 30 second test (STS30), a 6-minute walk test (6-MWT), a timed up and go test (TUG), and hand grip strength (HGS) test. Correlation coefficients for SPPB, GS, 5STS, STS30, 6-MWT, and TUG were highest in TMA/BW. Results from partial correlation or linear regression analyses displayed similar trends to those derived from Pearson's correlation analyses. An increase in TMA/BW or TMA/Ht2 was associated with a decreased odds ratio of low SPPB, GS, or HGS in multivariate analyses. Indices using DEXA were associated with a decreased odds ratio of a low HGS only in multivariate analysis. TMA indices using CT may be more valuable in predicting physical performance or strength in HD patients. © 2017 The Author(s). Published by S. Karger AG, Basel.
Modal Analysis with the Mobile Modal Testing Unit
NASA Technical Reports Server (NTRS)
Wilder, Andrew J.
2013-01-01
Recently, National Aeronautics and Space Administration's (NASA's) White Sands Test Facility (WSTF) has tested rocket engines with high pulse frequencies. This has resulted in the use of some of WSTF's existing thrust stands, which were designed for static loading, in tests with large dynamic forces. In order to ensure that the thrust stands can withstand the dynamic loading of high pulse frequency engines while still accurately reporting the test data, their vibrational modes must be characterized. If it is found that they have vibrational modes with frequencies near the pulsing frequency of the test, then they must be modified to withstand the dynamic forces from the pulsing rocket engines. To make this determination the Mobile Modal Testing Unit (MMTU), a system capable of determining the resonant frequencies and mode shapes of a structure, was used on the test stands at WSTF. Once the resonant frequency has been determined for a test stand, it can be compared to the pulse frequency of a test engine to determine whether or not that stand can avoid resonance and reliably test that engine. After analysis of test stand 406 at White Sands Test Facility, it was determined that natural frequencies for the structure are located around 75, 125, and 240 Hz, and thus should be avoided during testing.
Robot-operated quality control station based on the UTT method
NASA Astrophysics Data System (ADS)
Burghardt, Andrzej; Kurc, Krzysztof; Szybicki, Dariusz; Muszyńska, Magdalena; Nawrocki, Jacek
2017-03-01
This paper presents a robotic test stand for the ultrasonic transmission tomography (UTT) inspection of stator vane thickness. The article presents the method of the test stand design in Autodesk Robot Structural Analysis Professional 2013 software suite. The performance of the designed test stand solution was simulated in the RobotStudio software suite. The operating principle of the test stand measurement system is presented with a specific focus on the measurement strategy. The results of actual wall thickness measurements performed on stator vanes are presented.
High-voltage terminal test of a test stand for a 1-MV electrostatic accelerator
NASA Astrophysics Data System (ADS)
Park, Sae-Hoon; Kim, Yu-Seok
2015-10-01
The Korea Multipurpose Accelerator Complex has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz radio-frequency power supply, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.
RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND ...
RP1 (KEROSENE) STORAGE TANKS ON HILLSIDE EAST OF TEST STAND 1-B. THIS TANK FARM SERVES BOTH TEST STANDS 1-A AND 1-B - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Combined Fuel Storage Tank Farm, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. ...
7. CABLE RACK, MEZZANINE LEVEL, INTERIOR OF TEST STAND 1A. Looking north from north end of the cable tunnel leading toward Control Center. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
4. COMPLETE X15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING ...
4. COMPLETE X-15 VEHICLE TEST STAND, DETAIL OF THRUST MOUNTING STRUCTURE AT ENGINE END OF PLANE. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...
2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Hooshyar, Dina; Surís, Alina M; Czarnogorski, Maggie; Lepage, James P; Bedimo, Roger; North, Carol S
2014-01-01
In the USA, 21% of the estimated 1.1 million people living with human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) are unaware they are HIV-infected. In 2011, Veterans Health Administration (VHA)'s Office of Public Health in conjunction with VHA's Health Care for Homeless Veterans Program funded grants to support rapid HIV testing at homeless outreach events because homeless populations are more likely to obtain emergent rather than preventive care and have a higher HIV seroprevalence as compared to the general population. Because of a Veterans Affairs North Texas Health Care System (VANTHCS)'s laboratory testing requirement, VANTHCS partnered with community agencies to offer rapid HIV testing for the first time at VANTHCS' 2011 Homeless Stand Downs in Dallas, Fort Worth, and Texoma, Texas. Homeless Stand Downs are outreach events that connect Veterans with services. Veterans who declined testing were asked their reasons for declining. Comparisons by Homeless Stand Down site used Pearson χ², substituting Fisher's Exact tests for expected cell sizes <5. Of the 910 Veterans attending the Homeless Stand Downs, 261 Veterans reported reasons for declining HIV testing, and 133 Veterans were tested, where 92% of the tested Veterans obtained their test results at the events - all tested negative. Veterans' reported reasons for declining HIV testing included previous negative result (n=168), no time to test (n=49), no risk factors (n=36), testing is not a priority (n=11), uninterested in knowing serostatus (n=6), and HIV-infected (n=3). Only "no time to test" differed significantly by Homeless Stand Down site. Nonresponse rate was 54%. Offering rapid HIV testing at Homeless Stand Downs is a promising testing venue since 15% of Veterans attending VANTHCS' Homeless Stand Downs were tested for HIV, and majority obtained their HIV test results at point-of-care while further research is needed to determine how to improve these rates.
Curved focusing crystals for hard X-ray astronomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrari, C., E-mail: ferrari@imem.cnr.it; Buffagni, E.; Bonnini, E.
A lens made by a properly arranged array of crystals can be used to focus x-rays of energy ranging from 30 to 500 keV for x-ray astronomy. Mosaic or curved crystals can be employed as x-ray optical elements. In this work self standing curved focusing Si and GaAs crystals in which the lattice bending is induced by a controlled damaging process on one side of planar crystals are characterized. Diffraction profiles in Laue geometry have been measured in crystals at x-ray energies E = 17, 59 and 120 keV. An enhancement of diffraction efficiency is found in asymmetric geometries.
7. BUILDING 604F, INTERIOR OF BULL PEN SHOWING TESTING STAND ...
7. BUILDING 604-F, INTERIOR OF BULL PEN SHOWING TESTING STAND AND HEAVY WOOD LINING ON CONCRETE WALLS. STEEL PLATE ABOVE TEST STAND DEFLECTS SHRAPNEL, SCREEN FURTHER HELPS TO CONTAIN PARTICLES. ONLY SMALL EXPLOSIVES WERE TESTED HERE (GRENADES, MINES, BOMB FUZES, ETC.). - Picatinny Arsenal, 600 Area, Test Areas District, State Route 15 near I-80, Dover, Morris County, NJ
Engineers conduct key water test for A-3 stand
NASA Technical Reports Server (NTRS)
2009-01-01
Water cascades from the A-2 Test Stand at Stennis Space Center as engineers challenge the limits of the high-pressure water system as part of the preparation process for the A-3 Test Stand under construction. Jeff Henderson, test director for Stennis' A Complex, led a series of tests Nov. 16-20, flowing water simultaneously on the A-1 and A-2 stands, followed by the A-1 and B-1 stands, to determine if the high-pressure industrial water facility pumps and the existing pipe system can support the needs of the A-3 stand. The stand is being built to test rocket engines that will carry astronauts beyond low-Earth orbit and will need about 300,000 gallons of water per minute when operating, but the Stennis system never had been tested to that level. The recent tests were successful in showing the water facility pumps can operate at that capacity - reaching 318,000 gallons per minute in one instance. However, officials continue to analyze data to determine if the system can provide the necessary pressure at that capacity and if the delivery system piping is adequate. 'We just think if there's a problem, it's better to identify and address it now rather than when A-3 is finished and it has to be dealt with,' Henderson said.
NEARING THE END OF CONSTRUCTION ON THE LOX TEST STAND AT MSFC.
2015-01-08
AS THE END OF CONSTRUCTION ON TEST STAND 4697, THE LIQUID OXYGEN TANK TEST STAND AT MARSHALL SPACE FLIGHT CENTER, PROJECT ENGINEERS PHIL HENDRIX, FROM MSFC, AND CURTNEY WALTERS FROM THE U.S. CORP OF ENGINEERS, STUDY PLANS AND PROGRESS.
Kibsgård, Thomas J; Røise, Olav; Sturesson, Bengt; Röhrl, Stephan M; Stuge, Britt
2014-04-01
Chamberlain's projections (anterior-posterior X-ray of the pubic symphysis) have been used to diagnose sacroiliac joint mobility during the single-leg stance test. This study examined the movement in the sacroiliac joint during the single-leg stance test with precise radiostereometric analysis. Under general anesthesia, tantalum markers were inserted into the dorsal sacrum and the ilium of 11 patients with long-lasting and severe pelvic girdle pain. After two to three weeks, a radiostereometric analysis was conducted while the subjects performed a single-leg stance. Small movements were detected in the sacroiliac joint during the single-leg stance. In both the standing- and hanging-leg sacroiliac join, a total of 0.5 degree rotation was observed; however, no translations were detected. There were no differences in total movement between the standing- and hanging-leg sacroiliac joint. The movement in the sacroiliac joint during the single-leg stance is small and almost undetectable by the precise radiostereometric analysis. A complex movement pattern was seen during the test, with a combination of movements in the two joints. The interpretation of the results of this study is that, the Chamberlain examination likely is inadequate in the examination of sacroiliac joint movement in patients with pelvic girdle pain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays
NASA Astrophysics Data System (ADS)
Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian
2012-07-01
The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.
Imprinting of Pre-Imposed Laser Perturbations on Targets With a High-Z Overcoat
NASA Astrophysics Data System (ADS)
Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Oh, J.; Schmitt, A. J.; Bates, J. W.; Serlin, V.; Obenschain, S. P.
2014-10-01
In direct drive ICF, most of the laser imprint is expected to occur during the initial part of the laser pulse, which generates the first shocks necessary to compress the target to achieve high gain. Previous experiments found that a thin (400-800Å) high-Z (Au or Pd) overcoat on the laser side of the target is effective in suppressing broadband imprint. The overcoat initially absorbs the laser and emits soft x-rays that ablate the target, forming a large stand-off distance between laser absorption and ablation and smoothing the drive perturbations. We investigate the effectiveness of imprint suppression for different spatial wavelengths via perturbations imposed on top of the beams smoothed by Induced Spatial Incoherence (ISI). Measurements of areal mass non-uniformity on planar targets driven by the Nike KrF laser are made by curved crystal x-ray radiography. Simultaneous side-on radiography allows observation of the layer dynamics and monitoring of the laser absorption - target ablation stand-off. X-ray flux from the high-Z layer is monitored using absolutely calibrated time-resolved x-ray spectrometers. Work supported by the Department of Energy/NNSA.
44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ...
44. HISTORIC VIEW LOOKING WEST AT THE TEST STAND AND ROCKET BEING PREPARED FOR TESTING. NOTE THE LOAD CELL APPARATUS ABOVE THE ROCKET AND THE EQUIPMENT PLATFORM TO THE LEFT OF THE LOAD CELL HAVE BEEN ENCLOSED FOR PROTECTION FROM THE CLIMATE. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
36. HISTORIC GENERAL VIEW LOOKING NORTH DOWN THE FLAME TRENCH ...
36. HISTORIC GENERAL VIEW LOOKING NORTH DOWN THE FLAME TRENCH AT THE TEST STAND. NOTE THE MOTORIZED LIFT TO THE LEFT OF THE TEST STAND, USED TO ACCESS THE INSTRUMENTATION PLATFORM ('BIRDCAGE') MOUNTED ON TOP OF THE ROCKET DURING TEST FIRINGS. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
1967-01-01
This photograph is a view of the Saturn V S-IC (first) test stage being hoisted into the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. This stage was used to prove the operational readiness of the stand. Begirning operations in 1966, the MTF has two test stands; a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from the Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 124-meter-high test stand for static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
Credit WCT. Photographic copy of photograph, view of Test Stand ...
Credit WCT. Photographic copy of photograph, view of Test Stand "D" from the south with tower ejector system in operation during a 1972 engine test. Note steam evolving from Z-stage ejectors atop the interstage condenser in the tower. Note also the "Hyprox" steam generator straddling the Dd ejector train to the right. The new Dy horizontal train has not been erected as of this date. In the distance is Test Stand "E." (JPL negative no. 384-9766-AC, 28 November 1972) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
2016-01-06
A CRANE MOVES THE FIRST STEEL TIER TO BE BOLTED INTO PLACE ON JAN. 6, FOR WELDING OF A SECOND NEW STRUCTURAL TEST STAND AT NASA'S MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA -- CRITICAL TO DEVELOPMENT OF NASA'S SPACE LAUNCH SYSTEM. WHEN COMPLETED THIS SUMMER, THE 85-FOOT-TALL TEST STAND 4697 WILL USE HYDRAULIC CYLINDERS TO SUBJECT THE LIQUID OXYGEN TANK AND HARDWARE OF THE MASSIVE SLS CORE STAGE TO THE SAME LOADS AND STRESSES IT WILL ENDURE DURING A LAUNCH. THE STAND IS RISING IN MARSHALL'S WEST TEST AREA, WHERE WORK IS ALSO UNDERWAY ON THE 215-FOOT-TALL TOWERS OF TEST STAND 4693, WHICH WILL CONDUCT SIMILAR STRUCTURAL TESTS ON THE SLS CORE STAGE'S LIQUID HYDROGEN TANK. SLS, THE MOST POWERFUL ROCKET EVER BUILT, WILL CARRY ASTRONAUTS IN NASA'S ORION SPACECRAFT ON DEEP SPACE MISSIONS, INCLUDING THE JOURNEY TO MARS.
Durham, J. M.; Poulson, D.; Bacon, J.; ...
2018-04-10
Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durham, J. M.; Poulson, D.; Bacon, J.
Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors have no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. In this paper, we demonstrate experimentally that measurements of the scattering angles of cosmic-ray muons, which pass through a storage cask, can be used to determine if spent fuel assemblies are missing without opening the cask. Finally, this application of technology and methods commonly used in high-energy particle physics providesmore » a potential solution to this long-standing problem in international nuclear safeguards.« less
TMS delivered for A-3 Test Stand
2010-03-17
A state-of-the-art thrust measurement system for the A-3 Test Stand under construction at NASA's John C. Stennis Space Center was delivered March 17. Once completed, the A-3 stand (seen in background) will allow simulated high-altitude testing on the next generation of rocket engines for America's space program. Work on the stand began in 2007, with activation scheduled for 2012. The stand is the first major test structure to be built at Stennis since the 1960s. The recently delivered TMS was fabricated by Thrust Measurement Systems in Illinois. It is an advanced calibration system capable of measuring vertical and horizontal thrust loads with an accuracy within 0.15 percent at 225,000 pounds.
Credit BG. View west of Test Stand "D" complex, with ...
Credit BG. View west of Test Stand "D" complex, with ends of Dd (left) and Dy (right) station ejectors in view. Steam piping from accumulator (sphere) to ejectors is apparent; long horizontal loops in the pipes permit expansion and contraction without special joints. The small platform straddling the Dd ejector (near the accumulator) was originally constructed for a "Hyprox" steam generator which supplied steam to the Dd ejector before the accumulator and Dy stand were built. Note ejectors on top of interstage condenser in Test Stand "D" tower. Metal shed in far right background is for storage - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
1963-02-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph taken February 4, 1963, gives an impressive look at the Block House looking directly through the ever-growing four towers of the S-IC Test Stand.
SSC_NASA Tests Upgraded Water System for the B-2 Test Stand - Highlights with Music
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand
2017-12-04
On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.
1963-12-05
The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB Static Test Stand which had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961 the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.
1963-12-01
The test laboratory of the Marshall Space Flight Center (MSFC) tested the F-1 engine, the most powerful rocket engine ever fired at MSFC. The engine was tested on the newly modified Saturn IB static test stand that had been used for three years to test the Saturn I eight-engine booster, S-I (first) stage. In 1961, the test stand was modified to permit static firing of the S-I/S-IB stage and the name of the stand was then changed to the S-IB Static Test Stand. Producing a combined thrust of 7,500,000 pounds, five F-1 engines powered the S-IC (first) stage of the Saturn V vehicle for the marned lunar mission.
2004-10-08
KENNEDY SPACE CENTER, FLA. - Project managers Mike Miller and Rex Eberhardt stand in front of the Swift spacecraft in Hangar AE at Cape Canaveral Air Force Station. Swift has been wrapped with blankets to provide thermal stability during the mission. Swift is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray, ultraviolet and optical wavebands. The most comprehensive study of GRB afterglows to date, Swift is expected to observe more than 200 gamma-ray bursts during its 2-year mission.
On The gamma-ray emission from Reticulum II and other dwarf galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, Dan; Linden, Tim
2015-09-01
The recent discovery of ten new dwarf galaxy candidates by the Dark Energy Survey (DES) and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) could increase the Fermi Gamma-Ray Space Telescope's sensitivity to annihilating dark matter particles, potentially enabling a definitive test of the dark matter interpretation of the long-standing Galactic Center gamma-ray excess. In this paper, we compare the previous analyses of Fermi data from the directions of the new dwarf candidates (including the relatively nearby Reticulum II) and perform our own analysis, with the goal of establishing the statistical significance of any gamma-ray signal from these sources.more » We confirm the presence of an excess from Reticulum II, with a spectral shape that is compatible with the Galactic Center signal. The significance of this emission is greater than that observed from 99.84% of randomly chosen high-latitude blank-sky locations, corresponding to a local detection significance of 3.2σ. We caution that any dark matter interpretation of this excess must be validated through observations of additional dwarf spheroidal galaxies, and improved calculations of the relative J-factor of dwarf spheroidal galaxies. We improve upon the standard blank-sky calibration approach through the use of multi-wavelength catalogs, which allow us to avoid regions that are likely to contain unresolved gamma-ray sources.« less
Shake test results of the MDHC test stand in the 40- by 80-foot wind tunnel
NASA Technical Reports Server (NTRS)
Lau, Benton H.; Peterson, Randall
1994-01-01
A shake test was conducted to determine the modal properties of the MDHC (McDonnell Douglas Helicopter Company) test stand installed in the 40- by 80- Foot Wind Tunnel at Ames Research Center. The shake test was conducted for three wind-tunnel balance configurations with and without balance dampers, and with the snubber engagement to lock the balance frame. A hydraulic shaker was used to apply random excitation at the rotor hub in the longitudinal and lateral directions. A GenRad 2515 computer-aided test system computed the frequency response functions at the rotor hub and support struts. From these response functions, the modal properties, including the natural frequency, damping ratio, and mode shape were calculated. The critical modes with low damping ratios are identified as the test-stand second longitudinal mode for the dampers-off configuration, the test-stand yaw mode for the dampers-on configuration, and the test stand first longitudinal mode for the balance-frame locked configuration.
1976-01-06
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was originally designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage. Modifications to the S-IC Test Stand began in 1975 to accommodate space shuttle external tank testing. This photo is of the horizontal liquid oxygen tanks.
9. Credit JPL. Photographic copy of drawing, engineering drawing showing ...
9. Credit JPL. Photographic copy of drawing, engineering drawing showing structure of Test Stand 'A' (Building 4202/E-3) and its relationship to the Monitor Building or blockhouse (Building 4203/E-4) when a reinforced concrete machinery room was added to the west side of Test Stand 'A' in 1955. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Electrical Layout - Muroc, Test Stand & Refrigeration Equipment Room,' drawing no. E3/7-0, April 6, 1955. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
2010-10-27
John C. Stennis Space Center employees complete installation of a chemical steam generator (CSG) unit at the site's E-2 Test Stand. On Oct. 24, 2010. The unit will undergo verification and validation testing on the E-2 stand before it is moved to the A-3 Test Stand under construction at Stennis. Each CSG unit includes three modules. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
2010-10-27
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand is prepared for installation Oct. 24, 2010, at John C. Stennis Space Center. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
2010-10-22
The first of nine chemical steam generator (CSG) units that will be used on the A-3 Test Stand arrived at John. C. Stennis Space Center on Oct. 22, 2010. The unit was installed at the E-2 Test Stand for verification and validation testing before it is moved to the A-3 stand. Steam generated by the nine CSG units that will be installed on the A-3 stand will create a vacuum that allows Stennis operators to test next-generation rocket engines at simulated altitudes up to 100,000 feet.
11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1A ...
11. "NIGHT SCENE OF TEST AREA WITH TEST STAND 1-A IN FOREGROUND. LIGHTS OF MAIN BASE, EDWARDS AFB, IN THE BACKGROUND. EDWARDS AFB." Test Area 1-120. Looking west past Test Stand 1-A to Test Area 1-115 and Test Area 1-110. Photo no. "12,401 57; G-AFFTC 12 DEC 57; TS 1-A Aux #1". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
Henriksson, Tommy; Vescovi, Jason D; Fjellman-Wiklund, Anncristine; Gilenstam, Kajsa
2016-01-01
The purpose of this study was to examine whether field-based and/or laboratory-based assessments are valid tools for predicting key performance characteristics of skating in competitive-level female hockey players. Cross-sectional study. Twenty-three female ice hockey players aged 15-25 years (body mass: 66.1±6.3 kg; height: 169.5±5.5 cm), with 10.6±3.2 years playing experience volunteered to participate in the study. The field-based assessments included 20 m sprint, squat jump, countermovement jump, 30-second repeated jump test, standing long jump, single-leg standing long jump, 20 m shuttle run test, isometric leg pull, one-repetition maximum bench press, and one-repetition maximum squats. The laboratory-based assessments included body composition (dual energy X-ray absorptiometry), maximal aerobic power, and isokinetic strength (Biodex). The on-ice tests included agility cornering s-turn, cone agility skate, transition agility skate, and modified repeat skate sprint. Data were analyzed using stepwise multivariate linear regression analysis. Linear regression analysis was used to establish the relationship between key performance characteristics of skating and the predictor variables. Regression models (adj R (2)) for the on-ice variables ranged from 0.244 to 0.663 for the field-based assessments and from 0.136 to 0.420 for the laboratory-based assessments. Single-leg tests were the strongest predictors for key performance characteristics of skating. Single leg standing long jump alone explained 57.1%, 38.1%, and 29.1% of the variance in skating time during transition agility skate, agility cornering s-turn, and modified repeat skate sprint, respectively. Isokinetic peak torque in the quadriceps at 90° explained 42.0% and 32.2% of the variance in skating time during agility cornering s-turn and modified repeat skate sprint, respectively. Field-based assessments, particularly single-leg tests, are an adequate substitute to more expensive and time-consuming laboratory assessments if the purpose is to gain knowledge about key performance characteristics of skating.
Henriksson, Tommy; Vescovi, Jason D; Fjellman-Wiklund, Anncristine; Gilenstam, Kajsa
2016-01-01
Objectives The purpose of this study was to examine whether field-based and/or laboratory-based assessments are valid tools for predicting key performance characteristics of skating in competitive-level female hockey players. Design Cross-sectional study. Methods Twenty-three female ice hockey players aged 15–25 years (body mass: 66.1±6.3 kg; height: 169.5±5.5 cm), with 10.6±3.2 years playing experience volunteered to participate in the study. The field-based assessments included 20 m sprint, squat jump, countermovement jump, 30-second repeated jump test, standing long jump, single-leg standing long jump, 20 m shuttle run test, isometric leg pull, one-repetition maximum bench press, and one-repetition maximum squats. The laboratory-based assessments included body composition (dual energy X-ray absorptiometry), maximal aerobic power, and isokinetic strength (Biodex). The on-ice tests included agility cornering s-turn, cone agility skate, transition agility skate, and modified repeat skate sprint. Data were analyzed using stepwise multivariate linear regression analysis. Linear regression analysis was used to establish the relationship between key performance characteristics of skating and the predictor variables. Results Regression models (adj R2) for the on-ice variables ranged from 0.244 to 0.663 for the field-based assessments and from 0.136 to 0.420 for the laboratory-based assessments. Single-leg tests were the strongest predictors for key performance characteristics of skating. Single leg standing long jump alone explained 57.1%, 38.1%, and 29.1% of the variance in skating time during transition agility skate, agility cornering s-turn, and modified repeat skate sprint, respectively. Isokinetic peak torque in the quadriceps at 90° explained 42.0% and 32.2% of the variance in skating time during agility cornering s-turn and modified repeat skate sprint, respectively. Conclusion Field-based assessments, particularly single-leg tests, are an adequate substitute to more expensive and time-consuming laboratory assessments if the purpose is to gain knowledge about key performance characteristics of skating. PMID:27574474
Diagnosing Postural Tachycardia Syndrome: Comparison of Tilt Test versus Standing Hemodynamics
Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R
2012-01-01
Postural tachycardia syndrome (POTS) is characterized by increased heart rate (ΔHR) of ≥30 bpm with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of TILT and STAND testing. ΔHR values were analyzed at 5 min intervals. Receiver Operating Characteristics analysis was performed to determine optimal cut point values of ΔHR for both TILT and STAND. TILT produced larger ΔHR than STAND for all 5 min intervals from 5 min (38±3 bpm vs. 33±3 bpm; P=0.03) to 30 min (51±3 bpm vs. 38±3 bpm; P<0.001). Sensitivity (Sn) of the 30 bpm criterion was similar for all tests (TILT-10=93%, STAND-10=87%, TILT30=100%, and STAND30=93%). Specificity (Sp) of the 30 bpm criterion was less at both 10 and 30 min for TILT (TILT10=40%, TILT30=20%) than STAND (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for TILT (with lower specificity for POTS diagnosis) than STAND at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min TILT. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used. PMID:22931296
Plash, Walker B; Diedrich, André; Biaggioni, Italo; Garland, Emily M; Paranjape, Sachin Y; Black, Bonnie K; Dupont, William D; Raj, Satish R
2013-01-01
POTS (postural tachycardia syndrome) is characterized by an increased heart rate (ΔHR) of ≥30 bpm (beats/min) with symptoms related to upright posture. Active stand (STAND) and passive head-up tilt (TILT) produce different physiological responses. We hypothesized these different responses would affect the ability of individuals to achieve the POTS HR increase criterion. Patients with POTS (n=15) and healthy controls (n=15) underwent 30 min of tilt and stand testing. ΔHR values were analysed at 5 min intervals. ROC (receiver operating characteristic) analysis was performed to determine optimal cut point values of ΔHR for both tilt and stand. Tilt produced larger ΔHR than stand for all 5 min intervals from 5 min (38±3 bpm compared with 33±3 bpm; P=0.03) to 30 min (51±3 bpm compared with 38±3 bpm; P<0.001). Sn (sensitivity) of the 30 bpm criterion was similar for all tests (TILT10=93%, STAND10=87%, TILT30=100%, and STAND30=93%). Sp (specificity) of the 30 bpm criterion was less at both 10 and 30 min for tilt (TILT10=40%, TILT30=20%) than stand (STAND10=67%, STAND30=53%). The optimal ΔHR to discriminate POTS at 10 min were 38 bpm (TILT) and 29 bpm (STAND), and at 30 min were 47 bpm (TILT) and 34 bpm (STAND). Orthostatic tachycardia was greater for tilt (with lower Sp for POTS diagnosis) than stand at 10 and 30 min. The 30 bpm ΔHR criterion is not suitable for 30 min tilt. Diagnosis of POTS should consider orthostatic intolerance criteria and not be based solely on orthostatic tachycardia regardless of test used.
1962-10-26
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 26, 1962, depicts a view of the Block House tunnel opening.
1962-08-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken August 17, 1962 depicts a back side view of the Block House.
1962-11-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken November 15, 1962, depicts a view of the Block House.
1962-01-23
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken January 23, 1962, shows the excavation of the Block House site.
1962-06-13
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Construction of the tunnel is depicted in this photo taken June 13, 1962.
1962-02-02
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken February 2, 1962, shows the excavation of the Block House site.
49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND ...
49. HISTORIC GENERAL VIEW LOOKING NORTHWEST AT THE TEST STAND IN ITS CONFIGURATION FOR THE MERCURY-REDSTONE TESTING PROGRAM. NOTE THE MERCURY CAPSULE BEING ASSEMBLED IN THE FOREGROUND, ALSO NOTE THE LOAD CELL APPARATUS ON THE GROUND IN THE RIGHT OF THE PHOTOGRAPH. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Credit BG. View looking west down into Test Stand "D" ...
Credit BG. View looking west down into Test Stand "D" vertical vacuum cell with top removed. Access to cell is normally through large round port seen in view. Piping and cradling toward bottom of cell was last used in tests of Viking space probe engines - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Validation of Cardiovascular Parameters During NASA's Functional Task Test
NASA Technical Reports Server (NTRS)
Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, Steven H.
2008-01-01
Microgravity-induced physiological changes, including cardiovascular deconditioning may impair crewmembers f capabilities during exploration missions on the Moon and Mars. The Functional Task Test (FTT), which will be used to assess task performance in short and long duration astronauts, consists of 7 functional tests to evaluate crewmembers f ability to perform activities to be conducted in a partial-gravity environment or following an emergency landing on Earth. The Recovery from Fall/Stand Test (RFST) tests both the subject fs ability to get up from a prone position and orthostatic intolerance. PURPOSE: Crewmembers have never become presyncopal in the first 3 min of quiet stand, yet it is unknown whether 3 min is long enough to cause similar heart rate fluctuations to a 5-min stand. The purpose of this study was to validate and test the reliability of heart rate variability (HRV) analysis of a 3-min quiet stand. METHODS: To determine the validity of using 3 vs. 5-min of standing to assess HRV, 7 healthy subjects remained in a prone position for 2 min, stood up quickly and stood quietly for 6 min. ECG and continuous blood pressure data were recorded. Mean R-R interval and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the complete FTT on separate days, including the RFST with a 3-min stand test. Analysis of variance (ANOVA) was performed on the HRV measures. RESULTS: Spectral HRV measures reflecting autonomic activity were not different (p>0.05) during the 0-3 and 0-5 min segment (mean R-R interval: 738+/-74 ms, 728+/-69 ms; low frequency to high frequency ratio: 6.5+/-2.2, 7.7+/-2.7; normalized high frequency: 0.19+/-0.03, 0.18+/-0.04). The average coefficient of variation for mean R-R interval, systolic and diastolic blood pressures in the prone position and stand test were less than 8% for the test sessions. ANOVA results yielded a greater inter-subject variability (p.0.006) than inter-session variability (p>0.05) for HRV in the stand test. CONCLUSION: These studies show that a 3 minute stand delivers repeatable cardiovascular heart rate and BP data in the context of this larger series of tests such as the FTT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin, E-mail: caephxb2003@aliyun.com
2015-11-15
Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter tomore » yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.« less
4. Credit BG. View looking northeast at west facade of ...
4. Credit BG. View looking northeast at west facade of Test Stand 'E' 4259/E-60, solid rocket motor test facility. Wooden barricades to north and south of 4259/E-60 protect personnel and other facilities from flying debris in case of inadvertent explosions. Test Stand 'E' is accessed from the tunnel system by the inclined tube shown at the center of the image adjacent to a ladder. Racks running to the north (having the appearance of a low fence) carry electrical cables to Test Stand 'G' (Building 4271/E-72). - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 7 2010-10-01 2010-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 7 2013-10-01 2013-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 7 2014-10-01 2014-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 7 2012-10-01 2012-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
49 CFR 655.5 - Stand-down waivers for drug testing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 7 2011-10-01 2011-10-01 false Stand-down waivers for drug testing. 655.5 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS General § 655.5 Stand-down waivers for drug testing. (a) An employer subject to this part may...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
40 CFR 63.9350 - What reports must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... reconstructed engine test cell/stand that is subject to permitting regulations pursuant to 40 CFR part 70 or 71... reconstructed engine test cell/stand during the reporting period. (3) A summary of the total duration of the...
40 CFR 63.9345 - What notifications must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands... apply to you by the dates specified. (b) If you own or operate a new or reconstructed test cell/stand... engine test cell/stand has no additional requirements and explain the basis of the exclusion (for example...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once every...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Standards for Hazardous Air Pollutants for Engine Test Cells/Stands General Compliane Requirements § 63.9306... at all times that an engine test cell/stand is operating, except during monitoring malfunctions... engine test cell/stand is operating. You must inspect the automatic shutdown system at least once every...
39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH ...
39. HISTORIC VIEW LOOKING WEST AT THE TEST STAND WITH THE COLD CALIBRATION TOWER CONSTRUCTED TO THE LEFT OF THE ROCKET AND AN ACCESS PLATFORM BUILT TO REACH THE TOP OF THE ROCKET MORE EASILY. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Tan, Kimberly-Anne; Lim, Joel L; Choong, Denise; Lau, Leok-Lim; Liu, Ka-Po G; Wong, Hee-Kit
2017-10-01
A cross-sectional study of prospectively collected data. To compare lumbar spine alignment in six common postures, and estimate loss in range of motion (ROM) relative to standing. Ideal position for fusion of lumbar spine remains unknown. Although surgical fusion is necessary for deformity correction and symptom relief, the final position in which the vertebrae are immobilized should provide maximum residual function. Data were collected prospectively from 70 patients with low back pain recruited over a year. All subjects had x-rays performed in slump sitting, forward bending, supine, half squatting, standing, and backward bending postures. ROM quantified in terms of sagittal global and segmental Cobb angles was measured from L1 to S1. Loss of ROM relative to standing was calculated for each posture. Analysis of variance and unpaired t tests were used to identify differences in alignment between postures. Slump sitting gives the greatest lumbar flexion followed by forward bending, and supine postures (P < 0.001). Backward bending produces greater lumbar extension than standing (P = 0.035). Half-squatting and standing postures were not significantly different (P = 0.938). For all postures, L4-5 and L5-S1 segments remained in lordosis, with L4-5 having greater ROM than L5-S1. L1-2 turns kyphotic in lying supine, L2-3 at forward bending, and L3-4 at slump sitting in the form of a "kyphosing cascade." Should the entire lumbar spine be fused in standing position from L1-S1, there would likely be a mean loss of 47.6° of lumbar flexion and 5.9° of lumbar extension. The present study demonstrates the extent of flexibility required of the lumbar spine in assuming various postures. It also enables comparison of the differences in degree of motion occurring in the lumbar spine, both across postures and across segments. Significant loss in ROM, particularly flexion, is anticipated with fusion modeled after the lordotic standing lumbar spine. 2.
1. BUILDING 8698, TEST STAND 13, WEST ELEVATION. NOTE TUNNEL ...
1. BUILDING 8698, TEST STAND 1-3, WEST ELEVATION. NOTE TUNNEL BETWEEN BLDG. 8668 AND TEST STAND 1-3. TEST AREA 1-120 IN THE MIDDLE DISTANCE, AND TEST AREA 1-125 ON THE HORIZON. Looking northeast from the roof of Building 8668, Instrumentation and Control Center. Note: Photograph CA-236-F-2 is an 8" x 10" enlargement from a 4" x 5" negative. This view is a photocopy of a recent resin coated print made from a print held at the Main Base History Office, Edwards Air Force Base, California. Photographer unknown. Date and file number unknown. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Espinosa, Luis; Prieto, Flavio; Brancheriau, Loïc.
2017-03-01
Trees play a major ecological and sanitary role in modern cities. Nondestructive imaging methods allow to analyze the inner structures of trees, without altering their condition. In this study, we are interested on evaluating the influence of anisotropy condition in wood on the tomography image reconstruction using ultrasonic waves, by time-of-flight (TOF) estimation using the raytracing approach, a technique used particularly in the field of exploration seismography to simulate wave fronts in elastic media. Mechanical parameters from six wood species and one isotropic material were defined and their wave fronts and corresponding TOF values were obtained, using the proposed raytracing method. If the material presented anisotropy, the ray paths between the emitter and the receivers were not straight; therefore, curved rays were obtained for wood and the TOF measurements were affected. To obtain the tomographic image from the TOF measurements, the filtered back-projection algorithm was applied, a widely used technique in applications of straight ray tomography, but also commonly used in wood acoustic tomography. First, discs without inner defects for isotropic and wood materials (Spruce sample) were tested. Isotropic material resulted in a flat color image; for wood material, a gradient of velocities was obtained. After, centric and eccentric defects were tested, both for isotropic and orthotropic cases. From the results obtained for wood, when using a reconstruction algorithm intended for straight ray tomography, the images presented velocity variations from the border to the center that made difficult the discrimination of possible defects inside the samples, especially for eccentric cases.
1963-09-18
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. This photograph taken September 18, 1963 shows a spherical hydrogen tank being constructed next to the S-IC test stand.
Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan
2010-01-01
The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.
1993-09-01
Marshall Space Flight Center's F-1 Engine Test Stand is shown in this picture. Constructed in 1963, the test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.
NASA Technical Reports Server (NTRS)
2010-01-01
A structural steel beam to support the new thrust measurement system on the A-1 Test Stand at NASA's John C. Stennis Space Center is lifted to waiting employees for installation. The beam is part of the thrust takeout structure needed to support the new measurement system. Four such beams have been installed at the stand in preparation for installation of the system in upcoming weeks. Operators are preparing the stand for testing the next generation of rocket engines for the U.S. space program.
[Reliability of static posturography in elderly persons].
Bauer, C M; Gröger, I; Rupprecht, R; Tibesku, C O; Gassmann, K G
2010-08-01
Static posturography is used to quantify body sway. It is used to assess the balance of elderly persons who are prone to falls. There is still no general opinion concerning the reliability of force platform measurements. The aim of this study was to test the reliability of force platform parameters when measuring elderly persons. The reliability of 11 force platform parameters was tested measuring 30 elderly persons. The following parameters were calculated: mean speed of center of pressure displacement in mm/s, length of sway in mm, sway area in mm(2), amplitudes of center of pressure movement, the axis of oscillation in degrees and the person's angles of inclination in degrees. Three measurements were taken on the same day, with a resting period of 2 min. Four different test conditions were used: normal standing and narrow stand with eyes open and eyes closed, respectively. Reliability was determined by using intraclass correlation coefficients. Six parameters had excellent reliability with a correlation coefficient of >0.9: mean speed of center of pressure movement during narrow stand, area of sway during narrow stand, length of sway during normal and narrow stand, and the angle of inclination in the sagittal plane during normal stand and narrow stand. The condition "narrow stand eyes closed" proved to be the most reliable test position. Six parameters proved to have excellent reliability and are recommended to be used in further investigations. Narrow stand with eyes closed should be used as the test position. The tested protocol proved to be reliable. Whether these parameters can be used to predict falls in elderly persons remains to be investigated.
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES STRUCTURAL DYNAMICS TEST STAND COLD CALIBRATION TEST STAND AND COMPONENTS TEST LAB. - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG043535572; Drawing ...
26. "TEST STAND, STRUCTURAL, FOUNDATION PLAN." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 25 of 148; file no. 1320/76. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
7. COMPLETE X15 VEHICLE TEST STAND AFTER AN ENGINE FIRE ...
7. COMPLETE X-15 VEHICLE TEST STAND AFTER AN ENGINE FIRE OR EXPLOSION. Wreckage of engine is still fixed in its clamp; X-15 vehicle lies on the ground detached from engine. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
X-ray microbeam stand-alone facility for cultured cells irradiation
NASA Astrophysics Data System (ADS)
Bożek, Sebastian; Bielecki, Jakub; Wiecheć, Anna; Lekki, Janusz; Stachura, Zbigniew; Pogoda, Katarzyna; Lipiec, Ewelina; Tkocz, Konrad; Kwiatek, Wojciech M.
2017-03-01
The article describes an X-ray microbeam standalone facility dedicated for irradiation of living cultured cells. The article can serve as an advice for such facilities construction, as it begins from engineering details, through mathematical modeling and experimental procedures, ending up with preliminary experimental results and conclusions. The presented system consists of an open type X-ray tube with microfocusing down to about 2 μm, an X-ray focusing system with optical elements arranged in the nested Kirckpatrick-Baez (or Montel) geometry, a sample stand and an optical microscope with a scientific digital CCD camera. For the beam visualisation an X-ray sensitive CCD camera and a spectral detector are used, as well as a scintillator screen combined with the microscope. A method of precise one by one irradiation of previously chosen cells is presented, as well as a fast method of uniform irradiation of a chosen sample area. Mathematical models of beam and cell with calculations of kerma and dose are presented. The experiments on dose-effect relationship, kinetics of DNA double strand breaks repair, as well as micronuclei observation were performed on PC-3 (Prostate Cancer) cultured cells. The cells were seeded and irradiated on Mylar foil, which covered a hole drilled in the Petri dish. DNA lesions were visualised with γ-H2AX marker combined with Alexa Fluor 488 fluorescent dye.
2. TEST AREA 1115, A VIEW TO THE SOUTHEAST FROM ...
2. TEST AREA 1-115, A VIEW TO THE SOUTHEAST FROM THE DECK OF TEST STAND 1-5. AT RIGHT IS BUILDING 8642, MACHINE SHOP FOR TEST STAND 1-5. AT LEFT IS BUILDING 8649, AND PART OF BUILDING 8647, TEST STAND 1-4, IS VISIBLE TO LEFT OF BLDG. 8649. (PANORAMA 1/2). - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
Hebert, Phillip W.
2008-01-01
NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.
1978-09-01
Workmen in the Dynamic Test Stand lowered the nose cone into place to complete stacking of the left side of the solid rocket booster (SRB) in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB'S to which the ET was attached.
7. MOTION PICTURE CAMERA STAND AT BUILDING 8768. Edwards ...
7. MOTION PICTURE CAMERA STAND AT BUILDING 8768. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
8. Credit JPL. Photographic copy of photograph, view west down ...
8. Credit JPL. Photographic copy of photograph, view west down from Test Stand 'A' tower across newly installed tunnel tube to corner of Building 4201/E-2, Test Stand 'A' Workshop (demolished in 1985). Note the wooden retaining structure erected in the foreground to retain earth once the tunnel trench is backfilled (this retaining wall remained in 1994). Note also the propellant control piping on the Test Stand 'A' platform in the immediate foreground. (JPL negative no. 384-1547-C, 6 February 1957) - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Edwards Air Force Base, Boron, Kern County, CA
1997-06-04
This shot offers a bird's eye-view of a Fastrac II engine duration test at Marshall's Test Stand 116. The Fastrac II engine was designed as a part of the low cost X-34 Reusable Launch Vehicle (RLV). The purpose for these tests was to test the different types of metal alloys in the nozzle. Beside the engine were six additional nozzels which spray a continuous stream of water onto the test stand to reduce damage to the test stand and the engines. The X-34 program was cancelled in 2001.
Investigation of postural hypotension due to static prolonged standing in female workers.
Kabe, Isamu; Tsuruoka, Hiroko; Tokujitani, Yoko; Endo, Yuichi; Furusawa, Mami; Takebayashi, Toru
2007-07-01
The "Just-in-Time system" improves productivity and efficiency through cost reduction while it makes workers work in a standing posture. The aim of this study was to investigate the prevalence of postural hypotension in females during prolonged standing work, and to discuss preventive methods. Twelve female static standing workers (mean age+/-standard deviation; 32+/-14 yr old), 6 male static standing workers (30+/-4 yr old), 10 female walking workers (27+/-7 yr old) and 9 female desk workers (31+/-5 yr old) in a certain telecommunications equipment manufacturing factory agreed to participate in this study. All participants received an interview with an occupational physician, and performed the standing up test before working and ambulatory blood pressure monitoring (ABPM) while working. Although the blood pressure of the standing up test did not differ among the groups, mean pulse rates on standing up significantly increased in every group. Hypotension rates in the female standing workers' group by ABPM were 9 persons of 12 participants (75%) for systolic blood pressure (SBP), and were 11 persons of 12 participants (92%) for diastolic blood pressure (DBP). There were significantly higher than those in the female desk workers' group, none of 9 participants (0%) for SBP and 2 of 9 participants (22%) for DBP. The hypotension rates both male standing and female walking worker groups did not differ. Because all 8 workers who were found to have postural hypotension by the standing up test had decreased SBP and/or DBP by ABPM, it is suggested that persons at high risk of postural hypotension during standing work could be screened by the standing up test. The mechanism of postural hypotension may be a decrease of venous return due to leg swelling, and neurocardiogenic or vasovagal response. Preventing the congestion of the lower limbs by walking, managing standing time and wearing elastic hose to keep the amount of the venous return could prevent postural hypotension during prolonged standing work.
Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.
1987-08-07
An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.
Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.
1989-01-01
An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.
1. Photographic copy of engineering drawing showing elevations and sections ...
1. Photographic copy of engineering drawing showing elevations and sections of Test Stand 'E' (Building 4259/E-60). California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Solid Propellant Test Stand E-60 - Elevations & Sections,' sheet E60/10, no date. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
4. Credit WCT. Photographic copy of photograph, test Stand 'B' ...
4. Credit WCT. Photographic copy of photograph, test Stand 'B' set up for shock tube and research on ship-to-ship fueling problems for the U.S. Coast Guard. (JPL negative no. 344-3743-A, October or November 1980) - Jet Propulsion Laboratory Edwards Facility, Test Stand B, Edwards Air Force Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Camacho-Espinosa, E.; Rimmaudo, I.; Riech, I.; Mis-Fernández, R.; Peña, J. L.
2018-02-01
Among various metal oxide p-type semiconductors, cuprous oxide (Cu2O) stands out as a nontoxic and abundant material, which also makes it a suitable candidate as a low-cost absorber for photovoltaic applications. However, the chemical stability of the absorber layer is critical for the solar cell lifetime, in particular, for Cu-based materials, concerning to its oxidation state changes. In this paper, we addressed the Cu2O stability depositing films of 170 nm by reactive radio frequency magnetron sputtering and subsequently ageing them in conditions similar to the typical accelerated life test for the solar module, in a period of time from one to five weeks. The stability of the optical, electrical, and structural properties of the Cu2O thin films was investigated using UV-VIS-near infrared transmittance, 4-probes electrical resistance characterization, high precision profilometry, X-ray photoelectron spectroscopy, and grazing incidence X-ray diffraction. Finally, we demonstrated that the aging tests affected only the surface of the films, while the bulk remained unaltered, making Cu2O a promising candidate for production of stable devices, including solar cells.
Epitaxially Grown Films of Standing and Lying Pentacene Molecules on Cu(110) Surfaces
2011-01-01
Here, it is shown that pentacene thin films (30 nm) with distinctively different crystallographic structures and molecular orientations can be grown under essentially identical growth conditions in UHV on clean Cu(110) surfaces. By X-ray diffraction, we show that the epitaxially oriented pentacene films crystallize either in the “thin film” phase with standing molecules or in the “single crystal” structure with molecules lying with their long axes parallel to the substrate. The morphology of the samples observed by atomic force microscopy shows an epitaxial alignment of pentacene crystallites, which corroborates the molecular orientation observed by X-ray diffraction pole figures. Low energy electron diffraction measurements reveal that these dissimilar growth behaviors are induced by subtle differences in the monolayer structures formed by slightly different preparation procedures. PMID:21479111
1962-03-31
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton water deflector at the rate of 320,000 gallons per minute. In this photo, taken March 20, 1962, construction of the Pump House area is well underway.
1963-08-12
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the east was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo, taken August 12, 1963, the S-IC stand has received some of its internal components. Directly in the center is the framework that houses the flame deflector. The F-1 test stand, designed and built to test a single F-1 engine, can be seen on the left side of the photo.
8. "TEST STAND, ARCHITECTURAL, FLOOR PLANS AND SCHEDULES." Specifications No. ...
8. "TEST STAND, ARCHITECTURAL, FLOOR PLANS AND SCHEDULES." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 22 of 148; file no. 1320/73. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST ...
VIEW OF EAST TEST SITE FROM TOP OF STATIC TEST TOWER VIEW INCLUDES POWER PLANT TEST STAND AND SATURN V TEST STAND IN THE WEST TEST AREA (FAR BACKGROUND). - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
2002-10-01
This is a ground level view of Test Stand 500 at the east test area of the Marshall Space Flight Center. Originally constructed in 1966, Test Stand 500 is a multipurpose, dual-position test facility. The stand was utilized to test liquid hydrogen/liquid oxygen turbopumps and combustion devices for the J-2 engine. One test position has a high superstructure with lines and tankage for testing liquid hydrogen and liquid oxygen turbopumps while the other position is adaptable to pressure-fed test programs such as turbo machinery bearings or seals. The facility was modified in 1980 to support Space Shuttle main engine (SSME) bearing testing.
Primary experimental results of wire-array Z-pinches on PTS
NASA Astrophysics Data System (ADS)
Huang, X. B.; Zhou, S. T.; Ren, X. D.; Dan, J. K.; Wang, K. L.; Zhang, S. Q.; Li, J.; Xu, Q.; Cai, H. C.; Duan, S. C.; Ouyang, K.; Chen, G. H.; Ji, C.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.
2014-12-01
The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ˜10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132˜276 tungsten wires with 5˜10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ˜3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3˜5×107 cm/s and the radial convergence ratio is between 10 and 20.
1962-07-03
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken July 3, 1962 depicts the Block House with a portion of its concrete walls poured and exposed while many are still in the forms stage.
2. Photographic copy of engineering drawing showing mechanical systems in ...
2. Photographic copy of engineering drawing showing mechanical systems in plan and sections of Test Stand 'E,' including tunnel entrance. California Institute of Technology, Jet Propulsion Laboratory, Plant Engineering 'Bldg. E-60 Mechanical, Solid Propellant Test Stand,' sheet E60/13-4, June 20, 1961. - Jet Propulsion Laboratory Edwards Facility, Test Stand E, Edwards Air Force Base, Boron, Kern County, CA
2. View looking southeast at north and west facades of ...
2. View looking southeast at north and west facades of Test Stand 'D' workshop 4222/E-23, with Test Stand 'D' tower in background and tunnel access shed to the right. Equipment on 4222/E-23 roof is for air conditioning. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA
1. View looking northeast at the west and south facades ...
1. View looking northeast at the west and south facades of Test Stand 'D' workshop 4222/E-23. Test Stand 'D' tower nitrogen tanks, television camera platform and access stairs are at right of image. Ductwork atop roof is for air conditioning system. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Workshop, Edwards Air Force Base, Boron, Kern County, CA
1967-09-09
This photograph depicts the F-1 engine firing in the Marshall Space Flight Center’s F-1 Engine Static Test Stand. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. It is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.
New Marshall Center Test Stand 4697 Construction Time-Lapse
2016-09-27
In less than two minutes watch structural Test Stand 4697 rise at NASA's Marshall Space Flight Center from the start of construction in May 2014 to the end of the stand's construction phase in September 2016. The stand will subject the 196,000-gallon liquid oxygen tank of the Space Launch System's massive core stage to the same stresses and pressures it must endure at launch and in flight. Now, Marshall teams are installing sophisticated fluid transfer and pressurization systems, hydraulic controls, electrical control and data systems, fiber optics cables and special test equipment to prepare for the arrival of the test tank in 2017. (NASA/MSFC/David Olive)
1962-10-08
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 8, 1962, depicts a front view of the Block House nearing completion.
Photographic copy of plan of new Dy horizontal station and ...
Photographic copy of plan of new Dy horizontal station and accumulator additions to Test Stand "D," also showing existing Dd test station. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: "Jet Propulsion Laboratory-Edwards Test Station, Motive Steam Supply & Ejector Pumping System: Plan - Test Stand "D," sheet M-3 (JPL sheet number E24/33), 21 December 1976 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Larsson, Berit; Mellström, Dan; Johansson, Lisa; Nilsson, Anna G; Lorentzon, Mattias; Sundh, Daniel
2018-05-05
Depression in the elderly is today often treated with selective serotonin reuptake inhibitors (SSRIs) because of their favorable adverse effect profile. However, treatment with SSRIs is associated with increased risk of fractures. Whether this increased risk depends on reduced bone strength or increased fall risk due to reduced physical function is not certain. The aim was therefore to investigate if treatment with SSRIs is associated with impaired bone microstructure, bone density, or physical function in older women. From an ongoing population-based study, 1057 women (77.7 ± 1.5 years) were included. Validated questionnaires were used to assess information regarding medical history, medications, smoking, mental and physical health, and physical activity. Physical function was measured using clinically used tests: timed up and go, walking speed, grip strength, chair stand test, and one leg standing. Bone mineral density (BMD) was measured at the hip and spine with dual-energy X-ray absorptiometry (Hologic Discovery A). Bone geometry and microstructure were measured at the ultradistal and distal (14%) site of radius and tibia using high-resolution peripheral quantitative computed tomography (HR-pQCT; XtremeCT). Treatment with SSRIs was associated with higher BMD at the femoral neck, total hip, and lumbar spine, whereas no associations were found for any HR-pQCT-derived measurements. The use of SSRIs was associated with lower grip strength, walking speed, and fewer chair stand rises. These associations were valid also after adjustments for known risk factors for falls. Treatment with SSRIs was, independently of covariates, associated with worse physical function without any signs of inferior bone geometry and microstructure.
"Chair Stand Test" as Simple Tool for Sarcopenia Screening in Elderly Women.
Pinheiro, P A; Carneiro, J A O; Coqueiro, R S; Pereira, R; Fernandes, M H
2016-01-01
To investigate the association between sarcopenia and "chair stand test" performance, and evaluate this test as a screening tool for sarcopenia in community-dwelling elderly women. Cross-sectional Survey. 173 female individuals, aged ≥ 60 years and living in the urban area of the municipality of Lafaiete Coutinho, Bahia's inland, Brazil. The association between sarcopenia (defined by muscle mass, strength and/or performance loss) and performance in the "chair stand test" was tested by binary logistic regression technique. The ROC curve parameters were used to evaluate the diagnostic power of the test in sarcopenia screening. The significance level was set at 5 %. The model showed that the time spent for the "chair stand test" was positively associated (OR = 1.08; 95% CI = 1.01 - 1.16, p = 0.024) to sarcopenia, indicating that, for each 1 second increment in the test performance, the sarcopenia's probability increased by 8% in elderly women. The cut-off point that showed the best balance between sensitivity and specificity was 13 seconds. The performance of "chair stand test" showed predictive ability for sarcopenia, being an effective and simple screening tool for sarcopenia in elderly women. This test could be used for screening sarcopenic elderly women, allowing early interventions.
5. "TEST STAND 13, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications ...
5. "TEST STAND 1-3, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/17, Rev. A. Stamped: AS BUILT; NO CHANGES. Date of Revision A: 11/1/50. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Photographic copy of photograph, aerial view looking south at Jet ...
Photographic copy of photograph, aerial view looking south at Jet Propulsion Laboratory, Edwards Test Station complex in 1959, shortly after completion of Test Stand 'D' construction and installation of underground tunnel system. Test Stand 'D' is in the foreground, Test Stand 'A' complex in the background. Roads are as yet unpaved. (JPL negative no. 384-1917-B, 28 May 1959) - Jet Propulsion Laboratory Edwards Facility, Edwards Air Force Base, Boron, Kern County, CA
12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." ...
12. "TEST STAND; STRUCTURAL; DEFLECTOR PIT DETAILS, SHEET NO. 1." Specifications No. ENG-04-353-55-72; Drawing No. 60-09-12; sheet 41 of 148; file no. 1320/92, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ...
11. "INSTRUMENTATION AND CONTROL SYSTEMS, EQUIPMENT LOCATION, TEST STAND TERMINAL ROOM, PLANS AND SECTION." Specifications No. ENG-04-353-55-72; Drawing No. 60-0912; sheet 106 of 148; file no. 1321/57. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...
27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications ...
9. "TEST STAND; STRUCTURAL; CABLE TUNNEL, PLAN, SECTIONS, DETAILS." Specifications No. OC1-55-72-(Rev.); Drawing No. 60-09-12; sheet 43 of 148; file no. AF 1320/94, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, no change. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A Terminal Room, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
2001-03-13
In the Spacecraft Assembly and Encapsulation Facility (SAEF 2), workers stand back as the panels of the solar array on the 2001 Mars Odyssey Orbiter open. The array will undergo illumination testing. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers
What does the shape of our back tell us? Correlation between sacrum orientation and lumbar lordosis.
Schmidt, Hendrik; Bashkuev, Maxim; Weerts, Jeronimo; Altenscheidt, Joern; Maier, Christoph; Reitmaier, Sandra
2018-04-01
Sacral slope and lumbar lordosis (LL) have been studied extensively in recent years via X-ray examinations and strongly correlate with each other. This raises, first, the question of the reproducibility of this correlation in multiple standing phases and, second, if this correlation can be achieved using non-radiological measurement tools. This study aimed (1) to determine the extent to which the back-shape measurements correspond to the correlations between the sacral slope and LL found in previous radiological investigations, (2) to identify a possible effect of age and gender on this correlation, and (3) to evaluate the extent to which this correlation is affected by repeated standing phases. This is an observational cohort study. A total of 410 asymptomatic subjects (non-athletes), 21 asymptomatic soccer players (athletes), and 176 patients with low back pain (LBP) were included. The correlation between sacrum orientation (SO) and LL was determined in six repetitive upright standing postures. A non-invasive strain-gauge based measuring system was used. Back-shape measurements yielded a similar correlation to that measured in previous X-ray examinations. The coefficient of determination (R 2 ) between SO and LL ranged between 0.76 and 0.79 for the asymptomatic cohort. Athletes showed the strongest correlation (0.76≤R 2 ≤0.84). For patients with LBP, the correlation substantially decreased (0.18≤R 2 ≤0.39). R 2 was not strongly affected by repeated standing phases. The correlation between SO and LL can be assessed by surface measurements of the back shape and is not influenced by natural variations in the standing posture. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Pike, Cody J.
2015-01-01
A project within SwampWorks is building a test stand to hold regolith to study how dust is ejected when exposed to the hot exhaust plume of a rocket engine. The test stand needs to be analyzed, finalized, and fabrication drawings generated to move forward. Modifications of the test stand assembly were made with Creo 2 modeling software. Structural analysis calculations were developed by hand to confirm if the structure will hold the expected loads while optimizing support positions. These calculations when iterated through MatLab demonstrated the optimized position of the vertical support to be 98'' from the far end of the stand. All remaining deflections were shown to be under the 0.6'' requirement and internal stresses to meet NASA Ground Support Equipment (GSE) Safety Standards. Though at the time of writing, fabrication drawings have yet to be generated, but are expected shortly after.
Jorrakate, Chaiyong; Kongsuk, Jutaluk; Pongduang, Chiraprapa; Sadsee, Boontiwa; Chanthorn, Phatchari
2015-01-01
[Purpose] The aim of the present study was to investigate the effect of yoga training on static and dynamic standing balance in obese individuals with poor standing balance. [Subjects and Methods] Sixteen obese volunteers were randomly assigned into yoga and control groups. The yoga training program was performed for 45 minutes per day, 3 times per week, for 4 weeks. Static and dynamic balance were assessed in volunteers with one leg standing and functional reach tests. Outcome measures were tested before training and after a single week of training. Two-way repeated measure analysis of variance with Tukey’s honestly significant difference post hoc statistics was used to analyze the data. [Results] Obese individuals showed significantly increased static standing balance in the yoga training group, but there was no significant improvement of static or dynamic standing balance in the control group after 4 weeks. In the yoga group, significant increases in static standing balance was found after the 2nd, 3rd, and 4th weeks. Compared with the control group, static standing balance in the yoga group was significantly different after the 2nd week, and dynamic standing balance was significantly different after the 4th week. [Conclusion] Yoga training would be beneficial for improving standing balance in obese individuals with poor standing balance. PMID:25642038
Borgese, L; Salmistraro, M; Gianoncelli, A; Zacco, A; Lucchini, R; Zimmerman, N; Pisani, L; Siviero, G; Depero, L E; Bontempi, E
2012-01-30
This work is presented as an improvement of a recently introduced method for airborne particulate matter (PM) filter analysis [1]. X-ray standing wave (XSW) and total reflection X-ray fluorescence (TXRF) were performed with a new dedicated laboratory instrumentation. The main advantage of performing both XSW and TXRF, is the possibility to distinguish the nature of the sample: if it is a small droplet dry residue, a thin film like or a bulk sample. Another advantage is related to the possibility to select the angle of total reflection to make TXRF measurements. Finally, the possibility to switch the X-ray source allows to measure with more accuracy lighter and heavier elements (with a change in X-ray anode, for example from Mo to Cu). The aim of the present study is to lay the theoretical foundation of the new proposed method for airborne PM filters quantitative analysis improving the accuracy and efficiency of quantification by means of an external standard. The theoretical model presented and discussed demonstrated that airborne PM filters can be considered as thin layers. A set of reference samples is prepared in laboratory and used to obtain a calibration curve. Our results demonstrate that the proposed method for quantitative analysis of air PM filters is affordable and reliable without the necessity to digest filters to obtain quantitative chemical analysis, and that the use of XSW improve the accuracy of TXRF analysis. Copyright © 2011 Elsevier B.V. All rights reserved.
Bonnini, Elisa; Buffagni, Elisa; Zappettini, Andrea; Doyle, Stephen; Ferrari, Claudio
2015-06-01
The efficiency of a Laue lens for X- and γ-ray focusing in the energy range 60-600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X-ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDPs) are considered for the realization of a focusing system for γ-rays, owing to their high diffraction efficiency in a predetermined angular range. In this work, a comparison of the efficiency of CDP crystals and Cu and Au mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. In order to increase the efficiency of the lens further, a stack of several CDP crystals is proposed as an optical element. CDP crystals were obtained by a surface-damage method, and a stack of two surface-damaged bent Si crystals was prepared and tested. Rocking curves of the stack were performed with synchrotron radiation at 19 keV to check the lattice alignment: they exhibited only one diffraction peak.
TARA MARSHALL AND MIKE NICHOLS AT TEST STAND 4693
2016-12-14
TARA MARSHALL, LEFT, A MARSHALL ENGINEER, TALKS ABOUT THE INSTALLATION OF A PRESSURIZATION CONTROL PANEL AT TEST STAND 4693 WITH MIKE NICHOLS, LEAD TEST ENGINEER FOR THE SPACE LAUNCH SYSTEM LIQUID HYDROGEN TANK STRUCTURAL TEST ARTICLE.
2002-10-01
This is a ground level view of Test Stand 300 at the east test area of the Marshall Space Flight Center. Test Stand 300 was constructed in 1964 as a gas generator and heat exchanger test facility to support the Saturn/Apollo Program. Deep-space simulation was provided by a 1960 modification that added a 20-ft thermal vacuum chamber and a 1981 modification that added a 12-ft vacuum chamber. The facility was again modified in 1989 when 3-ft and 15-ft diameter chambers were added to support Space Station and technology programs. This multiposition test stand is used to test a wide range of rocket engine components, systems, and subsystems. It has the capability to simulate launch thermal and pressure profiles. Test Stand 300 was designed for testing solid rocket booster (SRB) insulation panels and components, super-insulated tanks, external tank (ET) insulation panels and components, Space Shuttle components, solid rocket motor materials, and advanced solid rocket motor materials.
Redstone Test Stand Accepted Into National Register of Historical Places
NASA Technical Reports Server (NTRS)
1976-01-01
On October 02, 1976, Marshall Space Flight Center's (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand are Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, as he is accepting a certificate of registration from Madison County Commission Chairman James Record, and Huntsville architect Harvie Jones.
Thinning from below in a 60-year-old western white pine stand
Marvin W. Foiles
1955-01-01
Thirty-year results from a test of thinning a 60-year-old western white pine stand indicate that thinning does not appreciably change total volume growth, but it does improve the quality of the final product by increasing diameter growth and improving stand composition. This test was established in 1919 on the Priest River Experimental Forest, Idaho, to test three...
1963-09-25
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand’s 1900 ton flame deflector at the rate of 320,000 gallons per minute. This photograph, taken September 25, 1963, depicts the construction progress of the Pump House and massive round water tanks on the right.
1963-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. In the center portion of this photograph, taken September 5, 1963, the spherical hydrogen storage tanks are being constructed. One of the massive tower legs of the S-IC test stand is visible to the far right.
Samaan, Michael A; Schultz, Brooke; Popovic, Tijana; Souza, Richard B; Majumdar, Sharmila
2017-01-01
Background Performance tests are important to characterize patient disabilities and functional changes. The Osteoarthritis Research Society International and others recommend the 30-second Chair Stand Test and Stair Climb Test, among others, as core tests that capture two distinct types of disability during activities of daily living. However, these two tests are limited by current protocols of testing in clinics. There is a need for an alternative that allows remote testing of functional capabilities during these tests in the osteoarthritis patient population. Objective Objectives are to (1) develop an app for testing the functionality of an iPhone’s accelerometer and gravity sensor and (2) conduct a pilot study objectively evaluating the criterion validity and test-retest reliability of outcome variables obtained from these sensors during the 30-second Chair Stand Test and Stair Climb Test. Methods An iOS app was developed with data collection capabilities from the built-in iPhone accelerometer and gravity sensor tools and linked to Google Firebase. A total of 24 subjects performed the 30-second Chair Stand Test with an iPhone accelerometer collecting data and an external rater manually counting sit-to-stand repetitions. A total of 21 subjects performed the Stair Climb Test with an iPhone gravity sensor turned on and an external rater timing the duration of the test on a stopwatch. App data from Firebase were converted into graphical data and exported into MATLAB for data filtering. Multiple iterations of a data processing algorithm were used to increase robustness and accuracy. MATLAB-generated outcome variables were compared to the manually determined outcome variables of each test. Pearson’s correlation coefficients (PCCs), Bland-Altman plots, intraclass correlation coefficients (ICCs), standard errors of measurement, and repeatability coefficients were generated to evaluate criterion validity, agreement, and test-retest reliability of iPhone sensor data against gold-standard manual measurements. Results App accelerometer data during the 30-second Chair Stand Test (PCC=.890) and gravity sensor data during the Stair Climb Test (PCC=.865) were highly correlated to gold-standard manual measurements. Greater than 95% of values on Bland-Altman plots comparing the manual data to the app data fell within the 95% limits of agreement. Strong intraclass correlation was found for trials of the 30-second Chair Stand Test (ICC=.968) and Stair Climb Test (ICC=.902). Standard errors of measurement for both tests were found to be within acceptable thresholds for MATLAB. Repeatability coefficients for the 30-second Chair Stand Test and Stair Climb Test were 0.629 and 1.20, respectively. Conclusions App-based performance testing of the 30-second Chair Stand Test and Stair Climb Test is valid and reliable, suggesting its applicability to future, larger-scale studies in the osteoarthritis patient population. PMID:29079549
Validation of Cardiovascular Parameters during NASA's Functional Task Test
NASA Technical Reports Server (NTRS)
Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, S. H.
2009-01-01
Microgravity exposure causes physiological deconditioning and impairs crewmember task performance. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in a series of operationally-relevant tasks. One of these, the Recovery from Fall/Stand Test (RFST), tests both the ability to recover from a prone position and cardiovascular responses to orthostasis. PURPOSE: Three minutes were chosen for the duration of this test, yet it is unknown if this is long enough to induce cardiovascular responses similar to the operational 5 min stand test. The purpose of this study was to determine the validity and reliability of heart rate variability (HRV) analysis of a 3 min stand and to examine the effect of spaceflight on these measures. METHODS: To determine the validity of using 3 vs. 5 min of standing to assess HRV, ECG was collected from 7 healthy subjects who participated in a 6 min RFST. Mean R-R interval (RR) and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the FTT on separate days, including the RFST with a 3 min stand. Analysis of variance (ANOVA) was performed on the HRV measures. One crewmember completed the FTT before a 14-day mission, on landing day (R+0) and one (R+1) day after returning to Earth. RESULTS VALIDITY: HRV measures reflecting autonomic activity were not significantly different during the 0-3 and 0-5 min segments. RELIABILITY: The average coefficient of variation for RR, systolic (SBP) and diastolic blood pressures during the RFST were less than 8% for the 3 sessions. ANOVA results yielded a greater inter-subject variability (p<0.006) than inter-session variability (p>0.05) for HRV in the RFST. SPACEFLIGHT: Lower RR and higher SBP were observed on R+0 in rest and stand. On R+1, both RR and SBP trended towards preflight rest and stand values. Postflight HRV showed higher LF/HF for rest and stand and lower HFnu during rest. CONCLUSION: These studies show that a 3 min stand delivers repeatable HRV data in the context of this larger series of FTT tests. Spaceflight-induced changes in blood pressure, RR and autonomic function (HRV) are evident from the RFST.
1961-08-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 14, 1961.
1961-08-18
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 18, 1961.
1963-04-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken April 17, 1963, gives a look at the four tower legs of the S-IC test stand at their completed height.
1961-07-21
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 21, 1961, a worker can be seen inside the test stand work area with a jack hammer.
1963-11-20
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of November 20, 1963.
1963-06-24
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken June 24, 1963, the four tower legs of the test stand can be seen at their maximum height.
1961-07-31
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 31, 1961, work is continued in the clearing of the test stand site.
1963-02-25
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken February 25, 1963, gives a close up look at two of the ever-growing four towers of the S-IC Test Stand.
1961-08-11
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 11, 1961.
1963-05-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken from ground level on May 7, 1963, gives a close look at one of the four towers legs of the S-IC test stand nearing its completed height.
1963-05-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken May 7, 1963, gives a close look at the four concrete tower legs of the S-IC test stand at their completed height.
1961-07-21
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 21, 1961, workers can be seen inside the test stand work area clearing the site.
1963-10-10
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 10, 1963. Kerosene storage tanks can be seen to the left.
1961-09-07
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the S-IC test stand as of September 7, 1961.
Construction Progress of the S-IC Test Stand-Steel Reinforcements
NASA Technical Reports Server (NTRS)
1961-01-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 15, 1961, shows the installation of the reinforcing steel prior to the pouring of the concrete foundation walls.
1961-07-10
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 10, 1961, actual ground breaking has occurred for the S-IC test stand site.
1961-06-30
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this early construction photo, taken June 30, 1961, workers are involved in the survey and site preparation for the test stand.
Characterization and development of an event-driven hybrid CMOS x-ray detector
NASA Astrophysics Data System (ADS)
Griffith, Christopher
2015-06-01
Hybrid CMOS detectors (HCD) have provided great benefit to the infrared and optical fields of astronomy, and they are poised to do the same for X-ray astronomy. Infrared HCDs have already flown on the Hubble Space Telescope and the Wide-Field Infrared Survey Explorer (WISE) mission and are slated to fly on the James Webb Space Telescope (JWST). Hybrid CMOS X-ray detectors offer low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up. The fast readout time is necessary for future high throughput X-ray missions. The Speedster-EXD X-ray HCD presented in this dissertation offers new in-pixel features and reduces known noise sources seen on previous generation HCDs. The Speedster-EXD detector makes a great step forward in the development of these detectors for future space missions. This dissertation begins with an overview of future X-ray space mission concepts and their detector requirements. The background on the physics of semiconductor devices and an explanation of the detection of X-rays with these devices will be discussed followed by a discussion on CCDs and CMOS detectors. Next, hybrid CMOS X-ray detectors will be explained including their advantages and disadvantages. The Speedster-EXD detector and its new features will be outlined including its ability to only read out pixels which contain X-ray events. Test stand design and construction for the Speedster-EXD detector is outlined and the characterization of each parameter on two Speedster-EXD detectors is detailed including read noise, dark current, interpixel capacitance crosstalk (IPC), and energy resolution. Gain variation is also characterized, and a Monte Carlo simulation of its impact on energy resolution is described. This analysis shows that its effect can be successfully nullified with proper calibration, which would be important for a flight mission. Appendix B contains a study of the extreme tidal disruption event, Swift J1644+57, to search for periodicities in its X-ray light curve. iii.
Posture and performance: sitting vs. standing for security screening.
Drury, C G; Hsiao, Y L; Joseph, C; Joshi, S; Lapp, J; Pennathur, P R
2008-03-01
A classification of the literature on the effects of workplace posture on performance of different mental tasks showed few consistent patterns. A parallel classification of the complementary effect of performance on postural variables gave similar results. Because of a lack of data for signal detection tasks, an experiment was performed using 12 experienced security operators performing an X-ray baggage-screening task with three different workplace arrangements. The current workplace, sitting on a high chair viewing a screen placed on top of the X-ray machine, was compared to a standing workplace and a conventional desk-sitting workplace. No performance effects of workplace posture were found, although the experiment was able to measure performance effects of learning and body part discomfort effects of workplace posture. There are implications for the classification of posture and performance and for the justification of ergonomics improvements based on performance increases.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-08
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing via MSFC West Test Area. STA approaches Test Stand 4693, SLS LH2 test Stand, on way to Bldg. 4619
Imaging fully hydrated whole cells by coherent x-ray diffraction microscopy.
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Naitow, Hisashi; Kunishima, Naoki; Yoshida, Takashi; Ishikawa, Tetsuya; Song, Changyong
2013-03-01
Nanoscale imaging of biological specimens in their native condition is of long-standing interest, in particular with direct, high resolution views of internal structures of intact specimens, though as yet progress has been limited. Here we introduce wet coherent x-ray diffraction microscopy capable of imaging fully hydrated and unstained biological specimens. Whole cell morphologies and internal structures better than 25 nm can be clearly visualized without contrast degradation.
10. ENGINE TEST CELL BUILDING INTERIOR. CELL 4, MOUNTING STAND. ...
10. ENGINE TEST CELL BUILDING INTERIOR. CELL 4, MOUNTING STAND. LOOKING NORTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
1967-08-01
This photograph is a view of the Saturn V S-IC-5 (first) flight stage static test firing at the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. Begirning operations in 1966, the MTF has two test stands, a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 407-foot-high test stand for the static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.; Burt, Richard K.
2008-01-01
This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities, along with an introduction to the new missions that these sleeping giants will be fulfilling as NASA readies the Ares I for service in the 2015 timeframe, and plans the development work for fielding the Ares V late next decade (fig. 1). Validating modern computer design models and techniques requires the sorts of data that can only be generated by these one-of-a-kind facilities.
4. "TEST STAND NO. 13, CONCRETE STRUCTURAL PLAN AND ELEVATION." ...
4. "TEST STAND NO. 1-3, CONCRETE STRUCTURAL PLAN AND ELEVATION." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/12 REV. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. E; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
6. "TEST STAND NO. 13, RETAINING WALLS & APRON, SECTIONS ...
6. "TEST STAND NO. 1-3, RETAINING WALLS & APRON, SECTIONS & ELEVATIONS." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/20, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. B; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
11. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
11. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/15, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
13. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
13. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/18, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. D, no change; Date: 18 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
15. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...
15. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; PLAN & DETAILS." Specifications No. ENG 04-353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/34, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. A, no change; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
9. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
9. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. ENG 04-35350-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/13. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
10. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
10. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/14, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. B; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
16. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...
16. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; ELEVATIONS AND SECTIONS." Specifications No. ENG 04353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/35, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. A; Date: 29 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
12. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...
12. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/16, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
14. "TEST STANDS NOS. 11, 13, & 15; MISCELLANEOUS DETAILS." ...
14. "TEST STANDS NOS. 1-1, 1-3, & 1-5; MISCELLANEOUS DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/22, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. D, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
40. HISTORIC VIEW LOOKING WEST AT THE TEST STAND. NOTE ...
40. HISTORIC VIEW LOOKING WEST AT THE TEST STAND. NOTE THE LOAD CELL APPARATUS LOCATED ABOVE THE ROCKET. THE SPACE BETWEEN THE BOTTOM OF THE LOAD CELL APPARATUS AND THE TOP OF THE ROCKET IS THE DIFFERENCE IN SIZE BETWEEN THE REDSTONE ROCKET AND ITS DECEDENT THE JUPITER C ROCKET. THE GAP IS FILLED WITH A SPACER WHEN THEY TEST A REDSTONE ROCKET. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Liao, Wen-Te; Pálffy, Adriana
2014-02-07
A setup for generating the special superposition of a simultaneously forward- and backward-propagating collective excitation in a nuclear sample is studied. We show that by actively manipulating the scattering channels of single x-ray quanta with the help of a normal incidence x-ray mirror, a nuclear polariton which propagates in two opposite directions can be generated. The two counterpropagating polariton branches are entangled by a single x-ray photon. The quantum nature of the nuclear excitation entanglement gives rise to a subangstrom-wavelength standing wave excitation pattern that can be used as a flexible tool to probe matter dynamically on the subatomic scale.
Sakai, Akinori; Oshige, Toshihisa; Zenke, Yukichi; Yamanaka, Yoshiaki; Nagaishi, Hitoshi; Nakamura, Toshitaka
2010-01-01
The aim of this study was to test the effect of unipedal standing exercise on bone mineral density (BMD) of the hip in postmenopausal women. Japanese postmenopausal women (n = 94) were assigned at random to an exercise or control group (no exercise). The 6-month exercise program consisted of standing on a single foot for 1 min per leg 3 times per day. BMD of the hip was measured by dual-energy X-ray absorptiometry. There was no significant difference in age and baseline hip BMD between the exercise group (n = 49) and control group (n = 45). Exercise did not improve hip BMD compared with the control group. Stepwise regression analysis identified old age as a significant determinant (p = 0.034) of increased hip total BMD at 6 months after exercise. In 31 participants aged >/=70 years, the exercise group (n = 20) showed significant increase in the values of hip BMD at the areas of total (p = 0.008), intertrochanteric (p = 0.023), and Ward's triangle (p = 0.032). The same parameters were decreased in the control group (n = 11). The percent changes in hip BMD of the exercise group were not significantly different from those of the control group either in the participants with low baseline hip total BMD (<80% of the young adult mean) or high baseline hip total BMD (> or =80% of the young adult mean). In conclusion, unipedal standing exercise for 6 months did not improve hip BMD in Japanese postmenopausal women. Effect of exercise on hip total BMD was age dependent. In participants aged > or =70 years, the exercise significantly increased hip total BMD.
Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.
Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992
Geopressured-geothermal test of the EDNA Delcambre No. 1 well, Vermilion Parish, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieland, D.R.; Meriwether, J.
1977-11-16
Two sand intervals, Sand No. 3 and Sand No. 1, were independently tested during our program. Sand No. 3 was the deepeer zone and was tested first. A gamma ray--neutron log of these zones, and the intervals perforated, are shown. The gamma ray log run in 1968 showed Sand No. 1 to be a fairly uniform section with few shale breaks and our original plans were to perforate the entire interval. After obtaining the more recent GR log big shale breaks were shown to exist throughout the zone, so a smaller interval was selected. A net sand thickness of 48more » ft. was used for Sand No. 3 and 30 ft. for Sand No. 1. There was no data available to indicate whether these zones became thicker or thinner away from the wellbore; therefore, these values were used as net thickness in the reservoir calculations. The procedure used to perforate the two sands were different. Both were perforated with 0.33 inch jets at a density of 4 shots per foot; however, Sand No. 3 was perforated in two runs using a stand-off gun, whereas Sand No. 1 was perforated in one run using a centralized gun with the jet density being 4 shots per foot but oriented alternately at 180 degrees.« less
2011-09-15
E-2 Test Stand team members at Stennis Space Center conducted their first series of tests on a three-module chemical steam generator unit Sept. 15. All three modules successfully fired during the tests. The chemical steam generator is a critical component for the A-3 Test Stand under construction at Stennis.
GENERAL VIEW LOOKING SOUTH AT THE SATURN I STATIC TEST ...
GENERAL VIEW LOOKING SOUTH AT THE SATURN I STATIC TEST STAND. NOTE THE FIRST STAGE OF THE SATURN I ROCKET ON DISPLAY TO THE LEFT OF THE TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
1963-01-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, depicts the progress of the stand as of January 14, 1963, with its four towers prominently rising.
2011-08-19
The A-3 Test Stand under construction at Stennis Space Center is set for completion and activation in 2013. It will allow operators to conduct simulated high-altitude testing on the next-generation J-2X rocket engine.
6. INTERIOR VIEW, DETAIL OF PROPELLER TEST STAND. WrightPatterson ...
6. INTERIOR VIEW, DETAIL OF PROPELLER TEST STAND. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH
TEST STAND 4697 CONSTRUCTION TOP OUT
2016-03-04
ON MARCH 4, CREW MEMBERS READIED A 900-POUND STEEL BEAM TO "TOP OUT" TEST STAND 4697, WHICH IS UNDER CONSTRUCTION TO TEST THE SPACE LAUNCH SYSTEM LIQUID OXYGEN TANK AT NASA'S MARSHALL SPACE FLIGHT CENTER.
AIAA Aerospace America Magazine - Year in Review Article, 2010
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
2010-01-01
NASA Stennis Space Center has implemented a pilot operational Integrated System Health Management (ISHM) capability. The implementation was done for the E-2 Rocket Engine Test Stand and a Chemical Steam Generator (CSG) test article; and validated during operational testing. The CSG test program is a risk mitigation activity to support building of the new A-3 Test Stand, which will be a highly complex facility for testing of engines in high altitude conditions. The foundation of the ISHM capability are knowledge-based integrated domain models for the test stand and CSG, with physical and model-based elements represented by objects the domain models enable modular and evolutionary ISHM functionality.
Construction Progress of the S-IC Test Stand-Pumps
NASA Technical Reports Server (NTRS)
1962-01-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken April 4, 1961, shows the S-IC test stand dry once again when workers resumed construction after a 6 month delay due to booster size reconfiguration back in September of 1961. The disturbance of a natural spring during the excavation of the site required water to be pumped from the site continuously. The site was completely flooded after the pumps were shut down during the construction delay.
Graphene supported heterogeneous catalysts for Li-O2 batteries
NASA Astrophysics Data System (ADS)
Alaf, M.; Tocoglu, U.; Kartal, M.; Akbulut, H.
2016-09-01
In this study production and characterization of free-standing and flexible (i) graphene, (ii) α-MnO2/graphene, (iii) Pt/graphene (iv) α-MnO2/Pt/graphene composite cathodes for Li-air batteries were reported. Graphene supported heterogeneous catalysts were produced by a facile method. In order to prevent aggregation of graphene sheets and increase not only interlayer distance but also surface area, a trace amount multi-wall carbon nano tube (MWCNT) was introduced to the composite structure. The obtained composite catalysts were characterized by SEM, X-ray diffraction, N2 adsorption-desorption analyze and Raman spectroscopy. The electrochemical characterization tests including galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) measurement of catalyst were carried out by using an ECC-Air test cell. These highly active graphene supported heterogeneous composite catalysts provide competitive properties relative to other catalyst materials for Li-air batteries.
A novel technique to produce x-rays for XRF, medical, and scientific purposes
NASA Astrophysics Data System (ADS)
Camara, Carlos G.; Putterman, Seth J.; Kotowski, Andy
2015-08-01
A long-standing mystery in science is the process whereby charge spontaneously exchanges between different materials that are brought into contact. After thousands of years of study there is no ab initio theory of tribocharging. As such it is an area of R&D that is not yet tethered to the first principles of physics and is wide open for new inventions. In 2008, Camara et al at UCLA discovered that tribocharging in a moderate vacuum could be used to take X-ray images. Since then, we have improved the X-ray output by 6 orders of magnitude and controlled the emission for use in a commercial product. Here we present an overview of this technology for use in X-ray fluorescence and X-ray imaging.
Credit WCT. Photographic copy of photograph, view looking northwest at ...
Credit WCT. Photographic copy of photograph, view looking northwest at complete Test Stand "D" installation as of January 1962. Note closed-circuit television camera at extreme left, along with MMH (fuel) storage tank. Hatch of Dd test cell is open; nearby stand MMH run tanks for Dd station. (JPL negative no. 384-2591-A, 25 January 1961) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
DEVELOPMENT OF AN ARMY STATIONARY AXLE TEST STAND FOR LUBRICANT EFFICIENCY EVALUATION-PART II
2017-01-13
value was estimated based on the engines maximum peak torque output, multiplied by the transmissions 1st gear ratio, high range transfer case ratio...efficiency test stand to allow for laboratory based investigation of Fuel Efficient Gear Oils (FEGO) and their impact on vehicle efficiency. Development...their impact on vehicle efficiency. The test stand was designed and developed with the following goals: • Provide a lower cost alternative for
Credit BG. West elevation of Test Stand "D" tower, with ...
Credit BG. West elevation of Test Stand "D" tower, with workshop on left, and tunnel entrance at right. Tower is accessed by exterior steel stairway; the vertical vacuum cell (Dv Cell) is obscured behind large square sunscreen. Below the sunscreen can be seen the end of the horizontal vacuum duct leading from the vacuum cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
7. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. ...
7. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH
5. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. ...
5. INTERIOR VIEW, SHOWING PROPELLER TEST STAND AND BOMB BAYS. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH
1967-01-01
This photograph is a view of the Saturn V S-IC-5 (first) flight stage being hoisted into the S-IC-B1 test stand at the Mississippi Test Facility (MTF), Bay St. Louis, Mississippi. Begirning operations in 1966, the MTF has two test stands, a dual-position structure for running the S-IC stage at full throttle, and two separate stands for the S-II (Saturn V third) stage. It became the focus of the static test firing program. The completed S-IC stage was shipped from Michoud Assembly Facility (MAF) to the MTF. The stage was then installed into the 124-meter-high test stand for static firing tests before shipment to the Kennedy Space Center for final assembly of the Saturn V vehicle. The MTF was renamed to the National Space Technology Laboratory (NSTL) in 1974 and later to the Stennis Space Center (SSC) in May 1988.
Adusumilli, Gautam; Joseph, Solomon Eben; Samaan, Michael A; Schultz, Brooke; Popovic, Tijana; Souza, Richard B; Majumdar, Sharmila
2017-10-27
Performance tests are important to characterize patient disabilities and functional changes. The Osteoarthritis Research Society International and others recommend the 30-second Chair Stand Test and Stair Climb Test, among others, as core tests that capture two distinct types of disability during activities of daily living. However, these two tests are limited by current protocols of testing in clinics. There is a need for an alternative that allows remote testing of functional capabilities during these tests in the osteoarthritis patient population. Objectives are to (1) develop an app for testing the functionality of an iPhone's accelerometer and gravity sensor and (2) conduct a pilot study objectively evaluating the criterion validity and test-retest reliability of outcome variables obtained from these sensors during the 30-second Chair Stand Test and Stair Climb Test. An iOS app was developed with data collection capabilities from the built-in iPhone accelerometer and gravity sensor tools and linked to Google Firebase. A total of 24 subjects performed the 30-second Chair Stand Test with an iPhone accelerometer collecting data and an external rater manually counting sit-to-stand repetitions. A total of 21 subjects performed the Stair Climb Test with an iPhone gravity sensor turned on and an external rater timing the duration of the test on a stopwatch. App data from Firebase were converted into graphical data and exported into MATLAB for data filtering. Multiple iterations of a data processing algorithm were used to increase robustness and accuracy. MATLAB-generated outcome variables were compared to the manually determined outcome variables of each test. Pearson's correlation coefficients (PCCs), Bland-Altman plots, intraclass correlation coefficients (ICCs), standard errors of measurement, and repeatability coefficients were generated to evaluate criterion validity, agreement, and test-retest reliability of iPhone sensor data against gold-standard manual measurements. App accelerometer data during the 30-second Chair Stand Test (PCC=.890) and gravity sensor data during the Stair Climb Test (PCC=.865) were highly correlated to gold-standard manual measurements. Greater than 95% of values on Bland-Altman plots comparing the manual data to the app data fell within the 95% limits of agreement. Strong intraclass correlation was found for trials of the 30-second Chair Stand Test (ICC=.968) and Stair Climb Test (ICC=.902). Standard errors of measurement for both tests were found to be within acceptable thresholds for MATLAB. Repeatability coefficients for the 30-second Chair Stand Test and Stair Climb Test were 0.629 and 1.20, respectively. App-based performance testing of the 30-second Chair Stand Test and Stair Climb Test is valid and reliable, suggesting its applicability to future, larger-scale studies in the osteoarthritis patient population. ©Gautam Adusumilli, Solomon Eben Joseph, Michael A Samaan, Brooke Schultz, Tijana Popovic, Richard B Souza, Sharmila Majumdar. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 27.10.2017.
35. VIEW LOOKING NORTHWEST AT THE STATIC TEST TOWER. A ...
35. VIEW LOOKING NORTHWEST AT THE STATIC TEST TOWER. A 'DUMMY' SATURN I BOOSTER IS BEING HOISTED INTO THE TEST STAND TO TEST THE MATING OF THE BOOSTER AND THE TEST STAND. EARLY 1960, PHOTOGRAPHER UNKNOWN, MSFC PHOTO LAB. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Patterns of growth dominance in forests of the Rocky Mountains, USA
Dan Binkley; Daniel M. Kashian; Suzanne Boyden; Margot W. Kaye; John B. Bradford; Mary A. Arthur; Paula J. Fornwalt; Michael G. Ryan
2006-01-01
We used data from 142 stands in Colorado andWyoming, USA, to test the expectations of a model of growth dominance and stand development. Growth dominance relates the distribution of growth rates of individual trees within a stand to tree sizes. Stands with large trees that account for a greater share of stand growth than of stand mass exhibit strong growth dominance....
Correlation of Space Shuttle Landing Performance with Post-Flight Cardiovascular Dysfunction
NASA Technical Reports Server (NTRS)
McCluskey, R.
2004-01-01
Introduction: Microgravity induces cardiovascular adaptations resulting in orthostatic intolerance on re-exposure to normal gravity. Orthostasis could interfere with performance of complex tasks during the re-entry phase of Shuttle landings. This study correlated measures of Shuttle landing performance with post-flight indicators of orthostatic intolerance. Methods: Relevant Shuttle landing performance parameters routinely recorded at touchdown by NASA included downrange and crossrange distances, airspeed, and vertical speed. Measures of cardiovascular changes were calculated from operational stand tests performed in the immediate post-flight period on mission commanders from STS-41 to STS-66. Stand test data analyzed included maximum standing heart rate, mean increase in maximum heart rate, minimum standing systolic blood pressure, and mean decrease in standing systolic blood pressure. Pearson correlation coefficients were calculated with the null hypothesis that there was no statistically significant linear correlation between stand test results and Shuttle landing performance. A correlation coefficient? 0.5 with a p<0.05 was considered significant. Results: There were no significant linear correlations between landing performance and measures of post-flight cardiovascular dysfunction. Discussion: There was no evidence that post-flight cardiovascular stand test data correlated with Shuttle landing performance. This implies that variations in landing performance were not due to space flight-induced orthostatic intolerance.
40 CFR 63.9305 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cells/Stands General Compliane Requirements § 63.9305 What are my general requirements for complying... maintain your engine test cell/stand, air pollution control equipment, and monitoring equipment in a manner... to engine test cells/stands. [68 FR 28785, May 27, 2003, as amended at 71 FR 20470, Apr. 20, 2006] ...
40 CFR 63.9305 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Cells/Stands General Compliane Requirements § 63.9305 What are my general requirements for complying... maintain your engine test cell/stand, air pollution control equipment, and monitoring equipment in a manner... to engine test cells/stands. [68 FR 28785, May 27, 2003, as amended at 71 FR 20470, Apr. 20, 2006] ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-20
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Engine Test Cells/ Stands... Cells/Stands (Renewal) ICR Numbers: EPA ICR Number 2066.05, OMB Control Number 2060-0483. ICR Status... Hazardous Air Pollutants (NESHAP) for Engine Test Cells/Stands were proposed on May 14, 2002 (67 FR 34547...
40 CFR 63.9305 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Cells/Stands General Compliane Requirements § 63.9305 What are my general requirements for complying... maintain your engine test cell/stand, air pollution control equipment, and monitoring equipment in a manner... to engine test cells/stands. [68 FR 28785, May 27, 2003, as amended at 71 FR 20470, Apr. 20, 2006] ...
40 CFR 63.9305 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Cells/Stands General Compliane Requirements § 63.9305 What are my general requirements for complying... maintain your engine test cell/stand, air pollution control equipment, and monitoring equipment in a manner... to engine test cells/stands. [68 FR 28785, May 27, 2003, as amended at 71 FR 20470, Apr. 20, 2006] ...
40 CFR 63.9305 - What are my general requirements for complying with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Cells/Stands General Compliane Requirements § 63.9305 What are my general requirements for complying... maintain your engine test cell/stand, air pollution control equipment, and monitoring equipment in a manner... to engine test cells/stands. [68 FR 28785, May 27, 2003, as amended at 71 FR 20470, Apr. 20, 2006] ...
25. HISTORIC VIEW OF A2 ROCKET (FULLY ASSEMBLED) EXCEPT FOR ...
25. HISTORIC VIEW OF A-2 ROCKET (FULLY ASSEMBLED) EXCEPT FOR GN2 CONTAINER. AT TEST STAND NO. 1 IN KUMMERSDORF. THE STAND WAS DESIGNED & CONSTRUCTED IN 1932. ROCKET IS BEING TANKED WITH LOX PRECEDING A STATIC FIRING. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-08
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing via MSFC West Test Area. Historic Saturn 1-C test stand on far left, blockhouse 4670 on far right, SLS LH2 test stand, 4693, in center.
Rahal, Miguel Antônio; Alonso, Angélica Castilho; Andrusaitis, Felix Ricardo; Rodrigues, Thuam Silva; Speciali, Danielli Souza; Greve, Júlia Maria D′Andréa; Leme, Luiz Eugênio Garcez
2015-01-01
OBJECTIVE: To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. METHODS: We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master® force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). RESULTS: In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. CONCLUSION: The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test. PMID:26017644
Rahal, Miguel Antônio; Alonso, Angélica Castilho; Andrusaitis, Felix Ricardo; Rodrigues, Thuam Silva; Speciali, Danielli Souza; Greve, Júlia Maria D Andréa; Leme, Luiz Eugênio Garcez
2015-03-01
To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master¯ force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES.
Wadiasingh, Zorawar; Harding, Alice K; Venter, Christo; Böttcher, Markus; Baring, Matthew G
2017-04-20
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R 0 . We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R 0 ~ 0.15-0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R 0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R 0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.
2018-01-01
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167
Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries
NASA Technical Reports Server (NTRS)
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.
2017-01-01
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans
Chassé, Kathleen
2017-01-01
Physical function performance tests, including sit to stand tests and Timed Up and Go, assess the functional capacity of older adults. Their ability to predict falls warrants further investigation. The objective was to determine if a modified 30-second Sit to Stand test that allowed upper extremity use and Timed Up and Go test predicted falls in institutionalized Veterans. Fifty-three older adult Veterans (mean age = 91 years, 49 men) residing in a long-term care hospital completed modified 30-second Sit to Stand and Timed Up and Go tests. The number of falls over one year was collected. The ability of modified 30-second Sit to Stand or Timed Up and Go to predict if participants had fallen was examined using logistic regression. The ability of these tests to predict the number of falls was examined using negative binomial regression. Both analyses controlled for age, history of falls, cognition, and comorbidities. The modified 30-second Sit to Stand was significantly (p < 0.05) related to if participants fell (odds ratio = 0.75, 95% confidence interval = 0.58, 0.97) and the number of falls (incidence rate ratio = 0.82, 95% confidence interval = 0.68, 0.98); decreased repetitions were associated with increased number of falls. Timed Up and Go was not significantly (p > 0.05) related to if participants fell (odds ratio = 1.03, 95% confidence interval = 0.96, 1.10) or the number of falls (incidence rate ratio = 1.01, 95% confidence interval = 0.98, 1.05). The modified 30-second Sit to Stand that allowed upper extremity use offers an alternative method to screen for fall risk in older adults in long-term care. PMID:28464024
Modified 30-second Sit to Stand test predicts falls in a cohort of institutionalized older veterans.
Applebaum, Eva V; Breton, Dominic; Feng, Zhuo Wei; Ta, An-Tchi; Walsh, Kayley; Chassé, Kathleen; Robbins, Shawn M
2017-01-01
Physical function performance tests, including sit to stand tests and Timed Up and Go, assess the functional capacity of older adults. Their ability to predict falls warrants further investigation. The objective was to determine if a modified 30-second Sit to Stand test that allowed upper extremity use and Timed Up and Go test predicted falls in institutionalized Veterans. Fifty-three older adult Veterans (mean age = 91 years, 49 men) residing in a long-term care hospital completed modified 30-second Sit to Stand and Timed Up and Go tests. The number of falls over one year was collected. The ability of modified 30-second Sit to Stand or Timed Up and Go to predict if participants had fallen was examined using logistic regression. The ability of these tests to predict the number of falls was examined using negative binomial regression. Both analyses controlled for age, history of falls, cognition, and comorbidities. The modified 30-second Sit to Stand was significantly (p < 0.05) related to if participants fell (odds ratio = 0.75, 95% confidence interval = 0.58, 0.97) and the number of falls (incidence rate ratio = 0.82, 95% confidence interval = 0.68, 0.98); decreased repetitions were associated with increased number of falls. Timed Up and Go was not significantly (p > 0.05) related to if participants fell (odds ratio = 1.03, 95% confidence interval = 0.96, 1.10) or the number of falls (incidence rate ratio = 1.01, 95% confidence interval = 0.98, 1.05). The modified 30-second Sit to Stand that allowed upper extremity use offers an alternative method to screen for fall risk in older adults in long-term care.
1962-03-31
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September 1961 as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable, floating pump stations were placed in the site to drain the flood waters caused by a disturbed natural spring months prior during excavation. In this March 31, 1962 photo, the foundation walls can once again be seen.
1961-12-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 22, 1961, shows danger signs posted around the abandoned site with floods nearing the top. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1962-03-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken March 15, 1962, shows danger signs posted around the abandoned, flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1962-03-20
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable floating pump stations were placed in the site, as seen in this March 20, 1962 photo, to drain the flood waters caused by a disturbed natural spring months prior during excavation.
1961-12-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-18
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 18, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-11
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 11, 1961, shows the abandoned site with floods above the 18 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 1, 1961, shows the abandoned site with floods at the 6 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-11
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 11, 1961, shows the abandoned site with floods above the 18 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-08
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 8, 1961, shows the abandoned site with floods at the 16 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-04
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand would have to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1961-12-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 14, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
1962-02-02
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken February 2, 1962, shows the abandoned flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.
Lyu, Lu; Niu, Dongmei; Xie, Haipeng; Zhao, Yuan; Cao, Ningtong; Zhang, Hong; Zhang, Yuhe; Liu, Peng; Gao, Yongli
2017-01-04
Combining ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM) and small angle X-ray diffraction (SAXD) measurements, we perform a systematic investigation on the correlations of the electronic structure, film growth and molecular orientation of 2,7-diocty[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) on silicon oxide (SiO 2 ). AFM analysis reveals a phase transition of disorderedly oriented molecules in clusters in thinner films to highly ordered standing-up molecules in islands in thicker films. SAXD peaks consistently support the standing-up configuration in islands. The increasing ordering of the molecular orientation with film thickness contributes to the changing of the shape and lowering of the leading edge of the highest occupied molecular orbital (HOMO). The end methyl of the highly ordered standing molecules forms an outward pointing dipole layer which makes the work function (WF) decrease with increasing thickness. The downward shift of the HOMO and a decrease of WF result in unconventional downward band bending and decreased ionization potential (IP). The correlations of the orientation ordering of molecules, film growth and interface electronic structures provide a useful design strategy to improve the performance of C8-BTBT thin film based field effect transistors.
3. VIEW LOOKING NORTH FROM LEFT TO RIGHT BAYS 5 ...
3. VIEW LOOKING NORTH FROM LEFT TO RIGHT BAYS 5 & 6 OF O-RING FACILITY, POWER PLANT. TEST STAND SUPPORT BUILDING, (REMAINING WALLS) DYNAMIC TEST TOWERS IN BACKGROUND (BOTH VERSIONS). - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL
30. SKETCH OF THE PROPOSED TEST STAND FOR THE ORDNANCE ...
30. SKETCH OF THE PROPOSED TEST STAND FOR THE ORDNANCE GUIDED MISSILE CENTER AT REDSTONE ARSENAL (PRE-DATING NASA). JUNE, 1951, HANS LUEHRSEN COLLECTION, MSFC MASTER PLANNING OFFICE. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL
Redstone Test Stand Accepted Into National Register of Historical Places
NASA Technical Reports Server (NTRS)
1976-01-01
On October 02, 1976, Marshall Space Flight Center's (MSFC) Redstone test stand was received into the National Registry of Historical Places. Photographed in front of the Redstone test stand along with their wives are (left to right), Madison County Commission Chairman James Record, Dr. William R. Lucas, MSFC Center Director from June 15, 1974 until July 3, 1986, (holding certificate), Ed, Buckbee, Space and Rocket Center Director; Harvie Jones, Huntsville Architect; Dick Smith; and Joe Jones.
Up, Up Up in 60 Seconds- Watch Rocket Test Stand Soar to 221-Feet Tall
2017-01-09
In this 60-second time-lapse video, watch structural Test Stand 4693 at NASA's Marshall Space Flight Center rise 221 feet, from the start of construction in May 2014 to its end in December 2016. Test Stand 4693 will subject the 537,000-gallon liquid hydrogen tank of the Space Launch System's massive core stage to the same stresses and pressures it must endure at launch and in flight.
Credit WCT. Photographic copy of photograph, view looking east at ...
Credit WCT. Photographic copy of photograph, view looking east at Test Stand "D" during erection of the test stand tower. Note wire lath nailed over gypsum board on Building 4222/E-23 at far left in preparation for stucco covering (temporary construction). Stucco would not require painting in desert. (JPL negative no. 384-1865-A, 13 April 1959) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
8. X15 ENGINE TESTING. A color print showing the engine ...
8. X-15 ENGINE TESTING. A color print showing the engine during test firing. View from the rear of the test stand looking northwest. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors.
Zhang, Minwei; Halder, Arnab; Hou, Chengyi; Ulstrup, Jens; Chi, Qijin
2016-06-01
We have explored AuNPs (13 nm) both as a catalyst and as a core for synthesizing water-dispersible and highly stable core-shell structural gold@Prussian blue (Au@PB) nanoparticles (NPs). Systematic characterization by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) disclosed AuNPs coated uniformly by a 5 nm thick PB layer. Au@PB NPs were attached to single-layer graphene oxide (GO) to form Au@PB decorated GO sheets. The resulting hybrid material was filtered layer-by-layer into flexible and free-standing GO paper, which was further converted into conductive reduced GO (RGO)/Au@PB paper via hydrazine vapour reduction. High-resolution TEM images suggested that RGO papers are multiply sandwich-like structures functionalized with core-shell NPs. Resulting sandwich functionalized graphene papers have high conductivity, sufficient flexibility, and robust mechanical strength, which can be cut into free-standing electrodes. Such electrodes, used as non-enzymatic electrochemical sensors, were tested systematically for electrocatalytic sensing of hydrogen peroxide. The high performance was indicated by some of the key parameters, for example the linear H2O2 concentration response range (1-30 μM), the detection limit (100 nM), and the high amperometric sensitivity (5 A cm(-2) M(-1)). With the advantages of low cost and scalable production capacity, such graphene supported functional papers are of particular interest in the use as flexible disposable sensors. Copyright © 2016 Elsevier B.V. All rights reserved.
1963-10-22
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 22, 1963. Spherical liquid hydrogen tanks can be seen to the left. Just to the lower front of those are the cylindrical liquid oxygen (LOX) tanks.
1961-06-01
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 13, 1961, progress is being made with the excavation of the S-IC test stand site. During the digging, a natural spring was disturbed which caused a constant flooding problem. Pumps were used to remove the water all through the construction process and the site is still pumped today.
1963-03-29
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In the early stages of excavation, a natural spring was disturbed that caused a water problem which required constant pumping from the site and is even pumped to this day. Behind this reservoir of pumped water is the S-IC test stand boasting its ever-growing four towers as of March 29, 1963.
1961-08-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photograph taken on August 5th, 1961, a back hoe is nearly submerged in water in the test stand site. During the initial digging, the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump the water from the site on a daily basis and is still pumped from the site today.
1961-08-14
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 14, 1961. Water gushing in from the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump water from the site on a daily basis and is still pumped from the site today. The equipment is partially submerged in the water emerging from the spring.
6. NORTH REAR, WEST PART. VIEW TO SOUTHWEST. TEST STAND ...
6. NORTH REAR, WEST PART. VIEW TO SOUTHWEST. TEST STAND 1-5 AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL ...
13. VIEW FROM COLD CALIBRATION BLOCKHOUSE LOOKING DOWN CONNECTING TUNNEL TO COLD CALIBRATION TEST STAND BASEMENT, SHOWING HARD WIRE CONNECTION (INSTRUMENTATION AND CONTROL). - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
2. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION BLOCKHOUSE, ...
2. VIEW NORTHWEST FROM LEFT TO RIGHT: COLD CALIBRATION BLOCKHOUSE, COLD CALIBRATION TEST STAND FOR FL ENGINE FOR SATURN V. EXHAUST DUCT IN FOREGROUND. - Marshall Space Flight Center, East Test Area, Cold Calibration Test Stand, Huntsville, Madison County, AL
Muñoz-Esparza, Carmen; Zorio, Esther; Domingo Valero, Diana; Peñafiel-Verdú, Pablo; Sánchez-Muñoz, Juan J; García-Molina, Esperanza; Sabater, María; Navarro, Marina; San-Román, Irene; Pérez, Inmaculada; Santos, Juan J; Cabañas-Perianes, Valentín; Valdés, Mariano; Pascual, Domingo; García-Alberola, Arcadio; Gimeno Blanes, Juan R
2017-11-01
Patients with congenital long QT syndrome (LQTS) have an abnormal QT adaptation to sudden changes in heart rate provoked by standing. The present study sought to evaluate the standing test in a cohort of LQTS patients and to assess if this QT maladaptation phenomenon is ameliorated by beta-blocker therapy. Electrographic assessments were performed at baseline and immediately after standing in 36 LQTS patients (6 LQT1 [17%], 20 LQT2 [56%], 3 LQT7 [8%], 7 unidentified-genotype patients [19%]) and 41 controls. The corrected QT interval (QTc) was measured at baseline (QTc supine ) and immediately after standing (QTc standing ); the QTc change from baseline (ΔQTc) was calculated as QTc standing - QTc supine . The test was repeated in 26 patients receiving beta-blocker therapy. Both QTc standing and ΔQTc were significantly higher in the LQTS group than in controls (QTc standing , 528 ± 46ms vs 420 ± 15ms, P < .0001; ΔQTc, 78 ± 40ms vs 8 ± 13ms, P < .0001). No significant differences were noted between LQT1 and LQT2 patients. Typical ST-T wave patterns appeared after standing in LQTS patients. Receiver operating characteristic curves of QTc standing and ΔQTc showed a significant increase in diagnostic value compared with the QTc supine (area under the curve for both, 0.99 vs 0.85; P < .001). Beta-blockers attenuated the response to standing in LQTS patients (QTc standing , 440 ± 32ms, P < .0001; ΔQTc, 14 ± 16ms, P < .0001). Evaluation of the QTc after the simple maneuver of standing shows a high diagnostic performance and could be important for monitoring the effects of beta-blocker therapy in LQTS patients. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
2012-06-25
NASA engineers tested an Aerojet AJ26 rocket engine on the E-1 Test Stand at Stennis Space Center on June 25, 2012, against the backdrop of the B-1/B-2 Test Stand. The engine will be used by Orbital Sciences Corporation to power commercial cargo flights to the International Space Station.
6. AN EARLY VIEW OF THE COMPLETE X15 VEHICLE TEST ...
6. AN EARLY VIEW OF THE COMPLETE X-15 VEHICLE TEST STAND. Looking to the northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA
Classifying GRB 170817A/GW170817 in a Fermi duration-hardness plane
NASA Astrophysics Data System (ADS)
Horváth, I.; Tóth, B. G.; Hakkila, J.; Tóth, L. V.; Balázs, L. G.; Rácz, I. I.; Pintér, S.; Bagoly, Z.
2018-03-01
GRB 170817A, associated with the LIGO-Virgo GW170817 neutron-star merger event, lacks the short duration and hard spectrum of a Short gamma-ray burst (GRB) expected from long-standing classification models. Correctly identifying the class to which this burst belongs requires comparison with other GRBs detected by the Fermi GBM. The aim of our analysis is to classify Fermi GRBs and to test whether or not GRB 170817A belongs—as suggested—to the Short GRB class. The Fermi GBM catalog provides a large database with many measured variables that can be used to explore gamma-ray burst classification. We use statistical techniques to look for clustering in a sample of 1298 gamma-ray bursts described by duration and spectral hardness. Classification of the detected bursts shows that GRB 170817A most likely belongs to the Intermediate, rather than the Short GRB class. We discuss this result in light of theoretical neutron-star merger models and existing GRB classification schemes. It appears that GRB classification schemes may not yet be linked to appropriate theoretical models, and that theoretical models may not yet adequately account for known GRB class properties. We conclude that GRB 170817A may not fit into a simple phenomenological classification scheme.
Nilsen, Tormod S; Raastad, Truls; Skovlund, Eva; Courneya, Kerry S; Langberg, Carl W; Lilleby, Wolfgang; Fosså, Sophie D; Thorsen, Lene
2015-11-01
Androgen deprivation therapy (ADT) increases survival rates in prostate cancer (PCa) patients with locally advanced disease, but is associated with side effects that may impair daily function. Strength training may counteract several side effects of ADT, such as changes in body composition and physical functioning, which in turn may affect health-related quality of life (HRQOL). However, additional randomised controlled trials are needed to expand this knowledge. Fifty-eight PCa patients on ADT were randomised to either 16 weeks of high-load strength training (n = 28) or usual care (n = 30). The primary outcome was change in total lean body mass (LBM) assessed by dual x-ray absorptiometry (DXA). Secondary outcomes were changes in regional LBM, fat mass, and areal bone mineral density (aBMD) measured by DXA; physical functioning assessed by 1-repetition maximum (1RM) tests, sit-to-stand test, stair climbing test and Shuttle walk test; and HRQOL as measured by the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. No statistically significant effect of high-load strength training was demonstrated on total LBM (p = 0.16), but significant effects were found on LBM in the lower and upper extremities (0.49 kg, p < 0.01 and 0.15 kg, p < 0.05, respectively). Compared to usual care, high-load strength training showed no effect on fat mass, aBMD or HRQOL, but beneficial effects were observed in all 1RM tests, sit-to-stand test and stair climbing tests. Adherence to the training program was 88% for lower body exercises and 84% for upper body exercises. In summary, high-load strength training improved LBM in extremities and physical functioning, but had no effect on fat mass, aBMD, or HRQOL in PCa patients on ADT.
Bučar Pajek, Maja; Leskošek, Bojan; Vivoda, Tjaša; Svilan, Katarina; Čuk, Ivan; Pajek, Jernej
2016-06-01
To reduce the need for a large number of executed physical function tests we examined inter-relations and determined predictive power for daily physical activity of the following tests: 6-min walk, 10 repetition sit-to-stand, time up-and-go, Storke balance, handgrip strength, upper limb tapping and sitting forward bend tests. In 90 dialysis and 140 healthy control subjects we found high correlations between all tests, especially those engaging lower extremities. Sit-to-stand, forward bend and handgrip strength were selected for the test battery and composite motor performance score. Sit-to-stand test was superior in terms of sensitivity to uremia effects and association with daily physical function in adjusted analyses. There was no incremental value in calculating the composite performance score. We propose to standardize the physical function assessment of dialysis patients for cross-sectional and longitudinal observations with three simple, cheap, well-accessible and easily performed test tools: sit-to-stand test, handgrip strength and Human Activity Profile questionnaire. © 2016 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.
A-3 Test Stand construction update
NASA Technical Reports Server (NTRS)
2007-01-01
The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.
A-3 Test Stand construction update
2007-12-18
The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.
NASA Astrophysics Data System (ADS)
Tseng, Chuan Ming; Chen, Hsin Liang; Lai, Sz Nian; Chen, Ming Shiung; Peng, Chien Jung; Li, Chia Jui; Hung, Wei Hsuan
2017-05-01
"Carbon-based material" has demonstrated a great potential on water purification due to its strong physical adsorption to organic pollutants in the water. Three-dimensional cubic ordered mesoporous carbon (CMK-8), one of the well-known ordered mesoporous carbons, was prepared by using nanocasting method with mesoporous silica (KIT-6) as the template. In this study, CMK-8 blended with Nafion polymer to form a free-standing mesoporous CMK-8-Nafion composite membrane. The synthesis of high crystallinity CMK-8 was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). More than 80% methyl orange (MO) removal efficiency was observed under 254-nm UV irradiation after 120 min. Ninety-two percent recycling performance was remained after four recycling tests, which indicated a reliable servicing lifetime for the water purification. Furthermore, an additional layer of plasmonic silver nanoparticles (Ag NPs) was integrated into this CMK-8-Nafion membrane for higher pollutant removal efficiency, attributing from the generation of plasmon-resonance hot electrons from Ag NPs. A 4-in. CMK-8-Nafion composite membrane was also fabricated for the demonstration of potential large-scale utilization.
NASA Astrophysics Data System (ADS)
Broughton, Rachel; Gomez, Michael; Zolfaghari, Ali; Morris, Lewis
2016-10-01
A self-aligning Gaussian telescope has been designed to compensate for the effect of movement in the ITER vacuum vessel on the transmission line. The purpose of the setup is to couple microwaves into and out of the vessel across the vacuum windows while allowing for both slow movements of the vessel, due to thermal growth, and rapid movements, due to vibrations and disruptions. Additionally, a test stand has been designed specifically to hold this telescope in order to imitate these movements. Consequently, this will allow for the assessment of the efficacy in applying the self-aligning Gaussian telescope approach. The motions of the test stand, as well as the stress on the telescope mechanism, have been virtually simulated using ANSYS workbench. A prototype of this test stand and self-aligning telescope will be built using a combination of custom machined parts and ordered parts. The completed mechanism will be tested at the lab in four different ways: slow single- and multi-direction movements, rapid multi-direction movement, functional laser alignment and self-aligning tests, and natural frequency tests. Once the prototype successfully passes all requirements, it will be tested with microwaves in the LFSR transmission line test stand at General Atomics. This work is supported by US DOE Contract No. DE-AC02-09CH11466.
2008-03-05
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility, General Dynamics technicians secure NASA's Gamma-Ray Large Area Space Telescope, or GLAST, onto a work stand. There GLAST will undergo a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
2008-03-05
KENNEDY SPACE CENTER, FLA. -- In the Astrotech payload processing facility, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, sits uncovered before its move to a work stand in the facility for a complete checkout of the scientific instruments aboard. The telescope will launch aboard a Delta II rocket May 16 from Launch Pad 17-B on Cape Canaveral Air Force Station. A powerful space observatory, the GLAST will explore the most extreme environments in the universe, and answer questions about supermassive black hole systems, pulsars and the origin of cosmic rays. It also will study the mystery of powerful explosions known as gamma-ray bursts. Photo credit: NASA/Kim Shiflett
Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC
NASA Technical Reports Server (NTRS)
1991-01-01
The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.
3. CABLE TUNNEL TO TEST STAND 1A, LOOKING SOUTH TO ...
3. CABLE TUNNEL TO TEST STAND 1-A, LOOKING SOUTH TO STAIRS LEADING UP TO CONTROL CENTER. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
1992-05-01
The Redstone Test Stand was used during the 1950s in early development of the Redstone missile propulsion system. This was the test stand where the modified Redstone missile that launched into space the first American, Alan Shepard, was static tested as the last step before the flight occurred.
DELUGE AND WATER RECLAMATION BASIN BELOW TEST STAND 1A. Looking ...
DELUGE AND WATER RECLAMATION BASIN BELOW TEST STAND 1-A. Looking north northwest - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
10. DETAIL SHOWING THRUST MEASURING SYSTEM. Looking up from the ...
10. DETAIL SHOWING THRUST MEASURING SYSTEM. Looking up from the test stand deck to east. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
1988-01-01
The Redstone Test Stand, shown here, was used throughout the 1950s to test the Redstone missionile, including the modified Redstone that launched America's first astronaut, Alan Shepard. The U. S. Department of the Interior's Park Services designated the Test Stand as a National Historic Landmark January 22, 1986.
Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC
1991-10-09
The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.
Interatomic scattering in energy dependent photoelectron spectra of Ar clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patanen, M.; Benkoula, S.; Nicolas, C.
2015-09-28
Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.
2012-11-08
A test of NASA's liquid oxygen, liquid methane Project Morpheus engine is conducted Nov. 8 on the E-3 Test Stand at John C. Stennis Space Center. The test was one of 27 conducted in Stennis' E Test Complex the week of Nov. 5. Twenty-seven tests were conducted in a three-day period during the week, on three different rocket engines/components and on three E Complex test stands.
Credit BG. Looking northwest at the Dd stand complex. To ...
Credit BG. Looking northwest at the Dd stand complex. To the left is the Test Stand "D" tower with steam-driven ejectors and interstage condenser visible along with steam lines. The steam accumulator appears in the left foreground (sphere); steam lines emerging from the top conduct steam to the Dv, Dd, and Dy stand ejectors. The T-shaped vertical pipes atop the accumulator are burst-disk type safety valves. The ejector ends of the Dd and Dy trains are visible to the right. Tracks permitted each train to expand and contract with temperature or equipment changes - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Yamako, Go; Chosa, Etsuo; Totoribe, Koji; Fukao, Yuu; Deng, Gang
2017-01-01
Simple methods for quantitative evaluations of individual motor performance are crucial for the early detection of motor deterioration. Sit-to-stand movement from a chair is a mechanically demanding component of activities of daily living. Here, we developed a novel method using the ground reaction force and center of pressure measured from the Nintendo Wii Balance Board to quantify sit-to-stand movement (sit-to-stand score) and investigated the age-related change in the sit-to-stand score as a method to evaluate reduction in motor performance. The study enrolled 503 participants (mean age ± standard deviation, 51.0 ± 19.7 years; range, 20-88 years; male/female ratio, 226/277) without any known musculoskeletal conditions that limit sit-to-stand movement, which were divided into seven 10-year age groups. The participants were instructed to stand up as quickly as possible, and the sit-to-stand score was calculated as the combination of the speed and balance indices, which have a tradeoff relationship. We also performed the timed up and go test, a well-known clinical test used to evaluate an individual's mobility. There were significant differences in the sit-to-stand score and timed up and go time among age groups. The mean sit-to-stand score for 60s, 70s, and 80s were 77%, 68%, and 53% of that for the 20s, respectively. The timed up and go test confirmed the age-related decrease in mobility of the participants. In addition, the sit-to-stand score measured using the Wii Balance Board was compared with that from a laboratory-graded force plate using the Bland-Altman plot (bias = -3.1 [ms]-1, 95% limit of agreement: -11.0 to 3.9 [ms]-1). The sit-to-stand score has good inter-device reliability (intraclass correlation coefficient = 0.87). Furthermore, the test-retest reliability is substantial (intraclass correlation coefficient = 0.64). Thus, the proposed STS score will be useful to detect the early deterioration of motor performance.
Design and evaluation of thrust vectored nozzles using a multicomponent thrust stand
NASA Technical Reports Server (NTRS)
Carpenter, Thomas W.; Blattner, Ernest W.; Stagner, Robert E.; Contreras, Juanita; Lencioni, Dennis; Mcintosh, Greg
1990-01-01
Future aircraft with the capability of short takeoff and landing, and improved maneuverability especially in the post-stall flight regime will incorporate exhaust nozzles which can be thrust vectored. In order to conduct thrust vector research in the Mechanical Engineering Department at Cal Poly, a program was planned with two objectives; design and construct a multicomponent thrust stand for the specific purpose of measuring nozzle thrust vectors; and to provide quality low moisture air to the thrust stand for cold flow nozzle tests. The design and fabrication of the six-component thrust stand was completed. Detailed evaluation tests of the thrust stand will continue upon the receipt of one signal conditioning option (-702) for the Fluke Data Acquisition System. Preliminary design of thrust nozzles with air supply plenums were completed. The air supply was analyzed with regard to head loss. Initial flow visualization tests were conducted using dual water jets.
EROIC: a BiCMOS pseudo-gaussian shaping amplifier for high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Buzzetti, Siro; Guazzoni, Chiara; Longoni, Antonio
2003-10-01
We present the design and complete characterization of a fifth-order pseudo-gaussian shaping amplifier with 1 μs shaping time. The circuit is optimized for the read-out of signals coming from Silicon Drift Detectors for high-resolution X-ray spectroscopy. The novelty of the designed chip stands in the use of a current feedback loop to place the poles in the desired position on the s-plane. The amplifier has been designed in 0.8 μm BiCMOS technology and fully tested. The EROIC chip comprises also the peak stretcher, the peak detector, the output buffer to drive the external ADC and the pile-up rejection system. The circuit needs a single +5 V power supply and the dissipated power is 5 mW per channel. The digital outputs can be directly coupled to standard digital CMOS ICs. The measured integral-non-linearity of the whole chip is below 0.05% and the achieved energy resolution at the Mn Kα line detected by a 5 mm 2 Peltier-cooled Silicon Drift Detector is 167 eV FWHM.
1961-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 5, 1961, shows the construction of forms which became the concrete foundation for the massive stand. The lower right hand corner reveals a pump used for extracting water emerging from a disturbed natural spring that occurred during excavation of the site. The pumping became a daily ritual and the site is still pumped today.
29. Historic view of twentythousandpound rocket test stand with engine ...
29. Historic view of twenty-thousand-pound rocket test stand with engine installation in test cell of Building 202, September 1957. On file at NASA Plumbrook Research Center, Sandusky, Ohio. NASA GRC photo number C-45870. - Rocket Engine Testing Facility, GRC Building No. 202, NASA Glenn Research Center, Cleveland, Cuyahoga County, OH
40 CFR 201.16 - Standard for locomotive load cell test stands.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell test...
40 CFR 201.16 - Standard for locomotive load cell test stands.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell test...
40 CFR 201.16 - Standard for locomotive load cell test stands.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell test...
40 CFR 201.16 - Standard for locomotive load cell test stands.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell test...
40 CFR 201.16 - Standard for locomotive load cell test stands.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Standard for locomotive load cell test... Interstate Rail Carrier Operations Standards § 201.16 Standard for locomotive load cell test stands. (a) Effective January 15, 1984, no carrier subject to this reguation shall operate locomotive load cell test...
11. OBSERVATION POST NO. 3, NORTH SIDE AND WEST REAR, ...
11. OBSERVATION POST NO. 3, NORTH SIDE AND WEST REAR, TEST STAND AT RIGHT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA
3. INTERIOR VIEW, SHOWING JET ENGINE TEST STAND. WrightPatterson ...
3. INTERIOR VIEW, SHOWING JET ENGINE TEST STAND. - Wright-Patterson Air Force Base, Area B, Building 71A, Propulsion Research Laboratory, Seventh Street between D & G Streets, Dayton, Montgomery County, OH
40 CFR 63.9280 - What is the purpose of subpart PPPPP?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This... emission standards for hazardous air pollutants (NESHAP) for engine test cells/stands located at major...
40 CFR 63.9280 - What is the purpose of subpart PPPPP?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This... emission standards for hazardous air pollutants (NESHAP) for engine test cells/stands located at major...
40 CFR 63.9280 - What is the purpose of subpart PPPPP?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This... emission standards for hazardous air pollutants (NESHAP) for engine test cells/stands located at major...
40 CFR 63.9280 - What is the purpose of subpart PPPPP?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This... emission standards for hazardous air pollutants (NESHAP) for engine test cells/stands located at major...
40 CFR 63.9280 - What is the purpose of subpart PPPPP?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Engine Test Cells/Stands What This... emission standards for hazardous air pollutants (NESHAP) for engine test cells/stands located at major...
40 CFR 91.305 - Dynamometer specifications and calibration accuracy.
Code of Federal Regulations, 2011 CFR
2011-07-01
... specifications. (1) The dynamometer test stand and other instruments for measurement of engine speed and torque... accuracy. (1) The dynamometer test stand and other instruments for measurement of engine torque and speed...
40 CFR 91.305 - Dynamometer specifications and calibration accuracy.
Code of Federal Regulations, 2014 CFR
2014-07-01
... specifications. (1) The dynamometer test stand and other instruments for measurement of engine speed and torque... accuracy. (1) The dynamometer test stand and other instruments for measurement of engine torque and speed...
40 CFR 91.305 - Dynamometer specifications and calibration accuracy.
Code of Federal Regulations, 2013 CFR
2013-07-01
... specifications. (1) The dynamometer test stand and other instruments for measurement of engine speed and torque... accuracy. (1) The dynamometer test stand and other instruments for measurement of engine torque and speed...
40 CFR 91.305 - Dynamometer specifications and calibration accuracy.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specifications. (1) The dynamometer test stand and other instruments for measurement of engine speed and torque... accuracy. (1) The dynamometer test stand and other instruments for measurement of engine torque and speed...
40 CFR 91.305 - Dynamometer specifications and calibration accuracy.
Code of Federal Regulations, 2012 CFR
2012-07-01
... specifications. (1) The dynamometer test stand and other instruments for measurement of engine speed and torque... accuracy. (1) The dynamometer test stand and other instruments for measurement of engine torque and speed...
NASA Lewis Research Center's Preheated Combustor and Materials Test Facility
NASA Technical Reports Server (NTRS)
Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith
1995-01-01
The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.
NASA Astrophysics Data System (ADS)
Neilsen, Joey
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, N.; Porquet, D.; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Houck, John C.; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.
2014-08-01
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.
The X-Ray Variability of Sagittarius A*
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, Nicolas; Porquet, Delphine; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.
2015-01-01
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.
Army Communicator. Volume 28. Number 2, Summer 2003
2003-01-01
Fowler, Anthony J. Ricchiazzi, Debbie Linton, Lockheed-Martin Space and Satellite Systems, SSG Jennifer K. Yancey , Ray Roxby, MAJ Christopher Martin...John Shulenski, Tom Aleski, Gary Gardsy and Dennis Pace. Standing: Rick Switzer, Steve Janiga, John Miles, Wayne Watkin, McQuistion, Joyce, Mike Basta
NASA Astrophysics Data System (ADS)
Liu, H.; Liu, L. L.; Cai, Z.; Shu, J.
2015-12-01
The measurement for equation of state (EoS) of materials under pressure conditions above 200 GPa is a long-standing challenging subject. Recently, second stage anvil, which was loaded inside the diamond anvil cell (DAC), had been reported by various groups. This method could generate pressure over 300 GPa, or above 600 GPa from the EoS measurement of Re metal between the tiny anvil or 2 half-spheres. Several alternative approaches, using ruby balls, or glassy carbon, or diamond, with single sphere, 2 half-spheres, or multi spheres geometry inside DAC, were tested. The NIST X-ray powder standard, ZnO was selected as pressure marker. Focused ion beam (FIB) was used to cut the half-sphere from diamond anvil top directly to avoid the difficulty of alignment. The synchrotron x-ray diffraction with fine beam size down to 100 nm using zone plate set-up was used to map the pressure gradient at the sphere or half-sphere zone inside DAC. The pressure could be boosted at center of sphere by up to 10 - 70 GPa at about 200 GPa conditions. From broken anvils, trace element analysis using fine focusing synchrotron x-ray fluorescence method revealed the potential anvil damage from FIB cutting the diamond anvil tip, which might decrease the strength of anvils. Fine touch from FIB cutting at final stage using low ion beam current is suggested.
Mississippi lieutenant governor visits Stennis
2009-10-01
Stennis Space Center Director Gene Goldman (left) stands with Mississippi Lt. Gov. Phil Bryant at the A-3 Test Stand construction site during an Oct. 1 visit by the state official. During his tour, Bryant was updated on construction of the first large test stand at Stennis since the 1960s. The A-3 stand will be used to conduct simulated high-altitude testing on the next generation of rocket engines that will take humans back to the moon and possibly beyond. In addition to touring Stennis facilities, Bryant visited the INFINITY Science Center construction site, where he was updated on work under way to construct a 72,000-square-foot facility that will showcase the science underpinning the missions of NASA and resident agencies at Stennis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... rail car operations and locomotive load cell test stands. 201.23 Section 201.23 Protection of... locomotive and rail car operations and locomotive load cell test stands. (a) The standard test site shall be... contribution from the operation of the load cell, if any, including load cell contribution during test. (h...